1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 md.c : Multiple Devices driver for Linux
4 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5
6 completely rewritten, based on the MD driver code from Marc Zyngier
7
8 Changes:
9
10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
14 - kmod support by: Cyrus Durgin
15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17
18 - lots of fixes and improvements to the RAID1/RAID5 and generic
19 RAID code (such as request based resynchronization):
20
21 Neil Brown <neilb@cse.unsw.edu.au>.
22
23 - persistent bitmap code
24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25
26
27 Errors, Warnings, etc.
28 Please use:
29 pr_crit() for error conditions that risk data loss
30 pr_err() for error conditions that are unexpected, like an IO error
31 or internal inconsistency
32 pr_warn() for error conditions that could have been predicated, like
33 adding a device to an array when it has incompatible metadata
34 pr_info() for every interesting, very rare events, like an array starting
35 or stopping, or resync starting or stopping
36 pr_debug() for everything else.
37
38 */
39
40 #include <linux/sched/mm.h>
41 #include <linux/sched/signal.h>
42 #include <linux/kthread.h>
43 #include <linux/blkdev.h>
44 #include <linux/blk-integrity.h>
45 #include <linux/badblocks.h>
46 #include <linux/sysctl.h>
47 #include <linux/seq_file.h>
48 #include <linux/fs.h>
49 #include <linux/poll.h>
50 #include <linux/ctype.h>
51 #include <linux/string.h>
52 #include <linux/hdreg.h>
53 #include <linux/proc_fs.h>
54 #include <linux/random.h>
55 #include <linux/major.h>
56 #include <linux/module.h>
57 #include <linux/reboot.h>
58 #include <linux/file.h>
59 #include <linux/compat.h>
60 #include <linux/delay.h>
61 #include <linux/raid/md_p.h>
62 #include <linux/raid/md_u.h>
63 #include <linux/raid/detect.h>
64 #include <linux/slab.h>
65 #include <linux/percpu-refcount.h>
66 #include <linux/part_stat.h>
67
68 #include <trace/events/block.h>
69 #include "md.h"
70 #include "md-bitmap.h"
71 #include "md-cluster.h"
72
73 /* pers_list is a list of registered personalities protected by pers_lock. */
74 static LIST_HEAD(pers_list);
75 static DEFINE_SPINLOCK(pers_lock);
76
77 static const struct kobj_type md_ktype;
78
79 struct md_cluster_operations *md_cluster_ops;
80 EXPORT_SYMBOL(md_cluster_ops);
81 static struct module *md_cluster_mod;
82
83 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
84 static struct workqueue_struct *md_wq;
85 static struct workqueue_struct *md_misc_wq;
86 struct workqueue_struct *md_bitmap_wq;
87
88 static int remove_and_add_spares(struct mddev *mddev,
89 struct md_rdev *this);
90 static void mddev_detach(struct mddev *mddev);
91 static void export_rdev(struct md_rdev *rdev, struct mddev *mddev);
92 static void md_wakeup_thread_directly(struct md_thread __rcu *thread);
93
94 /*
95 * Default number of read corrections we'll attempt on an rdev
96 * before ejecting it from the array. We divide the read error
97 * count by 2 for every hour elapsed between read errors.
98 */
99 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
100 /* Default safemode delay: 200 msec */
101 #define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1)
102 /*
103 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
104 * is 1000 KB/sec, so the extra system load does not show up that much.
105 * Increase it if you want to have more _guaranteed_ speed. Note that
106 * the RAID driver will use the maximum available bandwidth if the IO
107 * subsystem is idle. There is also an 'absolute maximum' reconstruction
108 * speed limit - in case reconstruction slows down your system despite
109 * idle IO detection.
110 *
111 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
112 * or /sys/block/mdX/md/sync_speed_{min,max}
113 */
114
115 static int sysctl_speed_limit_min = 1000;
116 static int sysctl_speed_limit_max = 200000;
speed_min(struct mddev * mddev)117 static inline int speed_min(struct mddev *mddev)
118 {
119 return mddev->sync_speed_min ?
120 mddev->sync_speed_min : sysctl_speed_limit_min;
121 }
122
speed_max(struct mddev * mddev)123 static inline int speed_max(struct mddev *mddev)
124 {
125 return mddev->sync_speed_max ?
126 mddev->sync_speed_max : sysctl_speed_limit_max;
127 }
128
rdev_uninit_serial(struct md_rdev * rdev)129 static void rdev_uninit_serial(struct md_rdev *rdev)
130 {
131 if (!test_and_clear_bit(CollisionCheck, &rdev->flags))
132 return;
133
134 kvfree(rdev->serial);
135 rdev->serial = NULL;
136 }
137
rdevs_uninit_serial(struct mddev * mddev)138 static void rdevs_uninit_serial(struct mddev *mddev)
139 {
140 struct md_rdev *rdev;
141
142 rdev_for_each(rdev, mddev)
143 rdev_uninit_serial(rdev);
144 }
145
rdev_init_serial(struct md_rdev * rdev)146 static int rdev_init_serial(struct md_rdev *rdev)
147 {
148 /* serial_nums equals with BARRIER_BUCKETS_NR */
149 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t))));
150 struct serial_in_rdev *serial = NULL;
151
152 if (test_bit(CollisionCheck, &rdev->flags))
153 return 0;
154
155 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums,
156 GFP_KERNEL);
157 if (!serial)
158 return -ENOMEM;
159
160 for (i = 0; i < serial_nums; i++) {
161 struct serial_in_rdev *serial_tmp = &serial[i];
162
163 spin_lock_init(&serial_tmp->serial_lock);
164 serial_tmp->serial_rb = RB_ROOT_CACHED;
165 init_waitqueue_head(&serial_tmp->serial_io_wait);
166 }
167
168 rdev->serial = serial;
169 set_bit(CollisionCheck, &rdev->flags);
170
171 return 0;
172 }
173
rdevs_init_serial(struct mddev * mddev)174 static int rdevs_init_serial(struct mddev *mddev)
175 {
176 struct md_rdev *rdev;
177 int ret = 0;
178
179 rdev_for_each(rdev, mddev) {
180 ret = rdev_init_serial(rdev);
181 if (ret)
182 break;
183 }
184
185 /* Free all resources if pool is not existed */
186 if (ret && !mddev->serial_info_pool)
187 rdevs_uninit_serial(mddev);
188
189 return ret;
190 }
191
192 /*
193 * rdev needs to enable serial stuffs if it meets the conditions:
194 * 1. it is multi-queue device flaged with writemostly.
195 * 2. the write-behind mode is enabled.
196 */
rdev_need_serial(struct md_rdev * rdev)197 static int rdev_need_serial(struct md_rdev *rdev)
198 {
199 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 &&
200 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 &&
201 test_bit(WriteMostly, &rdev->flags));
202 }
203
204 /*
205 * Init resource for rdev(s), then create serial_info_pool if:
206 * 1. rdev is the first device which return true from rdev_enable_serial.
207 * 2. rdev is NULL, means we want to enable serialization for all rdevs.
208 */
mddev_create_serial_pool(struct mddev * mddev,struct md_rdev * rdev,bool is_suspend)209 void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
210 bool is_suspend)
211 {
212 int ret = 0;
213
214 if (rdev && !rdev_need_serial(rdev) &&
215 !test_bit(CollisionCheck, &rdev->flags))
216 return;
217
218 if (!is_suspend)
219 mddev_suspend(mddev);
220
221 if (!rdev)
222 ret = rdevs_init_serial(mddev);
223 else
224 ret = rdev_init_serial(rdev);
225 if (ret)
226 goto abort;
227
228 if (mddev->serial_info_pool == NULL) {
229 /*
230 * already in memalloc noio context by
231 * mddev_suspend()
232 */
233 mddev->serial_info_pool =
234 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
235 sizeof(struct serial_info));
236 if (!mddev->serial_info_pool) {
237 rdevs_uninit_serial(mddev);
238 pr_err("can't alloc memory pool for serialization\n");
239 }
240 }
241
242 abort:
243 if (!is_suspend)
244 mddev_resume(mddev);
245 }
246
247 /*
248 * Free resource from rdev(s), and destroy serial_info_pool under conditions:
249 * 1. rdev is the last device flaged with CollisionCheck.
250 * 2. when bitmap is destroyed while policy is not enabled.
251 * 3. for disable policy, the pool is destroyed only when no rdev needs it.
252 */
mddev_destroy_serial_pool(struct mddev * mddev,struct md_rdev * rdev,bool is_suspend)253 void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
254 bool is_suspend)
255 {
256 if (rdev && !test_bit(CollisionCheck, &rdev->flags))
257 return;
258
259 if (mddev->serial_info_pool) {
260 struct md_rdev *temp;
261 int num = 0; /* used to track if other rdevs need the pool */
262
263 if (!is_suspend)
264 mddev_suspend(mddev);
265 rdev_for_each(temp, mddev) {
266 if (!rdev) {
267 if (!mddev->serialize_policy ||
268 !rdev_need_serial(temp))
269 rdev_uninit_serial(temp);
270 else
271 num++;
272 } else if (temp != rdev &&
273 test_bit(CollisionCheck, &temp->flags))
274 num++;
275 }
276
277 if (rdev)
278 rdev_uninit_serial(rdev);
279
280 if (num)
281 pr_info("The mempool could be used by other devices\n");
282 else {
283 mempool_destroy(mddev->serial_info_pool);
284 mddev->serial_info_pool = NULL;
285 }
286 if (!is_suspend)
287 mddev_resume(mddev);
288 }
289 }
290
291 static struct ctl_table_header *raid_table_header;
292
293 static struct ctl_table raid_table[] = {
294 {
295 .procname = "speed_limit_min",
296 .data = &sysctl_speed_limit_min,
297 .maxlen = sizeof(int),
298 .mode = S_IRUGO|S_IWUSR,
299 .proc_handler = proc_dointvec,
300 },
301 {
302 .procname = "speed_limit_max",
303 .data = &sysctl_speed_limit_max,
304 .maxlen = sizeof(int),
305 .mode = S_IRUGO|S_IWUSR,
306 .proc_handler = proc_dointvec,
307 },
308 { }
309 };
310
311 static int start_readonly;
312
313 /*
314 * The original mechanism for creating an md device is to create
315 * a device node in /dev and to open it. This causes races with device-close.
316 * The preferred method is to write to the "new_array" module parameter.
317 * This can avoid races.
318 * Setting create_on_open to false disables the original mechanism
319 * so all the races disappear.
320 */
321 static bool create_on_open = true;
322
323 /*
324 * We have a system wide 'event count' that is incremented
325 * on any 'interesting' event, and readers of /proc/mdstat
326 * can use 'poll' or 'select' to find out when the event
327 * count increases.
328 *
329 * Events are:
330 * start array, stop array, error, add device, remove device,
331 * start build, activate spare
332 */
333 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
334 static atomic_t md_event_count;
md_new_event(void)335 void md_new_event(void)
336 {
337 atomic_inc(&md_event_count);
338 wake_up(&md_event_waiters);
339 }
340 EXPORT_SYMBOL_GPL(md_new_event);
341
342 /*
343 * Enables to iterate over all existing md arrays
344 * all_mddevs_lock protects this list.
345 */
346 static LIST_HEAD(all_mddevs);
347 static DEFINE_SPINLOCK(all_mddevs_lock);
348
349 /* Rather than calling directly into the personality make_request function,
350 * IO requests come here first so that we can check if the device is
351 * being suspended pending a reconfiguration.
352 * We hold a refcount over the call to ->make_request. By the time that
353 * call has finished, the bio has been linked into some internal structure
354 * and so is visible to ->quiesce(), so we don't need the refcount any more.
355 */
is_suspended(struct mddev * mddev,struct bio * bio)356 static bool is_suspended(struct mddev *mddev, struct bio *bio)
357 {
358 if (is_md_suspended(mddev))
359 return true;
360 if (bio_data_dir(bio) != WRITE)
361 return false;
362 if (mddev->suspend_lo >= mddev->suspend_hi)
363 return false;
364 if (bio->bi_iter.bi_sector >= mddev->suspend_hi)
365 return false;
366 if (bio_end_sector(bio) < mddev->suspend_lo)
367 return false;
368 return true;
369 }
370
md_handle_request(struct mddev * mddev,struct bio * bio)371 void md_handle_request(struct mddev *mddev, struct bio *bio)
372 {
373 check_suspended:
374 if (is_suspended(mddev, bio)) {
375 DEFINE_WAIT(__wait);
376 /* Bail out if REQ_NOWAIT is set for the bio */
377 if (bio->bi_opf & REQ_NOWAIT) {
378 bio_wouldblock_error(bio);
379 return;
380 }
381 for (;;) {
382 prepare_to_wait(&mddev->sb_wait, &__wait,
383 TASK_UNINTERRUPTIBLE);
384 if (!is_suspended(mddev, bio))
385 break;
386 schedule();
387 }
388 finish_wait(&mddev->sb_wait, &__wait);
389 }
390 if (!percpu_ref_tryget_live(&mddev->active_io))
391 goto check_suspended;
392
393 if (!mddev->pers->make_request(mddev, bio)) {
394 percpu_ref_put(&mddev->active_io);
395 goto check_suspended;
396 }
397
398 percpu_ref_put(&mddev->active_io);
399 }
400 EXPORT_SYMBOL(md_handle_request);
401
md_submit_bio(struct bio * bio)402 static void md_submit_bio(struct bio *bio)
403 {
404 const int rw = bio_data_dir(bio);
405 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data;
406
407 if (mddev == NULL || mddev->pers == NULL) {
408 bio_io_error(bio);
409 return;
410 }
411
412 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) {
413 bio_io_error(bio);
414 return;
415 }
416
417 bio = bio_split_to_limits(bio);
418 if (!bio)
419 return;
420
421 if (mddev->ro == MD_RDONLY && unlikely(rw == WRITE)) {
422 if (bio_sectors(bio) != 0)
423 bio->bi_status = BLK_STS_IOERR;
424 bio_endio(bio);
425 return;
426 }
427
428 /* bio could be mergeable after passing to underlayer */
429 bio->bi_opf &= ~REQ_NOMERGE;
430
431 md_handle_request(mddev, bio);
432 }
433
434 /* mddev_suspend makes sure no new requests are submitted
435 * to the device, and that any requests that have been submitted
436 * are completely handled.
437 * Once mddev_detach() is called and completes, the module will be
438 * completely unused.
439 */
mddev_suspend(struct mddev * mddev)440 void mddev_suspend(struct mddev *mddev)
441 {
442 struct md_thread *thread = rcu_dereference_protected(mddev->thread,
443 lockdep_is_held(&mddev->reconfig_mutex));
444
445 WARN_ON_ONCE(thread && current == thread->tsk);
446 if (mddev->suspended++)
447 return;
448 wake_up(&mddev->sb_wait);
449 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags);
450 percpu_ref_kill(&mddev->active_io);
451
452 if (mddev->pers && mddev->pers->prepare_suspend)
453 mddev->pers->prepare_suspend(mddev);
454
455 wait_event(mddev->sb_wait, percpu_ref_is_zero(&mddev->active_io));
456 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags);
457 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags));
458
459 /* restrict memory reclaim I/O during raid array is suspend */
460 mddev->noio_flag = memalloc_noio_save();
461 }
462 EXPORT_SYMBOL_GPL(mddev_suspend);
463
mddev_resume(struct mddev * mddev)464 void mddev_resume(struct mddev *mddev)
465 {
466 lockdep_assert_held(&mddev->reconfig_mutex);
467 if (--mddev->suspended)
468 return;
469
470 /* entred the memalloc scope from mddev_suspend() */
471 memalloc_noio_restore(mddev->noio_flag);
472
473 percpu_ref_resurrect(&mddev->active_io);
474 wake_up(&mddev->sb_wait);
475
476 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
477 md_wakeup_thread(mddev->thread);
478 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
479 }
480 EXPORT_SYMBOL_GPL(mddev_resume);
481
482 /*
483 * Generic flush handling for md
484 */
485
md_end_flush(struct bio * bio)486 static void md_end_flush(struct bio *bio)
487 {
488 struct md_rdev *rdev = bio->bi_private;
489 struct mddev *mddev = rdev->mddev;
490
491 bio_put(bio);
492
493 rdev_dec_pending(rdev, mddev);
494
495 if (atomic_dec_and_test(&mddev->flush_pending))
496 /* The pre-request flush has finished */
497 queue_work(md_wq, &mddev->flush_work);
498 }
499
500 static void md_submit_flush_data(struct work_struct *ws);
501
submit_flushes(struct work_struct * ws)502 static void submit_flushes(struct work_struct *ws)
503 {
504 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
505 struct md_rdev *rdev;
506
507 mddev->start_flush = ktime_get_boottime();
508 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
509 atomic_set(&mddev->flush_pending, 1);
510 rcu_read_lock();
511 rdev_for_each_rcu(rdev, mddev)
512 if (rdev->raid_disk >= 0 &&
513 !test_bit(Faulty, &rdev->flags)) {
514 struct bio *bi;
515
516 atomic_inc(&rdev->nr_pending);
517 rcu_read_unlock();
518 bi = bio_alloc_bioset(rdev->bdev, 0,
519 REQ_OP_WRITE | REQ_PREFLUSH,
520 GFP_NOIO, &mddev->bio_set);
521 bi->bi_end_io = md_end_flush;
522 bi->bi_private = rdev;
523 atomic_inc(&mddev->flush_pending);
524 submit_bio(bi);
525 rcu_read_lock();
526 }
527 rcu_read_unlock();
528 if (atomic_dec_and_test(&mddev->flush_pending))
529 queue_work(md_wq, &mddev->flush_work);
530 }
531
md_submit_flush_data(struct work_struct * ws)532 static void md_submit_flush_data(struct work_struct *ws)
533 {
534 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
535 struct bio *bio = mddev->flush_bio;
536
537 /*
538 * must reset flush_bio before calling into md_handle_request to avoid a
539 * deadlock, because other bios passed md_handle_request suspend check
540 * could wait for this and below md_handle_request could wait for those
541 * bios because of suspend check
542 */
543 spin_lock_irq(&mddev->lock);
544 mddev->prev_flush_start = mddev->start_flush;
545 mddev->flush_bio = NULL;
546 spin_unlock_irq(&mddev->lock);
547 wake_up(&mddev->sb_wait);
548
549 if (bio->bi_iter.bi_size == 0) {
550 /* an empty barrier - all done */
551 bio_endio(bio);
552 } else {
553 bio->bi_opf &= ~REQ_PREFLUSH;
554
555 /*
556 * make_requst() will never return error here, it only
557 * returns error in raid5_make_request() by dm-raid.
558 * Since dm always splits data and flush operation into
559 * two separate io, io size of flush submitted by dm
560 * always is 0, make_request() will not be called here.
561 */
562 if (WARN_ON_ONCE(!mddev->pers->make_request(mddev, bio)))
563 bio_io_error(bio);;
564 }
565
566 /* The pair is percpu_ref_get() from md_flush_request() */
567 percpu_ref_put(&mddev->active_io);
568 }
569
570 /*
571 * Manages consolidation of flushes and submitting any flushes needed for
572 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is
573 * being finished in another context. Returns false if the flushing is
574 * complete but still needs the I/O portion of the bio to be processed.
575 */
md_flush_request(struct mddev * mddev,struct bio * bio)576 bool md_flush_request(struct mddev *mddev, struct bio *bio)
577 {
578 ktime_t req_start = ktime_get_boottime();
579 spin_lock_irq(&mddev->lock);
580 /* flush requests wait until ongoing flush completes,
581 * hence coalescing all the pending requests.
582 */
583 wait_event_lock_irq(mddev->sb_wait,
584 !mddev->flush_bio ||
585 ktime_before(req_start, mddev->prev_flush_start),
586 mddev->lock);
587 /* new request after previous flush is completed */
588 if (ktime_after(req_start, mddev->prev_flush_start)) {
589 WARN_ON(mddev->flush_bio);
590 /*
591 * Grab a reference to make sure mddev_suspend() will wait for
592 * this flush to be done.
593 *
594 * md_flush_reqeust() is called under md_handle_request() and
595 * 'active_io' is already grabbed, hence percpu_ref_is_zero()
596 * won't pass, percpu_ref_tryget_live() can't be used because
597 * percpu_ref_kill() can be called by mddev_suspend()
598 * concurrently.
599 */
600 WARN_ON(percpu_ref_is_zero(&mddev->active_io));
601 percpu_ref_get(&mddev->active_io);
602 mddev->flush_bio = bio;
603 bio = NULL;
604 }
605 spin_unlock_irq(&mddev->lock);
606
607 if (!bio) {
608 INIT_WORK(&mddev->flush_work, submit_flushes);
609 queue_work(md_wq, &mddev->flush_work);
610 } else {
611 /* flush was performed for some other bio while we waited. */
612 if (bio->bi_iter.bi_size == 0)
613 /* an empty barrier - all done */
614 bio_endio(bio);
615 else {
616 bio->bi_opf &= ~REQ_PREFLUSH;
617 return false;
618 }
619 }
620 return true;
621 }
622 EXPORT_SYMBOL(md_flush_request);
623
mddev_get(struct mddev * mddev)624 static inline struct mddev *mddev_get(struct mddev *mddev)
625 {
626 lockdep_assert_held(&all_mddevs_lock);
627
628 if (test_bit(MD_DELETED, &mddev->flags))
629 return NULL;
630 atomic_inc(&mddev->active);
631 return mddev;
632 }
633
634 static void mddev_delayed_delete(struct work_struct *ws);
635
__mddev_put(struct mddev * mddev)636 static void __mddev_put(struct mddev *mddev)
637 {
638 if (mddev->raid_disks || !list_empty(&mddev->disks) ||
639 mddev->ctime || mddev->hold_active)
640 return;
641
642 /* Array is not configured at all, and not held active, so destroy it */
643 set_bit(MD_DELETED, &mddev->flags);
644
645 /*
646 * Call queue_work inside the spinlock so that flush_workqueue() after
647 * mddev_find will succeed in waiting for the work to be done.
648 */
649 queue_work(md_misc_wq, &mddev->del_work);
650 }
651
mddev_put_locked(struct mddev * mddev)652 static void mddev_put_locked(struct mddev *mddev)
653 {
654 if (atomic_dec_and_test(&mddev->active))
655 __mddev_put(mddev);
656 }
657
mddev_put(struct mddev * mddev)658 void mddev_put(struct mddev *mddev)
659 {
660 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
661 return;
662
663 __mddev_put(mddev);
664 spin_unlock(&all_mddevs_lock);
665 }
666
667 static void md_safemode_timeout(struct timer_list *t);
668 static void md_start_sync(struct work_struct *ws);
669
mddev_init(struct mddev * mddev)670 void mddev_init(struct mddev *mddev)
671 {
672 mutex_init(&mddev->open_mutex);
673 mutex_init(&mddev->reconfig_mutex);
674 mutex_init(&mddev->sync_mutex);
675 mutex_init(&mddev->bitmap_info.mutex);
676 INIT_LIST_HEAD(&mddev->disks);
677 INIT_LIST_HEAD(&mddev->all_mddevs);
678 INIT_LIST_HEAD(&mddev->deleting);
679 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0);
680 atomic_set(&mddev->active, 1);
681 atomic_set(&mddev->openers, 0);
682 atomic_set(&mddev->sync_seq, 0);
683 spin_lock_init(&mddev->lock);
684 atomic_set(&mddev->flush_pending, 0);
685 init_waitqueue_head(&mddev->sb_wait);
686 init_waitqueue_head(&mddev->recovery_wait);
687 mddev->reshape_position = MaxSector;
688 mddev->reshape_backwards = 0;
689 mddev->last_sync_action = "none";
690 mddev->resync_min = 0;
691 mddev->resync_max = MaxSector;
692 mddev->level = LEVEL_NONE;
693
694 INIT_WORK(&mddev->sync_work, md_start_sync);
695 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
696 }
697 EXPORT_SYMBOL_GPL(mddev_init);
698
mddev_find_locked(dev_t unit)699 static struct mddev *mddev_find_locked(dev_t unit)
700 {
701 struct mddev *mddev;
702
703 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
704 if (mddev->unit == unit)
705 return mddev;
706
707 return NULL;
708 }
709
710 /* find an unused unit number */
mddev_alloc_unit(void)711 static dev_t mddev_alloc_unit(void)
712 {
713 static int next_minor = 512;
714 int start = next_minor;
715 bool is_free = 0;
716 dev_t dev = 0;
717
718 while (!is_free) {
719 dev = MKDEV(MD_MAJOR, next_minor);
720 next_minor++;
721 if (next_minor > MINORMASK)
722 next_minor = 0;
723 if (next_minor == start)
724 return 0; /* Oh dear, all in use. */
725 is_free = !mddev_find_locked(dev);
726 }
727
728 return dev;
729 }
730
mddev_alloc(dev_t unit)731 static struct mddev *mddev_alloc(dev_t unit)
732 {
733 struct mddev *new;
734 int error;
735
736 if (unit && MAJOR(unit) != MD_MAJOR)
737 unit &= ~((1 << MdpMinorShift) - 1);
738
739 new = kzalloc(sizeof(*new), GFP_KERNEL);
740 if (!new)
741 return ERR_PTR(-ENOMEM);
742 mddev_init(new);
743
744 spin_lock(&all_mddevs_lock);
745 if (unit) {
746 error = -EEXIST;
747 if (mddev_find_locked(unit))
748 goto out_free_new;
749 new->unit = unit;
750 if (MAJOR(unit) == MD_MAJOR)
751 new->md_minor = MINOR(unit);
752 else
753 new->md_minor = MINOR(unit) >> MdpMinorShift;
754 new->hold_active = UNTIL_IOCTL;
755 } else {
756 error = -ENODEV;
757 new->unit = mddev_alloc_unit();
758 if (!new->unit)
759 goto out_free_new;
760 new->md_minor = MINOR(new->unit);
761 new->hold_active = UNTIL_STOP;
762 }
763
764 list_add(&new->all_mddevs, &all_mddevs);
765 spin_unlock(&all_mddevs_lock);
766 return new;
767 out_free_new:
768 spin_unlock(&all_mddevs_lock);
769 kfree(new);
770 return ERR_PTR(error);
771 }
772
mddev_free(struct mddev * mddev)773 static void mddev_free(struct mddev *mddev)
774 {
775 spin_lock(&all_mddevs_lock);
776 list_del(&mddev->all_mddevs);
777 spin_unlock(&all_mddevs_lock);
778
779 kfree(mddev);
780 }
781
782 static const struct attribute_group md_redundancy_group;
783
mddev_unlock(struct mddev * mddev)784 void mddev_unlock(struct mddev *mddev)
785 {
786 struct md_rdev *rdev;
787 struct md_rdev *tmp;
788 LIST_HEAD(delete);
789
790 if (!list_empty(&mddev->deleting))
791 list_splice_init(&mddev->deleting, &delete);
792
793 if (mddev->to_remove) {
794 /* These cannot be removed under reconfig_mutex as
795 * an access to the files will try to take reconfig_mutex
796 * while holding the file unremovable, which leads to
797 * a deadlock.
798 * So hold set sysfs_active while the remove in happeing,
799 * and anything else which might set ->to_remove or my
800 * otherwise change the sysfs namespace will fail with
801 * -EBUSY if sysfs_active is still set.
802 * We set sysfs_active under reconfig_mutex and elsewhere
803 * test it under the same mutex to ensure its correct value
804 * is seen.
805 */
806 const struct attribute_group *to_remove = mddev->to_remove;
807 mddev->to_remove = NULL;
808 mddev->sysfs_active = 1;
809 mutex_unlock(&mddev->reconfig_mutex);
810
811 if (mddev->kobj.sd) {
812 if (to_remove != &md_redundancy_group)
813 sysfs_remove_group(&mddev->kobj, to_remove);
814 if (mddev->pers == NULL ||
815 mddev->pers->sync_request == NULL) {
816 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
817 if (mddev->sysfs_action)
818 sysfs_put(mddev->sysfs_action);
819 if (mddev->sysfs_completed)
820 sysfs_put(mddev->sysfs_completed);
821 if (mddev->sysfs_degraded)
822 sysfs_put(mddev->sysfs_degraded);
823 mddev->sysfs_action = NULL;
824 mddev->sysfs_completed = NULL;
825 mddev->sysfs_degraded = NULL;
826 }
827 }
828 mddev->sysfs_active = 0;
829 } else
830 mutex_unlock(&mddev->reconfig_mutex);
831
832 md_wakeup_thread(mddev->thread);
833 wake_up(&mddev->sb_wait);
834
835 list_for_each_entry_safe(rdev, tmp, &delete, same_set) {
836 list_del_init(&rdev->same_set);
837 kobject_del(&rdev->kobj);
838 export_rdev(rdev, mddev);
839 }
840 }
841 EXPORT_SYMBOL_GPL(mddev_unlock);
842
md_find_rdev_nr_rcu(struct mddev * mddev,int nr)843 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
844 {
845 struct md_rdev *rdev;
846
847 rdev_for_each_rcu(rdev, mddev)
848 if (rdev->desc_nr == nr)
849 return rdev;
850
851 return NULL;
852 }
853 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
854
find_rdev(struct mddev * mddev,dev_t dev)855 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
856 {
857 struct md_rdev *rdev;
858
859 rdev_for_each(rdev, mddev)
860 if (rdev->bdev->bd_dev == dev)
861 return rdev;
862
863 return NULL;
864 }
865
md_find_rdev_rcu(struct mddev * mddev,dev_t dev)866 struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev)
867 {
868 struct md_rdev *rdev;
869
870 rdev_for_each_rcu(rdev, mddev)
871 if (rdev->bdev->bd_dev == dev)
872 return rdev;
873
874 return NULL;
875 }
876 EXPORT_SYMBOL_GPL(md_find_rdev_rcu);
877
find_pers(int level,char * clevel)878 static struct md_personality *find_pers(int level, char *clevel)
879 {
880 struct md_personality *pers;
881 list_for_each_entry(pers, &pers_list, list) {
882 if (level != LEVEL_NONE && pers->level == level)
883 return pers;
884 if (strcmp(pers->name, clevel)==0)
885 return pers;
886 }
887 return NULL;
888 }
889
890 /* return the offset of the super block in 512byte sectors */
calc_dev_sboffset(struct md_rdev * rdev)891 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
892 {
893 return MD_NEW_SIZE_SECTORS(bdev_nr_sectors(rdev->bdev));
894 }
895
alloc_disk_sb(struct md_rdev * rdev)896 static int alloc_disk_sb(struct md_rdev *rdev)
897 {
898 rdev->sb_page = alloc_page(GFP_KERNEL);
899 if (!rdev->sb_page)
900 return -ENOMEM;
901 return 0;
902 }
903
md_rdev_clear(struct md_rdev * rdev)904 void md_rdev_clear(struct md_rdev *rdev)
905 {
906 if (rdev->sb_page) {
907 put_page(rdev->sb_page);
908 rdev->sb_loaded = 0;
909 rdev->sb_page = NULL;
910 rdev->sb_start = 0;
911 rdev->sectors = 0;
912 }
913 if (rdev->bb_page) {
914 put_page(rdev->bb_page);
915 rdev->bb_page = NULL;
916 }
917 badblocks_exit(&rdev->badblocks);
918 }
919 EXPORT_SYMBOL_GPL(md_rdev_clear);
920
super_written(struct bio * bio)921 static void super_written(struct bio *bio)
922 {
923 struct md_rdev *rdev = bio->bi_private;
924 struct mddev *mddev = rdev->mddev;
925
926 if (bio->bi_status) {
927 pr_err("md: %s gets error=%d\n", __func__,
928 blk_status_to_errno(bio->bi_status));
929 md_error(mddev, rdev);
930 if (!test_bit(Faulty, &rdev->flags)
931 && (bio->bi_opf & MD_FAILFAST)) {
932 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
933 set_bit(LastDev, &rdev->flags);
934 }
935 } else
936 clear_bit(LastDev, &rdev->flags);
937
938 bio_put(bio);
939
940 rdev_dec_pending(rdev, mddev);
941
942 if (atomic_dec_and_test(&mddev->pending_writes))
943 wake_up(&mddev->sb_wait);
944 }
945
md_super_write(struct mddev * mddev,struct md_rdev * rdev,sector_t sector,int size,struct page * page)946 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
947 sector_t sector, int size, struct page *page)
948 {
949 /* write first size bytes of page to sector of rdev
950 * Increment mddev->pending_writes before returning
951 * and decrement it on completion, waking up sb_wait
952 * if zero is reached.
953 * If an error occurred, call md_error
954 */
955 struct bio *bio;
956
957 if (!page)
958 return;
959
960 if (test_bit(Faulty, &rdev->flags))
961 return;
962
963 bio = bio_alloc_bioset(rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev,
964 1,
965 REQ_OP_WRITE | REQ_SYNC | REQ_IDLE | REQ_META
966 | REQ_PREFLUSH | REQ_FUA,
967 GFP_NOIO, &mddev->sync_set);
968
969 atomic_inc(&rdev->nr_pending);
970
971 bio->bi_iter.bi_sector = sector;
972 __bio_add_page(bio, page, size, 0);
973 bio->bi_private = rdev;
974 bio->bi_end_io = super_written;
975
976 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
977 test_bit(FailFast, &rdev->flags) &&
978 !test_bit(LastDev, &rdev->flags))
979 bio->bi_opf |= MD_FAILFAST;
980
981 atomic_inc(&mddev->pending_writes);
982 submit_bio(bio);
983 }
984
md_super_wait(struct mddev * mddev)985 int md_super_wait(struct mddev *mddev)
986 {
987 /* wait for all superblock writes that were scheduled to complete */
988 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
989 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
990 return -EAGAIN;
991 return 0;
992 }
993
sync_page_io(struct md_rdev * rdev,sector_t sector,int size,struct page * page,blk_opf_t opf,bool metadata_op)994 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
995 struct page *page, blk_opf_t opf, bool metadata_op)
996 {
997 struct bio bio;
998 struct bio_vec bvec;
999
1000 if (metadata_op && rdev->meta_bdev)
1001 bio_init(&bio, rdev->meta_bdev, &bvec, 1, opf);
1002 else
1003 bio_init(&bio, rdev->bdev, &bvec, 1, opf);
1004
1005 if (metadata_op)
1006 bio.bi_iter.bi_sector = sector + rdev->sb_start;
1007 else if (rdev->mddev->reshape_position != MaxSector &&
1008 (rdev->mddev->reshape_backwards ==
1009 (sector >= rdev->mddev->reshape_position)))
1010 bio.bi_iter.bi_sector = sector + rdev->new_data_offset;
1011 else
1012 bio.bi_iter.bi_sector = sector + rdev->data_offset;
1013 __bio_add_page(&bio, page, size, 0);
1014
1015 submit_bio_wait(&bio);
1016
1017 return !bio.bi_status;
1018 }
1019 EXPORT_SYMBOL_GPL(sync_page_io);
1020
read_disk_sb(struct md_rdev * rdev,int size)1021 static int read_disk_sb(struct md_rdev *rdev, int size)
1022 {
1023 if (rdev->sb_loaded)
1024 return 0;
1025
1026 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, true))
1027 goto fail;
1028 rdev->sb_loaded = 1;
1029 return 0;
1030
1031 fail:
1032 pr_err("md: disabled device %pg, could not read superblock.\n",
1033 rdev->bdev);
1034 return -EINVAL;
1035 }
1036
md_uuid_equal(mdp_super_t * sb1,mdp_super_t * sb2)1037 static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1038 {
1039 return sb1->set_uuid0 == sb2->set_uuid0 &&
1040 sb1->set_uuid1 == sb2->set_uuid1 &&
1041 sb1->set_uuid2 == sb2->set_uuid2 &&
1042 sb1->set_uuid3 == sb2->set_uuid3;
1043 }
1044
md_sb_equal(mdp_super_t * sb1,mdp_super_t * sb2)1045 static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1046 {
1047 int ret;
1048 mdp_super_t *tmp1, *tmp2;
1049
1050 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
1051 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
1052
1053 if (!tmp1 || !tmp2) {
1054 ret = 0;
1055 goto abort;
1056 }
1057
1058 *tmp1 = *sb1;
1059 *tmp2 = *sb2;
1060
1061 /*
1062 * nr_disks is not constant
1063 */
1064 tmp1->nr_disks = 0;
1065 tmp2->nr_disks = 0;
1066
1067 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
1068 abort:
1069 kfree(tmp1);
1070 kfree(tmp2);
1071 return ret;
1072 }
1073
md_csum_fold(u32 csum)1074 static u32 md_csum_fold(u32 csum)
1075 {
1076 csum = (csum & 0xffff) + (csum >> 16);
1077 return (csum & 0xffff) + (csum >> 16);
1078 }
1079
calc_sb_csum(mdp_super_t * sb)1080 static unsigned int calc_sb_csum(mdp_super_t *sb)
1081 {
1082 u64 newcsum = 0;
1083 u32 *sb32 = (u32*)sb;
1084 int i;
1085 unsigned int disk_csum, csum;
1086
1087 disk_csum = sb->sb_csum;
1088 sb->sb_csum = 0;
1089
1090 for (i = 0; i < MD_SB_BYTES/4 ; i++)
1091 newcsum += sb32[i];
1092 csum = (newcsum & 0xffffffff) + (newcsum>>32);
1093
1094 #ifdef CONFIG_ALPHA
1095 /* This used to use csum_partial, which was wrong for several
1096 * reasons including that different results are returned on
1097 * different architectures. It isn't critical that we get exactly
1098 * the same return value as before (we always csum_fold before
1099 * testing, and that removes any differences). However as we
1100 * know that csum_partial always returned a 16bit value on
1101 * alphas, do a fold to maximise conformity to previous behaviour.
1102 */
1103 sb->sb_csum = md_csum_fold(disk_csum);
1104 #else
1105 sb->sb_csum = disk_csum;
1106 #endif
1107 return csum;
1108 }
1109
1110 /*
1111 * Handle superblock details.
1112 * We want to be able to handle multiple superblock formats
1113 * so we have a common interface to them all, and an array of
1114 * different handlers.
1115 * We rely on user-space to write the initial superblock, and support
1116 * reading and updating of superblocks.
1117 * Interface methods are:
1118 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1119 * loads and validates a superblock on dev.
1120 * if refdev != NULL, compare superblocks on both devices
1121 * Return:
1122 * 0 - dev has a superblock that is compatible with refdev
1123 * 1 - dev has a superblock that is compatible and newer than refdev
1124 * so dev should be used as the refdev in future
1125 * -EINVAL superblock incompatible or invalid
1126 * -othererror e.g. -EIO
1127 *
1128 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1129 * Verify that dev is acceptable into mddev.
1130 * The first time, mddev->raid_disks will be 0, and data from
1131 * dev should be merged in. Subsequent calls check that dev
1132 * is new enough. Return 0 or -EINVAL
1133 *
1134 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1135 * Update the superblock for rdev with data in mddev
1136 * This does not write to disc.
1137 *
1138 */
1139
1140 struct super_type {
1141 char *name;
1142 struct module *owner;
1143 int (*load_super)(struct md_rdev *rdev,
1144 struct md_rdev *refdev,
1145 int minor_version);
1146 int (*validate_super)(struct mddev *mddev,
1147 struct md_rdev *freshest,
1148 struct md_rdev *rdev);
1149 void (*sync_super)(struct mddev *mddev,
1150 struct md_rdev *rdev);
1151 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1152 sector_t num_sectors);
1153 int (*allow_new_offset)(struct md_rdev *rdev,
1154 unsigned long long new_offset);
1155 };
1156
1157 /*
1158 * Check that the given mddev has no bitmap.
1159 *
1160 * This function is called from the run method of all personalities that do not
1161 * support bitmaps. It prints an error message and returns non-zero if mddev
1162 * has a bitmap. Otherwise, it returns 0.
1163 *
1164 */
md_check_no_bitmap(struct mddev * mddev)1165 int md_check_no_bitmap(struct mddev *mddev)
1166 {
1167 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1168 return 0;
1169 pr_warn("%s: bitmaps are not supported for %s\n",
1170 mdname(mddev), mddev->pers->name);
1171 return 1;
1172 }
1173 EXPORT_SYMBOL(md_check_no_bitmap);
1174
1175 /*
1176 * load_super for 0.90.0
1177 */
super_90_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1178 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1179 {
1180 mdp_super_t *sb;
1181 int ret;
1182 bool spare_disk = true;
1183
1184 /*
1185 * Calculate the position of the superblock (512byte sectors),
1186 * it's at the end of the disk.
1187 *
1188 * It also happens to be a multiple of 4Kb.
1189 */
1190 rdev->sb_start = calc_dev_sboffset(rdev);
1191
1192 ret = read_disk_sb(rdev, MD_SB_BYTES);
1193 if (ret)
1194 return ret;
1195
1196 ret = -EINVAL;
1197
1198 sb = page_address(rdev->sb_page);
1199
1200 if (sb->md_magic != MD_SB_MAGIC) {
1201 pr_warn("md: invalid raid superblock magic on %pg\n",
1202 rdev->bdev);
1203 goto abort;
1204 }
1205
1206 if (sb->major_version != 0 ||
1207 sb->minor_version < 90 ||
1208 sb->minor_version > 91) {
1209 pr_warn("Bad version number %d.%d on %pg\n",
1210 sb->major_version, sb->minor_version, rdev->bdev);
1211 goto abort;
1212 }
1213
1214 if (sb->raid_disks <= 0)
1215 goto abort;
1216
1217 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1218 pr_warn("md: invalid superblock checksum on %pg\n", rdev->bdev);
1219 goto abort;
1220 }
1221
1222 rdev->preferred_minor = sb->md_minor;
1223 rdev->data_offset = 0;
1224 rdev->new_data_offset = 0;
1225 rdev->sb_size = MD_SB_BYTES;
1226 rdev->badblocks.shift = -1;
1227
1228 if (sb->level == LEVEL_MULTIPATH)
1229 rdev->desc_nr = -1;
1230 else
1231 rdev->desc_nr = sb->this_disk.number;
1232
1233 /* not spare disk, or LEVEL_MULTIPATH */
1234 if (sb->level == LEVEL_MULTIPATH ||
1235 (rdev->desc_nr >= 0 &&
1236 rdev->desc_nr < MD_SB_DISKS &&
1237 sb->disks[rdev->desc_nr].state &
1238 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))))
1239 spare_disk = false;
1240
1241 if (!refdev) {
1242 if (!spare_disk)
1243 ret = 1;
1244 else
1245 ret = 0;
1246 } else {
1247 __u64 ev1, ev2;
1248 mdp_super_t *refsb = page_address(refdev->sb_page);
1249 if (!md_uuid_equal(refsb, sb)) {
1250 pr_warn("md: %pg has different UUID to %pg\n",
1251 rdev->bdev, refdev->bdev);
1252 goto abort;
1253 }
1254 if (!md_sb_equal(refsb, sb)) {
1255 pr_warn("md: %pg has same UUID but different superblock to %pg\n",
1256 rdev->bdev, refdev->bdev);
1257 goto abort;
1258 }
1259 ev1 = md_event(sb);
1260 ev2 = md_event(refsb);
1261
1262 if (!spare_disk && ev1 > ev2)
1263 ret = 1;
1264 else
1265 ret = 0;
1266 }
1267 rdev->sectors = rdev->sb_start;
1268 /* Limit to 4TB as metadata cannot record more than that.
1269 * (not needed for Linear and RAID0 as metadata doesn't
1270 * record this size)
1271 */
1272 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1273 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1274
1275 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1276 /* "this cannot possibly happen" ... */
1277 ret = -EINVAL;
1278
1279 abort:
1280 return ret;
1281 }
1282
1283 /*
1284 * validate_super for 0.90.0
1285 * note: we are not using "freshest" for 0.9 superblock
1286 */
super_90_validate(struct mddev * mddev,struct md_rdev * freshest,struct md_rdev * rdev)1287 static int super_90_validate(struct mddev *mddev, struct md_rdev *freshest, struct md_rdev *rdev)
1288 {
1289 mdp_disk_t *desc;
1290 mdp_super_t *sb = page_address(rdev->sb_page);
1291 __u64 ev1 = md_event(sb);
1292
1293 rdev->raid_disk = -1;
1294 clear_bit(Faulty, &rdev->flags);
1295 clear_bit(In_sync, &rdev->flags);
1296 clear_bit(Bitmap_sync, &rdev->flags);
1297 clear_bit(WriteMostly, &rdev->flags);
1298
1299 if (mddev->raid_disks == 0) {
1300 mddev->major_version = 0;
1301 mddev->minor_version = sb->minor_version;
1302 mddev->patch_version = sb->patch_version;
1303 mddev->external = 0;
1304 mddev->chunk_sectors = sb->chunk_size >> 9;
1305 mddev->ctime = sb->ctime;
1306 mddev->utime = sb->utime;
1307 mddev->level = sb->level;
1308 mddev->clevel[0] = 0;
1309 mddev->layout = sb->layout;
1310 mddev->raid_disks = sb->raid_disks;
1311 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1312 mddev->events = ev1;
1313 mddev->bitmap_info.offset = 0;
1314 mddev->bitmap_info.space = 0;
1315 /* bitmap can use 60 K after the 4K superblocks */
1316 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1317 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1318 mddev->reshape_backwards = 0;
1319
1320 if (mddev->minor_version >= 91) {
1321 mddev->reshape_position = sb->reshape_position;
1322 mddev->delta_disks = sb->delta_disks;
1323 mddev->new_level = sb->new_level;
1324 mddev->new_layout = sb->new_layout;
1325 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1326 if (mddev->delta_disks < 0)
1327 mddev->reshape_backwards = 1;
1328 } else {
1329 mddev->reshape_position = MaxSector;
1330 mddev->delta_disks = 0;
1331 mddev->new_level = mddev->level;
1332 mddev->new_layout = mddev->layout;
1333 mddev->new_chunk_sectors = mddev->chunk_sectors;
1334 }
1335 if (mddev->level == 0)
1336 mddev->layout = -1;
1337
1338 if (sb->state & (1<<MD_SB_CLEAN))
1339 mddev->recovery_cp = MaxSector;
1340 else {
1341 if (sb->events_hi == sb->cp_events_hi &&
1342 sb->events_lo == sb->cp_events_lo) {
1343 mddev->recovery_cp = sb->recovery_cp;
1344 } else
1345 mddev->recovery_cp = 0;
1346 }
1347
1348 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1349 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1350 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1351 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1352
1353 mddev->max_disks = MD_SB_DISKS;
1354
1355 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1356 mddev->bitmap_info.file == NULL) {
1357 mddev->bitmap_info.offset =
1358 mddev->bitmap_info.default_offset;
1359 mddev->bitmap_info.space =
1360 mddev->bitmap_info.default_space;
1361 }
1362
1363 } else if (mddev->pers == NULL) {
1364 /* Insist on good event counter while assembling, except
1365 * for spares (which don't need an event count) */
1366 ++ev1;
1367 if (sb->disks[rdev->desc_nr].state & (
1368 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1369 if (ev1 < mddev->events)
1370 return -EINVAL;
1371 } else if (mddev->bitmap) {
1372 /* if adding to array with a bitmap, then we can accept an
1373 * older device ... but not too old.
1374 */
1375 if (ev1 < mddev->bitmap->events_cleared)
1376 return 0;
1377 if (ev1 < mddev->events)
1378 set_bit(Bitmap_sync, &rdev->flags);
1379 } else {
1380 if (ev1 < mddev->events)
1381 /* just a hot-add of a new device, leave raid_disk at -1 */
1382 return 0;
1383 }
1384
1385 if (mddev->level != LEVEL_MULTIPATH) {
1386 desc = sb->disks + rdev->desc_nr;
1387
1388 if (desc->state & (1<<MD_DISK_FAULTY))
1389 set_bit(Faulty, &rdev->flags);
1390 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1391 desc->raid_disk < mddev->raid_disks */) {
1392 set_bit(In_sync, &rdev->flags);
1393 rdev->raid_disk = desc->raid_disk;
1394 rdev->saved_raid_disk = desc->raid_disk;
1395 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1396 /* active but not in sync implies recovery up to
1397 * reshape position. We don't know exactly where
1398 * that is, so set to zero for now */
1399 if (mddev->minor_version >= 91) {
1400 rdev->recovery_offset = 0;
1401 rdev->raid_disk = desc->raid_disk;
1402 }
1403 }
1404 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1405 set_bit(WriteMostly, &rdev->flags);
1406 if (desc->state & (1<<MD_DISK_FAILFAST))
1407 set_bit(FailFast, &rdev->flags);
1408 } else /* MULTIPATH are always insync */
1409 set_bit(In_sync, &rdev->flags);
1410 return 0;
1411 }
1412
1413 /*
1414 * sync_super for 0.90.0
1415 */
super_90_sync(struct mddev * mddev,struct md_rdev * rdev)1416 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1417 {
1418 mdp_super_t *sb;
1419 struct md_rdev *rdev2;
1420 int next_spare = mddev->raid_disks;
1421
1422 /* make rdev->sb match mddev data..
1423 *
1424 * 1/ zero out disks
1425 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1426 * 3/ any empty disks < next_spare become removed
1427 *
1428 * disks[0] gets initialised to REMOVED because
1429 * we cannot be sure from other fields if it has
1430 * been initialised or not.
1431 */
1432 int i;
1433 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1434
1435 rdev->sb_size = MD_SB_BYTES;
1436
1437 sb = page_address(rdev->sb_page);
1438
1439 memset(sb, 0, sizeof(*sb));
1440
1441 sb->md_magic = MD_SB_MAGIC;
1442 sb->major_version = mddev->major_version;
1443 sb->patch_version = mddev->patch_version;
1444 sb->gvalid_words = 0; /* ignored */
1445 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1446 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1447 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1448 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1449
1450 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1451 sb->level = mddev->level;
1452 sb->size = mddev->dev_sectors / 2;
1453 sb->raid_disks = mddev->raid_disks;
1454 sb->md_minor = mddev->md_minor;
1455 sb->not_persistent = 0;
1456 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1457 sb->state = 0;
1458 sb->events_hi = (mddev->events>>32);
1459 sb->events_lo = (u32)mddev->events;
1460
1461 if (mddev->reshape_position == MaxSector)
1462 sb->minor_version = 90;
1463 else {
1464 sb->minor_version = 91;
1465 sb->reshape_position = mddev->reshape_position;
1466 sb->new_level = mddev->new_level;
1467 sb->delta_disks = mddev->delta_disks;
1468 sb->new_layout = mddev->new_layout;
1469 sb->new_chunk = mddev->new_chunk_sectors << 9;
1470 }
1471 mddev->minor_version = sb->minor_version;
1472 if (mddev->in_sync)
1473 {
1474 sb->recovery_cp = mddev->recovery_cp;
1475 sb->cp_events_hi = (mddev->events>>32);
1476 sb->cp_events_lo = (u32)mddev->events;
1477 if (mddev->recovery_cp == MaxSector)
1478 sb->state = (1<< MD_SB_CLEAN);
1479 } else
1480 sb->recovery_cp = 0;
1481
1482 sb->layout = mddev->layout;
1483 sb->chunk_size = mddev->chunk_sectors << 9;
1484
1485 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1486 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1487
1488 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1489 rdev_for_each(rdev2, mddev) {
1490 mdp_disk_t *d;
1491 int desc_nr;
1492 int is_active = test_bit(In_sync, &rdev2->flags);
1493
1494 if (rdev2->raid_disk >= 0 &&
1495 sb->minor_version >= 91)
1496 /* we have nowhere to store the recovery_offset,
1497 * but if it is not below the reshape_position,
1498 * we can piggy-back on that.
1499 */
1500 is_active = 1;
1501 if (rdev2->raid_disk < 0 ||
1502 test_bit(Faulty, &rdev2->flags))
1503 is_active = 0;
1504 if (is_active)
1505 desc_nr = rdev2->raid_disk;
1506 else
1507 desc_nr = next_spare++;
1508 rdev2->desc_nr = desc_nr;
1509 d = &sb->disks[rdev2->desc_nr];
1510 nr_disks++;
1511 d->number = rdev2->desc_nr;
1512 d->major = MAJOR(rdev2->bdev->bd_dev);
1513 d->minor = MINOR(rdev2->bdev->bd_dev);
1514 if (is_active)
1515 d->raid_disk = rdev2->raid_disk;
1516 else
1517 d->raid_disk = rdev2->desc_nr; /* compatibility */
1518 if (test_bit(Faulty, &rdev2->flags))
1519 d->state = (1<<MD_DISK_FAULTY);
1520 else if (is_active) {
1521 d->state = (1<<MD_DISK_ACTIVE);
1522 if (test_bit(In_sync, &rdev2->flags))
1523 d->state |= (1<<MD_DISK_SYNC);
1524 active++;
1525 working++;
1526 } else {
1527 d->state = 0;
1528 spare++;
1529 working++;
1530 }
1531 if (test_bit(WriteMostly, &rdev2->flags))
1532 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1533 if (test_bit(FailFast, &rdev2->flags))
1534 d->state |= (1<<MD_DISK_FAILFAST);
1535 }
1536 /* now set the "removed" and "faulty" bits on any missing devices */
1537 for (i=0 ; i < mddev->raid_disks ; i++) {
1538 mdp_disk_t *d = &sb->disks[i];
1539 if (d->state == 0 && d->number == 0) {
1540 d->number = i;
1541 d->raid_disk = i;
1542 d->state = (1<<MD_DISK_REMOVED);
1543 d->state |= (1<<MD_DISK_FAULTY);
1544 failed++;
1545 }
1546 }
1547 sb->nr_disks = nr_disks;
1548 sb->active_disks = active;
1549 sb->working_disks = working;
1550 sb->failed_disks = failed;
1551 sb->spare_disks = spare;
1552
1553 sb->this_disk = sb->disks[rdev->desc_nr];
1554 sb->sb_csum = calc_sb_csum(sb);
1555 }
1556
1557 /*
1558 * rdev_size_change for 0.90.0
1559 */
1560 static unsigned long long
super_90_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)1561 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1562 {
1563 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1564 return 0; /* component must fit device */
1565 if (rdev->mddev->bitmap_info.offset)
1566 return 0; /* can't move bitmap */
1567 rdev->sb_start = calc_dev_sboffset(rdev);
1568 if (!num_sectors || num_sectors > rdev->sb_start)
1569 num_sectors = rdev->sb_start;
1570 /* Limit to 4TB as metadata cannot record more than that.
1571 * 4TB == 2^32 KB, or 2*2^32 sectors.
1572 */
1573 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1574 num_sectors = (sector_t)(2ULL << 32) - 2;
1575 do {
1576 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1577 rdev->sb_page);
1578 } while (md_super_wait(rdev->mddev) < 0);
1579 return num_sectors;
1580 }
1581
1582 static int
super_90_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)1583 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1584 {
1585 /* non-zero offset changes not possible with v0.90 */
1586 return new_offset == 0;
1587 }
1588
1589 /*
1590 * version 1 superblock
1591 */
1592
calc_sb_1_csum(struct mdp_superblock_1 * sb)1593 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1594 {
1595 __le32 disk_csum;
1596 u32 csum;
1597 unsigned long long newcsum;
1598 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1599 __le32 *isuper = (__le32*)sb;
1600
1601 disk_csum = sb->sb_csum;
1602 sb->sb_csum = 0;
1603 newcsum = 0;
1604 for (; size >= 4; size -= 4)
1605 newcsum += le32_to_cpu(*isuper++);
1606
1607 if (size == 2)
1608 newcsum += le16_to_cpu(*(__le16*) isuper);
1609
1610 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1611 sb->sb_csum = disk_csum;
1612 return cpu_to_le32(csum);
1613 }
1614
super_1_load(struct md_rdev * rdev,struct md_rdev * refdev,int minor_version)1615 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1616 {
1617 struct mdp_superblock_1 *sb;
1618 int ret;
1619 sector_t sb_start;
1620 sector_t sectors;
1621 int bmask;
1622 bool spare_disk = true;
1623
1624 /*
1625 * Calculate the position of the superblock in 512byte sectors.
1626 * It is always aligned to a 4K boundary and
1627 * depeding on minor_version, it can be:
1628 * 0: At least 8K, but less than 12K, from end of device
1629 * 1: At start of device
1630 * 2: 4K from start of device.
1631 */
1632 switch(minor_version) {
1633 case 0:
1634 sb_start = bdev_nr_sectors(rdev->bdev) - 8 * 2;
1635 sb_start &= ~(sector_t)(4*2-1);
1636 break;
1637 case 1:
1638 sb_start = 0;
1639 break;
1640 case 2:
1641 sb_start = 8;
1642 break;
1643 default:
1644 return -EINVAL;
1645 }
1646 rdev->sb_start = sb_start;
1647
1648 /* superblock is rarely larger than 1K, but it can be larger,
1649 * and it is safe to read 4k, so we do that
1650 */
1651 ret = read_disk_sb(rdev, 4096);
1652 if (ret) return ret;
1653
1654 sb = page_address(rdev->sb_page);
1655
1656 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1657 sb->major_version != cpu_to_le32(1) ||
1658 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1659 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1660 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1661 return -EINVAL;
1662
1663 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1664 pr_warn("md: invalid superblock checksum on %pg\n",
1665 rdev->bdev);
1666 return -EINVAL;
1667 }
1668 if (le64_to_cpu(sb->data_size) < 10) {
1669 pr_warn("md: data_size too small on %pg\n",
1670 rdev->bdev);
1671 return -EINVAL;
1672 }
1673 if (sb->pad0 ||
1674 sb->pad3[0] ||
1675 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1676 /* Some padding is non-zero, might be a new feature */
1677 return -EINVAL;
1678
1679 rdev->preferred_minor = 0xffff;
1680 rdev->data_offset = le64_to_cpu(sb->data_offset);
1681 rdev->new_data_offset = rdev->data_offset;
1682 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1683 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1684 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1685 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1686
1687 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1688 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1689 if (rdev->sb_size & bmask)
1690 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1691
1692 if (minor_version
1693 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1694 return -EINVAL;
1695 if (minor_version
1696 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1697 return -EINVAL;
1698
1699 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1700 rdev->desc_nr = -1;
1701 else
1702 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1703
1704 if (!rdev->bb_page) {
1705 rdev->bb_page = alloc_page(GFP_KERNEL);
1706 if (!rdev->bb_page)
1707 return -ENOMEM;
1708 }
1709 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1710 rdev->badblocks.count == 0) {
1711 /* need to load the bad block list.
1712 * Currently we limit it to one page.
1713 */
1714 s32 offset;
1715 sector_t bb_sector;
1716 __le64 *bbp;
1717 int i;
1718 int sectors = le16_to_cpu(sb->bblog_size);
1719 if (sectors > (PAGE_SIZE / 512))
1720 return -EINVAL;
1721 offset = le32_to_cpu(sb->bblog_offset);
1722 if (offset == 0)
1723 return -EINVAL;
1724 bb_sector = (long long)offset;
1725 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1726 rdev->bb_page, REQ_OP_READ, true))
1727 return -EIO;
1728 bbp = (__le64 *)page_address(rdev->bb_page);
1729 rdev->badblocks.shift = sb->bblog_shift;
1730 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1731 u64 bb = le64_to_cpu(*bbp);
1732 int count = bb & (0x3ff);
1733 u64 sector = bb >> 10;
1734 sector <<= sb->bblog_shift;
1735 count <<= sb->bblog_shift;
1736 if (bb + 1 == 0)
1737 break;
1738 if (badblocks_set(&rdev->badblocks, sector, count, 1))
1739 return -EINVAL;
1740 }
1741 } else if (sb->bblog_offset != 0)
1742 rdev->badblocks.shift = 0;
1743
1744 if ((le32_to_cpu(sb->feature_map) &
1745 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
1746 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1747 rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1748 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1749 }
1750
1751 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) &&
1752 sb->level != 0)
1753 return -EINVAL;
1754
1755 /* not spare disk, or LEVEL_MULTIPATH */
1756 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) ||
1757 (rdev->desc_nr >= 0 &&
1758 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1759 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1760 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)))
1761 spare_disk = false;
1762
1763 if (!refdev) {
1764 if (!spare_disk)
1765 ret = 1;
1766 else
1767 ret = 0;
1768 } else {
1769 __u64 ev1, ev2;
1770 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1771
1772 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1773 sb->level != refsb->level ||
1774 sb->layout != refsb->layout ||
1775 sb->chunksize != refsb->chunksize) {
1776 pr_warn("md: %pg has strangely different superblock to %pg\n",
1777 rdev->bdev,
1778 refdev->bdev);
1779 return -EINVAL;
1780 }
1781 ev1 = le64_to_cpu(sb->events);
1782 ev2 = le64_to_cpu(refsb->events);
1783
1784 if (!spare_disk && ev1 > ev2)
1785 ret = 1;
1786 else
1787 ret = 0;
1788 }
1789 if (minor_version)
1790 sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset;
1791 else
1792 sectors = rdev->sb_start;
1793 if (sectors < le64_to_cpu(sb->data_size))
1794 return -EINVAL;
1795 rdev->sectors = le64_to_cpu(sb->data_size);
1796 return ret;
1797 }
1798
super_1_validate(struct mddev * mddev,struct md_rdev * freshest,struct md_rdev * rdev)1799 static int super_1_validate(struct mddev *mddev, struct md_rdev *freshest, struct md_rdev *rdev)
1800 {
1801 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1802 __u64 ev1 = le64_to_cpu(sb->events);
1803
1804 rdev->raid_disk = -1;
1805 clear_bit(Faulty, &rdev->flags);
1806 clear_bit(In_sync, &rdev->flags);
1807 clear_bit(Bitmap_sync, &rdev->flags);
1808 clear_bit(WriteMostly, &rdev->flags);
1809
1810 if (mddev->raid_disks == 0) {
1811 mddev->major_version = 1;
1812 mddev->patch_version = 0;
1813 mddev->external = 0;
1814 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1815 mddev->ctime = le64_to_cpu(sb->ctime);
1816 mddev->utime = le64_to_cpu(sb->utime);
1817 mddev->level = le32_to_cpu(sb->level);
1818 mddev->clevel[0] = 0;
1819 mddev->layout = le32_to_cpu(sb->layout);
1820 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1821 mddev->dev_sectors = le64_to_cpu(sb->size);
1822 mddev->events = ev1;
1823 mddev->bitmap_info.offset = 0;
1824 mddev->bitmap_info.space = 0;
1825 /* Default location for bitmap is 1K after superblock
1826 * using 3K - total of 4K
1827 */
1828 mddev->bitmap_info.default_offset = 1024 >> 9;
1829 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1830 mddev->reshape_backwards = 0;
1831
1832 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1833 memcpy(mddev->uuid, sb->set_uuid, 16);
1834
1835 mddev->max_disks = (4096-256)/2;
1836
1837 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1838 mddev->bitmap_info.file == NULL) {
1839 mddev->bitmap_info.offset =
1840 (__s32)le32_to_cpu(sb->bitmap_offset);
1841 /* Metadata doesn't record how much space is available.
1842 * For 1.0, we assume we can use up to the superblock
1843 * if before, else to 4K beyond superblock.
1844 * For others, assume no change is possible.
1845 */
1846 if (mddev->minor_version > 0)
1847 mddev->bitmap_info.space = 0;
1848 else if (mddev->bitmap_info.offset > 0)
1849 mddev->bitmap_info.space =
1850 8 - mddev->bitmap_info.offset;
1851 else
1852 mddev->bitmap_info.space =
1853 -mddev->bitmap_info.offset;
1854 }
1855
1856 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1857 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1858 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1859 mddev->new_level = le32_to_cpu(sb->new_level);
1860 mddev->new_layout = le32_to_cpu(sb->new_layout);
1861 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1862 if (mddev->delta_disks < 0 ||
1863 (mddev->delta_disks == 0 &&
1864 (le32_to_cpu(sb->feature_map)
1865 & MD_FEATURE_RESHAPE_BACKWARDS)))
1866 mddev->reshape_backwards = 1;
1867 } else {
1868 mddev->reshape_position = MaxSector;
1869 mddev->delta_disks = 0;
1870 mddev->new_level = mddev->level;
1871 mddev->new_layout = mddev->layout;
1872 mddev->new_chunk_sectors = mddev->chunk_sectors;
1873 }
1874
1875 if (mddev->level == 0 &&
1876 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT))
1877 mddev->layout = -1;
1878
1879 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1880 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1881
1882 if (le32_to_cpu(sb->feature_map) &
1883 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
1884 if (le32_to_cpu(sb->feature_map) &
1885 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1886 return -EINVAL;
1887 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
1888 (le32_to_cpu(sb->feature_map) &
1889 MD_FEATURE_MULTIPLE_PPLS))
1890 return -EINVAL;
1891 set_bit(MD_HAS_PPL, &mddev->flags);
1892 }
1893 } else if (mddev->pers == NULL) {
1894 /* Insist of good event counter while assembling, except for
1895 * spares (which don't need an event count).
1896 * Similar to mdadm, we allow event counter difference of 1
1897 * from the freshest device.
1898 */
1899 if (rdev->desc_nr >= 0 &&
1900 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1901 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1902 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1903 if (ev1 + 1 < mddev->events)
1904 return -EINVAL;
1905 } else if (mddev->bitmap) {
1906 /* If adding to array with a bitmap, then we can accept an
1907 * older device, but not too old.
1908 */
1909 if (ev1 < mddev->bitmap->events_cleared)
1910 return 0;
1911 if (ev1 < mddev->events)
1912 set_bit(Bitmap_sync, &rdev->flags);
1913 } else {
1914 if (ev1 < mddev->events)
1915 /* just a hot-add of a new device, leave raid_disk at -1 */
1916 return 0;
1917 }
1918 if (mddev->level != LEVEL_MULTIPATH) {
1919 int role;
1920 if (rdev->desc_nr < 0 ||
1921 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1922 role = MD_DISK_ROLE_SPARE;
1923 rdev->desc_nr = -1;
1924 } else if (mddev->pers == NULL && freshest && ev1 < mddev->events) {
1925 /*
1926 * If we are assembling, and our event counter is smaller than the
1927 * highest event counter, we cannot trust our superblock about the role.
1928 * It could happen that our rdev was marked as Faulty, and all other
1929 * superblocks were updated with +1 event counter.
1930 * Then, before the next superblock update, which typically happens when
1931 * remove_and_add_spares() removes the device from the array, there was
1932 * a crash or reboot.
1933 * If we allow current rdev without consulting the freshest superblock,
1934 * we could cause data corruption.
1935 * Note that in this case our event counter is smaller by 1 than the
1936 * highest, otherwise, this rdev would not be allowed into array;
1937 * both kernel and mdadm allow event counter difference of 1.
1938 */
1939 struct mdp_superblock_1 *freshest_sb = page_address(freshest->sb_page);
1940 u32 freshest_max_dev = le32_to_cpu(freshest_sb->max_dev);
1941
1942 if (rdev->desc_nr >= freshest_max_dev) {
1943 /* this is unexpected, better not proceed */
1944 pr_warn("md: %s: rdev[%pg]: desc_nr(%d) >= freshest(%pg)->sb->max_dev(%u)\n",
1945 mdname(mddev), rdev->bdev, rdev->desc_nr,
1946 freshest->bdev, freshest_max_dev);
1947 return -EUCLEAN;
1948 }
1949
1950 role = le16_to_cpu(freshest_sb->dev_roles[rdev->desc_nr]);
1951 pr_debug("md: %s: rdev[%pg]: role=%d(0x%x) according to freshest %pg\n",
1952 mdname(mddev), rdev->bdev, role, role, freshest->bdev);
1953 } else {
1954 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1955 }
1956 switch(role) {
1957 case MD_DISK_ROLE_SPARE: /* spare */
1958 break;
1959 case MD_DISK_ROLE_FAULTY: /* faulty */
1960 set_bit(Faulty, &rdev->flags);
1961 break;
1962 case MD_DISK_ROLE_JOURNAL: /* journal device */
1963 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1964 /* journal device without journal feature */
1965 pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1966 return -EINVAL;
1967 }
1968 set_bit(Journal, &rdev->flags);
1969 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1970 rdev->raid_disk = 0;
1971 break;
1972 default:
1973 rdev->saved_raid_disk = role;
1974 if ((le32_to_cpu(sb->feature_map) &
1975 MD_FEATURE_RECOVERY_OFFSET)) {
1976 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1977 if (!(le32_to_cpu(sb->feature_map) &
1978 MD_FEATURE_RECOVERY_BITMAP))
1979 rdev->saved_raid_disk = -1;
1980 } else {
1981 /*
1982 * If the array is FROZEN, then the device can't
1983 * be in_sync with rest of array.
1984 */
1985 if (!test_bit(MD_RECOVERY_FROZEN,
1986 &mddev->recovery))
1987 set_bit(In_sync, &rdev->flags);
1988 }
1989 rdev->raid_disk = role;
1990 break;
1991 }
1992 if (sb->devflags & WriteMostly1)
1993 set_bit(WriteMostly, &rdev->flags);
1994 if (sb->devflags & FailFast1)
1995 set_bit(FailFast, &rdev->flags);
1996 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1997 set_bit(Replacement, &rdev->flags);
1998 } else /* MULTIPATH are always insync */
1999 set_bit(In_sync, &rdev->flags);
2000
2001 return 0;
2002 }
2003
super_1_sync(struct mddev * mddev,struct md_rdev * rdev)2004 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
2005 {
2006 struct mdp_superblock_1 *sb;
2007 struct md_rdev *rdev2;
2008 int max_dev, i;
2009 /* make rdev->sb match mddev and rdev data. */
2010
2011 sb = page_address(rdev->sb_page);
2012
2013 sb->feature_map = 0;
2014 sb->pad0 = 0;
2015 sb->recovery_offset = cpu_to_le64(0);
2016 memset(sb->pad3, 0, sizeof(sb->pad3));
2017
2018 sb->utime = cpu_to_le64((__u64)mddev->utime);
2019 sb->events = cpu_to_le64(mddev->events);
2020 if (mddev->in_sync)
2021 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
2022 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
2023 sb->resync_offset = cpu_to_le64(MaxSector);
2024 else
2025 sb->resync_offset = cpu_to_le64(0);
2026
2027 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
2028
2029 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
2030 sb->size = cpu_to_le64(mddev->dev_sectors);
2031 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
2032 sb->level = cpu_to_le32(mddev->level);
2033 sb->layout = cpu_to_le32(mddev->layout);
2034 if (test_bit(FailFast, &rdev->flags))
2035 sb->devflags |= FailFast1;
2036 else
2037 sb->devflags &= ~FailFast1;
2038
2039 if (test_bit(WriteMostly, &rdev->flags))
2040 sb->devflags |= WriteMostly1;
2041 else
2042 sb->devflags &= ~WriteMostly1;
2043 sb->data_offset = cpu_to_le64(rdev->data_offset);
2044 sb->data_size = cpu_to_le64(rdev->sectors);
2045
2046 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
2047 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
2048 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
2049 }
2050
2051 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
2052 !test_bit(In_sync, &rdev->flags)) {
2053 sb->feature_map |=
2054 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
2055 sb->recovery_offset =
2056 cpu_to_le64(rdev->recovery_offset);
2057 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
2058 sb->feature_map |=
2059 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
2060 }
2061 /* Note: recovery_offset and journal_tail share space */
2062 if (test_bit(Journal, &rdev->flags))
2063 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
2064 if (test_bit(Replacement, &rdev->flags))
2065 sb->feature_map |=
2066 cpu_to_le32(MD_FEATURE_REPLACEMENT);
2067
2068 if (mddev->reshape_position != MaxSector) {
2069 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
2070 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2071 sb->new_layout = cpu_to_le32(mddev->new_layout);
2072 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2073 sb->new_level = cpu_to_le32(mddev->new_level);
2074 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
2075 if (mddev->delta_disks == 0 &&
2076 mddev->reshape_backwards)
2077 sb->feature_map
2078 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
2079 if (rdev->new_data_offset != rdev->data_offset) {
2080 sb->feature_map
2081 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
2082 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
2083 - rdev->data_offset));
2084 }
2085 }
2086
2087 if (mddev_is_clustered(mddev))
2088 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
2089
2090 if (rdev->badblocks.count == 0)
2091 /* Nothing to do for bad blocks*/ ;
2092 else if (sb->bblog_offset == 0)
2093 /* Cannot record bad blocks on this device */
2094 md_error(mddev, rdev);
2095 else {
2096 struct badblocks *bb = &rdev->badblocks;
2097 __le64 *bbp = (__le64 *)page_address(rdev->bb_page);
2098 u64 *p = bb->page;
2099 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
2100 if (bb->changed) {
2101 unsigned seq;
2102
2103 retry:
2104 seq = read_seqbegin(&bb->lock);
2105
2106 memset(bbp, 0xff, PAGE_SIZE);
2107
2108 for (i = 0 ; i < bb->count ; i++) {
2109 u64 internal_bb = p[i];
2110 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
2111 | BB_LEN(internal_bb));
2112 bbp[i] = cpu_to_le64(store_bb);
2113 }
2114 bb->changed = 0;
2115 if (read_seqretry(&bb->lock, seq))
2116 goto retry;
2117
2118 bb->sector = (rdev->sb_start +
2119 (int)le32_to_cpu(sb->bblog_offset));
2120 bb->size = le16_to_cpu(sb->bblog_size);
2121 }
2122 }
2123
2124 max_dev = 0;
2125 rdev_for_each(rdev2, mddev)
2126 if (rdev2->desc_nr+1 > max_dev)
2127 max_dev = rdev2->desc_nr+1;
2128
2129 if (max_dev > le32_to_cpu(sb->max_dev)) {
2130 int bmask;
2131 sb->max_dev = cpu_to_le32(max_dev);
2132 rdev->sb_size = max_dev * 2 + 256;
2133 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
2134 if (rdev->sb_size & bmask)
2135 rdev->sb_size = (rdev->sb_size | bmask) + 1;
2136 } else
2137 max_dev = le32_to_cpu(sb->max_dev);
2138
2139 for (i=0; i<max_dev;i++)
2140 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2141
2142 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
2143 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
2144
2145 if (test_bit(MD_HAS_PPL, &mddev->flags)) {
2146 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
2147 sb->feature_map |=
2148 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
2149 else
2150 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
2151 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
2152 sb->ppl.size = cpu_to_le16(rdev->ppl.size);
2153 }
2154
2155 rdev_for_each(rdev2, mddev) {
2156 i = rdev2->desc_nr;
2157 if (test_bit(Faulty, &rdev2->flags))
2158 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
2159 else if (test_bit(In_sync, &rdev2->flags))
2160 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2161 else if (test_bit(Journal, &rdev2->flags))
2162 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
2163 else if (rdev2->raid_disk >= 0)
2164 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2165 else
2166 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2167 }
2168
2169 sb->sb_csum = calc_sb_1_csum(sb);
2170 }
2171
super_1_choose_bm_space(sector_t dev_size)2172 static sector_t super_1_choose_bm_space(sector_t dev_size)
2173 {
2174 sector_t bm_space;
2175
2176 /* if the device is bigger than 8Gig, save 64k for bitmap
2177 * usage, if bigger than 200Gig, save 128k
2178 */
2179 if (dev_size < 64*2)
2180 bm_space = 0;
2181 else if (dev_size - 64*2 >= 200*1024*1024*2)
2182 bm_space = 128*2;
2183 else if (dev_size - 4*2 > 8*1024*1024*2)
2184 bm_space = 64*2;
2185 else
2186 bm_space = 4*2;
2187 return bm_space;
2188 }
2189
2190 static unsigned long long
super_1_rdev_size_change(struct md_rdev * rdev,sector_t num_sectors)2191 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
2192 {
2193 struct mdp_superblock_1 *sb;
2194 sector_t max_sectors;
2195 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
2196 return 0; /* component must fit device */
2197 if (rdev->data_offset != rdev->new_data_offset)
2198 return 0; /* too confusing */
2199 if (rdev->sb_start < rdev->data_offset) {
2200 /* minor versions 1 and 2; superblock before data */
2201 max_sectors = bdev_nr_sectors(rdev->bdev) - rdev->data_offset;
2202 if (!num_sectors || num_sectors > max_sectors)
2203 num_sectors = max_sectors;
2204 } else if (rdev->mddev->bitmap_info.offset) {
2205 /* minor version 0 with bitmap we can't move */
2206 return 0;
2207 } else {
2208 /* minor version 0; superblock after data */
2209 sector_t sb_start, bm_space;
2210 sector_t dev_size = bdev_nr_sectors(rdev->bdev);
2211
2212 /* 8K is for superblock */
2213 sb_start = dev_size - 8*2;
2214 sb_start &= ~(sector_t)(4*2 - 1);
2215
2216 bm_space = super_1_choose_bm_space(dev_size);
2217
2218 /* Space that can be used to store date needs to decrease
2219 * superblock bitmap space and bad block space(4K)
2220 */
2221 max_sectors = sb_start - bm_space - 4*2;
2222
2223 if (!num_sectors || num_sectors > max_sectors)
2224 num_sectors = max_sectors;
2225 rdev->sb_start = sb_start;
2226 }
2227 sb = page_address(rdev->sb_page);
2228 sb->data_size = cpu_to_le64(num_sectors);
2229 sb->super_offset = cpu_to_le64(rdev->sb_start);
2230 sb->sb_csum = calc_sb_1_csum(sb);
2231 do {
2232 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
2233 rdev->sb_page);
2234 } while (md_super_wait(rdev->mddev) < 0);
2235 return num_sectors;
2236
2237 }
2238
2239 static int
super_1_allow_new_offset(struct md_rdev * rdev,unsigned long long new_offset)2240 super_1_allow_new_offset(struct md_rdev *rdev,
2241 unsigned long long new_offset)
2242 {
2243 /* All necessary checks on new >= old have been done */
2244 struct bitmap *bitmap;
2245 if (new_offset >= rdev->data_offset)
2246 return 1;
2247
2248 /* with 1.0 metadata, there is no metadata to tread on
2249 * so we can always move back */
2250 if (rdev->mddev->minor_version == 0)
2251 return 1;
2252
2253 /* otherwise we must be sure not to step on
2254 * any metadata, so stay:
2255 * 36K beyond start of superblock
2256 * beyond end of badblocks
2257 * beyond write-intent bitmap
2258 */
2259 if (rdev->sb_start + (32+4)*2 > new_offset)
2260 return 0;
2261 bitmap = rdev->mddev->bitmap;
2262 if (bitmap && !rdev->mddev->bitmap_info.file &&
2263 rdev->sb_start + rdev->mddev->bitmap_info.offset +
2264 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
2265 return 0;
2266 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
2267 return 0;
2268
2269 return 1;
2270 }
2271
2272 static struct super_type super_types[] = {
2273 [0] = {
2274 .name = "0.90.0",
2275 .owner = THIS_MODULE,
2276 .load_super = super_90_load,
2277 .validate_super = super_90_validate,
2278 .sync_super = super_90_sync,
2279 .rdev_size_change = super_90_rdev_size_change,
2280 .allow_new_offset = super_90_allow_new_offset,
2281 },
2282 [1] = {
2283 .name = "md-1",
2284 .owner = THIS_MODULE,
2285 .load_super = super_1_load,
2286 .validate_super = super_1_validate,
2287 .sync_super = super_1_sync,
2288 .rdev_size_change = super_1_rdev_size_change,
2289 .allow_new_offset = super_1_allow_new_offset,
2290 },
2291 };
2292
sync_super(struct mddev * mddev,struct md_rdev * rdev)2293 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2294 {
2295 if (mddev->sync_super) {
2296 mddev->sync_super(mddev, rdev);
2297 return;
2298 }
2299
2300 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2301
2302 super_types[mddev->major_version].sync_super(mddev, rdev);
2303 }
2304
match_mddev_units(struct mddev * mddev1,struct mddev * mddev2)2305 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2306 {
2307 struct md_rdev *rdev, *rdev2;
2308
2309 rcu_read_lock();
2310 rdev_for_each_rcu(rdev, mddev1) {
2311 if (test_bit(Faulty, &rdev->flags) ||
2312 test_bit(Journal, &rdev->flags) ||
2313 rdev->raid_disk == -1)
2314 continue;
2315 rdev_for_each_rcu(rdev2, mddev2) {
2316 if (test_bit(Faulty, &rdev2->flags) ||
2317 test_bit(Journal, &rdev2->flags) ||
2318 rdev2->raid_disk == -1)
2319 continue;
2320 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) {
2321 rcu_read_unlock();
2322 return 1;
2323 }
2324 }
2325 }
2326 rcu_read_unlock();
2327 return 0;
2328 }
2329
2330 static LIST_HEAD(pending_raid_disks);
2331
2332 /*
2333 * Try to register data integrity profile for an mddev
2334 *
2335 * This is called when an array is started and after a disk has been kicked
2336 * from the array. It only succeeds if all working and active component devices
2337 * are integrity capable with matching profiles.
2338 */
md_integrity_register(struct mddev * mddev)2339 int md_integrity_register(struct mddev *mddev)
2340 {
2341 struct md_rdev *rdev, *reference = NULL;
2342
2343 if (list_empty(&mddev->disks))
2344 return 0; /* nothing to do */
2345 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2346 return 0; /* shouldn't register, or already is */
2347 rdev_for_each(rdev, mddev) {
2348 /* skip spares and non-functional disks */
2349 if (test_bit(Faulty, &rdev->flags))
2350 continue;
2351 if (rdev->raid_disk < 0)
2352 continue;
2353 if (!reference) {
2354 /* Use the first rdev as the reference */
2355 reference = rdev;
2356 continue;
2357 }
2358 /* does this rdev's profile match the reference profile? */
2359 if (blk_integrity_compare(reference->bdev->bd_disk,
2360 rdev->bdev->bd_disk) < 0)
2361 return -EINVAL;
2362 }
2363 if (!reference || !bdev_get_integrity(reference->bdev))
2364 return 0;
2365 /*
2366 * All component devices are integrity capable and have matching
2367 * profiles, register the common profile for the md device.
2368 */
2369 blk_integrity_register(mddev->gendisk,
2370 bdev_get_integrity(reference->bdev));
2371
2372 pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2373 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) ||
2374 (mddev->level != 1 && mddev->level != 10 &&
2375 bioset_integrity_create(&mddev->io_clone_set, BIO_POOL_SIZE))) {
2376 /*
2377 * No need to handle the failure of bioset_integrity_create,
2378 * because the function is called by md_run() -> pers->run(),
2379 * md_run calls bioset_exit -> bioset_integrity_free in case
2380 * of failure case.
2381 */
2382 pr_err("md: failed to create integrity pool for %s\n",
2383 mdname(mddev));
2384 return -EINVAL;
2385 }
2386 return 0;
2387 }
2388 EXPORT_SYMBOL(md_integrity_register);
2389
2390 /*
2391 * Attempt to add an rdev, but only if it is consistent with the current
2392 * integrity profile
2393 */
md_integrity_add_rdev(struct md_rdev * rdev,struct mddev * mddev)2394 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2395 {
2396 struct blk_integrity *bi_mddev;
2397
2398 if (!mddev->gendisk)
2399 return 0;
2400
2401 bi_mddev = blk_get_integrity(mddev->gendisk);
2402
2403 if (!bi_mddev) /* nothing to do */
2404 return 0;
2405
2406 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2407 pr_err("%s: incompatible integrity profile for %pg\n",
2408 mdname(mddev), rdev->bdev);
2409 return -ENXIO;
2410 }
2411
2412 return 0;
2413 }
2414 EXPORT_SYMBOL(md_integrity_add_rdev);
2415
rdev_read_only(struct md_rdev * rdev)2416 static bool rdev_read_only(struct md_rdev *rdev)
2417 {
2418 return bdev_read_only(rdev->bdev) ||
2419 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev));
2420 }
2421
bind_rdev_to_array(struct md_rdev * rdev,struct mddev * mddev)2422 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2423 {
2424 char b[BDEVNAME_SIZE];
2425 int err;
2426
2427 /* prevent duplicates */
2428 if (find_rdev(mddev, rdev->bdev->bd_dev))
2429 return -EEXIST;
2430
2431 if (rdev_read_only(rdev) && mddev->pers)
2432 return -EROFS;
2433
2434 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2435 if (!test_bit(Journal, &rdev->flags) &&
2436 rdev->sectors &&
2437 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2438 if (mddev->pers) {
2439 /* Cannot change size, so fail
2440 * If mddev->level <= 0, then we don't care
2441 * about aligning sizes (e.g. linear)
2442 */
2443 if (mddev->level > 0)
2444 return -ENOSPC;
2445 } else
2446 mddev->dev_sectors = rdev->sectors;
2447 }
2448
2449 /* Verify rdev->desc_nr is unique.
2450 * If it is -1, assign a free number, else
2451 * check number is not in use
2452 */
2453 rcu_read_lock();
2454 if (rdev->desc_nr < 0) {
2455 int choice = 0;
2456 if (mddev->pers)
2457 choice = mddev->raid_disks;
2458 while (md_find_rdev_nr_rcu(mddev, choice))
2459 choice++;
2460 rdev->desc_nr = choice;
2461 } else {
2462 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2463 rcu_read_unlock();
2464 return -EBUSY;
2465 }
2466 }
2467 rcu_read_unlock();
2468 if (!test_bit(Journal, &rdev->flags) &&
2469 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2470 pr_warn("md: %s: array is limited to %d devices\n",
2471 mdname(mddev), mddev->max_disks);
2472 return -EBUSY;
2473 }
2474 snprintf(b, sizeof(b), "%pg", rdev->bdev);
2475 strreplace(b, '/', '!');
2476
2477 rdev->mddev = mddev;
2478 pr_debug("md: bind<%s>\n", b);
2479
2480 if (mddev->raid_disks)
2481 mddev_create_serial_pool(mddev, rdev, false);
2482
2483 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2484 goto fail;
2485
2486 /* failure here is OK */
2487 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block");
2488 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2489 rdev->sysfs_unack_badblocks =
2490 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks");
2491 rdev->sysfs_badblocks =
2492 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks");
2493
2494 list_add_rcu(&rdev->same_set, &mddev->disks);
2495 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2496
2497 /* May as well allow recovery to be retried once */
2498 mddev->recovery_disabled++;
2499
2500 return 0;
2501
2502 fail:
2503 pr_warn("md: failed to register dev-%s for %s\n",
2504 b, mdname(mddev));
2505 mddev_destroy_serial_pool(mddev, rdev, false);
2506 return err;
2507 }
2508
2509 void md_autodetect_dev(dev_t dev);
2510
2511 /* just for claiming the bdev */
2512 static struct md_rdev claim_rdev;
2513
export_rdev(struct md_rdev * rdev,struct mddev * mddev)2514 static void export_rdev(struct md_rdev *rdev, struct mddev *mddev)
2515 {
2516 pr_debug("md: export_rdev(%pg)\n", rdev->bdev);
2517 md_rdev_clear(rdev);
2518 #ifndef MODULE
2519 if (test_bit(AutoDetected, &rdev->flags))
2520 md_autodetect_dev(rdev->bdev->bd_dev);
2521 #endif
2522 blkdev_put(rdev->bdev,
2523 test_bit(Holder, &rdev->flags) ? rdev : &claim_rdev);
2524 rdev->bdev = NULL;
2525 kobject_put(&rdev->kobj);
2526 }
2527
md_kick_rdev_from_array(struct md_rdev * rdev)2528 static void md_kick_rdev_from_array(struct md_rdev *rdev)
2529 {
2530 struct mddev *mddev = rdev->mddev;
2531
2532 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2533 list_del_rcu(&rdev->same_set);
2534 pr_debug("md: unbind<%pg>\n", rdev->bdev);
2535 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
2536 rdev->mddev = NULL;
2537 sysfs_remove_link(&rdev->kobj, "block");
2538 sysfs_put(rdev->sysfs_state);
2539 sysfs_put(rdev->sysfs_unack_badblocks);
2540 sysfs_put(rdev->sysfs_badblocks);
2541 rdev->sysfs_state = NULL;
2542 rdev->sysfs_unack_badblocks = NULL;
2543 rdev->sysfs_badblocks = NULL;
2544 rdev->badblocks.count = 0;
2545
2546 synchronize_rcu();
2547
2548 /*
2549 * kobject_del() will wait for all in progress writers to be done, where
2550 * reconfig_mutex is held, hence it can't be called under
2551 * reconfig_mutex and it's delayed to mddev_unlock().
2552 */
2553 list_add(&rdev->same_set, &mddev->deleting);
2554 }
2555
export_array(struct mddev * mddev)2556 static void export_array(struct mddev *mddev)
2557 {
2558 struct md_rdev *rdev;
2559
2560 while (!list_empty(&mddev->disks)) {
2561 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2562 same_set);
2563 md_kick_rdev_from_array(rdev);
2564 }
2565 mddev->raid_disks = 0;
2566 mddev->major_version = 0;
2567 }
2568
set_in_sync(struct mddev * mddev)2569 static bool set_in_sync(struct mddev *mddev)
2570 {
2571 lockdep_assert_held(&mddev->lock);
2572 if (!mddev->in_sync) {
2573 mddev->sync_checkers++;
2574 spin_unlock(&mddev->lock);
2575 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2576 spin_lock(&mddev->lock);
2577 if (!mddev->in_sync &&
2578 percpu_ref_is_zero(&mddev->writes_pending)) {
2579 mddev->in_sync = 1;
2580 /*
2581 * Ensure ->in_sync is visible before we clear
2582 * ->sync_checkers.
2583 */
2584 smp_mb();
2585 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2586 sysfs_notify_dirent_safe(mddev->sysfs_state);
2587 }
2588 if (--mddev->sync_checkers == 0)
2589 percpu_ref_switch_to_percpu(&mddev->writes_pending);
2590 }
2591 if (mddev->safemode == 1)
2592 mddev->safemode = 0;
2593 return mddev->in_sync;
2594 }
2595
sync_sbs(struct mddev * mddev,int nospares)2596 static void sync_sbs(struct mddev *mddev, int nospares)
2597 {
2598 /* Update each superblock (in-memory image), but
2599 * if we are allowed to, skip spares which already
2600 * have the right event counter, or have one earlier
2601 * (which would mean they aren't being marked as dirty
2602 * with the rest of the array)
2603 */
2604 struct md_rdev *rdev;
2605 rdev_for_each(rdev, mddev) {
2606 if (rdev->sb_events == mddev->events ||
2607 (nospares &&
2608 rdev->raid_disk < 0 &&
2609 rdev->sb_events+1 == mddev->events)) {
2610 /* Don't update this superblock */
2611 rdev->sb_loaded = 2;
2612 } else {
2613 sync_super(mddev, rdev);
2614 rdev->sb_loaded = 1;
2615 }
2616 }
2617 }
2618
does_sb_need_changing(struct mddev * mddev)2619 static bool does_sb_need_changing(struct mddev *mddev)
2620 {
2621 struct md_rdev *rdev = NULL, *iter;
2622 struct mdp_superblock_1 *sb;
2623 int role;
2624
2625 /* Find a good rdev */
2626 rdev_for_each(iter, mddev)
2627 if ((iter->raid_disk >= 0) && !test_bit(Faulty, &iter->flags)) {
2628 rdev = iter;
2629 break;
2630 }
2631
2632 /* No good device found. */
2633 if (!rdev)
2634 return false;
2635
2636 sb = page_address(rdev->sb_page);
2637 /* Check if a device has become faulty or a spare become active */
2638 rdev_for_each(rdev, mddev) {
2639 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2640 /* Device activated? */
2641 if (role == MD_DISK_ROLE_SPARE && rdev->raid_disk >= 0 &&
2642 !test_bit(Faulty, &rdev->flags))
2643 return true;
2644 /* Device turned faulty? */
2645 if (test_bit(Faulty, &rdev->flags) && (role < MD_DISK_ROLE_MAX))
2646 return true;
2647 }
2648
2649 /* Check if any mddev parameters have changed */
2650 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2651 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2652 (mddev->layout != le32_to_cpu(sb->layout)) ||
2653 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2654 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2655 return true;
2656
2657 return false;
2658 }
2659
md_update_sb(struct mddev * mddev,int force_change)2660 void md_update_sb(struct mddev *mddev, int force_change)
2661 {
2662 struct md_rdev *rdev;
2663 int sync_req;
2664 int nospares = 0;
2665 int any_badblocks_changed = 0;
2666 int ret = -1;
2667
2668 if (!md_is_rdwr(mddev)) {
2669 if (force_change)
2670 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2671 return;
2672 }
2673
2674 repeat:
2675 if (mddev_is_clustered(mddev)) {
2676 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2677 force_change = 1;
2678 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2679 nospares = 1;
2680 ret = md_cluster_ops->metadata_update_start(mddev);
2681 /* Has someone else has updated the sb */
2682 if (!does_sb_need_changing(mddev)) {
2683 if (ret == 0)
2684 md_cluster_ops->metadata_update_cancel(mddev);
2685 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2686 BIT(MD_SB_CHANGE_DEVS) |
2687 BIT(MD_SB_CHANGE_CLEAN));
2688 return;
2689 }
2690 }
2691
2692 /*
2693 * First make sure individual recovery_offsets are correct
2694 * curr_resync_completed can only be used during recovery.
2695 * During reshape/resync it might use array-addresses rather
2696 * that device addresses.
2697 */
2698 rdev_for_each(rdev, mddev) {
2699 if (rdev->raid_disk >= 0 &&
2700 mddev->delta_disks >= 0 &&
2701 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
2702 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) &&
2703 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2704 !test_bit(Journal, &rdev->flags) &&
2705 !test_bit(In_sync, &rdev->flags) &&
2706 mddev->curr_resync_completed > rdev->recovery_offset)
2707 rdev->recovery_offset = mddev->curr_resync_completed;
2708
2709 }
2710 if (!mddev->persistent) {
2711 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2712 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2713 if (!mddev->external) {
2714 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2715 rdev_for_each(rdev, mddev) {
2716 if (rdev->badblocks.changed) {
2717 rdev->badblocks.changed = 0;
2718 ack_all_badblocks(&rdev->badblocks);
2719 md_error(mddev, rdev);
2720 }
2721 clear_bit(Blocked, &rdev->flags);
2722 clear_bit(BlockedBadBlocks, &rdev->flags);
2723 wake_up(&rdev->blocked_wait);
2724 }
2725 }
2726 wake_up(&mddev->sb_wait);
2727 return;
2728 }
2729
2730 spin_lock(&mddev->lock);
2731
2732 mddev->utime = ktime_get_real_seconds();
2733
2734 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2735 force_change = 1;
2736 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2737 /* just a clean<-> dirty transition, possibly leave spares alone,
2738 * though if events isn't the right even/odd, we will have to do
2739 * spares after all
2740 */
2741 nospares = 1;
2742 if (force_change)
2743 nospares = 0;
2744 if (mddev->degraded)
2745 /* If the array is degraded, then skipping spares is both
2746 * dangerous and fairly pointless.
2747 * Dangerous because a device that was removed from the array
2748 * might have a event_count that still looks up-to-date,
2749 * so it can be re-added without a resync.
2750 * Pointless because if there are any spares to skip,
2751 * then a recovery will happen and soon that array won't
2752 * be degraded any more and the spare can go back to sleep then.
2753 */
2754 nospares = 0;
2755
2756 sync_req = mddev->in_sync;
2757
2758 /* If this is just a dirty<->clean transition, and the array is clean
2759 * and 'events' is odd, we can roll back to the previous clean state */
2760 if (nospares
2761 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2762 && mddev->can_decrease_events
2763 && mddev->events != 1) {
2764 mddev->events--;
2765 mddev->can_decrease_events = 0;
2766 } else {
2767 /* otherwise we have to go forward and ... */
2768 mddev->events ++;
2769 mddev->can_decrease_events = nospares;
2770 }
2771
2772 /*
2773 * This 64-bit counter should never wrap.
2774 * Either we are in around ~1 trillion A.C., assuming
2775 * 1 reboot per second, or we have a bug...
2776 */
2777 WARN_ON(mddev->events == 0);
2778
2779 rdev_for_each(rdev, mddev) {
2780 if (rdev->badblocks.changed)
2781 any_badblocks_changed++;
2782 if (test_bit(Faulty, &rdev->flags))
2783 set_bit(FaultRecorded, &rdev->flags);
2784 }
2785
2786 sync_sbs(mddev, nospares);
2787 spin_unlock(&mddev->lock);
2788
2789 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2790 mdname(mddev), mddev->in_sync);
2791
2792 if (mddev->queue)
2793 blk_add_trace_msg(mddev->queue, "md md_update_sb");
2794 rewrite:
2795 md_bitmap_update_sb(mddev->bitmap);
2796 rdev_for_each(rdev, mddev) {
2797 if (rdev->sb_loaded != 1)
2798 continue; /* no noise on spare devices */
2799
2800 if (!test_bit(Faulty, &rdev->flags)) {
2801 md_super_write(mddev,rdev,
2802 rdev->sb_start, rdev->sb_size,
2803 rdev->sb_page);
2804 pr_debug("md: (write) %pg's sb offset: %llu\n",
2805 rdev->bdev,
2806 (unsigned long long)rdev->sb_start);
2807 rdev->sb_events = mddev->events;
2808 if (rdev->badblocks.size) {
2809 md_super_write(mddev, rdev,
2810 rdev->badblocks.sector,
2811 rdev->badblocks.size << 9,
2812 rdev->bb_page);
2813 rdev->badblocks.size = 0;
2814 }
2815
2816 } else
2817 pr_debug("md: %pg (skipping faulty)\n",
2818 rdev->bdev);
2819
2820 if (mddev->level == LEVEL_MULTIPATH)
2821 /* only need to write one superblock... */
2822 break;
2823 }
2824 if (md_super_wait(mddev) < 0)
2825 goto rewrite;
2826 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2827
2828 if (mddev_is_clustered(mddev) && ret == 0)
2829 md_cluster_ops->metadata_update_finish(mddev);
2830
2831 if (mddev->in_sync != sync_req ||
2832 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2833 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2834 /* have to write it out again */
2835 goto repeat;
2836 wake_up(&mddev->sb_wait);
2837 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2838 sysfs_notify_dirent_safe(mddev->sysfs_completed);
2839
2840 rdev_for_each(rdev, mddev) {
2841 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2842 clear_bit(Blocked, &rdev->flags);
2843
2844 if (any_badblocks_changed)
2845 ack_all_badblocks(&rdev->badblocks);
2846 clear_bit(BlockedBadBlocks, &rdev->flags);
2847 wake_up(&rdev->blocked_wait);
2848 }
2849 }
2850 EXPORT_SYMBOL(md_update_sb);
2851
add_bound_rdev(struct md_rdev * rdev)2852 static int add_bound_rdev(struct md_rdev *rdev)
2853 {
2854 struct mddev *mddev = rdev->mddev;
2855 int err = 0;
2856 bool add_journal = test_bit(Journal, &rdev->flags);
2857
2858 if (!mddev->pers->hot_remove_disk || add_journal) {
2859 /* If there is hot_add_disk but no hot_remove_disk
2860 * then added disks for geometry changes,
2861 * and should be added immediately.
2862 */
2863 super_types[mddev->major_version].
2864 validate_super(mddev, NULL/*freshest*/, rdev);
2865 if (add_journal)
2866 mddev_suspend(mddev);
2867 err = mddev->pers->hot_add_disk(mddev, rdev);
2868 if (add_journal)
2869 mddev_resume(mddev);
2870 if (err) {
2871 md_kick_rdev_from_array(rdev);
2872 return err;
2873 }
2874 }
2875 sysfs_notify_dirent_safe(rdev->sysfs_state);
2876
2877 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2878 if (mddev->degraded)
2879 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2880 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2881 md_new_event();
2882 md_wakeup_thread(mddev->thread);
2883 return 0;
2884 }
2885
2886 /* words written to sysfs files may, or may not, be \n terminated.
2887 * We want to accept with case. For this we use cmd_match.
2888 */
cmd_match(const char * cmd,const char * str)2889 static int cmd_match(const char *cmd, const char *str)
2890 {
2891 /* See if cmd, written into a sysfs file, matches
2892 * str. They must either be the same, or cmd can
2893 * have a trailing newline
2894 */
2895 while (*cmd && *str && *cmd == *str) {
2896 cmd++;
2897 str++;
2898 }
2899 if (*cmd == '\n')
2900 cmd++;
2901 if (*str || *cmd)
2902 return 0;
2903 return 1;
2904 }
2905
2906 struct rdev_sysfs_entry {
2907 struct attribute attr;
2908 ssize_t (*show)(struct md_rdev *, char *);
2909 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2910 };
2911
2912 static ssize_t
state_show(struct md_rdev * rdev,char * page)2913 state_show(struct md_rdev *rdev, char *page)
2914 {
2915 char *sep = ",";
2916 size_t len = 0;
2917 unsigned long flags = READ_ONCE(rdev->flags);
2918
2919 if (test_bit(Faulty, &flags) ||
2920 (!test_bit(ExternalBbl, &flags) &&
2921 rdev->badblocks.unacked_exist))
2922 len += sprintf(page+len, "faulty%s", sep);
2923 if (test_bit(In_sync, &flags))
2924 len += sprintf(page+len, "in_sync%s", sep);
2925 if (test_bit(Journal, &flags))
2926 len += sprintf(page+len, "journal%s", sep);
2927 if (test_bit(WriteMostly, &flags))
2928 len += sprintf(page+len, "write_mostly%s", sep);
2929 if (test_bit(Blocked, &flags) ||
2930 (rdev->badblocks.unacked_exist
2931 && !test_bit(Faulty, &flags)))
2932 len += sprintf(page+len, "blocked%s", sep);
2933 if (!test_bit(Faulty, &flags) &&
2934 !test_bit(Journal, &flags) &&
2935 !test_bit(In_sync, &flags))
2936 len += sprintf(page+len, "spare%s", sep);
2937 if (test_bit(WriteErrorSeen, &flags))
2938 len += sprintf(page+len, "write_error%s", sep);
2939 if (test_bit(WantReplacement, &flags))
2940 len += sprintf(page+len, "want_replacement%s", sep);
2941 if (test_bit(Replacement, &flags))
2942 len += sprintf(page+len, "replacement%s", sep);
2943 if (test_bit(ExternalBbl, &flags))
2944 len += sprintf(page+len, "external_bbl%s", sep);
2945 if (test_bit(FailFast, &flags))
2946 len += sprintf(page+len, "failfast%s", sep);
2947
2948 if (len)
2949 len -= strlen(sep);
2950
2951 return len+sprintf(page+len, "\n");
2952 }
2953
2954 static ssize_t
state_store(struct md_rdev * rdev,const char * buf,size_t len)2955 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2956 {
2957 /* can write
2958 * faulty - simulates an error
2959 * remove - disconnects the device
2960 * writemostly - sets write_mostly
2961 * -writemostly - clears write_mostly
2962 * blocked - sets the Blocked flags
2963 * -blocked - clears the Blocked and possibly simulates an error
2964 * insync - sets Insync providing device isn't active
2965 * -insync - clear Insync for a device with a slot assigned,
2966 * so that it gets rebuilt based on bitmap
2967 * write_error - sets WriteErrorSeen
2968 * -write_error - clears WriteErrorSeen
2969 * {,-}failfast - set/clear FailFast
2970 */
2971
2972 struct mddev *mddev = rdev->mddev;
2973 int err = -EINVAL;
2974 bool need_update_sb = false;
2975
2976 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2977 md_error(rdev->mddev, rdev);
2978
2979 if (test_bit(MD_BROKEN, &rdev->mddev->flags))
2980 err = -EBUSY;
2981 else
2982 err = 0;
2983 } else if (cmd_match(buf, "remove")) {
2984 if (rdev->mddev->pers) {
2985 clear_bit(Blocked, &rdev->flags);
2986 remove_and_add_spares(rdev->mddev, rdev);
2987 }
2988 if (rdev->raid_disk >= 0)
2989 err = -EBUSY;
2990 else {
2991 err = 0;
2992 if (mddev_is_clustered(mddev))
2993 err = md_cluster_ops->remove_disk(mddev, rdev);
2994
2995 if (err == 0) {
2996 md_kick_rdev_from_array(rdev);
2997 if (mddev->pers) {
2998 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2999 md_wakeup_thread(mddev->thread);
3000 }
3001 md_new_event();
3002 }
3003 }
3004 } else if (cmd_match(buf, "writemostly")) {
3005 set_bit(WriteMostly, &rdev->flags);
3006 mddev_create_serial_pool(rdev->mddev, rdev, false);
3007 need_update_sb = true;
3008 err = 0;
3009 } else if (cmd_match(buf, "-writemostly")) {
3010 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
3011 clear_bit(WriteMostly, &rdev->flags);
3012 need_update_sb = true;
3013 err = 0;
3014 } else if (cmd_match(buf, "blocked")) {
3015 set_bit(Blocked, &rdev->flags);
3016 err = 0;
3017 } else if (cmd_match(buf, "-blocked")) {
3018 if (!test_bit(Faulty, &rdev->flags) &&
3019 !test_bit(ExternalBbl, &rdev->flags) &&
3020 rdev->badblocks.unacked_exist) {
3021 /* metadata handler doesn't understand badblocks,
3022 * so we need to fail the device
3023 */
3024 md_error(rdev->mddev, rdev);
3025 }
3026 clear_bit(Blocked, &rdev->flags);
3027 clear_bit(BlockedBadBlocks, &rdev->flags);
3028 wake_up(&rdev->blocked_wait);
3029 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3030 md_wakeup_thread(rdev->mddev->thread);
3031
3032 err = 0;
3033 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
3034 set_bit(In_sync, &rdev->flags);
3035 err = 0;
3036 } else if (cmd_match(buf, "failfast")) {
3037 set_bit(FailFast, &rdev->flags);
3038 need_update_sb = true;
3039 err = 0;
3040 } else if (cmd_match(buf, "-failfast")) {
3041 clear_bit(FailFast, &rdev->flags);
3042 need_update_sb = true;
3043 err = 0;
3044 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
3045 !test_bit(Journal, &rdev->flags)) {
3046 if (rdev->mddev->pers == NULL) {
3047 clear_bit(In_sync, &rdev->flags);
3048 rdev->saved_raid_disk = rdev->raid_disk;
3049 rdev->raid_disk = -1;
3050 err = 0;
3051 }
3052 } else if (cmd_match(buf, "write_error")) {
3053 set_bit(WriteErrorSeen, &rdev->flags);
3054 err = 0;
3055 } else if (cmd_match(buf, "-write_error")) {
3056 clear_bit(WriteErrorSeen, &rdev->flags);
3057 err = 0;
3058 } else if (cmd_match(buf, "want_replacement")) {
3059 /* Any non-spare device that is not a replacement can
3060 * become want_replacement at any time, but we then need to
3061 * check if recovery is needed.
3062 */
3063 if (rdev->raid_disk >= 0 &&
3064 !test_bit(Journal, &rdev->flags) &&
3065 !test_bit(Replacement, &rdev->flags))
3066 set_bit(WantReplacement, &rdev->flags);
3067 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3068 md_wakeup_thread(rdev->mddev->thread);
3069 err = 0;
3070 } else if (cmd_match(buf, "-want_replacement")) {
3071 /* Clearing 'want_replacement' is always allowed.
3072 * Once replacements starts it is too late though.
3073 */
3074 err = 0;
3075 clear_bit(WantReplacement, &rdev->flags);
3076 } else if (cmd_match(buf, "replacement")) {
3077 /* Can only set a device as a replacement when array has not
3078 * yet been started. Once running, replacement is automatic
3079 * from spares, or by assigning 'slot'.
3080 */
3081 if (rdev->mddev->pers)
3082 err = -EBUSY;
3083 else {
3084 set_bit(Replacement, &rdev->flags);
3085 err = 0;
3086 }
3087 } else if (cmd_match(buf, "-replacement")) {
3088 /* Similarly, can only clear Replacement before start */
3089 if (rdev->mddev->pers)
3090 err = -EBUSY;
3091 else {
3092 clear_bit(Replacement, &rdev->flags);
3093 err = 0;
3094 }
3095 } else if (cmd_match(buf, "re-add")) {
3096 if (!rdev->mddev->pers)
3097 err = -EINVAL;
3098 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
3099 rdev->saved_raid_disk >= 0) {
3100 /* clear_bit is performed _after_ all the devices
3101 * have their local Faulty bit cleared. If any writes
3102 * happen in the meantime in the local node, they
3103 * will land in the local bitmap, which will be synced
3104 * by this node eventually
3105 */
3106 if (!mddev_is_clustered(rdev->mddev) ||
3107 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
3108 clear_bit(Faulty, &rdev->flags);
3109 err = add_bound_rdev(rdev);
3110 }
3111 } else
3112 err = -EBUSY;
3113 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
3114 set_bit(ExternalBbl, &rdev->flags);
3115 rdev->badblocks.shift = 0;
3116 err = 0;
3117 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
3118 clear_bit(ExternalBbl, &rdev->flags);
3119 err = 0;
3120 }
3121 if (need_update_sb)
3122 md_update_sb(mddev, 1);
3123 if (!err)
3124 sysfs_notify_dirent_safe(rdev->sysfs_state);
3125 return err ? err : len;
3126 }
3127 static struct rdev_sysfs_entry rdev_state =
3128 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
3129
3130 static ssize_t
errors_show(struct md_rdev * rdev,char * page)3131 errors_show(struct md_rdev *rdev, char *page)
3132 {
3133 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
3134 }
3135
3136 static ssize_t
errors_store(struct md_rdev * rdev,const char * buf,size_t len)3137 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
3138 {
3139 unsigned int n;
3140 int rv;
3141
3142 rv = kstrtouint(buf, 10, &n);
3143 if (rv < 0)
3144 return rv;
3145 atomic_set(&rdev->corrected_errors, n);
3146 return len;
3147 }
3148 static struct rdev_sysfs_entry rdev_errors =
3149 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
3150
3151 static ssize_t
slot_show(struct md_rdev * rdev,char * page)3152 slot_show(struct md_rdev *rdev, char *page)
3153 {
3154 if (test_bit(Journal, &rdev->flags))
3155 return sprintf(page, "journal\n");
3156 else if (rdev->raid_disk < 0)
3157 return sprintf(page, "none\n");
3158 else
3159 return sprintf(page, "%d\n", rdev->raid_disk);
3160 }
3161
3162 static ssize_t
slot_store(struct md_rdev * rdev,const char * buf,size_t len)3163 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
3164 {
3165 int slot;
3166 int err;
3167
3168 if (test_bit(Journal, &rdev->flags))
3169 return -EBUSY;
3170 if (strncmp(buf, "none", 4)==0)
3171 slot = -1;
3172 else {
3173 err = kstrtouint(buf, 10, (unsigned int *)&slot);
3174 if (err < 0)
3175 return err;
3176 if (slot < 0)
3177 /* overflow */
3178 return -ENOSPC;
3179 }
3180 if (rdev->mddev->pers && slot == -1) {
3181 /* Setting 'slot' on an active array requires also
3182 * updating the 'rd%d' link, and communicating
3183 * with the personality with ->hot_*_disk.
3184 * For now we only support removing
3185 * failed/spare devices. This normally happens automatically,
3186 * but not when the metadata is externally managed.
3187 */
3188 if (rdev->raid_disk == -1)
3189 return -EEXIST;
3190 /* personality does all needed checks */
3191 if (rdev->mddev->pers->hot_remove_disk == NULL)
3192 return -EINVAL;
3193 clear_bit(Blocked, &rdev->flags);
3194 remove_and_add_spares(rdev->mddev, rdev);
3195 if (rdev->raid_disk >= 0)
3196 return -EBUSY;
3197 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3198 md_wakeup_thread(rdev->mddev->thread);
3199 } else if (rdev->mddev->pers) {
3200 /* Activating a spare .. or possibly reactivating
3201 * if we ever get bitmaps working here.
3202 */
3203 int err;
3204
3205 if (rdev->raid_disk != -1)
3206 return -EBUSY;
3207
3208 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
3209 return -EBUSY;
3210
3211 if (rdev->mddev->pers->hot_add_disk == NULL)
3212 return -EINVAL;
3213
3214 if (slot >= rdev->mddev->raid_disks &&
3215 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3216 return -ENOSPC;
3217
3218 rdev->raid_disk = slot;
3219 if (test_bit(In_sync, &rdev->flags))
3220 rdev->saved_raid_disk = slot;
3221 else
3222 rdev->saved_raid_disk = -1;
3223 clear_bit(In_sync, &rdev->flags);
3224 clear_bit(Bitmap_sync, &rdev->flags);
3225 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev);
3226 if (err) {
3227 rdev->raid_disk = -1;
3228 return err;
3229 } else
3230 sysfs_notify_dirent_safe(rdev->sysfs_state);
3231 /* failure here is OK */;
3232 sysfs_link_rdev(rdev->mddev, rdev);
3233 /* don't wakeup anyone, leave that to userspace. */
3234 } else {
3235 if (slot >= rdev->mddev->raid_disks &&
3236 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3237 return -ENOSPC;
3238 rdev->raid_disk = slot;
3239 /* assume it is working */
3240 clear_bit(Faulty, &rdev->flags);
3241 clear_bit(WriteMostly, &rdev->flags);
3242 set_bit(In_sync, &rdev->flags);
3243 sysfs_notify_dirent_safe(rdev->sysfs_state);
3244 }
3245 return len;
3246 }
3247
3248 static struct rdev_sysfs_entry rdev_slot =
3249 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
3250
3251 static ssize_t
offset_show(struct md_rdev * rdev,char * page)3252 offset_show(struct md_rdev *rdev, char *page)
3253 {
3254 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
3255 }
3256
3257 static ssize_t
offset_store(struct md_rdev * rdev,const char * buf,size_t len)3258 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
3259 {
3260 unsigned long long offset;
3261 if (kstrtoull(buf, 10, &offset) < 0)
3262 return -EINVAL;
3263 if (rdev->mddev->pers && rdev->raid_disk >= 0)
3264 return -EBUSY;
3265 if (rdev->sectors && rdev->mddev->external)
3266 /* Must set offset before size, so overlap checks
3267 * can be sane */
3268 return -EBUSY;
3269 rdev->data_offset = offset;
3270 rdev->new_data_offset = offset;
3271 return len;
3272 }
3273
3274 static struct rdev_sysfs_entry rdev_offset =
3275 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
3276
new_offset_show(struct md_rdev * rdev,char * page)3277 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
3278 {
3279 return sprintf(page, "%llu\n",
3280 (unsigned long long)rdev->new_data_offset);
3281 }
3282
new_offset_store(struct md_rdev * rdev,const char * buf,size_t len)3283 static ssize_t new_offset_store(struct md_rdev *rdev,
3284 const char *buf, size_t len)
3285 {
3286 unsigned long long new_offset;
3287 struct mddev *mddev = rdev->mddev;
3288
3289 if (kstrtoull(buf, 10, &new_offset) < 0)
3290 return -EINVAL;
3291
3292 if (mddev->sync_thread ||
3293 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
3294 return -EBUSY;
3295 if (new_offset == rdev->data_offset)
3296 /* reset is always permitted */
3297 ;
3298 else if (new_offset > rdev->data_offset) {
3299 /* must not push array size beyond rdev_sectors */
3300 if (new_offset - rdev->data_offset
3301 + mddev->dev_sectors > rdev->sectors)
3302 return -E2BIG;
3303 }
3304 /* Metadata worries about other space details. */
3305
3306 /* decreasing the offset is inconsistent with a backwards
3307 * reshape.
3308 */
3309 if (new_offset < rdev->data_offset &&
3310 mddev->reshape_backwards)
3311 return -EINVAL;
3312 /* Increasing offset is inconsistent with forwards
3313 * reshape. reshape_direction should be set to
3314 * 'backwards' first.
3315 */
3316 if (new_offset > rdev->data_offset &&
3317 !mddev->reshape_backwards)
3318 return -EINVAL;
3319
3320 if (mddev->pers && mddev->persistent &&
3321 !super_types[mddev->major_version]
3322 .allow_new_offset(rdev, new_offset))
3323 return -E2BIG;
3324 rdev->new_data_offset = new_offset;
3325 if (new_offset > rdev->data_offset)
3326 mddev->reshape_backwards = 1;
3327 else if (new_offset < rdev->data_offset)
3328 mddev->reshape_backwards = 0;
3329
3330 return len;
3331 }
3332 static struct rdev_sysfs_entry rdev_new_offset =
3333 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3334
3335 static ssize_t
rdev_size_show(struct md_rdev * rdev,char * page)3336 rdev_size_show(struct md_rdev *rdev, char *page)
3337 {
3338 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3339 }
3340
md_rdevs_overlap(struct md_rdev * a,struct md_rdev * b)3341 static int md_rdevs_overlap(struct md_rdev *a, struct md_rdev *b)
3342 {
3343 /* check if two start/length pairs overlap */
3344 if (a->data_offset + a->sectors <= b->data_offset)
3345 return false;
3346 if (b->data_offset + b->sectors <= a->data_offset)
3347 return false;
3348 return true;
3349 }
3350
md_rdev_overlaps(struct md_rdev * rdev)3351 static bool md_rdev_overlaps(struct md_rdev *rdev)
3352 {
3353 struct mddev *mddev;
3354 struct md_rdev *rdev2;
3355
3356 spin_lock(&all_mddevs_lock);
3357 list_for_each_entry(mddev, &all_mddevs, all_mddevs) {
3358 if (test_bit(MD_DELETED, &mddev->flags))
3359 continue;
3360 rdev_for_each(rdev2, mddev) {
3361 if (rdev != rdev2 && rdev->bdev == rdev2->bdev &&
3362 md_rdevs_overlap(rdev, rdev2)) {
3363 spin_unlock(&all_mddevs_lock);
3364 return true;
3365 }
3366 }
3367 }
3368 spin_unlock(&all_mddevs_lock);
3369 return false;
3370 }
3371
strict_blocks_to_sectors(const char * buf,sector_t * sectors)3372 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3373 {
3374 unsigned long long blocks;
3375 sector_t new;
3376
3377 if (kstrtoull(buf, 10, &blocks) < 0)
3378 return -EINVAL;
3379
3380 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3381 return -EINVAL; /* sector conversion overflow */
3382
3383 new = blocks * 2;
3384 if (new != blocks * 2)
3385 return -EINVAL; /* unsigned long long to sector_t overflow */
3386
3387 *sectors = new;
3388 return 0;
3389 }
3390
3391 static ssize_t
rdev_size_store(struct md_rdev * rdev,const char * buf,size_t len)3392 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3393 {
3394 struct mddev *my_mddev = rdev->mddev;
3395 sector_t oldsectors = rdev->sectors;
3396 sector_t sectors;
3397
3398 if (test_bit(Journal, &rdev->flags))
3399 return -EBUSY;
3400 if (strict_blocks_to_sectors(buf, §ors) < 0)
3401 return -EINVAL;
3402 if (rdev->data_offset != rdev->new_data_offset)
3403 return -EINVAL; /* too confusing */
3404 if (my_mddev->pers && rdev->raid_disk >= 0) {
3405 if (my_mddev->persistent) {
3406 sectors = super_types[my_mddev->major_version].
3407 rdev_size_change(rdev, sectors);
3408 if (!sectors)
3409 return -EBUSY;
3410 } else if (!sectors)
3411 sectors = bdev_nr_sectors(rdev->bdev) -
3412 rdev->data_offset;
3413 if (!my_mddev->pers->resize)
3414 /* Cannot change size for RAID0 or Linear etc */
3415 return -EINVAL;
3416 }
3417 if (sectors < my_mddev->dev_sectors)
3418 return -EINVAL; /* component must fit device */
3419
3420 rdev->sectors = sectors;
3421
3422 /*
3423 * Check that all other rdevs with the same bdev do not overlap. This
3424 * check does not provide a hard guarantee, it just helps avoid
3425 * dangerous mistakes.
3426 */
3427 if (sectors > oldsectors && my_mddev->external &&
3428 md_rdev_overlaps(rdev)) {
3429 /*
3430 * Someone else could have slipped in a size change here, but
3431 * doing so is just silly. We put oldsectors back because we
3432 * know it is safe, and trust userspace not to race with itself.
3433 */
3434 rdev->sectors = oldsectors;
3435 return -EBUSY;
3436 }
3437 return len;
3438 }
3439
3440 static struct rdev_sysfs_entry rdev_size =
3441 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3442
recovery_start_show(struct md_rdev * rdev,char * page)3443 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3444 {
3445 unsigned long long recovery_start = rdev->recovery_offset;
3446
3447 if (test_bit(In_sync, &rdev->flags) ||
3448 recovery_start == MaxSector)
3449 return sprintf(page, "none\n");
3450
3451 return sprintf(page, "%llu\n", recovery_start);
3452 }
3453
recovery_start_store(struct md_rdev * rdev,const char * buf,size_t len)3454 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3455 {
3456 unsigned long long recovery_start;
3457
3458 if (cmd_match(buf, "none"))
3459 recovery_start = MaxSector;
3460 else if (kstrtoull(buf, 10, &recovery_start))
3461 return -EINVAL;
3462
3463 if (rdev->mddev->pers &&
3464 rdev->raid_disk >= 0)
3465 return -EBUSY;
3466
3467 rdev->recovery_offset = recovery_start;
3468 if (recovery_start == MaxSector)
3469 set_bit(In_sync, &rdev->flags);
3470 else
3471 clear_bit(In_sync, &rdev->flags);
3472 return len;
3473 }
3474
3475 static struct rdev_sysfs_entry rdev_recovery_start =
3476 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3477
3478 /* sysfs access to bad-blocks list.
3479 * We present two files.
3480 * 'bad-blocks' lists sector numbers and lengths of ranges that
3481 * are recorded as bad. The list is truncated to fit within
3482 * the one-page limit of sysfs.
3483 * Writing "sector length" to this file adds an acknowledged
3484 * bad block list.
3485 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3486 * been acknowledged. Writing to this file adds bad blocks
3487 * without acknowledging them. This is largely for testing.
3488 */
bb_show(struct md_rdev * rdev,char * page)3489 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3490 {
3491 return badblocks_show(&rdev->badblocks, page, 0);
3492 }
bb_store(struct md_rdev * rdev,const char * page,size_t len)3493 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3494 {
3495 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3496 /* Maybe that ack was all we needed */
3497 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3498 wake_up(&rdev->blocked_wait);
3499 return rv;
3500 }
3501 static struct rdev_sysfs_entry rdev_bad_blocks =
3502 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3503
ubb_show(struct md_rdev * rdev,char * page)3504 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3505 {
3506 return badblocks_show(&rdev->badblocks, page, 1);
3507 }
ubb_store(struct md_rdev * rdev,const char * page,size_t len)3508 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3509 {
3510 return badblocks_store(&rdev->badblocks, page, len, 1);
3511 }
3512 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3513 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3514
3515 static ssize_t
ppl_sector_show(struct md_rdev * rdev,char * page)3516 ppl_sector_show(struct md_rdev *rdev, char *page)
3517 {
3518 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3519 }
3520
3521 static ssize_t
ppl_sector_store(struct md_rdev * rdev,const char * buf,size_t len)3522 ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3523 {
3524 unsigned long long sector;
3525
3526 if (kstrtoull(buf, 10, §or) < 0)
3527 return -EINVAL;
3528 if (sector != (sector_t)sector)
3529 return -EINVAL;
3530
3531 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3532 rdev->raid_disk >= 0)
3533 return -EBUSY;
3534
3535 if (rdev->mddev->persistent) {
3536 if (rdev->mddev->major_version == 0)
3537 return -EINVAL;
3538 if ((sector > rdev->sb_start &&
3539 sector - rdev->sb_start > S16_MAX) ||
3540 (sector < rdev->sb_start &&
3541 rdev->sb_start - sector > -S16_MIN))
3542 return -EINVAL;
3543 rdev->ppl.offset = sector - rdev->sb_start;
3544 } else if (!rdev->mddev->external) {
3545 return -EBUSY;
3546 }
3547 rdev->ppl.sector = sector;
3548 return len;
3549 }
3550
3551 static struct rdev_sysfs_entry rdev_ppl_sector =
3552 __ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3553
3554 static ssize_t
ppl_size_show(struct md_rdev * rdev,char * page)3555 ppl_size_show(struct md_rdev *rdev, char *page)
3556 {
3557 return sprintf(page, "%u\n", rdev->ppl.size);
3558 }
3559
3560 static ssize_t
ppl_size_store(struct md_rdev * rdev,const char * buf,size_t len)3561 ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3562 {
3563 unsigned int size;
3564
3565 if (kstrtouint(buf, 10, &size) < 0)
3566 return -EINVAL;
3567
3568 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3569 rdev->raid_disk >= 0)
3570 return -EBUSY;
3571
3572 if (rdev->mddev->persistent) {
3573 if (rdev->mddev->major_version == 0)
3574 return -EINVAL;
3575 if (size > U16_MAX)
3576 return -EINVAL;
3577 } else if (!rdev->mddev->external) {
3578 return -EBUSY;
3579 }
3580 rdev->ppl.size = size;
3581 return len;
3582 }
3583
3584 static struct rdev_sysfs_entry rdev_ppl_size =
3585 __ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3586
3587 static struct attribute *rdev_default_attrs[] = {
3588 &rdev_state.attr,
3589 &rdev_errors.attr,
3590 &rdev_slot.attr,
3591 &rdev_offset.attr,
3592 &rdev_new_offset.attr,
3593 &rdev_size.attr,
3594 &rdev_recovery_start.attr,
3595 &rdev_bad_blocks.attr,
3596 &rdev_unack_bad_blocks.attr,
3597 &rdev_ppl_sector.attr,
3598 &rdev_ppl_size.attr,
3599 NULL,
3600 };
3601 ATTRIBUTE_GROUPS(rdev_default);
3602 static ssize_t
rdev_attr_show(struct kobject * kobj,struct attribute * attr,char * page)3603 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3604 {
3605 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3606 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3607
3608 if (!entry->show)
3609 return -EIO;
3610 if (!rdev->mddev)
3611 return -ENODEV;
3612 return entry->show(rdev, page);
3613 }
3614
3615 static ssize_t
rdev_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)3616 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3617 const char *page, size_t length)
3618 {
3619 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3620 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3621 struct kernfs_node *kn = NULL;
3622 ssize_t rv;
3623 struct mddev *mddev = rdev->mddev;
3624
3625 if (!entry->store)
3626 return -EIO;
3627 if (!capable(CAP_SYS_ADMIN))
3628 return -EACCES;
3629
3630 if (entry->store == state_store && cmd_match(page, "remove"))
3631 kn = sysfs_break_active_protection(kobj, attr);
3632
3633 rv = mddev ? mddev_lock(mddev) : -ENODEV;
3634 if (!rv) {
3635 if (rdev->mddev == NULL)
3636 rv = -ENODEV;
3637 else
3638 rv = entry->store(rdev, page, length);
3639 mddev_unlock(mddev);
3640 }
3641
3642 if (kn)
3643 sysfs_unbreak_active_protection(kn);
3644
3645 return rv;
3646 }
3647
rdev_free(struct kobject * ko)3648 static void rdev_free(struct kobject *ko)
3649 {
3650 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3651 kfree(rdev);
3652 }
3653 static const struct sysfs_ops rdev_sysfs_ops = {
3654 .show = rdev_attr_show,
3655 .store = rdev_attr_store,
3656 };
3657 static const struct kobj_type rdev_ktype = {
3658 .release = rdev_free,
3659 .sysfs_ops = &rdev_sysfs_ops,
3660 .default_groups = rdev_default_groups,
3661 };
3662
md_rdev_init(struct md_rdev * rdev)3663 int md_rdev_init(struct md_rdev *rdev)
3664 {
3665 rdev->desc_nr = -1;
3666 rdev->saved_raid_disk = -1;
3667 rdev->raid_disk = -1;
3668 rdev->flags = 0;
3669 rdev->data_offset = 0;
3670 rdev->new_data_offset = 0;
3671 rdev->sb_events = 0;
3672 rdev->last_read_error = 0;
3673 rdev->sb_loaded = 0;
3674 rdev->bb_page = NULL;
3675 atomic_set(&rdev->nr_pending, 0);
3676 atomic_set(&rdev->read_errors, 0);
3677 atomic_set(&rdev->corrected_errors, 0);
3678
3679 INIT_LIST_HEAD(&rdev->same_set);
3680 init_waitqueue_head(&rdev->blocked_wait);
3681
3682 /* Add space to store bad block list.
3683 * This reserves the space even on arrays where it cannot
3684 * be used - I wonder if that matters
3685 */
3686 return badblocks_init(&rdev->badblocks, 0);
3687 }
3688 EXPORT_SYMBOL_GPL(md_rdev_init);
3689
3690 /*
3691 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3692 *
3693 * mark the device faulty if:
3694 *
3695 * - the device is nonexistent (zero size)
3696 * - the device has no valid superblock
3697 *
3698 * a faulty rdev _never_ has rdev->sb set.
3699 */
md_import_device(dev_t newdev,int super_format,int super_minor)3700 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3701 {
3702 struct md_rdev *rdev;
3703 struct md_rdev *holder;
3704 sector_t size;
3705 int err;
3706
3707 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3708 if (!rdev)
3709 return ERR_PTR(-ENOMEM);
3710
3711 err = md_rdev_init(rdev);
3712 if (err)
3713 goto out_free_rdev;
3714 err = alloc_disk_sb(rdev);
3715 if (err)
3716 goto out_clear_rdev;
3717
3718 if (super_format == -2) {
3719 holder = &claim_rdev;
3720 } else {
3721 holder = rdev;
3722 set_bit(Holder, &rdev->flags);
3723 }
3724
3725 rdev->bdev = blkdev_get_by_dev(newdev, BLK_OPEN_READ | BLK_OPEN_WRITE,
3726 holder, NULL);
3727 if (IS_ERR(rdev->bdev)) {
3728 pr_warn("md: could not open device unknown-block(%u,%u).\n",
3729 MAJOR(newdev), MINOR(newdev));
3730 err = PTR_ERR(rdev->bdev);
3731 goto out_clear_rdev;
3732 }
3733
3734 kobject_init(&rdev->kobj, &rdev_ktype);
3735
3736 size = bdev_nr_bytes(rdev->bdev) >> BLOCK_SIZE_BITS;
3737 if (!size) {
3738 pr_warn("md: %pg has zero or unknown size, marking faulty!\n",
3739 rdev->bdev);
3740 err = -EINVAL;
3741 goto out_blkdev_put;
3742 }
3743
3744 if (super_format >= 0) {
3745 err = super_types[super_format].
3746 load_super(rdev, NULL, super_minor);
3747 if (err == -EINVAL) {
3748 pr_warn("md: %pg does not have a valid v%d.%d superblock, not importing!\n",
3749 rdev->bdev,
3750 super_format, super_minor);
3751 goto out_blkdev_put;
3752 }
3753 if (err < 0) {
3754 pr_warn("md: could not read %pg's sb, not importing!\n",
3755 rdev->bdev);
3756 goto out_blkdev_put;
3757 }
3758 }
3759
3760 return rdev;
3761
3762 out_blkdev_put:
3763 blkdev_put(rdev->bdev, holder);
3764 out_clear_rdev:
3765 md_rdev_clear(rdev);
3766 out_free_rdev:
3767 kfree(rdev);
3768 return ERR_PTR(err);
3769 }
3770
3771 /*
3772 * Check a full RAID array for plausibility
3773 */
3774
analyze_sbs(struct mddev * mddev)3775 static int analyze_sbs(struct mddev *mddev)
3776 {
3777 int i;
3778 struct md_rdev *rdev, *freshest, *tmp;
3779
3780 freshest = NULL;
3781 rdev_for_each_safe(rdev, tmp, mddev)
3782 switch (super_types[mddev->major_version].
3783 load_super(rdev, freshest, mddev->minor_version)) {
3784 case 1:
3785 freshest = rdev;
3786 break;
3787 case 0:
3788 break;
3789 default:
3790 pr_warn("md: fatal superblock inconsistency in %pg -- removing from array\n",
3791 rdev->bdev);
3792 md_kick_rdev_from_array(rdev);
3793 }
3794
3795 /* Cannot find a valid fresh disk */
3796 if (!freshest) {
3797 pr_warn("md: cannot find a valid disk\n");
3798 return -EINVAL;
3799 }
3800
3801 super_types[mddev->major_version].
3802 validate_super(mddev, NULL/*freshest*/, freshest);
3803
3804 i = 0;
3805 rdev_for_each_safe(rdev, tmp, mddev) {
3806 if (mddev->max_disks &&
3807 (rdev->desc_nr >= mddev->max_disks ||
3808 i > mddev->max_disks)) {
3809 pr_warn("md: %s: %pg: only %d devices permitted\n",
3810 mdname(mddev), rdev->bdev,
3811 mddev->max_disks);
3812 md_kick_rdev_from_array(rdev);
3813 continue;
3814 }
3815 if (rdev != freshest) {
3816 if (super_types[mddev->major_version].
3817 validate_super(mddev, freshest, rdev)) {
3818 pr_warn("md: kicking non-fresh %pg from array!\n",
3819 rdev->bdev);
3820 md_kick_rdev_from_array(rdev);
3821 continue;
3822 }
3823 }
3824 if (mddev->level == LEVEL_MULTIPATH) {
3825 rdev->desc_nr = i++;
3826 rdev->raid_disk = rdev->desc_nr;
3827 set_bit(In_sync, &rdev->flags);
3828 } else if (rdev->raid_disk >=
3829 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3830 !test_bit(Journal, &rdev->flags)) {
3831 rdev->raid_disk = -1;
3832 clear_bit(In_sync, &rdev->flags);
3833 }
3834 }
3835
3836 return 0;
3837 }
3838
3839 /* Read a fixed-point number.
3840 * Numbers in sysfs attributes should be in "standard" units where
3841 * possible, so time should be in seconds.
3842 * However we internally use a a much smaller unit such as
3843 * milliseconds or jiffies.
3844 * This function takes a decimal number with a possible fractional
3845 * component, and produces an integer which is the result of
3846 * multiplying that number by 10^'scale'.
3847 * all without any floating-point arithmetic.
3848 */
strict_strtoul_scaled(const char * cp,unsigned long * res,int scale)3849 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3850 {
3851 unsigned long result = 0;
3852 long decimals = -1;
3853 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3854 if (*cp == '.')
3855 decimals = 0;
3856 else if (decimals < scale) {
3857 unsigned int value;
3858 value = *cp - '0';
3859 result = result * 10 + value;
3860 if (decimals >= 0)
3861 decimals++;
3862 }
3863 cp++;
3864 }
3865 if (*cp == '\n')
3866 cp++;
3867 if (*cp)
3868 return -EINVAL;
3869 if (decimals < 0)
3870 decimals = 0;
3871 *res = result * int_pow(10, scale - decimals);
3872 return 0;
3873 }
3874
3875 static ssize_t
safe_delay_show(struct mddev * mddev,char * page)3876 safe_delay_show(struct mddev *mddev, char *page)
3877 {
3878 unsigned int msec = ((unsigned long)mddev->safemode_delay*1000)/HZ;
3879
3880 return sprintf(page, "%u.%03u\n", msec/1000, msec%1000);
3881 }
3882 static ssize_t
safe_delay_store(struct mddev * mddev,const char * cbuf,size_t len)3883 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3884 {
3885 unsigned long msec;
3886
3887 if (mddev_is_clustered(mddev)) {
3888 pr_warn("md: Safemode is disabled for clustered mode\n");
3889 return -EINVAL;
3890 }
3891
3892 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0 || msec > UINT_MAX / HZ)
3893 return -EINVAL;
3894 if (msec == 0)
3895 mddev->safemode_delay = 0;
3896 else {
3897 unsigned long old_delay = mddev->safemode_delay;
3898 unsigned long new_delay = (msec*HZ)/1000;
3899
3900 if (new_delay == 0)
3901 new_delay = 1;
3902 mddev->safemode_delay = new_delay;
3903 if (new_delay < old_delay || old_delay == 0)
3904 mod_timer(&mddev->safemode_timer, jiffies+1);
3905 }
3906 return len;
3907 }
3908 static struct md_sysfs_entry md_safe_delay =
3909 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3910
3911 static ssize_t
level_show(struct mddev * mddev,char * page)3912 level_show(struct mddev *mddev, char *page)
3913 {
3914 struct md_personality *p;
3915 int ret;
3916 spin_lock(&mddev->lock);
3917 p = mddev->pers;
3918 if (p)
3919 ret = sprintf(page, "%s\n", p->name);
3920 else if (mddev->clevel[0])
3921 ret = sprintf(page, "%s\n", mddev->clevel);
3922 else if (mddev->level != LEVEL_NONE)
3923 ret = sprintf(page, "%d\n", mddev->level);
3924 else
3925 ret = 0;
3926 spin_unlock(&mddev->lock);
3927 return ret;
3928 }
3929
3930 static ssize_t
level_store(struct mddev * mddev,const char * buf,size_t len)3931 level_store(struct mddev *mddev, const char *buf, size_t len)
3932 {
3933 char clevel[16];
3934 ssize_t rv;
3935 size_t slen = len;
3936 struct md_personality *pers, *oldpers;
3937 long level;
3938 void *priv, *oldpriv;
3939 struct md_rdev *rdev;
3940
3941 if (slen == 0 || slen >= sizeof(clevel))
3942 return -EINVAL;
3943
3944 rv = mddev_lock(mddev);
3945 if (rv)
3946 return rv;
3947
3948 if (mddev->pers == NULL) {
3949 strncpy(mddev->clevel, buf, slen);
3950 if (mddev->clevel[slen-1] == '\n')
3951 slen--;
3952 mddev->clevel[slen] = 0;
3953 mddev->level = LEVEL_NONE;
3954 rv = len;
3955 goto out_unlock;
3956 }
3957 rv = -EROFS;
3958 if (!md_is_rdwr(mddev))
3959 goto out_unlock;
3960
3961 /* request to change the personality. Need to ensure:
3962 * - array is not engaged in resync/recovery/reshape
3963 * - old personality can be suspended
3964 * - new personality will access other array.
3965 */
3966
3967 rv = -EBUSY;
3968 if (mddev->sync_thread ||
3969 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3970 mddev->reshape_position != MaxSector ||
3971 mddev->sysfs_active)
3972 goto out_unlock;
3973
3974 rv = -EINVAL;
3975 if (!mddev->pers->quiesce) {
3976 pr_warn("md: %s: %s does not support online personality change\n",
3977 mdname(mddev), mddev->pers->name);
3978 goto out_unlock;
3979 }
3980
3981 /* Now find the new personality */
3982 strncpy(clevel, buf, slen);
3983 if (clevel[slen-1] == '\n')
3984 slen--;
3985 clevel[slen] = 0;
3986 if (kstrtol(clevel, 10, &level))
3987 level = LEVEL_NONE;
3988
3989 if (request_module("md-%s", clevel) != 0)
3990 request_module("md-level-%s", clevel);
3991 spin_lock(&pers_lock);
3992 pers = find_pers(level, clevel);
3993 if (!pers || !try_module_get(pers->owner)) {
3994 spin_unlock(&pers_lock);
3995 pr_warn("md: personality %s not loaded\n", clevel);
3996 rv = -EINVAL;
3997 goto out_unlock;
3998 }
3999 spin_unlock(&pers_lock);
4000
4001 if (pers == mddev->pers) {
4002 /* Nothing to do! */
4003 module_put(pers->owner);
4004 rv = len;
4005 goto out_unlock;
4006 }
4007 if (!pers->takeover) {
4008 module_put(pers->owner);
4009 pr_warn("md: %s: %s does not support personality takeover\n",
4010 mdname(mddev), clevel);
4011 rv = -EINVAL;
4012 goto out_unlock;
4013 }
4014
4015 rdev_for_each(rdev, mddev)
4016 rdev->new_raid_disk = rdev->raid_disk;
4017
4018 /* ->takeover must set new_* and/or delta_disks
4019 * if it succeeds, and may set them when it fails.
4020 */
4021 priv = pers->takeover(mddev);
4022 if (IS_ERR(priv)) {
4023 mddev->new_level = mddev->level;
4024 mddev->new_layout = mddev->layout;
4025 mddev->new_chunk_sectors = mddev->chunk_sectors;
4026 mddev->raid_disks -= mddev->delta_disks;
4027 mddev->delta_disks = 0;
4028 mddev->reshape_backwards = 0;
4029 module_put(pers->owner);
4030 pr_warn("md: %s: %s would not accept array\n",
4031 mdname(mddev), clevel);
4032 rv = PTR_ERR(priv);
4033 goto out_unlock;
4034 }
4035
4036 /* Looks like we have a winner */
4037 mddev_suspend(mddev);
4038 mddev_detach(mddev);
4039
4040 spin_lock(&mddev->lock);
4041 oldpers = mddev->pers;
4042 oldpriv = mddev->private;
4043 mddev->pers = pers;
4044 mddev->private = priv;
4045 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4046 mddev->level = mddev->new_level;
4047 mddev->layout = mddev->new_layout;
4048 mddev->chunk_sectors = mddev->new_chunk_sectors;
4049 mddev->delta_disks = 0;
4050 mddev->reshape_backwards = 0;
4051 mddev->degraded = 0;
4052 spin_unlock(&mddev->lock);
4053
4054 if (oldpers->sync_request == NULL &&
4055 mddev->external) {
4056 /* We are converting from a no-redundancy array
4057 * to a redundancy array and metadata is managed
4058 * externally so we need to be sure that writes
4059 * won't block due to a need to transition
4060 * clean->dirty
4061 * until external management is started.
4062 */
4063 mddev->in_sync = 0;
4064 mddev->safemode_delay = 0;
4065 mddev->safemode = 0;
4066 }
4067
4068 oldpers->free(mddev, oldpriv);
4069
4070 if (oldpers->sync_request == NULL &&
4071 pers->sync_request != NULL) {
4072 /* need to add the md_redundancy_group */
4073 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4074 pr_warn("md: cannot register extra attributes for %s\n",
4075 mdname(mddev));
4076 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4077 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
4078 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
4079 }
4080 if (oldpers->sync_request != NULL &&
4081 pers->sync_request == NULL) {
4082 /* need to remove the md_redundancy_group */
4083 if (mddev->to_remove == NULL)
4084 mddev->to_remove = &md_redundancy_group;
4085 }
4086
4087 module_put(oldpers->owner);
4088
4089 rdev_for_each(rdev, mddev) {
4090 if (rdev->raid_disk < 0)
4091 continue;
4092 if (rdev->new_raid_disk >= mddev->raid_disks)
4093 rdev->new_raid_disk = -1;
4094 if (rdev->new_raid_disk == rdev->raid_disk)
4095 continue;
4096 sysfs_unlink_rdev(mddev, rdev);
4097 }
4098 rdev_for_each(rdev, mddev) {
4099 if (rdev->raid_disk < 0)
4100 continue;
4101 if (rdev->new_raid_disk == rdev->raid_disk)
4102 continue;
4103 rdev->raid_disk = rdev->new_raid_disk;
4104 if (rdev->raid_disk < 0)
4105 clear_bit(In_sync, &rdev->flags);
4106 else {
4107 if (sysfs_link_rdev(mddev, rdev))
4108 pr_warn("md: cannot register rd%d for %s after level change\n",
4109 rdev->raid_disk, mdname(mddev));
4110 }
4111 }
4112
4113 if (pers->sync_request == NULL) {
4114 /* this is now an array without redundancy, so
4115 * it must always be in_sync
4116 */
4117 mddev->in_sync = 1;
4118 del_timer_sync(&mddev->safemode_timer);
4119 }
4120 blk_set_stacking_limits(&mddev->queue->limits);
4121 pers->run(mddev);
4122 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4123 mddev_resume(mddev);
4124 if (!mddev->thread)
4125 md_update_sb(mddev, 1);
4126 sysfs_notify_dirent_safe(mddev->sysfs_level);
4127 md_new_event();
4128 rv = len;
4129 out_unlock:
4130 mddev_unlock(mddev);
4131 return rv;
4132 }
4133
4134 static struct md_sysfs_entry md_level =
4135 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
4136
4137 static ssize_t
layout_show(struct mddev * mddev,char * page)4138 layout_show(struct mddev *mddev, char *page)
4139 {
4140 /* just a number, not meaningful for all levels */
4141 if (mddev->reshape_position != MaxSector &&
4142 mddev->layout != mddev->new_layout)
4143 return sprintf(page, "%d (%d)\n",
4144 mddev->new_layout, mddev->layout);
4145 return sprintf(page, "%d\n", mddev->layout);
4146 }
4147
4148 static ssize_t
layout_store(struct mddev * mddev,const char * buf,size_t len)4149 layout_store(struct mddev *mddev, const char *buf, size_t len)
4150 {
4151 unsigned int n;
4152 int err;
4153
4154 err = kstrtouint(buf, 10, &n);
4155 if (err < 0)
4156 return err;
4157 err = mddev_lock(mddev);
4158 if (err)
4159 return err;
4160
4161 if (mddev->pers) {
4162 if (mddev->pers->check_reshape == NULL)
4163 err = -EBUSY;
4164 else if (!md_is_rdwr(mddev))
4165 err = -EROFS;
4166 else {
4167 mddev->new_layout = n;
4168 err = mddev->pers->check_reshape(mddev);
4169 if (err)
4170 mddev->new_layout = mddev->layout;
4171 }
4172 } else {
4173 mddev->new_layout = n;
4174 if (mddev->reshape_position == MaxSector)
4175 mddev->layout = n;
4176 }
4177 mddev_unlock(mddev);
4178 return err ?: len;
4179 }
4180 static struct md_sysfs_entry md_layout =
4181 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
4182
4183 static ssize_t
raid_disks_show(struct mddev * mddev,char * page)4184 raid_disks_show(struct mddev *mddev, char *page)
4185 {
4186 if (mddev->raid_disks == 0)
4187 return 0;
4188 if (mddev->reshape_position != MaxSector &&
4189 mddev->delta_disks != 0)
4190 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
4191 mddev->raid_disks - mddev->delta_disks);
4192 return sprintf(page, "%d\n", mddev->raid_disks);
4193 }
4194
4195 static int update_raid_disks(struct mddev *mddev, int raid_disks);
4196
4197 static ssize_t
raid_disks_store(struct mddev * mddev,const char * buf,size_t len)4198 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
4199 {
4200 unsigned int n;
4201 int err;
4202
4203 err = kstrtouint(buf, 10, &n);
4204 if (err < 0)
4205 return err;
4206
4207 err = mddev_lock(mddev);
4208 if (err)
4209 return err;
4210 if (mddev->pers)
4211 err = update_raid_disks(mddev, n);
4212 else if (mddev->reshape_position != MaxSector) {
4213 struct md_rdev *rdev;
4214 int olddisks = mddev->raid_disks - mddev->delta_disks;
4215
4216 err = -EINVAL;
4217 rdev_for_each(rdev, mddev) {
4218 if (olddisks < n &&
4219 rdev->data_offset < rdev->new_data_offset)
4220 goto out_unlock;
4221 if (olddisks > n &&
4222 rdev->data_offset > rdev->new_data_offset)
4223 goto out_unlock;
4224 }
4225 err = 0;
4226 mddev->delta_disks = n - olddisks;
4227 mddev->raid_disks = n;
4228 mddev->reshape_backwards = (mddev->delta_disks < 0);
4229 } else
4230 mddev->raid_disks = n;
4231 out_unlock:
4232 mddev_unlock(mddev);
4233 return err ? err : len;
4234 }
4235 static struct md_sysfs_entry md_raid_disks =
4236 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
4237
4238 static ssize_t
uuid_show(struct mddev * mddev,char * page)4239 uuid_show(struct mddev *mddev, char *page)
4240 {
4241 return sprintf(page, "%pU\n", mddev->uuid);
4242 }
4243 static struct md_sysfs_entry md_uuid =
4244 __ATTR(uuid, S_IRUGO, uuid_show, NULL);
4245
4246 static ssize_t
chunk_size_show(struct mddev * mddev,char * page)4247 chunk_size_show(struct mddev *mddev, char *page)
4248 {
4249 if (mddev->reshape_position != MaxSector &&
4250 mddev->chunk_sectors != mddev->new_chunk_sectors)
4251 return sprintf(page, "%d (%d)\n",
4252 mddev->new_chunk_sectors << 9,
4253 mddev->chunk_sectors << 9);
4254 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
4255 }
4256
4257 static ssize_t
chunk_size_store(struct mddev * mddev,const char * buf,size_t len)4258 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
4259 {
4260 unsigned long n;
4261 int err;
4262
4263 err = kstrtoul(buf, 10, &n);
4264 if (err < 0)
4265 return err;
4266
4267 err = mddev_lock(mddev);
4268 if (err)
4269 return err;
4270 if (mddev->pers) {
4271 if (mddev->pers->check_reshape == NULL)
4272 err = -EBUSY;
4273 else if (!md_is_rdwr(mddev))
4274 err = -EROFS;
4275 else {
4276 mddev->new_chunk_sectors = n >> 9;
4277 err = mddev->pers->check_reshape(mddev);
4278 if (err)
4279 mddev->new_chunk_sectors = mddev->chunk_sectors;
4280 }
4281 } else {
4282 mddev->new_chunk_sectors = n >> 9;
4283 if (mddev->reshape_position == MaxSector)
4284 mddev->chunk_sectors = n >> 9;
4285 }
4286 mddev_unlock(mddev);
4287 return err ?: len;
4288 }
4289 static struct md_sysfs_entry md_chunk_size =
4290 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
4291
4292 static ssize_t
resync_start_show(struct mddev * mddev,char * page)4293 resync_start_show(struct mddev *mddev, char *page)
4294 {
4295 if (mddev->recovery_cp == MaxSector)
4296 return sprintf(page, "none\n");
4297 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
4298 }
4299
4300 static ssize_t
resync_start_store(struct mddev * mddev,const char * buf,size_t len)4301 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
4302 {
4303 unsigned long long n;
4304 int err;
4305
4306 if (cmd_match(buf, "none"))
4307 n = MaxSector;
4308 else {
4309 err = kstrtoull(buf, 10, &n);
4310 if (err < 0)
4311 return err;
4312 if (n != (sector_t)n)
4313 return -EINVAL;
4314 }
4315
4316 err = mddev_lock(mddev);
4317 if (err)
4318 return err;
4319 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4320 err = -EBUSY;
4321
4322 if (!err) {
4323 mddev->recovery_cp = n;
4324 if (mddev->pers)
4325 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
4326 }
4327 mddev_unlock(mddev);
4328 return err ?: len;
4329 }
4330 static struct md_sysfs_entry md_resync_start =
4331 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
4332 resync_start_show, resync_start_store);
4333
4334 /*
4335 * The array state can be:
4336 *
4337 * clear
4338 * No devices, no size, no level
4339 * Equivalent to STOP_ARRAY ioctl
4340 * inactive
4341 * May have some settings, but array is not active
4342 * all IO results in error
4343 * When written, doesn't tear down array, but just stops it
4344 * suspended (not supported yet)
4345 * All IO requests will block. The array can be reconfigured.
4346 * Writing this, if accepted, will block until array is quiescent
4347 * readonly
4348 * no resync can happen. no superblocks get written.
4349 * write requests fail
4350 * read-auto
4351 * like readonly, but behaves like 'clean' on a write request.
4352 *
4353 * clean - no pending writes, but otherwise active.
4354 * When written to inactive array, starts without resync
4355 * If a write request arrives then
4356 * if metadata is known, mark 'dirty' and switch to 'active'.
4357 * if not known, block and switch to write-pending
4358 * If written to an active array that has pending writes, then fails.
4359 * active
4360 * fully active: IO and resync can be happening.
4361 * When written to inactive array, starts with resync
4362 *
4363 * write-pending
4364 * clean, but writes are blocked waiting for 'active' to be written.
4365 *
4366 * active-idle
4367 * like active, but no writes have been seen for a while (100msec).
4368 *
4369 * broken
4370 * Array is failed. It's useful because mounted-arrays aren't stopped
4371 * when array is failed, so this state will at least alert the user that
4372 * something is wrong.
4373 */
4374 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4375 write_pending, active_idle, broken, bad_word};
4376 static char *array_states[] = {
4377 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4378 "write-pending", "active-idle", "broken", NULL };
4379
match_word(const char * word,char ** list)4380 static int match_word(const char *word, char **list)
4381 {
4382 int n;
4383 for (n=0; list[n]; n++)
4384 if (cmd_match(word, list[n]))
4385 break;
4386 return n;
4387 }
4388
4389 static ssize_t
array_state_show(struct mddev * mddev,char * page)4390 array_state_show(struct mddev *mddev, char *page)
4391 {
4392 enum array_state st = inactive;
4393
4394 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) {
4395 switch(mddev->ro) {
4396 case MD_RDONLY:
4397 st = readonly;
4398 break;
4399 case MD_AUTO_READ:
4400 st = read_auto;
4401 break;
4402 case MD_RDWR:
4403 spin_lock(&mddev->lock);
4404 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4405 st = write_pending;
4406 else if (mddev->in_sync)
4407 st = clean;
4408 else if (mddev->safemode)
4409 st = active_idle;
4410 else
4411 st = active;
4412 spin_unlock(&mddev->lock);
4413 }
4414
4415 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean)
4416 st = broken;
4417 } else {
4418 if (list_empty(&mddev->disks) &&
4419 mddev->raid_disks == 0 &&
4420 mddev->dev_sectors == 0)
4421 st = clear;
4422 else
4423 st = inactive;
4424 }
4425 return sprintf(page, "%s\n", array_states[st]);
4426 }
4427
4428 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
4429 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
4430 static int restart_array(struct mddev *mddev);
4431
4432 static ssize_t
array_state_store(struct mddev * mddev,const char * buf,size_t len)4433 array_state_store(struct mddev *mddev, const char *buf, size_t len)
4434 {
4435 int err = 0;
4436 enum array_state st = match_word(buf, array_states);
4437
4438 if (mddev->pers && (st == active || st == clean) &&
4439 mddev->ro != MD_RDONLY) {
4440 /* don't take reconfig_mutex when toggling between
4441 * clean and active
4442 */
4443 spin_lock(&mddev->lock);
4444 if (st == active) {
4445 restart_array(mddev);
4446 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4447 md_wakeup_thread(mddev->thread);
4448 wake_up(&mddev->sb_wait);
4449 } else /* st == clean */ {
4450 restart_array(mddev);
4451 if (!set_in_sync(mddev))
4452 err = -EBUSY;
4453 }
4454 if (!err)
4455 sysfs_notify_dirent_safe(mddev->sysfs_state);
4456 spin_unlock(&mddev->lock);
4457 return err ?: len;
4458 }
4459 err = mddev_lock(mddev);
4460 if (err)
4461 return err;
4462 err = -EINVAL;
4463 switch(st) {
4464 case bad_word:
4465 break;
4466 case clear:
4467 /* stopping an active array */
4468 err = do_md_stop(mddev, 0, NULL);
4469 break;
4470 case inactive:
4471 /* stopping an active array */
4472 if (mddev->pers)
4473 err = do_md_stop(mddev, 2, NULL);
4474 else
4475 err = 0; /* already inactive */
4476 break;
4477 case suspended:
4478 break; /* not supported yet */
4479 case readonly:
4480 if (mddev->pers)
4481 err = md_set_readonly(mddev, NULL);
4482 else {
4483 mddev->ro = MD_RDONLY;
4484 set_disk_ro(mddev->gendisk, 1);
4485 err = do_md_run(mddev);
4486 }
4487 break;
4488 case read_auto:
4489 if (mddev->pers) {
4490 if (md_is_rdwr(mddev))
4491 err = md_set_readonly(mddev, NULL);
4492 else if (mddev->ro == MD_RDONLY)
4493 err = restart_array(mddev);
4494 if (err == 0) {
4495 mddev->ro = MD_AUTO_READ;
4496 set_disk_ro(mddev->gendisk, 0);
4497 }
4498 } else {
4499 mddev->ro = MD_AUTO_READ;
4500 err = do_md_run(mddev);
4501 }
4502 break;
4503 case clean:
4504 if (mddev->pers) {
4505 err = restart_array(mddev);
4506 if (err)
4507 break;
4508 spin_lock(&mddev->lock);
4509 if (!set_in_sync(mddev))
4510 err = -EBUSY;
4511 spin_unlock(&mddev->lock);
4512 } else
4513 err = -EINVAL;
4514 break;
4515 case active:
4516 if (mddev->pers) {
4517 err = restart_array(mddev);
4518 if (err)
4519 break;
4520 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4521 wake_up(&mddev->sb_wait);
4522 err = 0;
4523 } else {
4524 mddev->ro = MD_RDWR;
4525 set_disk_ro(mddev->gendisk, 0);
4526 err = do_md_run(mddev);
4527 }
4528 break;
4529 case write_pending:
4530 case active_idle:
4531 case broken:
4532 /* these cannot be set */
4533 break;
4534 }
4535
4536 if (!err) {
4537 if (mddev->hold_active == UNTIL_IOCTL)
4538 mddev->hold_active = 0;
4539 sysfs_notify_dirent_safe(mddev->sysfs_state);
4540 }
4541 mddev_unlock(mddev);
4542 return err ?: len;
4543 }
4544 static struct md_sysfs_entry md_array_state =
4545 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4546
4547 static ssize_t
max_corrected_read_errors_show(struct mddev * mddev,char * page)4548 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4549 return sprintf(page, "%d\n",
4550 atomic_read(&mddev->max_corr_read_errors));
4551 }
4552
4553 static ssize_t
max_corrected_read_errors_store(struct mddev * mddev,const char * buf,size_t len)4554 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4555 {
4556 unsigned int n;
4557 int rv;
4558
4559 rv = kstrtouint(buf, 10, &n);
4560 if (rv < 0)
4561 return rv;
4562 if (n > INT_MAX)
4563 return -EINVAL;
4564 atomic_set(&mddev->max_corr_read_errors, n);
4565 return len;
4566 }
4567
4568 static struct md_sysfs_entry max_corr_read_errors =
4569 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4570 max_corrected_read_errors_store);
4571
4572 static ssize_t
null_show(struct mddev * mddev,char * page)4573 null_show(struct mddev *mddev, char *page)
4574 {
4575 return -EINVAL;
4576 }
4577
4578 static ssize_t
new_dev_store(struct mddev * mddev,const char * buf,size_t len)4579 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4580 {
4581 /* buf must be %d:%d\n? giving major and minor numbers */
4582 /* The new device is added to the array.
4583 * If the array has a persistent superblock, we read the
4584 * superblock to initialise info and check validity.
4585 * Otherwise, only checking done is that in bind_rdev_to_array,
4586 * which mainly checks size.
4587 */
4588 char *e;
4589 int major = simple_strtoul(buf, &e, 10);
4590 int minor;
4591 dev_t dev;
4592 struct md_rdev *rdev;
4593 int err;
4594
4595 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4596 return -EINVAL;
4597 minor = simple_strtoul(e+1, &e, 10);
4598 if (*e && *e != '\n')
4599 return -EINVAL;
4600 dev = MKDEV(major, minor);
4601 if (major != MAJOR(dev) ||
4602 minor != MINOR(dev))
4603 return -EOVERFLOW;
4604
4605 err = mddev_lock(mddev);
4606 if (err)
4607 return err;
4608 if (mddev->persistent) {
4609 rdev = md_import_device(dev, mddev->major_version,
4610 mddev->minor_version);
4611 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4612 struct md_rdev *rdev0
4613 = list_entry(mddev->disks.next,
4614 struct md_rdev, same_set);
4615 err = super_types[mddev->major_version]
4616 .load_super(rdev, rdev0, mddev->minor_version);
4617 if (err < 0)
4618 goto out;
4619 }
4620 } else if (mddev->external)
4621 rdev = md_import_device(dev, -2, -1);
4622 else
4623 rdev = md_import_device(dev, -1, -1);
4624
4625 if (IS_ERR(rdev)) {
4626 mddev_unlock(mddev);
4627 return PTR_ERR(rdev);
4628 }
4629 err = bind_rdev_to_array(rdev, mddev);
4630 out:
4631 if (err)
4632 export_rdev(rdev, mddev);
4633 mddev_unlock(mddev);
4634 if (!err)
4635 md_new_event();
4636 return err ? err : len;
4637 }
4638
4639 static struct md_sysfs_entry md_new_device =
4640 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4641
4642 static ssize_t
bitmap_store(struct mddev * mddev,const char * buf,size_t len)4643 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4644 {
4645 char *end;
4646 unsigned long chunk, end_chunk;
4647 int err;
4648
4649 err = mddev_lock(mddev);
4650 if (err)
4651 return err;
4652 if (!mddev->bitmap)
4653 goto out;
4654 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4655 while (*buf) {
4656 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4657 if (buf == end) break;
4658 if (*end == '-') { /* range */
4659 buf = end + 1;
4660 end_chunk = simple_strtoul(buf, &end, 0);
4661 if (buf == end) break;
4662 }
4663 if (*end && !isspace(*end)) break;
4664 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4665 buf = skip_spaces(end);
4666 }
4667 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4668 out:
4669 mddev_unlock(mddev);
4670 return len;
4671 }
4672
4673 static struct md_sysfs_entry md_bitmap =
4674 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4675
4676 static ssize_t
size_show(struct mddev * mddev,char * page)4677 size_show(struct mddev *mddev, char *page)
4678 {
4679 return sprintf(page, "%llu\n",
4680 (unsigned long long)mddev->dev_sectors / 2);
4681 }
4682
4683 static int update_size(struct mddev *mddev, sector_t num_sectors);
4684
4685 static ssize_t
size_store(struct mddev * mddev,const char * buf,size_t len)4686 size_store(struct mddev *mddev, const char *buf, size_t len)
4687 {
4688 /* If array is inactive, we can reduce the component size, but
4689 * not increase it (except from 0).
4690 * If array is active, we can try an on-line resize
4691 */
4692 sector_t sectors;
4693 int err = strict_blocks_to_sectors(buf, §ors);
4694
4695 if (err < 0)
4696 return err;
4697 err = mddev_lock(mddev);
4698 if (err)
4699 return err;
4700 if (mddev->pers) {
4701 err = update_size(mddev, sectors);
4702 if (err == 0)
4703 md_update_sb(mddev, 1);
4704 } else {
4705 if (mddev->dev_sectors == 0 ||
4706 mddev->dev_sectors > sectors)
4707 mddev->dev_sectors = sectors;
4708 else
4709 err = -ENOSPC;
4710 }
4711 mddev_unlock(mddev);
4712 return err ? err : len;
4713 }
4714
4715 static struct md_sysfs_entry md_size =
4716 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4717
4718 /* Metadata version.
4719 * This is one of
4720 * 'none' for arrays with no metadata (good luck...)
4721 * 'external' for arrays with externally managed metadata,
4722 * or N.M for internally known formats
4723 */
4724 static ssize_t
metadata_show(struct mddev * mddev,char * page)4725 metadata_show(struct mddev *mddev, char *page)
4726 {
4727 if (mddev->persistent)
4728 return sprintf(page, "%d.%d\n",
4729 mddev->major_version, mddev->minor_version);
4730 else if (mddev->external)
4731 return sprintf(page, "external:%s\n", mddev->metadata_type);
4732 else
4733 return sprintf(page, "none\n");
4734 }
4735
4736 static ssize_t
metadata_store(struct mddev * mddev,const char * buf,size_t len)4737 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4738 {
4739 int major, minor;
4740 char *e;
4741 int err;
4742 /* Changing the details of 'external' metadata is
4743 * always permitted. Otherwise there must be
4744 * no devices attached to the array.
4745 */
4746
4747 err = mddev_lock(mddev);
4748 if (err)
4749 return err;
4750 err = -EBUSY;
4751 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4752 ;
4753 else if (!list_empty(&mddev->disks))
4754 goto out_unlock;
4755
4756 err = 0;
4757 if (cmd_match(buf, "none")) {
4758 mddev->persistent = 0;
4759 mddev->external = 0;
4760 mddev->major_version = 0;
4761 mddev->minor_version = 90;
4762 goto out_unlock;
4763 }
4764 if (strncmp(buf, "external:", 9) == 0) {
4765 size_t namelen = len-9;
4766 if (namelen >= sizeof(mddev->metadata_type))
4767 namelen = sizeof(mddev->metadata_type)-1;
4768 strncpy(mddev->metadata_type, buf+9, namelen);
4769 mddev->metadata_type[namelen] = 0;
4770 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4771 mddev->metadata_type[--namelen] = 0;
4772 mddev->persistent = 0;
4773 mddev->external = 1;
4774 mddev->major_version = 0;
4775 mddev->minor_version = 90;
4776 goto out_unlock;
4777 }
4778 major = simple_strtoul(buf, &e, 10);
4779 err = -EINVAL;
4780 if (e==buf || *e != '.')
4781 goto out_unlock;
4782 buf = e+1;
4783 minor = simple_strtoul(buf, &e, 10);
4784 if (e==buf || (*e && *e != '\n') )
4785 goto out_unlock;
4786 err = -ENOENT;
4787 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4788 goto out_unlock;
4789 mddev->major_version = major;
4790 mddev->minor_version = minor;
4791 mddev->persistent = 1;
4792 mddev->external = 0;
4793 err = 0;
4794 out_unlock:
4795 mddev_unlock(mddev);
4796 return err ?: len;
4797 }
4798
4799 static struct md_sysfs_entry md_metadata =
4800 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4801
4802 static ssize_t
action_show(struct mddev * mddev,char * page)4803 action_show(struct mddev *mddev, char *page)
4804 {
4805 char *type = "idle";
4806 unsigned long recovery = mddev->recovery;
4807 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4808 type = "frozen";
4809 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4810 (md_is_rdwr(mddev) && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4811 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4812 type = "reshape";
4813 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4814 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4815 type = "resync";
4816 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4817 type = "check";
4818 else
4819 type = "repair";
4820 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4821 type = "recover";
4822 else if (mddev->reshape_position != MaxSector)
4823 type = "reshape";
4824 }
4825 return sprintf(page, "%s\n", type);
4826 }
4827
stop_sync_thread(struct mddev * mddev)4828 static void stop_sync_thread(struct mddev *mddev)
4829 {
4830 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4831 return;
4832
4833 if (mddev_lock(mddev))
4834 return;
4835
4836 /*
4837 * Check again in case MD_RECOVERY_RUNNING is cleared before lock is
4838 * held.
4839 */
4840 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
4841 mddev_unlock(mddev);
4842 return;
4843 }
4844
4845 if (work_pending(&mddev->sync_work))
4846 flush_workqueue(md_misc_wq);
4847
4848 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4849 /*
4850 * Thread might be blocked waiting for metadata update which will now
4851 * never happen
4852 */
4853 md_wakeup_thread_directly(mddev->sync_thread);
4854
4855 mddev_unlock(mddev);
4856 }
4857
idle_sync_thread(struct mddev * mddev)4858 static void idle_sync_thread(struct mddev *mddev)
4859 {
4860 int sync_seq = atomic_read(&mddev->sync_seq);
4861
4862 mutex_lock(&mddev->sync_mutex);
4863 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4864 stop_sync_thread(mddev);
4865
4866 wait_event(resync_wait, sync_seq != atomic_read(&mddev->sync_seq) ||
4867 !test_bit(MD_RECOVERY_RUNNING, &mddev->recovery));
4868
4869 mutex_unlock(&mddev->sync_mutex);
4870 }
4871
frozen_sync_thread(struct mddev * mddev)4872 static void frozen_sync_thread(struct mddev *mddev)
4873 {
4874 mutex_lock(&mddev->sync_mutex);
4875 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4876 stop_sync_thread(mddev);
4877
4878 wait_event(resync_wait, mddev->sync_thread == NULL &&
4879 !test_bit(MD_RECOVERY_RUNNING, &mddev->recovery));
4880
4881 mutex_unlock(&mddev->sync_mutex);
4882 }
4883
4884 static ssize_t
action_store(struct mddev * mddev,const char * page,size_t len)4885 action_store(struct mddev *mddev, const char *page, size_t len)
4886 {
4887 if (!mddev->pers || !mddev->pers->sync_request)
4888 return -EINVAL;
4889
4890
4891 if (cmd_match(page, "idle"))
4892 idle_sync_thread(mddev);
4893 else if (cmd_match(page, "frozen"))
4894 frozen_sync_thread(mddev);
4895 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4896 return -EBUSY;
4897 else if (cmd_match(page, "resync"))
4898 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4899 else if (cmd_match(page, "recover")) {
4900 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4901 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4902 } else if (cmd_match(page, "reshape")) {
4903 int err;
4904 if (mddev->pers->start_reshape == NULL)
4905 return -EINVAL;
4906 err = mddev_lock(mddev);
4907 if (!err) {
4908 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
4909 err = -EBUSY;
4910 } else if (mddev->reshape_position == MaxSector ||
4911 mddev->pers->check_reshape == NULL ||
4912 mddev->pers->check_reshape(mddev)) {
4913 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4914 err = mddev->pers->start_reshape(mddev);
4915 } else {
4916 /*
4917 * If reshape is still in progress, and
4918 * md_check_recovery() can continue to reshape,
4919 * don't restart reshape because data can be
4920 * corrupted for raid456.
4921 */
4922 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4923 }
4924 mddev_unlock(mddev);
4925 }
4926 if (err)
4927 return err;
4928 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
4929 } else {
4930 if (cmd_match(page, "check"))
4931 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4932 else if (!cmd_match(page, "repair"))
4933 return -EINVAL;
4934 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4935 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4936 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4937 }
4938 if (mddev->ro == MD_AUTO_READ) {
4939 /* A write to sync_action is enough to justify
4940 * canceling read-auto mode
4941 */
4942 mddev->ro = MD_RDWR;
4943 md_wakeup_thread(mddev->sync_thread);
4944 }
4945 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4946 md_wakeup_thread(mddev->thread);
4947 sysfs_notify_dirent_safe(mddev->sysfs_action);
4948 return len;
4949 }
4950
4951 static struct md_sysfs_entry md_scan_mode =
4952 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4953
4954 static ssize_t
last_sync_action_show(struct mddev * mddev,char * page)4955 last_sync_action_show(struct mddev *mddev, char *page)
4956 {
4957 return sprintf(page, "%s\n", mddev->last_sync_action);
4958 }
4959
4960 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4961
4962 static ssize_t
mismatch_cnt_show(struct mddev * mddev,char * page)4963 mismatch_cnt_show(struct mddev *mddev, char *page)
4964 {
4965 return sprintf(page, "%llu\n",
4966 (unsigned long long)
4967 atomic64_read(&mddev->resync_mismatches));
4968 }
4969
4970 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4971
4972 static ssize_t
sync_min_show(struct mddev * mddev,char * page)4973 sync_min_show(struct mddev *mddev, char *page)
4974 {
4975 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4976 mddev->sync_speed_min ? "local": "system");
4977 }
4978
4979 static ssize_t
sync_min_store(struct mddev * mddev,const char * buf,size_t len)4980 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4981 {
4982 unsigned int min;
4983 int rv;
4984
4985 if (strncmp(buf, "system", 6)==0) {
4986 min = 0;
4987 } else {
4988 rv = kstrtouint(buf, 10, &min);
4989 if (rv < 0)
4990 return rv;
4991 if (min == 0)
4992 return -EINVAL;
4993 }
4994 mddev->sync_speed_min = min;
4995 return len;
4996 }
4997
4998 static struct md_sysfs_entry md_sync_min =
4999 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
5000
5001 static ssize_t
sync_max_show(struct mddev * mddev,char * page)5002 sync_max_show(struct mddev *mddev, char *page)
5003 {
5004 return sprintf(page, "%d (%s)\n", speed_max(mddev),
5005 mddev->sync_speed_max ? "local": "system");
5006 }
5007
5008 static ssize_t
sync_max_store(struct mddev * mddev,const char * buf,size_t len)5009 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
5010 {
5011 unsigned int max;
5012 int rv;
5013
5014 if (strncmp(buf, "system", 6)==0) {
5015 max = 0;
5016 } else {
5017 rv = kstrtouint(buf, 10, &max);
5018 if (rv < 0)
5019 return rv;
5020 if (max == 0)
5021 return -EINVAL;
5022 }
5023 mddev->sync_speed_max = max;
5024 return len;
5025 }
5026
5027 static struct md_sysfs_entry md_sync_max =
5028 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
5029
5030 static ssize_t
degraded_show(struct mddev * mddev,char * page)5031 degraded_show(struct mddev *mddev, char *page)
5032 {
5033 return sprintf(page, "%d\n", mddev->degraded);
5034 }
5035 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
5036
5037 static ssize_t
sync_force_parallel_show(struct mddev * mddev,char * page)5038 sync_force_parallel_show(struct mddev *mddev, char *page)
5039 {
5040 return sprintf(page, "%d\n", mddev->parallel_resync);
5041 }
5042
5043 static ssize_t
sync_force_parallel_store(struct mddev * mddev,const char * buf,size_t len)5044 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
5045 {
5046 long n;
5047
5048 if (kstrtol(buf, 10, &n))
5049 return -EINVAL;
5050
5051 if (n != 0 && n != 1)
5052 return -EINVAL;
5053
5054 mddev->parallel_resync = n;
5055
5056 if (mddev->sync_thread)
5057 wake_up(&resync_wait);
5058
5059 return len;
5060 }
5061
5062 /* force parallel resync, even with shared block devices */
5063 static struct md_sysfs_entry md_sync_force_parallel =
5064 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
5065 sync_force_parallel_show, sync_force_parallel_store);
5066
5067 static ssize_t
sync_speed_show(struct mddev * mddev,char * page)5068 sync_speed_show(struct mddev *mddev, char *page)
5069 {
5070 unsigned long resync, dt, db;
5071 if (mddev->curr_resync == MD_RESYNC_NONE)
5072 return sprintf(page, "none\n");
5073 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
5074 dt = (jiffies - mddev->resync_mark) / HZ;
5075 if (!dt) dt++;
5076 db = resync - mddev->resync_mark_cnt;
5077 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
5078 }
5079
5080 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
5081
5082 static ssize_t
sync_completed_show(struct mddev * mddev,char * page)5083 sync_completed_show(struct mddev *mddev, char *page)
5084 {
5085 unsigned long long max_sectors, resync;
5086
5087 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5088 return sprintf(page, "none\n");
5089
5090 if (mddev->curr_resync == MD_RESYNC_YIELDED ||
5091 mddev->curr_resync == MD_RESYNC_DELAYED)
5092 return sprintf(page, "delayed\n");
5093
5094 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
5095 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5096 max_sectors = mddev->resync_max_sectors;
5097 else
5098 max_sectors = mddev->dev_sectors;
5099
5100 resync = mddev->curr_resync_completed;
5101 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
5102 }
5103
5104 static struct md_sysfs_entry md_sync_completed =
5105 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
5106
5107 static ssize_t
min_sync_show(struct mddev * mddev,char * page)5108 min_sync_show(struct mddev *mddev, char *page)
5109 {
5110 return sprintf(page, "%llu\n",
5111 (unsigned long long)mddev->resync_min);
5112 }
5113 static ssize_t
min_sync_store(struct mddev * mddev,const char * buf,size_t len)5114 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
5115 {
5116 unsigned long long min;
5117 int err;
5118
5119 if (kstrtoull(buf, 10, &min))
5120 return -EINVAL;
5121
5122 spin_lock(&mddev->lock);
5123 err = -EINVAL;
5124 if (min > mddev->resync_max)
5125 goto out_unlock;
5126
5127 err = -EBUSY;
5128 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5129 goto out_unlock;
5130
5131 /* Round down to multiple of 4K for safety */
5132 mddev->resync_min = round_down(min, 8);
5133 err = 0;
5134
5135 out_unlock:
5136 spin_unlock(&mddev->lock);
5137 return err ?: len;
5138 }
5139
5140 static struct md_sysfs_entry md_min_sync =
5141 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
5142
5143 static ssize_t
max_sync_show(struct mddev * mddev,char * page)5144 max_sync_show(struct mddev *mddev, char *page)
5145 {
5146 if (mddev->resync_max == MaxSector)
5147 return sprintf(page, "max\n");
5148 else
5149 return sprintf(page, "%llu\n",
5150 (unsigned long long)mddev->resync_max);
5151 }
5152 static ssize_t
max_sync_store(struct mddev * mddev,const char * buf,size_t len)5153 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
5154 {
5155 int err;
5156 spin_lock(&mddev->lock);
5157 if (strncmp(buf, "max", 3) == 0)
5158 mddev->resync_max = MaxSector;
5159 else {
5160 unsigned long long max;
5161 int chunk;
5162
5163 err = -EINVAL;
5164 if (kstrtoull(buf, 10, &max))
5165 goto out_unlock;
5166 if (max < mddev->resync_min)
5167 goto out_unlock;
5168
5169 err = -EBUSY;
5170 if (max < mddev->resync_max && md_is_rdwr(mddev) &&
5171 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5172 goto out_unlock;
5173
5174 /* Must be a multiple of chunk_size */
5175 chunk = mddev->chunk_sectors;
5176 if (chunk) {
5177 sector_t temp = max;
5178
5179 err = -EINVAL;
5180 if (sector_div(temp, chunk))
5181 goto out_unlock;
5182 }
5183 mddev->resync_max = max;
5184 }
5185 wake_up(&mddev->recovery_wait);
5186 err = 0;
5187 out_unlock:
5188 spin_unlock(&mddev->lock);
5189 return err ?: len;
5190 }
5191
5192 static struct md_sysfs_entry md_max_sync =
5193 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
5194
5195 static ssize_t
suspend_lo_show(struct mddev * mddev,char * page)5196 suspend_lo_show(struct mddev *mddev, char *page)
5197 {
5198 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
5199 }
5200
5201 static ssize_t
suspend_lo_store(struct mddev * mddev,const char * buf,size_t len)5202 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
5203 {
5204 unsigned long long new;
5205 int err;
5206
5207 err = kstrtoull(buf, 10, &new);
5208 if (err < 0)
5209 return err;
5210 if (new != (sector_t)new)
5211 return -EINVAL;
5212
5213 err = mddev_lock(mddev);
5214 if (err)
5215 return err;
5216 err = -EINVAL;
5217 if (mddev->pers == NULL ||
5218 mddev->pers->quiesce == NULL)
5219 goto unlock;
5220 mddev_suspend(mddev);
5221 mddev->suspend_lo = new;
5222 mddev_resume(mddev);
5223
5224 err = 0;
5225 unlock:
5226 mddev_unlock(mddev);
5227 return err ?: len;
5228 }
5229 static struct md_sysfs_entry md_suspend_lo =
5230 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
5231
5232 static ssize_t
suspend_hi_show(struct mddev * mddev,char * page)5233 suspend_hi_show(struct mddev *mddev, char *page)
5234 {
5235 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
5236 }
5237
5238 static ssize_t
suspend_hi_store(struct mddev * mddev,const char * buf,size_t len)5239 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
5240 {
5241 unsigned long long new;
5242 int err;
5243
5244 err = kstrtoull(buf, 10, &new);
5245 if (err < 0)
5246 return err;
5247 if (new != (sector_t)new)
5248 return -EINVAL;
5249
5250 err = mddev_lock(mddev);
5251 if (err)
5252 return err;
5253 err = -EINVAL;
5254 if (mddev->pers == NULL)
5255 goto unlock;
5256
5257 mddev_suspend(mddev);
5258 mddev->suspend_hi = new;
5259 mddev_resume(mddev);
5260
5261 err = 0;
5262 unlock:
5263 mddev_unlock(mddev);
5264 return err ?: len;
5265 }
5266 static struct md_sysfs_entry md_suspend_hi =
5267 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
5268
5269 static ssize_t
reshape_position_show(struct mddev * mddev,char * page)5270 reshape_position_show(struct mddev *mddev, char *page)
5271 {
5272 if (mddev->reshape_position != MaxSector)
5273 return sprintf(page, "%llu\n",
5274 (unsigned long long)mddev->reshape_position);
5275 strcpy(page, "none\n");
5276 return 5;
5277 }
5278
5279 static ssize_t
reshape_position_store(struct mddev * mddev,const char * buf,size_t len)5280 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
5281 {
5282 struct md_rdev *rdev;
5283 unsigned long long new;
5284 int err;
5285
5286 err = kstrtoull(buf, 10, &new);
5287 if (err < 0)
5288 return err;
5289 if (new != (sector_t)new)
5290 return -EINVAL;
5291 err = mddev_lock(mddev);
5292 if (err)
5293 return err;
5294 err = -EBUSY;
5295 if (mddev->pers)
5296 goto unlock;
5297 mddev->reshape_position = new;
5298 mddev->delta_disks = 0;
5299 mddev->reshape_backwards = 0;
5300 mddev->new_level = mddev->level;
5301 mddev->new_layout = mddev->layout;
5302 mddev->new_chunk_sectors = mddev->chunk_sectors;
5303 rdev_for_each(rdev, mddev)
5304 rdev->new_data_offset = rdev->data_offset;
5305 err = 0;
5306 unlock:
5307 mddev_unlock(mddev);
5308 return err ?: len;
5309 }
5310
5311 static struct md_sysfs_entry md_reshape_position =
5312 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
5313 reshape_position_store);
5314
5315 static ssize_t
reshape_direction_show(struct mddev * mddev,char * page)5316 reshape_direction_show(struct mddev *mddev, char *page)
5317 {
5318 return sprintf(page, "%s\n",
5319 mddev->reshape_backwards ? "backwards" : "forwards");
5320 }
5321
5322 static ssize_t
reshape_direction_store(struct mddev * mddev,const char * buf,size_t len)5323 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
5324 {
5325 int backwards = 0;
5326 int err;
5327
5328 if (cmd_match(buf, "forwards"))
5329 backwards = 0;
5330 else if (cmd_match(buf, "backwards"))
5331 backwards = 1;
5332 else
5333 return -EINVAL;
5334 if (mddev->reshape_backwards == backwards)
5335 return len;
5336
5337 err = mddev_lock(mddev);
5338 if (err)
5339 return err;
5340 /* check if we are allowed to change */
5341 if (mddev->delta_disks)
5342 err = -EBUSY;
5343 else if (mddev->persistent &&
5344 mddev->major_version == 0)
5345 err = -EINVAL;
5346 else
5347 mddev->reshape_backwards = backwards;
5348 mddev_unlock(mddev);
5349 return err ?: len;
5350 }
5351
5352 static struct md_sysfs_entry md_reshape_direction =
5353 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
5354 reshape_direction_store);
5355
5356 static ssize_t
array_size_show(struct mddev * mddev,char * page)5357 array_size_show(struct mddev *mddev, char *page)
5358 {
5359 if (mddev->external_size)
5360 return sprintf(page, "%llu\n",
5361 (unsigned long long)mddev->array_sectors/2);
5362 else
5363 return sprintf(page, "default\n");
5364 }
5365
5366 static ssize_t
array_size_store(struct mddev * mddev,const char * buf,size_t len)5367 array_size_store(struct mddev *mddev, const char *buf, size_t len)
5368 {
5369 sector_t sectors;
5370 int err;
5371
5372 err = mddev_lock(mddev);
5373 if (err)
5374 return err;
5375
5376 /* cluster raid doesn't support change array_sectors */
5377 if (mddev_is_clustered(mddev)) {
5378 mddev_unlock(mddev);
5379 return -EINVAL;
5380 }
5381
5382 if (strncmp(buf, "default", 7) == 0) {
5383 if (mddev->pers)
5384 sectors = mddev->pers->size(mddev, 0, 0);
5385 else
5386 sectors = mddev->array_sectors;
5387
5388 mddev->external_size = 0;
5389 } else {
5390 if (strict_blocks_to_sectors(buf, §ors) < 0)
5391 err = -EINVAL;
5392 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
5393 err = -E2BIG;
5394 else
5395 mddev->external_size = 1;
5396 }
5397
5398 if (!err) {
5399 mddev->array_sectors = sectors;
5400 if (mddev->pers)
5401 set_capacity_and_notify(mddev->gendisk,
5402 mddev->array_sectors);
5403 }
5404 mddev_unlock(mddev);
5405 return err ?: len;
5406 }
5407
5408 static struct md_sysfs_entry md_array_size =
5409 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5410 array_size_store);
5411
5412 static ssize_t
consistency_policy_show(struct mddev * mddev,char * page)5413 consistency_policy_show(struct mddev *mddev, char *page)
5414 {
5415 int ret;
5416
5417 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5418 ret = sprintf(page, "journal\n");
5419 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5420 ret = sprintf(page, "ppl\n");
5421 } else if (mddev->bitmap) {
5422 ret = sprintf(page, "bitmap\n");
5423 } else if (mddev->pers) {
5424 if (mddev->pers->sync_request)
5425 ret = sprintf(page, "resync\n");
5426 else
5427 ret = sprintf(page, "none\n");
5428 } else {
5429 ret = sprintf(page, "unknown\n");
5430 }
5431
5432 return ret;
5433 }
5434
5435 static ssize_t
consistency_policy_store(struct mddev * mddev,const char * buf,size_t len)5436 consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5437 {
5438 int err = 0;
5439
5440 if (mddev->pers) {
5441 if (mddev->pers->change_consistency_policy)
5442 err = mddev->pers->change_consistency_policy(mddev, buf);
5443 else
5444 err = -EBUSY;
5445 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5446 set_bit(MD_HAS_PPL, &mddev->flags);
5447 } else {
5448 err = -EINVAL;
5449 }
5450
5451 return err ? err : len;
5452 }
5453
5454 static struct md_sysfs_entry md_consistency_policy =
5455 __ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5456 consistency_policy_store);
5457
fail_last_dev_show(struct mddev * mddev,char * page)5458 static ssize_t fail_last_dev_show(struct mddev *mddev, char *page)
5459 {
5460 return sprintf(page, "%d\n", mddev->fail_last_dev);
5461 }
5462
5463 /*
5464 * Setting fail_last_dev to true to allow last device to be forcibly removed
5465 * from RAID1/RAID10.
5466 */
5467 static ssize_t
fail_last_dev_store(struct mddev * mddev,const char * buf,size_t len)5468 fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len)
5469 {
5470 int ret;
5471 bool value;
5472
5473 ret = kstrtobool(buf, &value);
5474 if (ret)
5475 return ret;
5476
5477 if (value != mddev->fail_last_dev)
5478 mddev->fail_last_dev = value;
5479
5480 return len;
5481 }
5482 static struct md_sysfs_entry md_fail_last_dev =
5483 __ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show,
5484 fail_last_dev_store);
5485
serialize_policy_show(struct mddev * mddev,char * page)5486 static ssize_t serialize_policy_show(struct mddev *mddev, char *page)
5487 {
5488 if (mddev->pers == NULL || (mddev->pers->level != 1))
5489 return sprintf(page, "n/a\n");
5490 else
5491 return sprintf(page, "%d\n", mddev->serialize_policy);
5492 }
5493
5494 /*
5495 * Setting serialize_policy to true to enforce write IO is not reordered
5496 * for raid1.
5497 */
5498 static ssize_t
serialize_policy_store(struct mddev * mddev,const char * buf,size_t len)5499 serialize_policy_store(struct mddev *mddev, const char *buf, size_t len)
5500 {
5501 int err;
5502 bool value;
5503
5504 err = kstrtobool(buf, &value);
5505 if (err)
5506 return err;
5507
5508 if (value == mddev->serialize_policy)
5509 return len;
5510
5511 err = mddev_lock(mddev);
5512 if (err)
5513 return err;
5514 if (mddev->pers == NULL || (mddev->pers->level != 1)) {
5515 pr_err("md: serialize_policy is only effective for raid1\n");
5516 err = -EINVAL;
5517 goto unlock;
5518 }
5519
5520 mddev_suspend(mddev);
5521 if (value)
5522 mddev_create_serial_pool(mddev, NULL, true);
5523 else
5524 mddev_destroy_serial_pool(mddev, NULL, true);
5525 mddev->serialize_policy = value;
5526 mddev_resume(mddev);
5527 unlock:
5528 mddev_unlock(mddev);
5529 return err ?: len;
5530 }
5531
5532 static struct md_sysfs_entry md_serialize_policy =
5533 __ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show,
5534 serialize_policy_store);
5535
5536
5537 static struct attribute *md_default_attrs[] = {
5538 &md_level.attr,
5539 &md_layout.attr,
5540 &md_raid_disks.attr,
5541 &md_uuid.attr,
5542 &md_chunk_size.attr,
5543 &md_size.attr,
5544 &md_resync_start.attr,
5545 &md_metadata.attr,
5546 &md_new_device.attr,
5547 &md_safe_delay.attr,
5548 &md_array_state.attr,
5549 &md_reshape_position.attr,
5550 &md_reshape_direction.attr,
5551 &md_array_size.attr,
5552 &max_corr_read_errors.attr,
5553 &md_consistency_policy.attr,
5554 &md_fail_last_dev.attr,
5555 &md_serialize_policy.attr,
5556 NULL,
5557 };
5558
5559 static const struct attribute_group md_default_group = {
5560 .attrs = md_default_attrs,
5561 };
5562
5563 static struct attribute *md_redundancy_attrs[] = {
5564 &md_scan_mode.attr,
5565 &md_last_scan_mode.attr,
5566 &md_mismatches.attr,
5567 &md_sync_min.attr,
5568 &md_sync_max.attr,
5569 &md_sync_speed.attr,
5570 &md_sync_force_parallel.attr,
5571 &md_sync_completed.attr,
5572 &md_min_sync.attr,
5573 &md_max_sync.attr,
5574 &md_suspend_lo.attr,
5575 &md_suspend_hi.attr,
5576 &md_bitmap.attr,
5577 &md_degraded.attr,
5578 NULL,
5579 };
5580 static const struct attribute_group md_redundancy_group = {
5581 .name = NULL,
5582 .attrs = md_redundancy_attrs,
5583 };
5584
5585 static const struct attribute_group *md_attr_groups[] = {
5586 &md_default_group,
5587 &md_bitmap_group,
5588 NULL,
5589 };
5590
5591 static ssize_t
md_attr_show(struct kobject * kobj,struct attribute * attr,char * page)5592 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5593 {
5594 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5595 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5596 ssize_t rv;
5597
5598 if (!entry->show)
5599 return -EIO;
5600 spin_lock(&all_mddevs_lock);
5601 if (!mddev_get(mddev)) {
5602 spin_unlock(&all_mddevs_lock);
5603 return -EBUSY;
5604 }
5605 spin_unlock(&all_mddevs_lock);
5606
5607 rv = entry->show(mddev, page);
5608 mddev_put(mddev);
5609 return rv;
5610 }
5611
5612 static ssize_t
md_attr_store(struct kobject * kobj,struct attribute * attr,const char * page,size_t length)5613 md_attr_store(struct kobject *kobj, struct attribute *attr,
5614 const char *page, size_t length)
5615 {
5616 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5617 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5618 ssize_t rv;
5619
5620 if (!entry->store)
5621 return -EIO;
5622 if (!capable(CAP_SYS_ADMIN))
5623 return -EACCES;
5624 spin_lock(&all_mddevs_lock);
5625 if (!mddev_get(mddev)) {
5626 spin_unlock(&all_mddevs_lock);
5627 return -EBUSY;
5628 }
5629 spin_unlock(&all_mddevs_lock);
5630 rv = entry->store(mddev, page, length);
5631 mddev_put(mddev);
5632 return rv;
5633 }
5634
md_kobj_release(struct kobject * ko)5635 static void md_kobj_release(struct kobject *ko)
5636 {
5637 struct mddev *mddev = container_of(ko, struct mddev, kobj);
5638
5639 if (mddev->sysfs_state)
5640 sysfs_put(mddev->sysfs_state);
5641 if (mddev->sysfs_level)
5642 sysfs_put(mddev->sysfs_level);
5643
5644 del_gendisk(mddev->gendisk);
5645 put_disk(mddev->gendisk);
5646 }
5647
5648 static const struct sysfs_ops md_sysfs_ops = {
5649 .show = md_attr_show,
5650 .store = md_attr_store,
5651 };
5652 static const struct kobj_type md_ktype = {
5653 .release = md_kobj_release,
5654 .sysfs_ops = &md_sysfs_ops,
5655 .default_groups = md_attr_groups,
5656 };
5657
5658 int mdp_major = 0;
5659
mddev_delayed_delete(struct work_struct * ws)5660 static void mddev_delayed_delete(struct work_struct *ws)
5661 {
5662 struct mddev *mddev = container_of(ws, struct mddev, del_work);
5663
5664 kobject_put(&mddev->kobj);
5665 }
5666
no_op(struct percpu_ref * r)5667 static void no_op(struct percpu_ref *r) {}
5668
mddev_init_writes_pending(struct mddev * mddev)5669 int mddev_init_writes_pending(struct mddev *mddev)
5670 {
5671 if (mddev->writes_pending.percpu_count_ptr)
5672 return 0;
5673 if (percpu_ref_init(&mddev->writes_pending, no_op,
5674 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0)
5675 return -ENOMEM;
5676 /* We want to start with the refcount at zero */
5677 percpu_ref_put(&mddev->writes_pending);
5678 return 0;
5679 }
5680 EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
5681
md_alloc(dev_t dev,char * name)5682 struct mddev *md_alloc(dev_t dev, char *name)
5683 {
5684 /*
5685 * If dev is zero, name is the name of a device to allocate with
5686 * an arbitrary minor number. It will be "md_???"
5687 * If dev is non-zero it must be a device number with a MAJOR of
5688 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then
5689 * the device is being created by opening a node in /dev.
5690 * If "name" is not NULL, the device is being created by
5691 * writing to /sys/module/md_mod/parameters/new_array.
5692 */
5693 static DEFINE_MUTEX(disks_mutex);
5694 struct mddev *mddev;
5695 struct gendisk *disk;
5696 int partitioned;
5697 int shift;
5698 int unit;
5699 int error ;
5700
5701 /*
5702 * Wait for any previous instance of this device to be completely
5703 * removed (mddev_delayed_delete).
5704 */
5705 flush_workqueue(md_misc_wq);
5706
5707 mutex_lock(&disks_mutex);
5708 mddev = mddev_alloc(dev);
5709 if (IS_ERR(mddev)) {
5710 error = PTR_ERR(mddev);
5711 goto out_unlock;
5712 }
5713
5714 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5715 shift = partitioned ? MdpMinorShift : 0;
5716 unit = MINOR(mddev->unit) >> shift;
5717
5718 if (name && !dev) {
5719 /* Need to ensure that 'name' is not a duplicate.
5720 */
5721 struct mddev *mddev2;
5722 spin_lock(&all_mddevs_lock);
5723
5724 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5725 if (mddev2->gendisk &&
5726 strcmp(mddev2->gendisk->disk_name, name) == 0) {
5727 spin_unlock(&all_mddevs_lock);
5728 error = -EEXIST;
5729 goto out_free_mddev;
5730 }
5731 spin_unlock(&all_mddevs_lock);
5732 }
5733 if (name && dev)
5734 /*
5735 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
5736 */
5737 mddev->hold_active = UNTIL_STOP;
5738
5739 error = -ENOMEM;
5740 disk = blk_alloc_disk(NUMA_NO_NODE);
5741 if (!disk)
5742 goto out_free_mddev;
5743
5744 disk->major = MAJOR(mddev->unit);
5745 disk->first_minor = unit << shift;
5746 disk->minors = 1 << shift;
5747 if (name)
5748 strcpy(disk->disk_name, name);
5749 else if (partitioned)
5750 sprintf(disk->disk_name, "md_d%d", unit);
5751 else
5752 sprintf(disk->disk_name, "md%d", unit);
5753 disk->fops = &md_fops;
5754 disk->private_data = mddev;
5755
5756 mddev->queue = disk->queue;
5757 blk_set_stacking_limits(&mddev->queue->limits);
5758 blk_queue_write_cache(mddev->queue, true, true);
5759 disk->events |= DISK_EVENT_MEDIA_CHANGE;
5760 mddev->gendisk = disk;
5761 error = add_disk(disk);
5762 if (error)
5763 goto out_put_disk;
5764
5765 kobject_init(&mddev->kobj, &md_ktype);
5766 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md");
5767 if (error) {
5768 /*
5769 * The disk is already live at this point. Clear the hold flag
5770 * and let mddev_put take care of the deletion, as it isn't any
5771 * different from a normal close on last release now.
5772 */
5773 mddev->hold_active = 0;
5774 mutex_unlock(&disks_mutex);
5775 mddev_put(mddev);
5776 return ERR_PTR(error);
5777 }
5778
5779 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5780 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5781 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level");
5782 mutex_unlock(&disks_mutex);
5783 return mddev;
5784
5785 out_put_disk:
5786 put_disk(disk);
5787 out_free_mddev:
5788 mddev_free(mddev);
5789 out_unlock:
5790 mutex_unlock(&disks_mutex);
5791 return ERR_PTR(error);
5792 }
5793
md_alloc_and_put(dev_t dev,char * name)5794 static int md_alloc_and_put(dev_t dev, char *name)
5795 {
5796 struct mddev *mddev = md_alloc(dev, name);
5797
5798 if (IS_ERR(mddev))
5799 return PTR_ERR(mddev);
5800 mddev_put(mddev);
5801 return 0;
5802 }
5803
md_probe(dev_t dev)5804 static void md_probe(dev_t dev)
5805 {
5806 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512)
5807 return;
5808 if (create_on_open)
5809 md_alloc_and_put(dev, NULL);
5810 }
5811
add_named_array(const char * val,const struct kernel_param * kp)5812 static int add_named_array(const char *val, const struct kernel_param *kp)
5813 {
5814 /*
5815 * val must be "md_*" or "mdNNN".
5816 * For "md_*" we allocate an array with a large free minor number, and
5817 * set the name to val. val must not already be an active name.
5818 * For "mdNNN" we allocate an array with the minor number NNN
5819 * which must not already be in use.
5820 */
5821 int len = strlen(val);
5822 char buf[DISK_NAME_LEN];
5823 unsigned long devnum;
5824
5825 while (len && val[len-1] == '\n')
5826 len--;
5827 if (len >= DISK_NAME_LEN)
5828 return -E2BIG;
5829 strscpy(buf, val, len+1);
5830 if (strncmp(buf, "md_", 3) == 0)
5831 return md_alloc_and_put(0, buf);
5832 if (strncmp(buf, "md", 2) == 0 &&
5833 isdigit(buf[2]) &&
5834 kstrtoul(buf+2, 10, &devnum) == 0 &&
5835 devnum <= MINORMASK)
5836 return md_alloc_and_put(MKDEV(MD_MAJOR, devnum), NULL);
5837
5838 return -EINVAL;
5839 }
5840
md_safemode_timeout(struct timer_list * t)5841 static void md_safemode_timeout(struct timer_list *t)
5842 {
5843 struct mddev *mddev = from_timer(mddev, t, safemode_timer);
5844
5845 mddev->safemode = 1;
5846 if (mddev->external)
5847 sysfs_notify_dirent_safe(mddev->sysfs_state);
5848
5849 md_wakeup_thread(mddev->thread);
5850 }
5851
5852 static int start_dirty_degraded;
active_io_release(struct percpu_ref * ref)5853 static void active_io_release(struct percpu_ref *ref)
5854 {
5855 struct mddev *mddev = container_of(ref, struct mddev, active_io);
5856
5857 wake_up(&mddev->sb_wait);
5858 }
5859
md_run(struct mddev * mddev)5860 int md_run(struct mddev *mddev)
5861 {
5862 int err;
5863 struct md_rdev *rdev;
5864 struct md_personality *pers;
5865 bool nowait = true;
5866
5867 if (list_empty(&mddev->disks))
5868 /* cannot run an array with no devices.. */
5869 return -EINVAL;
5870
5871 if (mddev->pers)
5872 return -EBUSY;
5873 /* Cannot run until previous stop completes properly */
5874 if (mddev->sysfs_active)
5875 return -EBUSY;
5876
5877 /*
5878 * Analyze all RAID superblock(s)
5879 */
5880 if (!mddev->raid_disks) {
5881 if (!mddev->persistent)
5882 return -EINVAL;
5883 err = analyze_sbs(mddev);
5884 if (err)
5885 return -EINVAL;
5886 }
5887
5888 if (mddev->level != LEVEL_NONE)
5889 request_module("md-level-%d", mddev->level);
5890 else if (mddev->clevel[0])
5891 request_module("md-%s", mddev->clevel);
5892
5893 /*
5894 * Drop all container device buffers, from now on
5895 * the only valid external interface is through the md
5896 * device.
5897 */
5898 mddev->has_superblocks = false;
5899 rdev_for_each(rdev, mddev) {
5900 if (test_bit(Faulty, &rdev->flags))
5901 continue;
5902 sync_blockdev(rdev->bdev);
5903 invalidate_bdev(rdev->bdev);
5904 if (mddev->ro != MD_RDONLY && rdev_read_only(rdev)) {
5905 mddev->ro = MD_RDONLY;
5906 if (mddev->gendisk)
5907 set_disk_ro(mddev->gendisk, 1);
5908 }
5909
5910 if (rdev->sb_page)
5911 mddev->has_superblocks = true;
5912
5913 /* perform some consistency tests on the device.
5914 * We don't want the data to overlap the metadata,
5915 * Internal Bitmap issues have been handled elsewhere.
5916 */
5917 if (rdev->meta_bdev) {
5918 /* Nothing to check */;
5919 } else if (rdev->data_offset < rdev->sb_start) {
5920 if (mddev->dev_sectors &&
5921 rdev->data_offset + mddev->dev_sectors
5922 > rdev->sb_start) {
5923 pr_warn("md: %s: data overlaps metadata\n",
5924 mdname(mddev));
5925 return -EINVAL;
5926 }
5927 } else {
5928 if (rdev->sb_start + rdev->sb_size/512
5929 > rdev->data_offset) {
5930 pr_warn("md: %s: metadata overlaps data\n",
5931 mdname(mddev));
5932 return -EINVAL;
5933 }
5934 }
5935 sysfs_notify_dirent_safe(rdev->sysfs_state);
5936 nowait = nowait && bdev_nowait(rdev->bdev);
5937 }
5938
5939 err = percpu_ref_init(&mddev->active_io, active_io_release,
5940 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL);
5941 if (err)
5942 return err;
5943
5944 if (!bioset_initialized(&mddev->bio_set)) {
5945 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5946 if (err)
5947 goto exit_active_io;
5948 }
5949 if (!bioset_initialized(&mddev->sync_set)) {
5950 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5951 if (err)
5952 goto exit_bio_set;
5953 }
5954
5955 if (!bioset_initialized(&mddev->io_clone_set)) {
5956 err = bioset_init(&mddev->io_clone_set, BIO_POOL_SIZE,
5957 offsetof(struct md_io_clone, bio_clone), 0);
5958 if (err)
5959 goto exit_sync_set;
5960 }
5961
5962 spin_lock(&pers_lock);
5963 pers = find_pers(mddev->level, mddev->clevel);
5964 if (!pers || !try_module_get(pers->owner)) {
5965 spin_unlock(&pers_lock);
5966 if (mddev->level != LEVEL_NONE)
5967 pr_warn("md: personality for level %d is not loaded!\n",
5968 mddev->level);
5969 else
5970 pr_warn("md: personality for level %s is not loaded!\n",
5971 mddev->clevel);
5972 err = -EINVAL;
5973 goto abort;
5974 }
5975 spin_unlock(&pers_lock);
5976 if (mddev->level != pers->level) {
5977 mddev->level = pers->level;
5978 mddev->new_level = pers->level;
5979 }
5980 strscpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5981
5982 if (mddev->reshape_position != MaxSector &&
5983 pers->start_reshape == NULL) {
5984 /* This personality cannot handle reshaping... */
5985 module_put(pers->owner);
5986 err = -EINVAL;
5987 goto abort;
5988 }
5989
5990 if (pers->sync_request) {
5991 /* Warn if this is a potentially silly
5992 * configuration.
5993 */
5994 struct md_rdev *rdev2;
5995 int warned = 0;
5996
5997 rdev_for_each(rdev, mddev)
5998 rdev_for_each(rdev2, mddev) {
5999 if (rdev < rdev2 &&
6000 rdev->bdev->bd_disk ==
6001 rdev2->bdev->bd_disk) {
6002 pr_warn("%s: WARNING: %pg appears to be on the same physical disk as %pg.\n",
6003 mdname(mddev),
6004 rdev->bdev,
6005 rdev2->bdev);
6006 warned = 1;
6007 }
6008 }
6009
6010 if (warned)
6011 pr_warn("True protection against single-disk failure might be compromised.\n");
6012 }
6013
6014 mddev->recovery = 0;
6015 /* may be over-ridden by personality */
6016 mddev->resync_max_sectors = mddev->dev_sectors;
6017
6018 mddev->ok_start_degraded = start_dirty_degraded;
6019
6020 if (start_readonly && md_is_rdwr(mddev))
6021 mddev->ro = MD_AUTO_READ; /* read-only, but switch on first write */
6022
6023 err = pers->run(mddev);
6024 if (err)
6025 pr_warn("md: pers->run() failed ...\n");
6026 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
6027 WARN_ONCE(!mddev->external_size,
6028 "%s: default size too small, but 'external_size' not in effect?\n",
6029 __func__);
6030 pr_warn("md: invalid array_size %llu > default size %llu\n",
6031 (unsigned long long)mddev->array_sectors / 2,
6032 (unsigned long long)pers->size(mddev, 0, 0) / 2);
6033 err = -EINVAL;
6034 }
6035 if (err == 0 && pers->sync_request &&
6036 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
6037 struct bitmap *bitmap;
6038
6039 bitmap = md_bitmap_create(mddev, -1);
6040 if (IS_ERR(bitmap)) {
6041 err = PTR_ERR(bitmap);
6042 pr_warn("%s: failed to create bitmap (%d)\n",
6043 mdname(mddev), err);
6044 } else
6045 mddev->bitmap = bitmap;
6046
6047 }
6048 if (err)
6049 goto bitmap_abort;
6050
6051 if (mddev->bitmap_info.max_write_behind > 0) {
6052 bool create_pool = false;
6053
6054 rdev_for_each(rdev, mddev) {
6055 if (test_bit(WriteMostly, &rdev->flags) &&
6056 rdev_init_serial(rdev))
6057 create_pool = true;
6058 }
6059 if (create_pool && mddev->serial_info_pool == NULL) {
6060 mddev->serial_info_pool =
6061 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
6062 sizeof(struct serial_info));
6063 if (!mddev->serial_info_pool) {
6064 err = -ENOMEM;
6065 goto bitmap_abort;
6066 }
6067 }
6068 }
6069
6070 if (mddev->queue) {
6071 bool nonrot = true;
6072
6073 rdev_for_each(rdev, mddev) {
6074 if (rdev->raid_disk >= 0 && !bdev_nonrot(rdev->bdev)) {
6075 nonrot = false;
6076 break;
6077 }
6078 }
6079 if (mddev->degraded)
6080 nonrot = false;
6081 if (nonrot)
6082 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue);
6083 else
6084 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue);
6085 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue);
6086
6087 /* Set the NOWAIT flags if all underlying devices support it */
6088 if (nowait)
6089 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, mddev->queue);
6090 }
6091 if (pers->sync_request) {
6092 if (mddev->kobj.sd &&
6093 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
6094 pr_warn("md: cannot register extra attributes for %s\n",
6095 mdname(mddev));
6096 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
6097 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
6098 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
6099 } else if (mddev->ro == MD_AUTO_READ)
6100 mddev->ro = MD_RDWR;
6101
6102 atomic_set(&mddev->max_corr_read_errors,
6103 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
6104 mddev->safemode = 0;
6105 if (mddev_is_clustered(mddev))
6106 mddev->safemode_delay = 0;
6107 else
6108 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
6109 mddev->in_sync = 1;
6110 smp_wmb();
6111 spin_lock(&mddev->lock);
6112 mddev->pers = pers;
6113 spin_unlock(&mddev->lock);
6114 rdev_for_each(rdev, mddev)
6115 if (rdev->raid_disk >= 0)
6116 sysfs_link_rdev(mddev, rdev); /* failure here is OK */
6117
6118 if (mddev->degraded && md_is_rdwr(mddev))
6119 /* This ensures that recovering status is reported immediately
6120 * via sysfs - until a lack of spares is confirmed.
6121 */
6122 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6123 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6124
6125 if (mddev->sb_flags)
6126 md_update_sb(mddev, 0);
6127
6128 md_new_event();
6129 return 0;
6130
6131 bitmap_abort:
6132 mddev_detach(mddev);
6133 if (mddev->private)
6134 pers->free(mddev, mddev->private);
6135 mddev->private = NULL;
6136 module_put(pers->owner);
6137 md_bitmap_destroy(mddev);
6138 abort:
6139 bioset_exit(&mddev->io_clone_set);
6140 exit_sync_set:
6141 bioset_exit(&mddev->sync_set);
6142 exit_bio_set:
6143 bioset_exit(&mddev->bio_set);
6144 exit_active_io:
6145 percpu_ref_exit(&mddev->active_io);
6146 return err;
6147 }
6148 EXPORT_SYMBOL_GPL(md_run);
6149
do_md_run(struct mddev * mddev)6150 int do_md_run(struct mddev *mddev)
6151 {
6152 int err;
6153
6154 set_bit(MD_NOT_READY, &mddev->flags);
6155 err = md_run(mddev);
6156 if (err)
6157 goto out;
6158 err = md_bitmap_load(mddev);
6159 if (err) {
6160 md_bitmap_destroy(mddev);
6161 goto out;
6162 }
6163
6164 if (mddev_is_clustered(mddev))
6165 md_allow_write(mddev);
6166
6167 /* run start up tasks that require md_thread */
6168 md_start(mddev);
6169
6170 md_wakeup_thread(mddev->thread);
6171 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
6172
6173 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors);
6174 clear_bit(MD_NOT_READY, &mddev->flags);
6175 mddev->changed = 1;
6176 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
6177 sysfs_notify_dirent_safe(mddev->sysfs_state);
6178 sysfs_notify_dirent_safe(mddev->sysfs_action);
6179 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
6180 out:
6181 clear_bit(MD_NOT_READY, &mddev->flags);
6182 return err;
6183 }
6184
md_start(struct mddev * mddev)6185 int md_start(struct mddev *mddev)
6186 {
6187 int ret = 0;
6188
6189 if (mddev->pers->start) {
6190 set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6191 md_wakeup_thread(mddev->thread);
6192 ret = mddev->pers->start(mddev);
6193 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6194 md_wakeup_thread(mddev->sync_thread);
6195 }
6196 return ret;
6197 }
6198 EXPORT_SYMBOL_GPL(md_start);
6199
restart_array(struct mddev * mddev)6200 static int restart_array(struct mddev *mddev)
6201 {
6202 struct gendisk *disk = mddev->gendisk;
6203 struct md_rdev *rdev;
6204 bool has_journal = false;
6205 bool has_readonly = false;
6206
6207 /* Complain if it has no devices */
6208 if (list_empty(&mddev->disks))
6209 return -ENXIO;
6210 if (!mddev->pers)
6211 return -EINVAL;
6212 if (md_is_rdwr(mddev))
6213 return -EBUSY;
6214
6215 rcu_read_lock();
6216 rdev_for_each_rcu(rdev, mddev) {
6217 if (test_bit(Journal, &rdev->flags) &&
6218 !test_bit(Faulty, &rdev->flags))
6219 has_journal = true;
6220 if (rdev_read_only(rdev))
6221 has_readonly = true;
6222 }
6223 rcu_read_unlock();
6224 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
6225 /* Don't restart rw with journal missing/faulty */
6226 return -EINVAL;
6227 if (has_readonly)
6228 return -EROFS;
6229
6230 mddev->safemode = 0;
6231 mddev->ro = MD_RDWR;
6232 set_disk_ro(disk, 0);
6233 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
6234 /* Kick recovery or resync if necessary */
6235 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6236 md_wakeup_thread(mddev->thread);
6237 md_wakeup_thread(mddev->sync_thread);
6238 sysfs_notify_dirent_safe(mddev->sysfs_state);
6239 return 0;
6240 }
6241
md_clean(struct mddev * mddev)6242 static void md_clean(struct mddev *mddev)
6243 {
6244 mddev->array_sectors = 0;
6245 mddev->external_size = 0;
6246 mddev->dev_sectors = 0;
6247 mddev->raid_disks = 0;
6248 mddev->recovery_cp = 0;
6249 mddev->resync_min = 0;
6250 mddev->resync_max = MaxSector;
6251 mddev->reshape_position = MaxSector;
6252 /* we still need mddev->external in export_rdev, do not clear it yet */
6253 mddev->persistent = 0;
6254 mddev->level = LEVEL_NONE;
6255 mddev->clevel[0] = 0;
6256 /*
6257 * Don't clear MD_CLOSING, or mddev can be opened again.
6258 * 'hold_active != 0' means mddev is still in the creation
6259 * process and will be used later.
6260 */
6261 if (mddev->hold_active)
6262 mddev->flags = 0;
6263 else
6264 mddev->flags &= BIT_ULL_MASK(MD_CLOSING);
6265 mddev->sb_flags = 0;
6266 mddev->ro = MD_RDWR;
6267 mddev->metadata_type[0] = 0;
6268 mddev->chunk_sectors = 0;
6269 mddev->ctime = mddev->utime = 0;
6270 mddev->layout = 0;
6271 mddev->max_disks = 0;
6272 mddev->events = 0;
6273 mddev->can_decrease_events = 0;
6274 mddev->delta_disks = 0;
6275 mddev->reshape_backwards = 0;
6276 mddev->new_level = LEVEL_NONE;
6277 mddev->new_layout = 0;
6278 mddev->new_chunk_sectors = 0;
6279 mddev->curr_resync = MD_RESYNC_NONE;
6280 atomic64_set(&mddev->resync_mismatches, 0);
6281 mddev->suspend_lo = mddev->suspend_hi = 0;
6282 mddev->sync_speed_min = mddev->sync_speed_max = 0;
6283 mddev->recovery = 0;
6284 mddev->in_sync = 0;
6285 mddev->changed = 0;
6286 mddev->degraded = 0;
6287 mddev->safemode = 0;
6288 mddev->private = NULL;
6289 mddev->cluster_info = NULL;
6290 mddev->bitmap_info.offset = 0;
6291 mddev->bitmap_info.default_offset = 0;
6292 mddev->bitmap_info.default_space = 0;
6293 mddev->bitmap_info.chunksize = 0;
6294 mddev->bitmap_info.daemon_sleep = 0;
6295 mddev->bitmap_info.max_write_behind = 0;
6296 mddev->bitmap_info.nodes = 0;
6297 }
6298
__md_stop_writes(struct mddev * mddev)6299 static void __md_stop_writes(struct mddev *mddev)
6300 {
6301 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6302 if (work_pending(&mddev->sync_work))
6303 flush_workqueue(md_misc_wq);
6304 if (mddev->sync_thread) {
6305 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6306 md_reap_sync_thread(mddev);
6307 }
6308
6309 del_timer_sync(&mddev->safemode_timer);
6310
6311 if (mddev->pers && mddev->pers->quiesce) {
6312 mddev->pers->quiesce(mddev, 1);
6313 mddev->pers->quiesce(mddev, 0);
6314 }
6315 md_bitmap_flush(mddev);
6316
6317 if (md_is_rdwr(mddev) &&
6318 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
6319 mddev->sb_flags)) {
6320 /* mark array as shutdown cleanly */
6321 if (!mddev_is_clustered(mddev))
6322 mddev->in_sync = 1;
6323 md_update_sb(mddev, 1);
6324 }
6325 /* disable policy to guarantee rdevs free resources for serialization */
6326 mddev->serialize_policy = 0;
6327 mddev_destroy_serial_pool(mddev, NULL, true);
6328 }
6329
md_stop_writes(struct mddev * mddev)6330 void md_stop_writes(struct mddev *mddev)
6331 {
6332 mddev_lock_nointr(mddev);
6333 __md_stop_writes(mddev);
6334 mddev_unlock(mddev);
6335 }
6336 EXPORT_SYMBOL_GPL(md_stop_writes);
6337
mddev_detach(struct mddev * mddev)6338 static void mddev_detach(struct mddev *mddev)
6339 {
6340 md_bitmap_wait_behind_writes(mddev);
6341 if (mddev->pers && mddev->pers->quiesce && !is_md_suspended(mddev)) {
6342 mddev->pers->quiesce(mddev, 1);
6343 mddev->pers->quiesce(mddev, 0);
6344 }
6345 md_unregister_thread(mddev, &mddev->thread);
6346 if (mddev->queue)
6347 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
6348 }
6349
__md_stop(struct mddev * mddev)6350 static void __md_stop(struct mddev *mddev)
6351 {
6352 struct md_personality *pers = mddev->pers;
6353 md_bitmap_destroy(mddev);
6354 mddev_detach(mddev);
6355 /* Ensure ->event_work is done */
6356 if (mddev->event_work.func)
6357 flush_workqueue(md_misc_wq);
6358 spin_lock(&mddev->lock);
6359 mddev->pers = NULL;
6360 spin_unlock(&mddev->lock);
6361 if (mddev->private)
6362 pers->free(mddev, mddev->private);
6363 mddev->private = NULL;
6364 if (pers->sync_request && mddev->to_remove == NULL)
6365 mddev->to_remove = &md_redundancy_group;
6366 module_put(pers->owner);
6367 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6368
6369 percpu_ref_exit(&mddev->active_io);
6370 bioset_exit(&mddev->bio_set);
6371 bioset_exit(&mddev->sync_set);
6372 bioset_exit(&mddev->io_clone_set);
6373 }
6374
md_stop(struct mddev * mddev)6375 void md_stop(struct mddev *mddev)
6376 {
6377 lockdep_assert_held(&mddev->reconfig_mutex);
6378
6379 /* stop the array and free an attached data structures.
6380 * This is called from dm-raid
6381 */
6382 __md_stop_writes(mddev);
6383 __md_stop(mddev);
6384 percpu_ref_exit(&mddev->writes_pending);
6385 }
6386
6387 EXPORT_SYMBOL_GPL(md_stop);
6388
md_set_readonly(struct mddev * mddev,struct block_device * bdev)6389 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
6390 {
6391 int err = 0;
6392 int did_freeze = 0;
6393
6394 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6395 return -EBUSY;
6396
6397 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6398 did_freeze = 1;
6399 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6400 md_wakeup_thread(mddev->thread);
6401 }
6402 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6403 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6404
6405 /*
6406 * Thread might be blocked waiting for metadata update which will now
6407 * never happen
6408 */
6409 md_wakeup_thread_directly(mddev->sync_thread);
6410
6411 mddev_unlock(mddev);
6412 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
6413 &mddev->recovery));
6414 wait_event(mddev->sb_wait,
6415 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
6416 mddev_lock_nointr(mddev);
6417
6418 mutex_lock(&mddev->open_mutex);
6419 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6420 mddev->sync_thread ||
6421 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6422 pr_warn("md: %s still in use.\n",mdname(mddev));
6423 err = -EBUSY;
6424 goto out;
6425 }
6426
6427 if (mddev->pers) {
6428 __md_stop_writes(mddev);
6429
6430 if (mddev->ro == MD_RDONLY) {
6431 err = -ENXIO;
6432 goto out;
6433 }
6434
6435 mddev->ro = MD_RDONLY;
6436 set_disk_ro(mddev->gendisk, 1);
6437 }
6438
6439 out:
6440 if ((mddev->pers && !err) || did_freeze) {
6441 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6442 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6443 md_wakeup_thread(mddev->thread);
6444 sysfs_notify_dirent_safe(mddev->sysfs_state);
6445 }
6446
6447 mutex_unlock(&mddev->open_mutex);
6448 return err;
6449 }
6450
6451 /* mode:
6452 * 0 - completely stop and dis-assemble array
6453 * 2 - stop but do not disassemble array
6454 */
do_md_stop(struct mddev * mddev,int mode,struct block_device * bdev)6455 static int do_md_stop(struct mddev *mddev, int mode,
6456 struct block_device *bdev)
6457 {
6458 struct gendisk *disk = mddev->gendisk;
6459 struct md_rdev *rdev;
6460 int did_freeze = 0;
6461
6462 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6463 did_freeze = 1;
6464 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6465 md_wakeup_thread(mddev->thread);
6466 }
6467 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6468 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6469
6470 /*
6471 * Thread might be blocked waiting for metadata update which will now
6472 * never happen
6473 */
6474 md_wakeup_thread_directly(mddev->sync_thread);
6475
6476 mddev_unlock(mddev);
6477 wait_event(resync_wait, (mddev->sync_thread == NULL &&
6478 !test_bit(MD_RECOVERY_RUNNING,
6479 &mddev->recovery)));
6480 mddev_lock_nointr(mddev);
6481
6482 mutex_lock(&mddev->open_mutex);
6483 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6484 mddev->sysfs_active ||
6485 mddev->sync_thread ||
6486 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6487 pr_warn("md: %s still in use.\n",mdname(mddev));
6488 mutex_unlock(&mddev->open_mutex);
6489 if (did_freeze) {
6490 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6491 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6492 md_wakeup_thread(mddev->thread);
6493 }
6494 return -EBUSY;
6495 }
6496 if (mddev->pers) {
6497 if (!md_is_rdwr(mddev))
6498 set_disk_ro(disk, 0);
6499
6500 __md_stop_writes(mddev);
6501 __md_stop(mddev);
6502
6503 /* tell userspace to handle 'inactive' */
6504 sysfs_notify_dirent_safe(mddev->sysfs_state);
6505
6506 rdev_for_each(rdev, mddev)
6507 if (rdev->raid_disk >= 0)
6508 sysfs_unlink_rdev(mddev, rdev);
6509
6510 set_capacity_and_notify(disk, 0);
6511 mutex_unlock(&mddev->open_mutex);
6512 mddev->changed = 1;
6513
6514 if (!md_is_rdwr(mddev))
6515 mddev->ro = MD_RDWR;
6516 } else
6517 mutex_unlock(&mddev->open_mutex);
6518 /*
6519 * Free resources if final stop
6520 */
6521 if (mode == 0) {
6522 pr_info("md: %s stopped.\n", mdname(mddev));
6523
6524 if (mddev->bitmap_info.file) {
6525 struct file *f = mddev->bitmap_info.file;
6526 spin_lock(&mddev->lock);
6527 mddev->bitmap_info.file = NULL;
6528 spin_unlock(&mddev->lock);
6529 fput(f);
6530 }
6531 mddev->bitmap_info.offset = 0;
6532
6533 export_array(mddev);
6534
6535 md_clean(mddev);
6536 if (mddev->hold_active == UNTIL_STOP)
6537 mddev->hold_active = 0;
6538 }
6539 md_new_event();
6540 sysfs_notify_dirent_safe(mddev->sysfs_state);
6541 return 0;
6542 }
6543
6544 #ifndef MODULE
autorun_array(struct mddev * mddev)6545 static void autorun_array(struct mddev *mddev)
6546 {
6547 struct md_rdev *rdev;
6548 int err;
6549
6550 if (list_empty(&mddev->disks))
6551 return;
6552
6553 pr_info("md: running: ");
6554
6555 rdev_for_each(rdev, mddev) {
6556 pr_cont("<%pg>", rdev->bdev);
6557 }
6558 pr_cont("\n");
6559
6560 err = do_md_run(mddev);
6561 if (err) {
6562 pr_warn("md: do_md_run() returned %d\n", err);
6563 do_md_stop(mddev, 0, NULL);
6564 }
6565 }
6566
6567 /*
6568 * lets try to run arrays based on all disks that have arrived
6569 * until now. (those are in pending_raid_disks)
6570 *
6571 * the method: pick the first pending disk, collect all disks with
6572 * the same UUID, remove all from the pending list and put them into
6573 * the 'same_array' list. Then order this list based on superblock
6574 * update time (freshest comes first), kick out 'old' disks and
6575 * compare superblocks. If everything's fine then run it.
6576 *
6577 * If "unit" is allocated, then bump its reference count
6578 */
autorun_devices(int part)6579 static void autorun_devices(int part)
6580 {
6581 struct md_rdev *rdev0, *rdev, *tmp;
6582 struct mddev *mddev;
6583
6584 pr_info("md: autorun ...\n");
6585 while (!list_empty(&pending_raid_disks)) {
6586 int unit;
6587 dev_t dev;
6588 LIST_HEAD(candidates);
6589 rdev0 = list_entry(pending_raid_disks.next,
6590 struct md_rdev, same_set);
6591
6592 pr_debug("md: considering %pg ...\n", rdev0->bdev);
6593 INIT_LIST_HEAD(&candidates);
6594 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6595 if (super_90_load(rdev, rdev0, 0) >= 0) {
6596 pr_debug("md: adding %pg ...\n",
6597 rdev->bdev);
6598 list_move(&rdev->same_set, &candidates);
6599 }
6600 /*
6601 * now we have a set of devices, with all of them having
6602 * mostly sane superblocks. It's time to allocate the
6603 * mddev.
6604 */
6605 if (part) {
6606 dev = MKDEV(mdp_major,
6607 rdev0->preferred_minor << MdpMinorShift);
6608 unit = MINOR(dev) >> MdpMinorShift;
6609 } else {
6610 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6611 unit = MINOR(dev);
6612 }
6613 if (rdev0->preferred_minor != unit) {
6614 pr_warn("md: unit number in %pg is bad: %d\n",
6615 rdev0->bdev, rdev0->preferred_minor);
6616 break;
6617 }
6618
6619 mddev = md_alloc(dev, NULL);
6620 if (IS_ERR(mddev))
6621 break;
6622
6623 if (mddev_lock(mddev))
6624 pr_warn("md: %s locked, cannot run\n", mdname(mddev));
6625 else if (mddev->raid_disks || mddev->major_version
6626 || !list_empty(&mddev->disks)) {
6627 pr_warn("md: %s already running, cannot run %pg\n",
6628 mdname(mddev), rdev0->bdev);
6629 mddev_unlock(mddev);
6630 } else {
6631 pr_debug("md: created %s\n", mdname(mddev));
6632 mddev->persistent = 1;
6633 rdev_for_each_list(rdev, tmp, &candidates) {
6634 list_del_init(&rdev->same_set);
6635 if (bind_rdev_to_array(rdev, mddev))
6636 export_rdev(rdev, mddev);
6637 }
6638 autorun_array(mddev);
6639 mddev_unlock(mddev);
6640 }
6641 /* on success, candidates will be empty, on error
6642 * it won't...
6643 */
6644 rdev_for_each_list(rdev, tmp, &candidates) {
6645 list_del_init(&rdev->same_set);
6646 export_rdev(rdev, mddev);
6647 }
6648 mddev_put(mddev);
6649 }
6650 pr_info("md: ... autorun DONE.\n");
6651 }
6652 #endif /* !MODULE */
6653
get_version(void __user * arg)6654 static int get_version(void __user *arg)
6655 {
6656 mdu_version_t ver;
6657
6658 ver.major = MD_MAJOR_VERSION;
6659 ver.minor = MD_MINOR_VERSION;
6660 ver.patchlevel = MD_PATCHLEVEL_VERSION;
6661
6662 if (copy_to_user(arg, &ver, sizeof(ver)))
6663 return -EFAULT;
6664
6665 return 0;
6666 }
6667
get_array_info(struct mddev * mddev,void __user * arg)6668 static int get_array_info(struct mddev *mddev, void __user *arg)
6669 {
6670 mdu_array_info_t info;
6671 int nr,working,insync,failed,spare;
6672 struct md_rdev *rdev;
6673
6674 nr = working = insync = failed = spare = 0;
6675 rcu_read_lock();
6676 rdev_for_each_rcu(rdev, mddev) {
6677 nr++;
6678 if (test_bit(Faulty, &rdev->flags))
6679 failed++;
6680 else {
6681 working++;
6682 if (test_bit(In_sync, &rdev->flags))
6683 insync++;
6684 else if (test_bit(Journal, &rdev->flags))
6685 /* TODO: add journal count to md_u.h */
6686 ;
6687 else
6688 spare++;
6689 }
6690 }
6691 rcu_read_unlock();
6692
6693 info.major_version = mddev->major_version;
6694 info.minor_version = mddev->minor_version;
6695 info.patch_version = MD_PATCHLEVEL_VERSION;
6696 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6697 info.level = mddev->level;
6698 info.size = mddev->dev_sectors / 2;
6699 if (info.size != mddev->dev_sectors / 2) /* overflow */
6700 info.size = -1;
6701 info.nr_disks = nr;
6702 info.raid_disks = mddev->raid_disks;
6703 info.md_minor = mddev->md_minor;
6704 info.not_persistent= !mddev->persistent;
6705
6706 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6707 info.state = 0;
6708 if (mddev->in_sync)
6709 info.state = (1<<MD_SB_CLEAN);
6710 if (mddev->bitmap && mddev->bitmap_info.offset)
6711 info.state |= (1<<MD_SB_BITMAP_PRESENT);
6712 if (mddev_is_clustered(mddev))
6713 info.state |= (1<<MD_SB_CLUSTERED);
6714 info.active_disks = insync;
6715 info.working_disks = working;
6716 info.failed_disks = failed;
6717 info.spare_disks = spare;
6718
6719 info.layout = mddev->layout;
6720 info.chunk_size = mddev->chunk_sectors << 9;
6721
6722 if (copy_to_user(arg, &info, sizeof(info)))
6723 return -EFAULT;
6724
6725 return 0;
6726 }
6727
get_bitmap_file(struct mddev * mddev,void __user * arg)6728 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6729 {
6730 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6731 char *ptr;
6732 int err;
6733
6734 file = kzalloc(sizeof(*file), GFP_NOIO);
6735 if (!file)
6736 return -ENOMEM;
6737
6738 err = 0;
6739 spin_lock(&mddev->lock);
6740 /* bitmap enabled */
6741 if (mddev->bitmap_info.file) {
6742 ptr = file_path(mddev->bitmap_info.file, file->pathname,
6743 sizeof(file->pathname));
6744 if (IS_ERR(ptr))
6745 err = PTR_ERR(ptr);
6746 else
6747 memmove(file->pathname, ptr,
6748 sizeof(file->pathname)-(ptr-file->pathname));
6749 }
6750 spin_unlock(&mddev->lock);
6751
6752 if (err == 0 &&
6753 copy_to_user(arg, file, sizeof(*file)))
6754 err = -EFAULT;
6755
6756 kfree(file);
6757 return err;
6758 }
6759
get_disk_info(struct mddev * mddev,void __user * arg)6760 static int get_disk_info(struct mddev *mddev, void __user * arg)
6761 {
6762 mdu_disk_info_t info;
6763 struct md_rdev *rdev;
6764
6765 if (copy_from_user(&info, arg, sizeof(info)))
6766 return -EFAULT;
6767
6768 rcu_read_lock();
6769 rdev = md_find_rdev_nr_rcu(mddev, info.number);
6770 if (rdev) {
6771 info.major = MAJOR(rdev->bdev->bd_dev);
6772 info.minor = MINOR(rdev->bdev->bd_dev);
6773 info.raid_disk = rdev->raid_disk;
6774 info.state = 0;
6775 if (test_bit(Faulty, &rdev->flags))
6776 info.state |= (1<<MD_DISK_FAULTY);
6777 else if (test_bit(In_sync, &rdev->flags)) {
6778 info.state |= (1<<MD_DISK_ACTIVE);
6779 info.state |= (1<<MD_DISK_SYNC);
6780 }
6781 if (test_bit(Journal, &rdev->flags))
6782 info.state |= (1<<MD_DISK_JOURNAL);
6783 if (test_bit(WriteMostly, &rdev->flags))
6784 info.state |= (1<<MD_DISK_WRITEMOSTLY);
6785 if (test_bit(FailFast, &rdev->flags))
6786 info.state |= (1<<MD_DISK_FAILFAST);
6787 } else {
6788 info.major = info.minor = 0;
6789 info.raid_disk = -1;
6790 info.state = (1<<MD_DISK_REMOVED);
6791 }
6792 rcu_read_unlock();
6793
6794 if (copy_to_user(arg, &info, sizeof(info)))
6795 return -EFAULT;
6796
6797 return 0;
6798 }
6799
md_add_new_disk(struct mddev * mddev,struct mdu_disk_info_s * info)6800 int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info)
6801 {
6802 struct md_rdev *rdev;
6803 dev_t dev = MKDEV(info->major,info->minor);
6804
6805 if (mddev_is_clustered(mddev) &&
6806 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6807 pr_warn("%s: Cannot add to clustered mddev.\n",
6808 mdname(mddev));
6809 return -EINVAL;
6810 }
6811
6812 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6813 return -EOVERFLOW;
6814
6815 if (!mddev->raid_disks) {
6816 int err;
6817 /* expecting a device which has a superblock */
6818 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6819 if (IS_ERR(rdev)) {
6820 pr_warn("md: md_import_device returned %ld\n",
6821 PTR_ERR(rdev));
6822 return PTR_ERR(rdev);
6823 }
6824 if (!list_empty(&mddev->disks)) {
6825 struct md_rdev *rdev0
6826 = list_entry(mddev->disks.next,
6827 struct md_rdev, same_set);
6828 err = super_types[mddev->major_version]
6829 .load_super(rdev, rdev0, mddev->minor_version);
6830 if (err < 0) {
6831 pr_warn("md: %pg has different UUID to %pg\n",
6832 rdev->bdev,
6833 rdev0->bdev);
6834 export_rdev(rdev, mddev);
6835 return -EINVAL;
6836 }
6837 }
6838 err = bind_rdev_to_array(rdev, mddev);
6839 if (err)
6840 export_rdev(rdev, mddev);
6841 return err;
6842 }
6843
6844 /*
6845 * md_add_new_disk can be used once the array is assembled
6846 * to add "hot spares". They must already have a superblock
6847 * written
6848 */
6849 if (mddev->pers) {
6850 int err;
6851 if (!mddev->pers->hot_add_disk) {
6852 pr_warn("%s: personality does not support diskops!\n",
6853 mdname(mddev));
6854 return -EINVAL;
6855 }
6856 if (mddev->persistent)
6857 rdev = md_import_device(dev, mddev->major_version,
6858 mddev->minor_version);
6859 else
6860 rdev = md_import_device(dev, -1, -1);
6861 if (IS_ERR(rdev)) {
6862 pr_warn("md: md_import_device returned %ld\n",
6863 PTR_ERR(rdev));
6864 return PTR_ERR(rdev);
6865 }
6866 /* set saved_raid_disk if appropriate */
6867 if (!mddev->persistent) {
6868 if (info->state & (1<<MD_DISK_SYNC) &&
6869 info->raid_disk < mddev->raid_disks) {
6870 rdev->raid_disk = info->raid_disk;
6871 clear_bit(Bitmap_sync, &rdev->flags);
6872 } else
6873 rdev->raid_disk = -1;
6874 rdev->saved_raid_disk = rdev->raid_disk;
6875 } else
6876 super_types[mddev->major_version].
6877 validate_super(mddev, NULL/*freshest*/, rdev);
6878 if ((info->state & (1<<MD_DISK_SYNC)) &&
6879 rdev->raid_disk != info->raid_disk) {
6880 /* This was a hot-add request, but events doesn't
6881 * match, so reject it.
6882 */
6883 export_rdev(rdev, mddev);
6884 return -EINVAL;
6885 }
6886
6887 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6888 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6889 set_bit(WriteMostly, &rdev->flags);
6890 else
6891 clear_bit(WriteMostly, &rdev->flags);
6892 if (info->state & (1<<MD_DISK_FAILFAST))
6893 set_bit(FailFast, &rdev->flags);
6894 else
6895 clear_bit(FailFast, &rdev->flags);
6896
6897 if (info->state & (1<<MD_DISK_JOURNAL)) {
6898 struct md_rdev *rdev2;
6899 bool has_journal = false;
6900
6901 /* make sure no existing journal disk */
6902 rdev_for_each(rdev2, mddev) {
6903 if (test_bit(Journal, &rdev2->flags)) {
6904 has_journal = true;
6905 break;
6906 }
6907 }
6908 if (has_journal || mddev->bitmap) {
6909 export_rdev(rdev, mddev);
6910 return -EBUSY;
6911 }
6912 set_bit(Journal, &rdev->flags);
6913 }
6914 /*
6915 * check whether the device shows up in other nodes
6916 */
6917 if (mddev_is_clustered(mddev)) {
6918 if (info->state & (1 << MD_DISK_CANDIDATE))
6919 set_bit(Candidate, &rdev->flags);
6920 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6921 /* --add initiated by this node */
6922 err = md_cluster_ops->add_new_disk(mddev, rdev);
6923 if (err) {
6924 export_rdev(rdev, mddev);
6925 return err;
6926 }
6927 }
6928 }
6929
6930 rdev->raid_disk = -1;
6931 err = bind_rdev_to_array(rdev, mddev);
6932
6933 if (err)
6934 export_rdev(rdev, mddev);
6935
6936 if (mddev_is_clustered(mddev)) {
6937 if (info->state & (1 << MD_DISK_CANDIDATE)) {
6938 if (!err) {
6939 err = md_cluster_ops->new_disk_ack(mddev,
6940 err == 0);
6941 if (err)
6942 md_kick_rdev_from_array(rdev);
6943 }
6944 } else {
6945 if (err)
6946 md_cluster_ops->add_new_disk_cancel(mddev);
6947 else
6948 err = add_bound_rdev(rdev);
6949 }
6950
6951 } else if (!err)
6952 err = add_bound_rdev(rdev);
6953
6954 return err;
6955 }
6956
6957 /* otherwise, md_add_new_disk is only allowed
6958 * for major_version==0 superblocks
6959 */
6960 if (mddev->major_version != 0) {
6961 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
6962 return -EINVAL;
6963 }
6964
6965 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6966 int err;
6967 rdev = md_import_device(dev, -1, 0);
6968 if (IS_ERR(rdev)) {
6969 pr_warn("md: error, md_import_device() returned %ld\n",
6970 PTR_ERR(rdev));
6971 return PTR_ERR(rdev);
6972 }
6973 rdev->desc_nr = info->number;
6974 if (info->raid_disk < mddev->raid_disks)
6975 rdev->raid_disk = info->raid_disk;
6976 else
6977 rdev->raid_disk = -1;
6978
6979 if (rdev->raid_disk < mddev->raid_disks)
6980 if (info->state & (1<<MD_DISK_SYNC))
6981 set_bit(In_sync, &rdev->flags);
6982
6983 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6984 set_bit(WriteMostly, &rdev->flags);
6985 if (info->state & (1<<MD_DISK_FAILFAST))
6986 set_bit(FailFast, &rdev->flags);
6987
6988 if (!mddev->persistent) {
6989 pr_debug("md: nonpersistent superblock ...\n");
6990 rdev->sb_start = bdev_nr_sectors(rdev->bdev);
6991 } else
6992 rdev->sb_start = calc_dev_sboffset(rdev);
6993 rdev->sectors = rdev->sb_start;
6994
6995 err = bind_rdev_to_array(rdev, mddev);
6996 if (err) {
6997 export_rdev(rdev, mddev);
6998 return err;
6999 }
7000 }
7001
7002 return 0;
7003 }
7004
hot_remove_disk(struct mddev * mddev,dev_t dev)7005 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
7006 {
7007 struct md_rdev *rdev;
7008
7009 if (!mddev->pers)
7010 return -ENODEV;
7011
7012 rdev = find_rdev(mddev, dev);
7013 if (!rdev)
7014 return -ENXIO;
7015
7016 if (rdev->raid_disk < 0)
7017 goto kick_rdev;
7018
7019 clear_bit(Blocked, &rdev->flags);
7020 remove_and_add_spares(mddev, rdev);
7021
7022 if (rdev->raid_disk >= 0)
7023 goto busy;
7024
7025 kick_rdev:
7026 if (mddev_is_clustered(mddev)) {
7027 if (md_cluster_ops->remove_disk(mddev, rdev))
7028 goto busy;
7029 }
7030
7031 md_kick_rdev_from_array(rdev);
7032 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7033 if (mddev->thread)
7034 md_wakeup_thread(mddev->thread);
7035 else
7036 md_update_sb(mddev, 1);
7037 md_new_event();
7038
7039 return 0;
7040 busy:
7041 pr_debug("md: cannot remove active disk %pg from %s ...\n",
7042 rdev->bdev, mdname(mddev));
7043 return -EBUSY;
7044 }
7045
hot_add_disk(struct mddev * mddev,dev_t dev)7046 static int hot_add_disk(struct mddev *mddev, dev_t dev)
7047 {
7048 int err;
7049 struct md_rdev *rdev;
7050
7051 if (!mddev->pers)
7052 return -ENODEV;
7053
7054 if (mddev->major_version != 0) {
7055 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
7056 mdname(mddev));
7057 return -EINVAL;
7058 }
7059 if (!mddev->pers->hot_add_disk) {
7060 pr_warn("%s: personality does not support diskops!\n",
7061 mdname(mddev));
7062 return -EINVAL;
7063 }
7064
7065 rdev = md_import_device(dev, -1, 0);
7066 if (IS_ERR(rdev)) {
7067 pr_warn("md: error, md_import_device() returned %ld\n",
7068 PTR_ERR(rdev));
7069 return -EINVAL;
7070 }
7071
7072 if (mddev->persistent)
7073 rdev->sb_start = calc_dev_sboffset(rdev);
7074 else
7075 rdev->sb_start = bdev_nr_sectors(rdev->bdev);
7076
7077 rdev->sectors = rdev->sb_start;
7078
7079 if (test_bit(Faulty, &rdev->flags)) {
7080 pr_warn("md: can not hot-add faulty %pg disk to %s!\n",
7081 rdev->bdev, mdname(mddev));
7082 err = -EINVAL;
7083 goto abort_export;
7084 }
7085
7086 clear_bit(In_sync, &rdev->flags);
7087 rdev->desc_nr = -1;
7088 rdev->saved_raid_disk = -1;
7089 err = bind_rdev_to_array(rdev, mddev);
7090 if (err)
7091 goto abort_export;
7092
7093 /*
7094 * The rest should better be atomic, we can have disk failures
7095 * noticed in interrupt contexts ...
7096 */
7097
7098 rdev->raid_disk = -1;
7099
7100 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7101 if (!mddev->thread)
7102 md_update_sb(mddev, 1);
7103 /*
7104 * If the new disk does not support REQ_NOWAIT,
7105 * disable on the whole MD.
7106 */
7107 if (!bdev_nowait(rdev->bdev)) {
7108 pr_info("%s: Disabling nowait because %pg does not support nowait\n",
7109 mdname(mddev), rdev->bdev);
7110 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, mddev->queue);
7111 }
7112 /*
7113 * Kick recovery, maybe this spare has to be added to the
7114 * array immediately.
7115 */
7116 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7117 md_wakeup_thread(mddev->thread);
7118 md_new_event();
7119 return 0;
7120
7121 abort_export:
7122 export_rdev(rdev, mddev);
7123 return err;
7124 }
7125
set_bitmap_file(struct mddev * mddev,int fd)7126 static int set_bitmap_file(struct mddev *mddev, int fd)
7127 {
7128 int err = 0;
7129
7130 if (mddev->pers) {
7131 if (!mddev->pers->quiesce || !mddev->thread)
7132 return -EBUSY;
7133 if (mddev->recovery || mddev->sync_thread)
7134 return -EBUSY;
7135 /* we should be able to change the bitmap.. */
7136 }
7137
7138 if (fd >= 0) {
7139 struct inode *inode;
7140 struct file *f;
7141
7142 if (mddev->bitmap || mddev->bitmap_info.file)
7143 return -EEXIST; /* cannot add when bitmap is present */
7144
7145 if (!IS_ENABLED(CONFIG_MD_BITMAP_FILE)) {
7146 pr_warn("%s: bitmap files not supported by this kernel\n",
7147 mdname(mddev));
7148 return -EINVAL;
7149 }
7150 pr_warn("%s: using deprecated bitmap file support\n",
7151 mdname(mddev));
7152
7153 f = fget(fd);
7154
7155 if (f == NULL) {
7156 pr_warn("%s: error: failed to get bitmap file\n",
7157 mdname(mddev));
7158 return -EBADF;
7159 }
7160
7161 inode = f->f_mapping->host;
7162 if (!S_ISREG(inode->i_mode)) {
7163 pr_warn("%s: error: bitmap file must be a regular file\n",
7164 mdname(mddev));
7165 err = -EBADF;
7166 } else if (!(f->f_mode & FMODE_WRITE)) {
7167 pr_warn("%s: error: bitmap file must open for write\n",
7168 mdname(mddev));
7169 err = -EBADF;
7170 } else if (atomic_read(&inode->i_writecount) != 1) {
7171 pr_warn("%s: error: bitmap file is already in use\n",
7172 mdname(mddev));
7173 err = -EBUSY;
7174 }
7175 if (err) {
7176 fput(f);
7177 return err;
7178 }
7179 mddev->bitmap_info.file = f;
7180 mddev->bitmap_info.offset = 0; /* file overrides offset */
7181 } else if (mddev->bitmap == NULL)
7182 return -ENOENT; /* cannot remove what isn't there */
7183 err = 0;
7184 if (mddev->pers) {
7185 if (fd >= 0) {
7186 struct bitmap *bitmap;
7187
7188 bitmap = md_bitmap_create(mddev, -1);
7189 mddev_suspend(mddev);
7190 if (!IS_ERR(bitmap)) {
7191 mddev->bitmap = bitmap;
7192 err = md_bitmap_load(mddev);
7193 } else
7194 err = PTR_ERR(bitmap);
7195 if (err) {
7196 md_bitmap_destroy(mddev);
7197 fd = -1;
7198 }
7199 mddev_resume(mddev);
7200 } else if (fd < 0) {
7201 mddev_suspend(mddev);
7202 md_bitmap_destroy(mddev);
7203 mddev_resume(mddev);
7204 }
7205 }
7206 if (fd < 0) {
7207 struct file *f = mddev->bitmap_info.file;
7208 if (f) {
7209 spin_lock(&mddev->lock);
7210 mddev->bitmap_info.file = NULL;
7211 spin_unlock(&mddev->lock);
7212 fput(f);
7213 }
7214 }
7215
7216 return err;
7217 }
7218
7219 /*
7220 * md_set_array_info is used two different ways
7221 * The original usage is when creating a new array.
7222 * In this usage, raid_disks is > 0 and it together with
7223 * level, size, not_persistent,layout,chunksize determine the
7224 * shape of the array.
7225 * This will always create an array with a type-0.90.0 superblock.
7226 * The newer usage is when assembling an array.
7227 * In this case raid_disks will be 0, and the major_version field is
7228 * use to determine which style super-blocks are to be found on the devices.
7229 * The minor and patch _version numbers are also kept incase the
7230 * super_block handler wishes to interpret them.
7231 */
md_set_array_info(struct mddev * mddev,struct mdu_array_info_s * info)7232 int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info)
7233 {
7234 if (info->raid_disks == 0) {
7235 /* just setting version number for superblock loading */
7236 if (info->major_version < 0 ||
7237 info->major_version >= ARRAY_SIZE(super_types) ||
7238 super_types[info->major_version].name == NULL) {
7239 /* maybe try to auto-load a module? */
7240 pr_warn("md: superblock version %d not known\n",
7241 info->major_version);
7242 return -EINVAL;
7243 }
7244 mddev->major_version = info->major_version;
7245 mddev->minor_version = info->minor_version;
7246 mddev->patch_version = info->patch_version;
7247 mddev->persistent = !info->not_persistent;
7248 /* ensure mddev_put doesn't delete this now that there
7249 * is some minimal configuration.
7250 */
7251 mddev->ctime = ktime_get_real_seconds();
7252 return 0;
7253 }
7254 mddev->major_version = MD_MAJOR_VERSION;
7255 mddev->minor_version = MD_MINOR_VERSION;
7256 mddev->patch_version = MD_PATCHLEVEL_VERSION;
7257 mddev->ctime = ktime_get_real_seconds();
7258
7259 mddev->level = info->level;
7260 mddev->clevel[0] = 0;
7261 mddev->dev_sectors = 2 * (sector_t)info->size;
7262 mddev->raid_disks = info->raid_disks;
7263 /* don't set md_minor, it is determined by which /dev/md* was
7264 * openned
7265 */
7266 if (info->state & (1<<MD_SB_CLEAN))
7267 mddev->recovery_cp = MaxSector;
7268 else
7269 mddev->recovery_cp = 0;
7270 mddev->persistent = ! info->not_persistent;
7271 mddev->external = 0;
7272
7273 mddev->layout = info->layout;
7274 if (mddev->level == 0)
7275 /* Cannot trust RAID0 layout info here */
7276 mddev->layout = -1;
7277 mddev->chunk_sectors = info->chunk_size >> 9;
7278
7279 if (mddev->persistent) {
7280 mddev->max_disks = MD_SB_DISKS;
7281 mddev->flags = 0;
7282 mddev->sb_flags = 0;
7283 }
7284 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7285
7286 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
7287 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
7288 mddev->bitmap_info.offset = 0;
7289
7290 mddev->reshape_position = MaxSector;
7291
7292 /*
7293 * Generate a 128 bit UUID
7294 */
7295 get_random_bytes(mddev->uuid, 16);
7296
7297 mddev->new_level = mddev->level;
7298 mddev->new_chunk_sectors = mddev->chunk_sectors;
7299 mddev->new_layout = mddev->layout;
7300 mddev->delta_disks = 0;
7301 mddev->reshape_backwards = 0;
7302
7303 return 0;
7304 }
7305
md_set_array_sectors(struct mddev * mddev,sector_t array_sectors)7306 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
7307 {
7308 lockdep_assert_held(&mddev->reconfig_mutex);
7309
7310 if (mddev->external_size)
7311 return;
7312
7313 mddev->array_sectors = array_sectors;
7314 }
7315 EXPORT_SYMBOL(md_set_array_sectors);
7316
update_size(struct mddev * mddev,sector_t num_sectors)7317 static int update_size(struct mddev *mddev, sector_t num_sectors)
7318 {
7319 struct md_rdev *rdev;
7320 int rv;
7321 int fit = (num_sectors == 0);
7322 sector_t old_dev_sectors = mddev->dev_sectors;
7323
7324 if (mddev->pers->resize == NULL)
7325 return -EINVAL;
7326 /* The "num_sectors" is the number of sectors of each device that
7327 * is used. This can only make sense for arrays with redundancy.
7328 * linear and raid0 always use whatever space is available. We can only
7329 * consider changing this number if no resync or reconstruction is
7330 * happening, and if the new size is acceptable. It must fit before the
7331 * sb_start or, if that is <data_offset, it must fit before the size
7332 * of each device. If num_sectors is zero, we find the largest size
7333 * that fits.
7334 */
7335 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7336 mddev->sync_thread)
7337 return -EBUSY;
7338 if (!md_is_rdwr(mddev))
7339 return -EROFS;
7340
7341 rdev_for_each(rdev, mddev) {
7342 sector_t avail = rdev->sectors;
7343
7344 if (fit && (num_sectors == 0 || num_sectors > avail))
7345 num_sectors = avail;
7346 if (avail < num_sectors)
7347 return -ENOSPC;
7348 }
7349 rv = mddev->pers->resize(mddev, num_sectors);
7350 if (!rv) {
7351 if (mddev_is_clustered(mddev))
7352 md_cluster_ops->update_size(mddev, old_dev_sectors);
7353 else if (mddev->queue) {
7354 set_capacity_and_notify(mddev->gendisk,
7355 mddev->array_sectors);
7356 }
7357 }
7358 return rv;
7359 }
7360
update_raid_disks(struct mddev * mddev,int raid_disks)7361 static int update_raid_disks(struct mddev *mddev, int raid_disks)
7362 {
7363 int rv;
7364 struct md_rdev *rdev;
7365 /* change the number of raid disks */
7366 if (mddev->pers->check_reshape == NULL)
7367 return -EINVAL;
7368 if (!md_is_rdwr(mddev))
7369 return -EROFS;
7370 if (raid_disks <= 0 ||
7371 (mddev->max_disks && raid_disks >= mddev->max_disks))
7372 return -EINVAL;
7373 if (mddev->sync_thread ||
7374 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7375 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) ||
7376 mddev->reshape_position != MaxSector)
7377 return -EBUSY;
7378
7379 rdev_for_each(rdev, mddev) {
7380 if (mddev->raid_disks < raid_disks &&
7381 rdev->data_offset < rdev->new_data_offset)
7382 return -EINVAL;
7383 if (mddev->raid_disks > raid_disks &&
7384 rdev->data_offset > rdev->new_data_offset)
7385 return -EINVAL;
7386 }
7387
7388 mddev->delta_disks = raid_disks - mddev->raid_disks;
7389 if (mddev->delta_disks < 0)
7390 mddev->reshape_backwards = 1;
7391 else if (mddev->delta_disks > 0)
7392 mddev->reshape_backwards = 0;
7393
7394 rv = mddev->pers->check_reshape(mddev);
7395 if (rv < 0) {
7396 mddev->delta_disks = 0;
7397 mddev->reshape_backwards = 0;
7398 }
7399 return rv;
7400 }
7401
7402 /*
7403 * update_array_info is used to change the configuration of an
7404 * on-line array.
7405 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
7406 * fields in the info are checked against the array.
7407 * Any differences that cannot be handled will cause an error.
7408 * Normally, only one change can be managed at a time.
7409 */
update_array_info(struct mddev * mddev,mdu_array_info_t * info)7410 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
7411 {
7412 int rv = 0;
7413 int cnt = 0;
7414 int state = 0;
7415
7416 /* calculate expected state,ignoring low bits */
7417 if (mddev->bitmap && mddev->bitmap_info.offset)
7418 state |= (1 << MD_SB_BITMAP_PRESENT);
7419
7420 if (mddev->major_version != info->major_version ||
7421 mddev->minor_version != info->minor_version ||
7422 /* mddev->patch_version != info->patch_version || */
7423 mddev->ctime != info->ctime ||
7424 mddev->level != info->level ||
7425 /* mddev->layout != info->layout || */
7426 mddev->persistent != !info->not_persistent ||
7427 mddev->chunk_sectors != info->chunk_size >> 9 ||
7428 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
7429 ((state^info->state) & 0xfffffe00)
7430 )
7431 return -EINVAL;
7432 /* Check there is only one change */
7433 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7434 cnt++;
7435 if (mddev->raid_disks != info->raid_disks)
7436 cnt++;
7437 if (mddev->layout != info->layout)
7438 cnt++;
7439 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
7440 cnt++;
7441 if (cnt == 0)
7442 return 0;
7443 if (cnt > 1)
7444 return -EINVAL;
7445
7446 if (mddev->layout != info->layout) {
7447 /* Change layout
7448 * we don't need to do anything at the md level, the
7449 * personality will take care of it all.
7450 */
7451 if (mddev->pers->check_reshape == NULL)
7452 return -EINVAL;
7453 else {
7454 mddev->new_layout = info->layout;
7455 rv = mddev->pers->check_reshape(mddev);
7456 if (rv)
7457 mddev->new_layout = mddev->layout;
7458 return rv;
7459 }
7460 }
7461 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7462 rv = update_size(mddev, (sector_t)info->size * 2);
7463
7464 if (mddev->raid_disks != info->raid_disks)
7465 rv = update_raid_disks(mddev, info->raid_disks);
7466
7467 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
7468 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
7469 rv = -EINVAL;
7470 goto err;
7471 }
7472 if (mddev->recovery || mddev->sync_thread) {
7473 rv = -EBUSY;
7474 goto err;
7475 }
7476 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
7477 struct bitmap *bitmap;
7478 /* add the bitmap */
7479 if (mddev->bitmap) {
7480 rv = -EEXIST;
7481 goto err;
7482 }
7483 if (mddev->bitmap_info.default_offset == 0) {
7484 rv = -EINVAL;
7485 goto err;
7486 }
7487 mddev->bitmap_info.offset =
7488 mddev->bitmap_info.default_offset;
7489 mddev->bitmap_info.space =
7490 mddev->bitmap_info.default_space;
7491 bitmap = md_bitmap_create(mddev, -1);
7492 mddev_suspend(mddev);
7493 if (!IS_ERR(bitmap)) {
7494 mddev->bitmap = bitmap;
7495 rv = md_bitmap_load(mddev);
7496 } else
7497 rv = PTR_ERR(bitmap);
7498 if (rv)
7499 md_bitmap_destroy(mddev);
7500 mddev_resume(mddev);
7501 } else {
7502 /* remove the bitmap */
7503 if (!mddev->bitmap) {
7504 rv = -ENOENT;
7505 goto err;
7506 }
7507 if (mddev->bitmap->storage.file) {
7508 rv = -EINVAL;
7509 goto err;
7510 }
7511 if (mddev->bitmap_info.nodes) {
7512 /* hold PW on all the bitmap lock */
7513 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
7514 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
7515 rv = -EPERM;
7516 md_cluster_ops->unlock_all_bitmaps(mddev);
7517 goto err;
7518 }
7519
7520 mddev->bitmap_info.nodes = 0;
7521 md_cluster_ops->leave(mddev);
7522 module_put(md_cluster_mod);
7523 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
7524 }
7525 mddev_suspend(mddev);
7526 md_bitmap_destroy(mddev);
7527 mddev_resume(mddev);
7528 mddev->bitmap_info.offset = 0;
7529 }
7530 }
7531 md_update_sb(mddev, 1);
7532 return rv;
7533 err:
7534 return rv;
7535 }
7536
set_disk_faulty(struct mddev * mddev,dev_t dev)7537 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
7538 {
7539 struct md_rdev *rdev;
7540 int err = 0;
7541
7542 if (mddev->pers == NULL)
7543 return -ENODEV;
7544
7545 rcu_read_lock();
7546 rdev = md_find_rdev_rcu(mddev, dev);
7547 if (!rdev)
7548 err = -ENODEV;
7549 else {
7550 md_error(mddev, rdev);
7551 if (test_bit(MD_BROKEN, &mddev->flags))
7552 err = -EBUSY;
7553 }
7554 rcu_read_unlock();
7555 return err;
7556 }
7557
7558 /*
7559 * We have a problem here : there is no easy way to give a CHS
7560 * virtual geometry. We currently pretend that we have a 2 heads
7561 * 4 sectors (with a BIG number of cylinders...). This drives
7562 * dosfs just mad... ;-)
7563 */
md_getgeo(struct block_device * bdev,struct hd_geometry * geo)7564 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
7565 {
7566 struct mddev *mddev = bdev->bd_disk->private_data;
7567
7568 geo->heads = 2;
7569 geo->sectors = 4;
7570 geo->cylinders = mddev->array_sectors / 8;
7571 return 0;
7572 }
7573
md_ioctl_valid(unsigned int cmd)7574 static inline bool md_ioctl_valid(unsigned int cmd)
7575 {
7576 switch (cmd) {
7577 case ADD_NEW_DISK:
7578 case GET_ARRAY_INFO:
7579 case GET_BITMAP_FILE:
7580 case GET_DISK_INFO:
7581 case HOT_ADD_DISK:
7582 case HOT_REMOVE_DISK:
7583 case RAID_VERSION:
7584 case RESTART_ARRAY_RW:
7585 case RUN_ARRAY:
7586 case SET_ARRAY_INFO:
7587 case SET_BITMAP_FILE:
7588 case SET_DISK_FAULTY:
7589 case STOP_ARRAY:
7590 case STOP_ARRAY_RO:
7591 case CLUSTERED_DISK_NACK:
7592 return true;
7593 default:
7594 return false;
7595 }
7596 }
7597
__md_set_array_info(struct mddev * mddev,void __user * argp)7598 static int __md_set_array_info(struct mddev *mddev, void __user *argp)
7599 {
7600 mdu_array_info_t info;
7601 int err;
7602
7603 if (!argp)
7604 memset(&info, 0, sizeof(info));
7605 else if (copy_from_user(&info, argp, sizeof(info)))
7606 return -EFAULT;
7607
7608 if (mddev->pers) {
7609 err = update_array_info(mddev, &info);
7610 if (err)
7611 pr_warn("md: couldn't update array info. %d\n", err);
7612 return err;
7613 }
7614
7615 if (!list_empty(&mddev->disks)) {
7616 pr_warn("md: array %s already has disks!\n", mdname(mddev));
7617 return -EBUSY;
7618 }
7619
7620 if (mddev->raid_disks) {
7621 pr_warn("md: array %s already initialised!\n", mdname(mddev));
7622 return -EBUSY;
7623 }
7624
7625 err = md_set_array_info(mddev, &info);
7626 if (err)
7627 pr_warn("md: couldn't set array info. %d\n", err);
7628
7629 return err;
7630 }
7631
md_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)7632 static int md_ioctl(struct block_device *bdev, blk_mode_t mode,
7633 unsigned int cmd, unsigned long arg)
7634 {
7635 int err = 0;
7636 void __user *argp = (void __user *)arg;
7637 struct mddev *mddev = NULL;
7638
7639 if (!md_ioctl_valid(cmd))
7640 return -ENOTTY;
7641
7642 switch (cmd) {
7643 case RAID_VERSION:
7644 case GET_ARRAY_INFO:
7645 case GET_DISK_INFO:
7646 break;
7647 default:
7648 if (!capable(CAP_SYS_ADMIN))
7649 return -EACCES;
7650 }
7651
7652 /*
7653 * Commands dealing with the RAID driver but not any
7654 * particular array:
7655 */
7656 switch (cmd) {
7657 case RAID_VERSION:
7658 err = get_version(argp);
7659 goto out;
7660 default:;
7661 }
7662
7663 /*
7664 * Commands creating/starting a new array:
7665 */
7666
7667 mddev = bdev->bd_disk->private_data;
7668
7669 /* Some actions do not requires the mutex */
7670 switch (cmd) {
7671 case GET_ARRAY_INFO:
7672 if (!mddev->raid_disks && !mddev->external)
7673 err = -ENODEV;
7674 else
7675 err = get_array_info(mddev, argp);
7676 goto out;
7677
7678 case GET_DISK_INFO:
7679 if (!mddev->raid_disks && !mddev->external)
7680 err = -ENODEV;
7681 else
7682 err = get_disk_info(mddev, argp);
7683 goto out;
7684
7685 case SET_DISK_FAULTY:
7686 err = set_disk_faulty(mddev, new_decode_dev(arg));
7687 goto out;
7688
7689 case GET_BITMAP_FILE:
7690 err = get_bitmap_file(mddev, argp);
7691 goto out;
7692
7693 }
7694
7695 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7696 /* Need to flush page cache, and ensure no-one else opens
7697 * and writes
7698 */
7699 mutex_lock(&mddev->open_mutex);
7700 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
7701 mutex_unlock(&mddev->open_mutex);
7702 err = -EBUSY;
7703 goto out;
7704 }
7705 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) {
7706 mutex_unlock(&mddev->open_mutex);
7707 err = -EBUSY;
7708 goto out;
7709 }
7710 mutex_unlock(&mddev->open_mutex);
7711 sync_blockdev(bdev);
7712 }
7713 err = mddev_lock(mddev);
7714 if (err) {
7715 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7716 err, cmd);
7717 goto out;
7718 }
7719
7720 if (cmd == SET_ARRAY_INFO) {
7721 err = __md_set_array_info(mddev, argp);
7722 goto unlock;
7723 }
7724
7725 /*
7726 * Commands querying/configuring an existing array:
7727 */
7728 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7729 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7730 if ((!mddev->raid_disks && !mddev->external)
7731 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7732 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7733 && cmd != GET_BITMAP_FILE) {
7734 err = -ENODEV;
7735 goto unlock;
7736 }
7737
7738 /*
7739 * Commands even a read-only array can execute:
7740 */
7741 switch (cmd) {
7742 case RESTART_ARRAY_RW:
7743 err = restart_array(mddev);
7744 goto unlock;
7745
7746 case STOP_ARRAY:
7747 err = do_md_stop(mddev, 0, bdev);
7748 goto unlock;
7749
7750 case STOP_ARRAY_RO:
7751 err = md_set_readonly(mddev, bdev);
7752 goto unlock;
7753
7754 case HOT_REMOVE_DISK:
7755 err = hot_remove_disk(mddev, new_decode_dev(arg));
7756 goto unlock;
7757
7758 case ADD_NEW_DISK:
7759 /* We can support ADD_NEW_DISK on read-only arrays
7760 * only if we are re-adding a preexisting device.
7761 * So require mddev->pers and MD_DISK_SYNC.
7762 */
7763 if (mddev->pers) {
7764 mdu_disk_info_t info;
7765 if (copy_from_user(&info, argp, sizeof(info)))
7766 err = -EFAULT;
7767 else if (!(info.state & (1<<MD_DISK_SYNC)))
7768 /* Need to clear read-only for this */
7769 break;
7770 else
7771 err = md_add_new_disk(mddev, &info);
7772 goto unlock;
7773 }
7774 break;
7775 }
7776
7777 /*
7778 * The remaining ioctls are changing the state of the
7779 * superblock, so we do not allow them on read-only arrays.
7780 */
7781 if (!md_is_rdwr(mddev) && mddev->pers) {
7782 if (mddev->ro != MD_AUTO_READ) {
7783 err = -EROFS;
7784 goto unlock;
7785 }
7786 mddev->ro = MD_RDWR;
7787 sysfs_notify_dirent_safe(mddev->sysfs_state);
7788 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7789 /* mddev_unlock will wake thread */
7790 /* If a device failed while we were read-only, we
7791 * need to make sure the metadata is updated now.
7792 */
7793 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7794 mddev_unlock(mddev);
7795 wait_event(mddev->sb_wait,
7796 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7797 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7798 mddev_lock_nointr(mddev);
7799 }
7800 }
7801
7802 switch (cmd) {
7803 case ADD_NEW_DISK:
7804 {
7805 mdu_disk_info_t info;
7806 if (copy_from_user(&info, argp, sizeof(info)))
7807 err = -EFAULT;
7808 else
7809 err = md_add_new_disk(mddev, &info);
7810 goto unlock;
7811 }
7812
7813 case CLUSTERED_DISK_NACK:
7814 if (mddev_is_clustered(mddev))
7815 md_cluster_ops->new_disk_ack(mddev, false);
7816 else
7817 err = -EINVAL;
7818 goto unlock;
7819
7820 case HOT_ADD_DISK:
7821 err = hot_add_disk(mddev, new_decode_dev(arg));
7822 goto unlock;
7823
7824 case RUN_ARRAY:
7825 err = do_md_run(mddev);
7826 goto unlock;
7827
7828 case SET_BITMAP_FILE:
7829 err = set_bitmap_file(mddev, (int)arg);
7830 goto unlock;
7831
7832 default:
7833 err = -EINVAL;
7834 goto unlock;
7835 }
7836
7837 unlock:
7838 if (mddev->hold_active == UNTIL_IOCTL &&
7839 err != -EINVAL)
7840 mddev->hold_active = 0;
7841 mddev_unlock(mddev);
7842 out:
7843 if (cmd == STOP_ARRAY_RO || (err && cmd == STOP_ARRAY))
7844 clear_bit(MD_CLOSING, &mddev->flags);
7845 return err;
7846 }
7847 #ifdef CONFIG_COMPAT
md_compat_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)7848 static int md_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
7849 unsigned int cmd, unsigned long arg)
7850 {
7851 switch (cmd) {
7852 case HOT_REMOVE_DISK:
7853 case HOT_ADD_DISK:
7854 case SET_DISK_FAULTY:
7855 case SET_BITMAP_FILE:
7856 /* These take in integer arg, do not convert */
7857 break;
7858 default:
7859 arg = (unsigned long)compat_ptr(arg);
7860 break;
7861 }
7862
7863 return md_ioctl(bdev, mode, cmd, arg);
7864 }
7865 #endif /* CONFIG_COMPAT */
7866
md_set_read_only(struct block_device * bdev,bool ro)7867 static int md_set_read_only(struct block_device *bdev, bool ro)
7868 {
7869 struct mddev *mddev = bdev->bd_disk->private_data;
7870 int err;
7871
7872 err = mddev_lock(mddev);
7873 if (err)
7874 return err;
7875
7876 if (!mddev->raid_disks && !mddev->external) {
7877 err = -ENODEV;
7878 goto out_unlock;
7879 }
7880
7881 /*
7882 * Transitioning to read-auto need only happen for arrays that call
7883 * md_write_start and which are not ready for writes yet.
7884 */
7885 if (!ro && mddev->ro == MD_RDONLY && mddev->pers) {
7886 err = restart_array(mddev);
7887 if (err)
7888 goto out_unlock;
7889 mddev->ro = MD_AUTO_READ;
7890 }
7891
7892 out_unlock:
7893 mddev_unlock(mddev);
7894 return err;
7895 }
7896
md_open(struct gendisk * disk,blk_mode_t mode)7897 static int md_open(struct gendisk *disk, blk_mode_t mode)
7898 {
7899 struct mddev *mddev;
7900 int err;
7901
7902 spin_lock(&all_mddevs_lock);
7903 mddev = mddev_get(disk->private_data);
7904 spin_unlock(&all_mddevs_lock);
7905 if (!mddev)
7906 return -ENODEV;
7907
7908 err = mutex_lock_interruptible(&mddev->open_mutex);
7909 if (err)
7910 goto out;
7911
7912 err = -ENODEV;
7913 if (test_bit(MD_CLOSING, &mddev->flags))
7914 goto out_unlock;
7915
7916 atomic_inc(&mddev->openers);
7917 mutex_unlock(&mddev->open_mutex);
7918
7919 disk_check_media_change(disk);
7920 return 0;
7921
7922 out_unlock:
7923 mutex_unlock(&mddev->open_mutex);
7924 out:
7925 mddev_put(mddev);
7926 return err;
7927 }
7928
md_release(struct gendisk * disk)7929 static void md_release(struct gendisk *disk)
7930 {
7931 struct mddev *mddev = disk->private_data;
7932
7933 BUG_ON(!mddev);
7934 atomic_dec(&mddev->openers);
7935 mddev_put(mddev);
7936 }
7937
md_check_events(struct gendisk * disk,unsigned int clearing)7938 static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing)
7939 {
7940 struct mddev *mddev = disk->private_data;
7941 unsigned int ret = 0;
7942
7943 if (mddev->changed)
7944 ret = DISK_EVENT_MEDIA_CHANGE;
7945 mddev->changed = 0;
7946 return ret;
7947 }
7948
md_free_disk(struct gendisk * disk)7949 static void md_free_disk(struct gendisk *disk)
7950 {
7951 struct mddev *mddev = disk->private_data;
7952
7953 percpu_ref_exit(&mddev->writes_pending);
7954 mddev_free(mddev);
7955 }
7956
7957 const struct block_device_operations md_fops =
7958 {
7959 .owner = THIS_MODULE,
7960 .submit_bio = md_submit_bio,
7961 .open = md_open,
7962 .release = md_release,
7963 .ioctl = md_ioctl,
7964 #ifdef CONFIG_COMPAT
7965 .compat_ioctl = md_compat_ioctl,
7966 #endif
7967 .getgeo = md_getgeo,
7968 .check_events = md_check_events,
7969 .set_read_only = md_set_read_only,
7970 .free_disk = md_free_disk,
7971 };
7972
md_thread(void * arg)7973 static int md_thread(void *arg)
7974 {
7975 struct md_thread *thread = arg;
7976
7977 /*
7978 * md_thread is a 'system-thread', it's priority should be very
7979 * high. We avoid resource deadlocks individually in each
7980 * raid personality. (RAID5 does preallocation) We also use RR and
7981 * the very same RT priority as kswapd, thus we will never get
7982 * into a priority inversion deadlock.
7983 *
7984 * we definitely have to have equal or higher priority than
7985 * bdflush, otherwise bdflush will deadlock if there are too
7986 * many dirty RAID5 blocks.
7987 */
7988
7989 allow_signal(SIGKILL);
7990 while (!kthread_should_stop()) {
7991
7992 /* We need to wait INTERRUPTIBLE so that
7993 * we don't add to the load-average.
7994 * That means we need to be sure no signals are
7995 * pending
7996 */
7997 if (signal_pending(current))
7998 flush_signals(current);
7999
8000 wait_event_interruptible_timeout
8001 (thread->wqueue,
8002 test_bit(THREAD_WAKEUP, &thread->flags)
8003 || kthread_should_stop() || kthread_should_park(),
8004 thread->timeout);
8005
8006 clear_bit(THREAD_WAKEUP, &thread->flags);
8007 if (kthread_should_park())
8008 kthread_parkme();
8009 if (!kthread_should_stop())
8010 thread->run(thread);
8011 }
8012
8013 return 0;
8014 }
8015
md_wakeup_thread_directly(struct md_thread __rcu * thread)8016 static void md_wakeup_thread_directly(struct md_thread __rcu *thread)
8017 {
8018 struct md_thread *t;
8019
8020 rcu_read_lock();
8021 t = rcu_dereference(thread);
8022 if (t)
8023 wake_up_process(t->tsk);
8024 rcu_read_unlock();
8025 }
8026
md_wakeup_thread(struct md_thread __rcu * thread)8027 void md_wakeup_thread(struct md_thread __rcu *thread)
8028 {
8029 struct md_thread *t;
8030
8031 rcu_read_lock();
8032 t = rcu_dereference(thread);
8033 if (t) {
8034 pr_debug("md: waking up MD thread %s.\n", t->tsk->comm);
8035 set_bit(THREAD_WAKEUP, &t->flags);
8036 wake_up(&t->wqueue);
8037 }
8038 rcu_read_unlock();
8039 }
8040 EXPORT_SYMBOL(md_wakeup_thread);
8041
md_register_thread(void (* run)(struct md_thread *),struct mddev * mddev,const char * name)8042 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
8043 struct mddev *mddev, const char *name)
8044 {
8045 struct md_thread *thread;
8046
8047 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
8048 if (!thread)
8049 return NULL;
8050
8051 init_waitqueue_head(&thread->wqueue);
8052
8053 thread->run = run;
8054 thread->mddev = mddev;
8055 thread->timeout = MAX_SCHEDULE_TIMEOUT;
8056 thread->tsk = kthread_run(md_thread, thread,
8057 "%s_%s",
8058 mdname(thread->mddev),
8059 name);
8060 if (IS_ERR(thread->tsk)) {
8061 kfree(thread);
8062 return NULL;
8063 }
8064 return thread;
8065 }
8066 EXPORT_SYMBOL(md_register_thread);
8067
md_unregister_thread(struct mddev * mddev,struct md_thread __rcu ** threadp)8068 void md_unregister_thread(struct mddev *mddev, struct md_thread __rcu **threadp)
8069 {
8070 struct md_thread *thread = rcu_dereference_protected(*threadp,
8071 lockdep_is_held(&mddev->reconfig_mutex));
8072
8073 if (!thread)
8074 return;
8075
8076 rcu_assign_pointer(*threadp, NULL);
8077 synchronize_rcu();
8078
8079 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
8080 kthread_stop(thread->tsk);
8081 kfree(thread);
8082 }
8083 EXPORT_SYMBOL(md_unregister_thread);
8084
md_error(struct mddev * mddev,struct md_rdev * rdev)8085 void md_error(struct mddev *mddev, struct md_rdev *rdev)
8086 {
8087 if (!rdev || test_bit(Faulty, &rdev->flags))
8088 return;
8089
8090 if (!mddev->pers || !mddev->pers->error_handler)
8091 return;
8092 mddev->pers->error_handler(mddev, rdev);
8093
8094 if (mddev->pers->level == 0 || mddev->pers->level == LEVEL_LINEAR)
8095 return;
8096
8097 if (mddev->degraded && !test_bit(MD_BROKEN, &mddev->flags))
8098 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8099 sysfs_notify_dirent_safe(rdev->sysfs_state);
8100 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8101 if (!test_bit(MD_BROKEN, &mddev->flags)) {
8102 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8103 md_wakeup_thread(mddev->thread);
8104 }
8105 if (mddev->event_work.func)
8106 queue_work(md_misc_wq, &mddev->event_work);
8107 md_new_event();
8108 }
8109 EXPORT_SYMBOL(md_error);
8110
8111 /* seq_file implementation /proc/mdstat */
8112
status_unused(struct seq_file * seq)8113 static void status_unused(struct seq_file *seq)
8114 {
8115 int i = 0;
8116 struct md_rdev *rdev;
8117
8118 seq_printf(seq, "unused devices: ");
8119
8120 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
8121 i++;
8122 seq_printf(seq, "%pg ", rdev->bdev);
8123 }
8124 if (!i)
8125 seq_printf(seq, "<none>");
8126
8127 seq_printf(seq, "\n");
8128 }
8129
status_personalities(struct seq_file * seq)8130 static void status_personalities(struct seq_file *seq)
8131 {
8132 struct md_personality *pers;
8133
8134 seq_puts(seq, "Personalities : ");
8135 spin_lock(&pers_lock);
8136 list_for_each_entry(pers, &pers_list, list)
8137 seq_printf(seq, "[%s] ", pers->name);
8138
8139 spin_unlock(&pers_lock);
8140 seq_puts(seq, "\n");
8141 }
8142
status_resync(struct seq_file * seq,struct mddev * mddev)8143 static int status_resync(struct seq_file *seq, struct mddev *mddev)
8144 {
8145 sector_t max_sectors, resync, res;
8146 unsigned long dt, db = 0;
8147 sector_t rt, curr_mark_cnt, resync_mark_cnt;
8148 int scale, recovery_active;
8149 unsigned int per_milli;
8150
8151 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8152 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8153 max_sectors = mddev->resync_max_sectors;
8154 else
8155 max_sectors = mddev->dev_sectors;
8156
8157 resync = mddev->curr_resync;
8158 if (resync < MD_RESYNC_ACTIVE) {
8159 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
8160 /* Still cleaning up */
8161 resync = max_sectors;
8162 } else if (resync > max_sectors) {
8163 resync = max_sectors;
8164 } else {
8165 res = atomic_read(&mddev->recovery_active);
8166 /*
8167 * Resync has started, but the subtraction has overflowed or
8168 * yielded one of the special values. Force it to active to
8169 * ensure the status reports an active resync.
8170 */
8171 if (resync < res || resync - res < MD_RESYNC_ACTIVE)
8172 resync = MD_RESYNC_ACTIVE;
8173 else
8174 resync -= res;
8175 }
8176
8177 if (resync == MD_RESYNC_NONE) {
8178 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) {
8179 struct md_rdev *rdev;
8180
8181 rdev_for_each(rdev, mddev)
8182 if (rdev->raid_disk >= 0 &&
8183 !test_bit(Faulty, &rdev->flags) &&
8184 rdev->recovery_offset != MaxSector &&
8185 rdev->recovery_offset) {
8186 seq_printf(seq, "\trecover=REMOTE");
8187 return 1;
8188 }
8189 if (mddev->reshape_position != MaxSector)
8190 seq_printf(seq, "\treshape=REMOTE");
8191 else
8192 seq_printf(seq, "\tresync=REMOTE");
8193 return 1;
8194 }
8195 if (mddev->recovery_cp < MaxSector) {
8196 seq_printf(seq, "\tresync=PENDING");
8197 return 1;
8198 }
8199 return 0;
8200 }
8201 if (resync < MD_RESYNC_ACTIVE) {
8202 seq_printf(seq, "\tresync=DELAYED");
8203 return 1;
8204 }
8205
8206 WARN_ON(max_sectors == 0);
8207 /* Pick 'scale' such that (resync>>scale)*1000 will fit
8208 * in a sector_t, and (max_sectors>>scale) will fit in a
8209 * u32, as those are the requirements for sector_div.
8210 * Thus 'scale' must be at least 10
8211 */
8212 scale = 10;
8213 if (sizeof(sector_t) > sizeof(unsigned long)) {
8214 while ( max_sectors/2 > (1ULL<<(scale+32)))
8215 scale++;
8216 }
8217 res = (resync>>scale)*1000;
8218 sector_div(res, (u32)((max_sectors>>scale)+1));
8219
8220 per_milli = res;
8221 {
8222 int i, x = per_milli/50, y = 20-x;
8223 seq_printf(seq, "[");
8224 for (i = 0; i < x; i++)
8225 seq_printf(seq, "=");
8226 seq_printf(seq, ">");
8227 for (i = 0; i < y; i++)
8228 seq_printf(seq, ".");
8229 seq_printf(seq, "] ");
8230 }
8231 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
8232 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
8233 "reshape" :
8234 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
8235 "check" :
8236 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
8237 "resync" : "recovery"))),
8238 per_milli/10, per_milli % 10,
8239 (unsigned long long) resync/2,
8240 (unsigned long long) max_sectors/2);
8241
8242 /*
8243 * dt: time from mark until now
8244 * db: blocks written from mark until now
8245 * rt: remaining time
8246 *
8247 * rt is a sector_t, which is always 64bit now. We are keeping
8248 * the original algorithm, but it is not really necessary.
8249 *
8250 * Original algorithm:
8251 * So we divide before multiply in case it is 32bit and close
8252 * to the limit.
8253 * We scale the divisor (db) by 32 to avoid losing precision
8254 * near the end of resync when the number of remaining sectors
8255 * is close to 'db'.
8256 * We then divide rt by 32 after multiplying by db to compensate.
8257 * The '+1' avoids division by zero if db is very small.
8258 */
8259 dt = ((jiffies - mddev->resync_mark) / HZ);
8260 if (!dt) dt++;
8261
8262 curr_mark_cnt = mddev->curr_mark_cnt;
8263 recovery_active = atomic_read(&mddev->recovery_active);
8264 resync_mark_cnt = mddev->resync_mark_cnt;
8265
8266 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt))
8267 db = curr_mark_cnt - (recovery_active + resync_mark_cnt);
8268
8269 rt = max_sectors - resync; /* number of remaining sectors */
8270 rt = div64_u64(rt, db/32+1);
8271 rt *= dt;
8272 rt >>= 5;
8273
8274 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
8275 ((unsigned long)rt % 60)/6);
8276
8277 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
8278 return 1;
8279 }
8280
md_seq_start(struct seq_file * seq,loff_t * pos)8281 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
8282 __acquires(&all_mddevs_lock)
8283 {
8284 seq->poll_event = atomic_read(&md_event_count);
8285 spin_lock(&all_mddevs_lock);
8286
8287 return seq_list_start_head(&all_mddevs, *pos);
8288 }
8289
md_seq_next(struct seq_file * seq,void * v,loff_t * pos)8290 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
8291 {
8292 return seq_list_next(v, &all_mddevs, pos);
8293 }
8294
md_seq_stop(struct seq_file * seq,void * v)8295 static void md_seq_stop(struct seq_file *seq, void *v)
8296 __releases(&all_mddevs_lock)
8297 {
8298 spin_unlock(&all_mddevs_lock);
8299 }
8300
md_bitmap_status(struct seq_file * seq,struct mddev * mddev)8301 static void md_bitmap_status(struct seq_file *seq, struct mddev *mddev)
8302 {
8303 struct md_bitmap_stats stats;
8304 unsigned long used_pages;
8305 unsigned long chunk_kb;
8306 int err;
8307
8308 err = md_bitmap_get_stats(mddev->bitmap, &stats);
8309 if (err)
8310 return;
8311
8312 chunk_kb = mddev->bitmap_info.chunksize >> 10;
8313 used_pages = stats.pages - stats.missing_pages;
8314
8315 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], %lu%s chunk",
8316 used_pages, stats.pages, used_pages << (PAGE_SHIFT - 10),
8317 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
8318 chunk_kb ? "KB" : "B");
8319
8320 if (stats.file) {
8321 seq_puts(seq, ", file: ");
8322 seq_file_path(seq, stats.file, " \t\n");
8323 }
8324
8325 seq_putc(seq, '\n');
8326 }
8327
md_seq_show(struct seq_file * seq,void * v)8328 static int md_seq_show(struct seq_file *seq, void *v)
8329 {
8330 struct mddev *mddev;
8331 sector_t sectors;
8332 struct md_rdev *rdev;
8333
8334 if (v == &all_mddevs) {
8335 status_personalities(seq);
8336 if (list_empty(&all_mddevs))
8337 status_unused(seq);
8338 return 0;
8339 }
8340
8341 mddev = list_entry(v, struct mddev, all_mddevs);
8342 if (!mddev_get(mddev))
8343 return 0;
8344
8345 spin_unlock(&all_mddevs_lock);
8346
8347 /* prevent bitmap to be freed after checking */
8348 mutex_lock(&mddev->bitmap_info.mutex);
8349
8350 spin_lock(&mddev->lock);
8351 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
8352 seq_printf(seq, "%s : %sactive", mdname(mddev),
8353 mddev->pers ? "" : "in");
8354 if (mddev->pers) {
8355 if (mddev->ro == MD_RDONLY)
8356 seq_printf(seq, " (read-only)");
8357 if (mddev->ro == MD_AUTO_READ)
8358 seq_printf(seq, " (auto-read-only)");
8359 seq_printf(seq, " %s", mddev->pers->name);
8360 }
8361
8362 sectors = 0;
8363 rcu_read_lock();
8364 rdev_for_each_rcu(rdev, mddev) {
8365 seq_printf(seq, " %pg[%d]", rdev->bdev, rdev->desc_nr);
8366
8367 if (test_bit(WriteMostly, &rdev->flags))
8368 seq_printf(seq, "(W)");
8369 if (test_bit(Journal, &rdev->flags))
8370 seq_printf(seq, "(J)");
8371 if (test_bit(Faulty, &rdev->flags)) {
8372 seq_printf(seq, "(F)");
8373 continue;
8374 }
8375 if (rdev->raid_disk < 0)
8376 seq_printf(seq, "(S)"); /* spare */
8377 if (test_bit(Replacement, &rdev->flags))
8378 seq_printf(seq, "(R)");
8379 sectors += rdev->sectors;
8380 }
8381 rcu_read_unlock();
8382
8383 if (!list_empty(&mddev->disks)) {
8384 if (mddev->pers)
8385 seq_printf(seq, "\n %llu blocks",
8386 (unsigned long long)
8387 mddev->array_sectors / 2);
8388 else
8389 seq_printf(seq, "\n %llu blocks",
8390 (unsigned long long)sectors / 2);
8391 }
8392 if (mddev->persistent) {
8393 if (mddev->major_version != 0 ||
8394 mddev->minor_version != 90) {
8395 seq_printf(seq," super %d.%d",
8396 mddev->major_version,
8397 mddev->minor_version);
8398 }
8399 } else if (mddev->external)
8400 seq_printf(seq, " super external:%s",
8401 mddev->metadata_type);
8402 else
8403 seq_printf(seq, " super non-persistent");
8404
8405 if (mddev->pers) {
8406 mddev->pers->status(seq, mddev);
8407 seq_printf(seq, "\n ");
8408 if (mddev->pers->sync_request) {
8409 if (status_resync(seq, mddev))
8410 seq_printf(seq, "\n ");
8411 }
8412 } else
8413 seq_printf(seq, "\n ");
8414
8415 md_bitmap_status(seq, mddev);
8416
8417 seq_printf(seq, "\n");
8418 }
8419 spin_unlock(&mddev->lock);
8420 mutex_unlock(&mddev->bitmap_info.mutex);
8421 spin_lock(&all_mddevs_lock);
8422
8423 if (mddev == list_last_entry(&all_mddevs, struct mddev, all_mddevs))
8424 status_unused(seq);
8425
8426 mddev_put_locked(mddev);
8427 return 0;
8428 }
8429
8430 static const struct seq_operations md_seq_ops = {
8431 .start = md_seq_start,
8432 .next = md_seq_next,
8433 .stop = md_seq_stop,
8434 .show = md_seq_show,
8435 };
8436
md_seq_open(struct inode * inode,struct file * file)8437 static int md_seq_open(struct inode *inode, struct file *file)
8438 {
8439 struct seq_file *seq;
8440 int error;
8441
8442 error = seq_open(file, &md_seq_ops);
8443 if (error)
8444 return error;
8445
8446 seq = file->private_data;
8447 seq->poll_event = atomic_read(&md_event_count);
8448 return error;
8449 }
8450
8451 static int md_unloading;
mdstat_poll(struct file * filp,poll_table * wait)8452 static __poll_t mdstat_poll(struct file *filp, poll_table *wait)
8453 {
8454 struct seq_file *seq = filp->private_data;
8455 __poll_t mask;
8456
8457 if (md_unloading)
8458 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
8459 poll_wait(filp, &md_event_waiters, wait);
8460
8461 /* always allow read */
8462 mask = EPOLLIN | EPOLLRDNORM;
8463
8464 if (seq->poll_event != atomic_read(&md_event_count))
8465 mask |= EPOLLERR | EPOLLPRI;
8466 return mask;
8467 }
8468
8469 static const struct proc_ops mdstat_proc_ops = {
8470 .proc_open = md_seq_open,
8471 .proc_read = seq_read,
8472 .proc_lseek = seq_lseek,
8473 .proc_release = seq_release,
8474 .proc_poll = mdstat_poll,
8475 };
8476
register_md_personality(struct md_personality * p)8477 int register_md_personality(struct md_personality *p)
8478 {
8479 pr_debug("md: %s personality registered for level %d\n",
8480 p->name, p->level);
8481 spin_lock(&pers_lock);
8482 list_add_tail(&p->list, &pers_list);
8483 spin_unlock(&pers_lock);
8484 return 0;
8485 }
8486 EXPORT_SYMBOL(register_md_personality);
8487
unregister_md_personality(struct md_personality * p)8488 int unregister_md_personality(struct md_personality *p)
8489 {
8490 pr_debug("md: %s personality unregistered\n", p->name);
8491 spin_lock(&pers_lock);
8492 list_del_init(&p->list);
8493 spin_unlock(&pers_lock);
8494 return 0;
8495 }
8496 EXPORT_SYMBOL(unregister_md_personality);
8497
register_md_cluster_operations(struct md_cluster_operations * ops,struct module * module)8498 int register_md_cluster_operations(struct md_cluster_operations *ops,
8499 struct module *module)
8500 {
8501 int ret = 0;
8502 spin_lock(&pers_lock);
8503 if (md_cluster_ops != NULL)
8504 ret = -EALREADY;
8505 else {
8506 md_cluster_ops = ops;
8507 md_cluster_mod = module;
8508 }
8509 spin_unlock(&pers_lock);
8510 return ret;
8511 }
8512 EXPORT_SYMBOL(register_md_cluster_operations);
8513
unregister_md_cluster_operations(void)8514 int unregister_md_cluster_operations(void)
8515 {
8516 spin_lock(&pers_lock);
8517 md_cluster_ops = NULL;
8518 spin_unlock(&pers_lock);
8519 return 0;
8520 }
8521 EXPORT_SYMBOL(unregister_md_cluster_operations);
8522
md_setup_cluster(struct mddev * mddev,int nodes)8523 int md_setup_cluster(struct mddev *mddev, int nodes)
8524 {
8525 int ret;
8526 if (!md_cluster_ops)
8527 request_module("md-cluster");
8528 spin_lock(&pers_lock);
8529 /* ensure module won't be unloaded */
8530 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
8531 pr_warn("can't find md-cluster module or get its reference.\n");
8532 spin_unlock(&pers_lock);
8533 return -ENOENT;
8534 }
8535 spin_unlock(&pers_lock);
8536
8537 ret = md_cluster_ops->join(mddev, nodes);
8538 if (!ret)
8539 mddev->safemode_delay = 0;
8540 return ret;
8541 }
8542
md_cluster_stop(struct mddev * mddev)8543 void md_cluster_stop(struct mddev *mddev)
8544 {
8545 if (!md_cluster_ops)
8546 return;
8547 md_cluster_ops->leave(mddev);
8548 module_put(md_cluster_mod);
8549 }
8550
is_mddev_idle(struct mddev * mddev,int init)8551 static int is_mddev_idle(struct mddev *mddev, int init)
8552 {
8553 struct md_rdev *rdev;
8554 int idle;
8555 int curr_events;
8556
8557 idle = 1;
8558 rcu_read_lock();
8559 rdev_for_each_rcu(rdev, mddev) {
8560 struct gendisk *disk = rdev->bdev->bd_disk;
8561 curr_events = (int)part_stat_read_accum(disk->part0, sectors) -
8562 atomic_read(&disk->sync_io);
8563 /* sync IO will cause sync_io to increase before the disk_stats
8564 * as sync_io is counted when a request starts, and
8565 * disk_stats is counted when it completes.
8566 * So resync activity will cause curr_events to be smaller than
8567 * when there was no such activity.
8568 * non-sync IO will cause disk_stat to increase without
8569 * increasing sync_io so curr_events will (eventually)
8570 * be larger than it was before. Once it becomes
8571 * substantially larger, the test below will cause
8572 * the array to appear non-idle, and resync will slow
8573 * down.
8574 * If there is a lot of outstanding resync activity when
8575 * we set last_event to curr_events, then all that activity
8576 * completing might cause the array to appear non-idle
8577 * and resync will be slowed down even though there might
8578 * not have been non-resync activity. This will only
8579 * happen once though. 'last_events' will soon reflect
8580 * the state where there is little or no outstanding
8581 * resync requests, and further resync activity will
8582 * always make curr_events less than last_events.
8583 *
8584 */
8585 if (init || curr_events - rdev->last_events > 64) {
8586 rdev->last_events = curr_events;
8587 idle = 0;
8588 }
8589 }
8590 rcu_read_unlock();
8591 return idle;
8592 }
8593
md_done_sync(struct mddev * mddev,int blocks,int ok)8594 void md_done_sync(struct mddev *mddev, int blocks, int ok)
8595 {
8596 /* another "blocks" (512byte) blocks have been synced */
8597 atomic_sub(blocks, &mddev->recovery_active);
8598 wake_up(&mddev->recovery_wait);
8599 if (!ok) {
8600 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8601 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
8602 md_wakeup_thread(mddev->thread);
8603 // stop recovery, signal do_sync ....
8604 }
8605 }
8606 EXPORT_SYMBOL(md_done_sync);
8607
8608 /* md_write_start(mddev, bi)
8609 * If we need to update some array metadata (e.g. 'active' flag
8610 * in superblock) before writing, schedule a superblock update
8611 * and wait for it to complete.
8612 * A return value of 'false' means that the write wasn't recorded
8613 * and cannot proceed as the array is being suspend.
8614 */
md_write_start(struct mddev * mddev,struct bio * bi)8615 bool md_write_start(struct mddev *mddev, struct bio *bi)
8616 {
8617 int did_change = 0;
8618
8619 if (bio_data_dir(bi) != WRITE)
8620 return true;
8621
8622 BUG_ON(mddev->ro == MD_RDONLY);
8623 if (mddev->ro == MD_AUTO_READ) {
8624 /* need to switch to read/write */
8625 mddev->ro = MD_RDWR;
8626 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8627 md_wakeup_thread(mddev->thread);
8628 md_wakeup_thread(mddev->sync_thread);
8629 did_change = 1;
8630 }
8631 rcu_read_lock();
8632 percpu_ref_get(&mddev->writes_pending);
8633 smp_mb(); /* Match smp_mb in set_in_sync() */
8634 if (mddev->safemode == 1)
8635 mddev->safemode = 0;
8636 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */
8637 if (mddev->in_sync || mddev->sync_checkers) {
8638 spin_lock(&mddev->lock);
8639 if (mddev->in_sync) {
8640 mddev->in_sync = 0;
8641 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8642 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8643 md_wakeup_thread(mddev->thread);
8644 did_change = 1;
8645 }
8646 spin_unlock(&mddev->lock);
8647 }
8648 rcu_read_unlock();
8649 if (did_change)
8650 sysfs_notify_dirent_safe(mddev->sysfs_state);
8651 if (!mddev->has_superblocks)
8652 return true;
8653 wait_event(mddev->sb_wait,
8654 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) ||
8655 is_md_suspended(mddev));
8656 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
8657 percpu_ref_put(&mddev->writes_pending);
8658 return false;
8659 }
8660 return true;
8661 }
8662 EXPORT_SYMBOL(md_write_start);
8663
8664 /* md_write_inc can only be called when md_write_start() has
8665 * already been called at least once of the current request.
8666 * It increments the counter and is useful when a single request
8667 * is split into several parts. Each part causes an increment and
8668 * so needs a matching md_write_end().
8669 * Unlike md_write_start(), it is safe to call md_write_inc() inside
8670 * a spinlocked region.
8671 */
md_write_inc(struct mddev * mddev,struct bio * bi)8672 void md_write_inc(struct mddev *mddev, struct bio *bi)
8673 {
8674 if (bio_data_dir(bi) != WRITE)
8675 return;
8676 WARN_ON_ONCE(mddev->in_sync || !md_is_rdwr(mddev));
8677 percpu_ref_get(&mddev->writes_pending);
8678 }
8679 EXPORT_SYMBOL(md_write_inc);
8680
md_write_end(struct mddev * mddev)8681 void md_write_end(struct mddev *mddev)
8682 {
8683 percpu_ref_put(&mddev->writes_pending);
8684
8685 if (mddev->safemode == 2)
8686 md_wakeup_thread(mddev->thread);
8687 else if (mddev->safemode_delay)
8688 /* The roundup() ensures this only performs locking once
8689 * every ->safemode_delay jiffies
8690 */
8691 mod_timer(&mddev->safemode_timer,
8692 roundup(jiffies, mddev->safemode_delay) +
8693 mddev->safemode_delay);
8694 }
8695
8696 EXPORT_SYMBOL(md_write_end);
8697
8698 /* This is used by raid0 and raid10 */
md_submit_discard_bio(struct mddev * mddev,struct md_rdev * rdev,struct bio * bio,sector_t start,sector_t size)8699 void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev,
8700 struct bio *bio, sector_t start, sector_t size)
8701 {
8702 struct bio *discard_bio = NULL;
8703
8704 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO,
8705 &discard_bio) || !discard_bio)
8706 return;
8707
8708 bio_chain(discard_bio, bio);
8709 bio_clone_blkg_association(discard_bio, bio);
8710 if (mddev->gendisk)
8711 trace_block_bio_remap(discard_bio,
8712 disk_devt(mddev->gendisk),
8713 bio->bi_iter.bi_sector);
8714 submit_bio_noacct(discard_bio);
8715 }
8716 EXPORT_SYMBOL_GPL(md_submit_discard_bio);
8717
md_bitmap_start(struct mddev * mddev,struct md_io_clone * md_io_clone)8718 static void md_bitmap_start(struct mddev *mddev,
8719 struct md_io_clone *md_io_clone)
8720 {
8721 if (mddev->pers->bitmap_sector)
8722 mddev->pers->bitmap_sector(mddev, &md_io_clone->offset,
8723 &md_io_clone->sectors);
8724
8725 md_bitmap_startwrite(mddev->bitmap, md_io_clone->offset,
8726 md_io_clone->sectors);
8727 }
8728
md_bitmap_end(struct mddev * mddev,struct md_io_clone * md_io_clone)8729 static void md_bitmap_end(struct mddev *mddev, struct md_io_clone *md_io_clone)
8730 {
8731 md_bitmap_endwrite(mddev->bitmap, md_io_clone->offset,
8732 md_io_clone->sectors);
8733 }
8734
md_end_clone_io(struct bio * bio)8735 static void md_end_clone_io(struct bio *bio)
8736 {
8737 struct md_io_clone *md_io_clone = bio->bi_private;
8738 struct bio *orig_bio = md_io_clone->orig_bio;
8739 struct mddev *mddev = md_io_clone->mddev;
8740
8741 if (bio_data_dir(orig_bio) == WRITE && mddev->bitmap)
8742 md_bitmap_end(mddev, md_io_clone);
8743
8744 if (bio->bi_status && !orig_bio->bi_status)
8745 orig_bio->bi_status = bio->bi_status;
8746
8747 if (md_io_clone->start_time)
8748 bio_end_io_acct(orig_bio, md_io_clone->start_time);
8749
8750 bio_put(bio);
8751 bio_endio(orig_bio);
8752 percpu_ref_put(&mddev->active_io);
8753 }
8754
md_clone_bio(struct mddev * mddev,struct bio ** bio)8755 static void md_clone_bio(struct mddev *mddev, struct bio **bio)
8756 {
8757 struct block_device *bdev = (*bio)->bi_bdev;
8758 struct md_io_clone *md_io_clone;
8759 struct bio *clone =
8760 bio_alloc_clone(bdev, *bio, GFP_NOIO, &mddev->io_clone_set);
8761
8762 md_io_clone = container_of(clone, struct md_io_clone, bio_clone);
8763 md_io_clone->orig_bio = *bio;
8764 md_io_clone->mddev = mddev;
8765 if (blk_queue_io_stat(bdev->bd_disk->queue))
8766 md_io_clone->start_time = bio_start_io_acct(*bio);
8767
8768 if (bio_data_dir(*bio) == WRITE && mddev->bitmap) {
8769 md_io_clone->offset = (*bio)->bi_iter.bi_sector;
8770 md_io_clone->sectors = bio_sectors(*bio);
8771 md_bitmap_start(mddev, md_io_clone);
8772 }
8773
8774 clone->bi_end_io = md_end_clone_io;
8775 clone->bi_private = md_io_clone;
8776 *bio = clone;
8777 }
8778
md_account_bio(struct mddev * mddev,struct bio ** bio)8779 void md_account_bio(struct mddev *mddev, struct bio **bio)
8780 {
8781 percpu_ref_get(&mddev->active_io);
8782 md_clone_bio(mddev, bio);
8783 }
8784 EXPORT_SYMBOL_GPL(md_account_bio);
8785
8786 /* md_allow_write(mddev)
8787 * Calling this ensures that the array is marked 'active' so that writes
8788 * may proceed without blocking. It is important to call this before
8789 * attempting a GFP_KERNEL allocation while holding the mddev lock.
8790 * Must be called with mddev_lock held.
8791 */
md_allow_write(struct mddev * mddev)8792 void md_allow_write(struct mddev *mddev)
8793 {
8794 if (!mddev->pers)
8795 return;
8796 if (!md_is_rdwr(mddev))
8797 return;
8798 if (!mddev->pers->sync_request)
8799 return;
8800
8801 spin_lock(&mddev->lock);
8802 if (mddev->in_sync) {
8803 mddev->in_sync = 0;
8804 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8805 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8806 if (mddev->safemode_delay &&
8807 mddev->safemode == 0)
8808 mddev->safemode = 1;
8809 spin_unlock(&mddev->lock);
8810 md_update_sb(mddev, 0);
8811 sysfs_notify_dirent_safe(mddev->sysfs_state);
8812 /* wait for the dirty state to be recorded in the metadata */
8813 wait_event(mddev->sb_wait,
8814 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8815 } else
8816 spin_unlock(&mddev->lock);
8817 }
8818 EXPORT_SYMBOL_GPL(md_allow_write);
8819
8820 #define SYNC_MARKS 10
8821 #define SYNC_MARK_STEP (3*HZ)
8822 #define UPDATE_FREQUENCY (5*60*HZ)
md_do_sync(struct md_thread * thread)8823 void md_do_sync(struct md_thread *thread)
8824 {
8825 struct mddev *mddev = thread->mddev;
8826 struct mddev *mddev2;
8827 unsigned int currspeed = 0, window;
8828 sector_t max_sectors,j, io_sectors, recovery_done;
8829 unsigned long mark[SYNC_MARKS];
8830 unsigned long update_time;
8831 sector_t mark_cnt[SYNC_MARKS];
8832 int last_mark,m;
8833 sector_t last_check;
8834 int skipped = 0;
8835 struct md_rdev *rdev;
8836 char *desc, *action = NULL;
8837 struct blk_plug plug;
8838 int ret;
8839
8840 /* just incase thread restarts... */
8841 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8842 test_bit(MD_RECOVERY_WAIT, &mddev->recovery))
8843 return;
8844 if (!md_is_rdwr(mddev)) {/* never try to sync a read-only array */
8845 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8846 return;
8847 }
8848
8849 if (mddev_is_clustered(mddev)) {
8850 ret = md_cluster_ops->resync_start(mddev);
8851 if (ret)
8852 goto skip;
8853
8854 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
8855 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8856 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
8857 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
8858 && ((unsigned long long)mddev->curr_resync_completed
8859 < (unsigned long long)mddev->resync_max_sectors))
8860 goto skip;
8861 }
8862
8863 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8864 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
8865 desc = "data-check";
8866 action = "check";
8867 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8868 desc = "requested-resync";
8869 action = "repair";
8870 } else
8871 desc = "resync";
8872 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8873 desc = "reshape";
8874 else
8875 desc = "recovery";
8876
8877 mddev->last_sync_action = action ?: desc;
8878
8879 /*
8880 * Before starting a resync we must have set curr_resync to
8881 * 2, and then checked that every "conflicting" array has curr_resync
8882 * less than ours. When we find one that is the same or higher
8883 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
8884 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
8885 * This will mean we have to start checking from the beginning again.
8886 *
8887 */
8888
8889 do {
8890 int mddev2_minor = -1;
8891 mddev->curr_resync = MD_RESYNC_DELAYED;
8892
8893 try_again:
8894 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8895 goto skip;
8896 spin_lock(&all_mddevs_lock);
8897 list_for_each_entry(mddev2, &all_mddevs, all_mddevs) {
8898 if (test_bit(MD_DELETED, &mddev2->flags))
8899 continue;
8900 if (mddev2 == mddev)
8901 continue;
8902 if (!mddev->parallel_resync
8903 && mddev2->curr_resync
8904 && match_mddev_units(mddev, mddev2)) {
8905 DEFINE_WAIT(wq);
8906 if (mddev < mddev2 &&
8907 mddev->curr_resync == MD_RESYNC_DELAYED) {
8908 /* arbitrarily yield */
8909 mddev->curr_resync = MD_RESYNC_YIELDED;
8910 wake_up(&resync_wait);
8911 }
8912 if (mddev > mddev2 &&
8913 mddev->curr_resync == MD_RESYNC_YIELDED)
8914 /* no need to wait here, we can wait the next
8915 * time 'round when curr_resync == 2
8916 */
8917 continue;
8918 /* We need to wait 'interruptible' so as not to
8919 * contribute to the load average, and not to
8920 * be caught by 'softlockup'
8921 */
8922 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8923 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8924 mddev2->curr_resync >= mddev->curr_resync) {
8925 if (mddev2_minor != mddev2->md_minor) {
8926 mddev2_minor = mddev2->md_minor;
8927 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
8928 desc, mdname(mddev),
8929 mdname(mddev2));
8930 }
8931 spin_unlock(&all_mddevs_lock);
8932
8933 if (signal_pending(current))
8934 flush_signals(current);
8935 schedule();
8936 finish_wait(&resync_wait, &wq);
8937 goto try_again;
8938 }
8939 finish_wait(&resync_wait, &wq);
8940 }
8941 }
8942 spin_unlock(&all_mddevs_lock);
8943 } while (mddev->curr_resync < MD_RESYNC_DELAYED);
8944
8945 j = 0;
8946 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8947 /* resync follows the size requested by the personality,
8948 * which defaults to physical size, but can be virtual size
8949 */
8950 max_sectors = mddev->resync_max_sectors;
8951 atomic64_set(&mddev->resync_mismatches, 0);
8952 /* we don't use the checkpoint if there's a bitmap */
8953 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8954 j = mddev->resync_min;
8955 else if (!mddev->bitmap)
8956 j = mddev->recovery_cp;
8957
8958 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
8959 max_sectors = mddev->resync_max_sectors;
8960 /*
8961 * If the original node aborts reshaping then we continue the
8962 * reshaping, so set j again to avoid restart reshape from the
8963 * first beginning
8964 */
8965 if (mddev_is_clustered(mddev) &&
8966 mddev->reshape_position != MaxSector)
8967 j = mddev->reshape_position;
8968 } else {
8969 /* recovery follows the physical size of devices */
8970 max_sectors = mddev->dev_sectors;
8971 j = MaxSector;
8972 rcu_read_lock();
8973 rdev_for_each_rcu(rdev, mddev)
8974 if (rdev->raid_disk >= 0 &&
8975 !test_bit(Journal, &rdev->flags) &&
8976 !test_bit(Faulty, &rdev->flags) &&
8977 !test_bit(In_sync, &rdev->flags) &&
8978 rdev->recovery_offset < j)
8979 j = rdev->recovery_offset;
8980 rcu_read_unlock();
8981
8982 /* If there is a bitmap, we need to make sure all
8983 * writes that started before we added a spare
8984 * complete before we start doing a recovery.
8985 * Otherwise the write might complete and (via
8986 * bitmap_endwrite) set a bit in the bitmap after the
8987 * recovery has checked that bit and skipped that
8988 * region.
8989 */
8990 if (mddev->bitmap) {
8991 mddev->pers->quiesce(mddev, 1);
8992 mddev->pers->quiesce(mddev, 0);
8993 }
8994 }
8995
8996 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8997 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev));
8998 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8999 speed_max(mddev), desc);
9000
9001 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
9002
9003 io_sectors = 0;
9004 for (m = 0; m < SYNC_MARKS; m++) {
9005 mark[m] = jiffies;
9006 mark_cnt[m] = io_sectors;
9007 }
9008 last_mark = 0;
9009 mddev->resync_mark = mark[last_mark];
9010 mddev->resync_mark_cnt = mark_cnt[last_mark];
9011
9012 /*
9013 * Tune reconstruction:
9014 */
9015 window = 32 * (PAGE_SIZE / 512);
9016 pr_debug("md: using %dk window, over a total of %lluk.\n",
9017 window/2, (unsigned long long)max_sectors/2);
9018
9019 atomic_set(&mddev->recovery_active, 0);
9020 last_check = 0;
9021
9022 if (j >= MD_RESYNC_ACTIVE) {
9023 pr_debug("md: resuming %s of %s from checkpoint.\n",
9024 desc, mdname(mddev));
9025 mddev->curr_resync = j;
9026 } else
9027 mddev->curr_resync = MD_RESYNC_ACTIVE; /* no longer delayed */
9028 mddev->curr_resync_completed = j;
9029 sysfs_notify_dirent_safe(mddev->sysfs_completed);
9030 md_new_event();
9031 update_time = jiffies;
9032
9033 blk_start_plug(&plug);
9034 while (j < max_sectors) {
9035 sector_t sectors;
9036
9037 skipped = 0;
9038
9039 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9040 ((mddev->curr_resync > mddev->curr_resync_completed &&
9041 (mddev->curr_resync - mddev->curr_resync_completed)
9042 > (max_sectors >> 4)) ||
9043 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
9044 (j - mddev->curr_resync_completed)*2
9045 >= mddev->resync_max - mddev->curr_resync_completed ||
9046 mddev->curr_resync_completed > mddev->resync_max
9047 )) {
9048 /* time to update curr_resync_completed */
9049 wait_event(mddev->recovery_wait,
9050 atomic_read(&mddev->recovery_active) == 0);
9051 mddev->curr_resync_completed = j;
9052 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
9053 j > mddev->recovery_cp)
9054 mddev->recovery_cp = j;
9055 update_time = jiffies;
9056 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
9057 sysfs_notify_dirent_safe(mddev->sysfs_completed);
9058 }
9059
9060 while (j >= mddev->resync_max &&
9061 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9062 /* As this condition is controlled by user-space,
9063 * we can block indefinitely, so use '_interruptible'
9064 * to avoid triggering warnings.
9065 */
9066 flush_signals(current); /* just in case */
9067 wait_event_interruptible(mddev->recovery_wait,
9068 mddev->resync_max > j
9069 || test_bit(MD_RECOVERY_INTR,
9070 &mddev->recovery));
9071 }
9072
9073 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9074 break;
9075
9076 sectors = mddev->pers->sync_request(mddev, j, &skipped);
9077 if (sectors == 0) {
9078 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
9079 break;
9080 }
9081
9082 if (!skipped) { /* actual IO requested */
9083 io_sectors += sectors;
9084 atomic_add(sectors, &mddev->recovery_active);
9085 }
9086
9087 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9088 break;
9089
9090 j += sectors;
9091 if (j > max_sectors)
9092 /* when skipping, extra large numbers can be returned. */
9093 j = max_sectors;
9094 if (j >= MD_RESYNC_ACTIVE)
9095 mddev->curr_resync = j;
9096 mddev->curr_mark_cnt = io_sectors;
9097 if (last_check == 0)
9098 /* this is the earliest that rebuild will be
9099 * visible in /proc/mdstat
9100 */
9101 md_new_event();
9102
9103 if (last_check + window > io_sectors || j == max_sectors)
9104 continue;
9105
9106 last_check = io_sectors;
9107 repeat:
9108 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
9109 /* step marks */
9110 int next = (last_mark+1) % SYNC_MARKS;
9111
9112 mddev->resync_mark = mark[next];
9113 mddev->resync_mark_cnt = mark_cnt[next];
9114 mark[next] = jiffies;
9115 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
9116 last_mark = next;
9117 }
9118
9119 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9120 break;
9121
9122 /*
9123 * this loop exits only if either when we are slower than
9124 * the 'hard' speed limit, or the system was IO-idle for
9125 * a jiffy.
9126 * the system might be non-idle CPU-wise, but we only care
9127 * about not overloading the IO subsystem. (things like an
9128 * e2fsck being done on the RAID array should execute fast)
9129 */
9130 cond_resched();
9131
9132 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
9133 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
9134 /((jiffies-mddev->resync_mark)/HZ +1) +1;
9135
9136 if (currspeed > speed_min(mddev)) {
9137 if (currspeed > speed_max(mddev)) {
9138 msleep(500);
9139 goto repeat;
9140 }
9141 if (!is_mddev_idle(mddev, 0)) {
9142 /*
9143 * Give other IO more of a chance.
9144 * The faster the devices, the less we wait.
9145 */
9146 wait_event(mddev->recovery_wait,
9147 !atomic_read(&mddev->recovery_active));
9148 }
9149 }
9150 }
9151 pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
9152 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
9153 ? "interrupted" : "done");
9154 /*
9155 * this also signals 'finished resyncing' to md_stop
9156 */
9157 blk_finish_plug(&plug);
9158 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
9159
9160 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9161 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9162 mddev->curr_resync >= MD_RESYNC_ACTIVE) {
9163 mddev->curr_resync_completed = mddev->curr_resync;
9164 sysfs_notify_dirent_safe(mddev->sysfs_completed);
9165 }
9166 mddev->pers->sync_request(mddev, max_sectors, &skipped);
9167
9168 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
9169 mddev->curr_resync > MD_RESYNC_ACTIVE) {
9170 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
9171 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9172 if (mddev->curr_resync >= mddev->recovery_cp) {
9173 pr_debug("md: checkpointing %s of %s.\n",
9174 desc, mdname(mddev));
9175 if (test_bit(MD_RECOVERY_ERROR,
9176 &mddev->recovery))
9177 mddev->recovery_cp =
9178 mddev->curr_resync_completed;
9179 else
9180 mddev->recovery_cp =
9181 mddev->curr_resync;
9182 }
9183 } else
9184 mddev->recovery_cp = MaxSector;
9185 } else {
9186 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9187 mddev->curr_resync = MaxSector;
9188 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9189 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) {
9190 rcu_read_lock();
9191 rdev_for_each_rcu(rdev, mddev)
9192 if (rdev->raid_disk >= 0 &&
9193 mddev->delta_disks >= 0 &&
9194 !test_bit(Journal, &rdev->flags) &&
9195 !test_bit(Faulty, &rdev->flags) &&
9196 !test_bit(In_sync, &rdev->flags) &&
9197 rdev->recovery_offset < mddev->curr_resync)
9198 rdev->recovery_offset = mddev->curr_resync;
9199 rcu_read_unlock();
9200 }
9201 }
9202 }
9203 skip:
9204 /* set CHANGE_PENDING here since maybe another update is needed,
9205 * so other nodes are informed. It should be harmless for normal
9206 * raid */
9207 set_mask_bits(&mddev->sb_flags, 0,
9208 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
9209
9210 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9211 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9212 mddev->delta_disks > 0 &&
9213 mddev->pers->finish_reshape &&
9214 mddev->pers->size &&
9215 mddev->queue) {
9216 mddev_lock_nointr(mddev);
9217 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0));
9218 mddev_unlock(mddev);
9219 if (!mddev_is_clustered(mddev))
9220 set_capacity_and_notify(mddev->gendisk,
9221 mddev->array_sectors);
9222 }
9223
9224 spin_lock(&mddev->lock);
9225 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9226 /* We completed so min/max setting can be forgotten if used. */
9227 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9228 mddev->resync_min = 0;
9229 mddev->resync_max = MaxSector;
9230 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9231 mddev->resync_min = mddev->curr_resync_completed;
9232 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
9233 mddev->curr_resync = MD_RESYNC_NONE;
9234 spin_unlock(&mddev->lock);
9235
9236 wake_up(&resync_wait);
9237 wake_up(&mddev->sb_wait);
9238 md_wakeup_thread(mddev->thread);
9239 return;
9240 }
9241 EXPORT_SYMBOL_GPL(md_do_sync);
9242
remove_and_add_spares(struct mddev * mddev,struct md_rdev * this)9243 static int remove_and_add_spares(struct mddev *mddev,
9244 struct md_rdev *this)
9245 {
9246 struct md_rdev *rdev;
9247 int spares = 0;
9248 int removed = 0;
9249 bool remove_some = false;
9250
9251 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
9252 /* Mustn't remove devices when resync thread is running */
9253 return 0;
9254
9255 rdev_for_each(rdev, mddev) {
9256 if ((this == NULL || rdev == this) &&
9257 rdev->raid_disk >= 0 &&
9258 !test_bit(Blocked, &rdev->flags) &&
9259 test_bit(Faulty, &rdev->flags) &&
9260 atomic_read(&rdev->nr_pending)==0) {
9261 /* Faulty non-Blocked devices with nr_pending == 0
9262 * never get nr_pending incremented,
9263 * never get Faulty cleared, and never get Blocked set.
9264 * So we can synchronize_rcu now rather than once per device
9265 */
9266 remove_some = true;
9267 set_bit(RemoveSynchronized, &rdev->flags);
9268 }
9269 }
9270
9271 if (remove_some)
9272 synchronize_rcu();
9273 rdev_for_each(rdev, mddev) {
9274 if ((this == NULL || rdev == this) &&
9275 rdev->raid_disk >= 0 &&
9276 !test_bit(Blocked, &rdev->flags) &&
9277 ((test_bit(RemoveSynchronized, &rdev->flags) ||
9278 (!test_bit(In_sync, &rdev->flags) &&
9279 !test_bit(Journal, &rdev->flags))) &&
9280 atomic_read(&rdev->nr_pending)==0)) {
9281 if (mddev->pers->hot_remove_disk(
9282 mddev, rdev) == 0) {
9283 sysfs_unlink_rdev(mddev, rdev);
9284 rdev->saved_raid_disk = rdev->raid_disk;
9285 rdev->raid_disk = -1;
9286 removed++;
9287 }
9288 }
9289 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
9290 clear_bit(RemoveSynchronized, &rdev->flags);
9291 }
9292
9293 if (removed && mddev->kobj.sd)
9294 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9295
9296 if (this && removed)
9297 goto no_add;
9298
9299 rdev_for_each(rdev, mddev) {
9300 if (this && this != rdev)
9301 continue;
9302 if (test_bit(Candidate, &rdev->flags))
9303 continue;
9304 if (rdev->raid_disk >= 0 &&
9305 !test_bit(In_sync, &rdev->flags) &&
9306 !test_bit(Journal, &rdev->flags) &&
9307 !test_bit(Faulty, &rdev->flags))
9308 spares++;
9309 if (rdev->raid_disk >= 0)
9310 continue;
9311 if (test_bit(Faulty, &rdev->flags))
9312 continue;
9313 if (!test_bit(Journal, &rdev->flags)) {
9314 if (!md_is_rdwr(mddev) &&
9315 !(rdev->saved_raid_disk >= 0 &&
9316 !test_bit(Bitmap_sync, &rdev->flags)))
9317 continue;
9318
9319 rdev->recovery_offset = 0;
9320 }
9321 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) {
9322 /* failure here is OK */
9323 sysfs_link_rdev(mddev, rdev);
9324 if (!test_bit(Journal, &rdev->flags))
9325 spares++;
9326 md_new_event();
9327 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9328 }
9329 }
9330 no_add:
9331 if (removed)
9332 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9333 return spares;
9334 }
9335
md_start_sync(struct work_struct * ws)9336 static void md_start_sync(struct work_struct *ws)
9337 {
9338 struct mddev *mddev = container_of(ws, struct mddev, sync_work);
9339
9340 rcu_assign_pointer(mddev->sync_thread,
9341 md_register_thread(md_do_sync, mddev, "resync"));
9342 if (!mddev->sync_thread) {
9343 pr_warn("%s: could not start resync thread...\n",
9344 mdname(mddev));
9345 /* leave the spares where they are, it shouldn't hurt */
9346 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9347 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9348 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9349 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9350 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9351 wake_up(&resync_wait);
9352 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9353 &mddev->recovery))
9354 if (mddev->sysfs_action)
9355 sysfs_notify_dirent_safe(mddev->sysfs_action);
9356 } else
9357 md_wakeup_thread(mddev->sync_thread);
9358 sysfs_notify_dirent_safe(mddev->sysfs_action);
9359 md_new_event();
9360 }
9361
9362 /*
9363 * This routine is regularly called by all per-raid-array threads to
9364 * deal with generic issues like resync and super-block update.
9365 * Raid personalities that don't have a thread (linear/raid0) do not
9366 * need this as they never do any recovery or update the superblock.
9367 *
9368 * It does not do any resync itself, but rather "forks" off other threads
9369 * to do that as needed.
9370 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
9371 * "->recovery" and create a thread at ->sync_thread.
9372 * When the thread finishes it sets MD_RECOVERY_DONE
9373 * and wakeups up this thread which will reap the thread and finish up.
9374 * This thread also removes any faulty devices (with nr_pending == 0).
9375 *
9376 * The overall approach is:
9377 * 1/ if the superblock needs updating, update it.
9378 * 2/ If a recovery thread is running, don't do anything else.
9379 * 3/ If recovery has finished, clean up, possibly marking spares active.
9380 * 4/ If there are any faulty devices, remove them.
9381 * 5/ If array is degraded, try to add spares devices
9382 * 6/ If array has spares or is not in-sync, start a resync thread.
9383 */
md_check_recovery(struct mddev * mddev)9384 void md_check_recovery(struct mddev *mddev)
9385 {
9386 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) {
9387 /* Write superblock - thread that called mddev_suspend()
9388 * holds reconfig_mutex for us.
9389 */
9390 set_bit(MD_UPDATING_SB, &mddev->flags);
9391 smp_mb__after_atomic();
9392 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags))
9393 md_update_sb(mddev, 0);
9394 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags);
9395 wake_up(&mddev->sb_wait);
9396 }
9397
9398 if (is_md_suspended(mddev))
9399 return;
9400
9401 if (mddev->bitmap)
9402 md_bitmap_daemon_work(mddev);
9403
9404 if (signal_pending(current)) {
9405 if (mddev->pers->sync_request && !mddev->external) {
9406 pr_debug("md: %s in immediate safe mode\n",
9407 mdname(mddev));
9408 mddev->safemode = 2;
9409 }
9410 flush_signals(current);
9411 }
9412
9413 if (!md_is_rdwr(mddev) &&
9414 !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
9415 return;
9416 if ( ! (
9417 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
9418 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9419 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
9420 (mddev->external == 0 && mddev->safemode == 1) ||
9421 (mddev->safemode == 2
9422 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
9423 ))
9424 return;
9425
9426 if (mddev_trylock(mddev)) {
9427 int spares = 0;
9428 bool try_set_sync = mddev->safemode != 0;
9429
9430 if (!mddev->external && mddev->safemode == 1)
9431 mddev->safemode = 0;
9432
9433 if (!md_is_rdwr(mddev)) {
9434 struct md_rdev *rdev;
9435 if (!mddev->external && mddev->in_sync)
9436 /* 'Blocked' flag not needed as failed devices
9437 * will be recorded if array switched to read/write.
9438 * Leaving it set will prevent the device
9439 * from being removed.
9440 */
9441 rdev_for_each(rdev, mddev)
9442 clear_bit(Blocked, &rdev->flags);
9443 /* On a read-only array we can:
9444 * - remove failed devices
9445 * - add already-in_sync devices if the array itself
9446 * is in-sync.
9447 * As we only add devices that are already in-sync,
9448 * we can activate the spares immediately.
9449 */
9450 remove_and_add_spares(mddev, NULL);
9451 /* There is no thread, but we need to call
9452 * ->spare_active and clear saved_raid_disk
9453 */
9454 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
9455 md_reap_sync_thread(mddev);
9456 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9457 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9458 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
9459 goto unlock;
9460 }
9461
9462 if (mddev_is_clustered(mddev)) {
9463 struct md_rdev *rdev, *tmp;
9464 /* kick the device if another node issued a
9465 * remove disk.
9466 */
9467 rdev_for_each_safe(rdev, tmp, mddev) {
9468 if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
9469 rdev->raid_disk < 0)
9470 md_kick_rdev_from_array(rdev);
9471 }
9472 }
9473
9474 if (try_set_sync && !mddev->external && !mddev->in_sync) {
9475 spin_lock(&mddev->lock);
9476 set_in_sync(mddev);
9477 spin_unlock(&mddev->lock);
9478 }
9479
9480 if (mddev->sb_flags)
9481 md_update_sb(mddev, 0);
9482
9483 /*
9484 * Never start a new sync thread if MD_RECOVERY_RUNNING is
9485 * still set.
9486 */
9487 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
9488 if (!test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
9489 /* resync/recovery still happening */
9490 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9491 goto unlock;
9492 }
9493
9494 if (WARN_ON_ONCE(!mddev->sync_thread))
9495 goto unlock;
9496
9497 md_reap_sync_thread(mddev);
9498 goto unlock;
9499 }
9500
9501 /* Set RUNNING before clearing NEEDED to avoid
9502 * any transients in the value of "sync_action".
9503 */
9504 mddev->curr_resync_completed = 0;
9505 spin_lock(&mddev->lock);
9506 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9507 spin_unlock(&mddev->lock);
9508 /* Clear some bits that don't mean anything, but
9509 * might be left set
9510 */
9511 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
9512 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9513
9514 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9515 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
9516 goto not_running;
9517 /* no recovery is running.
9518 * remove any failed drives, then
9519 * add spares if possible.
9520 * Spares are also removed and re-added, to allow
9521 * the personality to fail the re-add.
9522 */
9523
9524 if (mddev->reshape_position != MaxSector) {
9525 if (mddev->pers->check_reshape == NULL ||
9526 mddev->pers->check_reshape(mddev) != 0)
9527 /* Cannot proceed */
9528 goto not_running;
9529 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9530 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9531 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
9532 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9533 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9534 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9535 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9536 } else if (mddev->recovery_cp < MaxSector) {
9537 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9538 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9539 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
9540 /* nothing to be done ... */
9541 goto not_running;
9542
9543 if (mddev->pers->sync_request) {
9544 if (spares) {
9545 /* We are adding a device or devices to an array
9546 * which has the bitmap stored on all devices.
9547 * So make sure all bitmap pages get written
9548 */
9549 md_bitmap_write_all(mddev->bitmap);
9550 }
9551 queue_work(md_misc_wq, &mddev->sync_work);
9552 goto unlock;
9553 }
9554 not_running:
9555 if (!mddev->sync_thread) {
9556 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9557 wake_up(&resync_wait);
9558 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9559 &mddev->recovery))
9560 if (mddev->sysfs_action)
9561 sysfs_notify_dirent_safe(mddev->sysfs_action);
9562 }
9563 unlock:
9564 wake_up(&mddev->sb_wait);
9565 mddev_unlock(mddev);
9566 }
9567 }
9568 EXPORT_SYMBOL(md_check_recovery);
9569
md_reap_sync_thread(struct mddev * mddev)9570 void md_reap_sync_thread(struct mddev *mddev)
9571 {
9572 struct md_rdev *rdev;
9573 sector_t old_dev_sectors = mddev->dev_sectors;
9574 bool is_reshaped = false;
9575
9576 /* resync has finished, collect result */
9577 md_unregister_thread(mddev, &mddev->sync_thread);
9578 atomic_inc(&mddev->sync_seq);
9579
9580 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9581 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
9582 mddev->degraded != mddev->raid_disks) {
9583 /* success...*/
9584 /* activate any spares */
9585 if (mddev->pers->spare_active(mddev)) {
9586 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9587 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9588 }
9589 }
9590 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9591 mddev->pers->finish_reshape) {
9592 mddev->pers->finish_reshape(mddev);
9593 if (mddev_is_clustered(mddev))
9594 is_reshaped = true;
9595 }
9596
9597 /* If array is no-longer degraded, then any saved_raid_disk
9598 * information must be scrapped.
9599 */
9600 if (!mddev->degraded)
9601 rdev_for_each(rdev, mddev)
9602 rdev->saved_raid_disk = -1;
9603
9604 md_update_sb(mddev, 1);
9605 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
9606 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
9607 * clustered raid */
9608 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
9609 md_cluster_ops->resync_finish(mddev);
9610 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9611 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9612 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9613 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9614 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9615 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9616 /*
9617 * We call md_cluster_ops->update_size here because sync_size could
9618 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared,
9619 * so it is time to update size across cluster.
9620 */
9621 if (mddev_is_clustered(mddev) && is_reshaped
9622 && !test_bit(MD_CLOSING, &mddev->flags))
9623 md_cluster_ops->update_size(mddev, old_dev_sectors);
9624 /* flag recovery needed just to double check */
9625 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9626 sysfs_notify_dirent_safe(mddev->sysfs_completed);
9627 sysfs_notify_dirent_safe(mddev->sysfs_action);
9628 md_new_event();
9629 if (mddev->event_work.func)
9630 queue_work(md_misc_wq, &mddev->event_work);
9631 wake_up(&resync_wait);
9632 }
9633 EXPORT_SYMBOL(md_reap_sync_thread);
9634
md_wait_for_blocked_rdev(struct md_rdev * rdev,struct mddev * mddev)9635 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
9636 {
9637 sysfs_notify_dirent_safe(rdev->sysfs_state);
9638 wait_event_timeout(rdev->blocked_wait,
9639 !test_bit(Blocked, &rdev->flags) &&
9640 !test_bit(BlockedBadBlocks, &rdev->flags),
9641 msecs_to_jiffies(5000));
9642 rdev_dec_pending(rdev, mddev);
9643 }
9644 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
9645
md_finish_reshape(struct mddev * mddev)9646 void md_finish_reshape(struct mddev *mddev)
9647 {
9648 /* called be personality module when reshape completes. */
9649 struct md_rdev *rdev;
9650
9651 rdev_for_each(rdev, mddev) {
9652 if (rdev->data_offset > rdev->new_data_offset)
9653 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
9654 else
9655 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
9656 rdev->data_offset = rdev->new_data_offset;
9657 }
9658 }
9659 EXPORT_SYMBOL(md_finish_reshape);
9660
9661 /* Bad block management */
9662
9663 /* Returns 1 on success, 0 on failure */
rdev_set_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)9664 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9665 int is_new)
9666 {
9667 struct mddev *mddev = rdev->mddev;
9668 int rv;
9669 if (is_new)
9670 s += rdev->new_data_offset;
9671 else
9672 s += rdev->data_offset;
9673 rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
9674 if (rv == 0) {
9675 /* Make sure they get written out promptly */
9676 if (test_bit(ExternalBbl, &rdev->flags))
9677 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks);
9678 sysfs_notify_dirent_safe(rdev->sysfs_state);
9679 set_mask_bits(&mddev->sb_flags, 0,
9680 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
9681 md_wakeup_thread(rdev->mddev->thread);
9682 return 1;
9683 } else
9684 return 0;
9685 }
9686 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
9687
rdev_clear_badblocks(struct md_rdev * rdev,sector_t s,int sectors,int is_new)9688 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9689 int is_new)
9690 {
9691 int rv;
9692 if (is_new)
9693 s += rdev->new_data_offset;
9694 else
9695 s += rdev->data_offset;
9696 rv = badblocks_clear(&rdev->badblocks, s, sectors);
9697 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
9698 sysfs_notify_dirent_safe(rdev->sysfs_badblocks);
9699 return rv;
9700 }
9701 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
9702
md_notify_reboot(struct notifier_block * this,unsigned long code,void * x)9703 static int md_notify_reboot(struct notifier_block *this,
9704 unsigned long code, void *x)
9705 {
9706 struct mddev *mddev;
9707 int need_delay = 0;
9708
9709 spin_lock(&all_mddevs_lock);
9710 list_for_each_entry(mddev, &all_mddevs, all_mddevs) {
9711 if (!mddev_get(mddev))
9712 continue;
9713 spin_unlock(&all_mddevs_lock);
9714 if (mddev_trylock(mddev)) {
9715 if (mddev->pers)
9716 __md_stop_writes(mddev);
9717 if (mddev->persistent)
9718 mddev->safemode = 2;
9719 mddev_unlock(mddev);
9720 }
9721 need_delay = 1;
9722 spin_lock(&all_mddevs_lock);
9723 mddev_put_locked(mddev);
9724 }
9725 spin_unlock(&all_mddevs_lock);
9726
9727 /*
9728 * certain more exotic SCSI devices are known to be
9729 * volatile wrt too early system reboots. While the
9730 * right place to handle this issue is the given
9731 * driver, we do want to have a safe RAID driver ...
9732 */
9733 if (need_delay)
9734 msleep(1000);
9735
9736 return NOTIFY_DONE;
9737 }
9738
9739 static struct notifier_block md_notifier = {
9740 .notifier_call = md_notify_reboot,
9741 .next = NULL,
9742 .priority = INT_MAX, /* before any real devices */
9743 };
9744
md_geninit(void)9745 static void md_geninit(void)
9746 {
9747 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9748
9749 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops);
9750 }
9751
md_init(void)9752 static int __init md_init(void)
9753 {
9754 int ret = -ENOMEM;
9755
9756 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9757 if (!md_wq)
9758 goto err_wq;
9759
9760 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9761 if (!md_misc_wq)
9762 goto err_misc_wq;
9763
9764 md_bitmap_wq = alloc_workqueue("md_bitmap", WQ_MEM_RECLAIM | WQ_UNBOUND,
9765 0);
9766 if (!md_bitmap_wq)
9767 goto err_bitmap_wq;
9768
9769 ret = __register_blkdev(MD_MAJOR, "md", md_probe);
9770 if (ret < 0)
9771 goto err_md;
9772
9773 ret = __register_blkdev(0, "mdp", md_probe);
9774 if (ret < 0)
9775 goto err_mdp;
9776 mdp_major = ret;
9777
9778 register_reboot_notifier(&md_notifier);
9779 raid_table_header = register_sysctl("dev/raid", raid_table);
9780
9781 md_geninit();
9782 return 0;
9783
9784 err_mdp:
9785 unregister_blkdev(MD_MAJOR, "md");
9786 err_md:
9787 destroy_workqueue(md_bitmap_wq);
9788 err_bitmap_wq:
9789 destroy_workqueue(md_misc_wq);
9790 err_misc_wq:
9791 destroy_workqueue(md_wq);
9792 err_wq:
9793 return ret;
9794 }
9795
check_sb_changes(struct mddev * mddev,struct md_rdev * rdev)9796 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9797 {
9798 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9799 struct md_rdev *rdev2, *tmp;
9800 int role, ret;
9801
9802 /*
9803 * If size is changed in another node then we need to
9804 * do resize as well.
9805 */
9806 if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
9807 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
9808 if (ret)
9809 pr_info("md-cluster: resize failed\n");
9810 else
9811 md_bitmap_update_sb(mddev->bitmap);
9812 }
9813
9814 /* Check for change of roles in the active devices */
9815 rdev_for_each_safe(rdev2, tmp, mddev) {
9816 if (test_bit(Faulty, &rdev2->flags))
9817 continue;
9818
9819 /* Check if the roles changed */
9820 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9821
9822 if (test_bit(Candidate, &rdev2->flags)) {
9823 if (role == MD_DISK_ROLE_FAULTY) {
9824 pr_info("md: Removing Candidate device %pg because add failed\n",
9825 rdev2->bdev);
9826 md_kick_rdev_from_array(rdev2);
9827 continue;
9828 }
9829 else
9830 clear_bit(Candidate, &rdev2->flags);
9831 }
9832
9833 if (role != rdev2->raid_disk) {
9834 /*
9835 * got activated except reshape is happening.
9836 */
9837 if (rdev2->raid_disk == -1 && role != MD_DISK_ROLE_SPARE &&
9838 !(le32_to_cpu(sb->feature_map) &
9839 MD_FEATURE_RESHAPE_ACTIVE)) {
9840 rdev2->saved_raid_disk = role;
9841 ret = remove_and_add_spares(mddev, rdev2);
9842 pr_info("Activated spare: %pg\n",
9843 rdev2->bdev);
9844 /* wakeup mddev->thread here, so array could
9845 * perform resync with the new activated disk */
9846 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9847 md_wakeup_thread(mddev->thread);
9848 }
9849 /* device faulty
9850 * We just want to do the minimum to mark the disk
9851 * as faulty. The recovery is performed by the
9852 * one who initiated the error.
9853 */
9854 if (role == MD_DISK_ROLE_FAULTY ||
9855 role == MD_DISK_ROLE_JOURNAL) {
9856 md_error(mddev, rdev2);
9857 clear_bit(Blocked, &rdev2->flags);
9858 }
9859 }
9860 }
9861
9862 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) {
9863 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9864 if (ret)
9865 pr_warn("md: updating array disks failed. %d\n", ret);
9866 }
9867
9868 /*
9869 * Since mddev->delta_disks has already updated in update_raid_disks,
9870 * so it is time to check reshape.
9871 */
9872 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9873 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9874 /*
9875 * reshape is happening in the remote node, we need to
9876 * update reshape_position and call start_reshape.
9877 */
9878 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
9879 if (mddev->pers->update_reshape_pos)
9880 mddev->pers->update_reshape_pos(mddev);
9881 if (mddev->pers->start_reshape)
9882 mddev->pers->start_reshape(mddev);
9883 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9884 mddev->reshape_position != MaxSector &&
9885 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9886 /* reshape is just done in another node. */
9887 mddev->reshape_position = MaxSector;
9888 if (mddev->pers->update_reshape_pos)
9889 mddev->pers->update_reshape_pos(mddev);
9890 }
9891
9892 /* Finally set the event to be up to date */
9893 mddev->events = le64_to_cpu(sb->events);
9894 }
9895
read_rdev(struct mddev * mddev,struct md_rdev * rdev)9896 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9897 {
9898 int err;
9899 struct page *swapout = rdev->sb_page;
9900 struct mdp_superblock_1 *sb;
9901
9902 /* Store the sb page of the rdev in the swapout temporary
9903 * variable in case we err in the future
9904 */
9905 rdev->sb_page = NULL;
9906 err = alloc_disk_sb(rdev);
9907 if (err == 0) {
9908 ClearPageUptodate(rdev->sb_page);
9909 rdev->sb_loaded = 0;
9910 err = super_types[mddev->major_version].
9911 load_super(rdev, NULL, mddev->minor_version);
9912 }
9913 if (err < 0) {
9914 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9915 __func__, __LINE__, rdev->desc_nr, err);
9916 if (rdev->sb_page)
9917 put_page(rdev->sb_page);
9918 rdev->sb_page = swapout;
9919 rdev->sb_loaded = 1;
9920 return err;
9921 }
9922
9923 sb = page_address(rdev->sb_page);
9924 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9925 * is not set
9926 */
9927
9928 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9929 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9930
9931 /* The other node finished recovery, call spare_active to set
9932 * device In_sync and mddev->degraded
9933 */
9934 if (rdev->recovery_offset == MaxSector &&
9935 !test_bit(In_sync, &rdev->flags) &&
9936 mddev->pers->spare_active(mddev))
9937 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9938
9939 put_page(swapout);
9940 return 0;
9941 }
9942
md_reload_sb(struct mddev * mddev,int nr)9943 void md_reload_sb(struct mddev *mddev, int nr)
9944 {
9945 struct md_rdev *rdev = NULL, *iter;
9946 int err;
9947
9948 /* Find the rdev */
9949 rdev_for_each_rcu(iter, mddev) {
9950 if (iter->desc_nr == nr) {
9951 rdev = iter;
9952 break;
9953 }
9954 }
9955
9956 if (!rdev) {
9957 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9958 return;
9959 }
9960
9961 err = read_rdev(mddev, rdev);
9962 if (err < 0)
9963 return;
9964
9965 check_sb_changes(mddev, rdev);
9966
9967 /* Read all rdev's to update recovery_offset */
9968 rdev_for_each_rcu(rdev, mddev) {
9969 if (!test_bit(Faulty, &rdev->flags))
9970 read_rdev(mddev, rdev);
9971 }
9972 }
9973 EXPORT_SYMBOL(md_reload_sb);
9974
9975 #ifndef MODULE
9976
9977 /*
9978 * Searches all registered partitions for autorun RAID arrays
9979 * at boot time.
9980 */
9981
9982 static DEFINE_MUTEX(detected_devices_mutex);
9983 static LIST_HEAD(all_detected_devices);
9984 struct detected_devices_node {
9985 struct list_head list;
9986 dev_t dev;
9987 };
9988
md_autodetect_dev(dev_t dev)9989 void md_autodetect_dev(dev_t dev)
9990 {
9991 struct detected_devices_node *node_detected_dev;
9992
9993 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9994 if (node_detected_dev) {
9995 node_detected_dev->dev = dev;
9996 mutex_lock(&detected_devices_mutex);
9997 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9998 mutex_unlock(&detected_devices_mutex);
9999 }
10000 }
10001
md_autostart_arrays(int part)10002 void md_autostart_arrays(int part)
10003 {
10004 struct md_rdev *rdev;
10005 struct detected_devices_node *node_detected_dev;
10006 dev_t dev;
10007 int i_scanned, i_passed;
10008
10009 i_scanned = 0;
10010 i_passed = 0;
10011
10012 pr_info("md: Autodetecting RAID arrays.\n");
10013
10014 mutex_lock(&detected_devices_mutex);
10015 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
10016 i_scanned++;
10017 node_detected_dev = list_entry(all_detected_devices.next,
10018 struct detected_devices_node, list);
10019 list_del(&node_detected_dev->list);
10020 dev = node_detected_dev->dev;
10021 kfree(node_detected_dev);
10022 mutex_unlock(&detected_devices_mutex);
10023 rdev = md_import_device(dev,0, 90);
10024 mutex_lock(&detected_devices_mutex);
10025 if (IS_ERR(rdev))
10026 continue;
10027
10028 if (test_bit(Faulty, &rdev->flags))
10029 continue;
10030
10031 set_bit(AutoDetected, &rdev->flags);
10032 list_add(&rdev->same_set, &pending_raid_disks);
10033 i_passed++;
10034 }
10035 mutex_unlock(&detected_devices_mutex);
10036
10037 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
10038
10039 autorun_devices(part);
10040 }
10041
10042 #endif /* !MODULE */
10043
md_exit(void)10044 static __exit void md_exit(void)
10045 {
10046 struct mddev *mddev;
10047 int delay = 1;
10048
10049 unregister_blkdev(MD_MAJOR,"md");
10050 unregister_blkdev(mdp_major, "mdp");
10051 unregister_reboot_notifier(&md_notifier);
10052 unregister_sysctl_table(raid_table_header);
10053
10054 /* We cannot unload the modules while some process is
10055 * waiting for us in select() or poll() - wake them up
10056 */
10057 md_unloading = 1;
10058 while (waitqueue_active(&md_event_waiters)) {
10059 /* not safe to leave yet */
10060 wake_up(&md_event_waiters);
10061 msleep(delay);
10062 delay += delay;
10063 }
10064 remove_proc_entry("mdstat", NULL);
10065
10066 spin_lock(&all_mddevs_lock);
10067 list_for_each_entry(mddev, &all_mddevs, all_mddevs) {
10068 if (!mddev_get(mddev))
10069 continue;
10070 spin_unlock(&all_mddevs_lock);
10071 export_array(mddev);
10072 mddev->ctime = 0;
10073 mddev->hold_active = 0;
10074 /*
10075 * As the mddev is now fully clear, mddev_put will schedule
10076 * the mddev for destruction by a workqueue, and the
10077 * destroy_workqueue() below will wait for that to complete.
10078 */
10079 spin_lock(&all_mddevs_lock);
10080 mddev_put_locked(mddev);
10081 }
10082 spin_unlock(&all_mddevs_lock);
10083
10084 destroy_workqueue(md_misc_wq);
10085 destroy_workqueue(md_bitmap_wq);
10086 destroy_workqueue(md_wq);
10087 }
10088
10089 subsys_initcall(md_init);
module_exit(md_exit)10090 module_exit(md_exit)
10091
10092 static int get_ro(char *buffer, const struct kernel_param *kp)
10093 {
10094 return sprintf(buffer, "%d\n", start_readonly);
10095 }
set_ro(const char * val,const struct kernel_param * kp)10096 static int set_ro(const char *val, const struct kernel_param *kp)
10097 {
10098 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
10099 }
10100
10101 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
10102 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
10103 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
10104 module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
10105
10106 MODULE_LICENSE("GPL");
10107 MODULE_DESCRIPTION("MD RAID framework");
10108 MODULE_ALIAS("md");
10109 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
10110