1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * CPUFreq governor based on scheduler-provided CPU utilization data.
4 *
5 * Copyright (C) 2016, Intel Corporation
6 * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7 */
8
9 #define IOWAIT_BOOST_MIN (SCHED_CAPACITY_SCALE / 8)
10
11 struct sugov_tunables {
12 struct gov_attr_set attr_set;
13 unsigned int rate_limit_us;
14 };
15
16 struct sugov_policy {
17 struct cpufreq_policy *policy;
18
19 struct sugov_tunables *tunables;
20 struct list_head tunables_hook;
21
22 raw_spinlock_t update_lock;
23 u64 last_freq_update_time;
24 s64 freq_update_delay_ns;
25 unsigned int next_freq;
26 unsigned int cached_raw_freq;
27
28 /* The next fields are only needed if fast switch cannot be used: */
29 struct irq_work irq_work;
30 struct kthread_work work;
31 struct mutex work_lock;
32 struct kthread_worker worker;
33 struct task_struct *thread;
34 bool work_in_progress;
35
36 bool limits_changed;
37 bool need_freq_update;
38 };
39
40 struct sugov_cpu {
41 struct update_util_data update_util;
42 struct sugov_policy *sg_policy;
43 unsigned int cpu;
44
45 bool iowait_boost_pending;
46 unsigned int iowait_boost;
47 u64 last_update;
48
49 unsigned long util;
50 unsigned long bw_min;
51
52 /* The field below is for single-CPU policies only: */
53 #ifdef CONFIG_NO_HZ_COMMON
54 unsigned long saved_idle_calls;
55 #endif
56 };
57
58 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
59
60 /************************ Governor internals ***********************/
61
sugov_should_update_freq(struct sugov_policy * sg_policy,u64 time)62 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
63 {
64 s64 delta_ns;
65
66 /*
67 * Since cpufreq_update_util() is called with rq->lock held for
68 * the @target_cpu, our per-CPU data is fully serialized.
69 *
70 * However, drivers cannot in general deal with cross-CPU
71 * requests, so while get_next_freq() will work, our
72 * sugov_update_commit() call may not for the fast switching platforms.
73 *
74 * Hence stop here for remote requests if they aren't supported
75 * by the hardware, as calculating the frequency is pointless if
76 * we cannot in fact act on it.
77 *
78 * This is needed on the slow switching platforms too to prevent CPUs
79 * going offline from leaving stale IRQ work items behind.
80 */
81 if (!cpufreq_this_cpu_can_update(sg_policy->policy))
82 return false;
83
84 if (unlikely(READ_ONCE(sg_policy->limits_changed))) {
85 WRITE_ONCE(sg_policy->limits_changed, false);
86 sg_policy->need_freq_update = true;
87
88 /*
89 * The above limits_changed update must occur before the reads
90 * of policy limits in cpufreq_driver_resolve_freq() or a policy
91 * limits update might be missed, so use a memory barrier to
92 * ensure it.
93 *
94 * This pairs with the write memory barrier in sugov_limits().
95 */
96 smp_mb();
97
98 return true;
99 }
100
101 delta_ns = time - sg_policy->last_freq_update_time;
102
103 return delta_ns >= sg_policy->freq_update_delay_ns;
104 }
105
sugov_update_next_freq(struct sugov_policy * sg_policy,u64 time,unsigned int next_freq)106 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
107 unsigned int next_freq)
108 {
109 if (sg_policy->need_freq_update) {
110 sg_policy->need_freq_update = false;
111 /*
112 * The policy limits have changed, but if the return value of
113 * cpufreq_driver_resolve_freq() after applying the new limits
114 * is still equal to the previously selected frequency, the
115 * driver callback need not be invoked unless the driver
116 * specifically wants that to happen on every update of the
117 * policy limits.
118 */
119 if (sg_policy->next_freq == next_freq &&
120 !cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS))
121 return false;
122 } else if (sg_policy->next_freq == next_freq) {
123 return false;
124 }
125
126 sg_policy->next_freq = next_freq;
127 sg_policy->last_freq_update_time = time;
128
129 return true;
130 }
131
sugov_deferred_update(struct sugov_policy * sg_policy)132 static void sugov_deferred_update(struct sugov_policy *sg_policy)
133 {
134 if (!sg_policy->work_in_progress) {
135 sg_policy->work_in_progress = true;
136 irq_work_queue(&sg_policy->irq_work);
137 }
138 }
139
140 /**
141 * get_next_freq - Compute a new frequency for a given cpufreq policy.
142 * @sg_policy: schedutil policy object to compute the new frequency for.
143 * @util: Current CPU utilization.
144 * @max: CPU capacity.
145 *
146 * If the utilization is frequency-invariant, choose the new frequency to be
147 * proportional to it, that is
148 *
149 * next_freq = C * max_freq * util / max
150 *
151 * Otherwise, approximate the would-be frequency-invariant utilization by
152 * util_raw * (curr_freq / max_freq) which leads to
153 *
154 * next_freq = C * curr_freq * util_raw / max
155 *
156 * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
157 *
158 * The lowest driver-supported frequency which is equal or greater than the raw
159 * next_freq (as calculated above) is returned, subject to policy min/max and
160 * cpufreq driver limitations.
161 */
get_next_freq(struct sugov_policy * sg_policy,unsigned long util,unsigned long max)162 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
163 unsigned long util, unsigned long max)
164 {
165 struct cpufreq_policy *policy = sg_policy->policy;
166 unsigned int freq = arch_scale_freq_invariant() ?
167 policy->cpuinfo.max_freq : policy->cur;
168
169 freq = map_util_freq(util, freq, max);
170
171 if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
172 return sg_policy->next_freq;
173
174 sg_policy->cached_raw_freq = freq;
175 return cpufreq_driver_resolve_freq(policy, freq);
176 }
177
sugov_effective_cpu_perf(int cpu,unsigned long actual,unsigned long min,unsigned long max)178 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
179 unsigned long min,
180 unsigned long max)
181 {
182 /* Add dvfs headroom to actual utilization */
183 actual = map_util_perf(actual);
184 /* Actually we don't need to target the max performance */
185 if (actual < max)
186 max = actual;
187
188 /*
189 * Ensure at least minimum performance while providing more compute
190 * capacity when possible.
191 */
192 return max(min, max);
193 }
194
sugov_get_util(struct sugov_cpu * sg_cpu)195 static void sugov_get_util(struct sugov_cpu *sg_cpu)
196 {
197 unsigned long min, max, util = cpu_util_cfs_boost(sg_cpu->cpu);
198
199 util = effective_cpu_util(sg_cpu->cpu, util, &min, &max);
200 sg_cpu->bw_min = min;
201 sg_cpu->util = sugov_effective_cpu_perf(sg_cpu->cpu, util, min, max);
202 }
203
204 /**
205 * sugov_iowait_reset() - Reset the IO boost status of a CPU.
206 * @sg_cpu: the sugov data for the CPU to boost
207 * @time: the update time from the caller
208 * @set_iowait_boost: true if an IO boost has been requested
209 *
210 * The IO wait boost of a task is disabled after a tick since the last update
211 * of a CPU. If a new IO wait boost is requested after more then a tick, then
212 * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
213 * efficiency by ignoring sporadic wakeups from IO.
214 */
sugov_iowait_reset(struct sugov_cpu * sg_cpu,u64 time,bool set_iowait_boost)215 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
216 bool set_iowait_boost)
217 {
218 s64 delta_ns = time - sg_cpu->last_update;
219
220 /* Reset boost only if a tick has elapsed since last request */
221 if (delta_ns <= TICK_NSEC)
222 return false;
223
224 sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
225 sg_cpu->iowait_boost_pending = set_iowait_boost;
226
227 return true;
228 }
229
230 /**
231 * sugov_iowait_boost() - Updates the IO boost status of a CPU.
232 * @sg_cpu: the sugov data for the CPU to boost
233 * @time: the update time from the caller
234 * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
235 *
236 * Each time a task wakes up after an IO operation, the CPU utilization can be
237 * boosted to a certain utilization which doubles at each "frequent and
238 * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
239 * of the maximum OPP.
240 *
241 * To keep doubling, an IO boost has to be requested at least once per tick,
242 * otherwise we restart from the utilization of the minimum OPP.
243 */
sugov_iowait_boost(struct sugov_cpu * sg_cpu,u64 time,unsigned int flags)244 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
245 unsigned int flags)
246 {
247 bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
248
249 /* Reset boost if the CPU appears to have been idle enough */
250 if (sg_cpu->iowait_boost &&
251 sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
252 return;
253
254 /* Boost only tasks waking up after IO */
255 if (!set_iowait_boost)
256 return;
257
258 /* Ensure boost doubles only one time at each request */
259 if (sg_cpu->iowait_boost_pending)
260 return;
261 sg_cpu->iowait_boost_pending = true;
262
263 /* Double the boost at each request */
264 if (sg_cpu->iowait_boost) {
265 sg_cpu->iowait_boost =
266 min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
267 return;
268 }
269
270 /* First wakeup after IO: start with minimum boost */
271 sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
272 }
273
274 /**
275 * sugov_iowait_apply() - Apply the IO boost to a CPU.
276 * @sg_cpu: the sugov data for the cpu to boost
277 * @time: the update time from the caller
278 * @max_cap: the max CPU capacity
279 *
280 * A CPU running a task which woken up after an IO operation can have its
281 * utilization boosted to speed up the completion of those IO operations.
282 * The IO boost value is increased each time a task wakes up from IO, in
283 * sugov_iowait_apply(), and it's instead decreased by this function,
284 * each time an increase has not been requested (!iowait_boost_pending).
285 *
286 * A CPU which also appears to have been idle for at least one tick has also
287 * its IO boost utilization reset.
288 *
289 * This mechanism is designed to boost high frequently IO waiting tasks, while
290 * being more conservative on tasks which does sporadic IO operations.
291 */
sugov_iowait_apply(struct sugov_cpu * sg_cpu,u64 time,unsigned long max_cap)292 static void sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
293 unsigned long max_cap)
294 {
295 unsigned long boost;
296
297 /* No boost currently required */
298 if (!sg_cpu->iowait_boost)
299 return;
300
301 /* Reset boost if the CPU appears to have been idle enough */
302 if (sugov_iowait_reset(sg_cpu, time, false))
303 return;
304
305 if (!sg_cpu->iowait_boost_pending) {
306 /*
307 * No boost pending; reduce the boost value.
308 */
309 sg_cpu->iowait_boost >>= 1;
310 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
311 sg_cpu->iowait_boost = 0;
312 return;
313 }
314 }
315
316 sg_cpu->iowait_boost_pending = false;
317
318 /*
319 * sg_cpu->util is already in capacity scale; convert iowait_boost
320 * into the same scale so we can compare.
321 */
322 boost = (sg_cpu->iowait_boost * max_cap) >> SCHED_CAPACITY_SHIFT;
323 boost = uclamp_rq_util_with(cpu_rq(sg_cpu->cpu), boost, NULL);
324 if (sg_cpu->util < boost)
325 sg_cpu->util = boost;
326 }
327
328 #ifdef CONFIG_NO_HZ_COMMON
sugov_cpu_is_busy(struct sugov_cpu * sg_cpu)329 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
330 {
331 unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
332 bool ret = idle_calls == sg_cpu->saved_idle_calls;
333
334 sg_cpu->saved_idle_calls = idle_calls;
335 return ret;
336 }
337 #else
sugov_cpu_is_busy(struct sugov_cpu * sg_cpu)338 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
339 #endif /* CONFIG_NO_HZ_COMMON */
340
341 /*
342 * Make sugov_should_update_freq() ignore the rate limit when DL
343 * has increased the utilization.
344 */
ignore_dl_rate_limit(struct sugov_cpu * sg_cpu)345 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
346 {
347 if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_min)
348 WRITE_ONCE(sg_cpu->sg_policy->limits_changed, true);
349 }
350
sugov_update_single_common(struct sugov_cpu * sg_cpu,u64 time,unsigned long max_cap,unsigned int flags)351 static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
352 u64 time, unsigned long max_cap,
353 unsigned int flags)
354 {
355 sugov_iowait_boost(sg_cpu, time, flags);
356 sg_cpu->last_update = time;
357
358 ignore_dl_rate_limit(sg_cpu);
359
360 if (!sugov_should_update_freq(sg_cpu->sg_policy, time))
361 return false;
362
363 sugov_get_util(sg_cpu);
364 sugov_iowait_apply(sg_cpu, time, max_cap);
365
366 return true;
367 }
368
sugov_update_single_freq(struct update_util_data * hook,u64 time,unsigned int flags)369 static void sugov_update_single_freq(struct update_util_data *hook, u64 time,
370 unsigned int flags)
371 {
372 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
373 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
374 unsigned int cached_freq = sg_policy->cached_raw_freq;
375 unsigned long max_cap;
376 unsigned int next_f;
377
378 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
379
380 if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
381 return;
382
383 next_f = get_next_freq(sg_policy, sg_cpu->util, max_cap);
384 /*
385 * Do not reduce the frequency if the CPU has not been idle
386 * recently, as the reduction is likely to be premature then.
387 *
388 * Except when the rq is capped by uclamp_max.
389 */
390 if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
391 sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq &&
392 !sg_policy->need_freq_update) {
393 next_f = sg_policy->next_freq;
394
395 /* Restore cached freq as next_freq has changed */
396 sg_policy->cached_raw_freq = cached_freq;
397 }
398
399 if (!sugov_update_next_freq(sg_policy, time, next_f))
400 return;
401
402 /*
403 * This code runs under rq->lock for the target CPU, so it won't run
404 * concurrently on two different CPUs for the same target and it is not
405 * necessary to acquire the lock in the fast switch case.
406 */
407 if (sg_policy->policy->fast_switch_enabled) {
408 cpufreq_driver_fast_switch(sg_policy->policy, next_f);
409 } else {
410 raw_spin_lock(&sg_policy->update_lock);
411 sugov_deferred_update(sg_policy);
412 raw_spin_unlock(&sg_policy->update_lock);
413 }
414 }
415
sugov_update_single_perf(struct update_util_data * hook,u64 time,unsigned int flags)416 static void sugov_update_single_perf(struct update_util_data *hook, u64 time,
417 unsigned int flags)
418 {
419 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
420 unsigned long prev_util = sg_cpu->util;
421 unsigned long max_cap;
422
423 /*
424 * Fall back to the "frequency" path if frequency invariance is not
425 * supported, because the direct mapping between the utilization and
426 * the performance levels depends on the frequency invariance.
427 */
428 if (!arch_scale_freq_invariant()) {
429 sugov_update_single_freq(hook, time, flags);
430 return;
431 }
432
433 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
434
435 if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
436 return;
437
438 /*
439 * Do not reduce the target performance level if the CPU has not been
440 * idle recently, as the reduction is likely to be premature then.
441 *
442 * Except when the rq is capped by uclamp_max.
443 */
444 if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
445 sugov_cpu_is_busy(sg_cpu) && sg_cpu->util < prev_util)
446 sg_cpu->util = prev_util;
447
448 cpufreq_driver_adjust_perf(sg_cpu->cpu, sg_cpu->bw_min,
449 sg_cpu->util, max_cap);
450
451 sg_cpu->sg_policy->last_freq_update_time = time;
452 }
453
sugov_next_freq_shared(struct sugov_cpu * sg_cpu,u64 time)454 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
455 {
456 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
457 struct cpufreq_policy *policy = sg_policy->policy;
458 unsigned long util = 0, max_cap;
459 unsigned int j;
460
461 max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
462
463 for_each_cpu(j, policy->cpus) {
464 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
465
466 sugov_get_util(j_sg_cpu);
467 sugov_iowait_apply(j_sg_cpu, time, max_cap);
468
469 util = max(j_sg_cpu->util, util);
470 }
471
472 return get_next_freq(sg_policy, util, max_cap);
473 }
474
475 static void
sugov_update_shared(struct update_util_data * hook,u64 time,unsigned int flags)476 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
477 {
478 struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
479 struct sugov_policy *sg_policy = sg_cpu->sg_policy;
480 unsigned int next_f;
481
482 raw_spin_lock(&sg_policy->update_lock);
483
484 sugov_iowait_boost(sg_cpu, time, flags);
485 sg_cpu->last_update = time;
486
487 ignore_dl_rate_limit(sg_cpu);
488
489 if (sugov_should_update_freq(sg_policy, time)) {
490 next_f = sugov_next_freq_shared(sg_cpu, time);
491
492 if (!sugov_update_next_freq(sg_policy, time, next_f))
493 goto unlock;
494
495 if (sg_policy->policy->fast_switch_enabled)
496 cpufreq_driver_fast_switch(sg_policy->policy, next_f);
497 else
498 sugov_deferred_update(sg_policy);
499 }
500 unlock:
501 raw_spin_unlock(&sg_policy->update_lock);
502 }
503
sugov_work(struct kthread_work * work)504 static void sugov_work(struct kthread_work *work)
505 {
506 struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
507 unsigned int freq;
508 unsigned long flags;
509
510 /*
511 * Hold sg_policy->update_lock shortly to handle the case where:
512 * in case sg_policy->next_freq is read here, and then updated by
513 * sugov_deferred_update() just before work_in_progress is set to false
514 * here, we may miss queueing the new update.
515 *
516 * Note: If a work was queued after the update_lock is released,
517 * sugov_work() will just be called again by kthread_work code; and the
518 * request will be proceed before the sugov thread sleeps.
519 */
520 raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
521 freq = sg_policy->next_freq;
522 sg_policy->work_in_progress = false;
523 raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
524
525 mutex_lock(&sg_policy->work_lock);
526 __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
527 mutex_unlock(&sg_policy->work_lock);
528 }
529
sugov_irq_work(struct irq_work * irq_work)530 static void sugov_irq_work(struct irq_work *irq_work)
531 {
532 struct sugov_policy *sg_policy;
533
534 sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
535
536 kthread_queue_work(&sg_policy->worker, &sg_policy->work);
537 }
538
539 /************************** sysfs interface ************************/
540
541 static struct sugov_tunables *global_tunables;
542 static DEFINE_MUTEX(global_tunables_lock);
543
to_sugov_tunables(struct gov_attr_set * attr_set)544 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
545 {
546 return container_of(attr_set, struct sugov_tunables, attr_set);
547 }
548
rate_limit_us_show(struct gov_attr_set * attr_set,char * buf)549 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
550 {
551 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
552
553 return sprintf(buf, "%u\n", tunables->rate_limit_us);
554 }
555
556 static ssize_t
rate_limit_us_store(struct gov_attr_set * attr_set,const char * buf,size_t count)557 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
558 {
559 struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
560 struct sugov_policy *sg_policy;
561 unsigned int rate_limit_us;
562
563 if (kstrtouint(buf, 10, &rate_limit_us))
564 return -EINVAL;
565
566 tunables->rate_limit_us = rate_limit_us;
567
568 list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
569 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
570
571 return count;
572 }
573
574 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
575
576 static struct attribute *sugov_attrs[] = {
577 &rate_limit_us.attr,
578 NULL
579 };
580 ATTRIBUTE_GROUPS(sugov);
581
sugov_tunables_free(struct kobject * kobj)582 static void sugov_tunables_free(struct kobject *kobj)
583 {
584 struct gov_attr_set *attr_set = to_gov_attr_set(kobj);
585
586 kfree(to_sugov_tunables(attr_set));
587 }
588
589 static const struct kobj_type sugov_tunables_ktype = {
590 .default_groups = sugov_groups,
591 .sysfs_ops = &governor_sysfs_ops,
592 .release = &sugov_tunables_free,
593 };
594
595 /********************** cpufreq governor interface *********************/
596
597 struct cpufreq_governor schedutil_gov;
598
sugov_policy_alloc(struct cpufreq_policy * policy)599 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
600 {
601 struct sugov_policy *sg_policy;
602
603 sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
604 if (!sg_policy)
605 return NULL;
606
607 sg_policy->policy = policy;
608 raw_spin_lock_init(&sg_policy->update_lock);
609 return sg_policy;
610 }
611
sugov_policy_free(struct sugov_policy * sg_policy)612 static void sugov_policy_free(struct sugov_policy *sg_policy)
613 {
614 kfree(sg_policy);
615 }
616
sugov_kthread_create(struct sugov_policy * sg_policy)617 static int sugov_kthread_create(struct sugov_policy *sg_policy)
618 {
619 struct task_struct *thread;
620 struct sched_attr attr = {
621 .size = sizeof(struct sched_attr),
622 .sched_policy = SCHED_DEADLINE,
623 .sched_flags = SCHED_FLAG_SUGOV,
624 .sched_nice = 0,
625 .sched_priority = 0,
626 /*
627 * Fake (unused) bandwidth; workaround to "fix"
628 * priority inheritance.
629 */
630 .sched_runtime = 1000000,
631 .sched_deadline = 10000000,
632 .sched_period = 10000000,
633 };
634 struct cpufreq_policy *policy = sg_policy->policy;
635 int ret;
636
637 /* kthread only required for slow path */
638 if (policy->fast_switch_enabled)
639 return 0;
640
641 kthread_init_work(&sg_policy->work, sugov_work);
642 kthread_init_worker(&sg_policy->worker);
643 thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
644 "sugov:%d",
645 cpumask_first(policy->related_cpus));
646 if (IS_ERR(thread)) {
647 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
648 return PTR_ERR(thread);
649 }
650
651 ret = sched_setattr_nocheck(thread, &attr);
652 if (ret) {
653 kthread_stop(thread);
654 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
655 return ret;
656 }
657
658 sg_policy->thread = thread;
659 kthread_bind_mask(thread, policy->related_cpus);
660 init_irq_work(&sg_policy->irq_work, sugov_irq_work);
661 mutex_init(&sg_policy->work_lock);
662
663 wake_up_process(thread);
664
665 return 0;
666 }
667
sugov_kthread_stop(struct sugov_policy * sg_policy)668 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
669 {
670 /* kthread only required for slow path */
671 if (sg_policy->policy->fast_switch_enabled)
672 return;
673
674 kthread_flush_worker(&sg_policy->worker);
675 kthread_stop(sg_policy->thread);
676 mutex_destroy(&sg_policy->work_lock);
677 }
678
sugov_tunables_alloc(struct sugov_policy * sg_policy)679 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
680 {
681 struct sugov_tunables *tunables;
682
683 tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
684 if (tunables) {
685 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
686 if (!have_governor_per_policy())
687 global_tunables = tunables;
688 }
689 return tunables;
690 }
691
sugov_clear_global_tunables(void)692 static void sugov_clear_global_tunables(void)
693 {
694 if (!have_governor_per_policy())
695 global_tunables = NULL;
696 }
697
sugov_init(struct cpufreq_policy * policy)698 static int sugov_init(struct cpufreq_policy *policy)
699 {
700 struct sugov_policy *sg_policy;
701 struct sugov_tunables *tunables;
702 int ret = 0;
703
704 /* State should be equivalent to EXIT */
705 if (policy->governor_data)
706 return -EBUSY;
707
708 cpufreq_enable_fast_switch(policy);
709
710 sg_policy = sugov_policy_alloc(policy);
711 if (!sg_policy) {
712 ret = -ENOMEM;
713 goto disable_fast_switch;
714 }
715
716 ret = sugov_kthread_create(sg_policy);
717 if (ret)
718 goto free_sg_policy;
719
720 mutex_lock(&global_tunables_lock);
721
722 if (global_tunables) {
723 if (WARN_ON(have_governor_per_policy())) {
724 ret = -EINVAL;
725 goto stop_kthread;
726 }
727 policy->governor_data = sg_policy;
728 sg_policy->tunables = global_tunables;
729
730 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
731 goto out;
732 }
733
734 tunables = sugov_tunables_alloc(sg_policy);
735 if (!tunables) {
736 ret = -ENOMEM;
737 goto stop_kthread;
738 }
739
740 tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
741
742 policy->governor_data = sg_policy;
743 sg_policy->tunables = tunables;
744
745 ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
746 get_governor_parent_kobj(policy), "%s",
747 schedutil_gov.name);
748 if (ret)
749 goto fail;
750
751 out:
752 mutex_unlock(&global_tunables_lock);
753 return 0;
754
755 fail:
756 kobject_put(&tunables->attr_set.kobj);
757 policy->governor_data = NULL;
758 sugov_clear_global_tunables();
759
760 stop_kthread:
761 sugov_kthread_stop(sg_policy);
762 mutex_unlock(&global_tunables_lock);
763
764 free_sg_policy:
765 sugov_policy_free(sg_policy);
766
767 disable_fast_switch:
768 cpufreq_disable_fast_switch(policy);
769
770 pr_err("initialization failed (error %d)\n", ret);
771 return ret;
772 }
773
sugov_exit(struct cpufreq_policy * policy)774 static void sugov_exit(struct cpufreq_policy *policy)
775 {
776 struct sugov_policy *sg_policy = policy->governor_data;
777 struct sugov_tunables *tunables = sg_policy->tunables;
778 unsigned int count;
779
780 mutex_lock(&global_tunables_lock);
781
782 count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
783 policy->governor_data = NULL;
784 if (!count)
785 sugov_clear_global_tunables();
786
787 mutex_unlock(&global_tunables_lock);
788
789 sugov_kthread_stop(sg_policy);
790 sugov_policy_free(sg_policy);
791 cpufreq_disable_fast_switch(policy);
792 }
793
sugov_start(struct cpufreq_policy * policy)794 static int sugov_start(struct cpufreq_policy *policy)
795 {
796 struct sugov_policy *sg_policy = policy->governor_data;
797 void (*uu)(struct update_util_data *data, u64 time, unsigned int flags);
798 unsigned int cpu;
799
800 sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
801 sg_policy->last_freq_update_time = 0;
802 sg_policy->next_freq = 0;
803 sg_policy->work_in_progress = false;
804 sg_policy->limits_changed = false;
805 sg_policy->cached_raw_freq = 0;
806
807 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
808
809 for_each_cpu(cpu, policy->cpus) {
810 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
811
812 memset(sg_cpu, 0, sizeof(*sg_cpu));
813 sg_cpu->cpu = cpu;
814 sg_cpu->sg_policy = sg_policy;
815 }
816
817 if (policy_is_shared(policy))
818 uu = sugov_update_shared;
819 else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf())
820 uu = sugov_update_single_perf;
821 else
822 uu = sugov_update_single_freq;
823
824 for_each_cpu(cpu, policy->cpus) {
825 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
826
827 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu);
828 }
829 return 0;
830 }
831
sugov_stop(struct cpufreq_policy * policy)832 static void sugov_stop(struct cpufreq_policy *policy)
833 {
834 struct sugov_policy *sg_policy = policy->governor_data;
835 unsigned int cpu;
836
837 for_each_cpu(cpu, policy->cpus)
838 cpufreq_remove_update_util_hook(cpu);
839
840 synchronize_rcu();
841
842 if (!policy->fast_switch_enabled) {
843 irq_work_sync(&sg_policy->irq_work);
844 kthread_cancel_work_sync(&sg_policy->work);
845 }
846 }
847
sugov_limits(struct cpufreq_policy * policy)848 static void sugov_limits(struct cpufreq_policy *policy)
849 {
850 struct sugov_policy *sg_policy = policy->governor_data;
851
852 if (!policy->fast_switch_enabled) {
853 mutex_lock(&sg_policy->work_lock);
854 cpufreq_policy_apply_limits(policy);
855 mutex_unlock(&sg_policy->work_lock);
856 }
857
858 /*
859 * The limits_changed update below must take place before the updates
860 * of policy limits in cpufreq_set_policy() or a policy limits update
861 * might be missed, so use a memory barrier to ensure it.
862 *
863 * This pairs with the memory barrier in sugov_should_update_freq().
864 */
865 smp_wmb();
866
867 WRITE_ONCE(sg_policy->limits_changed, true);
868 }
869
870 struct cpufreq_governor schedutil_gov = {
871 .name = "schedutil",
872 .owner = THIS_MODULE,
873 .flags = CPUFREQ_GOV_DYNAMIC_SWITCHING,
874 .init = sugov_init,
875 .exit = sugov_exit,
876 .start = sugov_start,
877 .stop = sugov_stop,
878 .limits = sugov_limits,
879 };
880
881 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
cpufreq_default_governor(void)882 struct cpufreq_governor *cpufreq_default_governor(void)
883 {
884 return &schedutil_gov;
885 }
886 #endif
887
888 cpufreq_governor_init(schedutil_gov);
889
890 #ifdef CONFIG_ENERGY_MODEL
rebuild_sd_workfn(struct work_struct * work)891 static void rebuild_sd_workfn(struct work_struct *work)
892 {
893 rebuild_sched_domains_energy();
894 }
895 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
896
897 /*
898 * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
899 * on governor changes to make sure the scheduler knows about it.
900 */
sched_cpufreq_governor_change(struct cpufreq_policy * policy,struct cpufreq_governor * old_gov)901 void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
902 struct cpufreq_governor *old_gov)
903 {
904 if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
905 /*
906 * When called from the cpufreq_register_driver() path, the
907 * cpu_hotplug_lock is already held, so use a work item to
908 * avoid nested locking in rebuild_sched_domains().
909 */
910 schedule_work(&rebuild_sd_work);
911 }
912
913 }
914 #endif
915