1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * f2fs compress support
4 *
5 * Copyright (c) 2019 Chao Yu <chao@kernel.org>
6 */
7
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/moduleparam.h>
11 #include <linux/writeback.h>
12 #include <linux/backing-dev.h>
13 #include <linux/lzo.h>
14 #include <linux/lz4.h>
15 #include <linux/zstd.h>
16 #include <linux/pagevec.h>
17
18 #include "f2fs.h"
19 #include "node.h"
20 #include "segment.h"
21 #include <trace/events/f2fs.h>
22
23 static struct kmem_cache *cic_entry_slab;
24 static struct kmem_cache *dic_entry_slab;
25
page_array_alloc(struct inode * inode,int nr)26 static void *page_array_alloc(struct inode *inode, int nr)
27 {
28 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
29 unsigned int size = sizeof(struct page *) * nr;
30
31 if (likely(size <= sbi->page_array_slab_size))
32 return f2fs_kmem_cache_alloc(sbi->page_array_slab,
33 GFP_F2FS_ZERO, false, F2FS_I_SB(inode));
34 return f2fs_kzalloc(sbi, size, GFP_NOFS);
35 }
36
page_array_free(struct inode * inode,void * pages,int nr)37 static void page_array_free(struct inode *inode, void *pages, int nr)
38 {
39 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
40 unsigned int size = sizeof(struct page *) * nr;
41
42 if (!pages)
43 return;
44
45 if (likely(size <= sbi->page_array_slab_size))
46 kmem_cache_free(sbi->page_array_slab, pages);
47 else
48 kfree(pages);
49 }
50
51 struct f2fs_compress_ops {
52 int (*init_compress_ctx)(struct compress_ctx *cc);
53 void (*destroy_compress_ctx)(struct compress_ctx *cc);
54 int (*compress_pages)(struct compress_ctx *cc);
55 int (*init_decompress_ctx)(struct decompress_io_ctx *dic);
56 void (*destroy_decompress_ctx)(struct decompress_io_ctx *dic);
57 int (*decompress_pages)(struct decompress_io_ctx *dic);
58 bool (*is_level_valid)(int level);
59 };
60
offset_in_cluster(struct compress_ctx * cc,pgoff_t index)61 static unsigned int offset_in_cluster(struct compress_ctx *cc, pgoff_t index)
62 {
63 return index & (cc->cluster_size - 1);
64 }
65
cluster_idx(struct compress_ctx * cc,pgoff_t index)66 static pgoff_t cluster_idx(struct compress_ctx *cc, pgoff_t index)
67 {
68 return index >> cc->log_cluster_size;
69 }
70
start_idx_of_cluster(struct compress_ctx * cc)71 static pgoff_t start_idx_of_cluster(struct compress_ctx *cc)
72 {
73 return cc->cluster_idx << cc->log_cluster_size;
74 }
75
f2fs_is_compressed_page(struct page * page)76 bool f2fs_is_compressed_page(struct page *page)
77 {
78 if (!PagePrivate(page))
79 return false;
80 if (!page_private(page))
81 return false;
82 if (page_private_nonpointer(page))
83 return false;
84
85 f2fs_bug_on(F2FS_M_SB(page->mapping),
86 *((u32 *)page_private(page)) != F2FS_COMPRESSED_PAGE_MAGIC);
87 return true;
88 }
89
f2fs_set_compressed_page(struct page * page,struct inode * inode,pgoff_t index,void * data)90 static void f2fs_set_compressed_page(struct page *page,
91 struct inode *inode, pgoff_t index, void *data)
92 {
93 attach_page_private(page, (void *)data);
94
95 /* i_crypto_info and iv index */
96 page->index = index;
97 page->mapping = inode->i_mapping;
98 }
99
f2fs_drop_rpages(struct compress_ctx * cc,int len,bool unlock)100 static void f2fs_drop_rpages(struct compress_ctx *cc, int len, bool unlock)
101 {
102 int i;
103
104 for (i = 0; i < len; i++) {
105 if (!cc->rpages[i])
106 continue;
107 if (unlock)
108 unlock_page(cc->rpages[i]);
109 else
110 put_page(cc->rpages[i]);
111 }
112 }
113
f2fs_put_rpages(struct compress_ctx * cc)114 static void f2fs_put_rpages(struct compress_ctx *cc)
115 {
116 f2fs_drop_rpages(cc, cc->cluster_size, false);
117 }
118
f2fs_unlock_rpages(struct compress_ctx * cc,int len)119 static void f2fs_unlock_rpages(struct compress_ctx *cc, int len)
120 {
121 f2fs_drop_rpages(cc, len, true);
122 }
123
f2fs_put_rpages_wbc(struct compress_ctx * cc,struct writeback_control * wbc,bool redirty,int unlock)124 static void f2fs_put_rpages_wbc(struct compress_ctx *cc,
125 struct writeback_control *wbc, bool redirty, int unlock)
126 {
127 unsigned int i;
128
129 for (i = 0; i < cc->cluster_size; i++) {
130 if (!cc->rpages[i])
131 continue;
132 if (redirty)
133 redirty_page_for_writepage(wbc, cc->rpages[i]);
134 f2fs_put_page(cc->rpages[i], unlock);
135 }
136 }
137
f2fs_compress_control_page(struct page * page)138 struct page *f2fs_compress_control_page(struct page *page)
139 {
140 return ((struct compress_io_ctx *)page_private(page))->rpages[0];
141 }
142
f2fs_init_compress_ctx(struct compress_ctx * cc)143 int f2fs_init_compress_ctx(struct compress_ctx *cc)
144 {
145 if (cc->rpages)
146 return 0;
147
148 cc->rpages = page_array_alloc(cc->inode, cc->cluster_size);
149 return cc->rpages ? 0 : -ENOMEM;
150 }
151
f2fs_destroy_compress_ctx(struct compress_ctx * cc,bool reuse)152 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse)
153 {
154 page_array_free(cc->inode, cc->rpages, cc->cluster_size);
155 cc->rpages = NULL;
156 cc->nr_rpages = 0;
157 cc->nr_cpages = 0;
158 cc->valid_nr_cpages = 0;
159 if (!reuse)
160 cc->cluster_idx = NULL_CLUSTER;
161 }
162
f2fs_compress_ctx_add_page(struct compress_ctx * cc,struct page * page)163 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page)
164 {
165 unsigned int cluster_ofs;
166
167 if (!f2fs_cluster_can_merge_page(cc, page->index))
168 f2fs_bug_on(F2FS_I_SB(cc->inode), 1);
169
170 cluster_ofs = offset_in_cluster(cc, page->index);
171 cc->rpages[cluster_ofs] = page;
172 cc->nr_rpages++;
173 cc->cluster_idx = cluster_idx(cc, page->index);
174 }
175
176 #ifdef CONFIG_F2FS_FS_LZO
lzo_init_compress_ctx(struct compress_ctx * cc)177 static int lzo_init_compress_ctx(struct compress_ctx *cc)
178 {
179 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
180 LZO1X_MEM_COMPRESS, GFP_NOFS);
181 if (!cc->private)
182 return -ENOMEM;
183
184 cc->clen = lzo1x_worst_compress(PAGE_SIZE << cc->log_cluster_size);
185 return 0;
186 }
187
lzo_destroy_compress_ctx(struct compress_ctx * cc)188 static void lzo_destroy_compress_ctx(struct compress_ctx *cc)
189 {
190 kvfree(cc->private);
191 cc->private = NULL;
192 }
193
lzo_compress_pages(struct compress_ctx * cc)194 static int lzo_compress_pages(struct compress_ctx *cc)
195 {
196 int ret;
197
198 ret = lzo1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
199 &cc->clen, cc->private);
200 if (ret != LZO_E_OK) {
201 f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
202 "lzo compress failed, ret:%d", ret);
203 return -EIO;
204 }
205 return 0;
206 }
207
lzo_decompress_pages(struct decompress_io_ctx * dic)208 static int lzo_decompress_pages(struct decompress_io_ctx *dic)
209 {
210 int ret;
211
212 ret = lzo1x_decompress_safe(dic->cbuf->cdata, dic->clen,
213 dic->rbuf, &dic->rlen);
214 if (ret != LZO_E_OK) {
215 f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
216 "lzo decompress failed, ret:%d", ret);
217 return -EIO;
218 }
219
220 if (dic->rlen != PAGE_SIZE << dic->log_cluster_size) {
221 f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
222 "lzo invalid rlen:%zu, expected:%lu",
223 dic->rlen, PAGE_SIZE << dic->log_cluster_size);
224 return -EIO;
225 }
226 return 0;
227 }
228
229 static const struct f2fs_compress_ops f2fs_lzo_ops = {
230 .init_compress_ctx = lzo_init_compress_ctx,
231 .destroy_compress_ctx = lzo_destroy_compress_ctx,
232 .compress_pages = lzo_compress_pages,
233 .decompress_pages = lzo_decompress_pages,
234 };
235 #endif
236
237 #ifdef CONFIG_F2FS_FS_LZ4
lz4_init_compress_ctx(struct compress_ctx * cc)238 static int lz4_init_compress_ctx(struct compress_ctx *cc)
239 {
240 unsigned int size = LZ4_MEM_COMPRESS;
241
242 #ifdef CONFIG_F2FS_FS_LZ4HC
243 if (F2FS_I(cc->inode)->i_compress_level)
244 size = LZ4HC_MEM_COMPRESS;
245 #endif
246
247 cc->private = f2fs_kvmalloc(F2FS_I_SB(cc->inode), size, GFP_NOFS);
248 if (!cc->private)
249 return -ENOMEM;
250
251 /*
252 * we do not change cc->clen to LZ4_compressBound(inputsize) to
253 * adapt worst compress case, because lz4 compressor can handle
254 * output budget properly.
255 */
256 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
257 return 0;
258 }
259
lz4_destroy_compress_ctx(struct compress_ctx * cc)260 static void lz4_destroy_compress_ctx(struct compress_ctx *cc)
261 {
262 kvfree(cc->private);
263 cc->private = NULL;
264 }
265
lz4_compress_pages(struct compress_ctx * cc)266 static int lz4_compress_pages(struct compress_ctx *cc)
267 {
268 int len = -EINVAL;
269 unsigned char level = F2FS_I(cc->inode)->i_compress_level;
270
271 if (!level)
272 len = LZ4_compress_default(cc->rbuf, cc->cbuf->cdata, cc->rlen,
273 cc->clen, cc->private);
274 #ifdef CONFIG_F2FS_FS_LZ4HC
275 else
276 len = LZ4_compress_HC(cc->rbuf, cc->cbuf->cdata, cc->rlen,
277 cc->clen, level, cc->private);
278 #endif
279 if (len < 0)
280 return len;
281 if (!len)
282 return -EAGAIN;
283
284 cc->clen = len;
285 return 0;
286 }
287
lz4_decompress_pages(struct decompress_io_ctx * dic)288 static int lz4_decompress_pages(struct decompress_io_ctx *dic)
289 {
290 int ret;
291
292 ret = LZ4_decompress_safe(dic->cbuf->cdata, dic->rbuf,
293 dic->clen, dic->rlen);
294 if (ret < 0) {
295 f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
296 "lz4 decompress failed, ret:%d", ret);
297 return -EIO;
298 }
299
300 if (ret != PAGE_SIZE << dic->log_cluster_size) {
301 f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
302 "lz4 invalid ret:%d, expected:%lu",
303 ret, PAGE_SIZE << dic->log_cluster_size);
304 return -EIO;
305 }
306 return 0;
307 }
308
lz4_is_level_valid(int lvl)309 static bool lz4_is_level_valid(int lvl)
310 {
311 #ifdef CONFIG_F2FS_FS_LZ4HC
312 return !lvl || (lvl >= LZ4HC_MIN_CLEVEL && lvl <= LZ4HC_MAX_CLEVEL);
313 #else
314 return lvl == 0;
315 #endif
316 }
317
318 static const struct f2fs_compress_ops f2fs_lz4_ops = {
319 .init_compress_ctx = lz4_init_compress_ctx,
320 .destroy_compress_ctx = lz4_destroy_compress_ctx,
321 .compress_pages = lz4_compress_pages,
322 .decompress_pages = lz4_decompress_pages,
323 .is_level_valid = lz4_is_level_valid,
324 };
325 #endif
326
327 #ifdef CONFIG_F2FS_FS_ZSTD
zstd_init_compress_ctx(struct compress_ctx * cc)328 static int zstd_init_compress_ctx(struct compress_ctx *cc)
329 {
330 zstd_parameters params;
331 zstd_cstream *stream;
332 void *workspace;
333 unsigned int workspace_size;
334 unsigned char level = F2FS_I(cc->inode)->i_compress_level;
335
336 /* Need to remain this for backward compatibility */
337 if (!level)
338 level = F2FS_ZSTD_DEFAULT_CLEVEL;
339
340 params = zstd_get_params(level, cc->rlen);
341 workspace_size = zstd_cstream_workspace_bound(¶ms.cParams);
342
343 workspace = f2fs_kvmalloc(F2FS_I_SB(cc->inode),
344 workspace_size, GFP_NOFS);
345 if (!workspace)
346 return -ENOMEM;
347
348 stream = zstd_init_cstream(¶ms, 0, workspace, workspace_size);
349 if (!stream) {
350 f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
351 "%s zstd_init_cstream failed", __func__);
352 kvfree(workspace);
353 return -EIO;
354 }
355
356 cc->private = workspace;
357 cc->private2 = stream;
358
359 cc->clen = cc->rlen - PAGE_SIZE - COMPRESS_HEADER_SIZE;
360 return 0;
361 }
362
zstd_destroy_compress_ctx(struct compress_ctx * cc)363 static void zstd_destroy_compress_ctx(struct compress_ctx *cc)
364 {
365 kvfree(cc->private);
366 cc->private = NULL;
367 cc->private2 = NULL;
368 }
369
zstd_compress_pages(struct compress_ctx * cc)370 static int zstd_compress_pages(struct compress_ctx *cc)
371 {
372 zstd_cstream *stream = cc->private2;
373 zstd_in_buffer inbuf;
374 zstd_out_buffer outbuf;
375 int src_size = cc->rlen;
376 int dst_size = src_size - PAGE_SIZE - COMPRESS_HEADER_SIZE;
377 int ret;
378
379 inbuf.pos = 0;
380 inbuf.src = cc->rbuf;
381 inbuf.size = src_size;
382
383 outbuf.pos = 0;
384 outbuf.dst = cc->cbuf->cdata;
385 outbuf.size = dst_size;
386
387 ret = zstd_compress_stream(stream, &outbuf, &inbuf);
388 if (zstd_is_error(ret)) {
389 f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
390 "%s zstd_compress_stream failed, ret: %d",
391 __func__, zstd_get_error_code(ret));
392 return -EIO;
393 }
394
395 ret = zstd_end_stream(stream, &outbuf);
396 if (zstd_is_error(ret)) {
397 f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
398 "%s zstd_end_stream returned %d",
399 __func__, zstd_get_error_code(ret));
400 return -EIO;
401 }
402
403 /*
404 * there is compressed data remained in intermediate buffer due to
405 * no more space in cbuf.cdata
406 */
407 if (ret)
408 return -EAGAIN;
409
410 cc->clen = outbuf.pos;
411 return 0;
412 }
413
zstd_init_decompress_ctx(struct decompress_io_ctx * dic)414 static int zstd_init_decompress_ctx(struct decompress_io_ctx *dic)
415 {
416 zstd_dstream *stream;
417 void *workspace;
418 unsigned int workspace_size;
419 unsigned int max_window_size =
420 MAX_COMPRESS_WINDOW_SIZE(dic->log_cluster_size);
421
422 workspace_size = zstd_dstream_workspace_bound(max_window_size);
423
424 workspace = f2fs_kvmalloc(F2FS_I_SB(dic->inode),
425 workspace_size, GFP_NOFS);
426 if (!workspace)
427 return -ENOMEM;
428
429 stream = zstd_init_dstream(max_window_size, workspace, workspace_size);
430 if (!stream) {
431 f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
432 "%s zstd_init_dstream failed", __func__);
433 kvfree(workspace);
434 return -EIO;
435 }
436
437 dic->private = workspace;
438 dic->private2 = stream;
439
440 return 0;
441 }
442
zstd_destroy_decompress_ctx(struct decompress_io_ctx * dic)443 static void zstd_destroy_decompress_ctx(struct decompress_io_ctx *dic)
444 {
445 kvfree(dic->private);
446 dic->private = NULL;
447 dic->private2 = NULL;
448 }
449
zstd_decompress_pages(struct decompress_io_ctx * dic)450 static int zstd_decompress_pages(struct decompress_io_ctx *dic)
451 {
452 zstd_dstream *stream = dic->private2;
453 zstd_in_buffer inbuf;
454 zstd_out_buffer outbuf;
455 int ret;
456
457 inbuf.pos = 0;
458 inbuf.src = dic->cbuf->cdata;
459 inbuf.size = dic->clen;
460
461 outbuf.pos = 0;
462 outbuf.dst = dic->rbuf;
463 outbuf.size = dic->rlen;
464
465 ret = zstd_decompress_stream(stream, &outbuf, &inbuf);
466 if (zstd_is_error(ret)) {
467 f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
468 "%s zstd_decompress_stream failed, ret: %d",
469 __func__, zstd_get_error_code(ret));
470 return -EIO;
471 }
472
473 if (dic->rlen != outbuf.pos) {
474 f2fs_err_ratelimited(F2FS_I_SB(dic->inode),
475 "%s ZSTD invalid rlen:%zu, expected:%lu",
476 __func__, dic->rlen,
477 PAGE_SIZE << dic->log_cluster_size);
478 return -EIO;
479 }
480
481 return 0;
482 }
483
zstd_is_level_valid(int lvl)484 static bool zstd_is_level_valid(int lvl)
485 {
486 return lvl >= zstd_min_clevel() && lvl <= zstd_max_clevel();
487 }
488
489 static const struct f2fs_compress_ops f2fs_zstd_ops = {
490 .init_compress_ctx = zstd_init_compress_ctx,
491 .destroy_compress_ctx = zstd_destroy_compress_ctx,
492 .compress_pages = zstd_compress_pages,
493 .init_decompress_ctx = zstd_init_decompress_ctx,
494 .destroy_decompress_ctx = zstd_destroy_decompress_ctx,
495 .decompress_pages = zstd_decompress_pages,
496 .is_level_valid = zstd_is_level_valid,
497 };
498 #endif
499
500 #ifdef CONFIG_F2FS_FS_LZO
501 #ifdef CONFIG_F2FS_FS_LZORLE
lzorle_compress_pages(struct compress_ctx * cc)502 static int lzorle_compress_pages(struct compress_ctx *cc)
503 {
504 int ret;
505
506 ret = lzorle1x_1_compress(cc->rbuf, cc->rlen, cc->cbuf->cdata,
507 &cc->clen, cc->private);
508 if (ret != LZO_E_OK) {
509 f2fs_err_ratelimited(F2FS_I_SB(cc->inode),
510 "lzo-rle compress failed, ret:%d", ret);
511 return -EIO;
512 }
513 return 0;
514 }
515
516 static const struct f2fs_compress_ops f2fs_lzorle_ops = {
517 .init_compress_ctx = lzo_init_compress_ctx,
518 .destroy_compress_ctx = lzo_destroy_compress_ctx,
519 .compress_pages = lzorle_compress_pages,
520 .decompress_pages = lzo_decompress_pages,
521 };
522 #endif
523 #endif
524
525 static const struct f2fs_compress_ops *f2fs_cops[COMPRESS_MAX] = {
526 #ifdef CONFIG_F2FS_FS_LZO
527 &f2fs_lzo_ops,
528 #else
529 NULL,
530 #endif
531 #ifdef CONFIG_F2FS_FS_LZ4
532 &f2fs_lz4_ops,
533 #else
534 NULL,
535 #endif
536 #ifdef CONFIG_F2FS_FS_ZSTD
537 &f2fs_zstd_ops,
538 #else
539 NULL,
540 #endif
541 #if defined(CONFIG_F2FS_FS_LZO) && defined(CONFIG_F2FS_FS_LZORLE)
542 &f2fs_lzorle_ops,
543 #else
544 NULL,
545 #endif
546 };
547
f2fs_is_compress_backend_ready(struct inode * inode)548 bool f2fs_is_compress_backend_ready(struct inode *inode)
549 {
550 if (!f2fs_compressed_file(inode))
551 return true;
552 return f2fs_cops[F2FS_I(inode)->i_compress_algorithm];
553 }
554
f2fs_is_compress_level_valid(int alg,int lvl)555 bool f2fs_is_compress_level_valid(int alg, int lvl)
556 {
557 const struct f2fs_compress_ops *cops = f2fs_cops[alg];
558
559 if (cops->is_level_valid)
560 return cops->is_level_valid(lvl);
561
562 return lvl == 0;
563 }
564
565 static mempool_t *compress_page_pool;
566 static int num_compress_pages = 512;
567 module_param(num_compress_pages, uint, 0444);
568 MODULE_PARM_DESC(num_compress_pages,
569 "Number of intermediate compress pages to preallocate");
570
f2fs_init_compress_mempool(void)571 int __init f2fs_init_compress_mempool(void)
572 {
573 compress_page_pool = mempool_create_page_pool(num_compress_pages, 0);
574 return compress_page_pool ? 0 : -ENOMEM;
575 }
576
f2fs_destroy_compress_mempool(void)577 void f2fs_destroy_compress_mempool(void)
578 {
579 mempool_destroy(compress_page_pool);
580 }
581
f2fs_compress_alloc_page(void)582 static struct page *f2fs_compress_alloc_page(void)
583 {
584 struct page *page;
585
586 page = mempool_alloc(compress_page_pool, GFP_NOFS);
587 lock_page(page);
588
589 return page;
590 }
591
f2fs_compress_free_page(struct page * page)592 static void f2fs_compress_free_page(struct page *page)
593 {
594 if (!page)
595 return;
596 detach_page_private(page);
597 page->mapping = NULL;
598 unlock_page(page);
599 mempool_free(page, compress_page_pool);
600 }
601
602 #define MAX_VMAP_RETRIES 3
603
f2fs_vmap(struct page ** pages,unsigned int count)604 static void *f2fs_vmap(struct page **pages, unsigned int count)
605 {
606 int i;
607 void *buf = NULL;
608
609 for (i = 0; i < MAX_VMAP_RETRIES; i++) {
610 buf = vm_map_ram(pages, count, -1);
611 if (buf)
612 break;
613 vm_unmap_aliases();
614 }
615 return buf;
616 }
617
f2fs_compress_pages(struct compress_ctx * cc)618 static int f2fs_compress_pages(struct compress_ctx *cc)
619 {
620 struct f2fs_inode_info *fi = F2FS_I(cc->inode);
621 const struct f2fs_compress_ops *cops =
622 f2fs_cops[fi->i_compress_algorithm];
623 unsigned int max_len, new_nr_cpages;
624 u32 chksum = 0;
625 int i, ret;
626
627 trace_f2fs_compress_pages_start(cc->inode, cc->cluster_idx,
628 cc->cluster_size, fi->i_compress_algorithm);
629
630 if (cops->init_compress_ctx) {
631 ret = cops->init_compress_ctx(cc);
632 if (ret)
633 goto out;
634 }
635
636 max_len = COMPRESS_HEADER_SIZE + cc->clen;
637 cc->nr_cpages = DIV_ROUND_UP(max_len, PAGE_SIZE);
638 cc->valid_nr_cpages = cc->nr_cpages;
639
640 cc->cpages = page_array_alloc(cc->inode, cc->nr_cpages);
641 if (!cc->cpages) {
642 ret = -ENOMEM;
643 goto destroy_compress_ctx;
644 }
645
646 for (i = 0; i < cc->nr_cpages; i++)
647 cc->cpages[i] = f2fs_compress_alloc_page();
648
649 cc->rbuf = f2fs_vmap(cc->rpages, cc->cluster_size);
650 if (!cc->rbuf) {
651 ret = -ENOMEM;
652 goto out_free_cpages;
653 }
654
655 cc->cbuf = f2fs_vmap(cc->cpages, cc->nr_cpages);
656 if (!cc->cbuf) {
657 ret = -ENOMEM;
658 goto out_vunmap_rbuf;
659 }
660
661 ret = cops->compress_pages(cc);
662 if (ret)
663 goto out_vunmap_cbuf;
664
665 max_len = PAGE_SIZE * (cc->cluster_size - 1) - COMPRESS_HEADER_SIZE;
666
667 if (cc->clen > max_len) {
668 ret = -EAGAIN;
669 goto out_vunmap_cbuf;
670 }
671
672 cc->cbuf->clen = cpu_to_le32(cc->clen);
673
674 if (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))
675 chksum = f2fs_crc32(F2FS_I_SB(cc->inode),
676 cc->cbuf->cdata, cc->clen);
677 cc->cbuf->chksum = cpu_to_le32(chksum);
678
679 for (i = 0; i < COMPRESS_DATA_RESERVED_SIZE; i++)
680 cc->cbuf->reserved[i] = cpu_to_le32(0);
681
682 new_nr_cpages = DIV_ROUND_UP(cc->clen + COMPRESS_HEADER_SIZE, PAGE_SIZE);
683
684 /* zero out any unused part of the last page */
685 memset(&cc->cbuf->cdata[cc->clen], 0,
686 (new_nr_cpages * PAGE_SIZE) -
687 (cc->clen + COMPRESS_HEADER_SIZE));
688
689 vm_unmap_ram(cc->cbuf, cc->nr_cpages);
690 vm_unmap_ram(cc->rbuf, cc->cluster_size);
691
692 for (i = new_nr_cpages; i < cc->nr_cpages; i++) {
693 f2fs_compress_free_page(cc->cpages[i]);
694 cc->cpages[i] = NULL;
695 }
696
697 if (cops->destroy_compress_ctx)
698 cops->destroy_compress_ctx(cc);
699
700 cc->valid_nr_cpages = new_nr_cpages;
701
702 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
703 cc->clen, ret);
704 return 0;
705
706 out_vunmap_cbuf:
707 vm_unmap_ram(cc->cbuf, cc->nr_cpages);
708 out_vunmap_rbuf:
709 vm_unmap_ram(cc->rbuf, cc->cluster_size);
710 out_free_cpages:
711 for (i = 0; i < cc->nr_cpages; i++) {
712 if (cc->cpages[i])
713 f2fs_compress_free_page(cc->cpages[i]);
714 }
715 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
716 cc->cpages = NULL;
717 destroy_compress_ctx:
718 if (cops->destroy_compress_ctx)
719 cops->destroy_compress_ctx(cc);
720 out:
721 trace_f2fs_compress_pages_end(cc->inode, cc->cluster_idx,
722 cc->clen, ret);
723 return ret;
724 }
725
726 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
727 bool pre_alloc);
728 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
729 bool bypass_destroy_callback, bool pre_alloc);
730
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)731 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task)
732 {
733 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
734 struct f2fs_inode_info *fi = F2FS_I(dic->inode);
735 const struct f2fs_compress_ops *cops =
736 f2fs_cops[fi->i_compress_algorithm];
737 bool bypass_callback = false;
738 int ret;
739
740 trace_f2fs_decompress_pages_start(dic->inode, dic->cluster_idx,
741 dic->cluster_size, fi->i_compress_algorithm);
742
743 if (dic->failed) {
744 ret = -EIO;
745 goto out_end_io;
746 }
747
748 ret = f2fs_prepare_decomp_mem(dic, false);
749 if (ret) {
750 bypass_callback = true;
751 goto out_release;
752 }
753
754 dic->clen = le32_to_cpu(dic->cbuf->clen);
755 dic->rlen = PAGE_SIZE << dic->log_cluster_size;
756
757 if (dic->clen > PAGE_SIZE * dic->nr_cpages - COMPRESS_HEADER_SIZE) {
758 ret = -EFSCORRUPTED;
759
760 /* Avoid f2fs_commit_super in irq context */
761 if (!in_task)
762 f2fs_handle_error_async(sbi, ERROR_FAIL_DECOMPRESSION);
763 else
764 f2fs_handle_error(sbi, ERROR_FAIL_DECOMPRESSION);
765 goto out_release;
766 }
767
768 ret = cops->decompress_pages(dic);
769
770 if (!ret && (fi->i_compress_flag & BIT(COMPRESS_CHKSUM))) {
771 u32 provided = le32_to_cpu(dic->cbuf->chksum);
772 u32 calculated = f2fs_crc32(sbi, dic->cbuf->cdata, dic->clen);
773
774 if (provided != calculated) {
775 if (!is_inode_flag_set(dic->inode, FI_COMPRESS_CORRUPT)) {
776 set_inode_flag(dic->inode, FI_COMPRESS_CORRUPT);
777 f2fs_info_ratelimited(sbi,
778 "checksum invalid, nid = %lu, %x vs %x",
779 dic->inode->i_ino,
780 provided, calculated);
781 }
782 set_sbi_flag(sbi, SBI_NEED_FSCK);
783 }
784 }
785
786 out_release:
787 f2fs_release_decomp_mem(dic, bypass_callback, false);
788
789 out_end_io:
790 trace_f2fs_decompress_pages_end(dic->inode, dic->cluster_idx,
791 dic->clen, ret);
792 f2fs_decompress_end_io(dic, ret, in_task);
793 }
794
795 /*
796 * This is called when a page of a compressed cluster has been read from disk
797 * (or failed to be read from disk). It checks whether this page was the last
798 * page being waited on in the cluster, and if so, it decompresses the cluster
799 * (or in the case of a failure, cleans up without actually decompressing).
800 */
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr,bool in_task)801 void f2fs_end_read_compressed_page(struct page *page, bool failed,
802 block_t blkaddr, bool in_task)
803 {
804 struct decompress_io_ctx *dic =
805 (struct decompress_io_ctx *)page_private(page);
806 struct f2fs_sb_info *sbi = F2FS_I_SB(dic->inode);
807
808 dec_page_count(sbi, F2FS_RD_DATA);
809
810 if (failed)
811 WRITE_ONCE(dic->failed, true);
812 else if (blkaddr && in_task)
813 f2fs_cache_compressed_page(sbi, page,
814 dic->inode->i_ino, blkaddr);
815
816 if (atomic_dec_and_test(&dic->remaining_pages))
817 f2fs_decompress_cluster(dic, in_task);
818 }
819
is_page_in_cluster(struct compress_ctx * cc,pgoff_t index)820 static bool is_page_in_cluster(struct compress_ctx *cc, pgoff_t index)
821 {
822 if (cc->cluster_idx == NULL_CLUSTER)
823 return true;
824 return cc->cluster_idx == cluster_idx(cc, index);
825 }
826
f2fs_cluster_is_empty(struct compress_ctx * cc)827 bool f2fs_cluster_is_empty(struct compress_ctx *cc)
828 {
829 return cc->nr_rpages == 0;
830 }
831
f2fs_cluster_is_full(struct compress_ctx * cc)832 static bool f2fs_cluster_is_full(struct compress_ctx *cc)
833 {
834 return cc->cluster_size == cc->nr_rpages;
835 }
836
f2fs_cluster_can_merge_page(struct compress_ctx * cc,pgoff_t index)837 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index)
838 {
839 if (f2fs_cluster_is_empty(cc))
840 return true;
841 return is_page_in_cluster(cc, index);
842 }
843
f2fs_all_cluster_page_ready(struct compress_ctx * cc,struct page ** pages,int index,int nr_pages,bool uptodate)844 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
845 int index, int nr_pages, bool uptodate)
846 {
847 unsigned long pgidx = pages[index]->index;
848 int i = uptodate ? 0 : 1;
849
850 /*
851 * when uptodate set to true, try to check all pages in cluster is
852 * uptodate or not.
853 */
854 if (uptodate && (pgidx % cc->cluster_size))
855 return false;
856
857 if (nr_pages - index < cc->cluster_size)
858 return false;
859
860 for (; i < cc->cluster_size; i++) {
861 if (pages[index + i]->index != pgidx + i)
862 return false;
863 if (uptodate && !PageUptodate(pages[index + i]))
864 return false;
865 }
866
867 return true;
868 }
869
cluster_has_invalid_data(struct compress_ctx * cc)870 static bool cluster_has_invalid_data(struct compress_ctx *cc)
871 {
872 loff_t i_size = i_size_read(cc->inode);
873 unsigned nr_pages = DIV_ROUND_UP(i_size, PAGE_SIZE);
874 int i;
875
876 for (i = 0; i < cc->cluster_size; i++) {
877 struct page *page = cc->rpages[i];
878
879 f2fs_bug_on(F2FS_I_SB(cc->inode), !page);
880
881 /* beyond EOF */
882 if (page->index >= nr_pages)
883 return true;
884 }
885 return false;
886 }
887
f2fs_sanity_check_cluster(struct dnode_of_data * dn)888 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn)
889 {
890 #ifdef CONFIG_F2FS_CHECK_FS
891 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
892 unsigned int cluster_size = F2FS_I(dn->inode)->i_cluster_size;
893 int cluster_end = 0;
894 unsigned int count;
895 int i;
896 char *reason = "";
897
898 if (dn->data_blkaddr != COMPRESS_ADDR)
899 return false;
900
901 /* [..., COMPR_ADDR, ...] */
902 if (dn->ofs_in_node % cluster_size) {
903 reason = "[*|C|*|*]";
904 goto out;
905 }
906
907 for (i = 1, count = 1; i < cluster_size; i++, count++) {
908 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
909 dn->ofs_in_node + i);
910
911 /* [COMPR_ADDR, ..., COMPR_ADDR] */
912 if (blkaddr == COMPRESS_ADDR) {
913 reason = "[C|*|C|*]";
914 goto out;
915 }
916 if (!__is_valid_data_blkaddr(blkaddr)) {
917 if (!cluster_end)
918 cluster_end = i;
919 continue;
920 }
921 /* [COMPR_ADDR, NULL_ADDR or NEW_ADDR, valid_blkaddr] */
922 if (cluster_end) {
923 reason = "[C|N|N|V]";
924 goto out;
925 }
926 }
927
928 f2fs_bug_on(F2FS_I_SB(dn->inode), count != cluster_size &&
929 !is_inode_flag_set(dn->inode, FI_COMPRESS_RELEASED));
930
931 return false;
932 out:
933 f2fs_warn(sbi, "access invalid cluster, ino:%lu, nid:%u, ofs_in_node:%u, reason:%s",
934 dn->inode->i_ino, dn->nid, dn->ofs_in_node, reason);
935 set_sbi_flag(sbi, SBI_NEED_FSCK);
936 return true;
937 #else
938 return false;
939 #endif
940 }
941
__f2fs_get_cluster_blocks(struct inode * inode,struct dnode_of_data * dn)942 static int __f2fs_get_cluster_blocks(struct inode *inode,
943 struct dnode_of_data *dn)
944 {
945 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
946 int count, i;
947
948 for (i = 0, count = 0; i < cluster_size; i++) {
949 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
950 dn->ofs_in_node + i);
951
952 if (__is_valid_data_blkaddr(blkaddr))
953 count++;
954 }
955
956 return count;
957 }
958
__f2fs_cluster_blocks(struct inode * inode,unsigned int cluster_idx,enum cluster_check_type type)959 static int __f2fs_cluster_blocks(struct inode *inode, unsigned int cluster_idx,
960 enum cluster_check_type type)
961 {
962 struct dnode_of_data dn;
963 unsigned int start_idx = cluster_idx <<
964 F2FS_I(inode)->i_log_cluster_size;
965 int ret;
966
967 set_new_dnode(&dn, inode, NULL, NULL, 0);
968 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
969 if (ret) {
970 if (ret == -ENOENT)
971 ret = 0;
972 goto fail;
973 }
974
975 if (f2fs_sanity_check_cluster(&dn)) {
976 ret = -EFSCORRUPTED;
977 goto fail;
978 }
979
980 if (dn.data_blkaddr == COMPRESS_ADDR) {
981 if (type == CLUSTER_COMPR_BLKS)
982 ret = 1 + __f2fs_get_cluster_blocks(inode, &dn);
983 else if (type == CLUSTER_IS_COMPR)
984 ret = 1;
985 } else if (type == CLUSTER_RAW_BLKS) {
986 ret = __f2fs_get_cluster_blocks(inode, &dn);
987 }
988 fail:
989 f2fs_put_dnode(&dn);
990 return ret;
991 }
992
993 /* return # of compressed blocks in compressed cluster */
f2fs_compressed_blocks(struct compress_ctx * cc)994 static int f2fs_compressed_blocks(struct compress_ctx *cc)
995 {
996 return __f2fs_cluster_blocks(cc->inode, cc->cluster_idx,
997 CLUSTER_COMPR_BLKS);
998 }
999
1000 /* return # of raw blocks in non-compressed cluster */
f2fs_decompressed_blocks(struct inode * inode,unsigned int cluster_idx)1001 static int f2fs_decompressed_blocks(struct inode *inode,
1002 unsigned int cluster_idx)
1003 {
1004 return __f2fs_cluster_blocks(inode, cluster_idx,
1005 CLUSTER_RAW_BLKS);
1006 }
1007
1008 /* return whether cluster is compressed one or not */
f2fs_is_compressed_cluster(struct inode * inode,pgoff_t index)1009 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index)
1010 {
1011 return __f2fs_cluster_blocks(inode,
1012 index >> F2FS_I(inode)->i_log_cluster_size,
1013 CLUSTER_IS_COMPR);
1014 }
1015
1016 /* return whether cluster contains non raw blocks or not */
f2fs_is_sparse_cluster(struct inode * inode,pgoff_t index)1017 bool f2fs_is_sparse_cluster(struct inode *inode, pgoff_t index)
1018 {
1019 unsigned int cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size;
1020
1021 return f2fs_decompressed_blocks(inode, cluster_idx) !=
1022 F2FS_I(inode)->i_cluster_size;
1023 }
1024
cluster_may_compress(struct compress_ctx * cc)1025 static bool cluster_may_compress(struct compress_ctx *cc)
1026 {
1027 if (!f2fs_need_compress_data(cc->inode))
1028 return false;
1029 if (f2fs_is_atomic_file(cc->inode))
1030 return false;
1031 if (!f2fs_cluster_is_full(cc))
1032 return false;
1033 if (unlikely(f2fs_cp_error(F2FS_I_SB(cc->inode))))
1034 return false;
1035 return !cluster_has_invalid_data(cc);
1036 }
1037
set_cluster_writeback(struct compress_ctx * cc)1038 static void set_cluster_writeback(struct compress_ctx *cc)
1039 {
1040 int i;
1041
1042 for (i = 0; i < cc->cluster_size; i++) {
1043 if (cc->rpages[i])
1044 set_page_writeback(cc->rpages[i]);
1045 }
1046 }
1047
set_cluster_dirty(struct compress_ctx * cc)1048 static void set_cluster_dirty(struct compress_ctx *cc)
1049 {
1050 int i;
1051
1052 for (i = 0; i < cc->cluster_size; i++)
1053 if (cc->rpages[i]) {
1054 set_page_dirty(cc->rpages[i]);
1055 set_page_private_gcing(cc->rpages[i]);
1056 }
1057 }
1058
prepare_compress_overwrite(struct compress_ctx * cc,struct page ** pagep,pgoff_t index,void ** fsdata)1059 static int prepare_compress_overwrite(struct compress_ctx *cc,
1060 struct page **pagep, pgoff_t index, void **fsdata)
1061 {
1062 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1063 struct address_space *mapping = cc->inode->i_mapping;
1064 struct page *page;
1065 sector_t last_block_in_bio;
1066 fgf_t fgp_flag = FGP_LOCK | FGP_WRITE | FGP_CREAT;
1067 pgoff_t start_idx = start_idx_of_cluster(cc);
1068 int i, ret;
1069
1070 retry:
1071 ret = f2fs_is_compressed_cluster(cc->inode, start_idx);
1072 if (ret <= 0)
1073 return ret;
1074
1075 ret = f2fs_init_compress_ctx(cc);
1076 if (ret)
1077 return ret;
1078
1079 /* keep page reference to avoid page reclaim */
1080 for (i = 0; i < cc->cluster_size; i++) {
1081 page = f2fs_pagecache_get_page(mapping, start_idx + i,
1082 fgp_flag, GFP_NOFS);
1083 if (!page) {
1084 ret = -ENOMEM;
1085 goto unlock_pages;
1086 }
1087
1088 if (PageUptodate(page))
1089 f2fs_put_page(page, 1);
1090 else
1091 f2fs_compress_ctx_add_page(cc, page);
1092 }
1093
1094 if (!f2fs_cluster_is_empty(cc)) {
1095 struct bio *bio = NULL;
1096
1097 ret = f2fs_read_multi_pages(cc, &bio, cc->cluster_size,
1098 &last_block_in_bio, false, true);
1099 f2fs_put_rpages(cc);
1100 f2fs_destroy_compress_ctx(cc, true);
1101 if (ret)
1102 goto out;
1103 if (bio)
1104 f2fs_submit_read_bio(sbi, bio, DATA);
1105
1106 ret = f2fs_init_compress_ctx(cc);
1107 if (ret)
1108 goto out;
1109 }
1110
1111 for (i = 0; i < cc->cluster_size; i++) {
1112 f2fs_bug_on(sbi, cc->rpages[i]);
1113
1114 page = find_lock_page(mapping, start_idx + i);
1115 if (!page) {
1116 /* page can be truncated */
1117 goto release_and_retry;
1118 }
1119
1120 f2fs_wait_on_page_writeback(page, DATA, true, true);
1121 f2fs_compress_ctx_add_page(cc, page);
1122
1123 if (!PageUptodate(page)) {
1124 release_and_retry:
1125 f2fs_put_rpages(cc);
1126 f2fs_unlock_rpages(cc, i + 1);
1127 f2fs_destroy_compress_ctx(cc, true);
1128 goto retry;
1129 }
1130 }
1131
1132 if (likely(!ret)) {
1133 *fsdata = cc->rpages;
1134 *pagep = cc->rpages[offset_in_cluster(cc, index)];
1135 return cc->cluster_size;
1136 }
1137
1138 unlock_pages:
1139 f2fs_put_rpages(cc);
1140 f2fs_unlock_rpages(cc, i);
1141 f2fs_destroy_compress_ctx(cc, true);
1142 out:
1143 return ret;
1144 }
1145
f2fs_prepare_compress_overwrite(struct inode * inode,struct page ** pagep,pgoff_t index,void ** fsdata)1146 int f2fs_prepare_compress_overwrite(struct inode *inode,
1147 struct page **pagep, pgoff_t index, void **fsdata)
1148 {
1149 struct compress_ctx cc = {
1150 .inode = inode,
1151 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1152 .cluster_size = F2FS_I(inode)->i_cluster_size,
1153 .cluster_idx = index >> F2FS_I(inode)->i_log_cluster_size,
1154 .rpages = NULL,
1155 .nr_rpages = 0,
1156 };
1157
1158 return prepare_compress_overwrite(&cc, pagep, index, fsdata);
1159 }
1160
f2fs_compress_write_end(struct inode * inode,void * fsdata,pgoff_t index,unsigned copied)1161 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
1162 pgoff_t index, unsigned copied)
1163
1164 {
1165 struct compress_ctx cc = {
1166 .inode = inode,
1167 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
1168 .cluster_size = F2FS_I(inode)->i_cluster_size,
1169 .rpages = fsdata,
1170 };
1171 bool first_index = (index == cc.rpages[0]->index);
1172
1173 if (copied)
1174 set_cluster_dirty(&cc);
1175
1176 f2fs_put_rpages_wbc(&cc, NULL, false, 1);
1177 f2fs_destroy_compress_ctx(&cc, false);
1178
1179 return first_index;
1180 }
1181
f2fs_truncate_partial_cluster(struct inode * inode,u64 from,bool lock)1182 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock)
1183 {
1184 void *fsdata = NULL;
1185 struct page *pagep;
1186 int log_cluster_size = F2FS_I(inode)->i_log_cluster_size;
1187 pgoff_t start_idx = from >> (PAGE_SHIFT + log_cluster_size) <<
1188 log_cluster_size;
1189 int err;
1190
1191 err = f2fs_is_compressed_cluster(inode, start_idx);
1192 if (err < 0)
1193 return err;
1194
1195 /* truncate normal cluster */
1196 if (!err)
1197 return f2fs_do_truncate_blocks(inode, from, lock);
1198
1199 /* truncate compressed cluster */
1200 err = f2fs_prepare_compress_overwrite(inode, &pagep,
1201 start_idx, &fsdata);
1202
1203 /* should not be a normal cluster */
1204 f2fs_bug_on(F2FS_I_SB(inode), err == 0);
1205
1206 if (err <= 0)
1207 return err;
1208
1209 if (err > 0) {
1210 struct page **rpages = fsdata;
1211 int cluster_size = F2FS_I(inode)->i_cluster_size;
1212 int i;
1213
1214 for (i = cluster_size - 1; i >= 0; i--) {
1215 loff_t start = rpages[i]->index << PAGE_SHIFT;
1216
1217 if (from <= start) {
1218 zero_user_segment(rpages[i], 0, PAGE_SIZE);
1219 } else {
1220 zero_user_segment(rpages[i], from - start,
1221 PAGE_SIZE);
1222 break;
1223 }
1224 }
1225
1226 f2fs_compress_write_end(inode, fsdata, start_idx, true);
1227 }
1228 return 0;
1229 }
1230
f2fs_write_compressed_pages(struct compress_ctx * cc,int * submitted,struct writeback_control * wbc,enum iostat_type io_type)1231 static int f2fs_write_compressed_pages(struct compress_ctx *cc,
1232 int *submitted,
1233 struct writeback_control *wbc,
1234 enum iostat_type io_type)
1235 {
1236 struct inode *inode = cc->inode;
1237 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1238 struct f2fs_inode_info *fi = F2FS_I(inode);
1239 struct f2fs_io_info fio = {
1240 .sbi = sbi,
1241 .ino = cc->inode->i_ino,
1242 .type = DATA,
1243 .op = REQ_OP_WRITE,
1244 .op_flags = wbc_to_write_flags(wbc),
1245 .old_blkaddr = NEW_ADDR,
1246 .page = NULL,
1247 .encrypted_page = NULL,
1248 .compressed_page = NULL,
1249 .submitted = 0,
1250 .io_type = io_type,
1251 .io_wbc = wbc,
1252 .encrypted = fscrypt_inode_uses_fs_layer_crypto(cc->inode) ?
1253 1 : 0,
1254 };
1255 struct dnode_of_data dn;
1256 struct node_info ni;
1257 struct compress_io_ctx *cic;
1258 pgoff_t start_idx = start_idx_of_cluster(cc);
1259 unsigned int last_index = cc->cluster_size - 1;
1260 loff_t psize;
1261 int i, err;
1262 bool quota_inode = IS_NOQUOTA(inode);
1263
1264 /* we should bypass data pages to proceed the kworker jobs */
1265 if (unlikely(f2fs_cp_error(sbi))) {
1266 mapping_set_error(cc->rpages[0]->mapping, -EIO);
1267 goto out_free;
1268 }
1269
1270 if (quota_inode) {
1271 /*
1272 * We need to wait for node_write to avoid block allocation during
1273 * checkpoint. This can only happen to quota writes which can cause
1274 * the below discard race condition.
1275 */
1276 f2fs_down_read(&sbi->node_write);
1277 } else if (!f2fs_trylock_op(sbi)) {
1278 goto out_free;
1279 }
1280
1281 set_new_dnode(&dn, cc->inode, NULL, NULL, 0);
1282
1283 err = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
1284 if (err)
1285 goto out_unlock_op;
1286
1287 for (i = 0; i < cc->cluster_size; i++) {
1288 if (data_blkaddr(dn.inode, dn.node_page,
1289 dn.ofs_in_node + i) == NULL_ADDR)
1290 goto out_put_dnode;
1291 }
1292
1293 psize = (loff_t)(cc->rpages[last_index]->index + 1) << PAGE_SHIFT;
1294
1295 err = f2fs_get_node_info(fio.sbi, dn.nid, &ni, false);
1296 if (err)
1297 goto out_put_dnode;
1298
1299 fio.version = ni.version;
1300
1301 cic = f2fs_kmem_cache_alloc(cic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1302 if (!cic)
1303 goto out_put_dnode;
1304
1305 cic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1306 cic->inode = inode;
1307 atomic_set(&cic->pending_pages, cc->valid_nr_cpages);
1308 cic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1309 if (!cic->rpages)
1310 goto out_put_cic;
1311
1312 cic->nr_rpages = cc->cluster_size;
1313
1314 for (i = 0; i < cc->valid_nr_cpages; i++) {
1315 f2fs_set_compressed_page(cc->cpages[i], inode,
1316 cc->rpages[i + 1]->index, cic);
1317 fio.compressed_page = cc->cpages[i];
1318
1319 fio.old_blkaddr = data_blkaddr(dn.inode, dn.node_page,
1320 dn.ofs_in_node + i + 1);
1321
1322 /* wait for GCed page writeback via META_MAPPING */
1323 f2fs_wait_on_block_writeback(inode, fio.old_blkaddr);
1324
1325 if (fio.encrypted) {
1326 fio.page = cc->rpages[i + 1];
1327 err = f2fs_encrypt_one_page(&fio);
1328 if (err)
1329 goto out_destroy_crypt;
1330 cc->cpages[i] = fio.encrypted_page;
1331 }
1332 }
1333
1334 set_cluster_writeback(cc);
1335
1336 for (i = 0; i < cc->cluster_size; i++)
1337 cic->rpages[i] = cc->rpages[i];
1338
1339 for (i = 0; i < cc->cluster_size; i++, dn.ofs_in_node++) {
1340 block_t blkaddr;
1341
1342 blkaddr = f2fs_data_blkaddr(&dn);
1343 fio.page = cc->rpages[i];
1344 fio.old_blkaddr = blkaddr;
1345
1346 /* cluster header */
1347 if (i == 0) {
1348 if (blkaddr == COMPRESS_ADDR)
1349 fio.compr_blocks++;
1350 if (__is_valid_data_blkaddr(blkaddr))
1351 f2fs_invalidate_blocks(sbi, blkaddr);
1352 f2fs_update_data_blkaddr(&dn, COMPRESS_ADDR);
1353 goto unlock_continue;
1354 }
1355
1356 if (fio.compr_blocks && __is_valid_data_blkaddr(blkaddr))
1357 fio.compr_blocks++;
1358
1359 if (i > cc->valid_nr_cpages) {
1360 if (__is_valid_data_blkaddr(blkaddr)) {
1361 f2fs_invalidate_blocks(sbi, blkaddr);
1362 f2fs_update_data_blkaddr(&dn, NEW_ADDR);
1363 }
1364 goto unlock_continue;
1365 }
1366
1367 f2fs_bug_on(fio.sbi, blkaddr == NULL_ADDR);
1368
1369 if (fio.encrypted)
1370 fio.encrypted_page = cc->cpages[i - 1];
1371 else
1372 fio.compressed_page = cc->cpages[i - 1];
1373
1374 cc->cpages[i - 1] = NULL;
1375 f2fs_outplace_write_data(&dn, &fio);
1376 (*submitted)++;
1377 unlock_continue:
1378 inode_dec_dirty_pages(cc->inode);
1379 unlock_page(fio.page);
1380 }
1381
1382 if (fio.compr_blocks)
1383 f2fs_i_compr_blocks_update(inode, fio.compr_blocks - 1, false);
1384 f2fs_i_compr_blocks_update(inode, cc->valid_nr_cpages, true);
1385 add_compr_block_stat(inode, cc->valid_nr_cpages);
1386
1387 set_inode_flag(cc->inode, FI_APPEND_WRITE);
1388
1389 f2fs_put_dnode(&dn);
1390 if (quota_inode)
1391 f2fs_up_read(&sbi->node_write);
1392 else
1393 f2fs_unlock_op(sbi);
1394
1395 spin_lock(&fi->i_size_lock);
1396 if (fi->last_disk_size < psize)
1397 fi->last_disk_size = psize;
1398 spin_unlock(&fi->i_size_lock);
1399
1400 f2fs_put_rpages(cc);
1401 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1402 cc->cpages = NULL;
1403 f2fs_destroy_compress_ctx(cc, false);
1404 return 0;
1405
1406 out_destroy_crypt:
1407 page_array_free(cc->inode, cic->rpages, cc->cluster_size);
1408
1409 for (--i; i >= 0; i--)
1410 fscrypt_finalize_bounce_page(&cc->cpages[i]);
1411 out_put_cic:
1412 kmem_cache_free(cic_entry_slab, cic);
1413 out_put_dnode:
1414 f2fs_put_dnode(&dn);
1415 out_unlock_op:
1416 if (quota_inode)
1417 f2fs_up_read(&sbi->node_write);
1418 else
1419 f2fs_unlock_op(sbi);
1420 out_free:
1421 for (i = 0; i < cc->valid_nr_cpages; i++) {
1422 f2fs_compress_free_page(cc->cpages[i]);
1423 cc->cpages[i] = NULL;
1424 }
1425 page_array_free(cc->inode, cc->cpages, cc->nr_cpages);
1426 cc->cpages = NULL;
1427 return -EAGAIN;
1428 }
1429
f2fs_compress_write_end_io(struct bio * bio,struct page * page)1430 void f2fs_compress_write_end_io(struct bio *bio, struct page *page)
1431 {
1432 struct f2fs_sb_info *sbi = bio->bi_private;
1433 struct compress_io_ctx *cic =
1434 (struct compress_io_ctx *)page_private(page);
1435 enum count_type type = WB_DATA_TYPE(page,
1436 f2fs_is_compressed_page(page));
1437 int i;
1438
1439 if (unlikely(bio->bi_status))
1440 mapping_set_error(cic->inode->i_mapping, -EIO);
1441
1442 f2fs_compress_free_page(page);
1443
1444 dec_page_count(sbi, type);
1445
1446 if (atomic_dec_return(&cic->pending_pages))
1447 return;
1448
1449 for (i = 0; i < cic->nr_rpages; i++) {
1450 WARN_ON(!cic->rpages[i]);
1451 clear_page_private_gcing(cic->rpages[i]);
1452 end_page_writeback(cic->rpages[i]);
1453 }
1454
1455 page_array_free(cic->inode, cic->rpages, cic->nr_rpages);
1456 kmem_cache_free(cic_entry_slab, cic);
1457 }
1458
f2fs_write_raw_pages(struct compress_ctx * cc,int * submitted_p,struct writeback_control * wbc,enum iostat_type io_type)1459 static int f2fs_write_raw_pages(struct compress_ctx *cc,
1460 int *submitted_p,
1461 struct writeback_control *wbc,
1462 enum iostat_type io_type)
1463 {
1464 struct address_space *mapping = cc->inode->i_mapping;
1465 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1466 int submitted, compr_blocks, i;
1467 int ret = 0;
1468
1469 compr_blocks = f2fs_compressed_blocks(cc);
1470
1471 for (i = 0; i < cc->cluster_size; i++) {
1472 if (!cc->rpages[i])
1473 continue;
1474
1475 redirty_page_for_writepage(wbc, cc->rpages[i]);
1476 unlock_page(cc->rpages[i]);
1477 }
1478
1479 if (compr_blocks < 0)
1480 return compr_blocks;
1481
1482 /* overwrite compressed cluster w/ normal cluster */
1483 if (compr_blocks > 0)
1484 f2fs_lock_op(sbi);
1485
1486 for (i = 0; i < cc->cluster_size; i++) {
1487 if (!cc->rpages[i])
1488 continue;
1489 retry_write:
1490 lock_page(cc->rpages[i]);
1491
1492 if (cc->rpages[i]->mapping != mapping) {
1493 continue_unlock:
1494 unlock_page(cc->rpages[i]);
1495 continue;
1496 }
1497
1498 if (!PageDirty(cc->rpages[i]))
1499 goto continue_unlock;
1500
1501 if (PageWriteback(cc->rpages[i])) {
1502 if (wbc->sync_mode == WB_SYNC_NONE)
1503 goto continue_unlock;
1504 f2fs_wait_on_page_writeback(cc->rpages[i], DATA, true, true);
1505 }
1506
1507 if (!clear_page_dirty_for_io(cc->rpages[i]))
1508 goto continue_unlock;
1509
1510 ret = f2fs_write_single_data_page(cc->rpages[i], &submitted,
1511 NULL, NULL, wbc, io_type,
1512 compr_blocks, false);
1513 if (ret) {
1514 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1515 unlock_page(cc->rpages[i]);
1516 ret = 0;
1517 } else if (ret == -EAGAIN) {
1518 ret = 0;
1519 /*
1520 * for quota file, just redirty left pages to
1521 * avoid deadlock caused by cluster update race
1522 * from foreground operation.
1523 */
1524 if (IS_NOQUOTA(cc->inode))
1525 goto out;
1526 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
1527 goto retry_write;
1528 }
1529 goto out;
1530 }
1531
1532 *submitted_p += submitted;
1533 }
1534
1535 out:
1536 if (compr_blocks > 0)
1537 f2fs_unlock_op(sbi);
1538
1539 f2fs_balance_fs(sbi, true);
1540 return ret;
1541 }
1542
f2fs_write_multi_pages(struct compress_ctx * cc,int * submitted,struct writeback_control * wbc,enum iostat_type io_type)1543 int f2fs_write_multi_pages(struct compress_ctx *cc,
1544 int *submitted,
1545 struct writeback_control *wbc,
1546 enum iostat_type io_type)
1547 {
1548 int err;
1549
1550 *submitted = 0;
1551 if (cluster_may_compress(cc)) {
1552 err = f2fs_compress_pages(cc);
1553 if (err == -EAGAIN) {
1554 add_compr_block_stat(cc->inode, cc->cluster_size);
1555 goto write;
1556 } else if (err) {
1557 f2fs_put_rpages_wbc(cc, wbc, true, 1);
1558 goto destroy_out;
1559 }
1560
1561 err = f2fs_write_compressed_pages(cc, submitted,
1562 wbc, io_type);
1563 if (!err)
1564 return 0;
1565 f2fs_bug_on(F2FS_I_SB(cc->inode), err != -EAGAIN);
1566 }
1567 write:
1568 f2fs_bug_on(F2FS_I_SB(cc->inode), *submitted);
1569
1570 err = f2fs_write_raw_pages(cc, submitted, wbc, io_type);
1571 f2fs_put_rpages_wbc(cc, wbc, false, 0);
1572 destroy_out:
1573 f2fs_destroy_compress_ctx(cc, false);
1574 return err;
1575 }
1576
allow_memalloc_for_decomp(struct f2fs_sb_info * sbi,bool pre_alloc)1577 static inline bool allow_memalloc_for_decomp(struct f2fs_sb_info *sbi,
1578 bool pre_alloc)
1579 {
1580 return pre_alloc ^ f2fs_low_mem_mode(sbi);
1581 }
1582
f2fs_prepare_decomp_mem(struct decompress_io_ctx * dic,bool pre_alloc)1583 static int f2fs_prepare_decomp_mem(struct decompress_io_ctx *dic,
1584 bool pre_alloc)
1585 {
1586 const struct f2fs_compress_ops *cops =
1587 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1588 int i;
1589
1590 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1591 return 0;
1592
1593 dic->tpages = page_array_alloc(dic->inode, dic->cluster_size);
1594 if (!dic->tpages)
1595 return -ENOMEM;
1596
1597 for (i = 0; i < dic->cluster_size; i++) {
1598 if (dic->rpages[i]) {
1599 dic->tpages[i] = dic->rpages[i];
1600 continue;
1601 }
1602
1603 dic->tpages[i] = f2fs_compress_alloc_page();
1604 }
1605
1606 dic->rbuf = f2fs_vmap(dic->tpages, dic->cluster_size);
1607 if (!dic->rbuf)
1608 return -ENOMEM;
1609
1610 dic->cbuf = f2fs_vmap(dic->cpages, dic->nr_cpages);
1611 if (!dic->cbuf)
1612 return -ENOMEM;
1613
1614 if (cops->init_decompress_ctx)
1615 return cops->init_decompress_ctx(dic);
1616
1617 return 0;
1618 }
1619
f2fs_release_decomp_mem(struct decompress_io_ctx * dic,bool bypass_destroy_callback,bool pre_alloc)1620 static void f2fs_release_decomp_mem(struct decompress_io_ctx *dic,
1621 bool bypass_destroy_callback, bool pre_alloc)
1622 {
1623 const struct f2fs_compress_ops *cops =
1624 f2fs_cops[F2FS_I(dic->inode)->i_compress_algorithm];
1625
1626 if (!allow_memalloc_for_decomp(F2FS_I_SB(dic->inode), pre_alloc))
1627 return;
1628
1629 if (!bypass_destroy_callback && cops->destroy_decompress_ctx)
1630 cops->destroy_decompress_ctx(dic);
1631
1632 if (dic->cbuf)
1633 vm_unmap_ram(dic->cbuf, dic->nr_cpages);
1634
1635 if (dic->rbuf)
1636 vm_unmap_ram(dic->rbuf, dic->cluster_size);
1637 }
1638
1639 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1640 bool bypass_destroy_callback);
1641
f2fs_alloc_dic(struct compress_ctx * cc)1642 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc)
1643 {
1644 struct decompress_io_ctx *dic;
1645 pgoff_t start_idx = start_idx_of_cluster(cc);
1646 struct f2fs_sb_info *sbi = F2FS_I_SB(cc->inode);
1647 int i, ret;
1648
1649 dic = f2fs_kmem_cache_alloc(dic_entry_slab, GFP_F2FS_ZERO, false, sbi);
1650 if (!dic)
1651 return ERR_PTR(-ENOMEM);
1652
1653 dic->rpages = page_array_alloc(cc->inode, cc->cluster_size);
1654 if (!dic->rpages) {
1655 kmem_cache_free(dic_entry_slab, dic);
1656 return ERR_PTR(-ENOMEM);
1657 }
1658
1659 dic->magic = F2FS_COMPRESSED_PAGE_MAGIC;
1660 dic->inode = cc->inode;
1661 atomic_set(&dic->remaining_pages, cc->nr_cpages);
1662 dic->cluster_idx = cc->cluster_idx;
1663 dic->cluster_size = cc->cluster_size;
1664 dic->log_cluster_size = cc->log_cluster_size;
1665 dic->nr_cpages = cc->nr_cpages;
1666 refcount_set(&dic->refcnt, 1);
1667 dic->failed = false;
1668 dic->need_verity = f2fs_need_verity(cc->inode, start_idx);
1669
1670 for (i = 0; i < dic->cluster_size; i++)
1671 dic->rpages[i] = cc->rpages[i];
1672 dic->nr_rpages = cc->cluster_size;
1673
1674 dic->cpages = page_array_alloc(dic->inode, dic->nr_cpages);
1675 if (!dic->cpages) {
1676 ret = -ENOMEM;
1677 goto out_free;
1678 }
1679
1680 for (i = 0; i < dic->nr_cpages; i++) {
1681 struct page *page;
1682
1683 page = f2fs_compress_alloc_page();
1684 f2fs_set_compressed_page(page, cc->inode,
1685 start_idx + i + 1, dic);
1686 dic->cpages[i] = page;
1687 }
1688
1689 ret = f2fs_prepare_decomp_mem(dic, true);
1690 if (ret)
1691 goto out_free;
1692
1693 return dic;
1694
1695 out_free:
1696 f2fs_free_dic(dic, true);
1697 return ERR_PTR(ret);
1698 }
1699
f2fs_free_dic(struct decompress_io_ctx * dic,bool bypass_destroy_callback)1700 static void f2fs_free_dic(struct decompress_io_ctx *dic,
1701 bool bypass_destroy_callback)
1702 {
1703 int i;
1704
1705 f2fs_release_decomp_mem(dic, bypass_destroy_callback, true);
1706
1707 if (dic->tpages) {
1708 for (i = 0; i < dic->cluster_size; i++) {
1709 if (dic->rpages[i])
1710 continue;
1711 if (!dic->tpages[i])
1712 continue;
1713 f2fs_compress_free_page(dic->tpages[i]);
1714 }
1715 page_array_free(dic->inode, dic->tpages, dic->cluster_size);
1716 }
1717
1718 if (dic->cpages) {
1719 for (i = 0; i < dic->nr_cpages; i++) {
1720 if (!dic->cpages[i])
1721 continue;
1722 f2fs_compress_free_page(dic->cpages[i]);
1723 }
1724 page_array_free(dic->inode, dic->cpages, dic->nr_cpages);
1725 }
1726
1727 page_array_free(dic->inode, dic->rpages, dic->nr_rpages);
1728 kmem_cache_free(dic_entry_slab, dic);
1729 }
1730
f2fs_late_free_dic(struct work_struct * work)1731 static void f2fs_late_free_dic(struct work_struct *work)
1732 {
1733 struct decompress_io_ctx *dic =
1734 container_of(work, struct decompress_io_ctx, free_work);
1735
1736 f2fs_free_dic(dic, false);
1737 }
1738
f2fs_put_dic(struct decompress_io_ctx * dic,bool in_task)1739 static void f2fs_put_dic(struct decompress_io_ctx *dic, bool in_task)
1740 {
1741 if (refcount_dec_and_test(&dic->refcnt)) {
1742 if (in_task) {
1743 f2fs_free_dic(dic, false);
1744 } else {
1745 INIT_WORK(&dic->free_work, f2fs_late_free_dic);
1746 queue_work(F2FS_I_SB(dic->inode)->post_read_wq,
1747 &dic->free_work);
1748 }
1749 }
1750 }
1751
f2fs_verify_cluster(struct work_struct * work)1752 static void f2fs_verify_cluster(struct work_struct *work)
1753 {
1754 struct decompress_io_ctx *dic =
1755 container_of(work, struct decompress_io_ctx, verity_work);
1756 int i;
1757
1758 /* Verify, update, and unlock the decompressed pages. */
1759 for (i = 0; i < dic->cluster_size; i++) {
1760 struct page *rpage = dic->rpages[i];
1761
1762 if (!rpage)
1763 continue;
1764
1765 if (fsverity_verify_page(rpage))
1766 SetPageUptodate(rpage);
1767 else
1768 ClearPageUptodate(rpage);
1769 unlock_page(rpage);
1770 }
1771
1772 f2fs_put_dic(dic, true);
1773 }
1774
1775 /*
1776 * This is called when a compressed cluster has been decompressed
1777 * (or failed to be read and/or decompressed).
1778 */
f2fs_decompress_end_io(struct decompress_io_ctx * dic,bool failed,bool in_task)1779 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
1780 bool in_task)
1781 {
1782 int i;
1783
1784 if (!failed && dic->need_verity) {
1785 /*
1786 * Note that to avoid deadlocks, the verity work can't be done
1787 * on the decompression workqueue. This is because verifying
1788 * the data pages can involve reading metadata pages from the
1789 * file, and these metadata pages may be compressed.
1790 */
1791 INIT_WORK(&dic->verity_work, f2fs_verify_cluster);
1792 fsverity_enqueue_verify_work(&dic->verity_work);
1793 return;
1794 }
1795
1796 /* Update and unlock the cluster's pagecache pages. */
1797 for (i = 0; i < dic->cluster_size; i++) {
1798 struct page *rpage = dic->rpages[i];
1799
1800 if (!rpage)
1801 continue;
1802
1803 if (failed)
1804 ClearPageUptodate(rpage);
1805 else
1806 SetPageUptodate(rpage);
1807 unlock_page(rpage);
1808 }
1809
1810 /*
1811 * Release the reference to the decompress_io_ctx that was being held
1812 * for I/O completion.
1813 */
1814 f2fs_put_dic(dic, in_task);
1815 }
1816
1817 /*
1818 * Put a reference to a compressed page's decompress_io_ctx.
1819 *
1820 * This is called when the page is no longer needed and can be freed.
1821 */
f2fs_put_page_dic(struct page * page,bool in_task)1822 void f2fs_put_page_dic(struct page *page, bool in_task)
1823 {
1824 struct decompress_io_ctx *dic =
1825 (struct decompress_io_ctx *)page_private(page);
1826
1827 f2fs_put_dic(dic, in_task);
1828 }
1829
1830 /*
1831 * check whether cluster blocks are contiguous, and add extent cache entry
1832 * only if cluster blocks are logically and physically contiguous.
1833 */
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn,unsigned int ofs_in_node)1834 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
1835 unsigned int ofs_in_node)
1836 {
1837 bool compressed = data_blkaddr(dn->inode, dn->node_page,
1838 ofs_in_node) == COMPRESS_ADDR;
1839 int i = compressed ? 1 : 0;
1840 block_t first_blkaddr = data_blkaddr(dn->inode, dn->node_page,
1841 ofs_in_node + i);
1842
1843 for (i += 1; i < F2FS_I(dn->inode)->i_cluster_size; i++) {
1844 block_t blkaddr = data_blkaddr(dn->inode, dn->node_page,
1845 ofs_in_node + i);
1846
1847 if (!__is_valid_data_blkaddr(blkaddr))
1848 break;
1849 if (first_blkaddr + i - (compressed ? 1 : 0) != blkaddr)
1850 return 0;
1851 }
1852
1853 return compressed ? i - 1 : i;
1854 }
1855
1856 const struct address_space_operations f2fs_compress_aops = {
1857 .release_folio = f2fs_release_folio,
1858 .invalidate_folio = f2fs_invalidate_folio,
1859 .migrate_folio = filemap_migrate_folio,
1860 };
1861
COMPRESS_MAPPING(struct f2fs_sb_info * sbi)1862 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi)
1863 {
1864 return sbi->compress_inode->i_mapping;
1865 }
1866
f2fs_invalidate_compress_page(struct f2fs_sb_info * sbi,block_t blkaddr)1867 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr)
1868 {
1869 if (!sbi->compress_inode)
1870 return;
1871 invalidate_mapping_pages(COMPRESS_MAPPING(sbi), blkaddr, blkaddr);
1872 }
1873
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)1874 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1875 nid_t ino, block_t blkaddr)
1876 {
1877 struct page *cpage;
1878 int ret;
1879
1880 if (!test_opt(sbi, COMPRESS_CACHE))
1881 return;
1882
1883 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1884 return;
1885
1886 if (!f2fs_available_free_memory(sbi, COMPRESS_PAGE))
1887 return;
1888
1889 cpage = find_get_page(COMPRESS_MAPPING(sbi), blkaddr);
1890 if (cpage) {
1891 f2fs_put_page(cpage, 0);
1892 return;
1893 }
1894
1895 cpage = alloc_page(__GFP_NOWARN | __GFP_IO);
1896 if (!cpage)
1897 return;
1898
1899 ret = add_to_page_cache_lru(cpage, COMPRESS_MAPPING(sbi),
1900 blkaddr, GFP_NOFS);
1901 if (ret) {
1902 f2fs_put_page(cpage, 0);
1903 return;
1904 }
1905
1906 set_page_private_data(cpage, ino);
1907
1908 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE_READ))
1909 goto out;
1910
1911 memcpy(page_address(cpage), page_address(page), PAGE_SIZE);
1912 SetPageUptodate(cpage);
1913 out:
1914 f2fs_put_page(cpage, 1);
1915 }
1916
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)1917 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
1918 block_t blkaddr)
1919 {
1920 struct page *cpage;
1921 bool hitted = false;
1922
1923 if (!test_opt(sbi, COMPRESS_CACHE))
1924 return false;
1925
1926 cpage = f2fs_pagecache_get_page(COMPRESS_MAPPING(sbi),
1927 blkaddr, FGP_LOCK | FGP_NOWAIT, GFP_NOFS);
1928 if (cpage) {
1929 if (PageUptodate(cpage)) {
1930 atomic_inc(&sbi->compress_page_hit);
1931 memcpy(page_address(page),
1932 page_address(cpage), PAGE_SIZE);
1933 hitted = true;
1934 }
1935 f2fs_put_page(cpage, 1);
1936 }
1937
1938 return hitted;
1939 }
1940
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)1941 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino)
1942 {
1943 struct address_space *mapping = COMPRESS_MAPPING(sbi);
1944 struct folio_batch fbatch;
1945 pgoff_t index = 0;
1946 pgoff_t end = MAX_BLKADDR(sbi);
1947
1948 if (!mapping->nrpages)
1949 return;
1950
1951 folio_batch_init(&fbatch);
1952
1953 do {
1954 unsigned int nr, i;
1955
1956 nr = filemap_get_folios(mapping, &index, end - 1, &fbatch);
1957 if (!nr)
1958 break;
1959
1960 for (i = 0; i < nr; i++) {
1961 struct folio *folio = fbatch.folios[i];
1962
1963 folio_lock(folio);
1964 if (folio->mapping != mapping) {
1965 folio_unlock(folio);
1966 continue;
1967 }
1968
1969 if (ino != get_page_private_data(&folio->page)) {
1970 folio_unlock(folio);
1971 continue;
1972 }
1973
1974 generic_error_remove_page(mapping, &folio->page);
1975 folio_unlock(folio);
1976 }
1977 folio_batch_release(&fbatch);
1978 cond_resched();
1979 } while (index < end);
1980 }
1981
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)1982 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi)
1983 {
1984 struct inode *inode;
1985
1986 if (!test_opt(sbi, COMPRESS_CACHE))
1987 return 0;
1988
1989 inode = f2fs_iget(sbi->sb, F2FS_COMPRESS_INO(sbi));
1990 if (IS_ERR(inode))
1991 return PTR_ERR(inode);
1992 sbi->compress_inode = inode;
1993
1994 sbi->compress_percent = COMPRESS_PERCENT;
1995 sbi->compress_watermark = COMPRESS_WATERMARK;
1996
1997 atomic_set(&sbi->compress_page_hit, 0);
1998
1999 return 0;
2000 }
2001
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)2002 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi)
2003 {
2004 if (!sbi->compress_inode)
2005 return;
2006 iput(sbi->compress_inode);
2007 sbi->compress_inode = NULL;
2008 }
2009
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)2010 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi)
2011 {
2012 dev_t dev = sbi->sb->s_bdev->bd_dev;
2013 char slab_name[35];
2014
2015 if (!f2fs_sb_has_compression(sbi))
2016 return 0;
2017
2018 sprintf(slab_name, "f2fs_page_array_entry-%u:%u", MAJOR(dev), MINOR(dev));
2019
2020 sbi->page_array_slab_size = sizeof(struct page *) <<
2021 F2FS_OPTION(sbi).compress_log_size;
2022
2023 sbi->page_array_slab = f2fs_kmem_cache_create(slab_name,
2024 sbi->page_array_slab_size);
2025 return sbi->page_array_slab ? 0 : -ENOMEM;
2026 }
2027
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)2028 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi)
2029 {
2030 kmem_cache_destroy(sbi->page_array_slab);
2031 }
2032
f2fs_init_compress_cache(void)2033 int __init f2fs_init_compress_cache(void)
2034 {
2035 cic_entry_slab = f2fs_kmem_cache_create("f2fs_cic_entry",
2036 sizeof(struct compress_io_ctx));
2037 if (!cic_entry_slab)
2038 return -ENOMEM;
2039 dic_entry_slab = f2fs_kmem_cache_create("f2fs_dic_entry",
2040 sizeof(struct decompress_io_ctx));
2041 if (!dic_entry_slab)
2042 goto free_cic;
2043 return 0;
2044 free_cic:
2045 kmem_cache_destroy(cic_entry_slab);
2046 return -ENOMEM;
2047 }
2048
f2fs_destroy_compress_cache(void)2049 void f2fs_destroy_compress_cache(void)
2050 {
2051 kmem_cache_destroy(dic_entry_slab);
2052 kmem_cache_destroy(cic_entry_slab);
2053 }
2054