1 // SPDX-License-Identifier: GPL-2.0-only
2 /*******************************************************************************
3 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
4 ST Ethernet IPs are built around a Synopsys IP Core.
5
6 Copyright(C) 2007-2011 STMicroelectronics Ltd
7
8
9 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
10
11 Documentation available at:
12 http://www.stlinux.com
13 Support available at:
14 https://bugzilla.stlinux.com/
15 *******************************************************************************/
16
17 #include <linux/clk.h>
18 #include <linux/kernel.h>
19 #include <linux/interrupt.h>
20 #include <linux/ip.h>
21 #include <linux/tcp.h>
22 #include <linux/skbuff.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_ether.h>
25 #include <linux/crc32.h>
26 #include <linux/mii.h>
27 #include <linux/if.h>
28 #include <linux/if_vlan.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/slab.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/prefetch.h>
33 #include <linux/pinctrl/consumer.h>
34 #ifdef CONFIG_DEBUG_FS
35 #include <linux/debugfs.h>
36 #include <linux/seq_file.h>
37 #endif /* CONFIG_DEBUG_FS */
38 #include <linux/net_tstamp.h>
39 #include <linux/phylink.h>
40 #include <linux/udp.h>
41 #include <linux/bpf_trace.h>
42 #include <net/page_pool/helpers.h>
43 #include <net/pkt_cls.h>
44 #include <net/xdp_sock_drv.h>
45 #include "stmmac_ptp.h"
46 #include "stmmac.h"
47 #include "stmmac_xdp.h"
48 #include <linux/reset.h>
49 #include <linux/of_mdio.h>
50 #include "dwmac1000.h"
51 #include "dwxgmac2.h"
52 #include "hwif.h"
53
54 /* As long as the interface is active, we keep the timestamping counter enabled
55 * with fine resolution and binary rollover. This avoid non-monotonic behavior
56 * (clock jumps) when changing timestamping settings at runtime.
57 */
58 #define STMMAC_HWTS_ACTIVE (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
59 PTP_TCR_TSCTRLSSR)
60
61 #define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
62 #define TSO_MAX_BUFF_SIZE (SZ_16K - 1)
63
64 /* Module parameters */
65 #define TX_TIMEO 5000
66 static int watchdog = TX_TIMEO;
67 module_param(watchdog, int, 0644);
68 MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
69
70 static int debug = -1;
71 module_param(debug, int, 0644);
72 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
73
74 static int phyaddr = -1;
75 module_param(phyaddr, int, 0444);
76 MODULE_PARM_DESC(phyaddr, "Physical device address");
77
78 #define STMMAC_TX_THRESH(x) ((x)->dma_conf.dma_tx_size / 4)
79 #define STMMAC_RX_THRESH(x) ((x)->dma_conf.dma_rx_size / 4)
80
81 /* Limit to make sure XDP TX and slow path can coexist */
82 #define STMMAC_XSK_TX_BUDGET_MAX 256
83 #define STMMAC_TX_XSK_AVAIL 16
84 #define STMMAC_RX_FILL_BATCH 16
85
86 #define STMMAC_XDP_PASS 0
87 #define STMMAC_XDP_CONSUMED BIT(0)
88 #define STMMAC_XDP_TX BIT(1)
89 #define STMMAC_XDP_REDIRECT BIT(2)
90
91 static int flow_ctrl = FLOW_AUTO;
92 module_param(flow_ctrl, int, 0644);
93 MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
94
95 static int pause = PAUSE_TIME;
96 module_param(pause, int, 0644);
97 MODULE_PARM_DESC(pause, "Flow Control Pause Time");
98
99 #define TC_DEFAULT 64
100 static int tc = TC_DEFAULT;
101 module_param(tc, int, 0644);
102 MODULE_PARM_DESC(tc, "DMA threshold control value");
103
104 #define DEFAULT_BUFSIZE 1536
105 static int buf_sz = DEFAULT_BUFSIZE;
106 module_param(buf_sz, int, 0644);
107 MODULE_PARM_DESC(buf_sz, "DMA buffer size");
108
109 #define STMMAC_RX_COPYBREAK 256
110
111 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
112 NETIF_MSG_LINK | NETIF_MSG_IFUP |
113 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
114
115 #define STMMAC_DEFAULT_LPI_TIMER 1000
116 static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
117 module_param(eee_timer, int, 0644);
118 MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
119 #define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
120
121 /* By default the driver will use the ring mode to manage tx and rx descriptors,
122 * but allow user to force to use the chain instead of the ring
123 */
124 static unsigned int chain_mode;
125 module_param(chain_mode, int, 0444);
126 MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
127
128 static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
129 /* For MSI interrupts handling */
130 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
131 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
132 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
133 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
134 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue);
135 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue);
136 static void stmmac_reset_queues_param(struct stmmac_priv *priv);
137 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
138 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
139 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
140 u32 rxmode, u32 chan);
141
142 #ifdef CONFIG_DEBUG_FS
143 static const struct net_device_ops stmmac_netdev_ops;
144 static void stmmac_init_fs(struct net_device *dev);
145 static void stmmac_exit_fs(struct net_device *dev);
146 #endif
147
148 #define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
149
stmmac_bus_clks_config(struct stmmac_priv * priv,bool enabled)150 int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
151 {
152 int ret = 0;
153
154 if (enabled) {
155 ret = clk_prepare_enable(priv->plat->stmmac_clk);
156 if (ret)
157 return ret;
158 ret = clk_prepare_enable(priv->plat->pclk);
159 if (ret) {
160 clk_disable_unprepare(priv->plat->stmmac_clk);
161 return ret;
162 }
163 if (priv->plat->clks_config) {
164 ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
165 if (ret) {
166 clk_disable_unprepare(priv->plat->stmmac_clk);
167 clk_disable_unprepare(priv->plat->pclk);
168 return ret;
169 }
170 }
171 } else {
172 clk_disable_unprepare(priv->plat->stmmac_clk);
173 clk_disable_unprepare(priv->plat->pclk);
174 if (priv->plat->clks_config)
175 priv->plat->clks_config(priv->plat->bsp_priv, enabled);
176 }
177
178 return ret;
179 }
180 EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
181
182 /**
183 * stmmac_verify_args - verify the driver parameters.
184 * Description: it checks the driver parameters and set a default in case of
185 * errors.
186 */
stmmac_verify_args(void)187 static void stmmac_verify_args(void)
188 {
189 if (unlikely(watchdog < 0))
190 watchdog = TX_TIMEO;
191 if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
192 buf_sz = DEFAULT_BUFSIZE;
193 if (unlikely(flow_ctrl > 1))
194 flow_ctrl = FLOW_AUTO;
195 else if (likely(flow_ctrl < 0))
196 flow_ctrl = FLOW_OFF;
197 if (unlikely((pause < 0) || (pause > 0xffff)))
198 pause = PAUSE_TIME;
199 if (eee_timer < 0)
200 eee_timer = STMMAC_DEFAULT_LPI_TIMER;
201 }
202
__stmmac_disable_all_queues(struct stmmac_priv * priv)203 static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
204 {
205 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
206 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
207 u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
208 u32 queue;
209
210 for (queue = 0; queue < maxq; queue++) {
211 struct stmmac_channel *ch = &priv->channel[queue];
212
213 if (stmmac_xdp_is_enabled(priv) &&
214 test_bit(queue, priv->af_xdp_zc_qps)) {
215 napi_disable(&ch->rxtx_napi);
216 continue;
217 }
218
219 if (queue < rx_queues_cnt)
220 napi_disable(&ch->rx_napi);
221 if (queue < tx_queues_cnt)
222 napi_disable(&ch->tx_napi);
223 }
224 }
225
226 /**
227 * stmmac_disable_all_queues - Disable all queues
228 * @priv: driver private structure
229 */
stmmac_disable_all_queues(struct stmmac_priv * priv)230 static void stmmac_disable_all_queues(struct stmmac_priv *priv)
231 {
232 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
233 struct stmmac_rx_queue *rx_q;
234 u32 queue;
235
236 /* synchronize_rcu() needed for pending XDP buffers to drain */
237 for (queue = 0; queue < rx_queues_cnt; queue++) {
238 rx_q = &priv->dma_conf.rx_queue[queue];
239 if (rx_q->xsk_pool) {
240 synchronize_rcu();
241 break;
242 }
243 }
244
245 __stmmac_disable_all_queues(priv);
246 }
247
248 /**
249 * stmmac_enable_all_queues - Enable all queues
250 * @priv: driver private structure
251 */
stmmac_enable_all_queues(struct stmmac_priv * priv)252 static void stmmac_enable_all_queues(struct stmmac_priv *priv)
253 {
254 u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
255 u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
256 u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
257 u32 queue;
258
259 for (queue = 0; queue < maxq; queue++) {
260 struct stmmac_channel *ch = &priv->channel[queue];
261
262 if (stmmac_xdp_is_enabled(priv) &&
263 test_bit(queue, priv->af_xdp_zc_qps)) {
264 napi_enable(&ch->rxtx_napi);
265 continue;
266 }
267
268 if (queue < rx_queues_cnt)
269 napi_enable(&ch->rx_napi);
270 if (queue < tx_queues_cnt)
271 napi_enable(&ch->tx_napi);
272 }
273 }
274
stmmac_service_event_schedule(struct stmmac_priv * priv)275 static void stmmac_service_event_schedule(struct stmmac_priv *priv)
276 {
277 if (!test_bit(STMMAC_DOWN, &priv->state) &&
278 !test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
279 queue_work(priv->wq, &priv->service_task);
280 }
281
stmmac_global_err(struct stmmac_priv * priv)282 static void stmmac_global_err(struct stmmac_priv *priv)
283 {
284 netif_carrier_off(priv->dev);
285 set_bit(STMMAC_RESET_REQUESTED, &priv->state);
286 stmmac_service_event_schedule(priv);
287 }
288
289 /**
290 * stmmac_clk_csr_set - dynamically set the MDC clock
291 * @priv: driver private structure
292 * Description: this is to dynamically set the MDC clock according to the csr
293 * clock input.
294 * Note:
295 * If a specific clk_csr value is passed from the platform
296 * this means that the CSR Clock Range selection cannot be
297 * changed at run-time and it is fixed (as reported in the driver
298 * documentation). Viceversa the driver will try to set the MDC
299 * clock dynamically according to the actual clock input.
300 */
stmmac_clk_csr_set(struct stmmac_priv * priv)301 static void stmmac_clk_csr_set(struct stmmac_priv *priv)
302 {
303 u32 clk_rate;
304
305 clk_rate = clk_get_rate(priv->plat->stmmac_clk);
306
307 /* Platform provided default clk_csr would be assumed valid
308 * for all other cases except for the below mentioned ones.
309 * For values higher than the IEEE 802.3 specified frequency
310 * we can not estimate the proper divider as it is not known
311 * the frequency of clk_csr_i. So we do not change the default
312 * divider.
313 */
314 if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
315 if (clk_rate < CSR_F_35M)
316 priv->clk_csr = STMMAC_CSR_20_35M;
317 else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
318 priv->clk_csr = STMMAC_CSR_35_60M;
319 else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
320 priv->clk_csr = STMMAC_CSR_60_100M;
321 else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
322 priv->clk_csr = STMMAC_CSR_100_150M;
323 else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
324 priv->clk_csr = STMMAC_CSR_150_250M;
325 else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
326 priv->clk_csr = STMMAC_CSR_250_300M;
327 }
328
329 if (priv->plat->flags & STMMAC_FLAG_HAS_SUN8I) {
330 if (clk_rate > 160000000)
331 priv->clk_csr = 0x03;
332 else if (clk_rate > 80000000)
333 priv->clk_csr = 0x02;
334 else if (clk_rate > 40000000)
335 priv->clk_csr = 0x01;
336 else
337 priv->clk_csr = 0;
338 }
339
340 if (priv->plat->has_xgmac) {
341 if (clk_rate > 400000000)
342 priv->clk_csr = 0x5;
343 else if (clk_rate > 350000000)
344 priv->clk_csr = 0x4;
345 else if (clk_rate > 300000000)
346 priv->clk_csr = 0x3;
347 else if (clk_rate > 250000000)
348 priv->clk_csr = 0x2;
349 else if (clk_rate > 150000000)
350 priv->clk_csr = 0x1;
351 else
352 priv->clk_csr = 0x0;
353 }
354 }
355
print_pkt(unsigned char * buf,int len)356 static void print_pkt(unsigned char *buf, int len)
357 {
358 pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
359 print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
360 }
361
stmmac_tx_avail(struct stmmac_priv * priv,u32 queue)362 static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
363 {
364 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
365 u32 avail;
366
367 if (tx_q->dirty_tx > tx_q->cur_tx)
368 avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
369 else
370 avail = priv->dma_conf.dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
371
372 return avail;
373 }
374
375 /**
376 * stmmac_rx_dirty - Get RX queue dirty
377 * @priv: driver private structure
378 * @queue: RX queue index
379 */
stmmac_rx_dirty(struct stmmac_priv * priv,u32 queue)380 static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
381 {
382 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
383 u32 dirty;
384
385 if (rx_q->dirty_rx <= rx_q->cur_rx)
386 dirty = rx_q->cur_rx - rx_q->dirty_rx;
387 else
388 dirty = priv->dma_conf.dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
389
390 return dirty;
391 }
392
stmmac_lpi_entry_timer_config(struct stmmac_priv * priv,bool en)393 static void stmmac_lpi_entry_timer_config(struct stmmac_priv *priv, bool en)
394 {
395 int tx_lpi_timer;
396
397 /* Clear/set the SW EEE timer flag based on LPI ET enablement */
398 priv->eee_sw_timer_en = en ? 0 : 1;
399 tx_lpi_timer = en ? priv->tx_lpi_timer : 0;
400 stmmac_set_eee_lpi_timer(priv, priv->hw, tx_lpi_timer);
401 }
402
403 /**
404 * stmmac_enable_eee_mode - check and enter in LPI mode
405 * @priv: driver private structure
406 * Description: this function is to verify and enter in LPI mode in case of
407 * EEE.
408 */
stmmac_enable_eee_mode(struct stmmac_priv * priv)409 static int stmmac_enable_eee_mode(struct stmmac_priv *priv)
410 {
411 u32 tx_cnt = priv->plat->tx_queues_to_use;
412 u32 queue;
413
414 /* check if all TX queues have the work finished */
415 for (queue = 0; queue < tx_cnt; queue++) {
416 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
417
418 if (tx_q->dirty_tx != tx_q->cur_tx)
419 return -EBUSY; /* still unfinished work */
420 }
421
422 /* Check and enter in LPI mode */
423 if (!priv->tx_path_in_lpi_mode)
424 stmmac_set_eee_mode(priv, priv->hw,
425 priv->plat->flags & STMMAC_FLAG_EN_TX_LPI_CLOCKGATING);
426 return 0;
427 }
428
429 /**
430 * stmmac_disable_eee_mode - disable and exit from LPI mode
431 * @priv: driver private structure
432 * Description: this function is to exit and disable EEE in case of
433 * LPI state is true. This is called by the xmit.
434 */
stmmac_disable_eee_mode(struct stmmac_priv * priv)435 void stmmac_disable_eee_mode(struct stmmac_priv *priv)
436 {
437 if (!priv->eee_sw_timer_en) {
438 stmmac_lpi_entry_timer_config(priv, 0);
439 return;
440 }
441
442 stmmac_reset_eee_mode(priv, priv->hw);
443 del_timer_sync(&priv->eee_ctrl_timer);
444 priv->tx_path_in_lpi_mode = false;
445 }
446
447 /**
448 * stmmac_eee_ctrl_timer - EEE TX SW timer.
449 * @t: timer_list struct containing private info
450 * Description:
451 * if there is no data transfer and if we are not in LPI state,
452 * then MAC Transmitter can be moved to LPI state.
453 */
stmmac_eee_ctrl_timer(struct timer_list * t)454 static void stmmac_eee_ctrl_timer(struct timer_list *t)
455 {
456 struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
457
458 if (stmmac_enable_eee_mode(priv))
459 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
460 }
461
462 /**
463 * stmmac_eee_init - init EEE
464 * @priv: driver private structure
465 * Description:
466 * if the GMAC supports the EEE (from the HW cap reg) and the phy device
467 * can also manage EEE, this function enable the LPI state and start related
468 * timer.
469 */
stmmac_eee_init(struct stmmac_priv * priv)470 bool stmmac_eee_init(struct stmmac_priv *priv)
471 {
472 int eee_tw_timer = priv->eee_tw_timer;
473
474 /* Using PCS we cannot dial with the phy registers at this stage
475 * so we do not support extra feature like EEE.
476 */
477 if (priv->hw->pcs == STMMAC_PCS_TBI ||
478 priv->hw->pcs == STMMAC_PCS_RTBI)
479 return false;
480
481 /* Check if MAC core supports the EEE feature. */
482 if (!priv->dma_cap.eee)
483 return false;
484
485 mutex_lock(&priv->lock);
486
487 /* Check if it needs to be deactivated */
488 if (!priv->eee_active) {
489 if (priv->eee_enabled) {
490 netdev_dbg(priv->dev, "disable EEE\n");
491 stmmac_lpi_entry_timer_config(priv, 0);
492 del_timer_sync(&priv->eee_ctrl_timer);
493 stmmac_set_eee_timer(priv, priv->hw, 0, eee_tw_timer);
494 if (priv->hw->xpcs)
495 xpcs_config_eee(priv->hw->xpcs,
496 priv->plat->mult_fact_100ns,
497 false);
498 }
499 mutex_unlock(&priv->lock);
500 return false;
501 }
502
503 if (priv->eee_active && !priv->eee_enabled) {
504 timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
505 stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
506 eee_tw_timer);
507 if (priv->hw->xpcs)
508 xpcs_config_eee(priv->hw->xpcs,
509 priv->plat->mult_fact_100ns,
510 true);
511 }
512
513 if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
514 del_timer_sync(&priv->eee_ctrl_timer);
515 priv->tx_path_in_lpi_mode = false;
516 stmmac_lpi_entry_timer_config(priv, 1);
517 } else {
518 stmmac_lpi_entry_timer_config(priv, 0);
519 mod_timer(&priv->eee_ctrl_timer,
520 STMMAC_LPI_T(priv->tx_lpi_timer));
521 }
522
523 mutex_unlock(&priv->lock);
524 netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
525 return true;
526 }
527
528 /* stmmac_get_tx_hwtstamp - get HW TX timestamps
529 * @priv: driver private structure
530 * @p : descriptor pointer
531 * @skb : the socket buffer
532 * Description :
533 * This function will read timestamp from the descriptor & pass it to stack.
534 * and also perform some sanity checks.
535 */
stmmac_get_tx_hwtstamp(struct stmmac_priv * priv,struct dma_desc * p,struct sk_buff * skb)536 static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
537 struct dma_desc *p, struct sk_buff *skb)
538 {
539 struct skb_shared_hwtstamps shhwtstamp;
540 bool found = false;
541 u64 ns = 0;
542
543 if (!priv->hwts_tx_en)
544 return;
545
546 /* exit if skb doesn't support hw tstamp */
547 if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
548 return;
549
550 /* check tx tstamp status */
551 if (stmmac_get_tx_timestamp_status(priv, p)) {
552 stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
553 found = true;
554 } else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
555 found = true;
556 }
557
558 if (found) {
559 ns -= priv->plat->cdc_error_adj;
560
561 memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
562 shhwtstamp.hwtstamp = ns_to_ktime(ns);
563
564 netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
565 /* pass tstamp to stack */
566 skb_tstamp_tx(skb, &shhwtstamp);
567 }
568 }
569
570 /* stmmac_get_rx_hwtstamp - get HW RX timestamps
571 * @priv: driver private structure
572 * @p : descriptor pointer
573 * @np : next descriptor pointer
574 * @skb : the socket buffer
575 * Description :
576 * This function will read received packet's timestamp from the descriptor
577 * and pass it to stack. It also perform some sanity checks.
578 */
stmmac_get_rx_hwtstamp(struct stmmac_priv * priv,struct dma_desc * p,struct dma_desc * np,struct sk_buff * skb)579 static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
580 struct dma_desc *np, struct sk_buff *skb)
581 {
582 struct skb_shared_hwtstamps *shhwtstamp = NULL;
583 struct dma_desc *desc = p;
584 u64 ns = 0;
585
586 if (!priv->hwts_rx_en)
587 return;
588 /* For GMAC4, the valid timestamp is from CTX next desc. */
589 if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
590 desc = np;
591
592 /* Check if timestamp is available */
593 if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
594 stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
595
596 ns -= priv->plat->cdc_error_adj;
597
598 netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
599 shhwtstamp = skb_hwtstamps(skb);
600 memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
601 shhwtstamp->hwtstamp = ns_to_ktime(ns);
602 } else {
603 netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
604 }
605 }
606
607 /**
608 * stmmac_hwtstamp_set - control hardware timestamping.
609 * @dev: device pointer.
610 * @ifr: An IOCTL specific structure, that can contain a pointer to
611 * a proprietary structure used to pass information to the driver.
612 * Description:
613 * This function configures the MAC to enable/disable both outgoing(TX)
614 * and incoming(RX) packets time stamping based on user input.
615 * Return Value:
616 * 0 on success and an appropriate -ve integer on failure.
617 */
stmmac_hwtstamp_set(struct net_device * dev,struct ifreq * ifr)618 static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
619 {
620 struct stmmac_priv *priv = netdev_priv(dev);
621 struct hwtstamp_config config;
622 u32 ptp_v2 = 0;
623 u32 tstamp_all = 0;
624 u32 ptp_over_ipv4_udp = 0;
625 u32 ptp_over_ipv6_udp = 0;
626 u32 ptp_over_ethernet = 0;
627 u32 snap_type_sel = 0;
628 u32 ts_master_en = 0;
629 u32 ts_event_en = 0;
630
631 if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
632 netdev_alert(priv->dev, "No support for HW time stamping\n");
633 priv->hwts_tx_en = 0;
634 priv->hwts_rx_en = 0;
635
636 return -EOPNOTSUPP;
637 }
638
639 if (copy_from_user(&config, ifr->ifr_data,
640 sizeof(config)))
641 return -EFAULT;
642
643 netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
644 __func__, config.flags, config.tx_type, config.rx_filter);
645
646 if (config.tx_type != HWTSTAMP_TX_OFF &&
647 config.tx_type != HWTSTAMP_TX_ON)
648 return -ERANGE;
649
650 if (priv->adv_ts) {
651 switch (config.rx_filter) {
652 case HWTSTAMP_FILTER_NONE:
653 /* time stamp no incoming packet at all */
654 config.rx_filter = HWTSTAMP_FILTER_NONE;
655 break;
656
657 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
658 /* PTP v1, UDP, any kind of event packet */
659 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
660 /* 'xmac' hardware can support Sync, Pdelay_Req and
661 * Pdelay_resp by setting bit14 and bits17/16 to 01
662 * This leaves Delay_Req timestamps out.
663 * Enable all events *and* general purpose message
664 * timestamping
665 */
666 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
667 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
668 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
669 break;
670
671 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
672 /* PTP v1, UDP, Sync packet */
673 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
674 /* take time stamp for SYNC messages only */
675 ts_event_en = PTP_TCR_TSEVNTENA;
676
677 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
678 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
679 break;
680
681 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
682 /* PTP v1, UDP, Delay_req packet */
683 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
684 /* take time stamp for Delay_Req messages only */
685 ts_master_en = PTP_TCR_TSMSTRENA;
686 ts_event_en = PTP_TCR_TSEVNTENA;
687
688 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
689 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
690 break;
691
692 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
693 /* PTP v2, UDP, any kind of event packet */
694 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
695 ptp_v2 = PTP_TCR_TSVER2ENA;
696 /* take time stamp for all event messages */
697 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
698
699 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
700 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
701 break;
702
703 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
704 /* PTP v2, UDP, Sync packet */
705 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
706 ptp_v2 = PTP_TCR_TSVER2ENA;
707 /* take time stamp for SYNC messages only */
708 ts_event_en = PTP_TCR_TSEVNTENA;
709
710 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
711 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
712 break;
713
714 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
715 /* PTP v2, UDP, Delay_req packet */
716 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
717 ptp_v2 = PTP_TCR_TSVER2ENA;
718 /* take time stamp for Delay_Req messages only */
719 ts_master_en = PTP_TCR_TSMSTRENA;
720 ts_event_en = PTP_TCR_TSEVNTENA;
721
722 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
723 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
724 break;
725
726 case HWTSTAMP_FILTER_PTP_V2_EVENT:
727 /* PTP v2/802.AS1 any layer, any kind of event packet */
728 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
729 ptp_v2 = PTP_TCR_TSVER2ENA;
730 snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
731 if (priv->synopsys_id < DWMAC_CORE_4_10)
732 ts_event_en = PTP_TCR_TSEVNTENA;
733 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
734 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
735 ptp_over_ethernet = PTP_TCR_TSIPENA;
736 break;
737
738 case HWTSTAMP_FILTER_PTP_V2_SYNC:
739 /* PTP v2/802.AS1, any layer, Sync packet */
740 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
741 ptp_v2 = PTP_TCR_TSVER2ENA;
742 /* take time stamp for SYNC messages only */
743 ts_event_en = PTP_TCR_TSEVNTENA;
744
745 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
746 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
747 ptp_over_ethernet = PTP_TCR_TSIPENA;
748 break;
749
750 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
751 /* PTP v2/802.AS1, any layer, Delay_req packet */
752 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
753 ptp_v2 = PTP_TCR_TSVER2ENA;
754 /* take time stamp for Delay_Req messages only */
755 ts_master_en = PTP_TCR_TSMSTRENA;
756 ts_event_en = PTP_TCR_TSEVNTENA;
757
758 ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
759 ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
760 ptp_over_ethernet = PTP_TCR_TSIPENA;
761 break;
762
763 case HWTSTAMP_FILTER_NTP_ALL:
764 case HWTSTAMP_FILTER_ALL:
765 /* time stamp any incoming packet */
766 config.rx_filter = HWTSTAMP_FILTER_ALL;
767 tstamp_all = PTP_TCR_TSENALL;
768 break;
769
770 default:
771 return -ERANGE;
772 }
773 } else {
774 switch (config.rx_filter) {
775 case HWTSTAMP_FILTER_NONE:
776 config.rx_filter = HWTSTAMP_FILTER_NONE;
777 break;
778 default:
779 /* PTP v1, UDP, any kind of event packet */
780 config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
781 break;
782 }
783 }
784 priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
785 priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
786
787 priv->systime_flags = STMMAC_HWTS_ACTIVE;
788
789 if (priv->hwts_tx_en || priv->hwts_rx_en) {
790 priv->systime_flags |= tstamp_all | ptp_v2 |
791 ptp_over_ethernet | ptp_over_ipv6_udp |
792 ptp_over_ipv4_udp | ts_event_en |
793 ts_master_en | snap_type_sel;
794 }
795
796 stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
797
798 memcpy(&priv->tstamp_config, &config, sizeof(config));
799
800 return copy_to_user(ifr->ifr_data, &config,
801 sizeof(config)) ? -EFAULT : 0;
802 }
803
804 /**
805 * stmmac_hwtstamp_get - read hardware timestamping.
806 * @dev: device pointer.
807 * @ifr: An IOCTL specific structure, that can contain a pointer to
808 * a proprietary structure used to pass information to the driver.
809 * Description:
810 * This function obtain the current hardware timestamping settings
811 * as requested.
812 */
stmmac_hwtstamp_get(struct net_device * dev,struct ifreq * ifr)813 static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
814 {
815 struct stmmac_priv *priv = netdev_priv(dev);
816 struct hwtstamp_config *config = &priv->tstamp_config;
817
818 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
819 return -EOPNOTSUPP;
820
821 return copy_to_user(ifr->ifr_data, config,
822 sizeof(*config)) ? -EFAULT : 0;
823 }
824
825 /**
826 * stmmac_init_tstamp_counter - init hardware timestamping counter
827 * @priv: driver private structure
828 * @systime_flags: timestamping flags
829 * Description:
830 * Initialize hardware counter for packet timestamping.
831 * This is valid as long as the interface is open and not suspended.
832 * Will be rerun after resuming from suspend, case in which the timestamping
833 * flags updated by stmmac_hwtstamp_set() also need to be restored.
834 */
stmmac_init_tstamp_counter(struct stmmac_priv * priv,u32 systime_flags)835 int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
836 {
837 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
838 struct timespec64 now;
839 u32 sec_inc = 0;
840 u64 temp = 0;
841
842 if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
843 return -EOPNOTSUPP;
844
845 stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
846 priv->systime_flags = systime_flags;
847
848 /* program Sub Second Increment reg */
849 stmmac_config_sub_second_increment(priv, priv->ptpaddr,
850 priv->plat->clk_ptp_rate,
851 xmac, &sec_inc);
852 temp = div_u64(1000000000ULL, sec_inc);
853
854 /* Store sub second increment for later use */
855 priv->sub_second_inc = sec_inc;
856
857 /* calculate default added value:
858 * formula is :
859 * addend = (2^32)/freq_div_ratio;
860 * where, freq_div_ratio = 1e9ns/sec_inc
861 */
862 temp = (u64)(temp << 32);
863 priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
864 stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
865
866 /* initialize system time */
867 ktime_get_real_ts64(&now);
868
869 /* lower 32 bits of tv_sec are safe until y2106 */
870 stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
871
872 return 0;
873 }
874 EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
875
876 /**
877 * stmmac_init_ptp - init PTP
878 * @priv: driver private structure
879 * Description: this is to verify if the HW supports the PTPv1 or PTPv2.
880 * This is done by looking at the HW cap. register.
881 * This function also registers the ptp driver.
882 */
stmmac_init_ptp(struct stmmac_priv * priv)883 static int stmmac_init_ptp(struct stmmac_priv *priv)
884 {
885 bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
886 int ret;
887
888 if (priv->plat->ptp_clk_freq_config)
889 priv->plat->ptp_clk_freq_config(priv);
890
891 ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
892 if (ret)
893 return ret;
894
895 priv->adv_ts = 0;
896 /* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
897 if (xmac && priv->dma_cap.atime_stamp)
898 priv->adv_ts = 1;
899 /* Dwmac 3.x core with extend_desc can support adv_ts */
900 else if (priv->extend_desc && priv->dma_cap.atime_stamp)
901 priv->adv_ts = 1;
902
903 if (priv->dma_cap.time_stamp)
904 netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
905
906 if (priv->adv_ts)
907 netdev_info(priv->dev,
908 "IEEE 1588-2008 Advanced Timestamp supported\n");
909
910 priv->hwts_tx_en = 0;
911 priv->hwts_rx_en = 0;
912
913 if (priv->plat->flags & STMMAC_FLAG_HWTSTAMP_CORRECT_LATENCY)
914 stmmac_hwtstamp_correct_latency(priv, priv);
915
916 return 0;
917 }
918
stmmac_release_ptp(struct stmmac_priv * priv)919 static void stmmac_release_ptp(struct stmmac_priv *priv)
920 {
921 clk_disable_unprepare(priv->plat->clk_ptp_ref);
922 stmmac_ptp_unregister(priv);
923 }
924
925 /**
926 * stmmac_mac_flow_ctrl - Configure flow control in all queues
927 * @priv: driver private structure
928 * @duplex: duplex passed to the next function
929 * Description: It is used for configuring the flow control in all queues
930 */
stmmac_mac_flow_ctrl(struct stmmac_priv * priv,u32 duplex)931 static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
932 {
933 u32 tx_cnt = priv->plat->tx_queues_to_use;
934
935 stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
936 priv->pause, tx_cnt);
937 }
938
stmmac_mac_select_pcs(struct phylink_config * config,phy_interface_t interface)939 static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config,
940 phy_interface_t interface)
941 {
942 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
943
944 if (priv->hw->xpcs)
945 return &priv->hw->xpcs->pcs;
946
947 if (priv->hw->lynx_pcs)
948 return priv->hw->lynx_pcs;
949
950 return NULL;
951 }
952
stmmac_mac_config(struct phylink_config * config,unsigned int mode,const struct phylink_link_state * state)953 static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
954 const struct phylink_link_state *state)
955 {
956 /* Nothing to do, xpcs_config() handles everything */
957 }
958
stmmac_fpe_link_state_handle(struct stmmac_priv * priv,bool is_up)959 static void stmmac_fpe_link_state_handle(struct stmmac_priv *priv, bool is_up)
960 {
961 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
962 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
963 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
964 bool *hs_enable = &fpe_cfg->hs_enable;
965
966 if (is_up && *hs_enable) {
967 stmmac_fpe_send_mpacket(priv, priv->ioaddr, fpe_cfg,
968 MPACKET_VERIFY);
969 } else {
970 *lo_state = FPE_STATE_OFF;
971 *lp_state = FPE_STATE_OFF;
972 }
973 }
974
stmmac_mac_link_down(struct phylink_config * config,unsigned int mode,phy_interface_t interface)975 static void stmmac_mac_link_down(struct phylink_config *config,
976 unsigned int mode, phy_interface_t interface)
977 {
978 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
979
980 stmmac_mac_set(priv, priv->ioaddr, false);
981 priv->eee_active = false;
982 priv->tx_lpi_enabled = false;
983 priv->eee_enabled = stmmac_eee_init(priv);
984 stmmac_set_eee_pls(priv, priv->hw, false);
985
986 if (priv->dma_cap.fpesel)
987 stmmac_fpe_link_state_handle(priv, false);
988 }
989
stmmac_mac_link_up(struct phylink_config * config,struct phy_device * phy,unsigned int mode,phy_interface_t interface,int speed,int duplex,bool tx_pause,bool rx_pause)990 static void stmmac_mac_link_up(struct phylink_config *config,
991 struct phy_device *phy,
992 unsigned int mode, phy_interface_t interface,
993 int speed, int duplex,
994 bool tx_pause, bool rx_pause)
995 {
996 struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
997 u32 old_ctrl, ctrl;
998
999 if ((priv->plat->flags & STMMAC_FLAG_SERDES_UP_AFTER_PHY_LINKUP) &&
1000 priv->plat->serdes_powerup)
1001 priv->plat->serdes_powerup(priv->dev, priv->plat->bsp_priv);
1002
1003 old_ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
1004 ctrl = old_ctrl & ~priv->hw->link.speed_mask;
1005
1006 if (interface == PHY_INTERFACE_MODE_USXGMII) {
1007 switch (speed) {
1008 case SPEED_10000:
1009 ctrl |= priv->hw->link.xgmii.speed10000;
1010 break;
1011 case SPEED_5000:
1012 ctrl |= priv->hw->link.xgmii.speed5000;
1013 break;
1014 case SPEED_2500:
1015 ctrl |= priv->hw->link.xgmii.speed2500;
1016 break;
1017 default:
1018 return;
1019 }
1020 } else if (interface == PHY_INTERFACE_MODE_XLGMII) {
1021 switch (speed) {
1022 case SPEED_100000:
1023 ctrl |= priv->hw->link.xlgmii.speed100000;
1024 break;
1025 case SPEED_50000:
1026 ctrl |= priv->hw->link.xlgmii.speed50000;
1027 break;
1028 case SPEED_40000:
1029 ctrl |= priv->hw->link.xlgmii.speed40000;
1030 break;
1031 case SPEED_25000:
1032 ctrl |= priv->hw->link.xlgmii.speed25000;
1033 break;
1034 case SPEED_10000:
1035 ctrl |= priv->hw->link.xgmii.speed10000;
1036 break;
1037 case SPEED_2500:
1038 ctrl |= priv->hw->link.speed2500;
1039 break;
1040 case SPEED_1000:
1041 ctrl |= priv->hw->link.speed1000;
1042 break;
1043 default:
1044 return;
1045 }
1046 } else {
1047 switch (speed) {
1048 case SPEED_2500:
1049 ctrl |= priv->hw->link.speed2500;
1050 break;
1051 case SPEED_1000:
1052 ctrl |= priv->hw->link.speed1000;
1053 break;
1054 case SPEED_100:
1055 ctrl |= priv->hw->link.speed100;
1056 break;
1057 case SPEED_10:
1058 ctrl |= priv->hw->link.speed10;
1059 break;
1060 default:
1061 return;
1062 }
1063 }
1064
1065 priv->speed = speed;
1066
1067 if (priv->plat->fix_mac_speed)
1068 priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed, mode);
1069
1070 if (!duplex)
1071 ctrl &= ~priv->hw->link.duplex;
1072 else
1073 ctrl |= priv->hw->link.duplex;
1074
1075 /* Flow Control operation */
1076 if (rx_pause && tx_pause)
1077 priv->flow_ctrl = FLOW_AUTO;
1078 else if (rx_pause && !tx_pause)
1079 priv->flow_ctrl = FLOW_RX;
1080 else if (!rx_pause && tx_pause)
1081 priv->flow_ctrl = FLOW_TX;
1082 else
1083 priv->flow_ctrl = FLOW_OFF;
1084
1085 stmmac_mac_flow_ctrl(priv, duplex);
1086
1087 if (ctrl != old_ctrl)
1088 writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
1089
1090 stmmac_mac_set(priv, priv->ioaddr, true);
1091 if (phy && priv->dma_cap.eee) {
1092 priv->eee_active =
1093 phy_init_eee(phy, !(priv->plat->flags &
1094 STMMAC_FLAG_RX_CLK_RUNS_IN_LPI)) >= 0;
1095 priv->eee_enabled = stmmac_eee_init(priv);
1096 priv->tx_lpi_enabled = priv->eee_enabled;
1097 stmmac_set_eee_pls(priv, priv->hw, true);
1098 }
1099
1100 if (priv->dma_cap.fpesel)
1101 stmmac_fpe_link_state_handle(priv, true);
1102
1103 if (priv->plat->flags & STMMAC_FLAG_HWTSTAMP_CORRECT_LATENCY)
1104 stmmac_hwtstamp_correct_latency(priv, priv);
1105 }
1106
1107 static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
1108 .mac_select_pcs = stmmac_mac_select_pcs,
1109 .mac_config = stmmac_mac_config,
1110 .mac_link_down = stmmac_mac_link_down,
1111 .mac_link_up = stmmac_mac_link_up,
1112 };
1113
1114 /**
1115 * stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
1116 * @priv: driver private structure
1117 * Description: this is to verify if the HW supports the PCS.
1118 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
1119 * configured for the TBI, RTBI, or SGMII PHY interface.
1120 */
stmmac_check_pcs_mode(struct stmmac_priv * priv)1121 static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
1122 {
1123 int interface = priv->plat->mac_interface;
1124
1125 if (priv->dma_cap.pcs) {
1126 if ((interface == PHY_INTERFACE_MODE_RGMII) ||
1127 (interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1128 (interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1129 (interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
1130 netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
1131 priv->hw->pcs = STMMAC_PCS_RGMII;
1132 } else if (interface == PHY_INTERFACE_MODE_SGMII) {
1133 netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
1134 priv->hw->pcs = STMMAC_PCS_SGMII;
1135 }
1136 }
1137 }
1138
1139 /**
1140 * stmmac_init_phy - PHY initialization
1141 * @dev: net device structure
1142 * Description: it initializes the driver's PHY state, and attaches the PHY
1143 * to the mac driver.
1144 * Return value:
1145 * 0 on success
1146 */
stmmac_init_phy(struct net_device * dev)1147 static int stmmac_init_phy(struct net_device *dev)
1148 {
1149 struct stmmac_priv *priv = netdev_priv(dev);
1150 struct fwnode_handle *phy_fwnode;
1151 struct fwnode_handle *fwnode;
1152 int ret;
1153
1154 if (!phylink_expects_phy(priv->phylink))
1155 return 0;
1156
1157 fwnode = priv->plat->port_node;
1158 if (!fwnode)
1159 fwnode = dev_fwnode(priv->device);
1160
1161 if (fwnode)
1162 phy_fwnode = fwnode_get_phy_node(fwnode);
1163 else
1164 phy_fwnode = NULL;
1165
1166 /* Some DT bindings do not set-up the PHY handle. Let's try to
1167 * manually parse it
1168 */
1169 if (!phy_fwnode || IS_ERR(phy_fwnode)) {
1170 int addr = priv->plat->phy_addr;
1171 struct phy_device *phydev;
1172
1173 if (addr < 0) {
1174 netdev_err(priv->dev, "no phy found\n");
1175 return -ENODEV;
1176 }
1177
1178 phydev = mdiobus_get_phy(priv->mii, addr);
1179 if (!phydev) {
1180 netdev_err(priv->dev, "no phy at addr %d\n", addr);
1181 return -ENODEV;
1182 }
1183
1184 ret = phylink_connect_phy(priv->phylink, phydev);
1185 } else {
1186 fwnode_handle_put(phy_fwnode);
1187 ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0);
1188 }
1189
1190 if (!priv->plat->pmt) {
1191 struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
1192
1193 phylink_ethtool_get_wol(priv->phylink, &wol);
1194 device_set_wakeup_capable(priv->device, !!wol.supported);
1195 device_set_wakeup_enable(priv->device, !!wol.wolopts);
1196 }
1197
1198 return ret;
1199 }
1200
stmmac_phy_setup(struct stmmac_priv * priv)1201 static int stmmac_phy_setup(struct stmmac_priv *priv)
1202 {
1203 struct stmmac_mdio_bus_data *mdio_bus_data;
1204 int mode = priv->plat->phy_interface;
1205 struct fwnode_handle *fwnode;
1206 struct phylink *phylink;
1207 int max_speed;
1208
1209 priv->phylink_config.dev = &priv->dev->dev;
1210 priv->phylink_config.type = PHYLINK_NETDEV;
1211 priv->phylink_config.mac_managed_pm = true;
1212
1213 mdio_bus_data = priv->plat->mdio_bus_data;
1214 if (mdio_bus_data)
1215 priv->phylink_config.ovr_an_inband =
1216 mdio_bus_data->xpcs_an_inband;
1217
1218 /* Set the platform/firmware specified interface mode. Note, phylink
1219 * deals with the PHY interface mode, not the MAC interface mode.
1220 */
1221 __set_bit(mode, priv->phylink_config.supported_interfaces);
1222
1223 /* If we have an xpcs, it defines which PHY interfaces are supported. */
1224 if (priv->hw->xpcs)
1225 xpcs_get_interfaces(priv->hw->xpcs,
1226 priv->phylink_config.supported_interfaces);
1227
1228 /* Get the MAC specific capabilities */
1229 stmmac_mac_phylink_get_caps(priv);
1230
1231 priv->phylink_config.mac_capabilities = priv->hw->link.caps;
1232
1233 max_speed = priv->plat->max_speed;
1234 if (max_speed)
1235 phylink_limit_mac_speed(&priv->phylink_config, max_speed);
1236
1237 fwnode = priv->plat->port_node;
1238 if (!fwnode)
1239 fwnode = dev_fwnode(priv->device);
1240
1241 phylink = phylink_create(&priv->phylink_config, fwnode,
1242 mode, &stmmac_phylink_mac_ops);
1243 if (IS_ERR(phylink))
1244 return PTR_ERR(phylink);
1245
1246 priv->phylink = phylink;
1247 return 0;
1248 }
1249
stmmac_display_rx_rings(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf)1250 static void stmmac_display_rx_rings(struct stmmac_priv *priv,
1251 struct stmmac_dma_conf *dma_conf)
1252 {
1253 u32 rx_cnt = priv->plat->rx_queues_to_use;
1254 unsigned int desc_size;
1255 void *head_rx;
1256 u32 queue;
1257
1258 /* Display RX rings */
1259 for (queue = 0; queue < rx_cnt; queue++) {
1260 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1261
1262 pr_info("\tRX Queue %u rings\n", queue);
1263
1264 if (priv->extend_desc) {
1265 head_rx = (void *)rx_q->dma_erx;
1266 desc_size = sizeof(struct dma_extended_desc);
1267 } else {
1268 head_rx = (void *)rx_q->dma_rx;
1269 desc_size = sizeof(struct dma_desc);
1270 }
1271
1272 /* Display RX ring */
1273 stmmac_display_ring(priv, head_rx, dma_conf->dma_rx_size, true,
1274 rx_q->dma_rx_phy, desc_size);
1275 }
1276 }
1277
stmmac_display_tx_rings(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf)1278 static void stmmac_display_tx_rings(struct stmmac_priv *priv,
1279 struct stmmac_dma_conf *dma_conf)
1280 {
1281 u32 tx_cnt = priv->plat->tx_queues_to_use;
1282 unsigned int desc_size;
1283 void *head_tx;
1284 u32 queue;
1285
1286 /* Display TX rings */
1287 for (queue = 0; queue < tx_cnt; queue++) {
1288 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1289
1290 pr_info("\tTX Queue %d rings\n", queue);
1291
1292 if (priv->extend_desc) {
1293 head_tx = (void *)tx_q->dma_etx;
1294 desc_size = sizeof(struct dma_extended_desc);
1295 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1296 head_tx = (void *)tx_q->dma_entx;
1297 desc_size = sizeof(struct dma_edesc);
1298 } else {
1299 head_tx = (void *)tx_q->dma_tx;
1300 desc_size = sizeof(struct dma_desc);
1301 }
1302
1303 stmmac_display_ring(priv, head_tx, dma_conf->dma_tx_size, false,
1304 tx_q->dma_tx_phy, desc_size);
1305 }
1306 }
1307
stmmac_display_rings(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf)1308 static void stmmac_display_rings(struct stmmac_priv *priv,
1309 struct stmmac_dma_conf *dma_conf)
1310 {
1311 /* Display RX ring */
1312 stmmac_display_rx_rings(priv, dma_conf);
1313
1314 /* Display TX ring */
1315 stmmac_display_tx_rings(priv, dma_conf);
1316 }
1317
stmmac_set_bfsize(int mtu,int bufsize)1318 static int stmmac_set_bfsize(int mtu, int bufsize)
1319 {
1320 int ret = bufsize;
1321
1322 if (mtu >= BUF_SIZE_8KiB)
1323 ret = BUF_SIZE_16KiB;
1324 else if (mtu >= BUF_SIZE_4KiB)
1325 ret = BUF_SIZE_8KiB;
1326 else if (mtu >= BUF_SIZE_2KiB)
1327 ret = BUF_SIZE_4KiB;
1328 else if (mtu > DEFAULT_BUFSIZE)
1329 ret = BUF_SIZE_2KiB;
1330 else
1331 ret = DEFAULT_BUFSIZE;
1332
1333 return ret;
1334 }
1335
1336 /**
1337 * stmmac_clear_rx_descriptors - clear RX descriptors
1338 * @priv: driver private structure
1339 * @dma_conf: structure to take the dma data
1340 * @queue: RX queue index
1341 * Description: this function is called to clear the RX descriptors
1342 * in case of both basic and extended descriptors are used.
1343 */
stmmac_clear_rx_descriptors(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue)1344 static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv,
1345 struct stmmac_dma_conf *dma_conf,
1346 u32 queue)
1347 {
1348 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1349 int i;
1350
1351 /* Clear the RX descriptors */
1352 for (i = 0; i < dma_conf->dma_rx_size; i++)
1353 if (priv->extend_desc)
1354 stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
1355 priv->use_riwt, priv->mode,
1356 (i == dma_conf->dma_rx_size - 1),
1357 dma_conf->dma_buf_sz);
1358 else
1359 stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
1360 priv->use_riwt, priv->mode,
1361 (i == dma_conf->dma_rx_size - 1),
1362 dma_conf->dma_buf_sz);
1363 }
1364
1365 /**
1366 * stmmac_clear_tx_descriptors - clear tx descriptors
1367 * @priv: driver private structure
1368 * @dma_conf: structure to take the dma data
1369 * @queue: TX queue index.
1370 * Description: this function is called to clear the TX descriptors
1371 * in case of both basic and extended descriptors are used.
1372 */
stmmac_clear_tx_descriptors(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue)1373 static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv,
1374 struct stmmac_dma_conf *dma_conf,
1375 u32 queue)
1376 {
1377 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1378 int i;
1379
1380 /* Clear the TX descriptors */
1381 for (i = 0; i < dma_conf->dma_tx_size; i++) {
1382 int last = (i == (dma_conf->dma_tx_size - 1));
1383 struct dma_desc *p;
1384
1385 if (priv->extend_desc)
1386 p = &tx_q->dma_etx[i].basic;
1387 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1388 p = &tx_q->dma_entx[i].basic;
1389 else
1390 p = &tx_q->dma_tx[i];
1391
1392 stmmac_init_tx_desc(priv, p, priv->mode, last);
1393 }
1394 }
1395
1396 /**
1397 * stmmac_clear_descriptors - clear descriptors
1398 * @priv: driver private structure
1399 * @dma_conf: structure to take the dma data
1400 * Description: this function is called to clear the TX and RX descriptors
1401 * in case of both basic and extended descriptors are used.
1402 */
stmmac_clear_descriptors(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf)1403 static void stmmac_clear_descriptors(struct stmmac_priv *priv,
1404 struct stmmac_dma_conf *dma_conf)
1405 {
1406 u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
1407 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1408 u32 queue;
1409
1410 /* Clear the RX descriptors */
1411 for (queue = 0; queue < rx_queue_cnt; queue++)
1412 stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1413
1414 /* Clear the TX descriptors */
1415 for (queue = 0; queue < tx_queue_cnt; queue++)
1416 stmmac_clear_tx_descriptors(priv, dma_conf, queue);
1417 }
1418
1419 /**
1420 * stmmac_init_rx_buffers - init the RX descriptor buffer.
1421 * @priv: driver private structure
1422 * @dma_conf: structure to take the dma data
1423 * @p: descriptor pointer
1424 * @i: descriptor index
1425 * @flags: gfp flag
1426 * @queue: RX queue index
1427 * Description: this function is called to allocate a receive buffer, perform
1428 * the DMA mapping and init the descriptor.
1429 */
stmmac_init_rx_buffers(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,struct dma_desc * p,int i,gfp_t flags,u32 queue)1430 static int stmmac_init_rx_buffers(struct stmmac_priv *priv,
1431 struct stmmac_dma_conf *dma_conf,
1432 struct dma_desc *p,
1433 int i, gfp_t flags, u32 queue)
1434 {
1435 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1436 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1437 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
1438
1439 if (priv->dma_cap.host_dma_width <= 32)
1440 gfp |= GFP_DMA32;
1441
1442 if (!buf->page) {
1443 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1444 if (!buf->page)
1445 return -ENOMEM;
1446 buf->page_offset = stmmac_rx_offset(priv);
1447 }
1448
1449 if (priv->sph && !buf->sec_page) {
1450 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
1451 if (!buf->sec_page)
1452 return -ENOMEM;
1453
1454 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
1455 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
1456 } else {
1457 buf->sec_page = NULL;
1458 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
1459 }
1460
1461 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
1462
1463 stmmac_set_desc_addr(priv, p, buf->addr);
1464 if (dma_conf->dma_buf_sz == BUF_SIZE_16KiB)
1465 stmmac_init_desc3(priv, p);
1466
1467 return 0;
1468 }
1469
1470 /**
1471 * stmmac_free_rx_buffer - free RX dma buffers
1472 * @priv: private structure
1473 * @rx_q: RX queue
1474 * @i: buffer index.
1475 */
stmmac_free_rx_buffer(struct stmmac_priv * priv,struct stmmac_rx_queue * rx_q,int i)1476 static void stmmac_free_rx_buffer(struct stmmac_priv *priv,
1477 struct stmmac_rx_queue *rx_q,
1478 int i)
1479 {
1480 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1481
1482 if (buf->page)
1483 page_pool_put_full_page(rx_q->page_pool, buf->page, false);
1484 buf->page = NULL;
1485
1486 if (buf->sec_page)
1487 page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
1488 buf->sec_page = NULL;
1489 }
1490
1491 /**
1492 * stmmac_free_tx_buffer - free RX dma buffers
1493 * @priv: private structure
1494 * @dma_conf: structure to take the dma data
1495 * @queue: RX queue index
1496 * @i: buffer index.
1497 */
stmmac_free_tx_buffer(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue,int i)1498 static void stmmac_free_tx_buffer(struct stmmac_priv *priv,
1499 struct stmmac_dma_conf *dma_conf,
1500 u32 queue, int i)
1501 {
1502 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1503
1504 if (tx_q->tx_skbuff_dma[i].buf &&
1505 tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
1506 if (tx_q->tx_skbuff_dma[i].map_as_page)
1507 dma_unmap_page(priv->device,
1508 tx_q->tx_skbuff_dma[i].buf,
1509 tx_q->tx_skbuff_dma[i].len,
1510 DMA_TO_DEVICE);
1511 else
1512 dma_unmap_single(priv->device,
1513 tx_q->tx_skbuff_dma[i].buf,
1514 tx_q->tx_skbuff_dma[i].len,
1515 DMA_TO_DEVICE);
1516 }
1517
1518 if (tx_q->xdpf[i] &&
1519 (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
1520 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
1521 xdp_return_frame(tx_q->xdpf[i]);
1522 tx_q->xdpf[i] = NULL;
1523 }
1524
1525 if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
1526 tx_q->xsk_frames_done++;
1527
1528 if (tx_q->tx_skbuff[i] &&
1529 tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
1530 dev_kfree_skb_any(tx_q->tx_skbuff[i]);
1531 tx_q->tx_skbuff[i] = NULL;
1532 }
1533
1534 tx_q->tx_skbuff_dma[i].buf = 0;
1535 tx_q->tx_skbuff_dma[i].map_as_page = false;
1536 }
1537
1538 /**
1539 * dma_free_rx_skbufs - free RX dma buffers
1540 * @priv: private structure
1541 * @dma_conf: structure to take the dma data
1542 * @queue: RX queue index
1543 */
dma_free_rx_skbufs(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue)1544 static void dma_free_rx_skbufs(struct stmmac_priv *priv,
1545 struct stmmac_dma_conf *dma_conf,
1546 u32 queue)
1547 {
1548 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1549 int i;
1550
1551 for (i = 0; i < dma_conf->dma_rx_size; i++)
1552 stmmac_free_rx_buffer(priv, rx_q, i);
1553 }
1554
stmmac_alloc_rx_buffers(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue,gfp_t flags)1555 static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv,
1556 struct stmmac_dma_conf *dma_conf,
1557 u32 queue, gfp_t flags)
1558 {
1559 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1560 int i;
1561
1562 for (i = 0; i < dma_conf->dma_rx_size; i++) {
1563 struct dma_desc *p;
1564 int ret;
1565
1566 if (priv->extend_desc)
1567 p = &((rx_q->dma_erx + i)->basic);
1568 else
1569 p = rx_q->dma_rx + i;
1570
1571 ret = stmmac_init_rx_buffers(priv, dma_conf, p, i, flags,
1572 queue);
1573 if (ret)
1574 return ret;
1575
1576 rx_q->buf_alloc_num++;
1577 }
1578
1579 return 0;
1580 }
1581
1582 /**
1583 * dma_free_rx_xskbufs - free RX dma buffers from XSK pool
1584 * @priv: private structure
1585 * @dma_conf: structure to take the dma data
1586 * @queue: RX queue index
1587 */
dma_free_rx_xskbufs(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue)1588 static void dma_free_rx_xskbufs(struct stmmac_priv *priv,
1589 struct stmmac_dma_conf *dma_conf,
1590 u32 queue)
1591 {
1592 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1593 int i;
1594
1595 for (i = 0; i < dma_conf->dma_rx_size; i++) {
1596 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
1597
1598 if (!buf->xdp)
1599 continue;
1600
1601 xsk_buff_free(buf->xdp);
1602 buf->xdp = NULL;
1603 }
1604 }
1605
stmmac_alloc_rx_buffers_zc(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue)1606 static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv,
1607 struct stmmac_dma_conf *dma_conf,
1608 u32 queue)
1609 {
1610 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1611 int i;
1612
1613 /* struct stmmac_xdp_buff is using cb field (maximum size of 24 bytes)
1614 * in struct xdp_buff_xsk to stash driver specific information. Thus,
1615 * use this macro to make sure no size violations.
1616 */
1617 XSK_CHECK_PRIV_TYPE(struct stmmac_xdp_buff);
1618
1619 for (i = 0; i < dma_conf->dma_rx_size; i++) {
1620 struct stmmac_rx_buffer *buf;
1621 dma_addr_t dma_addr;
1622 struct dma_desc *p;
1623
1624 if (priv->extend_desc)
1625 p = (struct dma_desc *)(rx_q->dma_erx + i);
1626 else
1627 p = rx_q->dma_rx + i;
1628
1629 buf = &rx_q->buf_pool[i];
1630
1631 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
1632 if (!buf->xdp)
1633 return -ENOMEM;
1634
1635 dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
1636 stmmac_set_desc_addr(priv, p, dma_addr);
1637 rx_q->buf_alloc_num++;
1638 }
1639
1640 return 0;
1641 }
1642
stmmac_get_xsk_pool(struct stmmac_priv * priv,u32 queue)1643 static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
1644 {
1645 if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
1646 return NULL;
1647
1648 return xsk_get_pool_from_qid(priv->dev, queue);
1649 }
1650
1651 /**
1652 * __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
1653 * @priv: driver private structure
1654 * @dma_conf: structure to take the dma data
1655 * @queue: RX queue index
1656 * @flags: gfp flag.
1657 * Description: this function initializes the DMA RX descriptors
1658 * and allocates the socket buffers. It supports the chained and ring
1659 * modes.
1660 */
__init_dma_rx_desc_rings(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue,gfp_t flags)1661 static int __init_dma_rx_desc_rings(struct stmmac_priv *priv,
1662 struct stmmac_dma_conf *dma_conf,
1663 u32 queue, gfp_t flags)
1664 {
1665 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1666 int ret;
1667
1668 netif_dbg(priv, probe, priv->dev,
1669 "(%s) dma_rx_phy=0x%08x\n", __func__,
1670 (u32)rx_q->dma_rx_phy);
1671
1672 stmmac_clear_rx_descriptors(priv, dma_conf, queue);
1673
1674 xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
1675
1676 rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1677
1678 if (rx_q->xsk_pool) {
1679 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1680 MEM_TYPE_XSK_BUFF_POOL,
1681 NULL));
1682 netdev_info(priv->dev,
1683 "Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
1684 rx_q->queue_index);
1685 xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
1686 } else {
1687 WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
1688 MEM_TYPE_PAGE_POOL,
1689 rx_q->page_pool));
1690 netdev_info(priv->dev,
1691 "Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
1692 rx_q->queue_index);
1693 }
1694
1695 if (rx_q->xsk_pool) {
1696 /* RX XDP ZC buffer pool may not be populated, e.g.
1697 * xdpsock TX-only.
1698 */
1699 stmmac_alloc_rx_buffers_zc(priv, dma_conf, queue);
1700 } else {
1701 ret = stmmac_alloc_rx_buffers(priv, dma_conf, queue, flags);
1702 if (ret < 0)
1703 return -ENOMEM;
1704 }
1705
1706 /* Setup the chained descriptor addresses */
1707 if (priv->mode == STMMAC_CHAIN_MODE) {
1708 if (priv->extend_desc)
1709 stmmac_mode_init(priv, rx_q->dma_erx,
1710 rx_q->dma_rx_phy,
1711 dma_conf->dma_rx_size, 1);
1712 else
1713 stmmac_mode_init(priv, rx_q->dma_rx,
1714 rx_q->dma_rx_phy,
1715 dma_conf->dma_rx_size, 0);
1716 }
1717
1718 return 0;
1719 }
1720
init_dma_rx_desc_rings(struct net_device * dev,struct stmmac_dma_conf * dma_conf,gfp_t flags)1721 static int init_dma_rx_desc_rings(struct net_device *dev,
1722 struct stmmac_dma_conf *dma_conf,
1723 gfp_t flags)
1724 {
1725 struct stmmac_priv *priv = netdev_priv(dev);
1726 u32 rx_count = priv->plat->rx_queues_to_use;
1727 int queue;
1728 int ret;
1729
1730 /* RX INITIALIZATION */
1731 netif_dbg(priv, probe, priv->dev,
1732 "SKB addresses:\nskb\t\tskb data\tdma data\n");
1733
1734 for (queue = 0; queue < rx_count; queue++) {
1735 ret = __init_dma_rx_desc_rings(priv, dma_conf, queue, flags);
1736 if (ret)
1737 goto err_init_rx_buffers;
1738 }
1739
1740 return 0;
1741
1742 err_init_rx_buffers:
1743 while (queue >= 0) {
1744 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1745
1746 if (rx_q->xsk_pool)
1747 dma_free_rx_xskbufs(priv, dma_conf, queue);
1748 else
1749 dma_free_rx_skbufs(priv, dma_conf, queue);
1750
1751 rx_q->buf_alloc_num = 0;
1752 rx_q->xsk_pool = NULL;
1753
1754 queue--;
1755 }
1756
1757 return ret;
1758 }
1759
1760 /**
1761 * __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
1762 * @priv: driver private structure
1763 * @dma_conf: structure to take the dma data
1764 * @queue: TX queue index
1765 * Description: this function initializes the DMA TX descriptors
1766 * and allocates the socket buffers. It supports the chained and ring
1767 * modes.
1768 */
__init_dma_tx_desc_rings(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue)1769 static int __init_dma_tx_desc_rings(struct stmmac_priv *priv,
1770 struct stmmac_dma_conf *dma_conf,
1771 u32 queue)
1772 {
1773 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1774 int i;
1775
1776 netif_dbg(priv, probe, priv->dev,
1777 "(%s) dma_tx_phy=0x%08x\n", __func__,
1778 (u32)tx_q->dma_tx_phy);
1779
1780 /* Setup the chained descriptor addresses */
1781 if (priv->mode == STMMAC_CHAIN_MODE) {
1782 if (priv->extend_desc)
1783 stmmac_mode_init(priv, tx_q->dma_etx,
1784 tx_q->dma_tx_phy,
1785 dma_conf->dma_tx_size, 1);
1786 else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
1787 stmmac_mode_init(priv, tx_q->dma_tx,
1788 tx_q->dma_tx_phy,
1789 dma_conf->dma_tx_size, 0);
1790 }
1791
1792 tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
1793
1794 for (i = 0; i < dma_conf->dma_tx_size; i++) {
1795 struct dma_desc *p;
1796
1797 if (priv->extend_desc)
1798 p = &((tx_q->dma_etx + i)->basic);
1799 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
1800 p = &((tx_q->dma_entx + i)->basic);
1801 else
1802 p = tx_q->dma_tx + i;
1803
1804 stmmac_clear_desc(priv, p);
1805
1806 tx_q->tx_skbuff_dma[i].buf = 0;
1807 tx_q->tx_skbuff_dma[i].map_as_page = false;
1808 tx_q->tx_skbuff_dma[i].len = 0;
1809 tx_q->tx_skbuff_dma[i].last_segment = false;
1810 tx_q->tx_skbuff[i] = NULL;
1811 }
1812
1813 return 0;
1814 }
1815
init_dma_tx_desc_rings(struct net_device * dev,struct stmmac_dma_conf * dma_conf)1816 static int init_dma_tx_desc_rings(struct net_device *dev,
1817 struct stmmac_dma_conf *dma_conf)
1818 {
1819 struct stmmac_priv *priv = netdev_priv(dev);
1820 u32 tx_queue_cnt;
1821 u32 queue;
1822
1823 tx_queue_cnt = priv->plat->tx_queues_to_use;
1824
1825 for (queue = 0; queue < tx_queue_cnt; queue++)
1826 __init_dma_tx_desc_rings(priv, dma_conf, queue);
1827
1828 return 0;
1829 }
1830
1831 /**
1832 * init_dma_desc_rings - init the RX/TX descriptor rings
1833 * @dev: net device structure
1834 * @dma_conf: structure to take the dma data
1835 * @flags: gfp flag.
1836 * Description: this function initializes the DMA RX/TX descriptors
1837 * and allocates the socket buffers. It supports the chained and ring
1838 * modes.
1839 */
init_dma_desc_rings(struct net_device * dev,struct stmmac_dma_conf * dma_conf,gfp_t flags)1840 static int init_dma_desc_rings(struct net_device *dev,
1841 struct stmmac_dma_conf *dma_conf,
1842 gfp_t flags)
1843 {
1844 struct stmmac_priv *priv = netdev_priv(dev);
1845 int ret;
1846
1847 ret = init_dma_rx_desc_rings(dev, dma_conf, flags);
1848 if (ret)
1849 return ret;
1850
1851 ret = init_dma_tx_desc_rings(dev, dma_conf);
1852
1853 stmmac_clear_descriptors(priv, dma_conf);
1854
1855 if (netif_msg_hw(priv))
1856 stmmac_display_rings(priv, dma_conf);
1857
1858 return ret;
1859 }
1860
1861 /**
1862 * dma_free_tx_skbufs - free TX dma buffers
1863 * @priv: private structure
1864 * @dma_conf: structure to take the dma data
1865 * @queue: TX queue index
1866 */
dma_free_tx_skbufs(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue)1867 static void dma_free_tx_skbufs(struct stmmac_priv *priv,
1868 struct stmmac_dma_conf *dma_conf,
1869 u32 queue)
1870 {
1871 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1872 int i;
1873
1874 tx_q->xsk_frames_done = 0;
1875
1876 for (i = 0; i < dma_conf->dma_tx_size; i++)
1877 stmmac_free_tx_buffer(priv, dma_conf, queue, i);
1878
1879 if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
1880 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
1881 tx_q->xsk_frames_done = 0;
1882 tx_q->xsk_pool = NULL;
1883 }
1884 }
1885
1886 /**
1887 * stmmac_free_tx_skbufs - free TX skb buffers
1888 * @priv: private structure
1889 */
stmmac_free_tx_skbufs(struct stmmac_priv * priv)1890 static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
1891 {
1892 u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
1893 u32 queue;
1894
1895 for (queue = 0; queue < tx_queue_cnt; queue++)
1896 dma_free_tx_skbufs(priv, &priv->dma_conf, queue);
1897 }
1898
1899 /**
1900 * __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
1901 * @priv: private structure
1902 * @dma_conf: structure to take the dma data
1903 * @queue: RX queue index
1904 */
__free_dma_rx_desc_resources(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue)1905 static void __free_dma_rx_desc_resources(struct stmmac_priv *priv,
1906 struct stmmac_dma_conf *dma_conf,
1907 u32 queue)
1908 {
1909 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
1910
1911 /* Release the DMA RX socket buffers */
1912 if (rx_q->xsk_pool)
1913 dma_free_rx_xskbufs(priv, dma_conf, queue);
1914 else
1915 dma_free_rx_skbufs(priv, dma_conf, queue);
1916
1917 rx_q->buf_alloc_num = 0;
1918 rx_q->xsk_pool = NULL;
1919
1920 /* Free DMA regions of consistent memory previously allocated */
1921 if (!priv->extend_desc)
1922 dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1923 sizeof(struct dma_desc),
1924 rx_q->dma_rx, rx_q->dma_rx_phy);
1925 else
1926 dma_free_coherent(priv->device, dma_conf->dma_rx_size *
1927 sizeof(struct dma_extended_desc),
1928 rx_q->dma_erx, rx_q->dma_rx_phy);
1929
1930 if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
1931 xdp_rxq_info_unreg(&rx_q->xdp_rxq);
1932
1933 kfree(rx_q->buf_pool);
1934 if (rx_q->page_pool)
1935 page_pool_destroy(rx_q->page_pool);
1936 }
1937
free_dma_rx_desc_resources(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf)1938 static void free_dma_rx_desc_resources(struct stmmac_priv *priv,
1939 struct stmmac_dma_conf *dma_conf)
1940 {
1941 u32 rx_count = priv->plat->rx_queues_to_use;
1942 u32 queue;
1943
1944 /* Free RX queue resources */
1945 for (queue = 0; queue < rx_count; queue++)
1946 __free_dma_rx_desc_resources(priv, dma_conf, queue);
1947 }
1948
1949 /**
1950 * __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
1951 * @priv: private structure
1952 * @dma_conf: structure to take the dma data
1953 * @queue: TX queue index
1954 */
__free_dma_tx_desc_resources(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue)1955 static void __free_dma_tx_desc_resources(struct stmmac_priv *priv,
1956 struct stmmac_dma_conf *dma_conf,
1957 u32 queue)
1958 {
1959 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
1960 size_t size;
1961 void *addr;
1962
1963 /* Release the DMA TX socket buffers */
1964 dma_free_tx_skbufs(priv, dma_conf, queue);
1965
1966 if (priv->extend_desc) {
1967 size = sizeof(struct dma_extended_desc);
1968 addr = tx_q->dma_etx;
1969 } else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
1970 size = sizeof(struct dma_edesc);
1971 addr = tx_q->dma_entx;
1972 } else {
1973 size = sizeof(struct dma_desc);
1974 addr = tx_q->dma_tx;
1975 }
1976
1977 size *= dma_conf->dma_tx_size;
1978
1979 dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
1980
1981 kfree(tx_q->tx_skbuff_dma);
1982 kfree(tx_q->tx_skbuff);
1983 }
1984
free_dma_tx_desc_resources(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf)1985 static void free_dma_tx_desc_resources(struct stmmac_priv *priv,
1986 struct stmmac_dma_conf *dma_conf)
1987 {
1988 u32 tx_count = priv->plat->tx_queues_to_use;
1989 u32 queue;
1990
1991 /* Free TX queue resources */
1992 for (queue = 0; queue < tx_count; queue++)
1993 __free_dma_tx_desc_resources(priv, dma_conf, queue);
1994 }
1995
1996 /**
1997 * __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
1998 * @priv: private structure
1999 * @dma_conf: structure to take the dma data
2000 * @queue: RX queue index
2001 * Description: according to which descriptor can be used (extend or basic)
2002 * this function allocates the resources for TX and RX paths. In case of
2003 * reception, for example, it pre-allocated the RX socket buffer in order to
2004 * allow zero-copy mechanism.
2005 */
__alloc_dma_rx_desc_resources(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue)2006 static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
2007 struct stmmac_dma_conf *dma_conf,
2008 u32 queue)
2009 {
2010 struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
2011 struct stmmac_channel *ch = &priv->channel[queue];
2012 bool xdp_prog = stmmac_xdp_is_enabled(priv);
2013 struct page_pool_params pp_params = { 0 };
2014 unsigned int num_pages;
2015 unsigned int napi_id;
2016 int ret;
2017
2018 rx_q->queue_index = queue;
2019 rx_q->priv_data = priv;
2020
2021 pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
2022 pp_params.pool_size = dma_conf->dma_rx_size;
2023 num_pages = DIV_ROUND_UP(dma_conf->dma_buf_sz, PAGE_SIZE);
2024 pp_params.order = ilog2(num_pages);
2025 pp_params.nid = dev_to_node(priv->device);
2026 pp_params.dev = priv->device;
2027 pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
2028 pp_params.offset = stmmac_rx_offset(priv);
2029 pp_params.max_len = STMMAC_MAX_RX_BUF_SIZE(num_pages);
2030
2031 rx_q->page_pool = page_pool_create(&pp_params);
2032 if (IS_ERR(rx_q->page_pool)) {
2033 ret = PTR_ERR(rx_q->page_pool);
2034 rx_q->page_pool = NULL;
2035 return ret;
2036 }
2037
2038 rx_q->buf_pool = kcalloc(dma_conf->dma_rx_size,
2039 sizeof(*rx_q->buf_pool),
2040 GFP_KERNEL);
2041 if (!rx_q->buf_pool)
2042 return -ENOMEM;
2043
2044 if (priv->extend_desc) {
2045 rx_q->dma_erx = dma_alloc_coherent(priv->device,
2046 dma_conf->dma_rx_size *
2047 sizeof(struct dma_extended_desc),
2048 &rx_q->dma_rx_phy,
2049 GFP_KERNEL);
2050 if (!rx_q->dma_erx)
2051 return -ENOMEM;
2052
2053 } else {
2054 rx_q->dma_rx = dma_alloc_coherent(priv->device,
2055 dma_conf->dma_rx_size *
2056 sizeof(struct dma_desc),
2057 &rx_q->dma_rx_phy,
2058 GFP_KERNEL);
2059 if (!rx_q->dma_rx)
2060 return -ENOMEM;
2061 }
2062
2063 if (stmmac_xdp_is_enabled(priv) &&
2064 test_bit(queue, priv->af_xdp_zc_qps))
2065 napi_id = ch->rxtx_napi.napi_id;
2066 else
2067 napi_id = ch->rx_napi.napi_id;
2068
2069 ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
2070 rx_q->queue_index,
2071 napi_id);
2072 if (ret) {
2073 netdev_err(priv->dev, "Failed to register xdp rxq info\n");
2074 return -EINVAL;
2075 }
2076
2077 return 0;
2078 }
2079
alloc_dma_rx_desc_resources(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf)2080 static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
2081 struct stmmac_dma_conf *dma_conf)
2082 {
2083 u32 rx_count = priv->plat->rx_queues_to_use;
2084 u32 queue;
2085 int ret;
2086
2087 /* RX queues buffers and DMA */
2088 for (queue = 0; queue < rx_count; queue++) {
2089 ret = __alloc_dma_rx_desc_resources(priv, dma_conf, queue);
2090 if (ret)
2091 goto err_dma;
2092 }
2093
2094 return 0;
2095
2096 err_dma:
2097 free_dma_rx_desc_resources(priv, dma_conf);
2098
2099 return ret;
2100 }
2101
2102 /**
2103 * __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
2104 * @priv: private structure
2105 * @dma_conf: structure to take the dma data
2106 * @queue: TX queue index
2107 * Description: according to which descriptor can be used (extend or basic)
2108 * this function allocates the resources for TX and RX paths. In case of
2109 * reception, for example, it pre-allocated the RX socket buffer in order to
2110 * allow zero-copy mechanism.
2111 */
__alloc_dma_tx_desc_resources(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf,u32 queue)2112 static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2113 struct stmmac_dma_conf *dma_conf,
2114 u32 queue)
2115 {
2116 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
2117 size_t size;
2118 void *addr;
2119
2120 tx_q->queue_index = queue;
2121 tx_q->priv_data = priv;
2122
2123 tx_q->tx_skbuff_dma = kcalloc(dma_conf->dma_tx_size,
2124 sizeof(*tx_q->tx_skbuff_dma),
2125 GFP_KERNEL);
2126 if (!tx_q->tx_skbuff_dma)
2127 return -ENOMEM;
2128
2129 tx_q->tx_skbuff = kcalloc(dma_conf->dma_tx_size,
2130 sizeof(struct sk_buff *),
2131 GFP_KERNEL);
2132 if (!tx_q->tx_skbuff)
2133 return -ENOMEM;
2134
2135 if (priv->extend_desc)
2136 size = sizeof(struct dma_extended_desc);
2137 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2138 size = sizeof(struct dma_edesc);
2139 else
2140 size = sizeof(struct dma_desc);
2141
2142 size *= dma_conf->dma_tx_size;
2143
2144 addr = dma_alloc_coherent(priv->device, size,
2145 &tx_q->dma_tx_phy, GFP_KERNEL);
2146 if (!addr)
2147 return -ENOMEM;
2148
2149 if (priv->extend_desc)
2150 tx_q->dma_etx = addr;
2151 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2152 tx_q->dma_entx = addr;
2153 else
2154 tx_q->dma_tx = addr;
2155
2156 return 0;
2157 }
2158
alloc_dma_tx_desc_resources(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf)2159 static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
2160 struct stmmac_dma_conf *dma_conf)
2161 {
2162 u32 tx_count = priv->plat->tx_queues_to_use;
2163 u32 queue;
2164 int ret;
2165
2166 /* TX queues buffers and DMA */
2167 for (queue = 0; queue < tx_count; queue++) {
2168 ret = __alloc_dma_tx_desc_resources(priv, dma_conf, queue);
2169 if (ret)
2170 goto err_dma;
2171 }
2172
2173 return 0;
2174
2175 err_dma:
2176 free_dma_tx_desc_resources(priv, dma_conf);
2177 return ret;
2178 }
2179
2180 /**
2181 * alloc_dma_desc_resources - alloc TX/RX resources.
2182 * @priv: private structure
2183 * @dma_conf: structure to take the dma data
2184 * Description: according to which descriptor can be used (extend or basic)
2185 * this function allocates the resources for TX and RX paths. In case of
2186 * reception, for example, it pre-allocated the RX socket buffer in order to
2187 * allow zero-copy mechanism.
2188 */
alloc_dma_desc_resources(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf)2189 static int alloc_dma_desc_resources(struct stmmac_priv *priv,
2190 struct stmmac_dma_conf *dma_conf)
2191 {
2192 /* RX Allocation */
2193 int ret = alloc_dma_rx_desc_resources(priv, dma_conf);
2194
2195 if (ret)
2196 return ret;
2197
2198 ret = alloc_dma_tx_desc_resources(priv, dma_conf);
2199
2200 return ret;
2201 }
2202
2203 /**
2204 * free_dma_desc_resources - free dma desc resources
2205 * @priv: private structure
2206 * @dma_conf: structure to take the dma data
2207 */
free_dma_desc_resources(struct stmmac_priv * priv,struct stmmac_dma_conf * dma_conf)2208 static void free_dma_desc_resources(struct stmmac_priv *priv,
2209 struct stmmac_dma_conf *dma_conf)
2210 {
2211 /* Release the DMA TX socket buffers */
2212 free_dma_tx_desc_resources(priv, dma_conf);
2213
2214 /* Release the DMA RX socket buffers later
2215 * to ensure all pending XDP_TX buffers are returned.
2216 */
2217 free_dma_rx_desc_resources(priv, dma_conf);
2218 }
2219
2220 /**
2221 * stmmac_mac_enable_rx_queues - Enable MAC rx queues
2222 * @priv: driver private structure
2223 * Description: It is used for enabling the rx queues in the MAC
2224 */
stmmac_mac_enable_rx_queues(struct stmmac_priv * priv)2225 static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
2226 {
2227 u32 rx_queues_count = priv->plat->rx_queues_to_use;
2228 int queue;
2229 u8 mode;
2230
2231 for (queue = 0; queue < rx_queues_count; queue++) {
2232 mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
2233 stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
2234 }
2235 }
2236
2237 /**
2238 * stmmac_start_rx_dma - start RX DMA channel
2239 * @priv: driver private structure
2240 * @chan: RX channel index
2241 * Description:
2242 * This starts a RX DMA channel
2243 */
stmmac_start_rx_dma(struct stmmac_priv * priv,u32 chan)2244 static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
2245 {
2246 netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
2247 stmmac_start_rx(priv, priv->ioaddr, chan);
2248 }
2249
2250 /**
2251 * stmmac_start_tx_dma - start TX DMA channel
2252 * @priv: driver private structure
2253 * @chan: TX channel index
2254 * Description:
2255 * This starts a TX DMA channel
2256 */
stmmac_start_tx_dma(struct stmmac_priv * priv,u32 chan)2257 static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
2258 {
2259 netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
2260 stmmac_start_tx(priv, priv->ioaddr, chan);
2261 }
2262
2263 /**
2264 * stmmac_stop_rx_dma - stop RX DMA channel
2265 * @priv: driver private structure
2266 * @chan: RX channel index
2267 * Description:
2268 * This stops a RX DMA channel
2269 */
stmmac_stop_rx_dma(struct stmmac_priv * priv,u32 chan)2270 static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
2271 {
2272 netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
2273 stmmac_stop_rx(priv, priv->ioaddr, chan);
2274 }
2275
2276 /**
2277 * stmmac_stop_tx_dma - stop TX DMA channel
2278 * @priv: driver private structure
2279 * @chan: TX channel index
2280 * Description:
2281 * This stops a TX DMA channel
2282 */
stmmac_stop_tx_dma(struct stmmac_priv * priv,u32 chan)2283 static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
2284 {
2285 netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
2286 stmmac_stop_tx(priv, priv->ioaddr, chan);
2287 }
2288
stmmac_enable_all_dma_irq(struct stmmac_priv * priv)2289 static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv)
2290 {
2291 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2292 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2293 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2294 u32 chan;
2295
2296 for (chan = 0; chan < dma_csr_ch; chan++) {
2297 struct stmmac_channel *ch = &priv->channel[chan];
2298 unsigned long flags;
2299
2300 spin_lock_irqsave(&ch->lock, flags);
2301 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2302 spin_unlock_irqrestore(&ch->lock, flags);
2303 }
2304 }
2305
2306 /**
2307 * stmmac_start_all_dma - start all RX and TX DMA channels
2308 * @priv: driver private structure
2309 * Description:
2310 * This starts all the RX and TX DMA channels
2311 */
stmmac_start_all_dma(struct stmmac_priv * priv)2312 static void stmmac_start_all_dma(struct stmmac_priv *priv)
2313 {
2314 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2315 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2316 u32 chan = 0;
2317
2318 for (chan = 0; chan < rx_channels_count; chan++)
2319 stmmac_start_rx_dma(priv, chan);
2320
2321 for (chan = 0; chan < tx_channels_count; chan++)
2322 stmmac_start_tx_dma(priv, chan);
2323 }
2324
2325 /**
2326 * stmmac_stop_all_dma - stop all RX and TX DMA channels
2327 * @priv: driver private structure
2328 * Description:
2329 * This stops the RX and TX DMA channels
2330 */
stmmac_stop_all_dma(struct stmmac_priv * priv)2331 static void stmmac_stop_all_dma(struct stmmac_priv *priv)
2332 {
2333 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2334 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2335 u32 chan = 0;
2336
2337 for (chan = 0; chan < rx_channels_count; chan++)
2338 stmmac_stop_rx_dma(priv, chan);
2339
2340 for (chan = 0; chan < tx_channels_count; chan++)
2341 stmmac_stop_tx_dma(priv, chan);
2342 }
2343
2344 /**
2345 * stmmac_dma_operation_mode - HW DMA operation mode
2346 * @priv: driver private structure
2347 * Description: it is used for configuring the DMA operation mode register in
2348 * order to program the tx/rx DMA thresholds or Store-And-Forward mode.
2349 */
stmmac_dma_operation_mode(struct stmmac_priv * priv)2350 static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
2351 {
2352 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2353 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2354 int rxfifosz = priv->plat->rx_fifo_size;
2355 int txfifosz = priv->plat->tx_fifo_size;
2356 u32 txmode = 0;
2357 u32 rxmode = 0;
2358 u32 chan = 0;
2359 u8 qmode = 0;
2360
2361 if (rxfifosz == 0)
2362 rxfifosz = priv->dma_cap.rx_fifo_size;
2363 if (txfifosz == 0)
2364 txfifosz = priv->dma_cap.tx_fifo_size;
2365
2366 /* Adjust for real per queue fifo size */
2367 rxfifosz /= rx_channels_count;
2368 txfifosz /= tx_channels_count;
2369
2370 if (priv->plat->force_thresh_dma_mode) {
2371 txmode = tc;
2372 rxmode = tc;
2373 } else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
2374 /*
2375 * In case of GMAC, SF mode can be enabled
2376 * to perform the TX COE in HW. This depends on:
2377 * 1) TX COE if actually supported
2378 * 2) There is no bugged Jumbo frame support
2379 * that needs to not insert csum in the TDES.
2380 */
2381 txmode = SF_DMA_MODE;
2382 rxmode = SF_DMA_MODE;
2383 priv->xstats.threshold = SF_DMA_MODE;
2384 } else {
2385 txmode = tc;
2386 rxmode = SF_DMA_MODE;
2387 }
2388
2389 /* configure all channels */
2390 for (chan = 0; chan < rx_channels_count; chan++) {
2391 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2392 u32 buf_size;
2393
2394 qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2395
2396 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
2397 rxfifosz, qmode);
2398
2399 if (rx_q->xsk_pool) {
2400 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
2401 stmmac_set_dma_bfsize(priv, priv->ioaddr,
2402 buf_size,
2403 chan);
2404 } else {
2405 stmmac_set_dma_bfsize(priv, priv->ioaddr,
2406 priv->dma_conf.dma_buf_sz,
2407 chan);
2408 }
2409 }
2410
2411 for (chan = 0; chan < tx_channels_count; chan++) {
2412 qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2413
2414 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
2415 txfifosz, qmode);
2416 }
2417 }
2418
stmmac_xdp_xmit_zc(struct stmmac_priv * priv,u32 queue,u32 budget)2419 static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
2420 {
2421 struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
2422 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2423 struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[queue];
2424 struct xsk_buff_pool *pool = tx_q->xsk_pool;
2425 unsigned int entry = tx_q->cur_tx;
2426 struct dma_desc *tx_desc = NULL;
2427 struct xdp_desc xdp_desc;
2428 bool work_done = true;
2429 u32 tx_set_ic_bit = 0;
2430
2431 /* Avoids TX time-out as we are sharing with slow path */
2432 txq_trans_cond_update(nq);
2433
2434 budget = min(budget, stmmac_tx_avail(priv, queue));
2435
2436 while (budget-- > 0) {
2437 dma_addr_t dma_addr;
2438 bool set_ic;
2439
2440 /* We are sharing with slow path and stop XSK TX desc submission when
2441 * available TX ring is less than threshold.
2442 */
2443 if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
2444 !netif_carrier_ok(priv->dev)) {
2445 work_done = false;
2446 break;
2447 }
2448
2449 if (!xsk_tx_peek_desc(pool, &xdp_desc))
2450 break;
2451
2452 if (likely(priv->extend_desc))
2453 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
2454 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2455 tx_desc = &tx_q->dma_entx[entry].basic;
2456 else
2457 tx_desc = tx_q->dma_tx + entry;
2458
2459 dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2460 xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
2461
2462 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
2463
2464 /* To return XDP buffer to XSK pool, we simple call
2465 * xsk_tx_completed(), so we don't need to fill up
2466 * 'buf' and 'xdpf'.
2467 */
2468 tx_q->tx_skbuff_dma[entry].buf = 0;
2469 tx_q->xdpf[entry] = NULL;
2470
2471 tx_q->tx_skbuff_dma[entry].map_as_page = false;
2472 tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
2473 tx_q->tx_skbuff_dma[entry].last_segment = true;
2474 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2475
2476 stmmac_set_desc_addr(priv, tx_desc, dma_addr);
2477
2478 tx_q->tx_count_frames++;
2479
2480 if (!priv->tx_coal_frames[queue])
2481 set_ic = false;
2482 else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
2483 set_ic = true;
2484 else
2485 set_ic = false;
2486
2487 if (set_ic) {
2488 tx_q->tx_count_frames = 0;
2489 stmmac_set_tx_ic(priv, tx_desc);
2490 tx_set_ic_bit++;
2491 }
2492
2493 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
2494 true, priv->mode, true, true,
2495 xdp_desc.len);
2496
2497 stmmac_enable_dma_transmission(priv, priv->ioaddr);
2498
2499 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
2500 entry = tx_q->cur_tx;
2501 }
2502 u64_stats_update_begin(&txq_stats->napi_syncp);
2503 u64_stats_add(&txq_stats->napi.tx_set_ic_bit, tx_set_ic_bit);
2504 u64_stats_update_end(&txq_stats->napi_syncp);
2505
2506 if (tx_desc) {
2507 stmmac_flush_tx_descriptors(priv, queue);
2508 xsk_tx_release(pool);
2509 }
2510
2511 /* Return true if all of the 3 conditions are met
2512 * a) TX Budget is still available
2513 * b) work_done = true when XSK TX desc peek is empty (no more
2514 * pending XSK TX for transmission)
2515 */
2516 return !!budget && work_done;
2517 }
2518
stmmac_bump_dma_threshold(struct stmmac_priv * priv,u32 chan)2519 static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan)
2520 {
2521 if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) {
2522 tc += 64;
2523
2524 if (priv->plat->force_thresh_dma_mode)
2525 stmmac_set_dma_operation_mode(priv, tc, tc, chan);
2526 else
2527 stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE,
2528 chan);
2529
2530 priv->xstats.threshold = tc;
2531 }
2532 }
2533
2534 /**
2535 * stmmac_tx_clean - to manage the transmission completion
2536 * @priv: driver private structure
2537 * @budget: napi budget limiting this functions packet handling
2538 * @queue: TX queue index
2539 * Description: it reclaims the transmit resources after transmission completes.
2540 */
stmmac_tx_clean(struct stmmac_priv * priv,int budget,u32 queue)2541 static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue)
2542 {
2543 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2544 struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[queue];
2545 unsigned int bytes_compl = 0, pkts_compl = 0;
2546 unsigned int entry, xmits = 0, count = 0;
2547 u32 tx_packets = 0, tx_errors = 0;
2548
2549 __netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
2550
2551 tx_q->xsk_frames_done = 0;
2552
2553 entry = tx_q->dirty_tx;
2554
2555 /* Try to clean all TX complete frame in 1 shot */
2556 while ((entry != tx_q->cur_tx) && count < priv->dma_conf.dma_tx_size) {
2557 struct xdp_frame *xdpf;
2558 struct sk_buff *skb;
2559 struct dma_desc *p;
2560 int status;
2561
2562 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
2563 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2564 xdpf = tx_q->xdpf[entry];
2565 skb = NULL;
2566 } else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2567 xdpf = NULL;
2568 skb = tx_q->tx_skbuff[entry];
2569 } else {
2570 xdpf = NULL;
2571 skb = NULL;
2572 }
2573
2574 if (priv->extend_desc)
2575 p = (struct dma_desc *)(tx_q->dma_etx + entry);
2576 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
2577 p = &tx_q->dma_entx[entry].basic;
2578 else
2579 p = tx_q->dma_tx + entry;
2580
2581 status = stmmac_tx_status(priv, &priv->xstats, p, priv->ioaddr);
2582 /* Check if the descriptor is owned by the DMA */
2583 if (unlikely(status & tx_dma_own))
2584 break;
2585
2586 count++;
2587
2588 /* Make sure descriptor fields are read after reading
2589 * the own bit.
2590 */
2591 dma_rmb();
2592
2593 /* Just consider the last segment and ...*/
2594 if (likely(!(status & tx_not_ls))) {
2595 /* ... verify the status error condition */
2596 if (unlikely(status & tx_err)) {
2597 tx_errors++;
2598 if (unlikely(status & tx_err_bump_tc))
2599 stmmac_bump_dma_threshold(priv, queue);
2600 } else {
2601 tx_packets++;
2602 }
2603 if (skb)
2604 stmmac_get_tx_hwtstamp(priv, p, skb);
2605 }
2606
2607 if (likely(tx_q->tx_skbuff_dma[entry].buf &&
2608 tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
2609 if (tx_q->tx_skbuff_dma[entry].map_as_page)
2610 dma_unmap_page(priv->device,
2611 tx_q->tx_skbuff_dma[entry].buf,
2612 tx_q->tx_skbuff_dma[entry].len,
2613 DMA_TO_DEVICE);
2614 else
2615 dma_unmap_single(priv->device,
2616 tx_q->tx_skbuff_dma[entry].buf,
2617 tx_q->tx_skbuff_dma[entry].len,
2618 DMA_TO_DEVICE);
2619 tx_q->tx_skbuff_dma[entry].buf = 0;
2620 tx_q->tx_skbuff_dma[entry].len = 0;
2621 tx_q->tx_skbuff_dma[entry].map_as_page = false;
2622 }
2623
2624 stmmac_clean_desc3(priv, tx_q, p);
2625
2626 tx_q->tx_skbuff_dma[entry].last_segment = false;
2627 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
2628
2629 if (xdpf &&
2630 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
2631 xdp_return_frame_rx_napi(xdpf);
2632 tx_q->xdpf[entry] = NULL;
2633 }
2634
2635 if (xdpf &&
2636 tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
2637 xdp_return_frame(xdpf);
2638 tx_q->xdpf[entry] = NULL;
2639 }
2640
2641 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
2642 tx_q->xsk_frames_done++;
2643
2644 if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
2645 if (likely(skb)) {
2646 pkts_compl++;
2647 bytes_compl += skb->len;
2648 dev_consume_skb_any(skb);
2649 tx_q->tx_skbuff[entry] = NULL;
2650 }
2651 }
2652
2653 stmmac_release_tx_desc(priv, p, priv->mode);
2654
2655 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
2656 }
2657 tx_q->dirty_tx = entry;
2658
2659 netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
2660 pkts_compl, bytes_compl);
2661
2662 if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
2663 queue))) &&
2664 stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
2665
2666 netif_dbg(priv, tx_done, priv->dev,
2667 "%s: restart transmit\n", __func__);
2668 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
2669 }
2670
2671 if (tx_q->xsk_pool) {
2672 bool work_done;
2673
2674 if (tx_q->xsk_frames_done)
2675 xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
2676
2677 if (xsk_uses_need_wakeup(tx_q->xsk_pool))
2678 xsk_set_tx_need_wakeup(tx_q->xsk_pool);
2679
2680 /* For XSK TX, we try to send as many as possible.
2681 * If XSK work done (XSK TX desc empty and budget still
2682 * available), return "budget - 1" to reenable TX IRQ.
2683 * Else, return "budget" to make NAPI continue polling.
2684 */
2685 work_done = stmmac_xdp_xmit_zc(priv, queue,
2686 STMMAC_XSK_TX_BUDGET_MAX);
2687 if (work_done)
2688 xmits = budget - 1;
2689 else
2690 xmits = budget;
2691 }
2692
2693 if (priv->eee_enabled && !priv->tx_path_in_lpi_mode &&
2694 priv->eee_sw_timer_en) {
2695 if (stmmac_enable_eee_mode(priv))
2696 mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
2697 }
2698
2699 /* We still have pending packets, let's call for a new scheduling */
2700 if (tx_q->dirty_tx != tx_q->cur_tx)
2701 stmmac_tx_timer_arm(priv, queue);
2702
2703 u64_stats_update_begin(&txq_stats->napi_syncp);
2704 u64_stats_add(&txq_stats->napi.tx_packets, tx_packets);
2705 u64_stats_add(&txq_stats->napi.tx_pkt_n, tx_packets);
2706 u64_stats_inc(&txq_stats->napi.tx_clean);
2707 u64_stats_update_end(&txq_stats->napi_syncp);
2708
2709 priv->xstats.tx_errors += tx_errors;
2710
2711 __netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
2712
2713 /* Combine decisions from TX clean and XSK TX */
2714 return max(count, xmits);
2715 }
2716
2717 /**
2718 * stmmac_tx_err - to manage the tx error
2719 * @priv: driver private structure
2720 * @chan: channel index
2721 * Description: it cleans the descriptors and restarts the transmission
2722 * in case of transmission errors.
2723 */
stmmac_tx_err(struct stmmac_priv * priv,u32 chan)2724 static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
2725 {
2726 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2727
2728 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
2729
2730 stmmac_stop_tx_dma(priv, chan);
2731 dma_free_tx_skbufs(priv, &priv->dma_conf, chan);
2732 stmmac_clear_tx_descriptors(priv, &priv->dma_conf, chan);
2733 stmmac_reset_tx_queue(priv, chan);
2734 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2735 tx_q->dma_tx_phy, chan);
2736 stmmac_start_tx_dma(priv, chan);
2737
2738 priv->xstats.tx_errors++;
2739 netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
2740 }
2741
2742 /**
2743 * stmmac_set_dma_operation_mode - Set DMA operation mode by channel
2744 * @priv: driver private structure
2745 * @txmode: TX operating mode
2746 * @rxmode: RX operating mode
2747 * @chan: channel index
2748 * Description: it is used for configuring of the DMA operation mode in
2749 * runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
2750 * mode.
2751 */
stmmac_set_dma_operation_mode(struct stmmac_priv * priv,u32 txmode,u32 rxmode,u32 chan)2752 static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
2753 u32 rxmode, u32 chan)
2754 {
2755 u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
2756 u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
2757 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2758 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2759 int rxfifosz = priv->plat->rx_fifo_size;
2760 int txfifosz = priv->plat->tx_fifo_size;
2761
2762 if (rxfifosz == 0)
2763 rxfifosz = priv->dma_cap.rx_fifo_size;
2764 if (txfifosz == 0)
2765 txfifosz = priv->dma_cap.tx_fifo_size;
2766
2767 /* Adjust for real per queue fifo size */
2768 rxfifosz /= rx_channels_count;
2769 txfifosz /= tx_channels_count;
2770
2771 stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
2772 stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
2773 }
2774
stmmac_safety_feat_interrupt(struct stmmac_priv * priv)2775 static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
2776 {
2777 int ret;
2778
2779 ret = stmmac_safety_feat_irq_status(priv, priv->dev,
2780 priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
2781 if (ret && (ret != -EINVAL)) {
2782 stmmac_global_err(priv);
2783 return true;
2784 }
2785
2786 return false;
2787 }
2788
stmmac_napi_check(struct stmmac_priv * priv,u32 chan,u32 dir)2789 static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
2790 {
2791 int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
2792 &priv->xstats, chan, dir);
2793 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
2794 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
2795 struct stmmac_channel *ch = &priv->channel[chan];
2796 struct napi_struct *rx_napi;
2797 struct napi_struct *tx_napi;
2798 unsigned long flags;
2799
2800 rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
2801 tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
2802
2803 if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
2804 if (napi_schedule_prep(rx_napi)) {
2805 spin_lock_irqsave(&ch->lock, flags);
2806 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
2807 spin_unlock_irqrestore(&ch->lock, flags);
2808 __napi_schedule(rx_napi);
2809 }
2810 }
2811
2812 if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
2813 if (napi_schedule_prep(tx_napi)) {
2814 spin_lock_irqsave(&ch->lock, flags);
2815 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
2816 spin_unlock_irqrestore(&ch->lock, flags);
2817 __napi_schedule(tx_napi);
2818 }
2819 }
2820
2821 return status;
2822 }
2823
2824 /**
2825 * stmmac_dma_interrupt - DMA ISR
2826 * @priv: driver private structure
2827 * Description: this is the DMA ISR. It is called by the main ISR.
2828 * It calls the dwmac dma routine and schedule poll method in case of some
2829 * work can be done.
2830 */
stmmac_dma_interrupt(struct stmmac_priv * priv)2831 static void stmmac_dma_interrupt(struct stmmac_priv *priv)
2832 {
2833 u32 tx_channel_count = priv->plat->tx_queues_to_use;
2834 u32 rx_channel_count = priv->plat->rx_queues_to_use;
2835 u32 channels_to_check = tx_channel_count > rx_channel_count ?
2836 tx_channel_count : rx_channel_count;
2837 u32 chan;
2838 int status[max_t(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
2839
2840 /* Make sure we never check beyond our status buffer. */
2841 if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
2842 channels_to_check = ARRAY_SIZE(status);
2843
2844 for (chan = 0; chan < channels_to_check; chan++)
2845 status[chan] = stmmac_napi_check(priv, chan,
2846 DMA_DIR_RXTX);
2847
2848 for (chan = 0; chan < tx_channel_count; chan++) {
2849 if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
2850 /* Try to bump up the dma threshold on this failure */
2851 stmmac_bump_dma_threshold(priv, chan);
2852 } else if (unlikely(status[chan] == tx_hard_error)) {
2853 stmmac_tx_err(priv, chan);
2854 }
2855 }
2856 }
2857
2858 /**
2859 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
2860 * @priv: driver private structure
2861 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
2862 */
stmmac_mmc_setup(struct stmmac_priv * priv)2863 static void stmmac_mmc_setup(struct stmmac_priv *priv)
2864 {
2865 unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
2866 MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
2867
2868 stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
2869
2870 if (priv->dma_cap.rmon) {
2871 stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
2872 memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
2873 } else
2874 netdev_info(priv->dev, "No MAC Management Counters available\n");
2875 }
2876
2877 /**
2878 * stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
2879 * @priv: driver private structure
2880 * Description:
2881 * new GMAC chip generations have a new register to indicate the
2882 * presence of the optional feature/functions.
2883 * This can be also used to override the value passed through the
2884 * platform and necessary for old MAC10/100 and GMAC chips.
2885 */
stmmac_get_hw_features(struct stmmac_priv * priv)2886 static int stmmac_get_hw_features(struct stmmac_priv *priv)
2887 {
2888 return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
2889 }
2890
2891 /**
2892 * stmmac_check_ether_addr - check if the MAC addr is valid
2893 * @priv: driver private structure
2894 * Description:
2895 * it is to verify if the MAC address is valid, in case of failures it
2896 * generates a random MAC address
2897 */
stmmac_check_ether_addr(struct stmmac_priv * priv)2898 static void stmmac_check_ether_addr(struct stmmac_priv *priv)
2899 {
2900 u8 addr[ETH_ALEN];
2901
2902 if (!is_valid_ether_addr(priv->dev->dev_addr)) {
2903 stmmac_get_umac_addr(priv, priv->hw, addr, 0);
2904 if (is_valid_ether_addr(addr))
2905 eth_hw_addr_set(priv->dev, addr);
2906 else
2907 eth_hw_addr_random(priv->dev);
2908 dev_info(priv->device, "device MAC address %pM\n",
2909 priv->dev->dev_addr);
2910 }
2911 }
2912
2913 /**
2914 * stmmac_init_dma_engine - DMA init.
2915 * @priv: driver private structure
2916 * Description:
2917 * It inits the DMA invoking the specific MAC/GMAC callback.
2918 * Some DMA parameters can be passed from the platform;
2919 * in case of these are not passed a default is kept for the MAC or GMAC.
2920 */
stmmac_init_dma_engine(struct stmmac_priv * priv)2921 static int stmmac_init_dma_engine(struct stmmac_priv *priv)
2922 {
2923 u32 rx_channels_count = priv->plat->rx_queues_to_use;
2924 u32 tx_channels_count = priv->plat->tx_queues_to_use;
2925 u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
2926 struct stmmac_rx_queue *rx_q;
2927 struct stmmac_tx_queue *tx_q;
2928 u32 chan = 0;
2929 int atds = 0;
2930 int ret = 0;
2931
2932 if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
2933 dev_err(priv->device, "Invalid DMA configuration\n");
2934 return -EINVAL;
2935 }
2936
2937 if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
2938 atds = 1;
2939
2940 ret = stmmac_reset(priv, priv->ioaddr);
2941 if (ret) {
2942 dev_err(priv->device, "Failed to reset the dma\n");
2943 return ret;
2944 }
2945
2946 /* DMA Configuration */
2947 stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg, atds);
2948
2949 if (priv->plat->axi)
2950 stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
2951
2952 /* DMA CSR Channel configuration */
2953 for (chan = 0; chan < dma_csr_ch; chan++) {
2954 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
2955 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
2956 }
2957
2958 /* DMA RX Channel Configuration */
2959 for (chan = 0; chan < rx_channels_count; chan++) {
2960 rx_q = &priv->dma_conf.rx_queue[chan];
2961
2962 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2963 rx_q->dma_rx_phy, chan);
2964
2965 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
2966 (rx_q->buf_alloc_num *
2967 sizeof(struct dma_desc));
2968 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
2969 rx_q->rx_tail_addr, chan);
2970 }
2971
2972 /* DMA TX Channel Configuration */
2973 for (chan = 0; chan < tx_channels_count; chan++) {
2974 tx_q = &priv->dma_conf.tx_queue[chan];
2975
2976 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
2977 tx_q->dma_tx_phy, chan);
2978
2979 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
2980 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
2981 tx_q->tx_tail_addr, chan);
2982 }
2983
2984 return ret;
2985 }
2986
stmmac_tx_timer_arm(struct stmmac_priv * priv,u32 queue)2987 static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
2988 {
2989 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
2990 u32 tx_coal_timer = priv->tx_coal_timer[queue];
2991
2992 if (!tx_coal_timer)
2993 return;
2994
2995 hrtimer_start(&tx_q->txtimer,
2996 STMMAC_COAL_TIMER(tx_coal_timer),
2997 HRTIMER_MODE_REL);
2998 }
2999
3000 /**
3001 * stmmac_tx_timer - mitigation sw timer for tx.
3002 * @t: data pointer
3003 * Description:
3004 * This is the timer handler to directly invoke the stmmac_tx_clean.
3005 */
stmmac_tx_timer(struct hrtimer * t)3006 static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
3007 {
3008 struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
3009 struct stmmac_priv *priv = tx_q->priv_data;
3010 struct stmmac_channel *ch;
3011 struct napi_struct *napi;
3012
3013 ch = &priv->channel[tx_q->queue_index];
3014 napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
3015
3016 if (likely(napi_schedule_prep(napi))) {
3017 unsigned long flags;
3018
3019 spin_lock_irqsave(&ch->lock, flags);
3020 stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
3021 spin_unlock_irqrestore(&ch->lock, flags);
3022 __napi_schedule(napi);
3023 }
3024
3025 return HRTIMER_NORESTART;
3026 }
3027
3028 /**
3029 * stmmac_init_coalesce - init mitigation options.
3030 * @priv: driver private structure
3031 * Description:
3032 * This inits the coalesce parameters: i.e. timer rate,
3033 * timer handler and default threshold used for enabling the
3034 * interrupt on completion bit.
3035 */
stmmac_init_coalesce(struct stmmac_priv * priv)3036 static void stmmac_init_coalesce(struct stmmac_priv *priv)
3037 {
3038 u32 tx_channel_count = priv->plat->tx_queues_to_use;
3039 u32 rx_channel_count = priv->plat->rx_queues_to_use;
3040 u32 chan;
3041
3042 for (chan = 0; chan < tx_channel_count; chan++) {
3043 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3044
3045 priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
3046 priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
3047
3048 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3049 tx_q->txtimer.function = stmmac_tx_timer;
3050 }
3051
3052 for (chan = 0; chan < rx_channel_count; chan++)
3053 priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
3054 }
3055
stmmac_set_rings_length(struct stmmac_priv * priv)3056 static void stmmac_set_rings_length(struct stmmac_priv *priv)
3057 {
3058 u32 rx_channels_count = priv->plat->rx_queues_to_use;
3059 u32 tx_channels_count = priv->plat->tx_queues_to_use;
3060 u32 chan;
3061
3062 /* set TX ring length */
3063 for (chan = 0; chan < tx_channels_count; chan++)
3064 stmmac_set_tx_ring_len(priv, priv->ioaddr,
3065 (priv->dma_conf.dma_tx_size - 1), chan);
3066
3067 /* set RX ring length */
3068 for (chan = 0; chan < rx_channels_count; chan++)
3069 stmmac_set_rx_ring_len(priv, priv->ioaddr,
3070 (priv->dma_conf.dma_rx_size - 1), chan);
3071 }
3072
3073 /**
3074 * stmmac_set_tx_queue_weight - Set TX queue weight
3075 * @priv: driver private structure
3076 * Description: It is used for setting TX queues weight
3077 */
stmmac_set_tx_queue_weight(struct stmmac_priv * priv)3078 static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
3079 {
3080 u32 tx_queues_count = priv->plat->tx_queues_to_use;
3081 u32 weight;
3082 u32 queue;
3083
3084 for (queue = 0; queue < tx_queues_count; queue++) {
3085 weight = priv->plat->tx_queues_cfg[queue].weight;
3086 stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
3087 }
3088 }
3089
3090 /**
3091 * stmmac_configure_cbs - Configure CBS in TX queue
3092 * @priv: driver private structure
3093 * Description: It is used for configuring CBS in AVB TX queues
3094 */
stmmac_configure_cbs(struct stmmac_priv * priv)3095 static void stmmac_configure_cbs(struct stmmac_priv *priv)
3096 {
3097 u32 tx_queues_count = priv->plat->tx_queues_to_use;
3098 u32 mode_to_use;
3099 u32 queue;
3100
3101 /* queue 0 is reserved for legacy traffic */
3102 for (queue = 1; queue < tx_queues_count; queue++) {
3103 mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
3104 if (mode_to_use == MTL_QUEUE_DCB)
3105 continue;
3106
3107 stmmac_config_cbs(priv, priv->hw,
3108 priv->plat->tx_queues_cfg[queue].send_slope,
3109 priv->plat->tx_queues_cfg[queue].idle_slope,
3110 priv->plat->tx_queues_cfg[queue].high_credit,
3111 priv->plat->tx_queues_cfg[queue].low_credit,
3112 queue);
3113 }
3114 }
3115
3116 /**
3117 * stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
3118 * @priv: driver private structure
3119 * Description: It is used for mapping RX queues to RX dma channels
3120 */
stmmac_rx_queue_dma_chan_map(struct stmmac_priv * priv)3121 static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
3122 {
3123 u32 rx_queues_count = priv->plat->rx_queues_to_use;
3124 u32 queue;
3125 u32 chan;
3126
3127 for (queue = 0; queue < rx_queues_count; queue++) {
3128 chan = priv->plat->rx_queues_cfg[queue].chan;
3129 stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
3130 }
3131 }
3132
3133 /**
3134 * stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
3135 * @priv: driver private structure
3136 * Description: It is used for configuring the RX Queue Priority
3137 */
stmmac_mac_config_rx_queues_prio(struct stmmac_priv * priv)3138 static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
3139 {
3140 u32 rx_queues_count = priv->plat->rx_queues_to_use;
3141 u32 queue;
3142 u32 prio;
3143
3144 for (queue = 0; queue < rx_queues_count; queue++) {
3145 if (!priv->plat->rx_queues_cfg[queue].use_prio)
3146 continue;
3147
3148 prio = priv->plat->rx_queues_cfg[queue].prio;
3149 stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
3150 }
3151 }
3152
3153 /**
3154 * stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
3155 * @priv: driver private structure
3156 * Description: It is used for configuring the TX Queue Priority
3157 */
stmmac_mac_config_tx_queues_prio(struct stmmac_priv * priv)3158 static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
3159 {
3160 u32 tx_queues_count = priv->plat->tx_queues_to_use;
3161 u32 queue;
3162 u32 prio;
3163
3164 for (queue = 0; queue < tx_queues_count; queue++) {
3165 if (!priv->plat->tx_queues_cfg[queue].use_prio)
3166 continue;
3167
3168 prio = priv->plat->tx_queues_cfg[queue].prio;
3169 stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
3170 }
3171 }
3172
3173 /**
3174 * stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
3175 * @priv: driver private structure
3176 * Description: It is used for configuring the RX queue routing
3177 */
stmmac_mac_config_rx_queues_routing(struct stmmac_priv * priv)3178 static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
3179 {
3180 u32 rx_queues_count = priv->plat->rx_queues_to_use;
3181 u32 queue;
3182 u8 packet;
3183
3184 for (queue = 0; queue < rx_queues_count; queue++) {
3185 /* no specific packet type routing specified for the queue */
3186 if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
3187 continue;
3188
3189 packet = priv->plat->rx_queues_cfg[queue].pkt_route;
3190 stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
3191 }
3192 }
3193
stmmac_mac_config_rss(struct stmmac_priv * priv)3194 static void stmmac_mac_config_rss(struct stmmac_priv *priv)
3195 {
3196 if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
3197 priv->rss.enable = false;
3198 return;
3199 }
3200
3201 if (priv->dev->features & NETIF_F_RXHASH)
3202 priv->rss.enable = true;
3203 else
3204 priv->rss.enable = false;
3205
3206 stmmac_rss_configure(priv, priv->hw, &priv->rss,
3207 priv->plat->rx_queues_to_use);
3208 }
3209
3210 /**
3211 * stmmac_mtl_configuration - Configure MTL
3212 * @priv: driver private structure
3213 * Description: It is used for configurring MTL
3214 */
stmmac_mtl_configuration(struct stmmac_priv * priv)3215 static void stmmac_mtl_configuration(struct stmmac_priv *priv)
3216 {
3217 u32 rx_queues_count = priv->plat->rx_queues_to_use;
3218 u32 tx_queues_count = priv->plat->tx_queues_to_use;
3219
3220 if (tx_queues_count > 1)
3221 stmmac_set_tx_queue_weight(priv);
3222
3223 /* Configure MTL RX algorithms */
3224 if (rx_queues_count > 1)
3225 stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
3226 priv->plat->rx_sched_algorithm);
3227
3228 /* Configure MTL TX algorithms */
3229 if (tx_queues_count > 1)
3230 stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
3231 priv->plat->tx_sched_algorithm);
3232
3233 /* Configure CBS in AVB TX queues */
3234 if (tx_queues_count > 1)
3235 stmmac_configure_cbs(priv);
3236
3237 /* Map RX MTL to DMA channels */
3238 stmmac_rx_queue_dma_chan_map(priv);
3239
3240 /* Enable MAC RX Queues */
3241 stmmac_mac_enable_rx_queues(priv);
3242
3243 /* Set RX priorities */
3244 if (rx_queues_count > 1)
3245 stmmac_mac_config_rx_queues_prio(priv);
3246
3247 /* Set TX priorities */
3248 if (tx_queues_count > 1)
3249 stmmac_mac_config_tx_queues_prio(priv);
3250
3251 /* Set RX routing */
3252 if (rx_queues_count > 1)
3253 stmmac_mac_config_rx_queues_routing(priv);
3254
3255 /* Receive Side Scaling */
3256 if (rx_queues_count > 1)
3257 stmmac_mac_config_rss(priv);
3258 }
3259
stmmac_safety_feat_configuration(struct stmmac_priv * priv)3260 static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
3261 {
3262 if (priv->dma_cap.asp) {
3263 netdev_info(priv->dev, "Enabling Safety Features\n");
3264 stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
3265 priv->plat->safety_feat_cfg);
3266 } else {
3267 netdev_info(priv->dev, "No Safety Features support found\n");
3268 }
3269 }
3270
stmmac_fpe_start_wq(struct stmmac_priv * priv)3271 static int stmmac_fpe_start_wq(struct stmmac_priv *priv)
3272 {
3273 char *name;
3274
3275 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
3276 clear_bit(__FPE_REMOVING, &priv->fpe_task_state);
3277
3278 name = priv->wq_name;
3279 sprintf(name, "%s-fpe", priv->dev->name);
3280
3281 priv->fpe_wq = create_singlethread_workqueue(name);
3282 if (!priv->fpe_wq) {
3283 netdev_err(priv->dev, "%s: Failed to create workqueue\n", name);
3284
3285 return -ENOMEM;
3286 }
3287 netdev_info(priv->dev, "FPE workqueue start");
3288
3289 return 0;
3290 }
3291
3292 /**
3293 * stmmac_hw_setup - setup mac in a usable state.
3294 * @dev : pointer to the device structure.
3295 * @ptp_register: register PTP if set
3296 * Description:
3297 * this is the main function to setup the HW in a usable state because the
3298 * dma engine is reset, the core registers are configured (e.g. AXI,
3299 * Checksum features, timers). The DMA is ready to start receiving and
3300 * transmitting.
3301 * Return value:
3302 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3303 * file on failure.
3304 */
stmmac_hw_setup(struct net_device * dev,bool ptp_register)3305 static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
3306 {
3307 struct stmmac_priv *priv = netdev_priv(dev);
3308 u32 rx_cnt = priv->plat->rx_queues_to_use;
3309 u32 tx_cnt = priv->plat->tx_queues_to_use;
3310 bool sph_en;
3311 u32 chan;
3312 int ret;
3313
3314 /* DMA initialization and SW reset */
3315 ret = stmmac_init_dma_engine(priv);
3316 if (ret < 0) {
3317 netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
3318 __func__);
3319 return ret;
3320 }
3321
3322 /* Copy the MAC addr into the HW */
3323 stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
3324
3325 /* PS and related bits will be programmed according to the speed */
3326 if (priv->hw->pcs) {
3327 int speed = priv->plat->mac_port_sel_speed;
3328
3329 if ((speed == SPEED_10) || (speed == SPEED_100) ||
3330 (speed == SPEED_1000)) {
3331 priv->hw->ps = speed;
3332 } else {
3333 dev_warn(priv->device, "invalid port speed\n");
3334 priv->hw->ps = 0;
3335 }
3336 }
3337
3338 /* Initialize the MAC Core */
3339 stmmac_core_init(priv, priv->hw, dev);
3340
3341 /* Initialize MTL*/
3342 stmmac_mtl_configuration(priv);
3343
3344 /* Initialize Safety Features */
3345 stmmac_safety_feat_configuration(priv);
3346
3347 ret = stmmac_rx_ipc(priv, priv->hw);
3348 if (!ret) {
3349 netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
3350 priv->plat->rx_coe = STMMAC_RX_COE_NONE;
3351 priv->hw->rx_csum = 0;
3352 }
3353
3354 /* Enable the MAC Rx/Tx */
3355 stmmac_mac_set(priv, priv->ioaddr, true);
3356
3357 /* Set the HW DMA mode and the COE */
3358 stmmac_dma_operation_mode(priv);
3359
3360 stmmac_mmc_setup(priv);
3361
3362 if (ptp_register) {
3363 ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
3364 if (ret < 0)
3365 netdev_warn(priv->dev,
3366 "failed to enable PTP reference clock: %pe\n",
3367 ERR_PTR(ret));
3368 }
3369
3370 ret = stmmac_init_ptp(priv);
3371 if (ret == -EOPNOTSUPP)
3372 netdev_info(priv->dev, "PTP not supported by HW\n");
3373 else if (ret)
3374 netdev_warn(priv->dev, "PTP init failed\n");
3375 else if (ptp_register)
3376 stmmac_ptp_register(priv);
3377
3378 priv->eee_tw_timer = STMMAC_DEFAULT_TWT_LS;
3379
3380 /* Convert the timer from msec to usec */
3381 if (!priv->tx_lpi_timer)
3382 priv->tx_lpi_timer = eee_timer * 1000;
3383
3384 if (priv->use_riwt) {
3385 u32 queue;
3386
3387 for (queue = 0; queue < rx_cnt; queue++) {
3388 if (!priv->rx_riwt[queue])
3389 priv->rx_riwt[queue] = DEF_DMA_RIWT;
3390
3391 stmmac_rx_watchdog(priv, priv->ioaddr,
3392 priv->rx_riwt[queue], queue);
3393 }
3394 }
3395
3396 if (priv->hw->pcs)
3397 stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
3398
3399 /* set TX and RX rings length */
3400 stmmac_set_rings_length(priv);
3401
3402 /* Enable TSO */
3403 if (priv->tso) {
3404 for (chan = 0; chan < tx_cnt; chan++) {
3405 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3406
3407 /* TSO and TBS cannot co-exist */
3408 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3409 continue;
3410
3411 stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
3412 }
3413 }
3414
3415 /* Enable Split Header */
3416 sph_en = (priv->hw->rx_csum > 0) && priv->sph;
3417 for (chan = 0; chan < rx_cnt; chan++)
3418 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
3419
3420
3421 /* VLAN Tag Insertion */
3422 if (priv->dma_cap.vlins)
3423 stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
3424
3425 /* TBS */
3426 for (chan = 0; chan < tx_cnt; chan++) {
3427 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
3428 int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
3429
3430 stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
3431 }
3432
3433 /* Configure real RX and TX queues */
3434 netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
3435 netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
3436
3437 /* Start the ball rolling... */
3438 stmmac_start_all_dma(priv);
3439
3440 if (priv->dma_cap.fpesel) {
3441 stmmac_fpe_start_wq(priv);
3442
3443 if (priv->plat->fpe_cfg->enable)
3444 stmmac_fpe_handshake(priv, true);
3445 }
3446
3447 return 0;
3448 }
3449
stmmac_hw_teardown(struct net_device * dev)3450 static void stmmac_hw_teardown(struct net_device *dev)
3451 {
3452 struct stmmac_priv *priv = netdev_priv(dev);
3453
3454 clk_disable_unprepare(priv->plat->clk_ptp_ref);
3455 }
3456
stmmac_free_irq(struct net_device * dev,enum request_irq_err irq_err,int irq_idx)3457 static void stmmac_free_irq(struct net_device *dev,
3458 enum request_irq_err irq_err, int irq_idx)
3459 {
3460 struct stmmac_priv *priv = netdev_priv(dev);
3461 int j;
3462
3463 switch (irq_err) {
3464 case REQ_IRQ_ERR_ALL:
3465 irq_idx = priv->plat->tx_queues_to_use;
3466 fallthrough;
3467 case REQ_IRQ_ERR_TX:
3468 for (j = irq_idx - 1; j >= 0; j--) {
3469 if (priv->tx_irq[j] > 0) {
3470 irq_set_affinity_hint(priv->tx_irq[j], NULL);
3471 free_irq(priv->tx_irq[j], &priv->dma_conf.tx_queue[j]);
3472 }
3473 }
3474 irq_idx = priv->plat->rx_queues_to_use;
3475 fallthrough;
3476 case REQ_IRQ_ERR_RX:
3477 for (j = irq_idx - 1; j >= 0; j--) {
3478 if (priv->rx_irq[j] > 0) {
3479 irq_set_affinity_hint(priv->rx_irq[j], NULL);
3480 free_irq(priv->rx_irq[j], &priv->dma_conf.rx_queue[j]);
3481 }
3482 }
3483
3484 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
3485 free_irq(priv->sfty_ue_irq, dev);
3486 fallthrough;
3487 case REQ_IRQ_ERR_SFTY_UE:
3488 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
3489 free_irq(priv->sfty_ce_irq, dev);
3490 fallthrough;
3491 case REQ_IRQ_ERR_SFTY_CE:
3492 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
3493 free_irq(priv->lpi_irq, dev);
3494 fallthrough;
3495 case REQ_IRQ_ERR_LPI:
3496 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
3497 free_irq(priv->wol_irq, dev);
3498 fallthrough;
3499 case REQ_IRQ_ERR_WOL:
3500 free_irq(dev->irq, dev);
3501 fallthrough;
3502 case REQ_IRQ_ERR_MAC:
3503 case REQ_IRQ_ERR_NO:
3504 /* If MAC IRQ request error, no more IRQ to free */
3505 break;
3506 }
3507 }
3508
stmmac_request_irq_multi_msi(struct net_device * dev)3509 static int stmmac_request_irq_multi_msi(struct net_device *dev)
3510 {
3511 struct stmmac_priv *priv = netdev_priv(dev);
3512 enum request_irq_err irq_err;
3513 cpumask_t cpu_mask;
3514 int irq_idx = 0;
3515 char *int_name;
3516 int ret;
3517 int i;
3518
3519 /* For common interrupt */
3520 int_name = priv->int_name_mac;
3521 sprintf(int_name, "%s:%s", dev->name, "mac");
3522 ret = request_irq(dev->irq, stmmac_mac_interrupt,
3523 0, int_name, dev);
3524 if (unlikely(ret < 0)) {
3525 netdev_err(priv->dev,
3526 "%s: alloc mac MSI %d (error: %d)\n",
3527 __func__, dev->irq, ret);
3528 irq_err = REQ_IRQ_ERR_MAC;
3529 goto irq_error;
3530 }
3531
3532 /* Request the Wake IRQ in case of another line
3533 * is used for WoL
3534 */
3535 priv->wol_irq_disabled = true;
3536 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3537 int_name = priv->int_name_wol;
3538 sprintf(int_name, "%s:%s", dev->name, "wol");
3539 ret = request_irq(priv->wol_irq,
3540 stmmac_mac_interrupt,
3541 0, int_name, dev);
3542 if (unlikely(ret < 0)) {
3543 netdev_err(priv->dev,
3544 "%s: alloc wol MSI %d (error: %d)\n",
3545 __func__, priv->wol_irq, ret);
3546 irq_err = REQ_IRQ_ERR_WOL;
3547 goto irq_error;
3548 }
3549 }
3550
3551 /* Request the LPI IRQ in case of another line
3552 * is used for LPI
3553 */
3554 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3555 int_name = priv->int_name_lpi;
3556 sprintf(int_name, "%s:%s", dev->name, "lpi");
3557 ret = request_irq(priv->lpi_irq,
3558 stmmac_mac_interrupt,
3559 0, int_name, dev);
3560 if (unlikely(ret < 0)) {
3561 netdev_err(priv->dev,
3562 "%s: alloc lpi MSI %d (error: %d)\n",
3563 __func__, priv->lpi_irq, ret);
3564 irq_err = REQ_IRQ_ERR_LPI;
3565 goto irq_error;
3566 }
3567 }
3568
3569 /* Request the Safety Feature Correctible Error line in
3570 * case of another line is used
3571 */
3572 if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
3573 int_name = priv->int_name_sfty_ce;
3574 sprintf(int_name, "%s:%s", dev->name, "safety-ce");
3575 ret = request_irq(priv->sfty_ce_irq,
3576 stmmac_safety_interrupt,
3577 0, int_name, dev);
3578 if (unlikely(ret < 0)) {
3579 netdev_err(priv->dev,
3580 "%s: alloc sfty ce MSI %d (error: %d)\n",
3581 __func__, priv->sfty_ce_irq, ret);
3582 irq_err = REQ_IRQ_ERR_SFTY_CE;
3583 goto irq_error;
3584 }
3585 }
3586
3587 /* Request the Safety Feature Uncorrectible Error line in
3588 * case of another line is used
3589 */
3590 if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
3591 int_name = priv->int_name_sfty_ue;
3592 sprintf(int_name, "%s:%s", dev->name, "safety-ue");
3593 ret = request_irq(priv->sfty_ue_irq,
3594 stmmac_safety_interrupt,
3595 0, int_name, dev);
3596 if (unlikely(ret < 0)) {
3597 netdev_err(priv->dev,
3598 "%s: alloc sfty ue MSI %d (error: %d)\n",
3599 __func__, priv->sfty_ue_irq, ret);
3600 irq_err = REQ_IRQ_ERR_SFTY_UE;
3601 goto irq_error;
3602 }
3603 }
3604
3605 /* Request Rx MSI irq */
3606 for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
3607 if (i >= MTL_MAX_RX_QUEUES)
3608 break;
3609 if (priv->rx_irq[i] == 0)
3610 continue;
3611
3612 int_name = priv->int_name_rx_irq[i];
3613 sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
3614 ret = request_irq(priv->rx_irq[i],
3615 stmmac_msi_intr_rx,
3616 0, int_name, &priv->dma_conf.rx_queue[i]);
3617 if (unlikely(ret < 0)) {
3618 netdev_err(priv->dev,
3619 "%s: alloc rx-%d MSI %d (error: %d)\n",
3620 __func__, i, priv->rx_irq[i], ret);
3621 irq_err = REQ_IRQ_ERR_RX;
3622 irq_idx = i;
3623 goto irq_error;
3624 }
3625 cpumask_clear(&cpu_mask);
3626 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3627 irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
3628 }
3629
3630 /* Request Tx MSI irq */
3631 for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
3632 if (i >= MTL_MAX_TX_QUEUES)
3633 break;
3634 if (priv->tx_irq[i] == 0)
3635 continue;
3636
3637 int_name = priv->int_name_tx_irq[i];
3638 sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
3639 ret = request_irq(priv->tx_irq[i],
3640 stmmac_msi_intr_tx,
3641 0, int_name, &priv->dma_conf.tx_queue[i]);
3642 if (unlikely(ret < 0)) {
3643 netdev_err(priv->dev,
3644 "%s: alloc tx-%d MSI %d (error: %d)\n",
3645 __func__, i, priv->tx_irq[i], ret);
3646 irq_err = REQ_IRQ_ERR_TX;
3647 irq_idx = i;
3648 goto irq_error;
3649 }
3650 cpumask_clear(&cpu_mask);
3651 cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
3652 irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
3653 }
3654
3655 return 0;
3656
3657 irq_error:
3658 stmmac_free_irq(dev, irq_err, irq_idx);
3659 return ret;
3660 }
3661
stmmac_request_irq_single(struct net_device * dev)3662 static int stmmac_request_irq_single(struct net_device *dev)
3663 {
3664 struct stmmac_priv *priv = netdev_priv(dev);
3665 enum request_irq_err irq_err;
3666 int ret;
3667
3668 ret = request_irq(dev->irq, stmmac_interrupt,
3669 IRQF_SHARED, dev->name, dev);
3670 if (unlikely(ret < 0)) {
3671 netdev_err(priv->dev,
3672 "%s: ERROR: allocating the IRQ %d (error: %d)\n",
3673 __func__, dev->irq, ret);
3674 irq_err = REQ_IRQ_ERR_MAC;
3675 goto irq_error;
3676 }
3677
3678 /* Request the Wake IRQ in case of another line
3679 * is used for WoL
3680 */
3681 priv->wol_irq_disabled = true;
3682 if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
3683 ret = request_irq(priv->wol_irq, stmmac_interrupt,
3684 IRQF_SHARED, dev->name, dev);
3685 if (unlikely(ret < 0)) {
3686 netdev_err(priv->dev,
3687 "%s: ERROR: allocating the WoL IRQ %d (%d)\n",
3688 __func__, priv->wol_irq, ret);
3689 irq_err = REQ_IRQ_ERR_WOL;
3690 goto irq_error;
3691 }
3692 }
3693
3694 /* Request the IRQ lines */
3695 if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
3696 ret = request_irq(priv->lpi_irq, stmmac_interrupt,
3697 IRQF_SHARED, dev->name, dev);
3698 if (unlikely(ret < 0)) {
3699 netdev_err(priv->dev,
3700 "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
3701 __func__, priv->lpi_irq, ret);
3702 irq_err = REQ_IRQ_ERR_LPI;
3703 goto irq_error;
3704 }
3705 }
3706
3707 return 0;
3708
3709 irq_error:
3710 stmmac_free_irq(dev, irq_err, 0);
3711 return ret;
3712 }
3713
stmmac_request_irq(struct net_device * dev)3714 static int stmmac_request_irq(struct net_device *dev)
3715 {
3716 struct stmmac_priv *priv = netdev_priv(dev);
3717 int ret;
3718
3719 /* Request the IRQ lines */
3720 if (priv->plat->flags & STMMAC_FLAG_MULTI_MSI_EN)
3721 ret = stmmac_request_irq_multi_msi(dev);
3722 else
3723 ret = stmmac_request_irq_single(dev);
3724
3725 return ret;
3726 }
3727
3728 /**
3729 * stmmac_setup_dma_desc - Generate a dma_conf and allocate DMA queue
3730 * @priv: driver private structure
3731 * @mtu: MTU to setup the dma queue and buf with
3732 * Description: Allocate and generate a dma_conf based on the provided MTU.
3733 * Allocate the Tx/Rx DMA queue and init them.
3734 * Return value:
3735 * the dma_conf allocated struct on success and an appropriate ERR_PTR on failure.
3736 */
3737 static struct stmmac_dma_conf *
stmmac_setup_dma_desc(struct stmmac_priv * priv,unsigned int mtu)3738 stmmac_setup_dma_desc(struct stmmac_priv *priv, unsigned int mtu)
3739 {
3740 struct stmmac_dma_conf *dma_conf;
3741 int chan, bfsize, ret;
3742
3743 dma_conf = kzalloc(sizeof(*dma_conf), GFP_KERNEL);
3744 if (!dma_conf) {
3745 netdev_err(priv->dev, "%s: DMA conf allocation failed\n",
3746 __func__);
3747 return ERR_PTR(-ENOMEM);
3748 }
3749
3750 bfsize = stmmac_set_16kib_bfsize(priv, mtu);
3751 if (bfsize < 0)
3752 bfsize = 0;
3753
3754 if (bfsize < BUF_SIZE_16KiB)
3755 bfsize = stmmac_set_bfsize(mtu, 0);
3756
3757 dma_conf->dma_buf_sz = bfsize;
3758 /* Chose the tx/rx size from the already defined one in the
3759 * priv struct. (if defined)
3760 */
3761 dma_conf->dma_tx_size = priv->dma_conf.dma_tx_size;
3762 dma_conf->dma_rx_size = priv->dma_conf.dma_rx_size;
3763
3764 if (!dma_conf->dma_tx_size)
3765 dma_conf->dma_tx_size = DMA_DEFAULT_TX_SIZE;
3766 if (!dma_conf->dma_rx_size)
3767 dma_conf->dma_rx_size = DMA_DEFAULT_RX_SIZE;
3768
3769 /* Earlier check for TBS */
3770 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
3771 struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[chan];
3772 int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
3773
3774 /* Setup per-TXQ tbs flag before TX descriptor alloc */
3775 tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
3776 }
3777
3778 ret = alloc_dma_desc_resources(priv, dma_conf);
3779 if (ret < 0) {
3780 netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
3781 __func__);
3782 goto alloc_error;
3783 }
3784
3785 ret = init_dma_desc_rings(priv->dev, dma_conf, GFP_KERNEL);
3786 if (ret < 0) {
3787 netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
3788 __func__);
3789 goto init_error;
3790 }
3791
3792 return dma_conf;
3793
3794 init_error:
3795 free_dma_desc_resources(priv, dma_conf);
3796 alloc_error:
3797 kfree(dma_conf);
3798 return ERR_PTR(ret);
3799 }
3800
3801 /**
3802 * __stmmac_open - open entry point of the driver
3803 * @dev : pointer to the device structure.
3804 * @dma_conf : structure to take the dma data
3805 * Description:
3806 * This function is the open entry point of the driver.
3807 * Return value:
3808 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3809 * file on failure.
3810 */
__stmmac_open(struct net_device * dev,struct stmmac_dma_conf * dma_conf)3811 static int __stmmac_open(struct net_device *dev,
3812 struct stmmac_dma_conf *dma_conf)
3813 {
3814 struct stmmac_priv *priv = netdev_priv(dev);
3815 int mode = priv->plat->phy_interface;
3816 u32 chan;
3817 int ret;
3818
3819 ret = pm_runtime_resume_and_get(priv->device);
3820 if (ret < 0)
3821 return ret;
3822
3823 if (priv->hw->pcs != STMMAC_PCS_TBI &&
3824 priv->hw->pcs != STMMAC_PCS_RTBI &&
3825 (!priv->hw->xpcs ||
3826 xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73) &&
3827 !priv->hw->lynx_pcs) {
3828 ret = stmmac_init_phy(dev);
3829 if (ret) {
3830 netdev_err(priv->dev,
3831 "%s: Cannot attach to PHY (error: %d)\n",
3832 __func__, ret);
3833 goto init_phy_error;
3834 }
3835 }
3836
3837 priv->rx_copybreak = STMMAC_RX_COPYBREAK;
3838
3839 buf_sz = dma_conf->dma_buf_sz;
3840 for (int i = 0; i < MTL_MAX_TX_QUEUES; i++)
3841 if (priv->dma_conf.tx_queue[i].tbs & STMMAC_TBS_EN)
3842 dma_conf->tx_queue[i].tbs = priv->dma_conf.tx_queue[i].tbs;
3843 memcpy(&priv->dma_conf, dma_conf, sizeof(*dma_conf));
3844
3845 stmmac_reset_queues_param(priv);
3846
3847 if (!(priv->plat->flags & STMMAC_FLAG_SERDES_UP_AFTER_PHY_LINKUP) &&
3848 priv->plat->serdes_powerup) {
3849 ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv);
3850 if (ret < 0) {
3851 netdev_err(priv->dev, "%s: Serdes powerup failed\n",
3852 __func__);
3853 goto init_error;
3854 }
3855 }
3856
3857 ret = stmmac_hw_setup(dev, true);
3858 if (ret < 0) {
3859 netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
3860 goto init_error;
3861 }
3862
3863 stmmac_init_coalesce(priv);
3864
3865 phylink_start(priv->phylink);
3866 /* We may have called phylink_speed_down before */
3867 phylink_speed_up(priv->phylink);
3868
3869 ret = stmmac_request_irq(dev);
3870 if (ret)
3871 goto irq_error;
3872
3873 stmmac_enable_all_queues(priv);
3874 netif_tx_start_all_queues(priv->dev);
3875 stmmac_enable_all_dma_irq(priv);
3876
3877 return 0;
3878
3879 irq_error:
3880 phylink_stop(priv->phylink);
3881
3882 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3883 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3884
3885 stmmac_hw_teardown(dev);
3886 init_error:
3887 phylink_disconnect_phy(priv->phylink);
3888 init_phy_error:
3889 pm_runtime_put(priv->device);
3890 return ret;
3891 }
3892
stmmac_open(struct net_device * dev)3893 static int stmmac_open(struct net_device *dev)
3894 {
3895 struct stmmac_priv *priv = netdev_priv(dev);
3896 struct stmmac_dma_conf *dma_conf;
3897 int ret;
3898
3899 dma_conf = stmmac_setup_dma_desc(priv, dev->mtu);
3900 if (IS_ERR(dma_conf))
3901 return PTR_ERR(dma_conf);
3902
3903 ret = __stmmac_open(dev, dma_conf);
3904 if (ret)
3905 free_dma_desc_resources(priv, dma_conf);
3906
3907 kfree(dma_conf);
3908 return ret;
3909 }
3910
stmmac_fpe_stop_wq(struct stmmac_priv * priv)3911 static void stmmac_fpe_stop_wq(struct stmmac_priv *priv)
3912 {
3913 set_bit(__FPE_REMOVING, &priv->fpe_task_state);
3914
3915 if (priv->fpe_wq) {
3916 destroy_workqueue(priv->fpe_wq);
3917 priv->fpe_wq = NULL;
3918 }
3919
3920 netdev_info(priv->dev, "FPE workqueue stop");
3921 }
3922
3923 /**
3924 * stmmac_release - close entry point of the driver
3925 * @dev : device pointer.
3926 * Description:
3927 * This is the stop entry point of the driver.
3928 */
stmmac_release(struct net_device * dev)3929 static int stmmac_release(struct net_device *dev)
3930 {
3931 struct stmmac_priv *priv = netdev_priv(dev);
3932 u32 chan;
3933
3934 if (device_may_wakeup(priv->device))
3935 phylink_speed_down(priv->phylink, false);
3936 /* Stop and disconnect the PHY */
3937 phylink_stop(priv->phylink);
3938 phylink_disconnect_phy(priv->phylink);
3939
3940 stmmac_disable_all_queues(priv);
3941
3942 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
3943 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
3944
3945 netif_tx_disable(dev);
3946
3947 /* Free the IRQ lines */
3948 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
3949
3950 if (priv->eee_enabled) {
3951 priv->tx_path_in_lpi_mode = false;
3952 del_timer_sync(&priv->eee_ctrl_timer);
3953 }
3954
3955 /* Stop TX/RX DMA and clear the descriptors */
3956 stmmac_stop_all_dma(priv);
3957
3958 /* Release and free the Rx/Tx resources */
3959 free_dma_desc_resources(priv, &priv->dma_conf);
3960
3961 /* Disable the MAC Rx/Tx */
3962 stmmac_mac_set(priv, priv->ioaddr, false);
3963
3964 /* Powerdown Serdes if there is */
3965 if (priv->plat->serdes_powerdown)
3966 priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv);
3967
3968 netif_carrier_off(dev);
3969
3970 stmmac_release_ptp(priv);
3971
3972 pm_runtime_put(priv->device);
3973
3974 if (priv->dma_cap.fpesel)
3975 stmmac_fpe_stop_wq(priv);
3976
3977 return 0;
3978 }
3979
stmmac_vlan_insert(struct stmmac_priv * priv,struct sk_buff * skb,struct stmmac_tx_queue * tx_q)3980 static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
3981 struct stmmac_tx_queue *tx_q)
3982 {
3983 u16 tag = 0x0, inner_tag = 0x0;
3984 u32 inner_type = 0x0;
3985 struct dma_desc *p;
3986
3987 if (!priv->dma_cap.vlins)
3988 return false;
3989 if (!skb_vlan_tag_present(skb))
3990 return false;
3991 if (skb->vlan_proto == htons(ETH_P_8021AD)) {
3992 inner_tag = skb_vlan_tag_get(skb);
3993 inner_type = STMMAC_VLAN_INSERT;
3994 }
3995
3996 tag = skb_vlan_tag_get(skb);
3997
3998 if (tx_q->tbs & STMMAC_TBS_AVAIL)
3999 p = &tx_q->dma_entx[tx_q->cur_tx].basic;
4000 else
4001 p = &tx_q->dma_tx[tx_q->cur_tx];
4002
4003 if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
4004 return false;
4005
4006 stmmac_set_tx_owner(priv, p);
4007 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
4008 return true;
4009 }
4010
4011 /**
4012 * stmmac_tso_allocator - close entry point of the driver
4013 * @priv: driver private structure
4014 * @des: buffer start address
4015 * @total_len: total length to fill in descriptors
4016 * @last_segment: condition for the last descriptor
4017 * @queue: TX queue index
4018 * Description:
4019 * This function fills descriptor and request new descriptors according to
4020 * buffer length to fill
4021 */
stmmac_tso_allocator(struct stmmac_priv * priv,dma_addr_t des,int total_len,bool last_segment,u32 queue)4022 static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
4023 int total_len, bool last_segment, u32 queue)
4024 {
4025 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4026 struct dma_desc *desc;
4027 u32 buff_size;
4028 int tmp_len;
4029
4030 tmp_len = total_len;
4031
4032 while (tmp_len > 0) {
4033 dma_addr_t curr_addr;
4034
4035 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4036 priv->dma_conf.dma_tx_size);
4037 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4038
4039 if (tx_q->tbs & STMMAC_TBS_AVAIL)
4040 desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4041 else
4042 desc = &tx_q->dma_tx[tx_q->cur_tx];
4043
4044 curr_addr = des + (total_len - tmp_len);
4045 if (priv->dma_cap.addr64 <= 32)
4046 desc->des0 = cpu_to_le32(curr_addr);
4047 else
4048 stmmac_set_desc_addr(priv, desc, curr_addr);
4049
4050 buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
4051 TSO_MAX_BUFF_SIZE : tmp_len;
4052
4053 stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
4054 0, 1,
4055 (last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
4056 0, 0);
4057
4058 tmp_len -= TSO_MAX_BUFF_SIZE;
4059 }
4060 }
4061
stmmac_flush_tx_descriptors(struct stmmac_priv * priv,int queue)4062 static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
4063 {
4064 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4065 int desc_size;
4066
4067 if (likely(priv->extend_desc))
4068 desc_size = sizeof(struct dma_extended_desc);
4069 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4070 desc_size = sizeof(struct dma_edesc);
4071 else
4072 desc_size = sizeof(struct dma_desc);
4073
4074 /* The own bit must be the latest setting done when prepare the
4075 * descriptor and then barrier is needed to make sure that
4076 * all is coherent before granting the DMA engine.
4077 */
4078 wmb();
4079
4080 tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
4081 stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
4082 }
4083
4084 /**
4085 * stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
4086 * @skb : the socket buffer
4087 * @dev : device pointer
4088 * Description: this is the transmit function that is called on TSO frames
4089 * (support available on GMAC4 and newer chips).
4090 * Diagram below show the ring programming in case of TSO frames:
4091 *
4092 * First Descriptor
4093 * --------
4094 * | DES0 |---> buffer1 = L2/L3/L4 header
4095 * | DES1 |---> TCP Payload (can continue on next descr...)
4096 * | DES2 |---> buffer 1 and 2 len
4097 * | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
4098 * --------
4099 * |
4100 * ...
4101 * |
4102 * --------
4103 * | DES0 | --| Split TCP Payload on Buffers 1 and 2
4104 * | DES1 | --|
4105 * | DES2 | --> buffer 1 and 2 len
4106 * | DES3 |
4107 * --------
4108 *
4109 * mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
4110 */
stmmac_tso_xmit(struct sk_buff * skb,struct net_device * dev)4111 static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
4112 {
4113 struct dma_desc *desc, *first, *mss_desc = NULL;
4114 struct stmmac_priv *priv = netdev_priv(dev);
4115 int nfrags = skb_shinfo(skb)->nr_frags;
4116 u32 queue = skb_get_queue_mapping(skb);
4117 unsigned int first_entry, tx_packets;
4118 struct stmmac_txq_stats *txq_stats;
4119 int tmp_pay_len = 0, first_tx;
4120 struct stmmac_tx_queue *tx_q;
4121 bool has_vlan, set_ic;
4122 u8 proto_hdr_len, hdr;
4123 u32 pay_len, mss;
4124 dma_addr_t des;
4125 int i;
4126
4127 tx_q = &priv->dma_conf.tx_queue[queue];
4128 txq_stats = &priv->xstats.txq_stats[queue];
4129 first_tx = tx_q->cur_tx;
4130
4131 /* Compute header lengths */
4132 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
4133 proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
4134 hdr = sizeof(struct udphdr);
4135 } else {
4136 proto_hdr_len = skb_tcp_all_headers(skb);
4137 hdr = tcp_hdrlen(skb);
4138 }
4139
4140 /* Desc availability based on threshold should be enough safe */
4141 if (unlikely(stmmac_tx_avail(priv, queue) <
4142 (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
4143 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4144 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4145 queue));
4146 /* This is a hard error, log it. */
4147 netdev_err(priv->dev,
4148 "%s: Tx Ring full when queue awake\n",
4149 __func__);
4150 }
4151 return NETDEV_TX_BUSY;
4152 }
4153
4154 pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
4155
4156 mss = skb_shinfo(skb)->gso_size;
4157
4158 /* set new MSS value if needed */
4159 if (mss != tx_q->mss) {
4160 if (tx_q->tbs & STMMAC_TBS_AVAIL)
4161 mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4162 else
4163 mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
4164
4165 stmmac_set_mss(priv, mss_desc, mss);
4166 tx_q->mss = mss;
4167 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
4168 priv->dma_conf.dma_tx_size);
4169 WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
4170 }
4171
4172 if (netif_msg_tx_queued(priv)) {
4173 pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
4174 __func__, hdr, proto_hdr_len, pay_len, mss);
4175 pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
4176 skb->data_len);
4177 }
4178
4179 /* Check if VLAN can be inserted by HW */
4180 has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4181
4182 first_entry = tx_q->cur_tx;
4183 WARN_ON(tx_q->tx_skbuff[first_entry]);
4184
4185 if (tx_q->tbs & STMMAC_TBS_AVAIL)
4186 desc = &tx_q->dma_entx[first_entry].basic;
4187 else
4188 desc = &tx_q->dma_tx[first_entry];
4189 first = desc;
4190
4191 if (has_vlan)
4192 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4193
4194 /* first descriptor: fill Headers on Buf1 */
4195 des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
4196 DMA_TO_DEVICE);
4197 if (dma_mapping_error(priv->device, des))
4198 goto dma_map_err;
4199
4200 if (priv->dma_cap.addr64 <= 32) {
4201 first->des0 = cpu_to_le32(des);
4202
4203 /* Fill start of payload in buff2 of first descriptor */
4204 if (pay_len)
4205 first->des1 = cpu_to_le32(des + proto_hdr_len);
4206
4207 /* If needed take extra descriptors to fill the remaining payload */
4208 tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
4209 } else {
4210 stmmac_set_desc_addr(priv, first, des);
4211 tmp_pay_len = pay_len;
4212 des += proto_hdr_len;
4213 pay_len = 0;
4214 }
4215
4216 stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
4217
4218 /* In case two or more DMA transmit descriptors are allocated for this
4219 * non-paged SKB data, the DMA buffer address should be saved to
4220 * tx_q->tx_skbuff_dma[].buf corresponding to the last descriptor,
4221 * and leave the other tx_q->tx_skbuff_dma[].buf as NULL to guarantee
4222 * that stmmac_tx_clean() does not unmap the entire DMA buffer too early
4223 * since the tail areas of the DMA buffer can be accessed by DMA engine
4224 * sooner or later.
4225 * By saving the DMA buffer address to tx_q->tx_skbuff_dma[].buf
4226 * corresponding to the last descriptor, stmmac_tx_clean() will unmap
4227 * this DMA buffer right after the DMA engine completely finishes the
4228 * full buffer transmission.
4229 */
4230 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4231 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_headlen(skb);
4232 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = false;
4233 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4234
4235 /* Prepare fragments */
4236 for (i = 0; i < nfrags; i++) {
4237 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4238
4239 des = skb_frag_dma_map(priv->device, frag, 0,
4240 skb_frag_size(frag),
4241 DMA_TO_DEVICE);
4242 if (dma_mapping_error(priv->device, des))
4243 goto dma_map_err;
4244
4245 stmmac_tso_allocator(priv, des, skb_frag_size(frag),
4246 (i == nfrags - 1), queue);
4247
4248 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
4249 tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
4250 tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
4251 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4252 }
4253
4254 tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
4255
4256 /* Only the last descriptor gets to point to the skb. */
4257 tx_q->tx_skbuff[tx_q->cur_tx] = skb;
4258 tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
4259
4260 /* Manage tx mitigation */
4261 tx_packets = (tx_q->cur_tx + 1) - first_tx;
4262 tx_q->tx_count_frames += tx_packets;
4263
4264 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4265 set_ic = true;
4266 else if (!priv->tx_coal_frames[queue])
4267 set_ic = false;
4268 else if (tx_packets > priv->tx_coal_frames[queue])
4269 set_ic = true;
4270 else if ((tx_q->tx_count_frames %
4271 priv->tx_coal_frames[queue]) < tx_packets)
4272 set_ic = true;
4273 else
4274 set_ic = false;
4275
4276 if (set_ic) {
4277 if (tx_q->tbs & STMMAC_TBS_AVAIL)
4278 desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
4279 else
4280 desc = &tx_q->dma_tx[tx_q->cur_tx];
4281
4282 tx_q->tx_count_frames = 0;
4283 stmmac_set_tx_ic(priv, desc);
4284 }
4285
4286 /* We've used all descriptors we need for this skb, however,
4287 * advance cur_tx so that it references a fresh descriptor.
4288 * ndo_start_xmit will fill this descriptor the next time it's
4289 * called and stmmac_tx_clean may clean up to this descriptor.
4290 */
4291 tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
4292
4293 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4294 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4295 __func__);
4296 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4297 }
4298
4299 u64_stats_update_begin(&txq_stats->q_syncp);
4300 u64_stats_add(&txq_stats->q.tx_bytes, skb->len);
4301 u64_stats_inc(&txq_stats->q.tx_tso_frames);
4302 u64_stats_add(&txq_stats->q.tx_tso_nfrags, nfrags);
4303 if (set_ic)
4304 u64_stats_inc(&txq_stats->q.tx_set_ic_bit);
4305 u64_stats_update_end(&txq_stats->q_syncp);
4306
4307 if (priv->sarc_type)
4308 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4309
4310 skb_tx_timestamp(skb);
4311
4312 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4313 priv->hwts_tx_en)) {
4314 /* declare that device is doing timestamping */
4315 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4316 stmmac_enable_tx_timestamp(priv, first);
4317 }
4318
4319 /* Complete the first descriptor before granting the DMA */
4320 stmmac_prepare_tso_tx_desc(priv, first, 1,
4321 proto_hdr_len,
4322 pay_len,
4323 1, tx_q->tx_skbuff_dma[first_entry].last_segment,
4324 hdr / 4, (skb->len - proto_hdr_len));
4325
4326 /* If context desc is used to change MSS */
4327 if (mss_desc) {
4328 /* Make sure that first descriptor has been completely
4329 * written, including its own bit. This is because MSS is
4330 * actually before first descriptor, so we need to make
4331 * sure that MSS's own bit is the last thing written.
4332 */
4333 dma_wmb();
4334 stmmac_set_tx_owner(priv, mss_desc);
4335 }
4336
4337 if (netif_msg_pktdata(priv)) {
4338 pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
4339 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4340 tx_q->cur_tx, first, nfrags);
4341 pr_info(">>> frame to be transmitted: ");
4342 print_pkt(skb->data, skb_headlen(skb));
4343 }
4344
4345 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4346
4347 stmmac_flush_tx_descriptors(priv, queue);
4348 stmmac_tx_timer_arm(priv, queue);
4349
4350 return NETDEV_TX_OK;
4351
4352 dma_map_err:
4353 dev_err(priv->device, "Tx dma map failed\n");
4354 dev_kfree_skb(skb);
4355 priv->xstats.tx_dropped++;
4356 return NETDEV_TX_OK;
4357 }
4358
4359 /**
4360 * stmmac_has_ip_ethertype() - Check if packet has IP ethertype
4361 * @skb: socket buffer to check
4362 *
4363 * Check if a packet has an ethertype that will trigger the IP header checks
4364 * and IP/TCP checksum engine of the stmmac core.
4365 *
4366 * Return: true if the ethertype can trigger the checksum engine, false
4367 * otherwise
4368 */
stmmac_has_ip_ethertype(struct sk_buff * skb)4369 static bool stmmac_has_ip_ethertype(struct sk_buff *skb)
4370 {
4371 int depth = 0;
4372 __be16 proto;
4373
4374 proto = __vlan_get_protocol(skb, eth_header_parse_protocol(skb),
4375 &depth);
4376
4377 return (depth <= ETH_HLEN) &&
4378 (proto == htons(ETH_P_IP) || proto == htons(ETH_P_IPV6));
4379 }
4380
4381 /**
4382 * stmmac_xmit - Tx entry point of the driver
4383 * @skb : the socket buffer
4384 * @dev : device pointer
4385 * Description : this is the tx entry point of the driver.
4386 * It programs the chain or the ring and supports oversized frames
4387 * and SG feature.
4388 */
stmmac_xmit(struct sk_buff * skb,struct net_device * dev)4389 static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
4390 {
4391 unsigned int first_entry, tx_packets, enh_desc;
4392 struct stmmac_priv *priv = netdev_priv(dev);
4393 unsigned int nopaged_len = skb_headlen(skb);
4394 int i, csum_insertion = 0, is_jumbo = 0;
4395 u32 queue = skb_get_queue_mapping(skb);
4396 int nfrags = skb_shinfo(skb)->nr_frags;
4397 int gso = skb_shinfo(skb)->gso_type;
4398 struct stmmac_txq_stats *txq_stats;
4399 struct dma_edesc *tbs_desc = NULL;
4400 struct dma_desc *desc, *first;
4401 struct stmmac_tx_queue *tx_q;
4402 bool has_vlan, set_ic;
4403 int entry, first_tx;
4404 dma_addr_t des;
4405
4406 tx_q = &priv->dma_conf.tx_queue[queue];
4407 txq_stats = &priv->xstats.txq_stats[queue];
4408 first_tx = tx_q->cur_tx;
4409
4410 if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
4411 stmmac_disable_eee_mode(priv);
4412
4413 /* Manage oversized TCP frames for GMAC4 device */
4414 if (skb_is_gso(skb) && priv->tso) {
4415 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
4416 return stmmac_tso_xmit(skb, dev);
4417 if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
4418 return stmmac_tso_xmit(skb, dev);
4419 }
4420
4421 if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
4422 if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
4423 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
4424 queue));
4425 /* This is a hard error, log it. */
4426 netdev_err(priv->dev,
4427 "%s: Tx Ring full when queue awake\n",
4428 __func__);
4429 }
4430 return NETDEV_TX_BUSY;
4431 }
4432
4433 /* Check if VLAN can be inserted by HW */
4434 has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
4435
4436 entry = tx_q->cur_tx;
4437 first_entry = entry;
4438 WARN_ON(tx_q->tx_skbuff[first_entry]);
4439
4440 csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
4441 /* DWMAC IPs can be synthesized to support tx coe only for a few tx
4442 * queues. In that case, checksum offloading for those queues that don't
4443 * support tx coe needs to fallback to software checksum calculation.
4444 *
4445 * Packets that won't trigger the COE e.g. most DSA-tagged packets will
4446 * also have to be checksummed in software.
4447 */
4448 if (csum_insertion &&
4449 (priv->plat->tx_queues_cfg[queue].coe_unsupported ||
4450 !stmmac_has_ip_ethertype(skb))) {
4451 if (unlikely(skb_checksum_help(skb)))
4452 goto dma_map_err;
4453 csum_insertion = !csum_insertion;
4454 }
4455
4456 if (likely(priv->extend_desc))
4457 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4458 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4459 desc = &tx_q->dma_entx[entry].basic;
4460 else
4461 desc = tx_q->dma_tx + entry;
4462
4463 first = desc;
4464
4465 if (has_vlan)
4466 stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
4467
4468 enh_desc = priv->plat->enh_desc;
4469 /* To program the descriptors according to the size of the frame */
4470 if (enh_desc)
4471 is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
4472
4473 if (unlikely(is_jumbo)) {
4474 entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
4475 if (unlikely(entry < 0) && (entry != -EINVAL))
4476 goto dma_map_err;
4477 }
4478
4479 for (i = 0; i < nfrags; i++) {
4480 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4481 int len = skb_frag_size(frag);
4482 bool last_segment = (i == (nfrags - 1));
4483
4484 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4485 WARN_ON(tx_q->tx_skbuff[entry]);
4486
4487 if (likely(priv->extend_desc))
4488 desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4489 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4490 desc = &tx_q->dma_entx[entry].basic;
4491 else
4492 desc = tx_q->dma_tx + entry;
4493
4494 des = skb_frag_dma_map(priv->device, frag, 0, len,
4495 DMA_TO_DEVICE);
4496 if (dma_mapping_error(priv->device, des))
4497 goto dma_map_err; /* should reuse desc w/o issues */
4498
4499 tx_q->tx_skbuff_dma[entry].buf = des;
4500
4501 stmmac_set_desc_addr(priv, desc, des);
4502
4503 tx_q->tx_skbuff_dma[entry].map_as_page = true;
4504 tx_q->tx_skbuff_dma[entry].len = len;
4505 tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
4506 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4507
4508 /* Prepare the descriptor and set the own bit too */
4509 stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
4510 priv->mode, 1, last_segment, skb->len);
4511 }
4512
4513 /* Only the last descriptor gets to point to the skb. */
4514 tx_q->tx_skbuff[entry] = skb;
4515 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
4516
4517 /* According to the coalesce parameter the IC bit for the latest
4518 * segment is reset and the timer re-started to clean the tx status.
4519 * This approach takes care about the fragments: desc is the first
4520 * element in case of no SG.
4521 */
4522 tx_packets = (entry + 1) - first_tx;
4523 tx_q->tx_count_frames += tx_packets;
4524
4525 if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
4526 set_ic = true;
4527 else if (!priv->tx_coal_frames[queue])
4528 set_ic = false;
4529 else if (tx_packets > priv->tx_coal_frames[queue])
4530 set_ic = true;
4531 else if ((tx_q->tx_count_frames %
4532 priv->tx_coal_frames[queue]) < tx_packets)
4533 set_ic = true;
4534 else
4535 set_ic = false;
4536
4537 if (set_ic) {
4538 if (likely(priv->extend_desc))
4539 desc = &tx_q->dma_etx[entry].basic;
4540 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4541 desc = &tx_q->dma_entx[entry].basic;
4542 else
4543 desc = &tx_q->dma_tx[entry];
4544
4545 tx_q->tx_count_frames = 0;
4546 stmmac_set_tx_ic(priv, desc);
4547 }
4548
4549 /* We've used all descriptors we need for this skb, however,
4550 * advance cur_tx so that it references a fresh descriptor.
4551 * ndo_start_xmit will fill this descriptor the next time it's
4552 * called and stmmac_tx_clean may clean up to this descriptor.
4553 */
4554 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4555 tx_q->cur_tx = entry;
4556
4557 if (netif_msg_pktdata(priv)) {
4558 netdev_dbg(priv->dev,
4559 "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
4560 __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
4561 entry, first, nfrags);
4562
4563 netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
4564 print_pkt(skb->data, skb->len);
4565 }
4566
4567 if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
4568 netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
4569 __func__);
4570 netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
4571 }
4572
4573 u64_stats_update_begin(&txq_stats->q_syncp);
4574 u64_stats_add(&txq_stats->q.tx_bytes, skb->len);
4575 if (set_ic)
4576 u64_stats_inc(&txq_stats->q.tx_set_ic_bit);
4577 u64_stats_update_end(&txq_stats->q_syncp);
4578
4579 if (priv->sarc_type)
4580 stmmac_set_desc_sarc(priv, first, priv->sarc_type);
4581
4582 skb_tx_timestamp(skb);
4583
4584 /* Ready to fill the first descriptor and set the OWN bit w/o any
4585 * problems because all the descriptors are actually ready to be
4586 * passed to the DMA engine.
4587 */
4588 if (likely(!is_jumbo)) {
4589 bool last_segment = (nfrags == 0);
4590
4591 des = dma_map_single(priv->device, skb->data,
4592 nopaged_len, DMA_TO_DEVICE);
4593 if (dma_mapping_error(priv->device, des))
4594 goto dma_map_err;
4595
4596 tx_q->tx_skbuff_dma[first_entry].buf = des;
4597 tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
4598 tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
4599
4600 stmmac_set_desc_addr(priv, first, des);
4601
4602 tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
4603 tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
4604
4605 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
4606 priv->hwts_tx_en)) {
4607 /* declare that device is doing timestamping */
4608 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4609 stmmac_enable_tx_timestamp(priv, first);
4610 }
4611
4612 /* Prepare the first descriptor setting the OWN bit too */
4613 stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
4614 csum_insertion, priv->mode, 0, last_segment,
4615 skb->len);
4616 }
4617
4618 if (tx_q->tbs & STMMAC_TBS_EN) {
4619 struct timespec64 ts = ns_to_timespec64(skb->tstamp);
4620
4621 tbs_desc = &tx_q->dma_entx[first_entry];
4622 stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
4623 }
4624
4625 stmmac_set_tx_owner(priv, first);
4626
4627 netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
4628
4629 stmmac_enable_dma_transmission(priv, priv->ioaddr);
4630
4631 stmmac_flush_tx_descriptors(priv, queue);
4632 stmmac_tx_timer_arm(priv, queue);
4633
4634 return NETDEV_TX_OK;
4635
4636 dma_map_err:
4637 netdev_err(priv->dev, "Tx DMA map failed\n");
4638 dev_kfree_skb(skb);
4639 priv->xstats.tx_dropped++;
4640 return NETDEV_TX_OK;
4641 }
4642
stmmac_rx_vlan(struct net_device * dev,struct sk_buff * skb)4643 static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
4644 {
4645 struct vlan_ethhdr *veth = skb_vlan_eth_hdr(skb);
4646 __be16 vlan_proto = veth->h_vlan_proto;
4647 u16 vlanid;
4648
4649 if ((vlan_proto == htons(ETH_P_8021Q) &&
4650 dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
4651 (vlan_proto == htons(ETH_P_8021AD) &&
4652 dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
4653 /* pop the vlan tag */
4654 vlanid = ntohs(veth->h_vlan_TCI);
4655 memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
4656 skb_pull(skb, VLAN_HLEN);
4657 __vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
4658 }
4659 }
4660
4661 /**
4662 * stmmac_rx_refill - refill used skb preallocated buffers
4663 * @priv: driver private structure
4664 * @queue: RX queue index
4665 * Description : this is to reallocate the skb for the reception process
4666 * that is based on zero-copy.
4667 */
stmmac_rx_refill(struct stmmac_priv * priv,u32 queue)4668 static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
4669 {
4670 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
4671 int dirty = stmmac_rx_dirty(priv, queue);
4672 unsigned int entry = rx_q->dirty_rx;
4673 gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
4674
4675 if (priv->dma_cap.host_dma_width <= 32)
4676 gfp |= GFP_DMA32;
4677
4678 while (dirty-- > 0) {
4679 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
4680 struct dma_desc *p;
4681 bool use_rx_wd;
4682
4683 if (priv->extend_desc)
4684 p = (struct dma_desc *)(rx_q->dma_erx + entry);
4685 else
4686 p = rx_q->dma_rx + entry;
4687
4688 if (!buf->page) {
4689 buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4690 if (!buf->page)
4691 break;
4692 }
4693
4694 if (priv->sph && !buf->sec_page) {
4695 buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
4696 if (!buf->sec_page)
4697 break;
4698
4699 buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
4700 }
4701
4702 buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
4703
4704 stmmac_set_desc_addr(priv, p, buf->addr);
4705 if (priv->sph)
4706 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
4707 else
4708 stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
4709 stmmac_refill_desc3(priv, rx_q, p);
4710
4711 rx_q->rx_count_frames++;
4712 rx_q->rx_count_frames += priv->rx_coal_frames[queue];
4713 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
4714 rx_q->rx_count_frames = 0;
4715
4716 use_rx_wd = !priv->rx_coal_frames[queue];
4717 use_rx_wd |= rx_q->rx_count_frames > 0;
4718 if (!priv->use_riwt)
4719 use_rx_wd = false;
4720
4721 dma_wmb();
4722 stmmac_set_rx_owner(priv, p, use_rx_wd);
4723
4724 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
4725 }
4726 rx_q->dirty_rx = entry;
4727 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
4728 (rx_q->dirty_rx * sizeof(struct dma_desc));
4729 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
4730 }
4731
stmmac_rx_buf1_len(struct stmmac_priv * priv,struct dma_desc * p,int status,unsigned int len)4732 static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
4733 struct dma_desc *p,
4734 int status, unsigned int len)
4735 {
4736 unsigned int plen = 0, hlen = 0;
4737 int coe = priv->hw->rx_csum;
4738
4739 /* Not first descriptor, buffer is always zero */
4740 if (priv->sph && len)
4741 return 0;
4742
4743 /* First descriptor, get split header length */
4744 stmmac_get_rx_header_len(priv, p, &hlen);
4745 if (priv->sph && hlen) {
4746 priv->xstats.rx_split_hdr_pkt_n++;
4747 return hlen;
4748 }
4749
4750 /* First descriptor, not last descriptor and not split header */
4751 if (status & rx_not_ls)
4752 return priv->dma_conf.dma_buf_sz;
4753
4754 plen = stmmac_get_rx_frame_len(priv, p, coe);
4755
4756 /* First descriptor and last descriptor and not split header */
4757 return min_t(unsigned int, priv->dma_conf.dma_buf_sz, plen);
4758 }
4759
stmmac_rx_buf2_len(struct stmmac_priv * priv,struct dma_desc * p,int status,unsigned int len)4760 static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
4761 struct dma_desc *p,
4762 int status, unsigned int len)
4763 {
4764 int coe = priv->hw->rx_csum;
4765 unsigned int plen = 0;
4766
4767 /* Not split header, buffer is not available */
4768 if (!priv->sph)
4769 return 0;
4770
4771 /* Not last descriptor */
4772 if (status & rx_not_ls)
4773 return priv->dma_conf.dma_buf_sz;
4774
4775 plen = stmmac_get_rx_frame_len(priv, p, coe);
4776
4777 /* Last descriptor */
4778 return plen - len;
4779 }
4780
stmmac_xdp_xmit_xdpf(struct stmmac_priv * priv,int queue,struct xdp_frame * xdpf,bool dma_map)4781 static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
4782 struct xdp_frame *xdpf, bool dma_map)
4783 {
4784 struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[queue];
4785 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
4786 unsigned int entry = tx_q->cur_tx;
4787 struct dma_desc *tx_desc;
4788 dma_addr_t dma_addr;
4789 bool set_ic;
4790
4791 if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
4792 return STMMAC_XDP_CONSUMED;
4793
4794 if (likely(priv->extend_desc))
4795 tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
4796 else if (tx_q->tbs & STMMAC_TBS_AVAIL)
4797 tx_desc = &tx_q->dma_entx[entry].basic;
4798 else
4799 tx_desc = tx_q->dma_tx + entry;
4800
4801 if (dma_map) {
4802 dma_addr = dma_map_single(priv->device, xdpf->data,
4803 xdpf->len, DMA_TO_DEVICE);
4804 if (dma_mapping_error(priv->device, dma_addr))
4805 return STMMAC_XDP_CONSUMED;
4806
4807 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
4808 } else {
4809 struct page *page = virt_to_page(xdpf->data);
4810
4811 dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
4812 xdpf->headroom;
4813 dma_sync_single_for_device(priv->device, dma_addr,
4814 xdpf->len, DMA_BIDIRECTIONAL);
4815
4816 tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
4817 }
4818
4819 tx_q->tx_skbuff_dma[entry].buf = dma_addr;
4820 tx_q->tx_skbuff_dma[entry].map_as_page = false;
4821 tx_q->tx_skbuff_dma[entry].len = xdpf->len;
4822 tx_q->tx_skbuff_dma[entry].last_segment = true;
4823 tx_q->tx_skbuff_dma[entry].is_jumbo = false;
4824
4825 tx_q->xdpf[entry] = xdpf;
4826
4827 stmmac_set_desc_addr(priv, tx_desc, dma_addr);
4828
4829 stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
4830 true, priv->mode, true, true,
4831 xdpf->len);
4832
4833 tx_q->tx_count_frames++;
4834
4835 if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
4836 set_ic = true;
4837 else
4838 set_ic = false;
4839
4840 if (set_ic) {
4841 tx_q->tx_count_frames = 0;
4842 stmmac_set_tx_ic(priv, tx_desc);
4843 u64_stats_update_begin(&txq_stats->q_syncp);
4844 u64_stats_inc(&txq_stats->q.tx_set_ic_bit);
4845 u64_stats_update_end(&txq_stats->q_syncp);
4846 }
4847
4848 stmmac_enable_dma_transmission(priv, priv->ioaddr);
4849
4850 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
4851 tx_q->cur_tx = entry;
4852
4853 return STMMAC_XDP_TX;
4854 }
4855
stmmac_xdp_get_tx_queue(struct stmmac_priv * priv,int cpu)4856 static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
4857 int cpu)
4858 {
4859 int index = cpu;
4860
4861 if (unlikely(index < 0))
4862 index = 0;
4863
4864 while (index >= priv->plat->tx_queues_to_use)
4865 index -= priv->plat->tx_queues_to_use;
4866
4867 return index;
4868 }
4869
stmmac_xdp_xmit_back(struct stmmac_priv * priv,struct xdp_buff * xdp)4870 static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
4871 struct xdp_buff *xdp)
4872 {
4873 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
4874 int cpu = smp_processor_id();
4875 struct netdev_queue *nq;
4876 int queue;
4877 int res;
4878
4879 if (unlikely(!xdpf))
4880 return STMMAC_XDP_CONSUMED;
4881
4882 queue = stmmac_xdp_get_tx_queue(priv, cpu);
4883 nq = netdev_get_tx_queue(priv->dev, queue);
4884
4885 __netif_tx_lock(nq, cpu);
4886 /* Avoids TX time-out as we are sharing with slow path */
4887 txq_trans_cond_update(nq);
4888
4889 res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
4890 if (res == STMMAC_XDP_TX)
4891 stmmac_flush_tx_descriptors(priv, queue);
4892
4893 __netif_tx_unlock(nq);
4894
4895 return res;
4896 }
4897
__stmmac_xdp_run_prog(struct stmmac_priv * priv,struct bpf_prog * prog,struct xdp_buff * xdp)4898 static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
4899 struct bpf_prog *prog,
4900 struct xdp_buff *xdp)
4901 {
4902 u32 act;
4903 int res;
4904
4905 act = bpf_prog_run_xdp(prog, xdp);
4906 switch (act) {
4907 case XDP_PASS:
4908 res = STMMAC_XDP_PASS;
4909 break;
4910 case XDP_TX:
4911 res = stmmac_xdp_xmit_back(priv, xdp);
4912 break;
4913 case XDP_REDIRECT:
4914 if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
4915 res = STMMAC_XDP_CONSUMED;
4916 else
4917 res = STMMAC_XDP_REDIRECT;
4918 break;
4919 default:
4920 bpf_warn_invalid_xdp_action(priv->dev, prog, act);
4921 fallthrough;
4922 case XDP_ABORTED:
4923 trace_xdp_exception(priv->dev, prog, act);
4924 fallthrough;
4925 case XDP_DROP:
4926 res = STMMAC_XDP_CONSUMED;
4927 break;
4928 }
4929
4930 return res;
4931 }
4932
stmmac_xdp_run_prog(struct stmmac_priv * priv,struct xdp_buff * xdp)4933 static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
4934 struct xdp_buff *xdp)
4935 {
4936 struct bpf_prog *prog;
4937 int res;
4938
4939 prog = READ_ONCE(priv->xdp_prog);
4940 if (!prog) {
4941 res = STMMAC_XDP_PASS;
4942 goto out;
4943 }
4944
4945 res = __stmmac_xdp_run_prog(priv, prog, xdp);
4946 out:
4947 return ERR_PTR(-res);
4948 }
4949
stmmac_finalize_xdp_rx(struct stmmac_priv * priv,int xdp_status)4950 static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
4951 int xdp_status)
4952 {
4953 int cpu = smp_processor_id();
4954 int queue;
4955
4956 queue = stmmac_xdp_get_tx_queue(priv, cpu);
4957
4958 if (xdp_status & STMMAC_XDP_TX)
4959 stmmac_tx_timer_arm(priv, queue);
4960
4961 if (xdp_status & STMMAC_XDP_REDIRECT)
4962 xdp_do_flush();
4963 }
4964
stmmac_construct_skb_zc(struct stmmac_channel * ch,struct xdp_buff * xdp)4965 static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
4966 struct xdp_buff *xdp)
4967 {
4968 unsigned int metasize = xdp->data - xdp->data_meta;
4969 unsigned int datasize = xdp->data_end - xdp->data;
4970 struct sk_buff *skb;
4971
4972 skb = __napi_alloc_skb(&ch->rxtx_napi,
4973 xdp->data_end - xdp->data_hard_start,
4974 GFP_ATOMIC | __GFP_NOWARN);
4975 if (unlikely(!skb))
4976 return NULL;
4977
4978 skb_reserve(skb, xdp->data - xdp->data_hard_start);
4979 memcpy(__skb_put(skb, datasize), xdp->data, datasize);
4980 if (metasize)
4981 skb_metadata_set(skb, metasize);
4982
4983 return skb;
4984 }
4985
stmmac_dispatch_skb_zc(struct stmmac_priv * priv,u32 queue,struct dma_desc * p,struct dma_desc * np,struct xdp_buff * xdp)4986 static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
4987 struct dma_desc *p, struct dma_desc *np,
4988 struct xdp_buff *xdp)
4989 {
4990 struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[queue];
4991 struct stmmac_channel *ch = &priv->channel[queue];
4992 unsigned int len = xdp->data_end - xdp->data;
4993 enum pkt_hash_types hash_type;
4994 int coe = priv->hw->rx_csum;
4995 struct sk_buff *skb;
4996 u32 hash;
4997
4998 skb = stmmac_construct_skb_zc(ch, xdp);
4999 if (!skb) {
5000 priv->xstats.rx_dropped++;
5001 return;
5002 }
5003
5004 stmmac_get_rx_hwtstamp(priv, p, np, skb);
5005 stmmac_rx_vlan(priv->dev, skb);
5006 skb->protocol = eth_type_trans(skb, priv->dev);
5007
5008 if (unlikely(!coe) || !stmmac_has_ip_ethertype(skb))
5009 skb_checksum_none_assert(skb);
5010 else
5011 skb->ip_summed = CHECKSUM_UNNECESSARY;
5012
5013 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5014 skb_set_hash(skb, hash, hash_type);
5015
5016 skb_record_rx_queue(skb, queue);
5017 napi_gro_receive(&ch->rxtx_napi, skb);
5018
5019 u64_stats_update_begin(&rxq_stats->napi_syncp);
5020 u64_stats_inc(&rxq_stats->napi.rx_pkt_n);
5021 u64_stats_add(&rxq_stats->napi.rx_bytes, len);
5022 u64_stats_update_end(&rxq_stats->napi_syncp);
5023 }
5024
stmmac_rx_refill_zc(struct stmmac_priv * priv,u32 queue,u32 budget)5025 static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
5026 {
5027 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5028 unsigned int entry = rx_q->dirty_rx;
5029 struct dma_desc *rx_desc = NULL;
5030 bool ret = true;
5031
5032 budget = min(budget, stmmac_rx_dirty(priv, queue));
5033
5034 while (budget-- > 0 && entry != rx_q->cur_rx) {
5035 struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
5036 dma_addr_t dma_addr;
5037 bool use_rx_wd;
5038
5039 if (!buf->xdp) {
5040 buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
5041 if (!buf->xdp) {
5042 ret = false;
5043 break;
5044 }
5045 }
5046
5047 if (priv->extend_desc)
5048 rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
5049 else
5050 rx_desc = rx_q->dma_rx + entry;
5051
5052 dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
5053 stmmac_set_desc_addr(priv, rx_desc, dma_addr);
5054 stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
5055 stmmac_refill_desc3(priv, rx_q, rx_desc);
5056
5057 rx_q->rx_count_frames++;
5058 rx_q->rx_count_frames += priv->rx_coal_frames[queue];
5059 if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
5060 rx_q->rx_count_frames = 0;
5061
5062 use_rx_wd = !priv->rx_coal_frames[queue];
5063 use_rx_wd |= rx_q->rx_count_frames > 0;
5064 if (!priv->use_riwt)
5065 use_rx_wd = false;
5066
5067 dma_wmb();
5068 stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
5069
5070 entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
5071 }
5072
5073 if (rx_desc) {
5074 rx_q->dirty_rx = entry;
5075 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
5076 (rx_q->dirty_rx * sizeof(struct dma_desc));
5077 stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
5078 }
5079
5080 return ret;
5081 }
5082
xsk_buff_to_stmmac_ctx(struct xdp_buff * xdp)5083 static struct stmmac_xdp_buff *xsk_buff_to_stmmac_ctx(struct xdp_buff *xdp)
5084 {
5085 /* In XDP zero copy data path, xdp field in struct xdp_buff_xsk is used
5086 * to represent incoming packet, whereas cb field in the same structure
5087 * is used to store driver specific info. Thus, struct stmmac_xdp_buff
5088 * is laid on top of xdp and cb fields of struct xdp_buff_xsk.
5089 */
5090 return (struct stmmac_xdp_buff *)xdp;
5091 }
5092
stmmac_rx_zc(struct stmmac_priv * priv,int limit,u32 queue)5093 static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
5094 {
5095 struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[queue];
5096 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5097 unsigned int count = 0, error = 0, len = 0;
5098 int dirty = stmmac_rx_dirty(priv, queue);
5099 unsigned int next_entry = rx_q->cur_rx;
5100 u32 rx_errors = 0, rx_dropped = 0;
5101 unsigned int desc_size;
5102 struct bpf_prog *prog;
5103 bool failure = false;
5104 int xdp_status = 0;
5105 int status = 0;
5106
5107 if (netif_msg_rx_status(priv)) {
5108 void *rx_head;
5109
5110 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5111 if (priv->extend_desc) {
5112 rx_head = (void *)rx_q->dma_erx;
5113 desc_size = sizeof(struct dma_extended_desc);
5114 } else {
5115 rx_head = (void *)rx_q->dma_rx;
5116 desc_size = sizeof(struct dma_desc);
5117 }
5118
5119 stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5120 rx_q->dma_rx_phy, desc_size);
5121 }
5122 while (count < limit) {
5123 struct stmmac_rx_buffer *buf;
5124 struct stmmac_xdp_buff *ctx;
5125 unsigned int buf1_len = 0;
5126 struct dma_desc *np, *p;
5127 int entry;
5128 int res;
5129
5130 if (!count && rx_q->state_saved) {
5131 error = rx_q->state.error;
5132 len = rx_q->state.len;
5133 } else {
5134 rx_q->state_saved = false;
5135 error = 0;
5136 len = 0;
5137 }
5138
5139 if (count >= limit)
5140 break;
5141
5142 read_again:
5143 buf1_len = 0;
5144 entry = next_entry;
5145 buf = &rx_q->buf_pool[entry];
5146
5147 if (dirty >= STMMAC_RX_FILL_BATCH) {
5148 failure = failure ||
5149 !stmmac_rx_refill_zc(priv, queue, dirty);
5150 dirty = 0;
5151 }
5152
5153 if (priv->extend_desc)
5154 p = (struct dma_desc *)(rx_q->dma_erx + entry);
5155 else
5156 p = rx_q->dma_rx + entry;
5157
5158 /* read the status of the incoming frame */
5159 status = stmmac_rx_status(priv, &priv->xstats, p);
5160 /* check if managed by the DMA otherwise go ahead */
5161 if (unlikely(status & dma_own))
5162 break;
5163
5164 /* Prefetch the next RX descriptor */
5165 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5166 priv->dma_conf.dma_rx_size);
5167 next_entry = rx_q->cur_rx;
5168
5169 if (priv->extend_desc)
5170 np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5171 else
5172 np = rx_q->dma_rx + next_entry;
5173
5174 prefetch(np);
5175
5176 /* Ensure a valid XSK buffer before proceed */
5177 if (!buf->xdp)
5178 break;
5179
5180 if (priv->extend_desc)
5181 stmmac_rx_extended_status(priv, &priv->xstats,
5182 rx_q->dma_erx + entry);
5183 if (unlikely(status == discard_frame)) {
5184 xsk_buff_free(buf->xdp);
5185 buf->xdp = NULL;
5186 dirty++;
5187 error = 1;
5188 if (!priv->hwts_rx_en)
5189 rx_errors++;
5190 }
5191
5192 if (unlikely(error && (status & rx_not_ls)))
5193 goto read_again;
5194 if (unlikely(error)) {
5195 count++;
5196 continue;
5197 }
5198
5199 /* XSK pool expects RX frame 1:1 mapped to XSK buffer */
5200 if (likely(status & rx_not_ls)) {
5201 xsk_buff_free(buf->xdp);
5202 buf->xdp = NULL;
5203 dirty++;
5204 count++;
5205 goto read_again;
5206 }
5207
5208 ctx = xsk_buff_to_stmmac_ctx(buf->xdp);
5209 ctx->priv = priv;
5210 ctx->desc = p;
5211 ctx->ndesc = np;
5212
5213 /* XDP ZC Frame only support primary buffers for now */
5214 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5215 len += buf1_len;
5216
5217 /* ACS is disabled; strip manually. */
5218 if (likely(!(status & rx_not_ls))) {
5219 buf1_len -= ETH_FCS_LEN;
5220 len -= ETH_FCS_LEN;
5221 }
5222
5223 /* RX buffer is good and fit into a XSK pool buffer */
5224 buf->xdp->data_end = buf->xdp->data + buf1_len;
5225 xsk_buff_dma_sync_for_cpu(buf->xdp, rx_q->xsk_pool);
5226
5227 prog = READ_ONCE(priv->xdp_prog);
5228 res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
5229
5230 switch (res) {
5231 case STMMAC_XDP_PASS:
5232 stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
5233 xsk_buff_free(buf->xdp);
5234 break;
5235 case STMMAC_XDP_CONSUMED:
5236 xsk_buff_free(buf->xdp);
5237 rx_dropped++;
5238 break;
5239 case STMMAC_XDP_TX:
5240 case STMMAC_XDP_REDIRECT:
5241 xdp_status |= res;
5242 break;
5243 }
5244
5245 buf->xdp = NULL;
5246 dirty++;
5247 count++;
5248 }
5249
5250 if (status & rx_not_ls) {
5251 rx_q->state_saved = true;
5252 rx_q->state.error = error;
5253 rx_q->state.len = len;
5254 }
5255
5256 stmmac_finalize_xdp_rx(priv, xdp_status);
5257
5258 u64_stats_update_begin(&rxq_stats->napi_syncp);
5259 u64_stats_add(&rxq_stats->napi.rx_pkt_n, count);
5260 u64_stats_update_end(&rxq_stats->napi_syncp);
5261
5262 priv->xstats.rx_dropped += rx_dropped;
5263 priv->xstats.rx_errors += rx_errors;
5264
5265 if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
5266 if (failure || stmmac_rx_dirty(priv, queue) > 0)
5267 xsk_set_rx_need_wakeup(rx_q->xsk_pool);
5268 else
5269 xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
5270
5271 return (int)count;
5272 }
5273
5274 return failure ? limit : (int)count;
5275 }
5276
5277 /**
5278 * stmmac_rx - manage the receive process
5279 * @priv: driver private structure
5280 * @limit: napi bugget
5281 * @queue: RX queue index.
5282 * Description : this the function called by the napi poll method.
5283 * It gets all the frames inside the ring.
5284 */
stmmac_rx(struct stmmac_priv * priv,int limit,u32 queue)5285 static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
5286 {
5287 u32 rx_errors = 0, rx_dropped = 0, rx_bytes = 0, rx_packets = 0;
5288 struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[queue];
5289 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
5290 struct stmmac_channel *ch = &priv->channel[queue];
5291 unsigned int count = 0, error = 0, len = 0;
5292 int status = 0, coe = priv->hw->rx_csum;
5293 unsigned int next_entry = rx_q->cur_rx;
5294 enum dma_data_direction dma_dir;
5295 unsigned int desc_size;
5296 struct sk_buff *skb = NULL;
5297 struct stmmac_xdp_buff ctx;
5298 int xdp_status = 0;
5299 int buf_sz;
5300
5301 dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
5302 buf_sz = DIV_ROUND_UP(priv->dma_conf.dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
5303 limit = min(priv->dma_conf.dma_rx_size - 1, (unsigned int)limit);
5304
5305 if (netif_msg_rx_status(priv)) {
5306 void *rx_head;
5307
5308 netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
5309 if (priv->extend_desc) {
5310 rx_head = (void *)rx_q->dma_erx;
5311 desc_size = sizeof(struct dma_extended_desc);
5312 } else {
5313 rx_head = (void *)rx_q->dma_rx;
5314 desc_size = sizeof(struct dma_desc);
5315 }
5316
5317 stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
5318 rx_q->dma_rx_phy, desc_size);
5319 }
5320 while (count < limit) {
5321 unsigned int buf1_len = 0, buf2_len = 0;
5322 enum pkt_hash_types hash_type;
5323 struct stmmac_rx_buffer *buf;
5324 struct dma_desc *np, *p;
5325 int entry;
5326 u32 hash;
5327
5328 if (!count && rx_q->state_saved) {
5329 skb = rx_q->state.skb;
5330 error = rx_q->state.error;
5331 len = rx_q->state.len;
5332 } else {
5333 rx_q->state_saved = false;
5334 skb = NULL;
5335 error = 0;
5336 len = 0;
5337 }
5338
5339 read_again:
5340 if (count >= limit)
5341 break;
5342
5343 buf1_len = 0;
5344 buf2_len = 0;
5345 entry = next_entry;
5346 buf = &rx_q->buf_pool[entry];
5347
5348 if (priv->extend_desc)
5349 p = (struct dma_desc *)(rx_q->dma_erx + entry);
5350 else
5351 p = rx_q->dma_rx + entry;
5352
5353 /* read the status of the incoming frame */
5354 status = stmmac_rx_status(priv, &priv->xstats, p);
5355 /* check if managed by the DMA otherwise go ahead */
5356 if (unlikely(status & dma_own))
5357 break;
5358
5359 rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
5360 priv->dma_conf.dma_rx_size);
5361 next_entry = rx_q->cur_rx;
5362
5363 if (priv->extend_desc)
5364 np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
5365 else
5366 np = rx_q->dma_rx + next_entry;
5367
5368 prefetch(np);
5369
5370 if (priv->extend_desc)
5371 stmmac_rx_extended_status(priv, &priv->xstats, rx_q->dma_erx + entry);
5372 if (unlikely(status == discard_frame)) {
5373 page_pool_recycle_direct(rx_q->page_pool, buf->page);
5374 buf->page = NULL;
5375 error = 1;
5376 if (!priv->hwts_rx_en)
5377 rx_errors++;
5378 }
5379
5380 if (unlikely(error && (status & rx_not_ls)))
5381 goto read_again;
5382 if (unlikely(error)) {
5383 dev_kfree_skb(skb);
5384 skb = NULL;
5385 count++;
5386 continue;
5387 }
5388
5389 /* Buffer is good. Go on. */
5390
5391 prefetch(page_address(buf->page) + buf->page_offset);
5392 if (buf->sec_page)
5393 prefetch(page_address(buf->sec_page));
5394
5395 buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
5396 len += buf1_len;
5397 buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
5398 len += buf2_len;
5399
5400 /* ACS is disabled; strip manually. */
5401 if (likely(!(status & rx_not_ls))) {
5402 if (buf2_len) {
5403 buf2_len -= ETH_FCS_LEN;
5404 len -= ETH_FCS_LEN;
5405 } else if (buf1_len) {
5406 buf1_len -= ETH_FCS_LEN;
5407 len -= ETH_FCS_LEN;
5408 }
5409 }
5410
5411 if (!skb) {
5412 unsigned int pre_len, sync_len;
5413
5414 dma_sync_single_for_cpu(priv->device, buf->addr,
5415 buf1_len, dma_dir);
5416
5417 xdp_init_buff(&ctx.xdp, buf_sz, &rx_q->xdp_rxq);
5418 xdp_prepare_buff(&ctx.xdp, page_address(buf->page),
5419 buf->page_offset, buf1_len, true);
5420
5421 pre_len = ctx.xdp.data_end - ctx.xdp.data_hard_start -
5422 buf->page_offset;
5423
5424 ctx.priv = priv;
5425 ctx.desc = p;
5426 ctx.ndesc = np;
5427
5428 skb = stmmac_xdp_run_prog(priv, &ctx.xdp);
5429 /* Due xdp_adjust_tail: DMA sync for_device
5430 * cover max len CPU touch
5431 */
5432 sync_len = ctx.xdp.data_end - ctx.xdp.data_hard_start -
5433 buf->page_offset;
5434 sync_len = max(sync_len, pre_len);
5435
5436 /* For Not XDP_PASS verdict */
5437 if (IS_ERR(skb)) {
5438 unsigned int xdp_res = -PTR_ERR(skb);
5439
5440 if (xdp_res & STMMAC_XDP_CONSUMED) {
5441 page_pool_put_page(rx_q->page_pool,
5442 virt_to_head_page(ctx.xdp.data),
5443 sync_len, true);
5444 buf->page = NULL;
5445 rx_dropped++;
5446
5447 /* Clear skb as it was set as
5448 * status by XDP program.
5449 */
5450 skb = NULL;
5451
5452 if (unlikely((status & rx_not_ls)))
5453 goto read_again;
5454
5455 count++;
5456 continue;
5457 } else if (xdp_res & (STMMAC_XDP_TX |
5458 STMMAC_XDP_REDIRECT)) {
5459 xdp_status |= xdp_res;
5460 buf->page = NULL;
5461 skb = NULL;
5462 count++;
5463 continue;
5464 }
5465 }
5466 }
5467
5468 if (!skb) {
5469 /* XDP program may expand or reduce tail */
5470 buf1_len = ctx.xdp.data_end - ctx.xdp.data;
5471
5472 skb = napi_alloc_skb(&ch->rx_napi, buf1_len);
5473 if (!skb) {
5474 rx_dropped++;
5475 count++;
5476 goto drain_data;
5477 }
5478
5479 /* XDP program may adjust header */
5480 skb_copy_to_linear_data(skb, ctx.xdp.data, buf1_len);
5481 skb_put(skb, buf1_len);
5482
5483 /* Data payload copied into SKB, page ready for recycle */
5484 page_pool_recycle_direct(rx_q->page_pool, buf->page);
5485 buf->page = NULL;
5486 } else if (buf1_len) {
5487 dma_sync_single_for_cpu(priv->device, buf->addr,
5488 buf1_len, dma_dir);
5489 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5490 buf->page, buf->page_offset, buf1_len,
5491 priv->dma_conf.dma_buf_sz);
5492
5493 /* Data payload appended into SKB */
5494 skb_mark_for_recycle(skb);
5495 buf->page = NULL;
5496 }
5497
5498 if (buf2_len) {
5499 dma_sync_single_for_cpu(priv->device, buf->sec_addr,
5500 buf2_len, dma_dir);
5501 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
5502 buf->sec_page, 0, buf2_len,
5503 priv->dma_conf.dma_buf_sz);
5504
5505 /* Data payload appended into SKB */
5506 skb_mark_for_recycle(skb);
5507 buf->sec_page = NULL;
5508 }
5509
5510 drain_data:
5511 if (likely(status & rx_not_ls))
5512 goto read_again;
5513 if (!skb)
5514 continue;
5515
5516 /* Got entire packet into SKB. Finish it. */
5517
5518 stmmac_get_rx_hwtstamp(priv, p, np, skb);
5519 stmmac_rx_vlan(priv->dev, skb);
5520 skb->protocol = eth_type_trans(skb, priv->dev);
5521
5522 if (unlikely(!coe) || !stmmac_has_ip_ethertype(skb))
5523 skb_checksum_none_assert(skb);
5524 else
5525 skb->ip_summed = CHECKSUM_UNNECESSARY;
5526
5527 if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
5528 skb_set_hash(skb, hash, hash_type);
5529
5530 skb_record_rx_queue(skb, queue);
5531 napi_gro_receive(&ch->rx_napi, skb);
5532 skb = NULL;
5533
5534 rx_packets++;
5535 rx_bytes += len;
5536 count++;
5537 }
5538
5539 if (status & rx_not_ls || skb) {
5540 rx_q->state_saved = true;
5541 rx_q->state.skb = skb;
5542 rx_q->state.error = error;
5543 rx_q->state.len = len;
5544 }
5545
5546 stmmac_finalize_xdp_rx(priv, xdp_status);
5547
5548 stmmac_rx_refill(priv, queue);
5549
5550 u64_stats_update_begin(&rxq_stats->napi_syncp);
5551 u64_stats_add(&rxq_stats->napi.rx_packets, rx_packets);
5552 u64_stats_add(&rxq_stats->napi.rx_bytes, rx_bytes);
5553 u64_stats_add(&rxq_stats->napi.rx_pkt_n, count);
5554 u64_stats_update_end(&rxq_stats->napi_syncp);
5555
5556 priv->xstats.rx_dropped += rx_dropped;
5557 priv->xstats.rx_errors += rx_errors;
5558
5559 return count;
5560 }
5561
stmmac_napi_poll_rx(struct napi_struct * napi,int budget)5562 static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
5563 {
5564 struct stmmac_channel *ch =
5565 container_of(napi, struct stmmac_channel, rx_napi);
5566 struct stmmac_priv *priv = ch->priv_data;
5567 struct stmmac_rxq_stats *rxq_stats;
5568 u32 chan = ch->index;
5569 int work_done;
5570
5571 rxq_stats = &priv->xstats.rxq_stats[chan];
5572 u64_stats_update_begin(&rxq_stats->napi_syncp);
5573 u64_stats_inc(&rxq_stats->napi.poll);
5574 u64_stats_update_end(&rxq_stats->napi_syncp);
5575
5576 work_done = stmmac_rx(priv, budget, chan);
5577 if (work_done < budget && napi_complete_done(napi, work_done)) {
5578 unsigned long flags;
5579
5580 spin_lock_irqsave(&ch->lock, flags);
5581 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
5582 spin_unlock_irqrestore(&ch->lock, flags);
5583 }
5584
5585 return work_done;
5586 }
5587
stmmac_napi_poll_tx(struct napi_struct * napi,int budget)5588 static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
5589 {
5590 struct stmmac_channel *ch =
5591 container_of(napi, struct stmmac_channel, tx_napi);
5592 struct stmmac_priv *priv = ch->priv_data;
5593 struct stmmac_txq_stats *txq_stats;
5594 u32 chan = ch->index;
5595 int work_done;
5596
5597 txq_stats = &priv->xstats.txq_stats[chan];
5598 u64_stats_update_begin(&txq_stats->napi_syncp);
5599 u64_stats_inc(&txq_stats->napi.poll);
5600 u64_stats_update_end(&txq_stats->napi_syncp);
5601
5602 work_done = stmmac_tx_clean(priv, budget, chan);
5603 work_done = min(work_done, budget);
5604
5605 if (work_done < budget && napi_complete_done(napi, work_done)) {
5606 unsigned long flags;
5607
5608 spin_lock_irqsave(&ch->lock, flags);
5609 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
5610 spin_unlock_irqrestore(&ch->lock, flags);
5611 }
5612
5613 return work_done;
5614 }
5615
stmmac_napi_poll_rxtx(struct napi_struct * napi,int budget)5616 static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
5617 {
5618 struct stmmac_channel *ch =
5619 container_of(napi, struct stmmac_channel, rxtx_napi);
5620 struct stmmac_priv *priv = ch->priv_data;
5621 int rx_done, tx_done, rxtx_done;
5622 struct stmmac_rxq_stats *rxq_stats;
5623 struct stmmac_txq_stats *txq_stats;
5624 u32 chan = ch->index;
5625
5626 rxq_stats = &priv->xstats.rxq_stats[chan];
5627 u64_stats_update_begin(&rxq_stats->napi_syncp);
5628 u64_stats_inc(&rxq_stats->napi.poll);
5629 u64_stats_update_end(&rxq_stats->napi_syncp);
5630
5631 txq_stats = &priv->xstats.txq_stats[chan];
5632 u64_stats_update_begin(&txq_stats->napi_syncp);
5633 u64_stats_inc(&txq_stats->napi.poll);
5634 u64_stats_update_end(&txq_stats->napi_syncp);
5635
5636 tx_done = stmmac_tx_clean(priv, budget, chan);
5637 tx_done = min(tx_done, budget);
5638
5639 rx_done = stmmac_rx_zc(priv, budget, chan);
5640
5641 rxtx_done = max(tx_done, rx_done);
5642
5643 /* If either TX or RX work is not complete, return budget
5644 * and keep pooling
5645 */
5646 if (rxtx_done >= budget)
5647 return budget;
5648
5649 /* all work done, exit the polling mode */
5650 if (napi_complete_done(napi, rxtx_done)) {
5651 unsigned long flags;
5652
5653 spin_lock_irqsave(&ch->lock, flags);
5654 /* Both RX and TX work done are compelte,
5655 * so enable both RX & TX IRQs.
5656 */
5657 stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
5658 spin_unlock_irqrestore(&ch->lock, flags);
5659 }
5660
5661 return min(rxtx_done, budget - 1);
5662 }
5663
5664 /**
5665 * stmmac_tx_timeout
5666 * @dev : Pointer to net device structure
5667 * @txqueue: the index of the hanging transmit queue
5668 * Description: this function is called when a packet transmission fails to
5669 * complete within a reasonable time. The driver will mark the error in the
5670 * netdev structure and arrange for the device to be reset to a sane state
5671 * in order to transmit a new packet.
5672 */
stmmac_tx_timeout(struct net_device * dev,unsigned int txqueue)5673 static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
5674 {
5675 struct stmmac_priv *priv = netdev_priv(dev);
5676
5677 stmmac_global_err(priv);
5678 }
5679
5680 /**
5681 * stmmac_set_rx_mode - entry point for multicast addressing
5682 * @dev : pointer to the device structure
5683 * Description:
5684 * This function is a driver entry point which gets called by the kernel
5685 * whenever multicast addresses must be enabled/disabled.
5686 * Return value:
5687 * void.
5688 */
stmmac_set_rx_mode(struct net_device * dev)5689 static void stmmac_set_rx_mode(struct net_device *dev)
5690 {
5691 struct stmmac_priv *priv = netdev_priv(dev);
5692
5693 stmmac_set_filter(priv, priv->hw, dev);
5694 }
5695
5696 /**
5697 * stmmac_change_mtu - entry point to change MTU size for the device.
5698 * @dev : device pointer.
5699 * @new_mtu : the new MTU size for the device.
5700 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
5701 * to drive packet transmission. Ethernet has an MTU of 1500 octets
5702 * (ETH_DATA_LEN). This value can be changed with ifconfig.
5703 * Return value:
5704 * 0 on success and an appropriate (-)ve integer as defined in errno.h
5705 * file on failure.
5706 */
stmmac_change_mtu(struct net_device * dev,int new_mtu)5707 static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
5708 {
5709 struct stmmac_priv *priv = netdev_priv(dev);
5710 int txfifosz = priv->plat->tx_fifo_size;
5711 struct stmmac_dma_conf *dma_conf;
5712 const int mtu = new_mtu;
5713 int ret;
5714
5715 if (txfifosz == 0)
5716 txfifosz = priv->dma_cap.tx_fifo_size;
5717
5718 txfifosz /= priv->plat->tx_queues_to_use;
5719
5720 if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
5721 netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
5722 return -EINVAL;
5723 }
5724
5725 new_mtu = STMMAC_ALIGN(new_mtu);
5726
5727 /* If condition true, FIFO is too small or MTU too large */
5728 if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
5729 return -EINVAL;
5730
5731 if (netif_running(dev)) {
5732 netdev_dbg(priv->dev, "restarting interface to change its MTU\n");
5733 /* Try to allocate the new DMA conf with the new mtu */
5734 dma_conf = stmmac_setup_dma_desc(priv, mtu);
5735 if (IS_ERR(dma_conf)) {
5736 netdev_err(priv->dev, "failed allocating new dma conf for new MTU %d\n",
5737 mtu);
5738 return PTR_ERR(dma_conf);
5739 }
5740
5741 stmmac_release(dev);
5742
5743 ret = __stmmac_open(dev, dma_conf);
5744 if (ret) {
5745 free_dma_desc_resources(priv, dma_conf);
5746 kfree(dma_conf);
5747 netdev_err(priv->dev, "failed reopening the interface after MTU change\n");
5748 return ret;
5749 }
5750
5751 kfree(dma_conf);
5752
5753 stmmac_set_rx_mode(dev);
5754 }
5755
5756 dev->mtu = mtu;
5757 netdev_update_features(dev);
5758
5759 return 0;
5760 }
5761
stmmac_fix_features(struct net_device * dev,netdev_features_t features)5762 static netdev_features_t stmmac_fix_features(struct net_device *dev,
5763 netdev_features_t features)
5764 {
5765 struct stmmac_priv *priv = netdev_priv(dev);
5766
5767 if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
5768 features &= ~NETIF_F_RXCSUM;
5769
5770 if (!priv->plat->tx_coe)
5771 features &= ~NETIF_F_CSUM_MASK;
5772
5773 /* Some GMAC devices have a bugged Jumbo frame support that
5774 * needs to have the Tx COE disabled for oversized frames
5775 * (due to limited buffer sizes). In this case we disable
5776 * the TX csum insertion in the TDES and not use SF.
5777 */
5778 if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
5779 features &= ~NETIF_F_CSUM_MASK;
5780
5781 /* Disable tso if asked by ethtool */
5782 if ((priv->plat->flags & STMMAC_FLAG_TSO_EN) && (priv->dma_cap.tsoen)) {
5783 if (features & NETIF_F_TSO)
5784 priv->tso = true;
5785 else
5786 priv->tso = false;
5787 }
5788
5789 return features;
5790 }
5791
stmmac_set_features(struct net_device * netdev,netdev_features_t features)5792 static int stmmac_set_features(struct net_device *netdev,
5793 netdev_features_t features)
5794 {
5795 struct stmmac_priv *priv = netdev_priv(netdev);
5796
5797 /* Keep the COE Type in case of csum is supporting */
5798 if (features & NETIF_F_RXCSUM)
5799 priv->hw->rx_csum = priv->plat->rx_coe;
5800 else
5801 priv->hw->rx_csum = 0;
5802 /* No check needed because rx_coe has been set before and it will be
5803 * fixed in case of issue.
5804 */
5805 stmmac_rx_ipc(priv, priv->hw);
5806
5807 if (priv->sph_cap) {
5808 bool sph_en = (priv->hw->rx_csum > 0) && priv->sph;
5809 u32 chan;
5810
5811 for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
5812 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
5813 }
5814
5815 return 0;
5816 }
5817
stmmac_fpe_event_status(struct stmmac_priv * priv,int status)5818 static void stmmac_fpe_event_status(struct stmmac_priv *priv, int status)
5819 {
5820 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
5821 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
5822 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
5823 bool *hs_enable = &fpe_cfg->hs_enable;
5824
5825 if (status == FPE_EVENT_UNKNOWN || !*hs_enable)
5826 return;
5827
5828 /* If LP has sent verify mPacket, LP is FPE capable */
5829 if ((status & FPE_EVENT_RVER) == FPE_EVENT_RVER) {
5830 if (*lp_state < FPE_STATE_CAPABLE)
5831 *lp_state = FPE_STATE_CAPABLE;
5832
5833 /* If user has requested FPE enable, quickly response */
5834 if (*hs_enable)
5835 stmmac_fpe_send_mpacket(priv, priv->ioaddr,
5836 fpe_cfg,
5837 MPACKET_RESPONSE);
5838 }
5839
5840 /* If Local has sent verify mPacket, Local is FPE capable */
5841 if ((status & FPE_EVENT_TVER) == FPE_EVENT_TVER) {
5842 if (*lo_state < FPE_STATE_CAPABLE)
5843 *lo_state = FPE_STATE_CAPABLE;
5844 }
5845
5846 /* If LP has sent response mPacket, LP is entering FPE ON */
5847 if ((status & FPE_EVENT_RRSP) == FPE_EVENT_RRSP)
5848 *lp_state = FPE_STATE_ENTERING_ON;
5849
5850 /* If Local has sent response mPacket, Local is entering FPE ON */
5851 if ((status & FPE_EVENT_TRSP) == FPE_EVENT_TRSP)
5852 *lo_state = FPE_STATE_ENTERING_ON;
5853
5854 if (!test_bit(__FPE_REMOVING, &priv->fpe_task_state) &&
5855 !test_and_set_bit(__FPE_TASK_SCHED, &priv->fpe_task_state) &&
5856 priv->fpe_wq) {
5857 queue_work(priv->fpe_wq, &priv->fpe_task);
5858 }
5859 }
5860
stmmac_common_interrupt(struct stmmac_priv * priv)5861 static void stmmac_common_interrupt(struct stmmac_priv *priv)
5862 {
5863 u32 rx_cnt = priv->plat->rx_queues_to_use;
5864 u32 tx_cnt = priv->plat->tx_queues_to_use;
5865 u32 queues_count;
5866 u32 queue;
5867 bool xmac;
5868
5869 xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
5870 queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
5871
5872 if (priv->irq_wake)
5873 pm_wakeup_event(priv->device, 0);
5874
5875 if (priv->dma_cap.estsel)
5876 stmmac_est_irq_status(priv, priv->ioaddr, priv->dev,
5877 &priv->xstats, tx_cnt);
5878
5879 if (priv->dma_cap.fpesel) {
5880 int status = stmmac_fpe_irq_status(priv, priv->ioaddr,
5881 priv->dev);
5882
5883 stmmac_fpe_event_status(priv, status);
5884 }
5885
5886 /* To handle GMAC own interrupts */
5887 if ((priv->plat->has_gmac) || xmac) {
5888 int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
5889
5890 if (unlikely(status)) {
5891 /* For LPI we need to save the tx status */
5892 if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
5893 priv->tx_path_in_lpi_mode = true;
5894 if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
5895 priv->tx_path_in_lpi_mode = false;
5896 }
5897
5898 for (queue = 0; queue < queues_count; queue++) {
5899 status = stmmac_host_mtl_irq_status(priv, priv->hw,
5900 queue);
5901 }
5902
5903 /* PCS link status */
5904 if (priv->hw->pcs &&
5905 !(priv->plat->flags & STMMAC_FLAG_HAS_INTEGRATED_PCS)) {
5906 if (priv->xstats.pcs_link)
5907 netif_carrier_on(priv->dev);
5908 else
5909 netif_carrier_off(priv->dev);
5910 }
5911
5912 stmmac_timestamp_interrupt(priv, priv);
5913 }
5914 }
5915
5916 /**
5917 * stmmac_interrupt - main ISR
5918 * @irq: interrupt number.
5919 * @dev_id: to pass the net device pointer.
5920 * Description: this is the main driver interrupt service routine.
5921 * It can call:
5922 * o DMA service routine (to manage incoming frame reception and transmission
5923 * status)
5924 * o Core interrupts to manage: remote wake-up, management counter, LPI
5925 * interrupts.
5926 */
stmmac_interrupt(int irq,void * dev_id)5927 static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
5928 {
5929 struct net_device *dev = (struct net_device *)dev_id;
5930 struct stmmac_priv *priv = netdev_priv(dev);
5931
5932 /* Check if adapter is up */
5933 if (test_bit(STMMAC_DOWN, &priv->state))
5934 return IRQ_HANDLED;
5935
5936 /* Check if a fatal error happened */
5937 if (stmmac_safety_feat_interrupt(priv))
5938 return IRQ_HANDLED;
5939
5940 /* To handle Common interrupts */
5941 stmmac_common_interrupt(priv);
5942
5943 /* To handle DMA interrupts */
5944 stmmac_dma_interrupt(priv);
5945
5946 return IRQ_HANDLED;
5947 }
5948
stmmac_mac_interrupt(int irq,void * dev_id)5949 static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
5950 {
5951 struct net_device *dev = (struct net_device *)dev_id;
5952 struct stmmac_priv *priv = netdev_priv(dev);
5953
5954 /* Check if adapter is up */
5955 if (test_bit(STMMAC_DOWN, &priv->state))
5956 return IRQ_HANDLED;
5957
5958 /* To handle Common interrupts */
5959 stmmac_common_interrupt(priv);
5960
5961 return IRQ_HANDLED;
5962 }
5963
stmmac_safety_interrupt(int irq,void * dev_id)5964 static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
5965 {
5966 struct net_device *dev = (struct net_device *)dev_id;
5967 struct stmmac_priv *priv = netdev_priv(dev);
5968
5969 /* Check if adapter is up */
5970 if (test_bit(STMMAC_DOWN, &priv->state))
5971 return IRQ_HANDLED;
5972
5973 /* Check if a fatal error happened */
5974 stmmac_safety_feat_interrupt(priv);
5975
5976 return IRQ_HANDLED;
5977 }
5978
stmmac_msi_intr_tx(int irq,void * data)5979 static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
5980 {
5981 struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
5982 struct stmmac_dma_conf *dma_conf;
5983 int chan = tx_q->queue_index;
5984 struct stmmac_priv *priv;
5985 int status;
5986
5987 dma_conf = container_of(tx_q, struct stmmac_dma_conf, tx_queue[chan]);
5988 priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
5989
5990 /* Check if adapter is up */
5991 if (test_bit(STMMAC_DOWN, &priv->state))
5992 return IRQ_HANDLED;
5993
5994 status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
5995
5996 if (unlikely(status & tx_hard_error_bump_tc)) {
5997 /* Try to bump up the dma threshold on this failure */
5998 stmmac_bump_dma_threshold(priv, chan);
5999 } else if (unlikely(status == tx_hard_error)) {
6000 stmmac_tx_err(priv, chan);
6001 }
6002
6003 return IRQ_HANDLED;
6004 }
6005
stmmac_msi_intr_rx(int irq,void * data)6006 static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
6007 {
6008 struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
6009 struct stmmac_dma_conf *dma_conf;
6010 int chan = rx_q->queue_index;
6011 struct stmmac_priv *priv;
6012
6013 dma_conf = container_of(rx_q, struct stmmac_dma_conf, rx_queue[chan]);
6014 priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
6015
6016 /* Check if adapter is up */
6017 if (test_bit(STMMAC_DOWN, &priv->state))
6018 return IRQ_HANDLED;
6019
6020 stmmac_napi_check(priv, chan, DMA_DIR_RX);
6021
6022 return IRQ_HANDLED;
6023 }
6024
6025 /**
6026 * stmmac_ioctl - Entry point for the Ioctl
6027 * @dev: Device pointer.
6028 * @rq: An IOCTL specefic structure, that can contain a pointer to
6029 * a proprietary structure used to pass information to the driver.
6030 * @cmd: IOCTL command
6031 * Description:
6032 * Currently it supports the phy_mii_ioctl(...) and HW time stamping.
6033 */
stmmac_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)6034 static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6035 {
6036 struct stmmac_priv *priv = netdev_priv (dev);
6037 int ret = -EOPNOTSUPP;
6038
6039 if (!netif_running(dev))
6040 return -EINVAL;
6041
6042 switch (cmd) {
6043 case SIOCGMIIPHY:
6044 case SIOCGMIIREG:
6045 case SIOCSMIIREG:
6046 ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
6047 break;
6048 case SIOCSHWTSTAMP:
6049 ret = stmmac_hwtstamp_set(dev, rq);
6050 break;
6051 case SIOCGHWTSTAMP:
6052 ret = stmmac_hwtstamp_get(dev, rq);
6053 break;
6054 default:
6055 break;
6056 }
6057
6058 return ret;
6059 }
6060
stmmac_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)6061 static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
6062 void *cb_priv)
6063 {
6064 struct stmmac_priv *priv = cb_priv;
6065 int ret = -EOPNOTSUPP;
6066
6067 if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
6068 return ret;
6069
6070 __stmmac_disable_all_queues(priv);
6071
6072 switch (type) {
6073 case TC_SETUP_CLSU32:
6074 ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
6075 break;
6076 case TC_SETUP_CLSFLOWER:
6077 ret = stmmac_tc_setup_cls(priv, priv, type_data);
6078 break;
6079 default:
6080 break;
6081 }
6082
6083 stmmac_enable_all_queues(priv);
6084 return ret;
6085 }
6086
6087 static LIST_HEAD(stmmac_block_cb_list);
6088
stmmac_setup_tc(struct net_device * ndev,enum tc_setup_type type,void * type_data)6089 static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
6090 void *type_data)
6091 {
6092 struct stmmac_priv *priv = netdev_priv(ndev);
6093
6094 switch (type) {
6095 case TC_QUERY_CAPS:
6096 return stmmac_tc_query_caps(priv, priv, type_data);
6097 case TC_SETUP_BLOCK:
6098 return flow_block_cb_setup_simple(type_data,
6099 &stmmac_block_cb_list,
6100 stmmac_setup_tc_block_cb,
6101 priv, priv, true);
6102 case TC_SETUP_QDISC_CBS:
6103 return stmmac_tc_setup_cbs(priv, priv, type_data);
6104 case TC_SETUP_QDISC_TAPRIO:
6105 return stmmac_tc_setup_taprio(priv, priv, type_data);
6106 case TC_SETUP_QDISC_ETF:
6107 return stmmac_tc_setup_etf(priv, priv, type_data);
6108 default:
6109 return -EOPNOTSUPP;
6110 }
6111 }
6112
stmmac_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)6113 static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
6114 struct net_device *sb_dev)
6115 {
6116 int gso = skb_shinfo(skb)->gso_type;
6117
6118 if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
6119 /*
6120 * There is no way to determine the number of TSO/USO
6121 * capable Queues. Let's use always the Queue 0
6122 * because if TSO/USO is supported then at least this
6123 * one will be capable.
6124 */
6125 return 0;
6126 }
6127
6128 return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
6129 }
6130
stmmac_set_mac_address(struct net_device * ndev,void * addr)6131 static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
6132 {
6133 struct stmmac_priv *priv = netdev_priv(ndev);
6134 int ret = 0;
6135
6136 ret = pm_runtime_resume_and_get(priv->device);
6137 if (ret < 0)
6138 return ret;
6139
6140 ret = eth_mac_addr(ndev, addr);
6141 if (ret)
6142 goto set_mac_error;
6143
6144 stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
6145
6146 set_mac_error:
6147 pm_runtime_put(priv->device);
6148
6149 return ret;
6150 }
6151
6152 #ifdef CONFIG_DEBUG_FS
6153 static struct dentry *stmmac_fs_dir;
6154
sysfs_display_ring(void * head,int size,int extend_desc,struct seq_file * seq,dma_addr_t dma_phy_addr)6155 static void sysfs_display_ring(void *head, int size, int extend_desc,
6156 struct seq_file *seq, dma_addr_t dma_phy_addr)
6157 {
6158 int i;
6159 struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
6160 struct dma_desc *p = (struct dma_desc *)head;
6161 dma_addr_t dma_addr;
6162
6163 for (i = 0; i < size; i++) {
6164 if (extend_desc) {
6165 dma_addr = dma_phy_addr + i * sizeof(*ep);
6166 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6167 i, &dma_addr,
6168 le32_to_cpu(ep->basic.des0),
6169 le32_to_cpu(ep->basic.des1),
6170 le32_to_cpu(ep->basic.des2),
6171 le32_to_cpu(ep->basic.des3));
6172 ep++;
6173 } else {
6174 dma_addr = dma_phy_addr + i * sizeof(*p);
6175 seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
6176 i, &dma_addr,
6177 le32_to_cpu(p->des0), le32_to_cpu(p->des1),
6178 le32_to_cpu(p->des2), le32_to_cpu(p->des3));
6179 p++;
6180 }
6181 seq_printf(seq, "\n");
6182 }
6183 }
6184
stmmac_rings_status_show(struct seq_file * seq,void * v)6185 static int stmmac_rings_status_show(struct seq_file *seq, void *v)
6186 {
6187 struct net_device *dev = seq->private;
6188 struct stmmac_priv *priv = netdev_priv(dev);
6189 u32 rx_count = priv->plat->rx_queues_to_use;
6190 u32 tx_count = priv->plat->tx_queues_to_use;
6191 u32 queue;
6192
6193 if ((dev->flags & IFF_UP) == 0)
6194 return 0;
6195
6196 for (queue = 0; queue < rx_count; queue++) {
6197 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6198
6199 seq_printf(seq, "RX Queue %d:\n", queue);
6200
6201 if (priv->extend_desc) {
6202 seq_printf(seq, "Extended descriptor ring:\n");
6203 sysfs_display_ring((void *)rx_q->dma_erx,
6204 priv->dma_conf.dma_rx_size, 1, seq, rx_q->dma_rx_phy);
6205 } else {
6206 seq_printf(seq, "Descriptor ring:\n");
6207 sysfs_display_ring((void *)rx_q->dma_rx,
6208 priv->dma_conf.dma_rx_size, 0, seq, rx_q->dma_rx_phy);
6209 }
6210 }
6211
6212 for (queue = 0; queue < tx_count; queue++) {
6213 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6214
6215 seq_printf(seq, "TX Queue %d:\n", queue);
6216
6217 if (priv->extend_desc) {
6218 seq_printf(seq, "Extended descriptor ring:\n");
6219 sysfs_display_ring((void *)tx_q->dma_etx,
6220 priv->dma_conf.dma_tx_size, 1, seq, tx_q->dma_tx_phy);
6221 } else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
6222 seq_printf(seq, "Descriptor ring:\n");
6223 sysfs_display_ring((void *)tx_q->dma_tx,
6224 priv->dma_conf.dma_tx_size, 0, seq, tx_q->dma_tx_phy);
6225 }
6226 }
6227
6228 return 0;
6229 }
6230 DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
6231
stmmac_dma_cap_show(struct seq_file * seq,void * v)6232 static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
6233 {
6234 static const char * const dwxgmac_timestamp_source[] = {
6235 "None",
6236 "Internal",
6237 "External",
6238 "Both",
6239 };
6240 static const char * const dwxgmac_safety_feature_desc[] = {
6241 "No",
6242 "All Safety Features with ECC and Parity",
6243 "All Safety Features without ECC or Parity",
6244 "All Safety Features with Parity Only",
6245 "ECC Only",
6246 "UNDEFINED",
6247 "UNDEFINED",
6248 "UNDEFINED",
6249 };
6250 struct net_device *dev = seq->private;
6251 struct stmmac_priv *priv = netdev_priv(dev);
6252
6253 if (!priv->hw_cap_support) {
6254 seq_printf(seq, "DMA HW features not supported\n");
6255 return 0;
6256 }
6257
6258 seq_printf(seq, "==============================\n");
6259 seq_printf(seq, "\tDMA HW features\n");
6260 seq_printf(seq, "==============================\n");
6261
6262 seq_printf(seq, "\t10/100 Mbps: %s\n",
6263 (priv->dma_cap.mbps_10_100) ? "Y" : "N");
6264 seq_printf(seq, "\t1000 Mbps: %s\n",
6265 (priv->dma_cap.mbps_1000) ? "Y" : "N");
6266 seq_printf(seq, "\tHalf duplex: %s\n",
6267 (priv->dma_cap.half_duplex) ? "Y" : "N");
6268 if (priv->plat->has_xgmac) {
6269 seq_printf(seq,
6270 "\tNumber of Additional MAC address registers: %d\n",
6271 priv->dma_cap.multi_addr);
6272 } else {
6273 seq_printf(seq, "\tHash Filter: %s\n",
6274 (priv->dma_cap.hash_filter) ? "Y" : "N");
6275 seq_printf(seq, "\tMultiple MAC address registers: %s\n",
6276 (priv->dma_cap.multi_addr) ? "Y" : "N");
6277 }
6278 seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
6279 (priv->dma_cap.pcs) ? "Y" : "N");
6280 seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
6281 (priv->dma_cap.sma_mdio) ? "Y" : "N");
6282 seq_printf(seq, "\tPMT Remote wake up: %s\n",
6283 (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
6284 seq_printf(seq, "\tPMT Magic Frame: %s\n",
6285 (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
6286 seq_printf(seq, "\tRMON module: %s\n",
6287 (priv->dma_cap.rmon) ? "Y" : "N");
6288 seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
6289 (priv->dma_cap.time_stamp) ? "Y" : "N");
6290 seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
6291 (priv->dma_cap.atime_stamp) ? "Y" : "N");
6292 if (priv->plat->has_xgmac)
6293 seq_printf(seq, "\tTimestamp System Time Source: %s\n",
6294 dwxgmac_timestamp_source[priv->dma_cap.tssrc]);
6295 seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
6296 (priv->dma_cap.eee) ? "Y" : "N");
6297 seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
6298 seq_printf(seq, "\tChecksum Offload in TX: %s\n",
6299 (priv->dma_cap.tx_coe) ? "Y" : "N");
6300 if (priv->synopsys_id >= DWMAC_CORE_4_00 ||
6301 priv->plat->has_xgmac) {
6302 seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
6303 (priv->dma_cap.rx_coe) ? "Y" : "N");
6304 } else {
6305 seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
6306 (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
6307 seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
6308 (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
6309 seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
6310 (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
6311 }
6312 seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
6313 priv->dma_cap.number_rx_channel);
6314 seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
6315 priv->dma_cap.number_tx_channel);
6316 seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
6317 priv->dma_cap.number_rx_queues);
6318 seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
6319 priv->dma_cap.number_tx_queues);
6320 seq_printf(seq, "\tEnhanced descriptors: %s\n",
6321 (priv->dma_cap.enh_desc) ? "Y" : "N");
6322 seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
6323 seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
6324 seq_printf(seq, "\tHash Table Size: %lu\n", priv->dma_cap.hash_tb_sz ?
6325 (BIT(priv->dma_cap.hash_tb_sz) << 5) : 0);
6326 seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
6327 seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
6328 priv->dma_cap.pps_out_num);
6329 seq_printf(seq, "\tSafety Features: %s\n",
6330 dwxgmac_safety_feature_desc[priv->dma_cap.asp]);
6331 seq_printf(seq, "\tFlexible RX Parser: %s\n",
6332 priv->dma_cap.frpsel ? "Y" : "N");
6333 seq_printf(seq, "\tEnhanced Addressing: %d\n",
6334 priv->dma_cap.host_dma_width);
6335 seq_printf(seq, "\tReceive Side Scaling: %s\n",
6336 priv->dma_cap.rssen ? "Y" : "N");
6337 seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
6338 priv->dma_cap.vlhash ? "Y" : "N");
6339 seq_printf(seq, "\tSplit Header: %s\n",
6340 priv->dma_cap.sphen ? "Y" : "N");
6341 seq_printf(seq, "\tVLAN TX Insertion: %s\n",
6342 priv->dma_cap.vlins ? "Y" : "N");
6343 seq_printf(seq, "\tDouble VLAN: %s\n",
6344 priv->dma_cap.dvlan ? "Y" : "N");
6345 seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
6346 priv->dma_cap.l3l4fnum);
6347 seq_printf(seq, "\tARP Offloading: %s\n",
6348 priv->dma_cap.arpoffsel ? "Y" : "N");
6349 seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
6350 priv->dma_cap.estsel ? "Y" : "N");
6351 seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
6352 priv->dma_cap.fpesel ? "Y" : "N");
6353 seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
6354 priv->dma_cap.tbssel ? "Y" : "N");
6355 seq_printf(seq, "\tNumber of DMA Channels Enabled for TBS: %d\n",
6356 priv->dma_cap.tbs_ch_num);
6357 seq_printf(seq, "\tPer-Stream Filtering: %s\n",
6358 priv->dma_cap.sgfsel ? "Y" : "N");
6359 seq_printf(seq, "\tTX Timestamp FIFO Depth: %lu\n",
6360 BIT(priv->dma_cap.ttsfd) >> 1);
6361 seq_printf(seq, "\tNumber of Traffic Classes: %d\n",
6362 priv->dma_cap.numtc);
6363 seq_printf(seq, "\tDCB Feature: %s\n",
6364 priv->dma_cap.dcben ? "Y" : "N");
6365 seq_printf(seq, "\tIEEE 1588 High Word Register: %s\n",
6366 priv->dma_cap.advthword ? "Y" : "N");
6367 seq_printf(seq, "\tPTP Offload: %s\n",
6368 priv->dma_cap.ptoen ? "Y" : "N");
6369 seq_printf(seq, "\tOne-Step Timestamping: %s\n",
6370 priv->dma_cap.osten ? "Y" : "N");
6371 seq_printf(seq, "\tPriority-Based Flow Control: %s\n",
6372 priv->dma_cap.pfcen ? "Y" : "N");
6373 seq_printf(seq, "\tNumber of Flexible RX Parser Instructions: %lu\n",
6374 BIT(priv->dma_cap.frpes) << 6);
6375 seq_printf(seq, "\tNumber of Flexible RX Parser Parsable Bytes: %lu\n",
6376 BIT(priv->dma_cap.frpbs) << 6);
6377 seq_printf(seq, "\tParallel Instruction Processor Engines: %d\n",
6378 priv->dma_cap.frppipe_num);
6379 seq_printf(seq, "\tNumber of Extended VLAN Tag Filters: %lu\n",
6380 priv->dma_cap.nrvf_num ?
6381 (BIT(priv->dma_cap.nrvf_num) << 1) : 0);
6382 seq_printf(seq, "\tWidth of the Time Interval Field in GCL: %d\n",
6383 priv->dma_cap.estwid ? 4 * priv->dma_cap.estwid + 12 : 0);
6384 seq_printf(seq, "\tDepth of GCL: %lu\n",
6385 priv->dma_cap.estdep ? (BIT(priv->dma_cap.estdep) << 5) : 0);
6386 seq_printf(seq, "\tQueue/Channel-Based VLAN Tag Insertion on TX: %s\n",
6387 priv->dma_cap.cbtisel ? "Y" : "N");
6388 seq_printf(seq, "\tNumber of Auxiliary Snapshot Inputs: %d\n",
6389 priv->dma_cap.aux_snapshot_n);
6390 seq_printf(seq, "\tOne-Step Timestamping for PTP over UDP/IP: %s\n",
6391 priv->dma_cap.pou_ost_en ? "Y" : "N");
6392 seq_printf(seq, "\tEnhanced DMA: %s\n",
6393 priv->dma_cap.edma ? "Y" : "N");
6394 seq_printf(seq, "\tDifferent Descriptor Cache: %s\n",
6395 priv->dma_cap.ediffc ? "Y" : "N");
6396 seq_printf(seq, "\tVxLAN/NVGRE: %s\n",
6397 priv->dma_cap.vxn ? "Y" : "N");
6398 seq_printf(seq, "\tDebug Memory Interface: %s\n",
6399 priv->dma_cap.dbgmem ? "Y" : "N");
6400 seq_printf(seq, "\tNumber of Policing Counters: %lu\n",
6401 priv->dma_cap.pcsel ? BIT(priv->dma_cap.pcsel + 3) : 0);
6402 return 0;
6403 }
6404 DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
6405
6406 /* Use network device events to rename debugfs file entries.
6407 */
stmmac_device_event(struct notifier_block * unused,unsigned long event,void * ptr)6408 static int stmmac_device_event(struct notifier_block *unused,
6409 unsigned long event, void *ptr)
6410 {
6411 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
6412 struct stmmac_priv *priv = netdev_priv(dev);
6413
6414 if (dev->netdev_ops != &stmmac_netdev_ops)
6415 goto done;
6416
6417 switch (event) {
6418 case NETDEV_CHANGENAME:
6419 if (priv->dbgfs_dir)
6420 priv->dbgfs_dir = debugfs_rename(stmmac_fs_dir,
6421 priv->dbgfs_dir,
6422 stmmac_fs_dir,
6423 dev->name);
6424 break;
6425 }
6426 done:
6427 return NOTIFY_DONE;
6428 }
6429
6430 static struct notifier_block stmmac_notifier = {
6431 .notifier_call = stmmac_device_event,
6432 };
6433
stmmac_init_fs(struct net_device * dev)6434 static void stmmac_init_fs(struct net_device *dev)
6435 {
6436 struct stmmac_priv *priv = netdev_priv(dev);
6437
6438 rtnl_lock();
6439
6440 /* Create per netdev entries */
6441 priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
6442
6443 /* Entry to report DMA RX/TX rings */
6444 debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
6445 &stmmac_rings_status_fops);
6446
6447 /* Entry to report the DMA HW features */
6448 debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
6449 &stmmac_dma_cap_fops);
6450
6451 rtnl_unlock();
6452 }
6453
stmmac_exit_fs(struct net_device * dev)6454 static void stmmac_exit_fs(struct net_device *dev)
6455 {
6456 struct stmmac_priv *priv = netdev_priv(dev);
6457
6458 debugfs_remove_recursive(priv->dbgfs_dir);
6459 }
6460 #endif /* CONFIG_DEBUG_FS */
6461
stmmac_vid_crc32_le(__le16 vid_le)6462 static u32 stmmac_vid_crc32_le(__le16 vid_le)
6463 {
6464 unsigned char *data = (unsigned char *)&vid_le;
6465 unsigned char data_byte = 0;
6466 u32 crc = ~0x0;
6467 u32 temp = 0;
6468 int i, bits;
6469
6470 bits = get_bitmask_order(VLAN_VID_MASK);
6471 for (i = 0; i < bits; i++) {
6472 if ((i % 8) == 0)
6473 data_byte = data[i / 8];
6474
6475 temp = ((crc & 1) ^ data_byte) & 1;
6476 crc >>= 1;
6477 data_byte >>= 1;
6478
6479 if (temp)
6480 crc ^= 0xedb88320;
6481 }
6482
6483 return crc;
6484 }
6485
stmmac_vlan_update(struct stmmac_priv * priv,bool is_double)6486 static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
6487 {
6488 u32 crc, hash = 0;
6489 u16 pmatch = 0;
6490 int count = 0;
6491 u16 vid = 0;
6492
6493 for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
6494 __le16 vid_le = cpu_to_le16(vid);
6495 crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
6496 hash |= (1 << crc);
6497 count++;
6498 }
6499
6500 if (!priv->dma_cap.vlhash) {
6501 if (count > 2) /* VID = 0 always passes filter */
6502 return -EOPNOTSUPP;
6503
6504 pmatch = vid;
6505 hash = 0;
6506 }
6507
6508 return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
6509 }
6510
stmmac_vlan_rx_add_vid(struct net_device * ndev,__be16 proto,u16 vid)6511 static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
6512 {
6513 struct stmmac_priv *priv = netdev_priv(ndev);
6514 bool is_double = false;
6515 int ret;
6516
6517 ret = pm_runtime_resume_and_get(priv->device);
6518 if (ret < 0)
6519 return ret;
6520
6521 if (be16_to_cpu(proto) == ETH_P_8021AD)
6522 is_double = true;
6523
6524 set_bit(vid, priv->active_vlans);
6525 ret = stmmac_vlan_update(priv, is_double);
6526 if (ret) {
6527 clear_bit(vid, priv->active_vlans);
6528 goto err_pm_put;
6529 }
6530
6531 if (priv->hw->num_vlan) {
6532 ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6533 if (ret)
6534 goto err_pm_put;
6535 }
6536 err_pm_put:
6537 pm_runtime_put(priv->device);
6538
6539 return ret;
6540 }
6541
stmmac_vlan_rx_kill_vid(struct net_device * ndev,__be16 proto,u16 vid)6542 static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
6543 {
6544 struct stmmac_priv *priv = netdev_priv(ndev);
6545 bool is_double = false;
6546 int ret;
6547
6548 ret = pm_runtime_resume_and_get(priv->device);
6549 if (ret < 0)
6550 return ret;
6551
6552 if (be16_to_cpu(proto) == ETH_P_8021AD)
6553 is_double = true;
6554
6555 clear_bit(vid, priv->active_vlans);
6556
6557 if (priv->hw->num_vlan) {
6558 ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
6559 if (ret)
6560 goto del_vlan_error;
6561 }
6562
6563 ret = stmmac_vlan_update(priv, is_double);
6564
6565 del_vlan_error:
6566 pm_runtime_put(priv->device);
6567
6568 return ret;
6569 }
6570
stmmac_bpf(struct net_device * dev,struct netdev_bpf * bpf)6571 static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
6572 {
6573 struct stmmac_priv *priv = netdev_priv(dev);
6574
6575 switch (bpf->command) {
6576 case XDP_SETUP_PROG:
6577 return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
6578 case XDP_SETUP_XSK_POOL:
6579 return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
6580 bpf->xsk.queue_id);
6581 default:
6582 return -EOPNOTSUPP;
6583 }
6584 }
6585
stmmac_xdp_xmit(struct net_device * dev,int num_frames,struct xdp_frame ** frames,u32 flags)6586 static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
6587 struct xdp_frame **frames, u32 flags)
6588 {
6589 struct stmmac_priv *priv = netdev_priv(dev);
6590 int cpu = smp_processor_id();
6591 struct netdev_queue *nq;
6592 int i, nxmit = 0;
6593 int queue;
6594
6595 if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
6596 return -ENETDOWN;
6597
6598 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
6599 return -EINVAL;
6600
6601 queue = stmmac_xdp_get_tx_queue(priv, cpu);
6602 nq = netdev_get_tx_queue(priv->dev, queue);
6603
6604 __netif_tx_lock(nq, cpu);
6605 /* Avoids TX time-out as we are sharing with slow path */
6606 txq_trans_cond_update(nq);
6607
6608 for (i = 0; i < num_frames; i++) {
6609 int res;
6610
6611 res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
6612 if (res == STMMAC_XDP_CONSUMED)
6613 break;
6614
6615 nxmit++;
6616 }
6617
6618 if (flags & XDP_XMIT_FLUSH) {
6619 stmmac_flush_tx_descriptors(priv, queue);
6620 stmmac_tx_timer_arm(priv, queue);
6621 }
6622
6623 __netif_tx_unlock(nq);
6624
6625 return nxmit;
6626 }
6627
stmmac_disable_rx_queue(struct stmmac_priv * priv,u32 queue)6628 void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
6629 {
6630 struct stmmac_channel *ch = &priv->channel[queue];
6631 unsigned long flags;
6632
6633 spin_lock_irqsave(&ch->lock, flags);
6634 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6635 spin_unlock_irqrestore(&ch->lock, flags);
6636
6637 stmmac_stop_rx_dma(priv, queue);
6638 __free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6639 }
6640
stmmac_enable_rx_queue(struct stmmac_priv * priv,u32 queue)6641 void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
6642 {
6643 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
6644 struct stmmac_channel *ch = &priv->channel[queue];
6645 unsigned long flags;
6646 u32 buf_size;
6647 int ret;
6648
6649 ret = __alloc_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6650 if (ret) {
6651 netdev_err(priv->dev, "Failed to alloc RX desc.\n");
6652 return;
6653 }
6654
6655 ret = __init_dma_rx_desc_rings(priv, &priv->dma_conf, queue, GFP_KERNEL);
6656 if (ret) {
6657 __free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
6658 netdev_err(priv->dev, "Failed to init RX desc.\n");
6659 return;
6660 }
6661
6662 stmmac_reset_rx_queue(priv, queue);
6663 stmmac_clear_rx_descriptors(priv, &priv->dma_conf, queue);
6664
6665 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6666 rx_q->dma_rx_phy, rx_q->queue_index);
6667
6668 rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
6669 sizeof(struct dma_desc));
6670 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6671 rx_q->rx_tail_addr, rx_q->queue_index);
6672
6673 if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6674 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6675 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6676 buf_size,
6677 rx_q->queue_index);
6678 } else {
6679 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6680 priv->dma_conf.dma_buf_sz,
6681 rx_q->queue_index);
6682 }
6683
6684 stmmac_start_rx_dma(priv, queue);
6685
6686 spin_lock_irqsave(&ch->lock, flags);
6687 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
6688 spin_unlock_irqrestore(&ch->lock, flags);
6689 }
6690
stmmac_disable_tx_queue(struct stmmac_priv * priv,u32 queue)6691 void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
6692 {
6693 struct stmmac_channel *ch = &priv->channel[queue];
6694 unsigned long flags;
6695
6696 spin_lock_irqsave(&ch->lock, flags);
6697 stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6698 spin_unlock_irqrestore(&ch->lock, flags);
6699
6700 stmmac_stop_tx_dma(priv, queue);
6701 __free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6702 }
6703
stmmac_enable_tx_queue(struct stmmac_priv * priv,u32 queue)6704 void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
6705 {
6706 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
6707 struct stmmac_channel *ch = &priv->channel[queue];
6708 unsigned long flags;
6709 int ret;
6710
6711 ret = __alloc_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6712 if (ret) {
6713 netdev_err(priv->dev, "Failed to alloc TX desc.\n");
6714 return;
6715 }
6716
6717 ret = __init_dma_tx_desc_rings(priv, &priv->dma_conf, queue);
6718 if (ret) {
6719 __free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
6720 netdev_err(priv->dev, "Failed to init TX desc.\n");
6721 return;
6722 }
6723
6724 stmmac_reset_tx_queue(priv, queue);
6725 stmmac_clear_tx_descriptors(priv, &priv->dma_conf, queue);
6726
6727 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6728 tx_q->dma_tx_phy, tx_q->queue_index);
6729
6730 if (tx_q->tbs & STMMAC_TBS_AVAIL)
6731 stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
6732
6733 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6734 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6735 tx_q->tx_tail_addr, tx_q->queue_index);
6736
6737 stmmac_start_tx_dma(priv, queue);
6738
6739 spin_lock_irqsave(&ch->lock, flags);
6740 stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
6741 spin_unlock_irqrestore(&ch->lock, flags);
6742 }
6743
stmmac_xdp_release(struct net_device * dev)6744 void stmmac_xdp_release(struct net_device *dev)
6745 {
6746 struct stmmac_priv *priv = netdev_priv(dev);
6747 u32 chan;
6748
6749 /* Ensure tx function is not running */
6750 netif_tx_disable(dev);
6751
6752 /* Disable NAPI process */
6753 stmmac_disable_all_queues(priv);
6754
6755 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6756 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6757
6758 /* Free the IRQ lines */
6759 stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
6760
6761 /* Stop TX/RX DMA channels */
6762 stmmac_stop_all_dma(priv);
6763
6764 /* Release and free the Rx/Tx resources */
6765 free_dma_desc_resources(priv, &priv->dma_conf);
6766
6767 /* Disable the MAC Rx/Tx */
6768 stmmac_mac_set(priv, priv->ioaddr, false);
6769
6770 /* set trans_start so we don't get spurious
6771 * watchdogs during reset
6772 */
6773 netif_trans_update(dev);
6774 netif_carrier_off(dev);
6775 }
6776
stmmac_xdp_open(struct net_device * dev)6777 int stmmac_xdp_open(struct net_device *dev)
6778 {
6779 struct stmmac_priv *priv = netdev_priv(dev);
6780 u32 rx_cnt = priv->plat->rx_queues_to_use;
6781 u32 tx_cnt = priv->plat->tx_queues_to_use;
6782 u32 dma_csr_ch = max(rx_cnt, tx_cnt);
6783 struct stmmac_rx_queue *rx_q;
6784 struct stmmac_tx_queue *tx_q;
6785 u32 buf_size;
6786 bool sph_en;
6787 u32 chan;
6788 int ret;
6789
6790 ret = alloc_dma_desc_resources(priv, &priv->dma_conf);
6791 if (ret < 0) {
6792 netdev_err(dev, "%s: DMA descriptors allocation failed\n",
6793 __func__);
6794 goto dma_desc_error;
6795 }
6796
6797 ret = init_dma_desc_rings(dev, &priv->dma_conf, GFP_KERNEL);
6798 if (ret < 0) {
6799 netdev_err(dev, "%s: DMA descriptors initialization failed\n",
6800 __func__);
6801 goto init_error;
6802 }
6803
6804 stmmac_reset_queues_param(priv);
6805
6806 /* DMA CSR Channel configuration */
6807 for (chan = 0; chan < dma_csr_ch; chan++) {
6808 stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
6809 stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
6810 }
6811
6812 /* Adjust Split header */
6813 sph_en = (priv->hw->rx_csum > 0) && priv->sph;
6814
6815 /* DMA RX Channel Configuration */
6816 for (chan = 0; chan < rx_cnt; chan++) {
6817 rx_q = &priv->dma_conf.rx_queue[chan];
6818
6819 stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6820 rx_q->dma_rx_phy, chan);
6821
6822 rx_q->rx_tail_addr = rx_q->dma_rx_phy +
6823 (rx_q->buf_alloc_num *
6824 sizeof(struct dma_desc));
6825 stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
6826 rx_q->rx_tail_addr, chan);
6827
6828 if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
6829 buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
6830 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6831 buf_size,
6832 rx_q->queue_index);
6833 } else {
6834 stmmac_set_dma_bfsize(priv, priv->ioaddr,
6835 priv->dma_conf.dma_buf_sz,
6836 rx_q->queue_index);
6837 }
6838
6839 stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
6840 }
6841
6842 /* DMA TX Channel Configuration */
6843 for (chan = 0; chan < tx_cnt; chan++) {
6844 tx_q = &priv->dma_conf.tx_queue[chan];
6845
6846 stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
6847 tx_q->dma_tx_phy, chan);
6848
6849 tx_q->tx_tail_addr = tx_q->dma_tx_phy;
6850 stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
6851 tx_q->tx_tail_addr, chan);
6852
6853 hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6854 tx_q->txtimer.function = stmmac_tx_timer;
6855 }
6856
6857 /* Enable the MAC Rx/Tx */
6858 stmmac_mac_set(priv, priv->ioaddr, true);
6859
6860 /* Start Rx & Tx DMA Channels */
6861 stmmac_start_all_dma(priv);
6862
6863 ret = stmmac_request_irq(dev);
6864 if (ret)
6865 goto irq_error;
6866
6867 /* Enable NAPI process*/
6868 stmmac_enable_all_queues(priv);
6869 netif_carrier_on(dev);
6870 netif_tx_start_all_queues(dev);
6871 stmmac_enable_all_dma_irq(priv);
6872
6873 return 0;
6874
6875 irq_error:
6876 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
6877 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
6878
6879 stmmac_hw_teardown(dev);
6880 init_error:
6881 free_dma_desc_resources(priv, &priv->dma_conf);
6882 dma_desc_error:
6883 return ret;
6884 }
6885
stmmac_xsk_wakeup(struct net_device * dev,u32 queue,u32 flags)6886 int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
6887 {
6888 struct stmmac_priv *priv = netdev_priv(dev);
6889 struct stmmac_rx_queue *rx_q;
6890 struct stmmac_tx_queue *tx_q;
6891 struct stmmac_channel *ch;
6892
6893 if (test_bit(STMMAC_DOWN, &priv->state) ||
6894 !netif_carrier_ok(priv->dev))
6895 return -ENETDOWN;
6896
6897 if (!stmmac_xdp_is_enabled(priv))
6898 return -EINVAL;
6899
6900 if (queue >= priv->plat->rx_queues_to_use ||
6901 queue >= priv->plat->tx_queues_to_use)
6902 return -EINVAL;
6903
6904 rx_q = &priv->dma_conf.rx_queue[queue];
6905 tx_q = &priv->dma_conf.tx_queue[queue];
6906 ch = &priv->channel[queue];
6907
6908 if (!rx_q->xsk_pool && !tx_q->xsk_pool)
6909 return -EINVAL;
6910
6911 if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
6912 /* EQoS does not have per-DMA channel SW interrupt,
6913 * so we schedule RX Napi straight-away.
6914 */
6915 if (likely(napi_schedule_prep(&ch->rxtx_napi)))
6916 __napi_schedule(&ch->rxtx_napi);
6917 }
6918
6919 return 0;
6920 }
6921
stmmac_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats)6922 static void stmmac_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
6923 {
6924 struct stmmac_priv *priv = netdev_priv(dev);
6925 u32 tx_cnt = priv->plat->tx_queues_to_use;
6926 u32 rx_cnt = priv->plat->rx_queues_to_use;
6927 unsigned int start;
6928 int q;
6929
6930 for (q = 0; q < tx_cnt; q++) {
6931 struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[q];
6932 u64 tx_packets;
6933 u64 tx_bytes;
6934
6935 do {
6936 start = u64_stats_fetch_begin(&txq_stats->q_syncp);
6937 tx_bytes = u64_stats_read(&txq_stats->q.tx_bytes);
6938 } while (u64_stats_fetch_retry(&txq_stats->q_syncp, start));
6939 do {
6940 start = u64_stats_fetch_begin(&txq_stats->napi_syncp);
6941 tx_packets = u64_stats_read(&txq_stats->napi.tx_packets);
6942 } while (u64_stats_fetch_retry(&txq_stats->napi_syncp, start));
6943
6944 stats->tx_packets += tx_packets;
6945 stats->tx_bytes += tx_bytes;
6946 }
6947
6948 for (q = 0; q < rx_cnt; q++) {
6949 struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[q];
6950 u64 rx_packets;
6951 u64 rx_bytes;
6952
6953 do {
6954 start = u64_stats_fetch_begin(&rxq_stats->napi_syncp);
6955 rx_packets = u64_stats_read(&rxq_stats->napi.rx_packets);
6956 rx_bytes = u64_stats_read(&rxq_stats->napi.rx_bytes);
6957 } while (u64_stats_fetch_retry(&rxq_stats->napi_syncp, start));
6958
6959 stats->rx_packets += rx_packets;
6960 stats->rx_bytes += rx_bytes;
6961 }
6962
6963 stats->rx_dropped = priv->xstats.rx_dropped;
6964 stats->rx_errors = priv->xstats.rx_errors;
6965 stats->tx_dropped = priv->xstats.tx_dropped;
6966 stats->tx_errors = priv->xstats.tx_errors;
6967 stats->tx_carrier_errors = priv->xstats.tx_losscarrier + priv->xstats.tx_carrier;
6968 stats->collisions = priv->xstats.tx_collision + priv->xstats.rx_collision;
6969 stats->rx_length_errors = priv->xstats.rx_length;
6970 stats->rx_crc_errors = priv->xstats.rx_crc_errors;
6971 stats->rx_over_errors = priv->xstats.rx_overflow_cntr;
6972 stats->rx_missed_errors = priv->xstats.rx_missed_cntr;
6973 }
6974
6975 static const struct net_device_ops stmmac_netdev_ops = {
6976 .ndo_open = stmmac_open,
6977 .ndo_start_xmit = stmmac_xmit,
6978 .ndo_stop = stmmac_release,
6979 .ndo_change_mtu = stmmac_change_mtu,
6980 .ndo_fix_features = stmmac_fix_features,
6981 .ndo_set_features = stmmac_set_features,
6982 .ndo_set_rx_mode = stmmac_set_rx_mode,
6983 .ndo_tx_timeout = stmmac_tx_timeout,
6984 .ndo_eth_ioctl = stmmac_ioctl,
6985 .ndo_get_stats64 = stmmac_get_stats64,
6986 .ndo_setup_tc = stmmac_setup_tc,
6987 .ndo_select_queue = stmmac_select_queue,
6988 .ndo_set_mac_address = stmmac_set_mac_address,
6989 .ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
6990 .ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
6991 .ndo_bpf = stmmac_bpf,
6992 .ndo_xdp_xmit = stmmac_xdp_xmit,
6993 .ndo_xsk_wakeup = stmmac_xsk_wakeup,
6994 };
6995
stmmac_reset_subtask(struct stmmac_priv * priv)6996 static void stmmac_reset_subtask(struct stmmac_priv *priv)
6997 {
6998 if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
6999 return;
7000 if (test_bit(STMMAC_DOWN, &priv->state))
7001 return;
7002
7003 netdev_err(priv->dev, "Reset adapter.\n");
7004
7005 rtnl_lock();
7006 netif_trans_update(priv->dev);
7007 while (test_and_set_bit(STMMAC_RESETING, &priv->state))
7008 usleep_range(1000, 2000);
7009
7010 set_bit(STMMAC_DOWN, &priv->state);
7011 dev_close(priv->dev);
7012 dev_open(priv->dev, NULL);
7013 clear_bit(STMMAC_DOWN, &priv->state);
7014 clear_bit(STMMAC_RESETING, &priv->state);
7015 rtnl_unlock();
7016 }
7017
stmmac_service_task(struct work_struct * work)7018 static void stmmac_service_task(struct work_struct *work)
7019 {
7020 struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
7021 service_task);
7022
7023 stmmac_reset_subtask(priv);
7024 clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
7025 }
7026
7027 /**
7028 * stmmac_hw_init - Init the MAC device
7029 * @priv: driver private structure
7030 * Description: this function is to configure the MAC device according to
7031 * some platform parameters or the HW capability register. It prepares the
7032 * driver to use either ring or chain modes and to setup either enhanced or
7033 * normal descriptors.
7034 */
stmmac_hw_init(struct stmmac_priv * priv)7035 static int stmmac_hw_init(struct stmmac_priv *priv)
7036 {
7037 int ret;
7038
7039 /* dwmac-sun8i only work in chain mode */
7040 if (priv->plat->flags & STMMAC_FLAG_HAS_SUN8I)
7041 chain_mode = 1;
7042 priv->chain_mode = chain_mode;
7043
7044 /* Initialize HW Interface */
7045 ret = stmmac_hwif_init(priv);
7046 if (ret)
7047 return ret;
7048
7049 /* Get the HW capability (new GMAC newer than 3.50a) */
7050 priv->hw_cap_support = stmmac_get_hw_features(priv);
7051 if (priv->hw_cap_support) {
7052 dev_info(priv->device, "DMA HW capability register supported\n");
7053
7054 /* We can override some gmac/dma configuration fields: e.g.
7055 * enh_desc, tx_coe (e.g. that are passed through the
7056 * platform) with the values from the HW capability
7057 * register (if supported).
7058 */
7059 priv->plat->enh_desc = priv->dma_cap.enh_desc;
7060 priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
7061 !(priv->plat->flags & STMMAC_FLAG_USE_PHY_WOL);
7062 priv->hw->pmt = priv->plat->pmt;
7063 if (priv->dma_cap.hash_tb_sz) {
7064 priv->hw->multicast_filter_bins =
7065 (BIT(priv->dma_cap.hash_tb_sz) << 5);
7066 priv->hw->mcast_bits_log2 =
7067 ilog2(priv->hw->multicast_filter_bins);
7068 }
7069
7070 /* TXCOE doesn't work in thresh DMA mode */
7071 if (priv->plat->force_thresh_dma_mode)
7072 priv->plat->tx_coe = 0;
7073 else
7074 priv->plat->tx_coe = priv->dma_cap.tx_coe;
7075
7076 /* In case of GMAC4 rx_coe is from HW cap register. */
7077 priv->plat->rx_coe = priv->dma_cap.rx_coe;
7078
7079 if (priv->dma_cap.rx_coe_type2)
7080 priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
7081 else if (priv->dma_cap.rx_coe_type1)
7082 priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
7083
7084 } else {
7085 dev_info(priv->device, "No HW DMA feature register supported\n");
7086 }
7087
7088 if (priv->plat->rx_coe) {
7089 priv->hw->rx_csum = priv->plat->rx_coe;
7090 dev_info(priv->device, "RX Checksum Offload Engine supported\n");
7091 if (priv->synopsys_id < DWMAC_CORE_4_00)
7092 dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
7093 }
7094 if (priv->plat->tx_coe)
7095 dev_info(priv->device, "TX Checksum insertion supported\n");
7096
7097 if (priv->plat->pmt) {
7098 dev_info(priv->device, "Wake-Up On Lan supported\n");
7099 device_set_wakeup_capable(priv->device, 1);
7100 }
7101
7102 if (priv->dma_cap.tsoen)
7103 dev_info(priv->device, "TSO supported\n");
7104
7105 priv->hw->vlan_fail_q_en =
7106 (priv->plat->flags & STMMAC_FLAG_VLAN_FAIL_Q_EN);
7107 priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
7108
7109 /* Run HW quirks, if any */
7110 if (priv->hwif_quirks) {
7111 ret = priv->hwif_quirks(priv);
7112 if (ret)
7113 return ret;
7114 }
7115
7116 /* Rx Watchdog is available in the COREs newer than the 3.40.
7117 * In some case, for example on bugged HW this feature
7118 * has to be disable and this can be done by passing the
7119 * riwt_off field from the platform.
7120 */
7121 if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
7122 (priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
7123 priv->use_riwt = 1;
7124 dev_info(priv->device,
7125 "Enable RX Mitigation via HW Watchdog Timer\n");
7126 }
7127
7128 return 0;
7129 }
7130
stmmac_napi_add(struct net_device * dev)7131 static void stmmac_napi_add(struct net_device *dev)
7132 {
7133 struct stmmac_priv *priv = netdev_priv(dev);
7134 u32 queue, maxq;
7135
7136 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
7137
7138 for (queue = 0; queue < maxq; queue++) {
7139 struct stmmac_channel *ch = &priv->channel[queue];
7140
7141 ch->priv_data = priv;
7142 ch->index = queue;
7143 spin_lock_init(&ch->lock);
7144
7145 if (queue < priv->plat->rx_queues_to_use) {
7146 netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx);
7147 }
7148 if (queue < priv->plat->tx_queues_to_use) {
7149 netif_napi_add_tx(dev, &ch->tx_napi,
7150 stmmac_napi_poll_tx);
7151 }
7152 if (queue < priv->plat->rx_queues_to_use &&
7153 queue < priv->plat->tx_queues_to_use) {
7154 netif_napi_add(dev, &ch->rxtx_napi,
7155 stmmac_napi_poll_rxtx);
7156 }
7157 }
7158 }
7159
stmmac_napi_del(struct net_device * dev)7160 static void stmmac_napi_del(struct net_device *dev)
7161 {
7162 struct stmmac_priv *priv = netdev_priv(dev);
7163 u32 queue, maxq;
7164
7165 maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
7166
7167 for (queue = 0; queue < maxq; queue++) {
7168 struct stmmac_channel *ch = &priv->channel[queue];
7169
7170 if (queue < priv->plat->rx_queues_to_use)
7171 netif_napi_del(&ch->rx_napi);
7172 if (queue < priv->plat->tx_queues_to_use)
7173 netif_napi_del(&ch->tx_napi);
7174 if (queue < priv->plat->rx_queues_to_use &&
7175 queue < priv->plat->tx_queues_to_use) {
7176 netif_napi_del(&ch->rxtx_napi);
7177 }
7178 }
7179 }
7180
stmmac_reinit_queues(struct net_device * dev,u32 rx_cnt,u32 tx_cnt)7181 int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
7182 {
7183 struct stmmac_priv *priv = netdev_priv(dev);
7184 int ret = 0, i;
7185 int max_speed;
7186
7187 if (netif_running(dev))
7188 stmmac_release(dev);
7189
7190 stmmac_napi_del(dev);
7191
7192 priv->plat->rx_queues_to_use = rx_cnt;
7193 priv->plat->tx_queues_to_use = tx_cnt;
7194 if (!netif_is_rxfh_configured(dev))
7195 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7196 priv->rss.table[i] = ethtool_rxfh_indir_default(i,
7197 rx_cnt);
7198
7199 stmmac_mac_phylink_get_caps(priv);
7200
7201 priv->phylink_config.mac_capabilities = priv->hw->link.caps;
7202
7203 max_speed = priv->plat->max_speed;
7204 if (max_speed)
7205 phylink_limit_mac_speed(&priv->phylink_config, max_speed);
7206
7207 stmmac_napi_add(dev);
7208
7209 if (netif_running(dev))
7210 ret = stmmac_open(dev);
7211
7212 return ret;
7213 }
7214
stmmac_reinit_ringparam(struct net_device * dev,u32 rx_size,u32 tx_size)7215 int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
7216 {
7217 struct stmmac_priv *priv = netdev_priv(dev);
7218 int ret = 0;
7219
7220 if (netif_running(dev))
7221 stmmac_release(dev);
7222
7223 priv->dma_conf.dma_rx_size = rx_size;
7224 priv->dma_conf.dma_tx_size = tx_size;
7225
7226 if (netif_running(dev))
7227 ret = stmmac_open(dev);
7228
7229 return ret;
7230 }
7231
7232 #define SEND_VERIFY_MPAKCET_FMT "Send Verify mPacket lo_state=%d lp_state=%d\n"
stmmac_fpe_lp_task(struct work_struct * work)7233 static void stmmac_fpe_lp_task(struct work_struct *work)
7234 {
7235 struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
7236 fpe_task);
7237 struct stmmac_fpe_cfg *fpe_cfg = priv->plat->fpe_cfg;
7238 enum stmmac_fpe_state *lo_state = &fpe_cfg->lo_fpe_state;
7239 enum stmmac_fpe_state *lp_state = &fpe_cfg->lp_fpe_state;
7240 bool *hs_enable = &fpe_cfg->hs_enable;
7241 bool *enable = &fpe_cfg->enable;
7242 int retries = 20;
7243
7244 while (retries-- > 0) {
7245 /* Bail out immediately if FPE handshake is OFF */
7246 if (*lo_state == FPE_STATE_OFF || !*hs_enable)
7247 break;
7248
7249 if (*lo_state == FPE_STATE_ENTERING_ON &&
7250 *lp_state == FPE_STATE_ENTERING_ON) {
7251 stmmac_fpe_configure(priv, priv->ioaddr,
7252 fpe_cfg,
7253 priv->plat->tx_queues_to_use,
7254 priv->plat->rx_queues_to_use,
7255 *enable);
7256
7257 netdev_info(priv->dev, "configured FPE\n");
7258
7259 *lo_state = FPE_STATE_ON;
7260 *lp_state = FPE_STATE_ON;
7261 netdev_info(priv->dev, "!!! BOTH FPE stations ON\n");
7262 break;
7263 }
7264
7265 if ((*lo_state == FPE_STATE_CAPABLE ||
7266 *lo_state == FPE_STATE_ENTERING_ON) &&
7267 *lp_state != FPE_STATE_ON) {
7268 netdev_info(priv->dev, SEND_VERIFY_MPAKCET_FMT,
7269 *lo_state, *lp_state);
7270 stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7271 fpe_cfg,
7272 MPACKET_VERIFY);
7273 }
7274 /* Sleep then retry */
7275 msleep(500);
7276 }
7277
7278 clear_bit(__FPE_TASK_SCHED, &priv->fpe_task_state);
7279 }
7280
stmmac_fpe_handshake(struct stmmac_priv * priv,bool enable)7281 void stmmac_fpe_handshake(struct stmmac_priv *priv, bool enable)
7282 {
7283 if (priv->plat->fpe_cfg->hs_enable != enable) {
7284 if (enable) {
7285 stmmac_fpe_send_mpacket(priv, priv->ioaddr,
7286 priv->plat->fpe_cfg,
7287 MPACKET_VERIFY);
7288 } else {
7289 priv->plat->fpe_cfg->lo_fpe_state = FPE_STATE_OFF;
7290 priv->plat->fpe_cfg->lp_fpe_state = FPE_STATE_OFF;
7291 }
7292
7293 priv->plat->fpe_cfg->hs_enable = enable;
7294 }
7295 }
7296
stmmac_xdp_rx_timestamp(const struct xdp_md * _ctx,u64 * timestamp)7297 static int stmmac_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
7298 {
7299 const struct stmmac_xdp_buff *ctx = (void *)_ctx;
7300 struct dma_desc *desc_contains_ts = ctx->desc;
7301 struct stmmac_priv *priv = ctx->priv;
7302 struct dma_desc *ndesc = ctx->ndesc;
7303 struct dma_desc *desc = ctx->desc;
7304 u64 ns = 0;
7305
7306 if (!priv->hwts_rx_en)
7307 return -ENODATA;
7308
7309 /* For GMAC4, the valid timestamp is from CTX next desc. */
7310 if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
7311 desc_contains_ts = ndesc;
7312
7313 /* Check if timestamp is available */
7314 if (stmmac_get_rx_timestamp_status(priv, desc, ndesc, priv->adv_ts)) {
7315 stmmac_get_timestamp(priv, desc_contains_ts, priv->adv_ts, &ns);
7316 ns -= priv->plat->cdc_error_adj;
7317 *timestamp = ns_to_ktime(ns);
7318 return 0;
7319 }
7320
7321 return -ENODATA;
7322 }
7323
7324 static const struct xdp_metadata_ops stmmac_xdp_metadata_ops = {
7325 .xmo_rx_timestamp = stmmac_xdp_rx_timestamp,
7326 };
7327
7328 /**
7329 * stmmac_dvr_probe
7330 * @device: device pointer
7331 * @plat_dat: platform data pointer
7332 * @res: stmmac resource pointer
7333 * Description: this is the main probe function used to
7334 * call the alloc_etherdev, allocate the priv structure.
7335 * Return:
7336 * returns 0 on success, otherwise errno.
7337 */
stmmac_dvr_probe(struct device * device,struct plat_stmmacenet_data * plat_dat,struct stmmac_resources * res)7338 int stmmac_dvr_probe(struct device *device,
7339 struct plat_stmmacenet_data *plat_dat,
7340 struct stmmac_resources *res)
7341 {
7342 struct net_device *ndev = NULL;
7343 struct stmmac_priv *priv;
7344 u32 rxq;
7345 int i, ret = 0;
7346
7347 ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
7348 MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
7349 if (!ndev)
7350 return -ENOMEM;
7351
7352 SET_NETDEV_DEV(ndev, device);
7353
7354 priv = netdev_priv(ndev);
7355 priv->device = device;
7356 priv->dev = ndev;
7357
7358 for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
7359 u64_stats_init(&priv->xstats.rxq_stats[i].napi_syncp);
7360 for (i = 0; i < MTL_MAX_TX_QUEUES; i++) {
7361 u64_stats_init(&priv->xstats.txq_stats[i].q_syncp);
7362 u64_stats_init(&priv->xstats.txq_stats[i].napi_syncp);
7363 }
7364
7365 priv->xstats.pcpu_stats =
7366 devm_netdev_alloc_pcpu_stats(device, struct stmmac_pcpu_stats);
7367 if (!priv->xstats.pcpu_stats)
7368 return -ENOMEM;
7369
7370 stmmac_set_ethtool_ops(ndev);
7371 priv->pause = pause;
7372 priv->plat = plat_dat;
7373 priv->ioaddr = res->addr;
7374 priv->dev->base_addr = (unsigned long)res->addr;
7375 priv->plat->dma_cfg->multi_msi_en =
7376 (priv->plat->flags & STMMAC_FLAG_MULTI_MSI_EN);
7377
7378 priv->dev->irq = res->irq;
7379 priv->wol_irq = res->wol_irq;
7380 priv->lpi_irq = res->lpi_irq;
7381 priv->sfty_ce_irq = res->sfty_ce_irq;
7382 priv->sfty_ue_irq = res->sfty_ue_irq;
7383 for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
7384 priv->rx_irq[i] = res->rx_irq[i];
7385 for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
7386 priv->tx_irq[i] = res->tx_irq[i];
7387
7388 if (!is_zero_ether_addr(res->mac))
7389 eth_hw_addr_set(priv->dev, res->mac);
7390
7391 dev_set_drvdata(device, priv->dev);
7392
7393 /* Verify driver arguments */
7394 stmmac_verify_args();
7395
7396 priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
7397 if (!priv->af_xdp_zc_qps)
7398 return -ENOMEM;
7399
7400 /* Allocate workqueue */
7401 priv->wq = create_singlethread_workqueue("stmmac_wq");
7402 if (!priv->wq) {
7403 dev_err(priv->device, "failed to create workqueue\n");
7404 ret = -ENOMEM;
7405 goto error_wq_init;
7406 }
7407
7408 INIT_WORK(&priv->service_task, stmmac_service_task);
7409
7410 /* Initialize Link Partner FPE workqueue */
7411 INIT_WORK(&priv->fpe_task, stmmac_fpe_lp_task);
7412
7413 /* Override with kernel parameters if supplied XXX CRS XXX
7414 * this needs to have multiple instances
7415 */
7416 if ((phyaddr >= 0) && (phyaddr <= 31))
7417 priv->plat->phy_addr = phyaddr;
7418
7419 if (priv->plat->stmmac_rst) {
7420 ret = reset_control_assert(priv->plat->stmmac_rst);
7421 reset_control_deassert(priv->plat->stmmac_rst);
7422 /* Some reset controllers have only reset callback instead of
7423 * assert + deassert callbacks pair.
7424 */
7425 if (ret == -ENOTSUPP)
7426 reset_control_reset(priv->plat->stmmac_rst);
7427 }
7428
7429 ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
7430 if (ret == -ENOTSUPP)
7431 dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
7432 ERR_PTR(ret));
7433
7434 /* Wait a bit for the reset to take effect */
7435 udelay(10);
7436
7437 /* Init MAC and get the capabilities */
7438 ret = stmmac_hw_init(priv);
7439 if (ret)
7440 goto error_hw_init;
7441
7442 /* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
7443 */
7444 if (priv->synopsys_id < DWMAC_CORE_5_20)
7445 priv->plat->dma_cfg->dche = false;
7446
7447 stmmac_check_ether_addr(priv);
7448
7449 ndev->netdev_ops = &stmmac_netdev_ops;
7450
7451 ndev->xdp_metadata_ops = &stmmac_xdp_metadata_ops;
7452
7453 ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
7454 NETIF_F_RXCSUM;
7455 ndev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
7456 NETDEV_XDP_ACT_XSK_ZEROCOPY;
7457
7458 ret = stmmac_tc_init(priv, priv);
7459 if (!ret) {
7460 ndev->hw_features |= NETIF_F_HW_TC;
7461 }
7462
7463 if ((priv->plat->flags & STMMAC_FLAG_TSO_EN) && (priv->dma_cap.tsoen)) {
7464 ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
7465 if (priv->plat->has_gmac4)
7466 ndev->hw_features |= NETIF_F_GSO_UDP_L4;
7467 priv->tso = true;
7468 dev_info(priv->device, "TSO feature enabled\n");
7469 }
7470
7471 if (priv->dma_cap.sphen &&
7472 !(priv->plat->flags & STMMAC_FLAG_SPH_DISABLE)) {
7473 ndev->hw_features |= NETIF_F_GRO;
7474 priv->sph_cap = true;
7475 priv->sph = priv->sph_cap;
7476 dev_info(priv->device, "SPH feature enabled\n");
7477 }
7478
7479 /* Ideally our host DMA address width is the same as for the
7480 * device. However, it may differ and then we have to use our
7481 * host DMA width for allocation and the device DMA width for
7482 * register handling.
7483 */
7484 if (priv->plat->host_dma_width)
7485 priv->dma_cap.host_dma_width = priv->plat->host_dma_width;
7486 else
7487 priv->dma_cap.host_dma_width = priv->dma_cap.addr64;
7488
7489 if (priv->dma_cap.host_dma_width) {
7490 ret = dma_set_mask_and_coherent(device,
7491 DMA_BIT_MASK(priv->dma_cap.host_dma_width));
7492 if (!ret) {
7493 dev_info(priv->device, "Using %d/%d bits DMA host/device width\n",
7494 priv->dma_cap.host_dma_width, priv->dma_cap.addr64);
7495
7496 /*
7497 * If more than 32 bits can be addressed, make sure to
7498 * enable enhanced addressing mode.
7499 */
7500 if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
7501 priv->plat->dma_cfg->eame = true;
7502 } else {
7503 ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
7504 if (ret) {
7505 dev_err(priv->device, "Failed to set DMA Mask\n");
7506 goto error_hw_init;
7507 }
7508
7509 priv->dma_cap.host_dma_width = 32;
7510 }
7511 }
7512
7513 ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
7514 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
7515 #ifdef STMMAC_VLAN_TAG_USED
7516 /* Both mac100 and gmac support receive VLAN tag detection */
7517 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
7518 if (priv->dma_cap.vlhash) {
7519 ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7520 ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
7521 }
7522 if (priv->dma_cap.vlins) {
7523 ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
7524 if (priv->dma_cap.dvlan)
7525 ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
7526 }
7527 #endif
7528 priv->msg_enable = netif_msg_init(debug, default_msg_level);
7529
7530 priv->xstats.threshold = tc;
7531
7532 /* Initialize RSS */
7533 rxq = priv->plat->rx_queues_to_use;
7534 netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
7535 for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
7536 priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
7537
7538 if (priv->dma_cap.rssen && priv->plat->rss_en)
7539 ndev->features |= NETIF_F_RXHASH;
7540
7541 ndev->vlan_features |= ndev->features;
7542 /* TSO doesn't work on VLANs yet */
7543 ndev->vlan_features &= ~NETIF_F_TSO;
7544
7545 /* MTU range: 46 - hw-specific max */
7546 ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
7547 if (priv->plat->has_xgmac)
7548 ndev->max_mtu = XGMAC_JUMBO_LEN;
7549 else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
7550 ndev->max_mtu = JUMBO_LEN;
7551 else
7552 ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
7553 /* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
7554 * as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
7555 */
7556 if ((priv->plat->maxmtu < ndev->max_mtu) &&
7557 (priv->plat->maxmtu >= ndev->min_mtu))
7558 ndev->max_mtu = priv->plat->maxmtu;
7559 else if (priv->plat->maxmtu < ndev->min_mtu)
7560 dev_warn(priv->device,
7561 "%s: warning: maxmtu having invalid value (%d)\n",
7562 __func__, priv->plat->maxmtu);
7563
7564 if (flow_ctrl)
7565 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
7566
7567 ndev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
7568
7569 /* Setup channels NAPI */
7570 stmmac_napi_add(ndev);
7571
7572 mutex_init(&priv->lock);
7573
7574 /* If a specific clk_csr value is passed from the platform
7575 * this means that the CSR Clock Range selection cannot be
7576 * changed at run-time and it is fixed. Viceversa the driver'll try to
7577 * set the MDC clock dynamically according to the csr actual
7578 * clock input.
7579 */
7580 if (priv->plat->clk_csr >= 0)
7581 priv->clk_csr = priv->plat->clk_csr;
7582 else
7583 stmmac_clk_csr_set(priv);
7584
7585 stmmac_check_pcs_mode(priv);
7586
7587 pm_runtime_get_noresume(device);
7588 pm_runtime_set_active(device);
7589 if (!pm_runtime_enabled(device))
7590 pm_runtime_enable(device);
7591
7592 if (priv->hw->pcs != STMMAC_PCS_TBI &&
7593 priv->hw->pcs != STMMAC_PCS_RTBI) {
7594 /* MDIO bus Registration */
7595 ret = stmmac_mdio_register(ndev);
7596 if (ret < 0) {
7597 dev_err_probe(priv->device, ret,
7598 "%s: MDIO bus (id: %d) registration failed\n",
7599 __func__, priv->plat->bus_id);
7600 goto error_mdio_register;
7601 }
7602 }
7603
7604 if (priv->plat->speed_mode_2500)
7605 priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
7606
7607 if (priv->plat->mdio_bus_data && priv->plat->mdio_bus_data->has_xpcs) {
7608 ret = stmmac_xpcs_setup(priv->mii);
7609 if (ret)
7610 goto error_xpcs_setup;
7611 }
7612
7613 ret = stmmac_phy_setup(priv);
7614 if (ret) {
7615 netdev_err(ndev, "failed to setup phy (%d)\n", ret);
7616 goto error_phy_setup;
7617 }
7618
7619 ret = register_netdev(ndev);
7620 if (ret) {
7621 dev_err(priv->device, "%s: ERROR %i registering the device\n",
7622 __func__, ret);
7623 goto error_netdev_register;
7624 }
7625
7626 #ifdef CONFIG_DEBUG_FS
7627 stmmac_init_fs(ndev);
7628 #endif
7629
7630 if (priv->plat->dump_debug_regs)
7631 priv->plat->dump_debug_regs(priv->plat->bsp_priv);
7632
7633 /* Let pm_runtime_put() disable the clocks.
7634 * If CONFIG_PM is not enabled, the clocks will stay powered.
7635 */
7636 pm_runtime_put(device);
7637
7638 return ret;
7639
7640 error_netdev_register:
7641 phylink_destroy(priv->phylink);
7642 error_xpcs_setup:
7643 error_phy_setup:
7644 if (priv->hw->pcs != STMMAC_PCS_TBI &&
7645 priv->hw->pcs != STMMAC_PCS_RTBI)
7646 stmmac_mdio_unregister(ndev);
7647 error_mdio_register:
7648 stmmac_napi_del(ndev);
7649 error_hw_init:
7650 destroy_workqueue(priv->wq);
7651 error_wq_init:
7652 bitmap_free(priv->af_xdp_zc_qps);
7653
7654 return ret;
7655 }
7656 EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
7657
7658 /**
7659 * stmmac_dvr_remove
7660 * @dev: device pointer
7661 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
7662 * changes the link status, releases the DMA descriptor rings.
7663 */
stmmac_dvr_remove(struct device * dev)7664 void stmmac_dvr_remove(struct device *dev)
7665 {
7666 struct net_device *ndev = dev_get_drvdata(dev);
7667 struct stmmac_priv *priv = netdev_priv(ndev);
7668
7669 netdev_info(priv->dev, "%s: removing driver", __func__);
7670
7671 pm_runtime_get_sync(dev);
7672
7673 stmmac_stop_all_dma(priv);
7674 stmmac_mac_set(priv, priv->ioaddr, false);
7675 netif_carrier_off(ndev);
7676 unregister_netdev(ndev);
7677
7678 #ifdef CONFIG_DEBUG_FS
7679 stmmac_exit_fs(ndev);
7680 #endif
7681 phylink_destroy(priv->phylink);
7682 if (priv->plat->stmmac_rst)
7683 reset_control_assert(priv->plat->stmmac_rst);
7684 reset_control_assert(priv->plat->stmmac_ahb_rst);
7685 if (priv->hw->pcs != STMMAC_PCS_TBI &&
7686 priv->hw->pcs != STMMAC_PCS_RTBI)
7687 stmmac_mdio_unregister(ndev);
7688 destroy_workqueue(priv->wq);
7689 mutex_destroy(&priv->lock);
7690 bitmap_free(priv->af_xdp_zc_qps);
7691
7692 pm_runtime_disable(dev);
7693 pm_runtime_put_noidle(dev);
7694 }
7695 EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
7696
7697 /**
7698 * stmmac_suspend - suspend callback
7699 * @dev: device pointer
7700 * Description: this is the function to suspend the device and it is called
7701 * by the platform driver to stop the network queue, release the resources,
7702 * program the PMT register (for WoL), clean and release driver resources.
7703 */
stmmac_suspend(struct device * dev)7704 int stmmac_suspend(struct device *dev)
7705 {
7706 struct net_device *ndev = dev_get_drvdata(dev);
7707 struct stmmac_priv *priv = netdev_priv(ndev);
7708 u32 chan;
7709
7710 if (!ndev || !netif_running(ndev))
7711 return 0;
7712
7713 mutex_lock(&priv->lock);
7714
7715 netif_device_detach(ndev);
7716
7717 stmmac_disable_all_queues(priv);
7718
7719 for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
7720 hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
7721
7722 if (priv->eee_enabled) {
7723 priv->tx_path_in_lpi_mode = false;
7724 del_timer_sync(&priv->eee_ctrl_timer);
7725 }
7726
7727 /* Stop TX/RX DMA */
7728 stmmac_stop_all_dma(priv);
7729
7730 if (priv->plat->serdes_powerdown)
7731 priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
7732
7733 /* Enable Power down mode by programming the PMT regs */
7734 if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7735 stmmac_pmt(priv, priv->hw, priv->wolopts);
7736 priv->irq_wake = 1;
7737 } else {
7738 stmmac_mac_set(priv, priv->ioaddr, false);
7739 pinctrl_pm_select_sleep_state(priv->device);
7740 }
7741
7742 mutex_unlock(&priv->lock);
7743
7744 rtnl_lock();
7745 if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7746 phylink_suspend(priv->phylink, true);
7747 } else {
7748 if (device_may_wakeup(priv->device))
7749 phylink_speed_down(priv->phylink, false);
7750 phylink_suspend(priv->phylink, false);
7751 }
7752 rtnl_unlock();
7753
7754 if (priv->dma_cap.fpesel) {
7755 /* Disable FPE */
7756 stmmac_fpe_configure(priv, priv->ioaddr,
7757 priv->plat->fpe_cfg,
7758 priv->plat->tx_queues_to_use,
7759 priv->plat->rx_queues_to_use, false);
7760
7761 stmmac_fpe_handshake(priv, false);
7762 stmmac_fpe_stop_wq(priv);
7763 }
7764
7765 priv->speed = SPEED_UNKNOWN;
7766 return 0;
7767 }
7768 EXPORT_SYMBOL_GPL(stmmac_suspend);
7769
stmmac_reset_rx_queue(struct stmmac_priv * priv,u32 queue)7770 static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue)
7771 {
7772 struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
7773
7774 rx_q->cur_rx = 0;
7775 rx_q->dirty_rx = 0;
7776 }
7777
stmmac_reset_tx_queue(struct stmmac_priv * priv,u32 queue)7778 static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue)
7779 {
7780 struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
7781
7782 tx_q->cur_tx = 0;
7783 tx_q->dirty_tx = 0;
7784 tx_q->mss = 0;
7785
7786 netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
7787 }
7788
7789 /**
7790 * stmmac_reset_queues_param - reset queue parameters
7791 * @priv: device pointer
7792 */
stmmac_reset_queues_param(struct stmmac_priv * priv)7793 static void stmmac_reset_queues_param(struct stmmac_priv *priv)
7794 {
7795 u32 rx_cnt = priv->plat->rx_queues_to_use;
7796 u32 tx_cnt = priv->plat->tx_queues_to_use;
7797 u32 queue;
7798
7799 for (queue = 0; queue < rx_cnt; queue++)
7800 stmmac_reset_rx_queue(priv, queue);
7801
7802 for (queue = 0; queue < tx_cnt; queue++)
7803 stmmac_reset_tx_queue(priv, queue);
7804 }
7805
7806 /**
7807 * stmmac_resume - resume callback
7808 * @dev: device pointer
7809 * Description: when resume this function is invoked to setup the DMA and CORE
7810 * in a usable state.
7811 */
stmmac_resume(struct device * dev)7812 int stmmac_resume(struct device *dev)
7813 {
7814 struct net_device *ndev = dev_get_drvdata(dev);
7815 struct stmmac_priv *priv = netdev_priv(ndev);
7816 int ret;
7817
7818 if (!netif_running(ndev))
7819 return 0;
7820
7821 /* Power Down bit, into the PM register, is cleared
7822 * automatically as soon as a magic packet or a Wake-up frame
7823 * is received. Anyway, it's better to manually clear
7824 * this bit because it can generate problems while resuming
7825 * from another devices (e.g. serial console).
7826 */
7827 if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7828 mutex_lock(&priv->lock);
7829 stmmac_pmt(priv, priv->hw, 0);
7830 mutex_unlock(&priv->lock);
7831 priv->irq_wake = 0;
7832 } else {
7833 pinctrl_pm_select_default_state(priv->device);
7834 /* reset the phy so that it's ready */
7835 if (priv->mii)
7836 stmmac_mdio_reset(priv->mii);
7837 }
7838
7839 if (!(priv->plat->flags & STMMAC_FLAG_SERDES_UP_AFTER_PHY_LINKUP) &&
7840 priv->plat->serdes_powerup) {
7841 ret = priv->plat->serdes_powerup(ndev,
7842 priv->plat->bsp_priv);
7843
7844 if (ret < 0)
7845 return ret;
7846 }
7847
7848 rtnl_lock();
7849 if (device_may_wakeup(priv->device) && priv->plat->pmt) {
7850 phylink_resume(priv->phylink);
7851 } else {
7852 phylink_resume(priv->phylink);
7853 if (device_may_wakeup(priv->device))
7854 phylink_speed_up(priv->phylink);
7855 }
7856 rtnl_unlock();
7857
7858 rtnl_lock();
7859 mutex_lock(&priv->lock);
7860
7861 stmmac_reset_queues_param(priv);
7862
7863 stmmac_free_tx_skbufs(priv);
7864 stmmac_clear_descriptors(priv, &priv->dma_conf);
7865
7866 stmmac_hw_setup(ndev, false);
7867 stmmac_init_coalesce(priv);
7868 stmmac_set_rx_mode(ndev);
7869
7870 stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
7871
7872 stmmac_enable_all_queues(priv);
7873 stmmac_enable_all_dma_irq(priv);
7874
7875 mutex_unlock(&priv->lock);
7876 rtnl_unlock();
7877
7878 netif_device_attach(ndev);
7879
7880 return 0;
7881 }
7882 EXPORT_SYMBOL_GPL(stmmac_resume);
7883
7884 #ifndef MODULE
stmmac_cmdline_opt(char * str)7885 static int __init stmmac_cmdline_opt(char *str)
7886 {
7887 char *opt;
7888
7889 if (!str || !*str)
7890 return 1;
7891 while ((opt = strsep(&str, ",")) != NULL) {
7892 if (!strncmp(opt, "debug:", 6)) {
7893 if (kstrtoint(opt + 6, 0, &debug))
7894 goto err;
7895 } else if (!strncmp(opt, "phyaddr:", 8)) {
7896 if (kstrtoint(opt + 8, 0, &phyaddr))
7897 goto err;
7898 } else if (!strncmp(opt, "buf_sz:", 7)) {
7899 if (kstrtoint(opt + 7, 0, &buf_sz))
7900 goto err;
7901 } else if (!strncmp(opt, "tc:", 3)) {
7902 if (kstrtoint(opt + 3, 0, &tc))
7903 goto err;
7904 } else if (!strncmp(opt, "watchdog:", 9)) {
7905 if (kstrtoint(opt + 9, 0, &watchdog))
7906 goto err;
7907 } else if (!strncmp(opt, "flow_ctrl:", 10)) {
7908 if (kstrtoint(opt + 10, 0, &flow_ctrl))
7909 goto err;
7910 } else if (!strncmp(opt, "pause:", 6)) {
7911 if (kstrtoint(opt + 6, 0, &pause))
7912 goto err;
7913 } else if (!strncmp(opt, "eee_timer:", 10)) {
7914 if (kstrtoint(opt + 10, 0, &eee_timer))
7915 goto err;
7916 } else if (!strncmp(opt, "chain_mode:", 11)) {
7917 if (kstrtoint(opt + 11, 0, &chain_mode))
7918 goto err;
7919 }
7920 }
7921 return 1;
7922
7923 err:
7924 pr_err("%s: ERROR broken module parameter conversion", __func__);
7925 return 1;
7926 }
7927
7928 __setup("stmmaceth=", stmmac_cmdline_opt);
7929 #endif /* MODULE */
7930
stmmac_init(void)7931 static int __init stmmac_init(void)
7932 {
7933 #ifdef CONFIG_DEBUG_FS
7934 /* Create debugfs main directory if it doesn't exist yet */
7935 if (!stmmac_fs_dir)
7936 stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
7937 register_netdevice_notifier(&stmmac_notifier);
7938 #endif
7939
7940 return 0;
7941 }
7942
stmmac_exit(void)7943 static void __exit stmmac_exit(void)
7944 {
7945 #ifdef CONFIG_DEBUG_FS
7946 unregister_netdevice_notifier(&stmmac_notifier);
7947 debugfs_remove_recursive(stmmac_fs_dir);
7948 #endif
7949 }
7950
7951 module_init(stmmac_init)
7952 module_exit(stmmac_exit)
7953
7954 MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
7955 MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
7956 MODULE_LICENSE("GPL");
7957