xref: /openbmc/linux/drivers/gpu/drm/amd/amdkfd/kfd_svm.c (revision 45ad842eafe484cc32e533823bc71878d1ac4a90)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2020-2021 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/types.h>
25 #include <linux/sched/task.h>
26 #include <linux/dynamic_debug.h>
27 #include <drm/ttm/ttm_tt.h>
28 #include <drm/drm_exec.h>
29 
30 #include "amdgpu_sync.h"
31 #include "amdgpu_object.h"
32 #include "amdgpu_vm.h"
33 #include "amdgpu_hmm.h"
34 #include "amdgpu.h"
35 #include "amdgpu_xgmi.h"
36 #include "kfd_priv.h"
37 #include "kfd_svm.h"
38 #include "kfd_migrate.h"
39 #include "kfd_smi_events.h"
40 
41 #ifdef dev_fmt
42 #undef dev_fmt
43 #endif
44 #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__
45 
46 #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1
47 
48 /* Long enough to ensure no retry fault comes after svm range is restored and
49  * page table is updated.
50  */
51 #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING	(2UL * NSEC_PER_MSEC)
52 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG)
53 #define dynamic_svm_range_dump(svms) \
54 	_dynamic_func_call_no_desc("svm_range_dump", svm_range_debug_dump, svms)
55 #else
56 #define dynamic_svm_range_dump(svms) \
57 	do { if (0) svm_range_debug_dump(svms); } while (0)
58 #endif
59 
60 /* Giant svm range split into smaller ranges based on this, it is decided using
61  * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to
62  * power of 2MB.
63  */
64 static uint64_t max_svm_range_pages;
65 
66 struct criu_svm_metadata {
67 	struct list_head list;
68 	struct kfd_criu_svm_range_priv_data data;
69 };
70 
71 static void svm_range_evict_svm_bo_worker(struct work_struct *work);
72 static bool
73 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
74 				    const struct mmu_notifier_range *range,
75 				    unsigned long cur_seq);
76 static int
77 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
78 		   uint64_t *bo_s, uint64_t *bo_l);
79 static const struct mmu_interval_notifier_ops svm_range_mn_ops = {
80 	.invalidate = svm_range_cpu_invalidate_pagetables,
81 };
82 
83 /**
84  * svm_range_unlink - unlink svm_range from lists and interval tree
85  * @prange: svm range structure to be removed
86  *
87  * Remove the svm_range from the svms and svm_bo lists and the svms
88  * interval tree.
89  *
90  * Context: The caller must hold svms->lock
91  */
svm_range_unlink(struct svm_range * prange)92 static void svm_range_unlink(struct svm_range *prange)
93 {
94 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
95 		 prange, prange->start, prange->last);
96 
97 	if (prange->svm_bo) {
98 		spin_lock(&prange->svm_bo->list_lock);
99 		list_del(&prange->svm_bo_list);
100 		spin_unlock(&prange->svm_bo->list_lock);
101 	}
102 
103 	list_del(&prange->list);
104 	if (prange->it_node.start != 0 && prange->it_node.last != 0)
105 		interval_tree_remove(&prange->it_node, &prange->svms->objects);
106 }
107 
108 static void
svm_range_add_notifier_locked(struct mm_struct * mm,struct svm_range * prange)109 svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange)
110 {
111 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
112 		 prange, prange->start, prange->last);
113 
114 	mmu_interval_notifier_insert_locked(&prange->notifier, mm,
115 				     prange->start << PAGE_SHIFT,
116 				     prange->npages << PAGE_SHIFT,
117 				     &svm_range_mn_ops);
118 }
119 
120 /**
121  * svm_range_add_to_svms - add svm range to svms
122  * @prange: svm range structure to be added
123  *
124  * Add the svm range to svms interval tree and link list
125  *
126  * Context: The caller must hold svms->lock
127  */
svm_range_add_to_svms(struct svm_range * prange)128 static void svm_range_add_to_svms(struct svm_range *prange)
129 {
130 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
131 		 prange, prange->start, prange->last);
132 
133 	list_move_tail(&prange->list, &prange->svms->list);
134 	prange->it_node.start = prange->start;
135 	prange->it_node.last = prange->last;
136 	interval_tree_insert(&prange->it_node, &prange->svms->objects);
137 }
138 
svm_range_remove_notifier(struct svm_range * prange)139 static void svm_range_remove_notifier(struct svm_range *prange)
140 {
141 	pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n",
142 		 prange->svms, prange,
143 		 prange->notifier.interval_tree.start >> PAGE_SHIFT,
144 		 prange->notifier.interval_tree.last >> PAGE_SHIFT);
145 
146 	if (prange->notifier.interval_tree.start != 0 &&
147 	    prange->notifier.interval_tree.last != 0)
148 		mmu_interval_notifier_remove(&prange->notifier);
149 }
150 
151 static bool
svm_is_valid_dma_mapping_addr(struct device * dev,dma_addr_t dma_addr)152 svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr)
153 {
154 	return dma_addr && !dma_mapping_error(dev, dma_addr) &&
155 	       !(dma_addr & SVM_RANGE_VRAM_DOMAIN);
156 }
157 
158 static int
svm_range_dma_map_dev(struct amdgpu_device * adev,struct svm_range * prange,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns,uint32_t gpuidx)159 svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange,
160 		      unsigned long offset, unsigned long npages,
161 		      unsigned long *hmm_pfns, uint32_t gpuidx)
162 {
163 	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
164 	dma_addr_t *addr = prange->dma_addr[gpuidx];
165 	struct device *dev = adev->dev;
166 	struct page *page;
167 	int i, r;
168 
169 	if (!addr) {
170 		addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL);
171 		if (!addr)
172 			return -ENOMEM;
173 		prange->dma_addr[gpuidx] = addr;
174 	}
175 
176 	addr += offset;
177 	for (i = 0; i < npages; i++) {
178 		if (svm_is_valid_dma_mapping_addr(dev, addr[i]))
179 			dma_unmap_page(dev, addr[i], PAGE_SIZE, dir);
180 
181 		page = hmm_pfn_to_page(hmm_pfns[i]);
182 		if (is_zone_device_page(page)) {
183 			struct amdgpu_device *bo_adev = prange->svm_bo->node->adev;
184 
185 			addr[i] = (hmm_pfns[i] << PAGE_SHIFT) +
186 				   bo_adev->vm_manager.vram_base_offset -
187 				   bo_adev->kfd.pgmap.range.start;
188 			addr[i] |= SVM_RANGE_VRAM_DOMAIN;
189 			pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]);
190 			continue;
191 		}
192 		addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
193 		r = dma_mapping_error(dev, addr[i]);
194 		if (r) {
195 			dev_err(dev, "failed %d dma_map_page\n", r);
196 			return r;
197 		}
198 		pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n",
199 				     addr[i] >> PAGE_SHIFT, page_to_pfn(page));
200 	}
201 	return 0;
202 }
203 
204 static int
svm_range_dma_map(struct svm_range * prange,unsigned long * bitmap,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns)205 svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap,
206 		  unsigned long offset, unsigned long npages,
207 		  unsigned long *hmm_pfns)
208 {
209 	struct kfd_process *p;
210 	uint32_t gpuidx;
211 	int r;
212 
213 	p = container_of(prange->svms, struct kfd_process, svms);
214 
215 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
216 		struct kfd_process_device *pdd;
217 
218 		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
219 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
220 		if (!pdd) {
221 			pr_debug("failed to find device idx %d\n", gpuidx);
222 			return -EINVAL;
223 		}
224 
225 		r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages,
226 					  hmm_pfns, gpuidx);
227 		if (r)
228 			break;
229 	}
230 
231 	return r;
232 }
233 
svm_range_dma_unmap(struct device * dev,dma_addr_t * dma_addr,unsigned long offset,unsigned long npages)234 void svm_range_dma_unmap(struct device *dev, dma_addr_t *dma_addr,
235 			 unsigned long offset, unsigned long npages)
236 {
237 	enum dma_data_direction dir = DMA_BIDIRECTIONAL;
238 	int i;
239 
240 	if (!dma_addr)
241 		return;
242 
243 	for (i = offset; i < offset + npages; i++) {
244 		if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i]))
245 			continue;
246 		pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT);
247 		dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
248 		dma_addr[i] = 0;
249 	}
250 }
251 
svm_range_free_dma_mappings(struct svm_range * prange,bool unmap_dma)252 void svm_range_free_dma_mappings(struct svm_range *prange, bool unmap_dma)
253 {
254 	struct kfd_process_device *pdd;
255 	dma_addr_t *dma_addr;
256 	struct device *dev;
257 	struct kfd_process *p;
258 	uint32_t gpuidx;
259 
260 	p = container_of(prange->svms, struct kfd_process, svms);
261 
262 	for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
263 		dma_addr = prange->dma_addr[gpuidx];
264 		if (!dma_addr)
265 			continue;
266 
267 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
268 		if (!pdd) {
269 			pr_debug("failed to find device idx %d\n", gpuidx);
270 			continue;
271 		}
272 		dev = &pdd->dev->adev->pdev->dev;
273 		if (unmap_dma)
274 			svm_range_dma_unmap(dev, dma_addr, 0, prange->npages);
275 		kvfree(dma_addr);
276 		prange->dma_addr[gpuidx] = NULL;
277 	}
278 }
279 
svm_range_free(struct svm_range * prange,bool do_unmap)280 static void svm_range_free(struct svm_range *prange, bool do_unmap)
281 {
282 	uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT;
283 	struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
284 
285 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange,
286 		 prange->start, prange->last);
287 
288 	svm_range_vram_node_free(prange);
289 	svm_range_free_dma_mappings(prange, do_unmap);
290 
291 	if (do_unmap && !p->xnack_enabled) {
292 		pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size);
293 		amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
294 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
295 	}
296 	mutex_destroy(&prange->lock);
297 	mutex_destroy(&prange->migrate_mutex);
298 	kfree(prange);
299 }
300 
301 static void
svm_range_set_default_attributes(int32_t * location,int32_t * prefetch_loc,uint8_t * granularity,uint32_t * flags)302 svm_range_set_default_attributes(int32_t *location, int32_t *prefetch_loc,
303 				 uint8_t *granularity, uint32_t *flags)
304 {
305 	*location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
306 	*prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
307 	*granularity = 9;
308 	*flags =
309 		KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT;
310 }
311 
312 static struct
svm_range_new(struct svm_range_list * svms,uint64_t start,uint64_t last,bool update_mem_usage)313 svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start,
314 			 uint64_t last, bool update_mem_usage)
315 {
316 	uint64_t size = last - start + 1;
317 	struct svm_range *prange;
318 	struct kfd_process *p;
319 
320 	prange = kzalloc(sizeof(*prange), GFP_KERNEL);
321 	if (!prange)
322 		return NULL;
323 
324 	p = container_of(svms, struct kfd_process, svms);
325 	if (!p->xnack_enabled && update_mem_usage &&
326 	    amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT,
327 				    KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0)) {
328 		pr_info("SVM mapping failed, exceeds resident system memory limit\n");
329 		kfree(prange);
330 		return NULL;
331 	}
332 	prange->npages = size;
333 	prange->svms = svms;
334 	prange->start = start;
335 	prange->last = last;
336 	INIT_LIST_HEAD(&prange->list);
337 	INIT_LIST_HEAD(&prange->update_list);
338 	INIT_LIST_HEAD(&prange->svm_bo_list);
339 	INIT_LIST_HEAD(&prange->deferred_list);
340 	INIT_LIST_HEAD(&prange->child_list);
341 	atomic_set(&prange->invalid, 0);
342 	prange->validate_timestamp = 0;
343 	mutex_init(&prange->migrate_mutex);
344 	mutex_init(&prange->lock);
345 
346 	if (p->xnack_enabled)
347 		bitmap_copy(prange->bitmap_access, svms->bitmap_supported,
348 			    MAX_GPU_INSTANCE);
349 
350 	svm_range_set_default_attributes(&prange->preferred_loc,
351 					 &prange->prefetch_loc,
352 					 &prange->granularity, &prange->flags);
353 
354 	pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last);
355 
356 	return prange;
357 }
358 
svm_bo_ref_unless_zero(struct svm_range_bo * svm_bo)359 static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo)
360 {
361 	if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref))
362 		return false;
363 
364 	return true;
365 }
366 
svm_range_bo_release(struct kref * kref)367 static void svm_range_bo_release(struct kref *kref)
368 {
369 	struct svm_range_bo *svm_bo;
370 
371 	svm_bo = container_of(kref, struct svm_range_bo, kref);
372 	pr_debug("svm_bo 0x%p\n", svm_bo);
373 
374 	spin_lock(&svm_bo->list_lock);
375 	while (!list_empty(&svm_bo->range_list)) {
376 		struct svm_range *prange =
377 				list_first_entry(&svm_bo->range_list,
378 						struct svm_range, svm_bo_list);
379 		/* list_del_init tells a concurrent svm_range_vram_node_new when
380 		 * it's safe to reuse the svm_bo pointer and svm_bo_list head.
381 		 */
382 		list_del_init(&prange->svm_bo_list);
383 		spin_unlock(&svm_bo->list_lock);
384 
385 		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
386 			 prange->start, prange->last);
387 		mutex_lock(&prange->lock);
388 		prange->svm_bo = NULL;
389 		mutex_unlock(&prange->lock);
390 
391 		spin_lock(&svm_bo->list_lock);
392 	}
393 	spin_unlock(&svm_bo->list_lock);
394 
395 	if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
396 		struct kfd_process_device *pdd;
397 		struct kfd_process *p;
398 		struct mm_struct *mm;
399 
400 		mm = svm_bo->eviction_fence->mm;
401 		/*
402 		 * The forked child process takes svm_bo device pages ref, svm_bo could be
403 		 * released after parent process is gone.
404 		 */
405 		p = kfd_lookup_process_by_mm(mm);
406 		if (p) {
407 			pdd = kfd_get_process_device_data(svm_bo->node, p);
408 			if (pdd)
409 				atomic64_sub(amdgpu_bo_size(svm_bo->bo), &pdd->vram_usage);
410 			kfd_unref_process(p);
411 		}
412 		mmput(mm);
413 	}
414 
415 	if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base))
416 		/* We're not in the eviction worker. Signal the fence. */
417 		dma_fence_signal(&svm_bo->eviction_fence->base);
418 	dma_fence_put(&svm_bo->eviction_fence->base);
419 	amdgpu_bo_unref(&svm_bo->bo);
420 	kfree(svm_bo);
421 }
422 
svm_range_bo_wq_release(struct work_struct * work)423 static void svm_range_bo_wq_release(struct work_struct *work)
424 {
425 	struct svm_range_bo *svm_bo;
426 
427 	svm_bo = container_of(work, struct svm_range_bo, release_work);
428 	svm_range_bo_release(&svm_bo->kref);
429 }
430 
svm_range_bo_release_async(struct kref * kref)431 static void svm_range_bo_release_async(struct kref *kref)
432 {
433 	struct svm_range_bo *svm_bo;
434 
435 	svm_bo = container_of(kref, struct svm_range_bo, kref);
436 	pr_debug("svm_bo 0x%p\n", svm_bo);
437 	INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release);
438 	schedule_work(&svm_bo->release_work);
439 }
440 
svm_range_bo_unref_async(struct svm_range_bo * svm_bo)441 void svm_range_bo_unref_async(struct svm_range_bo *svm_bo)
442 {
443 	kref_put(&svm_bo->kref, svm_range_bo_release_async);
444 }
445 
svm_range_bo_unref(struct svm_range_bo * svm_bo)446 static void svm_range_bo_unref(struct svm_range_bo *svm_bo)
447 {
448 	if (svm_bo)
449 		kref_put(&svm_bo->kref, svm_range_bo_release);
450 }
451 
452 static bool
svm_range_validate_svm_bo(struct kfd_node * node,struct svm_range * prange)453 svm_range_validate_svm_bo(struct kfd_node *node, struct svm_range *prange)
454 {
455 	mutex_lock(&prange->lock);
456 	if (!prange->svm_bo) {
457 		mutex_unlock(&prange->lock);
458 		return false;
459 	}
460 	if (prange->ttm_res) {
461 		/* We still have a reference, all is well */
462 		mutex_unlock(&prange->lock);
463 		return true;
464 	}
465 	if (svm_bo_ref_unless_zero(prange->svm_bo)) {
466 		/*
467 		 * Migrate from GPU to GPU, remove range from source svm_bo->node
468 		 * range list, and return false to allocate svm_bo from destination
469 		 * node.
470 		 */
471 		if (prange->svm_bo->node != node) {
472 			mutex_unlock(&prange->lock);
473 
474 			spin_lock(&prange->svm_bo->list_lock);
475 			list_del_init(&prange->svm_bo_list);
476 			spin_unlock(&prange->svm_bo->list_lock);
477 
478 			svm_range_bo_unref(prange->svm_bo);
479 			return false;
480 		}
481 		if (READ_ONCE(prange->svm_bo->evicting)) {
482 			struct dma_fence *f;
483 			struct svm_range_bo *svm_bo;
484 			/* The BO is getting evicted,
485 			 * we need to get a new one
486 			 */
487 			mutex_unlock(&prange->lock);
488 			svm_bo = prange->svm_bo;
489 			f = dma_fence_get(&svm_bo->eviction_fence->base);
490 			svm_range_bo_unref(prange->svm_bo);
491 			/* wait for the fence to avoid long spin-loop
492 			 * at list_empty_careful
493 			 */
494 			dma_fence_wait(f, false);
495 			dma_fence_put(f);
496 		} else {
497 			/* The BO was still around and we got
498 			 * a new reference to it
499 			 */
500 			mutex_unlock(&prange->lock);
501 			pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n",
502 				 prange->svms, prange->start, prange->last);
503 
504 			prange->ttm_res = prange->svm_bo->bo->tbo.resource;
505 			return true;
506 		}
507 
508 	} else {
509 		mutex_unlock(&prange->lock);
510 	}
511 
512 	/* We need a new svm_bo. Spin-loop to wait for concurrent
513 	 * svm_range_bo_release to finish removing this range from
514 	 * its range list and set prange->svm_bo to null. After this,
515 	 * it is safe to reuse the svm_bo pointer and svm_bo_list head.
516 	 */
517 	while (!list_empty_careful(&prange->svm_bo_list) || prange->svm_bo)
518 		cond_resched();
519 
520 	return false;
521 }
522 
svm_range_bo_new(void)523 static struct svm_range_bo *svm_range_bo_new(void)
524 {
525 	struct svm_range_bo *svm_bo;
526 
527 	svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL);
528 	if (!svm_bo)
529 		return NULL;
530 
531 	kref_init(&svm_bo->kref);
532 	INIT_LIST_HEAD(&svm_bo->range_list);
533 	spin_lock_init(&svm_bo->list_lock);
534 
535 	return svm_bo;
536 }
537 
538 int
svm_range_vram_node_new(struct kfd_node * node,struct svm_range * prange,bool clear)539 svm_range_vram_node_new(struct kfd_node *node, struct svm_range *prange,
540 			bool clear)
541 {
542 	struct kfd_process_device *pdd;
543 	struct amdgpu_bo_param bp;
544 	struct svm_range_bo *svm_bo;
545 	struct amdgpu_bo_user *ubo;
546 	struct amdgpu_bo *bo;
547 	struct kfd_process *p;
548 	struct mm_struct *mm;
549 	int r;
550 
551 	p = container_of(prange->svms, struct kfd_process, svms);
552 	pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms,
553 		 prange->start, prange->last);
554 
555 	if (svm_range_validate_svm_bo(node, prange))
556 		return 0;
557 
558 	svm_bo = svm_range_bo_new();
559 	if (!svm_bo) {
560 		pr_debug("failed to alloc svm bo\n");
561 		return -ENOMEM;
562 	}
563 	mm = get_task_mm(p->lead_thread);
564 	if (!mm) {
565 		pr_debug("failed to get mm\n");
566 		kfree(svm_bo);
567 		return -ESRCH;
568 	}
569 	svm_bo->node = node;
570 	svm_bo->eviction_fence =
571 		amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
572 					   mm,
573 					   svm_bo);
574 	mmput(mm);
575 	INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker);
576 	svm_bo->evicting = 0;
577 	memset(&bp, 0, sizeof(bp));
578 	bp.size = prange->npages * PAGE_SIZE;
579 	bp.byte_align = PAGE_SIZE;
580 	bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
581 	bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
582 	bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0;
583 	bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE;
584 	bp.type = ttm_bo_type_device;
585 	bp.resv = NULL;
586 	if (node->xcp)
587 		bp.xcp_id_plus1 = node->xcp->id + 1;
588 
589 	r = amdgpu_bo_create_user(node->adev, &bp, &ubo);
590 	if (r) {
591 		pr_debug("failed %d to create bo\n", r);
592 		goto create_bo_failed;
593 	}
594 	bo = &ubo->bo;
595 
596 	pr_debug("alloc bo at offset 0x%lx size 0x%lx on partition %d\n",
597 		 bo->tbo.resource->start << PAGE_SHIFT, bp.size,
598 		 bp.xcp_id_plus1 - 1);
599 
600 	r = amdgpu_bo_reserve(bo, true);
601 	if (r) {
602 		pr_debug("failed %d to reserve bo\n", r);
603 		goto reserve_bo_failed;
604 	}
605 
606 	if (clear) {
607 		r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
608 		if (r) {
609 			pr_debug("failed %d to sync bo\n", r);
610 			amdgpu_bo_unreserve(bo);
611 			goto reserve_bo_failed;
612 		}
613 	}
614 
615 	r = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
616 	if (r) {
617 		pr_debug("failed %d to reserve bo\n", r);
618 		amdgpu_bo_unreserve(bo);
619 		goto reserve_bo_failed;
620 	}
621 	amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true);
622 
623 	amdgpu_bo_unreserve(bo);
624 
625 	svm_bo->bo = bo;
626 	prange->svm_bo = svm_bo;
627 	prange->ttm_res = bo->tbo.resource;
628 	prange->offset = 0;
629 
630 	spin_lock(&svm_bo->list_lock);
631 	list_add(&prange->svm_bo_list, &svm_bo->range_list);
632 	spin_unlock(&svm_bo->list_lock);
633 
634 	pdd = svm_range_get_pdd_by_node(prange, node);
635 	if (pdd)
636 		atomic64_add(amdgpu_bo_size(bo), &pdd->vram_usage);
637 
638 	return 0;
639 
640 reserve_bo_failed:
641 	amdgpu_bo_unref(&bo);
642 create_bo_failed:
643 	dma_fence_put(&svm_bo->eviction_fence->base);
644 	kfree(svm_bo);
645 	prange->ttm_res = NULL;
646 
647 	return r;
648 }
649 
svm_range_vram_node_free(struct svm_range * prange)650 void svm_range_vram_node_free(struct svm_range *prange)
651 {
652 	/* serialize prange->svm_bo unref */
653 	mutex_lock(&prange->lock);
654 	/* prange->svm_bo has not been unref */
655 	if (prange->ttm_res) {
656 		prange->ttm_res = NULL;
657 		mutex_unlock(&prange->lock);
658 		svm_range_bo_unref(prange->svm_bo);
659 	} else
660 		mutex_unlock(&prange->lock);
661 }
662 
663 struct kfd_node *
svm_range_get_node_by_id(struct svm_range * prange,uint32_t gpu_id)664 svm_range_get_node_by_id(struct svm_range *prange, uint32_t gpu_id)
665 {
666 	struct kfd_process *p;
667 	struct kfd_process_device *pdd;
668 
669 	p = container_of(prange->svms, struct kfd_process, svms);
670 	pdd = kfd_process_device_data_by_id(p, gpu_id);
671 	if (!pdd) {
672 		pr_debug("failed to get kfd process device by id 0x%x\n", gpu_id);
673 		return NULL;
674 	}
675 
676 	return pdd->dev;
677 }
678 
679 struct kfd_process_device *
svm_range_get_pdd_by_node(struct svm_range * prange,struct kfd_node * node)680 svm_range_get_pdd_by_node(struct svm_range *prange, struct kfd_node *node)
681 {
682 	struct kfd_process *p;
683 
684 	p = container_of(prange->svms, struct kfd_process, svms);
685 
686 	return kfd_get_process_device_data(node, p);
687 }
688 
svm_range_bo_validate(void * param,struct amdgpu_bo * bo)689 static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo)
690 {
691 	struct ttm_operation_ctx ctx = { false, false };
692 
693 	amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM);
694 
695 	return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
696 }
697 
698 static int
svm_range_check_attr(struct kfd_process * p,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)699 svm_range_check_attr(struct kfd_process *p,
700 		     uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
701 {
702 	uint32_t i;
703 
704 	for (i = 0; i < nattr; i++) {
705 		uint32_t val = attrs[i].value;
706 		int gpuidx = MAX_GPU_INSTANCE;
707 
708 		switch (attrs[i].type) {
709 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
710 			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
711 			    val != KFD_IOCTL_SVM_LOCATION_UNDEFINED)
712 				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
713 			break;
714 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
715 			if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM)
716 				gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
717 			break;
718 		case KFD_IOCTL_SVM_ATTR_ACCESS:
719 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
720 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
721 			gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
722 			break;
723 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
724 			break;
725 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
726 			break;
727 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
728 			break;
729 		default:
730 			pr_debug("unknown attr type 0x%x\n", attrs[i].type);
731 			return -EINVAL;
732 		}
733 
734 		if (gpuidx < 0) {
735 			pr_debug("no GPU 0x%x found\n", val);
736 			return -EINVAL;
737 		} else if (gpuidx < MAX_GPU_INSTANCE &&
738 			   !test_bit(gpuidx, p->svms.bitmap_supported)) {
739 			pr_debug("GPU 0x%x not supported\n", val);
740 			return -EINVAL;
741 		}
742 	}
743 
744 	return 0;
745 }
746 
747 static void
svm_range_apply_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,bool * update_mapping)748 svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange,
749 		      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
750 		      bool *update_mapping)
751 {
752 	uint32_t i;
753 	int gpuidx;
754 
755 	for (i = 0; i < nattr; i++) {
756 		switch (attrs[i].type) {
757 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
758 			prange->preferred_loc = attrs[i].value;
759 			break;
760 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
761 			prange->prefetch_loc = attrs[i].value;
762 			break;
763 		case KFD_IOCTL_SVM_ATTR_ACCESS:
764 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
765 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
766 			if (!p->xnack_enabled)
767 				*update_mapping = true;
768 
769 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
770 							       attrs[i].value);
771 			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
772 				bitmap_clear(prange->bitmap_access, gpuidx, 1);
773 				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
774 			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
775 				bitmap_set(prange->bitmap_access, gpuidx, 1);
776 				bitmap_clear(prange->bitmap_aip, gpuidx, 1);
777 			} else {
778 				bitmap_clear(prange->bitmap_access, gpuidx, 1);
779 				bitmap_set(prange->bitmap_aip, gpuidx, 1);
780 			}
781 			break;
782 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
783 			*update_mapping = true;
784 			prange->flags |= attrs[i].value;
785 			break;
786 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
787 			*update_mapping = true;
788 			prange->flags &= ~attrs[i].value;
789 			break;
790 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
791 			prange->granularity = min_t(uint32_t, attrs[i].value, 0x3F);
792 			break;
793 		default:
794 			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
795 		}
796 	}
797 }
798 
799 static bool
svm_range_is_same_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)800 svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange,
801 			uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
802 {
803 	uint32_t i;
804 	int gpuidx;
805 
806 	for (i = 0; i < nattr; i++) {
807 		switch (attrs[i].type) {
808 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
809 			if (prange->preferred_loc != attrs[i].value)
810 				return false;
811 			break;
812 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
813 			/* Prefetch should always trigger a migration even
814 			 * if the value of the attribute didn't change.
815 			 */
816 			return false;
817 		case KFD_IOCTL_SVM_ATTR_ACCESS:
818 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
819 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
820 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
821 							       attrs[i].value);
822 			if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
823 				if (test_bit(gpuidx, prange->bitmap_access) ||
824 				    test_bit(gpuidx, prange->bitmap_aip))
825 					return false;
826 			} else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
827 				if (!test_bit(gpuidx, prange->bitmap_access))
828 					return false;
829 			} else {
830 				if (!test_bit(gpuidx, prange->bitmap_aip))
831 					return false;
832 			}
833 			break;
834 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
835 			if ((prange->flags & attrs[i].value) != attrs[i].value)
836 				return false;
837 			break;
838 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
839 			if ((prange->flags & attrs[i].value) != 0)
840 				return false;
841 			break;
842 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
843 			if (prange->granularity != attrs[i].value)
844 				return false;
845 			break;
846 		default:
847 			WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
848 		}
849 	}
850 
851 	return true;
852 }
853 
854 /**
855  * svm_range_debug_dump - print all range information from svms
856  * @svms: svm range list header
857  *
858  * debug output svm range start, end, prefetch location from svms
859  * interval tree and link list
860  *
861  * Context: The caller must hold svms->lock
862  */
svm_range_debug_dump(struct svm_range_list * svms)863 static void svm_range_debug_dump(struct svm_range_list *svms)
864 {
865 	struct interval_tree_node *node;
866 	struct svm_range *prange;
867 
868 	pr_debug("dump svms 0x%p list\n", svms);
869 	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
870 
871 	list_for_each_entry(prange, &svms->list, list) {
872 		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
873 			 prange, prange->start, prange->npages,
874 			 prange->start + prange->npages - 1,
875 			 prange->actual_loc);
876 	}
877 
878 	pr_debug("dump svms 0x%p interval tree\n", svms);
879 	pr_debug("range\tstart\tpage\tend\t\tlocation\n");
880 	node = interval_tree_iter_first(&svms->objects, 0, ~0ULL);
881 	while (node) {
882 		prange = container_of(node, struct svm_range, it_node);
883 		pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
884 			 prange, prange->start, prange->npages,
885 			 prange->start + prange->npages - 1,
886 			 prange->actual_loc);
887 		node = interval_tree_iter_next(node, 0, ~0ULL);
888 	}
889 }
890 
891 static void *
svm_range_copy_array(void * psrc,size_t size,uint64_t num_elements,uint64_t offset)892 svm_range_copy_array(void *psrc, size_t size, uint64_t num_elements,
893 		     uint64_t offset)
894 {
895 	unsigned char *dst;
896 
897 	dst = kvmalloc_array(num_elements, size, GFP_KERNEL);
898 	if (!dst)
899 		return NULL;
900 	memcpy(dst, (unsigned char *)psrc + offset, num_elements * size);
901 
902 	return (void *)dst;
903 }
904 
905 static int
svm_range_copy_dma_addrs(struct svm_range * dst,struct svm_range * src)906 svm_range_copy_dma_addrs(struct svm_range *dst, struct svm_range *src)
907 {
908 	int i;
909 
910 	for (i = 0; i < MAX_GPU_INSTANCE; i++) {
911 		if (!src->dma_addr[i])
912 			continue;
913 		dst->dma_addr[i] = svm_range_copy_array(src->dma_addr[i],
914 					sizeof(*src->dma_addr[i]), src->npages, 0);
915 		if (!dst->dma_addr[i])
916 			return -ENOMEM;
917 	}
918 
919 	return 0;
920 }
921 
922 static int
svm_range_split_array(void * ppnew,void * ppold,size_t size,uint64_t old_start,uint64_t old_n,uint64_t new_start,uint64_t new_n)923 svm_range_split_array(void *ppnew, void *ppold, size_t size,
924 		      uint64_t old_start, uint64_t old_n,
925 		      uint64_t new_start, uint64_t new_n)
926 {
927 	unsigned char *new, *old, *pold;
928 	uint64_t d;
929 
930 	if (!ppold)
931 		return 0;
932 	pold = *(unsigned char **)ppold;
933 	if (!pold)
934 		return 0;
935 
936 	d = (new_start - old_start) * size;
937 	new = svm_range_copy_array(pold, size, new_n, d);
938 	if (!new)
939 		return -ENOMEM;
940 	d = (new_start == old_start) ? new_n * size : 0;
941 	old = svm_range_copy_array(pold, size, old_n, d);
942 	if (!old) {
943 		kvfree(new);
944 		return -ENOMEM;
945 	}
946 	kvfree(pold);
947 	*(void **)ppold = old;
948 	*(void **)ppnew = new;
949 
950 	return 0;
951 }
952 
953 static int
svm_range_split_pages(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)954 svm_range_split_pages(struct svm_range *new, struct svm_range *old,
955 		      uint64_t start, uint64_t last)
956 {
957 	uint64_t npages = last - start + 1;
958 	int i, r;
959 
960 	for (i = 0; i < MAX_GPU_INSTANCE; i++) {
961 		r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i],
962 					  sizeof(*old->dma_addr[i]), old->start,
963 					  npages, new->start, new->npages);
964 		if (r)
965 			return r;
966 	}
967 
968 	return 0;
969 }
970 
971 static int
svm_range_split_nodes(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)972 svm_range_split_nodes(struct svm_range *new, struct svm_range *old,
973 		      uint64_t start, uint64_t last)
974 {
975 	uint64_t npages = last - start + 1;
976 
977 	pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n",
978 		 new->svms, new, new->start, start, last);
979 
980 	if (new->start == old->start) {
981 		new->offset = old->offset;
982 		old->offset += new->npages;
983 	} else {
984 		new->offset = old->offset + npages;
985 	}
986 
987 	new->svm_bo = svm_range_bo_ref(old->svm_bo);
988 	new->ttm_res = old->ttm_res;
989 
990 	spin_lock(&new->svm_bo->list_lock);
991 	list_add(&new->svm_bo_list, &new->svm_bo->range_list);
992 	spin_unlock(&new->svm_bo->list_lock);
993 
994 	return 0;
995 }
996 
997 /**
998  * svm_range_split_adjust - split range and adjust
999  *
1000  * @new: new range
1001  * @old: the old range
1002  * @start: the old range adjust to start address in pages
1003  * @last: the old range adjust to last address in pages
1004  *
1005  * Copy system memory dma_addr or vram ttm_res in old range to new
1006  * range from new_start up to size new->npages, the remaining old range is from
1007  * start to last
1008  *
1009  * Return:
1010  * 0 - OK, -ENOMEM - out of memory
1011  */
1012 static int
svm_range_split_adjust(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)1013 svm_range_split_adjust(struct svm_range *new, struct svm_range *old,
1014 		      uint64_t start, uint64_t last)
1015 {
1016 	int r;
1017 
1018 	pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n",
1019 		 new->svms, new->start, old->start, old->last, start, last);
1020 
1021 	if (new->start < old->start ||
1022 	    new->last > old->last) {
1023 		WARN_ONCE(1, "invalid new range start or last\n");
1024 		return -EINVAL;
1025 	}
1026 
1027 	r = svm_range_split_pages(new, old, start, last);
1028 	if (r)
1029 		return r;
1030 
1031 	if (old->actual_loc && old->ttm_res) {
1032 		r = svm_range_split_nodes(new, old, start, last);
1033 		if (r)
1034 			return r;
1035 	}
1036 
1037 	old->npages = last - start + 1;
1038 	old->start = start;
1039 	old->last = last;
1040 	new->flags = old->flags;
1041 	new->preferred_loc = old->preferred_loc;
1042 	new->prefetch_loc = old->prefetch_loc;
1043 	new->actual_loc = old->actual_loc;
1044 	new->granularity = old->granularity;
1045 	new->mapped_to_gpu = old->mapped_to_gpu;
1046 	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1047 	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1048 
1049 	return 0;
1050 }
1051 
1052 /**
1053  * svm_range_split - split a range in 2 ranges
1054  *
1055  * @prange: the svm range to split
1056  * @start: the remaining range start address in pages
1057  * @last: the remaining range last address in pages
1058  * @new: the result new range generated
1059  *
1060  * Two cases only:
1061  * case 1: if start == prange->start
1062  *         prange ==> prange[start, last]
1063  *         new range [last + 1, prange->last]
1064  *
1065  * case 2: if last == prange->last
1066  *         prange ==> prange[start, last]
1067  *         new range [prange->start, start - 1]
1068  *
1069  * Return:
1070  * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last
1071  */
1072 static int
svm_range_split(struct svm_range * prange,uint64_t start,uint64_t last,struct svm_range ** new)1073 svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last,
1074 		struct svm_range **new)
1075 {
1076 	uint64_t old_start = prange->start;
1077 	uint64_t old_last = prange->last;
1078 	struct svm_range_list *svms;
1079 	int r = 0;
1080 
1081 	pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms,
1082 		 old_start, old_last, start, last);
1083 
1084 	if (old_start != start && old_last != last)
1085 		return -EINVAL;
1086 	if (start < old_start || last > old_last)
1087 		return -EINVAL;
1088 
1089 	svms = prange->svms;
1090 	if (old_start == start)
1091 		*new = svm_range_new(svms, last + 1, old_last, false);
1092 	else
1093 		*new = svm_range_new(svms, old_start, start - 1, false);
1094 	if (!*new)
1095 		return -ENOMEM;
1096 
1097 	r = svm_range_split_adjust(*new, prange, start, last);
1098 	if (r) {
1099 		pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n",
1100 			 r, old_start, old_last, start, last);
1101 		svm_range_free(*new, false);
1102 		*new = NULL;
1103 	}
1104 
1105 	return r;
1106 }
1107 
1108 static int
svm_range_split_tail(struct svm_range * prange,uint64_t new_last,struct list_head * insert_list)1109 svm_range_split_tail(struct svm_range *prange,
1110 		     uint64_t new_last, struct list_head *insert_list)
1111 {
1112 	struct svm_range *tail;
1113 	int r = svm_range_split(prange, prange->start, new_last, &tail);
1114 
1115 	if (!r)
1116 		list_add(&tail->list, insert_list);
1117 	return r;
1118 }
1119 
1120 static int
svm_range_split_head(struct svm_range * prange,uint64_t new_start,struct list_head * insert_list)1121 svm_range_split_head(struct svm_range *prange,
1122 		     uint64_t new_start, struct list_head *insert_list)
1123 {
1124 	struct svm_range *head;
1125 	int r = svm_range_split(prange, new_start, prange->last, &head);
1126 
1127 	if (!r)
1128 		list_add(&head->list, insert_list);
1129 	return r;
1130 }
1131 
1132 static void
svm_range_add_child(struct svm_range * prange,struct svm_range * pchild,enum svm_work_list_ops op)1133 svm_range_add_child(struct svm_range *prange, struct svm_range *pchild, enum svm_work_list_ops op)
1134 {
1135 	pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n",
1136 		 pchild, pchild->start, pchild->last, prange, op);
1137 
1138 	pchild->work_item.mm = NULL;
1139 	pchild->work_item.op = op;
1140 	list_add_tail(&pchild->child_list, &prange->child_list);
1141 }
1142 
1143 /**
1144  * svm_range_split_by_granularity - collect ranges within granularity boundary
1145  *
1146  * @p: the process with svms list
1147  * @mm: mm structure
1148  * @addr: the vm fault address in pages, to split the prange
1149  * @parent: parent range if prange is from child list
1150  * @prange: prange to split
1151  *
1152  * Trims @prange to be a single aligned block of prange->granularity if
1153  * possible. The head and tail are added to the child_list in @parent.
1154  *
1155  * Context: caller must hold mmap_read_lock and prange->lock
1156  *
1157  * Return:
1158  * 0 - OK, otherwise error code
1159  */
1160 int
svm_range_split_by_granularity(struct kfd_process * p,struct mm_struct * mm,unsigned long addr,struct svm_range * parent,struct svm_range * prange)1161 svm_range_split_by_granularity(struct kfd_process *p, struct mm_struct *mm,
1162 			       unsigned long addr, struct svm_range *parent,
1163 			       struct svm_range *prange)
1164 {
1165 	struct svm_range *head, *tail;
1166 	unsigned long start, last, size;
1167 	int r;
1168 
1169 	/* Align splited range start and size to granularity size, then a single
1170 	 * PTE will be used for whole range, this reduces the number of PTE
1171 	 * updated and the L1 TLB space used for translation.
1172 	 */
1173 	size = 1UL << prange->granularity;
1174 	start = ALIGN_DOWN(addr, size);
1175 	last = ALIGN(addr + 1, size) - 1;
1176 
1177 	pr_debug("svms 0x%p split [0x%lx 0x%lx] to [0x%lx 0x%lx] size 0x%lx\n",
1178 		 prange->svms, prange->start, prange->last, start, last, size);
1179 
1180 	if (start > prange->start) {
1181 		r = svm_range_split(prange, start, prange->last, &head);
1182 		if (r)
1183 			return r;
1184 		svm_range_add_child(parent, head, SVM_OP_ADD_RANGE);
1185 	}
1186 
1187 	if (last < prange->last) {
1188 		r = svm_range_split(prange, prange->start, last, &tail);
1189 		if (r)
1190 			return r;
1191 		svm_range_add_child(parent, tail, SVM_OP_ADD_RANGE);
1192 	}
1193 
1194 	/* xnack on, update mapping on GPUs with ACCESS_IN_PLACE */
1195 	if (p->xnack_enabled && prange->work_item.op == SVM_OP_ADD_RANGE) {
1196 		prange->work_item.op = SVM_OP_ADD_RANGE_AND_MAP;
1197 		pr_debug("change prange 0x%p [0x%lx 0x%lx] op %d\n",
1198 			 prange, prange->start, prange->last,
1199 			 SVM_OP_ADD_RANGE_AND_MAP);
1200 	}
1201 	return 0;
1202 }
1203 static bool
svm_nodes_in_same_hive(struct kfd_node * node_a,struct kfd_node * node_b)1204 svm_nodes_in_same_hive(struct kfd_node *node_a, struct kfd_node *node_b)
1205 {
1206 	return (node_a->adev == node_b->adev ||
1207 		amdgpu_xgmi_same_hive(node_a->adev, node_b->adev));
1208 }
1209 
1210 static uint64_t
svm_range_get_pte_flags(struct kfd_node * node,struct svm_range * prange,int domain)1211 svm_range_get_pte_flags(struct kfd_node *node,
1212 			struct svm_range *prange, int domain)
1213 {
1214 	struct kfd_node *bo_node;
1215 	uint32_t flags = prange->flags;
1216 	uint32_t mapping_flags = 0;
1217 	uint64_t pte_flags;
1218 	bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN);
1219 	bool coherent = flags & KFD_IOCTL_SVM_FLAG_COHERENT;
1220 	bool uncached = false; /*flags & KFD_IOCTL_SVM_FLAG_UNCACHED;*/
1221 	unsigned int mtype_local;
1222 
1223 	if (domain == SVM_RANGE_VRAM_DOMAIN)
1224 		bo_node = prange->svm_bo->node;
1225 
1226 	switch (node->adev->ip_versions[GC_HWIP][0]) {
1227 	case IP_VERSION(9, 4, 1):
1228 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1229 			if (bo_node == node) {
1230 				mapping_flags |= coherent ?
1231 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1232 			} else {
1233 				mapping_flags |= coherent ?
1234 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1235 				if (svm_nodes_in_same_hive(node, bo_node))
1236 					snoop = true;
1237 			}
1238 		} else {
1239 			mapping_flags |= coherent ?
1240 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1241 		}
1242 		break;
1243 	case IP_VERSION(9, 4, 2):
1244 		if (domain == SVM_RANGE_VRAM_DOMAIN) {
1245 			if (bo_node == node) {
1246 				mapping_flags |= coherent ?
1247 					AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1248 				if (node->adev->gmc.xgmi.connected_to_cpu)
1249 					snoop = true;
1250 			} else {
1251 				mapping_flags |= coherent ?
1252 					AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1253 				if (svm_nodes_in_same_hive(node, bo_node))
1254 					snoop = true;
1255 			}
1256 		} else {
1257 			mapping_flags |= coherent ?
1258 				AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1259 		}
1260 		break;
1261 	case IP_VERSION(9, 4, 3):
1262 		mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC :
1263 			     (amdgpu_mtype_local == 2 ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW);
1264 		snoop = true;
1265 		if (uncached) {
1266 			mapping_flags |= AMDGPU_VM_MTYPE_UC;
1267 		} else if (domain == SVM_RANGE_VRAM_DOMAIN) {
1268 			/* local HBM region close to partition */
1269 			if (bo_node->adev == node->adev &&
1270 			    (!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id))
1271 				mapping_flags |= mtype_local;
1272 			/* local HBM region far from partition or remote XGMI GPU */
1273 			else if (svm_nodes_in_same_hive(bo_node, node))
1274 				mapping_flags |= AMDGPU_VM_MTYPE_NC;
1275 			/* PCIe P2P */
1276 			else
1277 				mapping_flags |= AMDGPU_VM_MTYPE_UC;
1278 		/* system memory accessed by the APU */
1279 		} else if (node->adev->flags & AMD_IS_APU) {
1280 			/* On NUMA systems, locality is determined per-page
1281 			 * in amdgpu_gmc_override_vm_pte_flags
1282 			 */
1283 			if (num_possible_nodes() <= 1)
1284 				mapping_flags |= mtype_local;
1285 			else
1286 				mapping_flags |= AMDGPU_VM_MTYPE_NC;
1287 		/* system memory accessed by the dGPU */
1288 		} else {
1289 			mapping_flags |= AMDGPU_VM_MTYPE_UC;
1290 		}
1291 		break;
1292 	default:
1293 		mapping_flags |= coherent ?
1294 			AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1295 	}
1296 
1297 	mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE;
1298 
1299 	if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO)
1300 		mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE;
1301 	if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC)
1302 		mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
1303 
1304 	pte_flags = AMDGPU_PTE_VALID;
1305 	pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM;
1306 	pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
1307 
1308 	pte_flags |= amdgpu_gem_va_map_flags(node->adev, mapping_flags);
1309 	return pte_flags;
1310 }
1311 
1312 static int
svm_range_unmap_from_gpu(struct amdgpu_device * adev,struct amdgpu_vm * vm,uint64_t start,uint64_t last,struct dma_fence ** fence)1313 svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1314 			 uint64_t start, uint64_t last,
1315 			 struct dma_fence **fence)
1316 {
1317 	uint64_t init_pte_value = 0;
1318 
1319 	pr_debug("[0x%llx 0x%llx]\n", start, last);
1320 
1321 	return amdgpu_vm_update_range(adev, vm, false, true, true, NULL, start,
1322 				      last, init_pte_value, 0, 0, NULL, NULL,
1323 				      fence);
1324 }
1325 
1326 static int
svm_range_unmap_from_gpus(struct svm_range * prange,unsigned long start,unsigned long last,uint32_t trigger)1327 svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start,
1328 			  unsigned long last, uint32_t trigger)
1329 {
1330 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1331 	struct kfd_process_device *pdd;
1332 	struct dma_fence *fence = NULL;
1333 	struct kfd_process *p;
1334 	uint32_t gpuidx;
1335 	int r = 0;
1336 
1337 	if (!prange->mapped_to_gpu) {
1338 		pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n",
1339 			 prange, prange->start, prange->last);
1340 		return 0;
1341 	}
1342 
1343 	if (prange->start == start && prange->last == last) {
1344 		pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange);
1345 		prange->mapped_to_gpu = false;
1346 	}
1347 
1348 	bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
1349 		  MAX_GPU_INSTANCE);
1350 	p = container_of(prange->svms, struct kfd_process, svms);
1351 
1352 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1353 		pr_debug("unmap from gpu idx 0x%x\n", gpuidx);
1354 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1355 		if (!pdd) {
1356 			pr_debug("failed to find device idx %d\n", gpuidx);
1357 			return -EINVAL;
1358 		}
1359 
1360 		kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid,
1361 					     start, last, trigger);
1362 
1363 		r = svm_range_unmap_from_gpu(pdd->dev->adev,
1364 					     drm_priv_to_vm(pdd->drm_priv),
1365 					     start, last, &fence);
1366 		if (r)
1367 			break;
1368 
1369 		if (fence) {
1370 			r = dma_fence_wait(fence, false);
1371 			dma_fence_put(fence);
1372 			fence = NULL;
1373 			if (r)
1374 				break;
1375 		}
1376 		kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT);
1377 	}
1378 
1379 	return r;
1380 }
1381 
1382 static int
svm_range_map_to_gpu(struct kfd_process_device * pdd,struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,dma_addr_t * dma_addr,struct amdgpu_device * bo_adev,struct dma_fence ** fence,bool flush_tlb)1383 svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange,
1384 		     unsigned long offset, unsigned long npages, bool readonly,
1385 		     dma_addr_t *dma_addr, struct amdgpu_device *bo_adev,
1386 		     struct dma_fence **fence, bool flush_tlb)
1387 {
1388 	struct amdgpu_device *adev = pdd->dev->adev;
1389 	struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1390 	uint64_t pte_flags;
1391 	unsigned long last_start;
1392 	int last_domain;
1393 	int r = 0;
1394 	int64_t i, j;
1395 
1396 	last_start = prange->start + offset;
1397 
1398 	pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms,
1399 		 last_start, last_start + npages - 1, readonly);
1400 
1401 	for (i = offset; i < offset + npages; i++) {
1402 		last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN;
1403 		dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN;
1404 
1405 		/* Collect all pages in the same address range and memory domain
1406 		 * that can be mapped with a single call to update mapping.
1407 		 */
1408 		if (i < offset + npages - 1 &&
1409 		    last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN))
1410 			continue;
1411 
1412 		pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n",
1413 			 last_start, prange->start + i, last_domain ? "GPU" : "CPU");
1414 
1415 		pte_flags = svm_range_get_pte_flags(pdd->dev, prange, last_domain);
1416 		if (readonly)
1417 			pte_flags &= ~AMDGPU_PTE_WRITEABLE;
1418 
1419 		pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n",
1420 			 prange->svms, last_start, prange->start + i,
1421 			 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0,
1422 			 pte_flags);
1423 
1424 		/* For dGPU mode, we use same vm_manager to allocate VRAM for
1425 		 * different memory partition based on fpfn/lpfn, we should use
1426 		 * same vm_manager.vram_base_offset regardless memory partition.
1427 		 */
1428 		r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, NULL,
1429 					   last_start, prange->start + i,
1430 					   pte_flags,
1431 					   (last_start - prange->start) << PAGE_SHIFT,
1432 					   bo_adev ? bo_adev->vm_manager.vram_base_offset : 0,
1433 					   NULL, dma_addr, &vm->last_update);
1434 
1435 		for (j = last_start - prange->start; j <= i; j++)
1436 			dma_addr[j] |= last_domain;
1437 
1438 		if (r) {
1439 			pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start);
1440 			goto out;
1441 		}
1442 		last_start = prange->start + i + 1;
1443 	}
1444 
1445 	r = amdgpu_vm_update_pdes(adev, vm, false);
1446 	if (r) {
1447 		pr_debug("failed %d to update directories 0x%lx\n", r,
1448 			 prange->start);
1449 		goto out;
1450 	}
1451 
1452 	if (fence)
1453 		*fence = dma_fence_get(vm->last_update);
1454 
1455 out:
1456 	return r;
1457 }
1458 
1459 static int
svm_range_map_to_gpus(struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,unsigned long * bitmap,bool wait,bool flush_tlb)1460 svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset,
1461 		      unsigned long npages, bool readonly,
1462 		      unsigned long *bitmap, bool wait, bool flush_tlb)
1463 {
1464 	struct kfd_process_device *pdd;
1465 	struct amdgpu_device *bo_adev = NULL;
1466 	struct kfd_process *p;
1467 	struct dma_fence *fence = NULL;
1468 	uint32_t gpuidx;
1469 	int r = 0;
1470 
1471 	if (prange->svm_bo && prange->ttm_res)
1472 		bo_adev = prange->svm_bo->node->adev;
1473 
1474 	p = container_of(prange->svms, struct kfd_process, svms);
1475 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1476 		pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
1477 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1478 		if (!pdd) {
1479 			pr_debug("failed to find device idx %d\n", gpuidx);
1480 			return -EINVAL;
1481 		}
1482 
1483 		pdd = kfd_bind_process_to_device(pdd->dev, p);
1484 		if (IS_ERR(pdd))
1485 			return -EINVAL;
1486 
1487 		if (bo_adev && pdd->dev->adev != bo_adev &&
1488 		    !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) {
1489 			pr_debug("cannot map to device idx %d\n", gpuidx);
1490 			continue;
1491 		}
1492 
1493 		r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly,
1494 					 prange->dma_addr[gpuidx],
1495 					 bo_adev, wait ? &fence : NULL,
1496 					 flush_tlb);
1497 		if (r)
1498 			break;
1499 
1500 		if (fence) {
1501 			r = dma_fence_wait(fence, false);
1502 			dma_fence_put(fence);
1503 			fence = NULL;
1504 			if (r) {
1505 				pr_debug("failed %d to dma fence wait\n", r);
1506 				break;
1507 			}
1508 		}
1509 
1510 		kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1511 	}
1512 
1513 	return r;
1514 }
1515 
1516 struct svm_validate_context {
1517 	struct kfd_process *process;
1518 	struct svm_range *prange;
1519 	bool intr;
1520 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1521 	struct drm_exec exec;
1522 };
1523 
svm_range_reserve_bos(struct svm_validate_context * ctx,bool intr)1524 static int svm_range_reserve_bos(struct svm_validate_context *ctx, bool intr)
1525 {
1526 	struct kfd_process_device *pdd;
1527 	struct amdgpu_vm *vm;
1528 	uint32_t gpuidx;
1529 	int r;
1530 
1531 	drm_exec_init(&ctx->exec, intr ? DRM_EXEC_INTERRUPTIBLE_WAIT: 0);
1532 	drm_exec_until_all_locked(&ctx->exec) {
1533 		for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1534 			pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1535 			if (!pdd) {
1536 				pr_debug("failed to find device idx %d\n", gpuidx);
1537 				r = -EINVAL;
1538 				goto unreserve_out;
1539 			}
1540 			vm = drm_priv_to_vm(pdd->drm_priv);
1541 
1542 			r = amdgpu_vm_lock_pd(vm, &ctx->exec, 2);
1543 			drm_exec_retry_on_contention(&ctx->exec);
1544 			if (unlikely(r)) {
1545 				pr_debug("failed %d to reserve bo\n", r);
1546 				goto unreserve_out;
1547 			}
1548 		}
1549 	}
1550 
1551 	for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1552 		pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1553 		if (!pdd) {
1554 			pr_debug("failed to find device idx %d\n", gpuidx);
1555 			r = -EINVAL;
1556 			goto unreserve_out;
1557 		}
1558 
1559 		r = amdgpu_vm_validate_pt_bos(pdd->dev->adev,
1560 					      drm_priv_to_vm(pdd->drm_priv),
1561 					      svm_range_bo_validate, NULL);
1562 		if (r) {
1563 			pr_debug("failed %d validate pt bos\n", r);
1564 			goto unreserve_out;
1565 		}
1566 	}
1567 
1568 	return 0;
1569 
1570 unreserve_out:
1571 	drm_exec_fini(&ctx->exec);
1572 	return r;
1573 }
1574 
svm_range_unreserve_bos(struct svm_validate_context * ctx)1575 static void svm_range_unreserve_bos(struct svm_validate_context *ctx)
1576 {
1577 	drm_exec_fini(&ctx->exec);
1578 }
1579 
kfd_svm_page_owner(struct kfd_process * p,int32_t gpuidx)1580 static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx)
1581 {
1582 	struct kfd_process_device *pdd;
1583 
1584 	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1585 	if (!pdd)
1586 		return NULL;
1587 
1588 	return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev);
1589 }
1590 
1591 /*
1592  * Validation+GPU mapping with concurrent invalidation (MMU notifiers)
1593  *
1594  * To prevent concurrent destruction or change of range attributes, the
1595  * svm_read_lock must be held. The caller must not hold the svm_write_lock
1596  * because that would block concurrent evictions and lead to deadlocks. To
1597  * serialize concurrent migrations or validations of the same range, the
1598  * prange->migrate_mutex must be held.
1599  *
1600  * For VRAM ranges, the SVM BO must be allocated and valid (protected by its
1601  * eviction fence.
1602  *
1603  * The following sequence ensures race-free validation and GPU mapping:
1604  *
1605  * 1. Reserve page table (and SVM BO if range is in VRAM)
1606  * 2. hmm_range_fault to get page addresses (if system memory)
1607  * 3. DMA-map pages (if system memory)
1608  * 4-a. Take notifier lock
1609  * 4-b. Check that pages still valid (mmu_interval_read_retry)
1610  * 4-c. Check that the range was not split or otherwise invalidated
1611  * 4-d. Update GPU page table
1612  * 4.e. Release notifier lock
1613  * 5. Release page table (and SVM BO) reservation
1614  */
svm_range_validate_and_map(struct mm_struct * mm,struct svm_range * prange,int32_t gpuidx,bool intr,bool wait,bool flush_tlb)1615 static int svm_range_validate_and_map(struct mm_struct *mm,
1616 				      struct svm_range *prange, int32_t gpuidx,
1617 				      bool intr, bool wait, bool flush_tlb)
1618 {
1619 	struct svm_validate_context *ctx;
1620 	unsigned long start, end, addr;
1621 	struct kfd_process *p;
1622 	void *owner;
1623 	int32_t idx;
1624 	int r = 0;
1625 
1626 	ctx = kzalloc(sizeof(struct svm_validate_context), GFP_KERNEL);
1627 	if (!ctx)
1628 		return -ENOMEM;
1629 	ctx->process = container_of(prange->svms, struct kfd_process, svms);
1630 	ctx->prange = prange;
1631 	ctx->intr = intr;
1632 
1633 	if (gpuidx < MAX_GPU_INSTANCE) {
1634 		bitmap_zero(ctx->bitmap, MAX_GPU_INSTANCE);
1635 		bitmap_set(ctx->bitmap, gpuidx, 1);
1636 	} else if (ctx->process->xnack_enabled) {
1637 		bitmap_copy(ctx->bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
1638 
1639 		/* If prefetch range to GPU, or GPU retry fault migrate range to
1640 		 * GPU, which has ACCESS attribute to the range, create mapping
1641 		 * on that GPU.
1642 		 */
1643 		if (prange->actual_loc) {
1644 			gpuidx = kfd_process_gpuidx_from_gpuid(ctx->process,
1645 							prange->actual_loc);
1646 			if (gpuidx < 0) {
1647 				WARN_ONCE(1, "failed get device by id 0x%x\n",
1648 					 prange->actual_loc);
1649 				r = -EINVAL;
1650 				goto free_ctx;
1651 			}
1652 			if (test_bit(gpuidx, prange->bitmap_access))
1653 				bitmap_set(ctx->bitmap, gpuidx, 1);
1654 		}
1655 
1656 		/*
1657 		 * If prange is already mapped or with always mapped flag,
1658 		 * update mapping on GPUs with ACCESS attribute
1659 		 */
1660 		if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1661 			if (prange->mapped_to_gpu ||
1662 			    prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)
1663 				bitmap_copy(ctx->bitmap, prange->bitmap_access, MAX_GPU_INSTANCE);
1664 		}
1665 	} else {
1666 		bitmap_or(ctx->bitmap, prange->bitmap_access,
1667 			  prange->bitmap_aip, MAX_GPU_INSTANCE);
1668 	}
1669 
1670 	if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1671 		r = 0;
1672 		goto free_ctx;
1673 	}
1674 
1675 	if (prange->actual_loc && !prange->ttm_res) {
1676 		/* This should never happen. actual_loc gets set by
1677 		 * svm_migrate_ram_to_vram after allocating a BO.
1678 		 */
1679 		WARN_ONCE(1, "VRAM BO missing during validation\n");
1680 		r = -EINVAL;
1681 		goto free_ctx;
1682 	}
1683 
1684 	svm_range_reserve_bos(ctx, intr);
1685 
1686 	p = container_of(prange->svms, struct kfd_process, svms);
1687 	owner = kfd_svm_page_owner(p, find_first_bit(ctx->bitmap,
1688 						MAX_GPU_INSTANCE));
1689 	for_each_set_bit(idx, ctx->bitmap, MAX_GPU_INSTANCE) {
1690 		if (kfd_svm_page_owner(p, idx) != owner) {
1691 			owner = NULL;
1692 			break;
1693 		}
1694 	}
1695 
1696 	start = prange->start << PAGE_SHIFT;
1697 	end = (prange->last + 1) << PAGE_SHIFT;
1698 	for (addr = start; !r && addr < end; ) {
1699 		struct hmm_range *hmm_range;
1700 		struct vm_area_struct *vma;
1701 		unsigned long next = 0;
1702 		unsigned long offset;
1703 		unsigned long npages;
1704 		bool readonly;
1705 
1706 		vma = vma_lookup(mm, addr);
1707 		if (vma) {
1708 			readonly = !(vma->vm_flags & VM_WRITE);
1709 
1710 			next = min(vma->vm_end, end);
1711 			npages = (next - addr) >> PAGE_SHIFT;
1712 			WRITE_ONCE(p->svms.faulting_task, current);
1713 			r = amdgpu_hmm_range_get_pages(&prange->notifier, addr, npages,
1714 						       readonly, owner, NULL,
1715 						       &hmm_range);
1716 			WRITE_ONCE(p->svms.faulting_task, NULL);
1717 			if (r) {
1718 				pr_debug("failed %d to get svm range pages\n", r);
1719 				if (r == -EBUSY)
1720 					r = -EAGAIN;
1721 			}
1722 		} else {
1723 			r = -EFAULT;
1724 		}
1725 
1726 		if (!r) {
1727 			offset = (addr - start) >> PAGE_SHIFT;
1728 			r = svm_range_dma_map(prange, ctx->bitmap, offset, npages,
1729 					      hmm_range->hmm_pfns);
1730 			if (r)
1731 				pr_debug("failed %d to dma map range\n", r);
1732 		}
1733 
1734 		svm_range_lock(prange);
1735 		if (!r && amdgpu_hmm_range_get_pages_done(hmm_range)) {
1736 			pr_debug("hmm update the range, need validate again\n");
1737 			r = -EAGAIN;
1738 		}
1739 
1740 		if (!r && !list_empty(&prange->child_list)) {
1741 			pr_debug("range split by unmap in parallel, validate again\n");
1742 			r = -EAGAIN;
1743 		}
1744 
1745 		if (!r)
1746 			r = svm_range_map_to_gpus(prange, offset, npages, readonly,
1747 						  ctx->bitmap, wait, flush_tlb);
1748 
1749 		if (!r && next == end)
1750 			prange->mapped_to_gpu = true;
1751 
1752 		svm_range_unlock(prange);
1753 
1754 		addr = next;
1755 	}
1756 
1757 	svm_range_unreserve_bos(ctx);
1758 	if (!r)
1759 		prange->validate_timestamp = ktime_get_boottime();
1760 
1761 free_ctx:
1762 	kfree(ctx);
1763 
1764 	return r;
1765 }
1766 
1767 /**
1768  * svm_range_list_lock_and_flush_work - flush pending deferred work
1769  *
1770  * @svms: the svm range list
1771  * @mm: the mm structure
1772  *
1773  * Context: Returns with mmap write lock held, pending deferred work flushed
1774  *
1775  */
1776 void
svm_range_list_lock_and_flush_work(struct svm_range_list * svms,struct mm_struct * mm)1777 svm_range_list_lock_and_flush_work(struct svm_range_list *svms,
1778 				   struct mm_struct *mm)
1779 {
1780 retry_flush_work:
1781 	flush_work(&svms->deferred_list_work);
1782 	mmap_write_lock(mm);
1783 
1784 	if (list_empty(&svms->deferred_range_list))
1785 		return;
1786 	mmap_write_unlock(mm);
1787 	pr_debug("retry flush\n");
1788 	goto retry_flush_work;
1789 }
1790 
svm_range_restore_work(struct work_struct * work)1791 static void svm_range_restore_work(struct work_struct *work)
1792 {
1793 	struct delayed_work *dwork = to_delayed_work(work);
1794 	struct amdkfd_process_info *process_info;
1795 	struct svm_range_list *svms;
1796 	struct svm_range *prange;
1797 	struct kfd_process *p;
1798 	struct mm_struct *mm;
1799 	int evicted_ranges;
1800 	int invalid;
1801 	int r;
1802 
1803 	svms = container_of(dwork, struct svm_range_list, restore_work);
1804 	evicted_ranges = atomic_read(&svms->evicted_ranges);
1805 	if (!evicted_ranges)
1806 		return;
1807 
1808 	pr_debug("restore svm ranges\n");
1809 
1810 	p = container_of(svms, struct kfd_process, svms);
1811 	process_info = p->kgd_process_info;
1812 
1813 	/* Keep mm reference when svm_range_validate_and_map ranges */
1814 	mm = get_task_mm(p->lead_thread);
1815 	if (!mm) {
1816 		pr_debug("svms 0x%p process mm gone\n", svms);
1817 		return;
1818 	}
1819 
1820 	mutex_lock(&process_info->lock);
1821 	svm_range_list_lock_and_flush_work(svms, mm);
1822 	mutex_lock(&svms->lock);
1823 
1824 	evicted_ranges = atomic_read(&svms->evicted_ranges);
1825 
1826 	list_for_each_entry(prange, &svms->list, list) {
1827 		invalid = atomic_read(&prange->invalid);
1828 		if (!invalid)
1829 			continue;
1830 
1831 		pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n",
1832 			 prange->svms, prange, prange->start, prange->last,
1833 			 invalid);
1834 
1835 		/*
1836 		 * If range is migrating, wait for migration is done.
1837 		 */
1838 		mutex_lock(&prange->migrate_mutex);
1839 
1840 		r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE,
1841 					       false, true, false);
1842 		if (r)
1843 			pr_debug("failed %d to map 0x%lx to gpus\n", r,
1844 				 prange->start);
1845 
1846 		mutex_unlock(&prange->migrate_mutex);
1847 		if (r)
1848 			goto out_reschedule;
1849 
1850 		if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid)
1851 			goto out_reschedule;
1852 	}
1853 
1854 	if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) !=
1855 	    evicted_ranges)
1856 		goto out_reschedule;
1857 
1858 	evicted_ranges = 0;
1859 
1860 	r = kgd2kfd_resume_mm(mm);
1861 	if (r) {
1862 		/* No recovery from this failure. Probably the CP is
1863 		 * hanging. No point trying again.
1864 		 */
1865 		pr_debug("failed %d to resume KFD\n", r);
1866 	}
1867 
1868 	pr_debug("restore svm ranges successfully\n");
1869 
1870 out_reschedule:
1871 	mutex_unlock(&svms->lock);
1872 	mmap_write_unlock(mm);
1873 	mutex_unlock(&process_info->lock);
1874 
1875 	/* If validation failed, reschedule another attempt */
1876 	if (evicted_ranges) {
1877 		pr_debug("reschedule to restore svm range\n");
1878 		schedule_delayed_work(&svms->restore_work,
1879 			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1880 
1881 		kfd_smi_event_queue_restore_rescheduled(mm);
1882 	}
1883 	mmput(mm);
1884 }
1885 
1886 /**
1887  * svm_range_evict - evict svm range
1888  * @prange: svm range structure
1889  * @mm: current process mm_struct
1890  * @start: starting process queue number
1891  * @last: last process queue number
1892  * @event: mmu notifier event when range is evicted or migrated
1893  *
1894  * Stop all queues of the process to ensure GPU doesn't access the memory, then
1895  * return to let CPU evict the buffer and proceed CPU pagetable update.
1896  *
1897  * Don't need use lock to sync cpu pagetable invalidation with GPU execution.
1898  * If invalidation happens while restore work is running, restore work will
1899  * restart to ensure to get the latest CPU pages mapping to GPU, then start
1900  * the queues.
1901  */
1902 static int
svm_range_evict(struct svm_range * prange,struct mm_struct * mm,unsigned long start,unsigned long last,enum mmu_notifier_event event)1903 svm_range_evict(struct svm_range *prange, struct mm_struct *mm,
1904 		unsigned long start, unsigned long last,
1905 		enum mmu_notifier_event event)
1906 {
1907 	struct svm_range_list *svms = prange->svms;
1908 	struct svm_range *pchild;
1909 	struct kfd_process *p;
1910 	int r = 0;
1911 
1912 	p = container_of(svms, struct kfd_process, svms);
1913 
1914 	pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
1915 		 svms, prange->start, prange->last, start, last);
1916 
1917 	if (!p->xnack_enabled ||
1918 	    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) {
1919 		int evicted_ranges;
1920 		bool mapped = prange->mapped_to_gpu;
1921 
1922 		list_for_each_entry(pchild, &prange->child_list, child_list) {
1923 			if (!pchild->mapped_to_gpu)
1924 				continue;
1925 			mapped = true;
1926 			mutex_lock_nested(&pchild->lock, 1);
1927 			if (pchild->start <= last && pchild->last >= start) {
1928 				pr_debug("increment pchild invalid [0x%lx 0x%lx]\n",
1929 					 pchild->start, pchild->last);
1930 				atomic_inc(&pchild->invalid);
1931 			}
1932 			mutex_unlock(&pchild->lock);
1933 		}
1934 
1935 		if (!mapped)
1936 			return r;
1937 
1938 		if (prange->start <= last && prange->last >= start)
1939 			atomic_inc(&prange->invalid);
1940 
1941 		evicted_ranges = atomic_inc_return(&svms->evicted_ranges);
1942 		if (evicted_ranges != 1)
1943 			return r;
1944 
1945 		pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n",
1946 			 prange->svms, prange->start, prange->last);
1947 
1948 		/* First eviction, stop the queues */
1949 		r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
1950 		if (r)
1951 			pr_debug("failed to quiesce KFD\n");
1952 
1953 		pr_debug("schedule to restore svm %p ranges\n", svms);
1954 		schedule_delayed_work(&svms->restore_work,
1955 			msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1956 	} else {
1957 		unsigned long s, l;
1958 		uint32_t trigger;
1959 
1960 		if (event == MMU_NOTIFY_MIGRATE)
1961 			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE;
1962 		else
1963 			trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY;
1964 
1965 		pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n",
1966 			 prange->svms, start, last);
1967 		list_for_each_entry(pchild, &prange->child_list, child_list) {
1968 			mutex_lock_nested(&pchild->lock, 1);
1969 			s = max(start, pchild->start);
1970 			l = min(last, pchild->last);
1971 			if (l >= s)
1972 				svm_range_unmap_from_gpus(pchild, s, l, trigger);
1973 			mutex_unlock(&pchild->lock);
1974 		}
1975 		s = max(start, prange->start);
1976 		l = min(last, prange->last);
1977 		if (l >= s)
1978 			svm_range_unmap_from_gpus(prange, s, l, trigger);
1979 	}
1980 
1981 	return r;
1982 }
1983 
svm_range_clone(struct svm_range * old)1984 static struct svm_range *svm_range_clone(struct svm_range *old)
1985 {
1986 	struct svm_range *new;
1987 
1988 	new = svm_range_new(old->svms, old->start, old->last, false);
1989 	if (!new)
1990 		return NULL;
1991 	if (svm_range_copy_dma_addrs(new, old)) {
1992 		svm_range_free(new, false);
1993 		return NULL;
1994 	}
1995 	if (old->svm_bo) {
1996 		new->ttm_res = old->ttm_res;
1997 		new->offset = old->offset;
1998 		new->svm_bo = svm_range_bo_ref(old->svm_bo);
1999 		spin_lock(&new->svm_bo->list_lock);
2000 		list_add(&new->svm_bo_list, &new->svm_bo->range_list);
2001 		spin_unlock(&new->svm_bo->list_lock);
2002 	}
2003 	new->flags = old->flags;
2004 	new->preferred_loc = old->preferred_loc;
2005 	new->prefetch_loc = old->prefetch_loc;
2006 	new->actual_loc = old->actual_loc;
2007 	new->granularity = old->granularity;
2008 	new->mapped_to_gpu = old->mapped_to_gpu;
2009 	bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
2010 	bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
2011 
2012 	return new;
2013 }
2014 
svm_range_set_max_pages(struct amdgpu_device * adev)2015 void svm_range_set_max_pages(struct amdgpu_device *adev)
2016 {
2017 	uint64_t max_pages;
2018 	uint64_t pages, _pages;
2019 	uint64_t min_pages = 0;
2020 	int i, id;
2021 
2022 	for (i = 0; i < adev->kfd.dev->num_nodes; i++) {
2023 		if (adev->kfd.dev->nodes[i]->xcp)
2024 			id = adev->kfd.dev->nodes[i]->xcp->id;
2025 		else
2026 			id = -1;
2027 		pages = KFD_XCP_MEMORY_SIZE(adev, id) >> 17;
2028 		pages = clamp(pages, 1ULL << 9, 1ULL << 18);
2029 		pages = rounddown_pow_of_two(pages);
2030 		min_pages = min_not_zero(min_pages, pages);
2031 	}
2032 
2033 	do {
2034 		max_pages = READ_ONCE(max_svm_range_pages);
2035 		_pages = min_not_zero(max_pages, min_pages);
2036 	} while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages);
2037 }
2038 
2039 static int
svm_range_split_new(struct svm_range_list * svms,uint64_t start,uint64_t last,uint64_t max_pages,struct list_head * insert_list,struct list_head * update_list)2040 svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last,
2041 		    uint64_t max_pages, struct list_head *insert_list,
2042 		    struct list_head *update_list)
2043 {
2044 	struct svm_range *prange;
2045 	uint64_t l;
2046 
2047 	pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n",
2048 		 max_pages, start, last);
2049 
2050 	while (last >= start) {
2051 		l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1);
2052 
2053 		prange = svm_range_new(svms, start, l, true);
2054 		if (!prange)
2055 			return -ENOMEM;
2056 		list_add(&prange->list, insert_list);
2057 		list_add(&prange->update_list, update_list);
2058 
2059 		start = l + 1;
2060 	}
2061 	return 0;
2062 }
2063 
2064 /**
2065  * svm_range_add - add svm range and handle overlap
2066  * @p: the range add to this process svms
2067  * @start: page size aligned
2068  * @size: page size aligned
2069  * @nattr: number of attributes
2070  * @attrs: array of attributes
2071  * @update_list: output, the ranges need validate and update GPU mapping
2072  * @insert_list: output, the ranges need insert to svms
2073  * @remove_list: output, the ranges are replaced and need remove from svms
2074  *
2075  * Check if the virtual address range has overlap with any existing ranges,
2076  * split partly overlapping ranges and add new ranges in the gaps. All changes
2077  * should be applied to the range_list and interval tree transactionally. If
2078  * any range split or allocation fails, the entire update fails. Therefore any
2079  * existing overlapping svm_ranges are cloned and the original svm_ranges left
2080  * unchanged.
2081  *
2082  * If the transaction succeeds, the caller can update and insert clones and
2083  * new ranges, then free the originals.
2084  *
2085  * Otherwise the caller can free the clones and new ranges, while the old
2086  * svm_ranges remain unchanged.
2087  *
2088  * Context: Process context, caller must hold svms->lock
2089  *
2090  * Return:
2091  * 0 - OK, otherwise error code
2092  */
2093 static int
svm_range_add(struct kfd_process * p,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,struct list_head * update_list,struct list_head * insert_list,struct list_head * remove_list)2094 svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size,
2095 	      uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
2096 	      struct list_head *update_list, struct list_head *insert_list,
2097 	      struct list_head *remove_list)
2098 {
2099 	unsigned long last = start + size - 1UL;
2100 	struct svm_range_list *svms = &p->svms;
2101 	struct interval_tree_node *node;
2102 	struct svm_range *prange;
2103 	struct svm_range *tmp;
2104 	struct list_head new_list;
2105 	int r = 0;
2106 
2107 	pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last);
2108 
2109 	INIT_LIST_HEAD(update_list);
2110 	INIT_LIST_HEAD(insert_list);
2111 	INIT_LIST_HEAD(remove_list);
2112 	INIT_LIST_HEAD(&new_list);
2113 
2114 	node = interval_tree_iter_first(&svms->objects, start, last);
2115 	while (node) {
2116 		struct interval_tree_node *next;
2117 		unsigned long next_start;
2118 
2119 		pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start,
2120 			 node->last);
2121 
2122 		prange = container_of(node, struct svm_range, it_node);
2123 		next = interval_tree_iter_next(node, start, last);
2124 		next_start = min(node->last, last) + 1;
2125 
2126 		if (svm_range_is_same_attrs(p, prange, nattr, attrs) &&
2127 		    prange->mapped_to_gpu) {
2128 			/* nothing to do */
2129 		} else if (node->start < start || node->last > last) {
2130 			/* node intersects the update range and its attributes
2131 			 * will change. Clone and split it, apply updates only
2132 			 * to the overlapping part
2133 			 */
2134 			struct svm_range *old = prange;
2135 
2136 			prange = svm_range_clone(old);
2137 			if (!prange) {
2138 				r = -ENOMEM;
2139 				goto out;
2140 			}
2141 
2142 			list_add(&old->update_list, remove_list);
2143 			list_add(&prange->list, insert_list);
2144 			list_add(&prange->update_list, update_list);
2145 
2146 			if (node->start < start) {
2147 				pr_debug("change old range start\n");
2148 				r = svm_range_split_head(prange, start,
2149 							 insert_list);
2150 				if (r)
2151 					goto out;
2152 			}
2153 			if (node->last > last) {
2154 				pr_debug("change old range last\n");
2155 				r = svm_range_split_tail(prange, last,
2156 							 insert_list);
2157 				if (r)
2158 					goto out;
2159 			}
2160 		} else {
2161 			/* The node is contained within start..last,
2162 			 * just update it
2163 			 */
2164 			list_add(&prange->update_list, update_list);
2165 		}
2166 
2167 		/* insert a new node if needed */
2168 		if (node->start > start) {
2169 			r = svm_range_split_new(svms, start, node->start - 1,
2170 						READ_ONCE(max_svm_range_pages),
2171 						&new_list, update_list);
2172 			if (r)
2173 				goto out;
2174 		}
2175 
2176 		node = next;
2177 		start = next_start;
2178 	}
2179 
2180 	/* add a final range at the end if needed */
2181 	if (start <= last)
2182 		r = svm_range_split_new(svms, start, last,
2183 					READ_ONCE(max_svm_range_pages),
2184 					&new_list, update_list);
2185 
2186 out:
2187 	if (r) {
2188 		list_for_each_entry_safe(prange, tmp, insert_list, list)
2189 			svm_range_free(prange, false);
2190 		list_for_each_entry_safe(prange, tmp, &new_list, list)
2191 			svm_range_free(prange, true);
2192 	} else {
2193 		list_splice(&new_list, insert_list);
2194 	}
2195 
2196 	return r;
2197 }
2198 
2199 static void
svm_range_update_notifier_and_interval_tree(struct mm_struct * mm,struct svm_range * prange)2200 svm_range_update_notifier_and_interval_tree(struct mm_struct *mm,
2201 					    struct svm_range *prange)
2202 {
2203 	unsigned long start;
2204 	unsigned long last;
2205 
2206 	start = prange->notifier.interval_tree.start >> PAGE_SHIFT;
2207 	last = prange->notifier.interval_tree.last >> PAGE_SHIFT;
2208 
2209 	if (prange->start == start && prange->last == last)
2210 		return;
2211 
2212 	pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
2213 		  prange->svms, prange, start, last, prange->start,
2214 		  prange->last);
2215 
2216 	if (start != 0 && last != 0) {
2217 		interval_tree_remove(&prange->it_node, &prange->svms->objects);
2218 		svm_range_remove_notifier(prange);
2219 	}
2220 	prange->it_node.start = prange->start;
2221 	prange->it_node.last = prange->last;
2222 
2223 	interval_tree_insert(&prange->it_node, &prange->svms->objects);
2224 	svm_range_add_notifier_locked(mm, prange);
2225 }
2226 
2227 static void
svm_range_handle_list_op(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm)2228 svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange,
2229 			 struct mm_struct *mm)
2230 {
2231 	switch (prange->work_item.op) {
2232 	case SVM_OP_NULL:
2233 		pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2234 			 svms, prange, prange->start, prange->last);
2235 		break;
2236 	case SVM_OP_UNMAP_RANGE:
2237 		pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2238 			 svms, prange, prange->start, prange->last);
2239 		svm_range_unlink(prange);
2240 		svm_range_remove_notifier(prange);
2241 		svm_range_free(prange, true);
2242 		break;
2243 	case SVM_OP_UPDATE_RANGE_NOTIFIER:
2244 		pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2245 			 svms, prange, prange->start, prange->last);
2246 		svm_range_update_notifier_and_interval_tree(mm, prange);
2247 		break;
2248 	case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP:
2249 		pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2250 			 svms, prange, prange->start, prange->last);
2251 		svm_range_update_notifier_and_interval_tree(mm, prange);
2252 		/* TODO: implement deferred validation and mapping */
2253 		break;
2254 	case SVM_OP_ADD_RANGE:
2255 		pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange,
2256 			 prange->start, prange->last);
2257 		svm_range_add_to_svms(prange);
2258 		svm_range_add_notifier_locked(mm, prange);
2259 		break;
2260 	case SVM_OP_ADD_RANGE_AND_MAP:
2261 		pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms,
2262 			 prange, prange->start, prange->last);
2263 		svm_range_add_to_svms(prange);
2264 		svm_range_add_notifier_locked(mm, prange);
2265 		/* TODO: implement deferred validation and mapping */
2266 		break;
2267 	default:
2268 		WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange,
2269 			 prange->work_item.op);
2270 	}
2271 }
2272 
svm_range_drain_retry_fault(struct svm_range_list * svms)2273 static void svm_range_drain_retry_fault(struct svm_range_list *svms)
2274 {
2275 	struct kfd_process_device *pdd;
2276 	struct kfd_process *p;
2277 	int drain;
2278 	uint32_t i;
2279 
2280 	p = container_of(svms, struct kfd_process, svms);
2281 
2282 restart:
2283 	drain = atomic_read(&svms->drain_pagefaults);
2284 	if (!drain)
2285 		return;
2286 
2287 	for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2288 		pdd = p->pdds[i];
2289 		if (!pdd)
2290 			continue;
2291 
2292 		pr_debug("drain retry fault gpu %d svms %p\n", i, svms);
2293 
2294 		amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2295 				pdd->dev->adev->irq.retry_cam_enabled ?
2296 				&pdd->dev->adev->irq.ih :
2297 				&pdd->dev->adev->irq.ih1);
2298 
2299 		if (pdd->dev->adev->irq.retry_cam_enabled)
2300 			amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2301 				&pdd->dev->adev->irq.ih_soft);
2302 
2303 
2304 		pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms);
2305 	}
2306 	if (atomic_cmpxchg(&svms->drain_pagefaults, drain, 0) != drain)
2307 		goto restart;
2308 }
2309 
svm_range_deferred_list_work(struct work_struct * work)2310 static void svm_range_deferred_list_work(struct work_struct *work)
2311 {
2312 	struct svm_range_list *svms;
2313 	struct svm_range *prange;
2314 	struct mm_struct *mm;
2315 
2316 	svms = container_of(work, struct svm_range_list, deferred_list_work);
2317 	pr_debug("enter svms 0x%p\n", svms);
2318 
2319 	spin_lock(&svms->deferred_list_lock);
2320 	while (!list_empty(&svms->deferred_range_list)) {
2321 		prange = list_first_entry(&svms->deferred_range_list,
2322 					  struct svm_range, deferred_list);
2323 		spin_unlock(&svms->deferred_list_lock);
2324 
2325 		pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange,
2326 			 prange->start, prange->last, prange->work_item.op);
2327 
2328 		mm = prange->work_item.mm;
2329 retry:
2330 		mmap_write_lock(mm);
2331 
2332 		/* Checking for the need to drain retry faults must be inside
2333 		 * mmap write lock to serialize with munmap notifiers.
2334 		 */
2335 		if (unlikely(atomic_read(&svms->drain_pagefaults))) {
2336 			mmap_write_unlock(mm);
2337 			svm_range_drain_retry_fault(svms);
2338 			goto retry;
2339 		}
2340 
2341 		/* Remove from deferred_list must be inside mmap write lock, for
2342 		 * two race cases:
2343 		 * 1. unmap_from_cpu may change work_item.op and add the range
2344 		 *    to deferred_list again, cause use after free bug.
2345 		 * 2. svm_range_list_lock_and_flush_work may hold mmap write
2346 		 *    lock and continue because deferred_list is empty, but
2347 		 *    deferred_list work is actually waiting for mmap lock.
2348 		 */
2349 		spin_lock(&svms->deferred_list_lock);
2350 		list_del_init(&prange->deferred_list);
2351 		spin_unlock(&svms->deferred_list_lock);
2352 
2353 		mutex_lock(&svms->lock);
2354 		mutex_lock(&prange->migrate_mutex);
2355 		while (!list_empty(&prange->child_list)) {
2356 			struct svm_range *pchild;
2357 
2358 			pchild = list_first_entry(&prange->child_list,
2359 						struct svm_range, child_list);
2360 			pr_debug("child prange 0x%p op %d\n", pchild,
2361 				 pchild->work_item.op);
2362 			list_del_init(&pchild->child_list);
2363 			svm_range_handle_list_op(svms, pchild, mm);
2364 		}
2365 		mutex_unlock(&prange->migrate_mutex);
2366 
2367 		svm_range_handle_list_op(svms, prange, mm);
2368 		mutex_unlock(&svms->lock);
2369 		mmap_write_unlock(mm);
2370 
2371 		/* Pairs with mmget in svm_range_add_list_work. If dropping the
2372 		 * last mm refcount, schedule release work to avoid circular locking
2373 		 */
2374 		mmput_async(mm);
2375 
2376 		spin_lock(&svms->deferred_list_lock);
2377 	}
2378 	spin_unlock(&svms->deferred_list_lock);
2379 	pr_debug("exit svms 0x%p\n", svms);
2380 }
2381 
2382 void
svm_range_add_list_work(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm,enum svm_work_list_ops op)2383 svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange,
2384 			struct mm_struct *mm, enum svm_work_list_ops op)
2385 {
2386 	spin_lock(&svms->deferred_list_lock);
2387 	/* if prange is on the deferred list */
2388 	if (!list_empty(&prange->deferred_list)) {
2389 		pr_debug("update exist prange 0x%p work op %d\n", prange, op);
2390 		WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n");
2391 		if (op != SVM_OP_NULL &&
2392 		    prange->work_item.op != SVM_OP_UNMAP_RANGE)
2393 			prange->work_item.op = op;
2394 	} else {
2395 		/* Pairs with mmput in deferred_list_work.
2396 		 * If process is exiting and mm is gone, don't update mmu notifier.
2397 		 */
2398 		if (mmget_not_zero(mm)) {
2399 			prange->work_item.mm = mm;
2400 			prange->work_item.op = op;
2401 			list_add_tail(&prange->deferred_list,
2402 				      &prange->svms->deferred_range_list);
2403 			pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n",
2404 				 prange, prange->start, prange->last, op);
2405 		}
2406 	}
2407 	spin_unlock(&svms->deferred_list_lock);
2408 }
2409 
schedule_deferred_list_work(struct svm_range_list * svms)2410 void schedule_deferred_list_work(struct svm_range_list *svms)
2411 {
2412 	spin_lock(&svms->deferred_list_lock);
2413 	if (!list_empty(&svms->deferred_range_list))
2414 		schedule_work(&svms->deferred_list_work);
2415 	spin_unlock(&svms->deferred_list_lock);
2416 }
2417 
2418 static void
svm_range_unmap_split(struct svm_range * parent,struct svm_range * prange,unsigned long start,unsigned long last)2419 svm_range_unmap_split(struct svm_range *parent, struct svm_range *prange, unsigned long start,
2420 		      unsigned long last)
2421 {
2422 	struct svm_range *head;
2423 	struct svm_range *tail;
2424 
2425 	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2426 		pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange,
2427 			 prange->start, prange->last);
2428 		return;
2429 	}
2430 	if (start > prange->last || last < prange->start)
2431 		return;
2432 
2433 	head = tail = prange;
2434 	if (start > prange->start)
2435 		svm_range_split(prange, prange->start, start - 1, &tail);
2436 	if (last < tail->last)
2437 		svm_range_split(tail, last + 1, tail->last, &head);
2438 
2439 	if (head != prange && tail != prange) {
2440 		svm_range_add_child(parent, head, SVM_OP_UNMAP_RANGE);
2441 		svm_range_add_child(parent, tail, SVM_OP_ADD_RANGE);
2442 	} else if (tail != prange) {
2443 		svm_range_add_child(parent, tail, SVM_OP_UNMAP_RANGE);
2444 	} else if (head != prange) {
2445 		svm_range_add_child(parent, head, SVM_OP_UNMAP_RANGE);
2446 	} else if (parent != prange) {
2447 		prange->work_item.op = SVM_OP_UNMAP_RANGE;
2448 	}
2449 }
2450 
2451 static void
svm_range_unmap_from_cpu(struct mm_struct * mm,struct svm_range * prange,unsigned long start,unsigned long last)2452 svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange,
2453 			 unsigned long start, unsigned long last)
2454 {
2455 	uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU;
2456 	struct svm_range_list *svms;
2457 	struct svm_range *pchild;
2458 	struct kfd_process *p;
2459 	unsigned long s, l;
2460 	bool unmap_parent;
2461 
2462 	p = kfd_lookup_process_by_mm(mm);
2463 	if (!p)
2464 		return;
2465 	svms = &p->svms;
2466 
2467 	pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms,
2468 		 prange, prange->start, prange->last, start, last);
2469 
2470 	/* Make sure pending page faults are drained in the deferred worker
2471 	 * before the range is freed to avoid straggler interrupts on
2472 	 * unmapped memory causing "phantom faults".
2473 	 */
2474 	atomic_inc(&svms->drain_pagefaults);
2475 
2476 	unmap_parent = start <= prange->start && last >= prange->last;
2477 
2478 	list_for_each_entry(pchild, &prange->child_list, child_list) {
2479 		mutex_lock_nested(&pchild->lock, 1);
2480 		s = max(start, pchild->start);
2481 		l = min(last, pchild->last);
2482 		if (l >= s)
2483 			svm_range_unmap_from_gpus(pchild, s, l, trigger);
2484 		svm_range_unmap_split(prange, pchild, start, last);
2485 		mutex_unlock(&pchild->lock);
2486 	}
2487 	s = max(start, prange->start);
2488 	l = min(last, prange->last);
2489 	if (l >= s)
2490 		svm_range_unmap_from_gpus(prange, s, l, trigger);
2491 	svm_range_unmap_split(prange, prange, start, last);
2492 
2493 	if (unmap_parent)
2494 		svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE);
2495 	else
2496 		svm_range_add_list_work(svms, prange, mm,
2497 					SVM_OP_UPDATE_RANGE_NOTIFIER);
2498 	schedule_deferred_list_work(svms);
2499 
2500 	kfd_unref_process(p);
2501 }
2502 
2503 /**
2504  * svm_range_cpu_invalidate_pagetables - interval notifier callback
2505  * @mni: mmu_interval_notifier struct
2506  * @range: mmu_notifier_range struct
2507  * @cur_seq: value to pass to mmu_interval_set_seq()
2508  *
2509  * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it
2510  * is from migration, or CPU page invalidation callback.
2511  *
2512  * For unmap event, unmap range from GPUs, remove prange from svms in a delayed
2513  * work thread, and split prange if only part of prange is unmapped.
2514  *
2515  * For invalidation event, if GPU retry fault is not enabled, evict the queues,
2516  * then schedule svm_range_restore_work to update GPU mapping and resume queues.
2517  * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will
2518  * update GPU mapping to recover.
2519  *
2520  * Context: mmap lock, notifier_invalidate_start lock are held
2521  *          for invalidate event, prange lock is held if this is from migration
2522  */
2523 static bool
svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)2524 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
2525 				    const struct mmu_notifier_range *range,
2526 				    unsigned long cur_seq)
2527 {
2528 	struct svm_range *prange;
2529 	unsigned long start;
2530 	unsigned long last;
2531 
2532 	if (range->event == MMU_NOTIFY_RELEASE)
2533 		return true;
2534 
2535 	start = mni->interval_tree.start;
2536 	last = mni->interval_tree.last;
2537 	start = max(start, range->start) >> PAGE_SHIFT;
2538 	last = min(last, range->end - 1) >> PAGE_SHIFT;
2539 	pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n",
2540 		 start, last, range->start >> PAGE_SHIFT,
2541 		 (range->end - 1) >> PAGE_SHIFT,
2542 		 mni->interval_tree.start >> PAGE_SHIFT,
2543 		 mni->interval_tree.last >> PAGE_SHIFT, range->event);
2544 
2545 	prange = container_of(mni, struct svm_range, notifier);
2546 
2547 	svm_range_lock(prange);
2548 	mmu_interval_set_seq(mni, cur_seq);
2549 
2550 	switch (range->event) {
2551 	case MMU_NOTIFY_UNMAP:
2552 		svm_range_unmap_from_cpu(mni->mm, prange, start, last);
2553 		break;
2554 	default:
2555 		svm_range_evict(prange, mni->mm, start, last, range->event);
2556 		break;
2557 	}
2558 
2559 	svm_range_unlock(prange);
2560 
2561 	return true;
2562 }
2563 
2564 /**
2565  * svm_range_from_addr - find svm range from fault address
2566  * @svms: svm range list header
2567  * @addr: address to search range interval tree, in pages
2568  * @parent: parent range if range is on child list
2569  *
2570  * Context: The caller must hold svms->lock
2571  *
2572  * Return: the svm_range found or NULL
2573  */
2574 struct svm_range *
svm_range_from_addr(struct svm_range_list * svms,unsigned long addr,struct svm_range ** parent)2575 svm_range_from_addr(struct svm_range_list *svms, unsigned long addr,
2576 		    struct svm_range **parent)
2577 {
2578 	struct interval_tree_node *node;
2579 	struct svm_range *prange;
2580 	struct svm_range *pchild;
2581 
2582 	node = interval_tree_iter_first(&svms->objects, addr, addr);
2583 	if (!node)
2584 		return NULL;
2585 
2586 	prange = container_of(node, struct svm_range, it_node);
2587 	pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n",
2588 		 addr, prange->start, prange->last, node->start, node->last);
2589 
2590 	if (addr >= prange->start && addr <= prange->last) {
2591 		if (parent)
2592 			*parent = prange;
2593 		return prange;
2594 	}
2595 	list_for_each_entry(pchild, &prange->child_list, child_list)
2596 		if (addr >= pchild->start && addr <= pchild->last) {
2597 			pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n",
2598 				 addr, pchild->start, pchild->last);
2599 			if (parent)
2600 				*parent = prange;
2601 			return pchild;
2602 		}
2603 
2604 	return NULL;
2605 }
2606 
2607 /* svm_range_best_restore_location - decide the best fault restore location
2608  * @prange: svm range structure
2609  * @adev: the GPU on which vm fault happened
2610  *
2611  * This is only called when xnack is on, to decide the best location to restore
2612  * the range mapping after GPU vm fault. Caller uses the best location to do
2613  * migration if actual loc is not best location, then update GPU page table
2614  * mapping to the best location.
2615  *
2616  * If the preferred loc is accessible by faulting GPU, use preferred loc.
2617  * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu
2618  * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then
2619  *    if range actual loc is cpu, best_loc is cpu
2620  *    if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is
2621  *    range actual loc.
2622  * Otherwise, GPU no access, best_loc is -1.
2623  *
2624  * Return:
2625  * -1 means vm fault GPU no access
2626  * 0 for CPU or GPU id
2627  */
2628 static int32_t
svm_range_best_restore_location(struct svm_range * prange,struct kfd_node * node,int32_t * gpuidx)2629 svm_range_best_restore_location(struct svm_range *prange,
2630 				struct kfd_node *node,
2631 				int32_t *gpuidx)
2632 {
2633 	struct kfd_node *bo_node, *preferred_node;
2634 	struct kfd_process *p;
2635 	uint32_t gpuid;
2636 	int r;
2637 
2638 	p = container_of(prange->svms, struct kfd_process, svms);
2639 
2640 	r = kfd_process_gpuid_from_node(p, node, &gpuid, gpuidx);
2641 	if (r < 0) {
2642 		pr_debug("failed to get gpuid from kgd\n");
2643 		return -1;
2644 	}
2645 
2646 	if (node->adev->gmc.is_app_apu)
2647 		return 0;
2648 
2649 	if (prange->preferred_loc == gpuid ||
2650 	    prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) {
2651 		return prange->preferred_loc;
2652 	} else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
2653 		preferred_node = svm_range_get_node_by_id(prange, prange->preferred_loc);
2654 		if (preferred_node && svm_nodes_in_same_hive(node, preferred_node))
2655 			return prange->preferred_loc;
2656 		/* fall through */
2657 	}
2658 
2659 	if (test_bit(*gpuidx, prange->bitmap_access))
2660 		return gpuid;
2661 
2662 	if (test_bit(*gpuidx, prange->bitmap_aip)) {
2663 		if (!prange->actual_loc)
2664 			return 0;
2665 
2666 		bo_node = svm_range_get_node_by_id(prange, prange->actual_loc);
2667 		if (bo_node && svm_nodes_in_same_hive(node, bo_node))
2668 			return prange->actual_loc;
2669 		else
2670 			return 0;
2671 	}
2672 
2673 	return -1;
2674 }
2675 
2676 static int
svm_range_get_range_boundaries(struct kfd_process * p,int64_t addr,unsigned long * start,unsigned long * last,bool * is_heap_stack)2677 svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr,
2678 			       unsigned long *start, unsigned long *last,
2679 			       bool *is_heap_stack)
2680 {
2681 	struct vm_area_struct *vma;
2682 	struct interval_tree_node *node;
2683 	struct rb_node *rb_node;
2684 	unsigned long start_limit, end_limit;
2685 
2686 	vma = vma_lookup(p->mm, addr << PAGE_SHIFT);
2687 	if (!vma) {
2688 		pr_debug("VMA does not exist in address [0x%llx]\n", addr);
2689 		return -EFAULT;
2690 	}
2691 
2692 	*is_heap_stack = vma_is_initial_heap(vma) || vma_is_initial_stack(vma);
2693 
2694 	start_limit = max(vma->vm_start >> PAGE_SHIFT,
2695 		      (unsigned long)ALIGN_DOWN(addr, 2UL << 8));
2696 	end_limit = min(vma->vm_end >> PAGE_SHIFT,
2697 		    (unsigned long)ALIGN(addr + 1, 2UL << 8));
2698 	/* First range that starts after the fault address */
2699 	node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX);
2700 	if (node) {
2701 		end_limit = min(end_limit, node->start);
2702 		/* Last range that ends before the fault address */
2703 		rb_node = rb_prev(&node->rb);
2704 	} else {
2705 		/* Last range must end before addr because
2706 		 * there was no range after addr
2707 		 */
2708 		rb_node = rb_last(&p->svms.objects.rb_root);
2709 	}
2710 	if (rb_node) {
2711 		node = container_of(rb_node, struct interval_tree_node, rb);
2712 		if (node->last >= addr) {
2713 			WARN(1, "Overlap with prev node and page fault addr\n");
2714 			return -EFAULT;
2715 		}
2716 		start_limit = max(start_limit, node->last + 1);
2717 	}
2718 
2719 	*start = start_limit;
2720 	*last = end_limit - 1;
2721 
2722 	pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n",
2723 		 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT,
2724 		 *start, *last, *is_heap_stack);
2725 
2726 	return 0;
2727 }
2728 
2729 static int
svm_range_check_vm_userptr(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)2730 svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last,
2731 			   uint64_t *bo_s, uint64_t *bo_l)
2732 {
2733 	struct amdgpu_bo_va_mapping *mapping;
2734 	struct interval_tree_node *node;
2735 	struct amdgpu_bo *bo = NULL;
2736 	unsigned long userptr;
2737 	uint32_t i;
2738 	int r;
2739 
2740 	for (i = 0; i < p->n_pdds; i++) {
2741 		struct amdgpu_vm *vm;
2742 
2743 		if (!p->pdds[i]->drm_priv)
2744 			continue;
2745 
2746 		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
2747 		r = amdgpu_bo_reserve(vm->root.bo, false);
2748 		if (r)
2749 			return r;
2750 
2751 		/* Check userptr by searching entire vm->va interval tree */
2752 		node = interval_tree_iter_first(&vm->va, 0, ~0ULL);
2753 		while (node) {
2754 			mapping = container_of((struct rb_node *)node,
2755 					       struct amdgpu_bo_va_mapping, rb);
2756 			bo = mapping->bo_va->base.bo;
2757 
2758 			if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm,
2759 							 start << PAGE_SHIFT,
2760 							 last << PAGE_SHIFT,
2761 							 &userptr)) {
2762 				node = interval_tree_iter_next(node, 0, ~0ULL);
2763 				continue;
2764 			}
2765 
2766 			pr_debug("[0x%llx 0x%llx] already userptr mapped\n",
2767 				 start, last);
2768 			if (bo_s && bo_l) {
2769 				*bo_s = userptr >> PAGE_SHIFT;
2770 				*bo_l = *bo_s + bo->tbo.ttm->num_pages - 1;
2771 			}
2772 			amdgpu_bo_unreserve(vm->root.bo);
2773 			return -EADDRINUSE;
2774 		}
2775 		amdgpu_bo_unreserve(vm->root.bo);
2776 	}
2777 	return 0;
2778 }
2779 
2780 static struct
svm_range_create_unregistered_range(struct kfd_node * node,struct kfd_process * p,struct mm_struct * mm,int64_t addr)2781 svm_range *svm_range_create_unregistered_range(struct kfd_node *node,
2782 						struct kfd_process *p,
2783 						struct mm_struct *mm,
2784 						int64_t addr)
2785 {
2786 	struct svm_range *prange = NULL;
2787 	unsigned long start, last;
2788 	uint32_t gpuid, gpuidx;
2789 	bool is_heap_stack;
2790 	uint64_t bo_s = 0;
2791 	uint64_t bo_l = 0;
2792 	int r;
2793 
2794 	if (svm_range_get_range_boundaries(p, addr, &start, &last,
2795 					   &is_heap_stack))
2796 		return NULL;
2797 
2798 	r = svm_range_check_vm(p, start, last, &bo_s, &bo_l);
2799 	if (r != -EADDRINUSE)
2800 		r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l);
2801 
2802 	if (r == -EADDRINUSE) {
2803 		if (addr >= bo_s && addr <= bo_l)
2804 			return NULL;
2805 
2806 		/* Create one page svm range if 2MB range overlapping */
2807 		start = addr;
2808 		last = addr;
2809 	}
2810 
2811 	prange = svm_range_new(&p->svms, start, last, true);
2812 	if (!prange) {
2813 		pr_debug("Failed to create prange in address [0x%llx]\n", addr);
2814 		return NULL;
2815 	}
2816 	if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
2817 		pr_debug("failed to get gpuid from kgd\n");
2818 		svm_range_free(prange, true);
2819 		return NULL;
2820 	}
2821 
2822 	if (is_heap_stack)
2823 		prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM;
2824 
2825 	svm_range_add_to_svms(prange);
2826 	svm_range_add_notifier_locked(mm, prange);
2827 
2828 	return prange;
2829 }
2830 
2831 /* svm_range_skip_recover - decide if prange can be recovered
2832  * @prange: svm range structure
2833  *
2834  * GPU vm retry fault handle skip recover the range for cases:
2835  * 1. prange is on deferred list to be removed after unmap, it is stale fault,
2836  *    deferred list work will drain the stale fault before free the prange.
2837  * 2. prange is on deferred list to add interval notifier after split, or
2838  * 3. prange is child range, it is split from parent prange, recover later
2839  *    after interval notifier is added.
2840  *
2841  * Return: true to skip recover, false to recover
2842  */
svm_range_skip_recover(struct svm_range * prange)2843 static bool svm_range_skip_recover(struct svm_range *prange)
2844 {
2845 	struct svm_range_list *svms = prange->svms;
2846 
2847 	spin_lock(&svms->deferred_list_lock);
2848 	if (list_empty(&prange->deferred_list) &&
2849 	    list_empty(&prange->child_list)) {
2850 		spin_unlock(&svms->deferred_list_lock);
2851 		return false;
2852 	}
2853 	spin_unlock(&svms->deferred_list_lock);
2854 
2855 	if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2856 		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n",
2857 			 svms, prange, prange->start, prange->last);
2858 		return true;
2859 	}
2860 	if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP ||
2861 	    prange->work_item.op == SVM_OP_ADD_RANGE) {
2862 		pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n",
2863 			 svms, prange, prange->start, prange->last);
2864 		return true;
2865 	}
2866 	return false;
2867 }
2868 
2869 static void
svm_range_count_fault(struct kfd_node * node,struct kfd_process * p,int32_t gpuidx)2870 svm_range_count_fault(struct kfd_node *node, struct kfd_process *p,
2871 		      int32_t gpuidx)
2872 {
2873 	struct kfd_process_device *pdd;
2874 
2875 	/* fault is on different page of same range
2876 	 * or fault is skipped to recover later
2877 	 * or fault is on invalid virtual address
2878 	 */
2879 	if (gpuidx == MAX_GPU_INSTANCE) {
2880 		uint32_t gpuid;
2881 		int r;
2882 
2883 		r = kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx);
2884 		if (r < 0)
2885 			return;
2886 	}
2887 
2888 	/* fault is recovered
2889 	 * or fault cannot recover because GPU no access on the range
2890 	 */
2891 	pdd = kfd_process_device_from_gpuidx(p, gpuidx);
2892 	if (pdd)
2893 		WRITE_ONCE(pdd->faults, pdd->faults + 1);
2894 }
2895 
2896 static bool
svm_fault_allowed(struct vm_area_struct * vma,bool write_fault)2897 svm_fault_allowed(struct vm_area_struct *vma, bool write_fault)
2898 {
2899 	unsigned long requested = VM_READ;
2900 
2901 	if (write_fault)
2902 		requested |= VM_WRITE;
2903 
2904 	pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested,
2905 		vma->vm_flags);
2906 	return (vma->vm_flags & requested) == requested;
2907 }
2908 
2909 int
svm_range_restore_pages(struct amdgpu_device * adev,unsigned int pasid,uint32_t vmid,uint32_t node_id,uint64_t addr,bool write_fault)2910 svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid,
2911 			uint32_t vmid, uint32_t node_id,
2912 			uint64_t addr, bool write_fault)
2913 {
2914 	struct mm_struct *mm = NULL;
2915 	struct svm_range_list *svms;
2916 	struct svm_range *prange;
2917 	struct kfd_process *p;
2918 	ktime_t timestamp = ktime_get_boottime();
2919 	struct kfd_node *node;
2920 	int32_t best_loc;
2921 	int32_t gpuidx = MAX_GPU_INSTANCE;
2922 	bool write_locked = false;
2923 	struct vm_area_struct *vma;
2924 	bool migration = false;
2925 	int r = 0;
2926 
2927 	if (!KFD_IS_SVM_API_SUPPORTED(adev)) {
2928 		pr_debug("device does not support SVM\n");
2929 		return -EFAULT;
2930 	}
2931 
2932 	p = kfd_lookup_process_by_pasid(pasid);
2933 	if (!p) {
2934 		pr_debug("kfd process not founded pasid 0x%x\n", pasid);
2935 		return 0;
2936 	}
2937 	svms = &p->svms;
2938 
2939 	pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr);
2940 
2941 	if (atomic_read(&svms->drain_pagefaults)) {
2942 		pr_debug("draining retry fault, drop fault 0x%llx\n", addr);
2943 		r = 0;
2944 		goto out;
2945 	}
2946 
2947 	if (!p->xnack_enabled) {
2948 		pr_debug("XNACK not enabled for pasid 0x%x\n", pasid);
2949 		r = -EFAULT;
2950 		goto out;
2951 	}
2952 
2953 	/* p->lead_thread is available as kfd_process_wq_release flush the work
2954 	 * before releasing task ref.
2955 	 */
2956 	mm = get_task_mm(p->lead_thread);
2957 	if (!mm) {
2958 		pr_debug("svms 0x%p failed to get mm\n", svms);
2959 		r = 0;
2960 		goto out;
2961 	}
2962 
2963 	node = kfd_node_by_irq_ids(adev, node_id, vmid);
2964 	if (!node) {
2965 		pr_debug("kfd node does not exist node_id: %d, vmid: %d\n", node_id,
2966 			 vmid);
2967 		r = -EFAULT;
2968 		goto out;
2969 	}
2970 	mmap_read_lock(mm);
2971 retry_write_locked:
2972 	mutex_lock(&svms->lock);
2973 	prange = svm_range_from_addr(svms, addr, NULL);
2974 	if (!prange) {
2975 		pr_debug("failed to find prange svms 0x%p address [0x%llx]\n",
2976 			 svms, addr);
2977 		if (!write_locked) {
2978 			/* Need the write lock to create new range with MMU notifier.
2979 			 * Also flush pending deferred work to make sure the interval
2980 			 * tree is up to date before we add a new range
2981 			 */
2982 			mutex_unlock(&svms->lock);
2983 			mmap_read_unlock(mm);
2984 			mmap_write_lock(mm);
2985 			write_locked = true;
2986 			goto retry_write_locked;
2987 		}
2988 		prange = svm_range_create_unregistered_range(node, p, mm, addr);
2989 		if (!prange) {
2990 			pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n",
2991 				 svms, addr);
2992 			mmap_write_downgrade(mm);
2993 			r = -EFAULT;
2994 			goto out_unlock_svms;
2995 		}
2996 	}
2997 	if (write_locked)
2998 		mmap_write_downgrade(mm);
2999 
3000 	mutex_lock(&prange->migrate_mutex);
3001 
3002 	if (svm_range_skip_recover(prange)) {
3003 		amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3004 		r = 0;
3005 		goto out_unlock_range;
3006 	}
3007 
3008 	/* skip duplicate vm fault on different pages of same range */
3009 	if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp,
3010 				AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) {
3011 		pr_debug("svms 0x%p [0x%lx %lx] already restored\n",
3012 			 svms, prange->start, prange->last);
3013 		r = 0;
3014 		goto out_unlock_range;
3015 	}
3016 
3017 	/* __do_munmap removed VMA, return success as we are handling stale
3018 	 * retry fault.
3019 	 */
3020 	vma = vma_lookup(mm, addr << PAGE_SHIFT);
3021 	if (!vma) {
3022 		pr_debug("address 0x%llx VMA is removed\n", addr);
3023 		r = 0;
3024 		goto out_unlock_range;
3025 	}
3026 
3027 	if (!svm_fault_allowed(vma, write_fault)) {
3028 		pr_debug("fault addr 0x%llx no %s permission\n", addr,
3029 			write_fault ? "write" : "read");
3030 		r = -EPERM;
3031 		goto out_unlock_range;
3032 	}
3033 
3034 	best_loc = svm_range_best_restore_location(prange, node, &gpuidx);
3035 	if (best_loc == -1) {
3036 		pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n",
3037 			 svms, prange->start, prange->last);
3038 		r = -EACCES;
3039 		goto out_unlock_range;
3040 	}
3041 
3042 	pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n",
3043 		 svms, prange->start, prange->last, best_loc,
3044 		 prange->actual_loc);
3045 
3046 	kfd_smi_event_page_fault_start(node, p->lead_thread->pid, addr,
3047 				       write_fault, timestamp);
3048 
3049 	if (prange->actual_loc != best_loc) {
3050 		migration = true;
3051 		if (best_loc) {
3052 			r = svm_migrate_to_vram(prange, best_loc, mm,
3053 					KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU);
3054 			if (r) {
3055 				pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n",
3056 					 r, addr);
3057 				/* Fallback to system memory if migration to
3058 				 * VRAM failed
3059 				 */
3060 				if (prange->actual_loc)
3061 					r = svm_migrate_vram_to_ram(prange, mm,
3062 					   KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU,
3063 					   NULL);
3064 				else
3065 					r = 0;
3066 			}
3067 		} else {
3068 			r = svm_migrate_vram_to_ram(prange, mm,
3069 					KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU,
3070 					NULL);
3071 		}
3072 		if (r) {
3073 			pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n",
3074 				 r, svms, prange->start, prange->last);
3075 			goto out_unlock_range;
3076 		}
3077 	}
3078 
3079 	r = svm_range_validate_and_map(mm, prange, gpuidx, false, false, false);
3080 	if (r)
3081 		pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n",
3082 			 r, svms, prange->start, prange->last);
3083 
3084 	kfd_smi_event_page_fault_end(node, p->lead_thread->pid, addr,
3085 				     migration);
3086 
3087 out_unlock_range:
3088 	mutex_unlock(&prange->migrate_mutex);
3089 out_unlock_svms:
3090 	mutex_unlock(&svms->lock);
3091 	mmap_read_unlock(mm);
3092 
3093 	svm_range_count_fault(node, p, gpuidx);
3094 
3095 	mmput(mm);
3096 out:
3097 	kfd_unref_process(p);
3098 
3099 	if (r == -EAGAIN) {
3100 		pr_debug("recover vm fault later\n");
3101 		amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3102 		r = 0;
3103 	}
3104 	return r;
3105 }
3106 
3107 int
svm_range_switch_xnack_reserve_mem(struct kfd_process * p,bool xnack_enabled)3108 svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled)
3109 {
3110 	struct svm_range *prange, *pchild;
3111 	uint64_t reserved_size = 0;
3112 	uint64_t size;
3113 	int r = 0;
3114 
3115 	pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled);
3116 
3117 	mutex_lock(&p->svms.lock);
3118 
3119 	list_for_each_entry(prange, &p->svms.list, list) {
3120 		svm_range_lock(prange);
3121 		list_for_each_entry(pchild, &prange->child_list, child_list) {
3122 			size = (pchild->last - pchild->start + 1) << PAGE_SHIFT;
3123 			if (xnack_enabled) {
3124 				amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3125 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3126 			} else {
3127 				r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3128 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3129 				if (r)
3130 					goto out_unlock;
3131 				reserved_size += size;
3132 			}
3133 		}
3134 
3135 		size = (prange->last - prange->start + 1) << PAGE_SHIFT;
3136 		if (xnack_enabled) {
3137 			amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3138 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3139 		} else {
3140 			r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3141 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3142 			if (r)
3143 				goto out_unlock;
3144 			reserved_size += size;
3145 		}
3146 out_unlock:
3147 		svm_range_unlock(prange);
3148 		if (r)
3149 			break;
3150 	}
3151 
3152 	if (r)
3153 		amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size,
3154 					KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3155 	else
3156 		/* Change xnack mode must be inside svms lock, to avoid race with
3157 		 * svm_range_deferred_list_work unreserve memory in parallel.
3158 		 */
3159 		p->xnack_enabled = xnack_enabled;
3160 
3161 	mutex_unlock(&p->svms.lock);
3162 	return r;
3163 }
3164 
svm_range_list_fini(struct kfd_process * p)3165 void svm_range_list_fini(struct kfd_process *p)
3166 {
3167 	struct svm_range *prange;
3168 	struct svm_range *next;
3169 
3170 	pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms);
3171 
3172 	cancel_delayed_work_sync(&p->svms.restore_work);
3173 
3174 	/* Ensure list work is finished before process is destroyed */
3175 	flush_work(&p->svms.deferred_list_work);
3176 
3177 	/*
3178 	 * Ensure no retry fault comes in afterwards, as page fault handler will
3179 	 * not find kfd process and take mm lock to recover fault.
3180 	 */
3181 	atomic_inc(&p->svms.drain_pagefaults);
3182 	svm_range_drain_retry_fault(&p->svms);
3183 
3184 	list_for_each_entry_safe(prange, next, &p->svms.list, list) {
3185 		svm_range_unlink(prange);
3186 		svm_range_remove_notifier(prange);
3187 		svm_range_free(prange, true);
3188 	}
3189 
3190 	mutex_destroy(&p->svms.lock);
3191 
3192 	pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms);
3193 }
3194 
svm_range_list_init(struct kfd_process * p)3195 int svm_range_list_init(struct kfd_process *p)
3196 {
3197 	struct svm_range_list *svms = &p->svms;
3198 	int i;
3199 
3200 	svms->objects = RB_ROOT_CACHED;
3201 	mutex_init(&svms->lock);
3202 	INIT_LIST_HEAD(&svms->list);
3203 	atomic_set(&svms->evicted_ranges, 0);
3204 	atomic_set(&svms->drain_pagefaults, 0);
3205 	INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work);
3206 	INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work);
3207 	INIT_LIST_HEAD(&svms->deferred_range_list);
3208 	INIT_LIST_HEAD(&svms->criu_svm_metadata_list);
3209 	spin_lock_init(&svms->deferred_list_lock);
3210 
3211 	for (i = 0; i < p->n_pdds; i++)
3212 		if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev->adev))
3213 			bitmap_set(svms->bitmap_supported, i, 1);
3214 
3215 	return 0;
3216 }
3217 
3218 /**
3219  * svm_range_check_vm - check if virtual address range mapped already
3220  * @p: current kfd_process
3221  * @start: range start address, in pages
3222  * @last: range last address, in pages
3223  * @bo_s: mapping start address in pages if address range already mapped
3224  * @bo_l: mapping last address in pages if address range already mapped
3225  *
3226  * The purpose is to avoid virtual address ranges already allocated by
3227  * kfd_ioctl_alloc_memory_of_gpu ioctl.
3228  * It looks for each pdd in the kfd_process.
3229  *
3230  * Context: Process context
3231  *
3232  * Return 0 - OK, if the range is not mapped.
3233  * Otherwise error code:
3234  * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu
3235  * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by
3236  * a signal. Release all buffer reservations and return to user-space.
3237  */
3238 static int
svm_range_check_vm(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)3239 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
3240 		   uint64_t *bo_s, uint64_t *bo_l)
3241 {
3242 	struct amdgpu_bo_va_mapping *mapping;
3243 	struct interval_tree_node *node;
3244 	uint32_t i;
3245 	int r;
3246 
3247 	for (i = 0; i < p->n_pdds; i++) {
3248 		struct amdgpu_vm *vm;
3249 
3250 		if (!p->pdds[i]->drm_priv)
3251 			continue;
3252 
3253 		vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
3254 		r = amdgpu_bo_reserve(vm->root.bo, false);
3255 		if (r)
3256 			return r;
3257 
3258 		node = interval_tree_iter_first(&vm->va, start, last);
3259 		if (node) {
3260 			pr_debug("range [0x%llx 0x%llx] already TTM mapped\n",
3261 				 start, last);
3262 			mapping = container_of((struct rb_node *)node,
3263 					       struct amdgpu_bo_va_mapping, rb);
3264 			if (bo_s && bo_l) {
3265 				*bo_s = mapping->start;
3266 				*bo_l = mapping->last;
3267 			}
3268 			amdgpu_bo_unreserve(vm->root.bo);
3269 			return -EADDRINUSE;
3270 		}
3271 		amdgpu_bo_unreserve(vm->root.bo);
3272 	}
3273 
3274 	return 0;
3275 }
3276 
3277 /**
3278  * svm_range_is_valid - check if virtual address range is valid
3279  * @p: current kfd_process
3280  * @start: range start address, in pages
3281  * @size: range size, in pages
3282  *
3283  * Valid virtual address range means it belongs to one or more VMAs
3284  *
3285  * Context: Process context
3286  *
3287  * Return:
3288  *  0 - OK, otherwise error code
3289  */
3290 static int
svm_range_is_valid(struct kfd_process * p,uint64_t start,uint64_t size)3291 svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size)
3292 {
3293 	const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
3294 	struct vm_area_struct *vma;
3295 	unsigned long end;
3296 	unsigned long start_unchg = start;
3297 
3298 	start <<= PAGE_SHIFT;
3299 	end = start + (size << PAGE_SHIFT);
3300 	do {
3301 		vma = vma_lookup(p->mm, start);
3302 		if (!vma || (vma->vm_flags & device_vma))
3303 			return -EFAULT;
3304 		start = min(end, vma->vm_end);
3305 	} while (start < end);
3306 
3307 	return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL,
3308 				  NULL);
3309 }
3310 
3311 /**
3312  * svm_range_best_prefetch_location - decide the best prefetch location
3313  * @prange: svm range structure
3314  *
3315  * For xnack off:
3316  * If range map to single GPU, the best prefetch location is prefetch_loc, which
3317  * can be CPU or GPU.
3318  *
3319  * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on
3320  * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise
3321  * the best prefetch location is always CPU, because GPU can not have coherent
3322  * mapping VRAM of other GPUs even with large-BAR PCIe connection.
3323  *
3324  * For xnack on:
3325  * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is
3326  * prefetch_loc, other GPU access will generate vm fault and trigger migration.
3327  *
3328  * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same
3329  * hive, the best prefetch location is prefetch_loc GPU, otherwise the best
3330  * prefetch location is always CPU.
3331  *
3332  * Context: Process context
3333  *
3334  * Return:
3335  * 0 for CPU or GPU id
3336  */
3337 static uint32_t
svm_range_best_prefetch_location(struct svm_range * prange)3338 svm_range_best_prefetch_location(struct svm_range *prange)
3339 {
3340 	DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
3341 	uint32_t best_loc = prange->prefetch_loc;
3342 	struct kfd_process_device *pdd;
3343 	struct kfd_node *bo_node;
3344 	struct kfd_process *p;
3345 	uint32_t gpuidx;
3346 
3347 	p = container_of(prange->svms, struct kfd_process, svms);
3348 
3349 	if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED)
3350 		goto out;
3351 
3352 	bo_node = svm_range_get_node_by_id(prange, best_loc);
3353 	if (!bo_node) {
3354 		WARN_ONCE(1, "failed to get valid kfd node at id%x\n", best_loc);
3355 		best_loc = 0;
3356 		goto out;
3357 	}
3358 
3359 	if (bo_node->adev->gmc.is_app_apu) {
3360 		best_loc = 0;
3361 		goto out;
3362 	}
3363 
3364 	if (p->xnack_enabled)
3365 		bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
3366 	else
3367 		bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
3368 			  MAX_GPU_INSTANCE);
3369 
3370 	for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
3371 		pdd = kfd_process_device_from_gpuidx(p, gpuidx);
3372 		if (!pdd) {
3373 			pr_debug("failed to get device by idx 0x%x\n", gpuidx);
3374 			continue;
3375 		}
3376 
3377 		if (pdd->dev->adev == bo_node->adev)
3378 			continue;
3379 
3380 		if (!svm_nodes_in_same_hive(pdd->dev, bo_node)) {
3381 			best_loc = 0;
3382 			break;
3383 		}
3384 	}
3385 
3386 out:
3387 	pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n",
3388 		 p->xnack_enabled, &p->svms, prange->start, prange->last,
3389 		 best_loc);
3390 
3391 	return best_loc;
3392 }
3393 
3394 /* svm_range_trigger_migration - start page migration if prefetch loc changed
3395  * @mm: current process mm_struct
3396  * @prange: svm range structure
3397  * @migrated: output, true if migration is triggered
3398  *
3399  * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range
3400  * from ram to vram.
3401  * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range
3402  * from vram to ram.
3403  *
3404  * If GPU vm fault retry is not enabled, migration interact with MMU notifier
3405  * and restore work:
3406  * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict
3407  *    stops all queues, schedule restore work
3408  * 2. svm_range_restore_work wait for migration is done by
3409  *    a. svm_range_validate_vram takes prange->migrate_mutex
3410  *    b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns
3411  * 3. restore work update mappings of GPU, resume all queues.
3412  *
3413  * Context: Process context
3414  *
3415  * Return:
3416  * 0 - OK, otherwise - error code of migration
3417  */
3418 static int
svm_range_trigger_migration(struct mm_struct * mm,struct svm_range * prange,bool * migrated)3419 svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange,
3420 			    bool *migrated)
3421 {
3422 	uint32_t best_loc;
3423 	int r = 0;
3424 
3425 	*migrated = false;
3426 	best_loc = svm_range_best_prefetch_location(prange);
3427 
3428 	if (best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3429 	    best_loc == prange->actual_loc)
3430 		return 0;
3431 
3432 	if (!best_loc) {
3433 		r = svm_migrate_vram_to_ram(prange, mm,
3434 					KFD_MIGRATE_TRIGGER_PREFETCH, NULL);
3435 		*migrated = !r;
3436 		return r;
3437 	}
3438 
3439 	r = svm_migrate_to_vram(prange, best_loc, mm, KFD_MIGRATE_TRIGGER_PREFETCH);
3440 	*migrated = !r;
3441 
3442 	return 0;
3443 }
3444 
svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence * fence)3445 int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence)
3446 {
3447 	/* Dereferencing fence->svm_bo is safe here because the fence hasn't
3448 	 * signaled yet and we're under the protection of the fence->lock.
3449 	 * After the fence is signaled in svm_range_bo_release, we cannot get
3450 	 * here any more.
3451 	 *
3452 	 * Reference is dropped in svm_range_evict_svm_bo_worker.
3453 	 */
3454 	if (svm_bo_ref_unless_zero(fence->svm_bo)) {
3455 		WRITE_ONCE(fence->svm_bo->evicting, 1);
3456 		schedule_work(&fence->svm_bo->eviction_work);
3457 	}
3458 
3459 	return 0;
3460 }
3461 
svm_range_evict_svm_bo_worker(struct work_struct * work)3462 static void svm_range_evict_svm_bo_worker(struct work_struct *work)
3463 {
3464 	struct svm_range_bo *svm_bo;
3465 	struct mm_struct *mm;
3466 	int r = 0;
3467 
3468 	svm_bo = container_of(work, struct svm_range_bo, eviction_work);
3469 
3470 	if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
3471 		mm = svm_bo->eviction_fence->mm;
3472 	} else {
3473 		svm_range_bo_unref(svm_bo);
3474 		return;
3475 	}
3476 
3477 	mmap_read_lock(mm);
3478 	spin_lock(&svm_bo->list_lock);
3479 	while (!list_empty(&svm_bo->range_list) && !r) {
3480 		struct svm_range *prange =
3481 				list_first_entry(&svm_bo->range_list,
3482 						struct svm_range, svm_bo_list);
3483 		int retries = 3;
3484 
3485 		list_del_init(&prange->svm_bo_list);
3486 		spin_unlock(&svm_bo->list_lock);
3487 
3488 		pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
3489 			 prange->start, prange->last);
3490 
3491 		mutex_lock(&prange->migrate_mutex);
3492 		do {
3493 			r = svm_migrate_vram_to_ram(prange, mm,
3494 					KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL);
3495 		} while (!r && prange->actual_loc && --retries);
3496 
3497 		if (!r && prange->actual_loc)
3498 			pr_info_once("Migration failed during eviction");
3499 
3500 		if (!prange->actual_loc) {
3501 			mutex_lock(&prange->lock);
3502 			prange->svm_bo = NULL;
3503 			mutex_unlock(&prange->lock);
3504 		}
3505 		mutex_unlock(&prange->migrate_mutex);
3506 
3507 		spin_lock(&svm_bo->list_lock);
3508 	}
3509 	spin_unlock(&svm_bo->list_lock);
3510 	mmap_read_unlock(mm);
3511 	mmput(mm);
3512 
3513 	dma_fence_signal(&svm_bo->eviction_fence->base);
3514 
3515 	/* This is the last reference to svm_bo, after svm_range_vram_node_free
3516 	 * has been called in svm_migrate_vram_to_ram
3517 	 */
3518 	WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n");
3519 	svm_range_bo_unref(svm_bo);
3520 }
3521 
3522 static int
svm_range_set_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3523 svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm,
3524 		   uint64_t start, uint64_t size, uint32_t nattr,
3525 		   struct kfd_ioctl_svm_attribute *attrs)
3526 {
3527 	struct amdkfd_process_info *process_info = p->kgd_process_info;
3528 	struct list_head update_list;
3529 	struct list_head insert_list;
3530 	struct list_head remove_list;
3531 	struct svm_range_list *svms;
3532 	struct svm_range *prange;
3533 	struct svm_range *next;
3534 	bool update_mapping = false;
3535 	bool flush_tlb;
3536 	int r, ret = 0;
3537 
3538 	pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n",
3539 		 p->pasid, &p->svms, start, start + size - 1, size);
3540 
3541 	r = svm_range_check_attr(p, nattr, attrs);
3542 	if (r)
3543 		return r;
3544 
3545 	svms = &p->svms;
3546 
3547 	mutex_lock(&process_info->lock);
3548 
3549 	svm_range_list_lock_and_flush_work(svms, mm);
3550 
3551 	r = svm_range_is_valid(p, start, size);
3552 	if (r) {
3553 		pr_debug("invalid range r=%d\n", r);
3554 		mmap_write_unlock(mm);
3555 		goto out;
3556 	}
3557 
3558 	mutex_lock(&svms->lock);
3559 
3560 	/* Add new range and split existing ranges as needed */
3561 	r = svm_range_add(p, start, size, nattr, attrs, &update_list,
3562 			  &insert_list, &remove_list);
3563 	if (r) {
3564 		mutex_unlock(&svms->lock);
3565 		mmap_write_unlock(mm);
3566 		goto out;
3567 	}
3568 	/* Apply changes as a transaction */
3569 	list_for_each_entry_safe(prange, next, &insert_list, list) {
3570 		svm_range_add_to_svms(prange);
3571 		svm_range_add_notifier_locked(mm, prange);
3572 	}
3573 	list_for_each_entry(prange, &update_list, update_list) {
3574 		svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping);
3575 		/* TODO: unmap ranges from GPU that lost access */
3576 	}
3577 	list_for_each_entry_safe(prange, next, &remove_list, update_list) {
3578 		pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n",
3579 			 prange->svms, prange, prange->start,
3580 			 prange->last);
3581 		svm_range_unlink(prange);
3582 		svm_range_remove_notifier(prange);
3583 		svm_range_free(prange, false);
3584 	}
3585 
3586 	mmap_write_downgrade(mm);
3587 	/* Trigger migrations and revalidate and map to GPUs as needed. If
3588 	 * this fails we may be left with partially completed actions. There
3589 	 * is no clean way of rolling back to the previous state in such a
3590 	 * case because the rollback wouldn't be guaranteed to work either.
3591 	 */
3592 	list_for_each_entry(prange, &update_list, update_list) {
3593 		bool migrated;
3594 
3595 		mutex_lock(&prange->migrate_mutex);
3596 
3597 		r = svm_range_trigger_migration(mm, prange, &migrated);
3598 		if (r)
3599 			goto out_unlock_range;
3600 
3601 		if (migrated && (!p->xnack_enabled ||
3602 		    (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) &&
3603 		    prange->mapped_to_gpu) {
3604 			pr_debug("restore_work will update mappings of GPUs\n");
3605 			mutex_unlock(&prange->migrate_mutex);
3606 			continue;
3607 		}
3608 
3609 		if (!migrated && !update_mapping) {
3610 			mutex_unlock(&prange->migrate_mutex);
3611 			continue;
3612 		}
3613 
3614 		flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu;
3615 
3616 		r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE,
3617 					       true, true, flush_tlb);
3618 		if (r)
3619 			pr_debug("failed %d to map svm range\n", r);
3620 
3621 out_unlock_range:
3622 		mutex_unlock(&prange->migrate_mutex);
3623 		if (r)
3624 			ret = r;
3625 	}
3626 
3627 	dynamic_svm_range_dump(svms);
3628 
3629 	mutex_unlock(&svms->lock);
3630 	mmap_read_unlock(mm);
3631 out:
3632 	mutex_unlock(&process_info->lock);
3633 
3634 	pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid,
3635 		 &p->svms, start, start + size - 1, r);
3636 
3637 	return ret ? ret : r;
3638 }
3639 
3640 static int
svm_range_get_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3641 svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm,
3642 		   uint64_t start, uint64_t size, uint32_t nattr,
3643 		   struct kfd_ioctl_svm_attribute *attrs)
3644 {
3645 	DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE);
3646 	DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE);
3647 	bool get_preferred_loc = false;
3648 	bool get_prefetch_loc = false;
3649 	bool get_granularity = false;
3650 	bool get_accessible = false;
3651 	bool get_flags = false;
3652 	uint64_t last = start + size - 1UL;
3653 	uint8_t granularity = 0xff;
3654 	struct interval_tree_node *node;
3655 	struct svm_range_list *svms;
3656 	struct svm_range *prange;
3657 	uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3658 	uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3659 	uint32_t flags_and = 0xffffffff;
3660 	uint32_t flags_or = 0;
3661 	int gpuidx;
3662 	uint32_t i;
3663 	int r = 0;
3664 
3665 	pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start,
3666 		 start + size - 1, nattr);
3667 
3668 	/* Flush pending deferred work to avoid racing with deferred actions from
3669 	 * previous memory map changes (e.g. munmap). Concurrent memory map changes
3670 	 * can still race with get_attr because we don't hold the mmap lock. But that
3671 	 * would be a race condition in the application anyway, and undefined
3672 	 * behaviour is acceptable in that case.
3673 	 */
3674 	flush_work(&p->svms.deferred_list_work);
3675 
3676 	mmap_read_lock(mm);
3677 	r = svm_range_is_valid(p, start, size);
3678 	mmap_read_unlock(mm);
3679 	if (r) {
3680 		pr_debug("invalid range r=%d\n", r);
3681 		return r;
3682 	}
3683 
3684 	for (i = 0; i < nattr; i++) {
3685 		switch (attrs[i].type) {
3686 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3687 			get_preferred_loc = true;
3688 			break;
3689 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3690 			get_prefetch_loc = true;
3691 			break;
3692 		case KFD_IOCTL_SVM_ATTR_ACCESS:
3693 			get_accessible = true;
3694 			break;
3695 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3696 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3697 			get_flags = true;
3698 			break;
3699 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3700 			get_granularity = true;
3701 			break;
3702 		case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
3703 		case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
3704 			fallthrough;
3705 		default:
3706 			pr_debug("get invalid attr type 0x%x\n", attrs[i].type);
3707 			return -EINVAL;
3708 		}
3709 	}
3710 
3711 	svms = &p->svms;
3712 
3713 	mutex_lock(&svms->lock);
3714 
3715 	node = interval_tree_iter_first(&svms->objects, start, last);
3716 	if (!node) {
3717 		pr_debug("range attrs not found return default values\n");
3718 		svm_range_set_default_attributes(&location, &prefetch_loc,
3719 						 &granularity, &flags_and);
3720 		flags_or = flags_and;
3721 		if (p->xnack_enabled)
3722 			bitmap_copy(bitmap_access, svms->bitmap_supported,
3723 				    MAX_GPU_INSTANCE);
3724 		else
3725 			bitmap_zero(bitmap_access, MAX_GPU_INSTANCE);
3726 		bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE);
3727 		goto fill_values;
3728 	}
3729 	bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE);
3730 	bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE);
3731 
3732 	while (node) {
3733 		struct interval_tree_node *next;
3734 
3735 		prange = container_of(node, struct svm_range, it_node);
3736 		next = interval_tree_iter_next(node, start, last);
3737 
3738 		if (get_preferred_loc) {
3739 			if (prange->preferred_loc ==
3740 					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3741 			    (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3742 			     location != prange->preferred_loc)) {
3743 				location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3744 				get_preferred_loc = false;
3745 			} else {
3746 				location = prange->preferred_loc;
3747 			}
3748 		}
3749 		if (get_prefetch_loc) {
3750 			if (prange->prefetch_loc ==
3751 					KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3752 			    (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3753 			     prefetch_loc != prange->prefetch_loc)) {
3754 				prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3755 				get_prefetch_loc = false;
3756 			} else {
3757 				prefetch_loc = prange->prefetch_loc;
3758 			}
3759 		}
3760 		if (get_accessible) {
3761 			bitmap_and(bitmap_access, bitmap_access,
3762 				   prange->bitmap_access, MAX_GPU_INSTANCE);
3763 			bitmap_and(bitmap_aip, bitmap_aip,
3764 				   prange->bitmap_aip, MAX_GPU_INSTANCE);
3765 		}
3766 		if (get_flags) {
3767 			flags_and &= prange->flags;
3768 			flags_or |= prange->flags;
3769 		}
3770 
3771 		if (get_granularity && prange->granularity < granularity)
3772 			granularity = prange->granularity;
3773 
3774 		node = next;
3775 	}
3776 fill_values:
3777 	mutex_unlock(&svms->lock);
3778 
3779 	for (i = 0; i < nattr; i++) {
3780 		switch (attrs[i].type) {
3781 		case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3782 			attrs[i].value = location;
3783 			break;
3784 		case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3785 			attrs[i].value = prefetch_loc;
3786 			break;
3787 		case KFD_IOCTL_SVM_ATTR_ACCESS:
3788 			gpuidx = kfd_process_gpuidx_from_gpuid(p,
3789 							       attrs[i].value);
3790 			if (gpuidx < 0) {
3791 				pr_debug("invalid gpuid %x\n", attrs[i].value);
3792 				return -EINVAL;
3793 			}
3794 			if (test_bit(gpuidx, bitmap_access))
3795 				attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS;
3796 			else if (test_bit(gpuidx, bitmap_aip))
3797 				attrs[i].type =
3798 					KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE;
3799 			else
3800 				attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS;
3801 			break;
3802 		case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3803 			attrs[i].value = flags_and;
3804 			break;
3805 		case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3806 			attrs[i].value = ~flags_or;
3807 			break;
3808 		case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3809 			attrs[i].value = (uint32_t)granularity;
3810 			break;
3811 		}
3812 	}
3813 
3814 	return 0;
3815 }
3816 
kfd_criu_resume_svm(struct kfd_process * p)3817 int kfd_criu_resume_svm(struct kfd_process *p)
3818 {
3819 	struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL;
3820 	int nattr_common = 4, nattr_accessibility = 1;
3821 	struct criu_svm_metadata *criu_svm_md = NULL;
3822 	struct svm_range_list *svms = &p->svms;
3823 	struct criu_svm_metadata *next = NULL;
3824 	uint32_t set_flags = 0xffffffff;
3825 	int i, j, num_attrs, ret = 0;
3826 	uint64_t set_attr_size;
3827 	struct mm_struct *mm;
3828 
3829 	if (list_empty(&svms->criu_svm_metadata_list)) {
3830 		pr_debug("No SVM data from CRIU restore stage 2\n");
3831 		return ret;
3832 	}
3833 
3834 	mm = get_task_mm(p->lead_thread);
3835 	if (!mm) {
3836 		pr_err("failed to get mm for the target process\n");
3837 		return -ESRCH;
3838 	}
3839 
3840 	num_attrs = nattr_common + (nattr_accessibility * p->n_pdds);
3841 
3842 	i = j = 0;
3843 	list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) {
3844 		pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n",
3845 			 i, criu_svm_md->data.start_addr, criu_svm_md->data.size);
3846 
3847 		for (j = 0; j < num_attrs; j++) {
3848 			pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n",
3849 				 i, j, criu_svm_md->data.attrs[j].type,
3850 				 i, j, criu_svm_md->data.attrs[j].value);
3851 			switch (criu_svm_md->data.attrs[j].type) {
3852 			/* During Checkpoint operation, the query for
3853 			 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might
3854 			 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were
3855 			 * not used by the range which was checkpointed. Care
3856 			 * must be taken to not restore with an invalid value
3857 			 * otherwise the gpuidx value will be invalid and
3858 			 * set_attr would eventually fail so just replace those
3859 			 * with another dummy attribute such as
3860 			 * KFD_IOCTL_SVM_ATTR_SET_FLAGS.
3861 			 */
3862 			case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3863 				if (criu_svm_md->data.attrs[j].value ==
3864 				    KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
3865 					criu_svm_md->data.attrs[j].type =
3866 						KFD_IOCTL_SVM_ATTR_SET_FLAGS;
3867 					criu_svm_md->data.attrs[j].value = 0;
3868 				}
3869 				break;
3870 			case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3871 				set_flags = criu_svm_md->data.attrs[j].value;
3872 				break;
3873 			default:
3874 				break;
3875 			}
3876 		}
3877 
3878 		/* CLR_FLAGS is not available via get_attr during checkpoint but
3879 		 * it needs to be inserted before restoring the ranges so
3880 		 * allocate extra space for it before calling set_attr
3881 		 */
3882 		set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
3883 						(num_attrs + 1);
3884 		set_attr_new = krealloc(set_attr, set_attr_size,
3885 					    GFP_KERNEL);
3886 		if (!set_attr_new) {
3887 			ret = -ENOMEM;
3888 			goto exit;
3889 		}
3890 		set_attr = set_attr_new;
3891 
3892 		memcpy(set_attr, criu_svm_md->data.attrs, num_attrs *
3893 					sizeof(struct kfd_ioctl_svm_attribute));
3894 		set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS;
3895 		set_attr[num_attrs].value = ~set_flags;
3896 
3897 		ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr,
3898 					 criu_svm_md->data.size, num_attrs + 1,
3899 					 set_attr);
3900 		if (ret) {
3901 			pr_err("CRIU: failed to set range attributes\n");
3902 			goto exit;
3903 		}
3904 
3905 		i++;
3906 	}
3907 exit:
3908 	kfree(set_attr);
3909 	list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) {
3910 		pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n",
3911 						criu_svm_md->data.start_addr);
3912 		kfree(criu_svm_md);
3913 	}
3914 
3915 	mmput(mm);
3916 	return ret;
3917 
3918 }
3919 
kfd_criu_restore_svm(struct kfd_process * p,uint8_t __user * user_priv_ptr,uint64_t * priv_data_offset,uint64_t max_priv_data_size)3920 int kfd_criu_restore_svm(struct kfd_process *p,
3921 			 uint8_t __user *user_priv_ptr,
3922 			 uint64_t *priv_data_offset,
3923 			 uint64_t max_priv_data_size)
3924 {
3925 	uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size;
3926 	int nattr_common = 4, nattr_accessibility = 1;
3927 	struct criu_svm_metadata *criu_svm_md = NULL;
3928 	struct svm_range_list *svms = &p->svms;
3929 	uint32_t num_devices;
3930 	int ret = 0;
3931 
3932 	num_devices = p->n_pdds;
3933 	/* Handle one SVM range object at a time, also the number of gpus are
3934 	 * assumed to be same on the restore node, checking must be done while
3935 	 * evaluating the topology earlier
3936 	 */
3937 
3938 	svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) *
3939 		(nattr_common + nattr_accessibility * num_devices);
3940 	svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size;
3941 
3942 	svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) +
3943 								svm_attrs_size;
3944 
3945 	criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL);
3946 	if (!criu_svm_md) {
3947 		pr_err("failed to allocate memory to store svm metadata\n");
3948 		return -ENOMEM;
3949 	}
3950 	if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) {
3951 		ret = -EINVAL;
3952 		goto exit;
3953 	}
3954 
3955 	ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset,
3956 			     svm_priv_data_size);
3957 	if (ret) {
3958 		ret = -EFAULT;
3959 		goto exit;
3960 	}
3961 	*priv_data_offset += svm_priv_data_size;
3962 
3963 	list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list);
3964 
3965 	return 0;
3966 
3967 
3968 exit:
3969 	kfree(criu_svm_md);
3970 	return ret;
3971 }
3972 
svm_range_get_info(struct kfd_process * p,uint32_t * num_svm_ranges,uint64_t * svm_priv_data_size)3973 int svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges,
3974 		       uint64_t *svm_priv_data_size)
3975 {
3976 	uint64_t total_size, accessibility_size, common_attr_size;
3977 	int nattr_common = 4, nattr_accessibility = 1;
3978 	int num_devices = p->n_pdds;
3979 	struct svm_range_list *svms;
3980 	struct svm_range *prange;
3981 	uint32_t count = 0;
3982 
3983 	*svm_priv_data_size = 0;
3984 
3985 	svms = &p->svms;
3986 	if (!svms)
3987 		return -EINVAL;
3988 
3989 	mutex_lock(&svms->lock);
3990 	list_for_each_entry(prange, &svms->list, list) {
3991 		pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n",
3992 			 prange, prange->start, prange->npages,
3993 			 prange->start + prange->npages - 1);
3994 		count++;
3995 	}
3996 	mutex_unlock(&svms->lock);
3997 
3998 	*num_svm_ranges = count;
3999 	/* Only the accessbility attributes need to be queried for all the gpus
4000 	 * individually, remaining ones are spanned across the entire process
4001 	 * regardless of the various gpu nodes. Of the remaining attributes,
4002 	 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved.
4003 	 *
4004 	 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC
4005 	 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC
4006 	 * KFD_IOCTL_SVM_ATTR_SET_FLAGS
4007 	 * KFD_IOCTL_SVM_ATTR_GRANULARITY
4008 	 *
4009 	 * ** ACCESSBILITY ATTRIBUTES **
4010 	 * (Considered as one, type is altered during query, value is gpuid)
4011 	 * KFD_IOCTL_SVM_ATTR_ACCESS
4012 	 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE
4013 	 * KFD_IOCTL_SVM_ATTR_NO_ACCESS
4014 	 */
4015 	if (*num_svm_ranges > 0) {
4016 		common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4017 			nattr_common;
4018 		accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) *
4019 			nattr_accessibility * num_devices;
4020 
4021 		total_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4022 			common_attr_size + accessibility_size;
4023 
4024 		*svm_priv_data_size = *num_svm_ranges * total_size;
4025 	}
4026 
4027 	pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges,
4028 		 *svm_priv_data_size);
4029 	return 0;
4030 }
4031 
kfd_criu_checkpoint_svm(struct kfd_process * p,uint8_t __user * user_priv_data,uint64_t * priv_data_offset)4032 int kfd_criu_checkpoint_svm(struct kfd_process *p,
4033 			    uint8_t __user *user_priv_data,
4034 			    uint64_t *priv_data_offset)
4035 {
4036 	struct kfd_criu_svm_range_priv_data *svm_priv = NULL;
4037 	struct kfd_ioctl_svm_attribute *query_attr = NULL;
4038 	uint64_t svm_priv_data_size, query_attr_size = 0;
4039 	int index, nattr_common = 4, ret = 0;
4040 	struct svm_range_list *svms;
4041 	int num_devices = p->n_pdds;
4042 	struct svm_range *prange;
4043 	struct mm_struct *mm;
4044 
4045 	svms = &p->svms;
4046 	if (!svms)
4047 		return -EINVAL;
4048 
4049 	mm = get_task_mm(p->lead_thread);
4050 	if (!mm) {
4051 		pr_err("failed to get mm for the target process\n");
4052 		return -ESRCH;
4053 	}
4054 
4055 	query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4056 				(nattr_common + num_devices);
4057 
4058 	query_attr = kzalloc(query_attr_size, GFP_KERNEL);
4059 	if (!query_attr) {
4060 		ret = -ENOMEM;
4061 		goto exit;
4062 	}
4063 
4064 	query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC;
4065 	query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC;
4066 	query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS;
4067 	query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY;
4068 
4069 	for (index = 0; index < num_devices; index++) {
4070 		struct kfd_process_device *pdd = p->pdds[index];
4071 
4072 		query_attr[index + nattr_common].type =
4073 			KFD_IOCTL_SVM_ATTR_ACCESS;
4074 		query_attr[index + nattr_common].value = pdd->user_gpu_id;
4075 	}
4076 
4077 	svm_priv_data_size = sizeof(*svm_priv) + query_attr_size;
4078 
4079 	svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL);
4080 	if (!svm_priv) {
4081 		ret = -ENOMEM;
4082 		goto exit_query;
4083 	}
4084 
4085 	index = 0;
4086 	list_for_each_entry(prange, &svms->list, list) {
4087 
4088 		svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE;
4089 		svm_priv->start_addr = prange->start;
4090 		svm_priv->size = prange->npages;
4091 		memcpy(&svm_priv->attrs, query_attr, query_attr_size);
4092 		pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n",
4093 			 prange, prange->start, prange->npages,
4094 			 prange->start + prange->npages - 1,
4095 			 prange->npages * PAGE_SIZE);
4096 
4097 		ret = svm_range_get_attr(p, mm, svm_priv->start_addr,
4098 					 svm_priv->size,
4099 					 (nattr_common + num_devices),
4100 					 svm_priv->attrs);
4101 		if (ret) {
4102 			pr_err("CRIU: failed to obtain range attributes\n");
4103 			goto exit_priv;
4104 		}
4105 
4106 		if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv,
4107 				 svm_priv_data_size)) {
4108 			pr_err("Failed to copy svm priv to user\n");
4109 			ret = -EFAULT;
4110 			goto exit_priv;
4111 		}
4112 
4113 		*priv_data_offset += svm_priv_data_size;
4114 
4115 	}
4116 
4117 
4118 exit_priv:
4119 	kfree(svm_priv);
4120 exit_query:
4121 	kfree(query_attr);
4122 exit:
4123 	mmput(mm);
4124 	return ret;
4125 }
4126 
4127 int
svm_ioctl(struct kfd_process * p,enum kfd_ioctl_svm_op op,uint64_t start,uint64_t size,uint32_t nattrs,struct kfd_ioctl_svm_attribute * attrs)4128 svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start,
4129 	  uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs)
4130 {
4131 	struct mm_struct *mm = current->mm;
4132 	int r;
4133 
4134 	start >>= PAGE_SHIFT;
4135 	size >>= PAGE_SHIFT;
4136 
4137 	switch (op) {
4138 	case KFD_IOCTL_SVM_OP_SET_ATTR:
4139 		r = svm_range_set_attr(p, mm, start, size, nattrs, attrs);
4140 		break;
4141 	case KFD_IOCTL_SVM_OP_GET_ATTR:
4142 		r = svm_range_get_attr(p, mm, start, size, nattrs, attrs);
4143 		break;
4144 	default:
4145 		r = EINVAL;
4146 		break;
4147 	}
4148 
4149 	return r;
4150 }
4151