1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3 * Copyright 2020-2021 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24 #include <linux/types.h>
25 #include <linux/sched/task.h>
26 #include <linux/dynamic_debug.h>
27 #include <drm/ttm/ttm_tt.h>
28 #include <drm/drm_exec.h>
29
30 #include "amdgpu_sync.h"
31 #include "amdgpu_object.h"
32 #include "amdgpu_vm.h"
33 #include "amdgpu_hmm.h"
34 #include "amdgpu.h"
35 #include "amdgpu_xgmi.h"
36 #include "kfd_priv.h"
37 #include "kfd_svm.h"
38 #include "kfd_migrate.h"
39 #include "kfd_smi_events.h"
40
41 #ifdef dev_fmt
42 #undef dev_fmt
43 #endif
44 #define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__
45
46 #define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1
47
48 /* Long enough to ensure no retry fault comes after svm range is restored and
49 * page table is updated.
50 */
51 #define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING (2UL * NSEC_PER_MSEC)
52 #if IS_ENABLED(CONFIG_DYNAMIC_DEBUG)
53 #define dynamic_svm_range_dump(svms) \
54 _dynamic_func_call_no_desc("svm_range_dump", svm_range_debug_dump, svms)
55 #else
56 #define dynamic_svm_range_dump(svms) \
57 do { if (0) svm_range_debug_dump(svms); } while (0)
58 #endif
59
60 /* Giant svm range split into smaller ranges based on this, it is decided using
61 * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to
62 * power of 2MB.
63 */
64 static uint64_t max_svm_range_pages;
65
66 struct criu_svm_metadata {
67 struct list_head list;
68 struct kfd_criu_svm_range_priv_data data;
69 };
70
71 static void svm_range_evict_svm_bo_worker(struct work_struct *work);
72 static bool
73 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
74 const struct mmu_notifier_range *range,
75 unsigned long cur_seq);
76 static int
77 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
78 uint64_t *bo_s, uint64_t *bo_l);
79 static const struct mmu_interval_notifier_ops svm_range_mn_ops = {
80 .invalidate = svm_range_cpu_invalidate_pagetables,
81 };
82
83 /**
84 * svm_range_unlink - unlink svm_range from lists and interval tree
85 * @prange: svm range structure to be removed
86 *
87 * Remove the svm_range from the svms and svm_bo lists and the svms
88 * interval tree.
89 *
90 * Context: The caller must hold svms->lock
91 */
svm_range_unlink(struct svm_range * prange)92 static void svm_range_unlink(struct svm_range *prange)
93 {
94 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
95 prange, prange->start, prange->last);
96
97 if (prange->svm_bo) {
98 spin_lock(&prange->svm_bo->list_lock);
99 list_del(&prange->svm_bo_list);
100 spin_unlock(&prange->svm_bo->list_lock);
101 }
102
103 list_del(&prange->list);
104 if (prange->it_node.start != 0 && prange->it_node.last != 0)
105 interval_tree_remove(&prange->it_node, &prange->svms->objects);
106 }
107
108 static void
svm_range_add_notifier_locked(struct mm_struct * mm,struct svm_range * prange)109 svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange)
110 {
111 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
112 prange, prange->start, prange->last);
113
114 mmu_interval_notifier_insert_locked(&prange->notifier, mm,
115 prange->start << PAGE_SHIFT,
116 prange->npages << PAGE_SHIFT,
117 &svm_range_mn_ops);
118 }
119
120 /**
121 * svm_range_add_to_svms - add svm range to svms
122 * @prange: svm range structure to be added
123 *
124 * Add the svm range to svms interval tree and link list
125 *
126 * Context: The caller must hold svms->lock
127 */
svm_range_add_to_svms(struct svm_range * prange)128 static void svm_range_add_to_svms(struct svm_range *prange)
129 {
130 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
131 prange, prange->start, prange->last);
132
133 list_move_tail(&prange->list, &prange->svms->list);
134 prange->it_node.start = prange->start;
135 prange->it_node.last = prange->last;
136 interval_tree_insert(&prange->it_node, &prange->svms->objects);
137 }
138
svm_range_remove_notifier(struct svm_range * prange)139 static void svm_range_remove_notifier(struct svm_range *prange)
140 {
141 pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n",
142 prange->svms, prange,
143 prange->notifier.interval_tree.start >> PAGE_SHIFT,
144 prange->notifier.interval_tree.last >> PAGE_SHIFT);
145
146 if (prange->notifier.interval_tree.start != 0 &&
147 prange->notifier.interval_tree.last != 0)
148 mmu_interval_notifier_remove(&prange->notifier);
149 }
150
151 static bool
svm_is_valid_dma_mapping_addr(struct device * dev,dma_addr_t dma_addr)152 svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr)
153 {
154 return dma_addr && !dma_mapping_error(dev, dma_addr) &&
155 !(dma_addr & SVM_RANGE_VRAM_DOMAIN);
156 }
157
158 static int
svm_range_dma_map_dev(struct amdgpu_device * adev,struct svm_range * prange,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns,uint32_t gpuidx)159 svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange,
160 unsigned long offset, unsigned long npages,
161 unsigned long *hmm_pfns, uint32_t gpuidx)
162 {
163 enum dma_data_direction dir = DMA_BIDIRECTIONAL;
164 dma_addr_t *addr = prange->dma_addr[gpuidx];
165 struct device *dev = adev->dev;
166 struct page *page;
167 int i, r;
168
169 if (!addr) {
170 addr = kvcalloc(prange->npages, sizeof(*addr), GFP_KERNEL);
171 if (!addr)
172 return -ENOMEM;
173 prange->dma_addr[gpuidx] = addr;
174 }
175
176 addr += offset;
177 for (i = 0; i < npages; i++) {
178 if (svm_is_valid_dma_mapping_addr(dev, addr[i]))
179 dma_unmap_page(dev, addr[i], PAGE_SIZE, dir);
180
181 page = hmm_pfn_to_page(hmm_pfns[i]);
182 if (is_zone_device_page(page)) {
183 struct amdgpu_device *bo_adev = prange->svm_bo->node->adev;
184
185 addr[i] = (hmm_pfns[i] << PAGE_SHIFT) +
186 bo_adev->vm_manager.vram_base_offset -
187 bo_adev->kfd.pgmap.range.start;
188 addr[i] |= SVM_RANGE_VRAM_DOMAIN;
189 pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]);
190 continue;
191 }
192 addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
193 r = dma_mapping_error(dev, addr[i]);
194 if (r) {
195 dev_err(dev, "failed %d dma_map_page\n", r);
196 return r;
197 }
198 pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n",
199 addr[i] >> PAGE_SHIFT, page_to_pfn(page));
200 }
201 return 0;
202 }
203
204 static int
svm_range_dma_map(struct svm_range * prange,unsigned long * bitmap,unsigned long offset,unsigned long npages,unsigned long * hmm_pfns)205 svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap,
206 unsigned long offset, unsigned long npages,
207 unsigned long *hmm_pfns)
208 {
209 struct kfd_process *p;
210 uint32_t gpuidx;
211 int r;
212
213 p = container_of(prange->svms, struct kfd_process, svms);
214
215 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
216 struct kfd_process_device *pdd;
217
218 pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
219 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
220 if (!pdd) {
221 pr_debug("failed to find device idx %d\n", gpuidx);
222 return -EINVAL;
223 }
224
225 r = svm_range_dma_map_dev(pdd->dev->adev, prange, offset, npages,
226 hmm_pfns, gpuidx);
227 if (r)
228 break;
229 }
230
231 return r;
232 }
233
svm_range_dma_unmap(struct device * dev,dma_addr_t * dma_addr,unsigned long offset,unsigned long npages)234 void svm_range_dma_unmap(struct device *dev, dma_addr_t *dma_addr,
235 unsigned long offset, unsigned long npages)
236 {
237 enum dma_data_direction dir = DMA_BIDIRECTIONAL;
238 int i;
239
240 if (!dma_addr)
241 return;
242
243 for (i = offset; i < offset + npages; i++) {
244 if (!svm_is_valid_dma_mapping_addr(dev, dma_addr[i]))
245 continue;
246 pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT);
247 dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
248 dma_addr[i] = 0;
249 }
250 }
251
svm_range_free_dma_mappings(struct svm_range * prange,bool unmap_dma)252 void svm_range_free_dma_mappings(struct svm_range *prange, bool unmap_dma)
253 {
254 struct kfd_process_device *pdd;
255 dma_addr_t *dma_addr;
256 struct device *dev;
257 struct kfd_process *p;
258 uint32_t gpuidx;
259
260 p = container_of(prange->svms, struct kfd_process, svms);
261
262 for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
263 dma_addr = prange->dma_addr[gpuidx];
264 if (!dma_addr)
265 continue;
266
267 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
268 if (!pdd) {
269 pr_debug("failed to find device idx %d\n", gpuidx);
270 continue;
271 }
272 dev = &pdd->dev->adev->pdev->dev;
273 if (unmap_dma)
274 svm_range_dma_unmap(dev, dma_addr, 0, prange->npages);
275 kvfree(dma_addr);
276 prange->dma_addr[gpuidx] = NULL;
277 }
278 }
279
svm_range_free(struct svm_range * prange,bool do_unmap)280 static void svm_range_free(struct svm_range *prange, bool do_unmap)
281 {
282 uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT;
283 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
284
285 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange,
286 prange->start, prange->last);
287
288 svm_range_vram_node_free(prange);
289 svm_range_free_dma_mappings(prange, do_unmap);
290
291 if (do_unmap && !p->xnack_enabled) {
292 pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size);
293 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
294 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
295 }
296 mutex_destroy(&prange->lock);
297 mutex_destroy(&prange->migrate_mutex);
298 kfree(prange);
299 }
300
301 static void
svm_range_set_default_attributes(int32_t * location,int32_t * prefetch_loc,uint8_t * granularity,uint32_t * flags)302 svm_range_set_default_attributes(int32_t *location, int32_t *prefetch_loc,
303 uint8_t *granularity, uint32_t *flags)
304 {
305 *location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
306 *prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
307 *granularity = 9;
308 *flags =
309 KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT;
310 }
311
312 static struct
svm_range_new(struct svm_range_list * svms,uint64_t start,uint64_t last,bool update_mem_usage)313 svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start,
314 uint64_t last, bool update_mem_usage)
315 {
316 uint64_t size = last - start + 1;
317 struct svm_range *prange;
318 struct kfd_process *p;
319
320 prange = kzalloc(sizeof(*prange), GFP_KERNEL);
321 if (!prange)
322 return NULL;
323
324 p = container_of(svms, struct kfd_process, svms);
325 if (!p->xnack_enabled && update_mem_usage &&
326 amdgpu_amdkfd_reserve_mem_limit(NULL, size << PAGE_SHIFT,
327 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0)) {
328 pr_info("SVM mapping failed, exceeds resident system memory limit\n");
329 kfree(prange);
330 return NULL;
331 }
332 prange->npages = size;
333 prange->svms = svms;
334 prange->start = start;
335 prange->last = last;
336 INIT_LIST_HEAD(&prange->list);
337 INIT_LIST_HEAD(&prange->update_list);
338 INIT_LIST_HEAD(&prange->svm_bo_list);
339 INIT_LIST_HEAD(&prange->deferred_list);
340 INIT_LIST_HEAD(&prange->child_list);
341 atomic_set(&prange->invalid, 0);
342 prange->validate_timestamp = 0;
343 mutex_init(&prange->migrate_mutex);
344 mutex_init(&prange->lock);
345
346 if (p->xnack_enabled)
347 bitmap_copy(prange->bitmap_access, svms->bitmap_supported,
348 MAX_GPU_INSTANCE);
349
350 svm_range_set_default_attributes(&prange->preferred_loc,
351 &prange->prefetch_loc,
352 &prange->granularity, &prange->flags);
353
354 pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last);
355
356 return prange;
357 }
358
svm_bo_ref_unless_zero(struct svm_range_bo * svm_bo)359 static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo)
360 {
361 if (!svm_bo || !kref_get_unless_zero(&svm_bo->kref))
362 return false;
363
364 return true;
365 }
366
svm_range_bo_release(struct kref * kref)367 static void svm_range_bo_release(struct kref *kref)
368 {
369 struct svm_range_bo *svm_bo;
370
371 svm_bo = container_of(kref, struct svm_range_bo, kref);
372 pr_debug("svm_bo 0x%p\n", svm_bo);
373
374 spin_lock(&svm_bo->list_lock);
375 while (!list_empty(&svm_bo->range_list)) {
376 struct svm_range *prange =
377 list_first_entry(&svm_bo->range_list,
378 struct svm_range, svm_bo_list);
379 /* list_del_init tells a concurrent svm_range_vram_node_new when
380 * it's safe to reuse the svm_bo pointer and svm_bo_list head.
381 */
382 list_del_init(&prange->svm_bo_list);
383 spin_unlock(&svm_bo->list_lock);
384
385 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
386 prange->start, prange->last);
387 mutex_lock(&prange->lock);
388 prange->svm_bo = NULL;
389 mutex_unlock(&prange->lock);
390
391 spin_lock(&svm_bo->list_lock);
392 }
393 spin_unlock(&svm_bo->list_lock);
394
395 if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
396 struct kfd_process_device *pdd;
397 struct kfd_process *p;
398 struct mm_struct *mm;
399
400 mm = svm_bo->eviction_fence->mm;
401 /*
402 * The forked child process takes svm_bo device pages ref, svm_bo could be
403 * released after parent process is gone.
404 */
405 p = kfd_lookup_process_by_mm(mm);
406 if (p) {
407 pdd = kfd_get_process_device_data(svm_bo->node, p);
408 if (pdd)
409 atomic64_sub(amdgpu_bo_size(svm_bo->bo), &pdd->vram_usage);
410 kfd_unref_process(p);
411 }
412 mmput(mm);
413 }
414
415 if (!dma_fence_is_signaled(&svm_bo->eviction_fence->base))
416 /* We're not in the eviction worker. Signal the fence. */
417 dma_fence_signal(&svm_bo->eviction_fence->base);
418 dma_fence_put(&svm_bo->eviction_fence->base);
419 amdgpu_bo_unref(&svm_bo->bo);
420 kfree(svm_bo);
421 }
422
svm_range_bo_wq_release(struct work_struct * work)423 static void svm_range_bo_wq_release(struct work_struct *work)
424 {
425 struct svm_range_bo *svm_bo;
426
427 svm_bo = container_of(work, struct svm_range_bo, release_work);
428 svm_range_bo_release(&svm_bo->kref);
429 }
430
svm_range_bo_release_async(struct kref * kref)431 static void svm_range_bo_release_async(struct kref *kref)
432 {
433 struct svm_range_bo *svm_bo;
434
435 svm_bo = container_of(kref, struct svm_range_bo, kref);
436 pr_debug("svm_bo 0x%p\n", svm_bo);
437 INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release);
438 schedule_work(&svm_bo->release_work);
439 }
440
svm_range_bo_unref_async(struct svm_range_bo * svm_bo)441 void svm_range_bo_unref_async(struct svm_range_bo *svm_bo)
442 {
443 kref_put(&svm_bo->kref, svm_range_bo_release_async);
444 }
445
svm_range_bo_unref(struct svm_range_bo * svm_bo)446 static void svm_range_bo_unref(struct svm_range_bo *svm_bo)
447 {
448 if (svm_bo)
449 kref_put(&svm_bo->kref, svm_range_bo_release);
450 }
451
452 static bool
svm_range_validate_svm_bo(struct kfd_node * node,struct svm_range * prange)453 svm_range_validate_svm_bo(struct kfd_node *node, struct svm_range *prange)
454 {
455 mutex_lock(&prange->lock);
456 if (!prange->svm_bo) {
457 mutex_unlock(&prange->lock);
458 return false;
459 }
460 if (prange->ttm_res) {
461 /* We still have a reference, all is well */
462 mutex_unlock(&prange->lock);
463 return true;
464 }
465 if (svm_bo_ref_unless_zero(prange->svm_bo)) {
466 /*
467 * Migrate from GPU to GPU, remove range from source svm_bo->node
468 * range list, and return false to allocate svm_bo from destination
469 * node.
470 */
471 if (prange->svm_bo->node != node) {
472 mutex_unlock(&prange->lock);
473
474 spin_lock(&prange->svm_bo->list_lock);
475 list_del_init(&prange->svm_bo_list);
476 spin_unlock(&prange->svm_bo->list_lock);
477
478 svm_range_bo_unref(prange->svm_bo);
479 return false;
480 }
481 if (READ_ONCE(prange->svm_bo->evicting)) {
482 struct dma_fence *f;
483 struct svm_range_bo *svm_bo;
484 /* The BO is getting evicted,
485 * we need to get a new one
486 */
487 mutex_unlock(&prange->lock);
488 svm_bo = prange->svm_bo;
489 f = dma_fence_get(&svm_bo->eviction_fence->base);
490 svm_range_bo_unref(prange->svm_bo);
491 /* wait for the fence to avoid long spin-loop
492 * at list_empty_careful
493 */
494 dma_fence_wait(f, false);
495 dma_fence_put(f);
496 } else {
497 /* The BO was still around and we got
498 * a new reference to it
499 */
500 mutex_unlock(&prange->lock);
501 pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n",
502 prange->svms, prange->start, prange->last);
503
504 prange->ttm_res = prange->svm_bo->bo->tbo.resource;
505 return true;
506 }
507
508 } else {
509 mutex_unlock(&prange->lock);
510 }
511
512 /* We need a new svm_bo. Spin-loop to wait for concurrent
513 * svm_range_bo_release to finish removing this range from
514 * its range list and set prange->svm_bo to null. After this,
515 * it is safe to reuse the svm_bo pointer and svm_bo_list head.
516 */
517 while (!list_empty_careful(&prange->svm_bo_list) || prange->svm_bo)
518 cond_resched();
519
520 return false;
521 }
522
svm_range_bo_new(void)523 static struct svm_range_bo *svm_range_bo_new(void)
524 {
525 struct svm_range_bo *svm_bo;
526
527 svm_bo = kzalloc(sizeof(*svm_bo), GFP_KERNEL);
528 if (!svm_bo)
529 return NULL;
530
531 kref_init(&svm_bo->kref);
532 INIT_LIST_HEAD(&svm_bo->range_list);
533 spin_lock_init(&svm_bo->list_lock);
534
535 return svm_bo;
536 }
537
538 int
svm_range_vram_node_new(struct kfd_node * node,struct svm_range * prange,bool clear)539 svm_range_vram_node_new(struct kfd_node *node, struct svm_range *prange,
540 bool clear)
541 {
542 struct kfd_process_device *pdd;
543 struct amdgpu_bo_param bp;
544 struct svm_range_bo *svm_bo;
545 struct amdgpu_bo_user *ubo;
546 struct amdgpu_bo *bo;
547 struct kfd_process *p;
548 struct mm_struct *mm;
549 int r;
550
551 p = container_of(prange->svms, struct kfd_process, svms);
552 pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms,
553 prange->start, prange->last);
554
555 if (svm_range_validate_svm_bo(node, prange))
556 return 0;
557
558 svm_bo = svm_range_bo_new();
559 if (!svm_bo) {
560 pr_debug("failed to alloc svm bo\n");
561 return -ENOMEM;
562 }
563 mm = get_task_mm(p->lead_thread);
564 if (!mm) {
565 pr_debug("failed to get mm\n");
566 kfree(svm_bo);
567 return -ESRCH;
568 }
569 svm_bo->node = node;
570 svm_bo->eviction_fence =
571 amdgpu_amdkfd_fence_create(dma_fence_context_alloc(1),
572 mm,
573 svm_bo);
574 mmput(mm);
575 INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker);
576 svm_bo->evicting = 0;
577 memset(&bp, 0, sizeof(bp));
578 bp.size = prange->npages * PAGE_SIZE;
579 bp.byte_align = PAGE_SIZE;
580 bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
581 bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
582 bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0;
583 bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE;
584 bp.type = ttm_bo_type_device;
585 bp.resv = NULL;
586 if (node->xcp)
587 bp.xcp_id_plus1 = node->xcp->id + 1;
588
589 r = amdgpu_bo_create_user(node->adev, &bp, &ubo);
590 if (r) {
591 pr_debug("failed %d to create bo\n", r);
592 goto create_bo_failed;
593 }
594 bo = &ubo->bo;
595
596 pr_debug("alloc bo at offset 0x%lx size 0x%lx on partition %d\n",
597 bo->tbo.resource->start << PAGE_SHIFT, bp.size,
598 bp.xcp_id_plus1 - 1);
599
600 r = amdgpu_bo_reserve(bo, true);
601 if (r) {
602 pr_debug("failed %d to reserve bo\n", r);
603 goto reserve_bo_failed;
604 }
605
606 if (clear) {
607 r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, false);
608 if (r) {
609 pr_debug("failed %d to sync bo\n", r);
610 amdgpu_bo_unreserve(bo);
611 goto reserve_bo_failed;
612 }
613 }
614
615 r = dma_resv_reserve_fences(bo->tbo.base.resv, 1);
616 if (r) {
617 pr_debug("failed %d to reserve bo\n", r);
618 amdgpu_bo_unreserve(bo);
619 goto reserve_bo_failed;
620 }
621 amdgpu_bo_fence(bo, &svm_bo->eviction_fence->base, true);
622
623 amdgpu_bo_unreserve(bo);
624
625 svm_bo->bo = bo;
626 prange->svm_bo = svm_bo;
627 prange->ttm_res = bo->tbo.resource;
628 prange->offset = 0;
629
630 spin_lock(&svm_bo->list_lock);
631 list_add(&prange->svm_bo_list, &svm_bo->range_list);
632 spin_unlock(&svm_bo->list_lock);
633
634 pdd = svm_range_get_pdd_by_node(prange, node);
635 if (pdd)
636 atomic64_add(amdgpu_bo_size(bo), &pdd->vram_usage);
637
638 return 0;
639
640 reserve_bo_failed:
641 amdgpu_bo_unref(&bo);
642 create_bo_failed:
643 dma_fence_put(&svm_bo->eviction_fence->base);
644 kfree(svm_bo);
645 prange->ttm_res = NULL;
646
647 return r;
648 }
649
svm_range_vram_node_free(struct svm_range * prange)650 void svm_range_vram_node_free(struct svm_range *prange)
651 {
652 /* serialize prange->svm_bo unref */
653 mutex_lock(&prange->lock);
654 /* prange->svm_bo has not been unref */
655 if (prange->ttm_res) {
656 prange->ttm_res = NULL;
657 mutex_unlock(&prange->lock);
658 svm_range_bo_unref(prange->svm_bo);
659 } else
660 mutex_unlock(&prange->lock);
661 }
662
663 struct kfd_node *
svm_range_get_node_by_id(struct svm_range * prange,uint32_t gpu_id)664 svm_range_get_node_by_id(struct svm_range *prange, uint32_t gpu_id)
665 {
666 struct kfd_process *p;
667 struct kfd_process_device *pdd;
668
669 p = container_of(prange->svms, struct kfd_process, svms);
670 pdd = kfd_process_device_data_by_id(p, gpu_id);
671 if (!pdd) {
672 pr_debug("failed to get kfd process device by id 0x%x\n", gpu_id);
673 return NULL;
674 }
675
676 return pdd->dev;
677 }
678
679 struct kfd_process_device *
svm_range_get_pdd_by_node(struct svm_range * prange,struct kfd_node * node)680 svm_range_get_pdd_by_node(struct svm_range *prange, struct kfd_node *node)
681 {
682 struct kfd_process *p;
683
684 p = container_of(prange->svms, struct kfd_process, svms);
685
686 return kfd_get_process_device_data(node, p);
687 }
688
svm_range_bo_validate(void * param,struct amdgpu_bo * bo)689 static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo)
690 {
691 struct ttm_operation_ctx ctx = { false, false };
692
693 amdgpu_bo_placement_from_domain(bo, AMDGPU_GEM_DOMAIN_VRAM);
694
695 return ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
696 }
697
698 static int
svm_range_check_attr(struct kfd_process * p,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)699 svm_range_check_attr(struct kfd_process *p,
700 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
701 {
702 uint32_t i;
703
704 for (i = 0; i < nattr; i++) {
705 uint32_t val = attrs[i].value;
706 int gpuidx = MAX_GPU_INSTANCE;
707
708 switch (attrs[i].type) {
709 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
710 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
711 val != KFD_IOCTL_SVM_LOCATION_UNDEFINED)
712 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
713 break;
714 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
715 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM)
716 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
717 break;
718 case KFD_IOCTL_SVM_ATTR_ACCESS:
719 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
720 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
721 gpuidx = kfd_process_gpuidx_from_gpuid(p, val);
722 break;
723 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
724 break;
725 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
726 break;
727 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
728 break;
729 default:
730 pr_debug("unknown attr type 0x%x\n", attrs[i].type);
731 return -EINVAL;
732 }
733
734 if (gpuidx < 0) {
735 pr_debug("no GPU 0x%x found\n", val);
736 return -EINVAL;
737 } else if (gpuidx < MAX_GPU_INSTANCE &&
738 !test_bit(gpuidx, p->svms.bitmap_supported)) {
739 pr_debug("GPU 0x%x not supported\n", val);
740 return -EINVAL;
741 }
742 }
743
744 return 0;
745 }
746
747 static void
svm_range_apply_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,bool * update_mapping)748 svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange,
749 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
750 bool *update_mapping)
751 {
752 uint32_t i;
753 int gpuidx;
754
755 for (i = 0; i < nattr; i++) {
756 switch (attrs[i].type) {
757 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
758 prange->preferred_loc = attrs[i].value;
759 break;
760 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
761 prange->prefetch_loc = attrs[i].value;
762 break;
763 case KFD_IOCTL_SVM_ATTR_ACCESS:
764 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
765 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
766 if (!p->xnack_enabled)
767 *update_mapping = true;
768
769 gpuidx = kfd_process_gpuidx_from_gpuid(p,
770 attrs[i].value);
771 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
772 bitmap_clear(prange->bitmap_access, gpuidx, 1);
773 bitmap_clear(prange->bitmap_aip, gpuidx, 1);
774 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
775 bitmap_set(prange->bitmap_access, gpuidx, 1);
776 bitmap_clear(prange->bitmap_aip, gpuidx, 1);
777 } else {
778 bitmap_clear(prange->bitmap_access, gpuidx, 1);
779 bitmap_set(prange->bitmap_aip, gpuidx, 1);
780 }
781 break;
782 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
783 *update_mapping = true;
784 prange->flags |= attrs[i].value;
785 break;
786 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
787 *update_mapping = true;
788 prange->flags &= ~attrs[i].value;
789 break;
790 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
791 prange->granularity = min_t(uint32_t, attrs[i].value, 0x3F);
792 break;
793 default:
794 WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
795 }
796 }
797 }
798
799 static bool
svm_range_is_same_attrs(struct kfd_process * p,struct svm_range * prange,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)800 svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange,
801 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
802 {
803 uint32_t i;
804 int gpuidx;
805
806 for (i = 0; i < nattr; i++) {
807 switch (attrs[i].type) {
808 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
809 if (prange->preferred_loc != attrs[i].value)
810 return false;
811 break;
812 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
813 /* Prefetch should always trigger a migration even
814 * if the value of the attribute didn't change.
815 */
816 return false;
817 case KFD_IOCTL_SVM_ATTR_ACCESS:
818 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
819 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
820 gpuidx = kfd_process_gpuidx_from_gpuid(p,
821 attrs[i].value);
822 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
823 if (test_bit(gpuidx, prange->bitmap_access) ||
824 test_bit(gpuidx, prange->bitmap_aip))
825 return false;
826 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
827 if (!test_bit(gpuidx, prange->bitmap_access))
828 return false;
829 } else {
830 if (!test_bit(gpuidx, prange->bitmap_aip))
831 return false;
832 }
833 break;
834 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
835 if ((prange->flags & attrs[i].value) != attrs[i].value)
836 return false;
837 break;
838 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
839 if ((prange->flags & attrs[i].value) != 0)
840 return false;
841 break;
842 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
843 if (prange->granularity != attrs[i].value)
844 return false;
845 break;
846 default:
847 WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
848 }
849 }
850
851 return true;
852 }
853
854 /**
855 * svm_range_debug_dump - print all range information from svms
856 * @svms: svm range list header
857 *
858 * debug output svm range start, end, prefetch location from svms
859 * interval tree and link list
860 *
861 * Context: The caller must hold svms->lock
862 */
svm_range_debug_dump(struct svm_range_list * svms)863 static void svm_range_debug_dump(struct svm_range_list *svms)
864 {
865 struct interval_tree_node *node;
866 struct svm_range *prange;
867
868 pr_debug("dump svms 0x%p list\n", svms);
869 pr_debug("range\tstart\tpage\tend\t\tlocation\n");
870
871 list_for_each_entry(prange, &svms->list, list) {
872 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
873 prange, prange->start, prange->npages,
874 prange->start + prange->npages - 1,
875 prange->actual_loc);
876 }
877
878 pr_debug("dump svms 0x%p interval tree\n", svms);
879 pr_debug("range\tstart\tpage\tend\t\tlocation\n");
880 node = interval_tree_iter_first(&svms->objects, 0, ~0ULL);
881 while (node) {
882 prange = container_of(node, struct svm_range, it_node);
883 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
884 prange, prange->start, prange->npages,
885 prange->start + prange->npages - 1,
886 prange->actual_loc);
887 node = interval_tree_iter_next(node, 0, ~0ULL);
888 }
889 }
890
891 static void *
svm_range_copy_array(void * psrc,size_t size,uint64_t num_elements,uint64_t offset)892 svm_range_copy_array(void *psrc, size_t size, uint64_t num_elements,
893 uint64_t offset)
894 {
895 unsigned char *dst;
896
897 dst = kvmalloc_array(num_elements, size, GFP_KERNEL);
898 if (!dst)
899 return NULL;
900 memcpy(dst, (unsigned char *)psrc + offset, num_elements * size);
901
902 return (void *)dst;
903 }
904
905 static int
svm_range_copy_dma_addrs(struct svm_range * dst,struct svm_range * src)906 svm_range_copy_dma_addrs(struct svm_range *dst, struct svm_range *src)
907 {
908 int i;
909
910 for (i = 0; i < MAX_GPU_INSTANCE; i++) {
911 if (!src->dma_addr[i])
912 continue;
913 dst->dma_addr[i] = svm_range_copy_array(src->dma_addr[i],
914 sizeof(*src->dma_addr[i]), src->npages, 0);
915 if (!dst->dma_addr[i])
916 return -ENOMEM;
917 }
918
919 return 0;
920 }
921
922 static int
svm_range_split_array(void * ppnew,void * ppold,size_t size,uint64_t old_start,uint64_t old_n,uint64_t new_start,uint64_t new_n)923 svm_range_split_array(void *ppnew, void *ppold, size_t size,
924 uint64_t old_start, uint64_t old_n,
925 uint64_t new_start, uint64_t new_n)
926 {
927 unsigned char *new, *old, *pold;
928 uint64_t d;
929
930 if (!ppold)
931 return 0;
932 pold = *(unsigned char **)ppold;
933 if (!pold)
934 return 0;
935
936 d = (new_start - old_start) * size;
937 new = svm_range_copy_array(pold, size, new_n, d);
938 if (!new)
939 return -ENOMEM;
940 d = (new_start == old_start) ? new_n * size : 0;
941 old = svm_range_copy_array(pold, size, old_n, d);
942 if (!old) {
943 kvfree(new);
944 return -ENOMEM;
945 }
946 kvfree(pold);
947 *(void **)ppold = old;
948 *(void **)ppnew = new;
949
950 return 0;
951 }
952
953 static int
svm_range_split_pages(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)954 svm_range_split_pages(struct svm_range *new, struct svm_range *old,
955 uint64_t start, uint64_t last)
956 {
957 uint64_t npages = last - start + 1;
958 int i, r;
959
960 for (i = 0; i < MAX_GPU_INSTANCE; i++) {
961 r = svm_range_split_array(&new->dma_addr[i], &old->dma_addr[i],
962 sizeof(*old->dma_addr[i]), old->start,
963 npages, new->start, new->npages);
964 if (r)
965 return r;
966 }
967
968 return 0;
969 }
970
971 static int
svm_range_split_nodes(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)972 svm_range_split_nodes(struct svm_range *new, struct svm_range *old,
973 uint64_t start, uint64_t last)
974 {
975 uint64_t npages = last - start + 1;
976
977 pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n",
978 new->svms, new, new->start, start, last);
979
980 if (new->start == old->start) {
981 new->offset = old->offset;
982 old->offset += new->npages;
983 } else {
984 new->offset = old->offset + npages;
985 }
986
987 new->svm_bo = svm_range_bo_ref(old->svm_bo);
988 new->ttm_res = old->ttm_res;
989
990 spin_lock(&new->svm_bo->list_lock);
991 list_add(&new->svm_bo_list, &new->svm_bo->range_list);
992 spin_unlock(&new->svm_bo->list_lock);
993
994 return 0;
995 }
996
997 /**
998 * svm_range_split_adjust - split range and adjust
999 *
1000 * @new: new range
1001 * @old: the old range
1002 * @start: the old range adjust to start address in pages
1003 * @last: the old range adjust to last address in pages
1004 *
1005 * Copy system memory dma_addr or vram ttm_res in old range to new
1006 * range from new_start up to size new->npages, the remaining old range is from
1007 * start to last
1008 *
1009 * Return:
1010 * 0 - OK, -ENOMEM - out of memory
1011 */
1012 static int
svm_range_split_adjust(struct svm_range * new,struct svm_range * old,uint64_t start,uint64_t last)1013 svm_range_split_adjust(struct svm_range *new, struct svm_range *old,
1014 uint64_t start, uint64_t last)
1015 {
1016 int r;
1017
1018 pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n",
1019 new->svms, new->start, old->start, old->last, start, last);
1020
1021 if (new->start < old->start ||
1022 new->last > old->last) {
1023 WARN_ONCE(1, "invalid new range start or last\n");
1024 return -EINVAL;
1025 }
1026
1027 r = svm_range_split_pages(new, old, start, last);
1028 if (r)
1029 return r;
1030
1031 if (old->actual_loc && old->ttm_res) {
1032 r = svm_range_split_nodes(new, old, start, last);
1033 if (r)
1034 return r;
1035 }
1036
1037 old->npages = last - start + 1;
1038 old->start = start;
1039 old->last = last;
1040 new->flags = old->flags;
1041 new->preferred_loc = old->preferred_loc;
1042 new->prefetch_loc = old->prefetch_loc;
1043 new->actual_loc = old->actual_loc;
1044 new->granularity = old->granularity;
1045 new->mapped_to_gpu = old->mapped_to_gpu;
1046 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
1047 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
1048
1049 return 0;
1050 }
1051
1052 /**
1053 * svm_range_split - split a range in 2 ranges
1054 *
1055 * @prange: the svm range to split
1056 * @start: the remaining range start address in pages
1057 * @last: the remaining range last address in pages
1058 * @new: the result new range generated
1059 *
1060 * Two cases only:
1061 * case 1: if start == prange->start
1062 * prange ==> prange[start, last]
1063 * new range [last + 1, prange->last]
1064 *
1065 * case 2: if last == prange->last
1066 * prange ==> prange[start, last]
1067 * new range [prange->start, start - 1]
1068 *
1069 * Return:
1070 * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last
1071 */
1072 static int
svm_range_split(struct svm_range * prange,uint64_t start,uint64_t last,struct svm_range ** new)1073 svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last,
1074 struct svm_range **new)
1075 {
1076 uint64_t old_start = prange->start;
1077 uint64_t old_last = prange->last;
1078 struct svm_range_list *svms;
1079 int r = 0;
1080
1081 pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms,
1082 old_start, old_last, start, last);
1083
1084 if (old_start != start && old_last != last)
1085 return -EINVAL;
1086 if (start < old_start || last > old_last)
1087 return -EINVAL;
1088
1089 svms = prange->svms;
1090 if (old_start == start)
1091 *new = svm_range_new(svms, last + 1, old_last, false);
1092 else
1093 *new = svm_range_new(svms, old_start, start - 1, false);
1094 if (!*new)
1095 return -ENOMEM;
1096
1097 r = svm_range_split_adjust(*new, prange, start, last);
1098 if (r) {
1099 pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n",
1100 r, old_start, old_last, start, last);
1101 svm_range_free(*new, false);
1102 *new = NULL;
1103 }
1104
1105 return r;
1106 }
1107
1108 static int
svm_range_split_tail(struct svm_range * prange,uint64_t new_last,struct list_head * insert_list)1109 svm_range_split_tail(struct svm_range *prange,
1110 uint64_t new_last, struct list_head *insert_list)
1111 {
1112 struct svm_range *tail;
1113 int r = svm_range_split(prange, prange->start, new_last, &tail);
1114
1115 if (!r)
1116 list_add(&tail->list, insert_list);
1117 return r;
1118 }
1119
1120 static int
svm_range_split_head(struct svm_range * prange,uint64_t new_start,struct list_head * insert_list)1121 svm_range_split_head(struct svm_range *prange,
1122 uint64_t new_start, struct list_head *insert_list)
1123 {
1124 struct svm_range *head;
1125 int r = svm_range_split(prange, new_start, prange->last, &head);
1126
1127 if (!r)
1128 list_add(&head->list, insert_list);
1129 return r;
1130 }
1131
1132 static void
svm_range_add_child(struct svm_range * prange,struct svm_range * pchild,enum svm_work_list_ops op)1133 svm_range_add_child(struct svm_range *prange, struct svm_range *pchild, enum svm_work_list_ops op)
1134 {
1135 pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n",
1136 pchild, pchild->start, pchild->last, prange, op);
1137
1138 pchild->work_item.mm = NULL;
1139 pchild->work_item.op = op;
1140 list_add_tail(&pchild->child_list, &prange->child_list);
1141 }
1142
1143 /**
1144 * svm_range_split_by_granularity - collect ranges within granularity boundary
1145 *
1146 * @p: the process with svms list
1147 * @mm: mm structure
1148 * @addr: the vm fault address in pages, to split the prange
1149 * @parent: parent range if prange is from child list
1150 * @prange: prange to split
1151 *
1152 * Trims @prange to be a single aligned block of prange->granularity if
1153 * possible. The head and tail are added to the child_list in @parent.
1154 *
1155 * Context: caller must hold mmap_read_lock and prange->lock
1156 *
1157 * Return:
1158 * 0 - OK, otherwise error code
1159 */
1160 int
svm_range_split_by_granularity(struct kfd_process * p,struct mm_struct * mm,unsigned long addr,struct svm_range * parent,struct svm_range * prange)1161 svm_range_split_by_granularity(struct kfd_process *p, struct mm_struct *mm,
1162 unsigned long addr, struct svm_range *parent,
1163 struct svm_range *prange)
1164 {
1165 struct svm_range *head, *tail;
1166 unsigned long start, last, size;
1167 int r;
1168
1169 /* Align splited range start and size to granularity size, then a single
1170 * PTE will be used for whole range, this reduces the number of PTE
1171 * updated and the L1 TLB space used for translation.
1172 */
1173 size = 1UL << prange->granularity;
1174 start = ALIGN_DOWN(addr, size);
1175 last = ALIGN(addr + 1, size) - 1;
1176
1177 pr_debug("svms 0x%p split [0x%lx 0x%lx] to [0x%lx 0x%lx] size 0x%lx\n",
1178 prange->svms, prange->start, prange->last, start, last, size);
1179
1180 if (start > prange->start) {
1181 r = svm_range_split(prange, start, prange->last, &head);
1182 if (r)
1183 return r;
1184 svm_range_add_child(parent, head, SVM_OP_ADD_RANGE);
1185 }
1186
1187 if (last < prange->last) {
1188 r = svm_range_split(prange, prange->start, last, &tail);
1189 if (r)
1190 return r;
1191 svm_range_add_child(parent, tail, SVM_OP_ADD_RANGE);
1192 }
1193
1194 /* xnack on, update mapping on GPUs with ACCESS_IN_PLACE */
1195 if (p->xnack_enabled && prange->work_item.op == SVM_OP_ADD_RANGE) {
1196 prange->work_item.op = SVM_OP_ADD_RANGE_AND_MAP;
1197 pr_debug("change prange 0x%p [0x%lx 0x%lx] op %d\n",
1198 prange, prange->start, prange->last,
1199 SVM_OP_ADD_RANGE_AND_MAP);
1200 }
1201 return 0;
1202 }
1203 static bool
svm_nodes_in_same_hive(struct kfd_node * node_a,struct kfd_node * node_b)1204 svm_nodes_in_same_hive(struct kfd_node *node_a, struct kfd_node *node_b)
1205 {
1206 return (node_a->adev == node_b->adev ||
1207 amdgpu_xgmi_same_hive(node_a->adev, node_b->adev));
1208 }
1209
1210 static uint64_t
svm_range_get_pte_flags(struct kfd_node * node,struct svm_range * prange,int domain)1211 svm_range_get_pte_flags(struct kfd_node *node,
1212 struct svm_range *prange, int domain)
1213 {
1214 struct kfd_node *bo_node;
1215 uint32_t flags = prange->flags;
1216 uint32_t mapping_flags = 0;
1217 uint64_t pte_flags;
1218 bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN);
1219 bool coherent = flags & KFD_IOCTL_SVM_FLAG_COHERENT;
1220 bool uncached = false; /*flags & KFD_IOCTL_SVM_FLAG_UNCACHED;*/
1221 unsigned int mtype_local;
1222
1223 if (domain == SVM_RANGE_VRAM_DOMAIN)
1224 bo_node = prange->svm_bo->node;
1225
1226 switch (node->adev->ip_versions[GC_HWIP][0]) {
1227 case IP_VERSION(9, 4, 1):
1228 if (domain == SVM_RANGE_VRAM_DOMAIN) {
1229 if (bo_node == node) {
1230 mapping_flags |= coherent ?
1231 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1232 } else {
1233 mapping_flags |= coherent ?
1234 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1235 if (svm_nodes_in_same_hive(node, bo_node))
1236 snoop = true;
1237 }
1238 } else {
1239 mapping_flags |= coherent ?
1240 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1241 }
1242 break;
1243 case IP_VERSION(9, 4, 2):
1244 if (domain == SVM_RANGE_VRAM_DOMAIN) {
1245 if (bo_node == node) {
1246 mapping_flags |= coherent ?
1247 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1248 if (node->adev->gmc.xgmi.connected_to_cpu)
1249 snoop = true;
1250 } else {
1251 mapping_flags |= coherent ?
1252 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1253 if (svm_nodes_in_same_hive(node, bo_node))
1254 snoop = true;
1255 }
1256 } else {
1257 mapping_flags |= coherent ?
1258 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1259 }
1260 break;
1261 case IP_VERSION(9, 4, 3):
1262 mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC :
1263 (amdgpu_mtype_local == 2 ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW);
1264 snoop = true;
1265 if (uncached) {
1266 mapping_flags |= AMDGPU_VM_MTYPE_UC;
1267 } else if (domain == SVM_RANGE_VRAM_DOMAIN) {
1268 /* local HBM region close to partition */
1269 if (bo_node->adev == node->adev &&
1270 (!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id))
1271 mapping_flags |= mtype_local;
1272 /* local HBM region far from partition or remote XGMI GPU */
1273 else if (svm_nodes_in_same_hive(bo_node, node))
1274 mapping_flags |= AMDGPU_VM_MTYPE_NC;
1275 /* PCIe P2P */
1276 else
1277 mapping_flags |= AMDGPU_VM_MTYPE_UC;
1278 /* system memory accessed by the APU */
1279 } else if (node->adev->flags & AMD_IS_APU) {
1280 /* On NUMA systems, locality is determined per-page
1281 * in amdgpu_gmc_override_vm_pte_flags
1282 */
1283 if (num_possible_nodes() <= 1)
1284 mapping_flags |= mtype_local;
1285 else
1286 mapping_flags |= AMDGPU_VM_MTYPE_NC;
1287 /* system memory accessed by the dGPU */
1288 } else {
1289 mapping_flags |= AMDGPU_VM_MTYPE_UC;
1290 }
1291 break;
1292 default:
1293 mapping_flags |= coherent ?
1294 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1295 }
1296
1297 mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE;
1298
1299 if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO)
1300 mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE;
1301 if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC)
1302 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
1303
1304 pte_flags = AMDGPU_PTE_VALID;
1305 pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM;
1306 pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
1307
1308 pte_flags |= amdgpu_gem_va_map_flags(node->adev, mapping_flags);
1309 return pte_flags;
1310 }
1311
1312 static int
svm_range_unmap_from_gpu(struct amdgpu_device * adev,struct amdgpu_vm * vm,uint64_t start,uint64_t last,struct dma_fence ** fence)1313 svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1314 uint64_t start, uint64_t last,
1315 struct dma_fence **fence)
1316 {
1317 uint64_t init_pte_value = 0;
1318
1319 pr_debug("[0x%llx 0x%llx]\n", start, last);
1320
1321 return amdgpu_vm_update_range(adev, vm, false, true, true, NULL, start,
1322 last, init_pte_value, 0, 0, NULL, NULL,
1323 fence);
1324 }
1325
1326 static int
svm_range_unmap_from_gpus(struct svm_range * prange,unsigned long start,unsigned long last,uint32_t trigger)1327 svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start,
1328 unsigned long last, uint32_t trigger)
1329 {
1330 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1331 struct kfd_process_device *pdd;
1332 struct dma_fence *fence = NULL;
1333 struct kfd_process *p;
1334 uint32_t gpuidx;
1335 int r = 0;
1336
1337 if (!prange->mapped_to_gpu) {
1338 pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n",
1339 prange, prange->start, prange->last);
1340 return 0;
1341 }
1342
1343 if (prange->start == start && prange->last == last) {
1344 pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange);
1345 prange->mapped_to_gpu = false;
1346 }
1347
1348 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
1349 MAX_GPU_INSTANCE);
1350 p = container_of(prange->svms, struct kfd_process, svms);
1351
1352 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1353 pr_debug("unmap from gpu idx 0x%x\n", gpuidx);
1354 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1355 if (!pdd) {
1356 pr_debug("failed to find device idx %d\n", gpuidx);
1357 return -EINVAL;
1358 }
1359
1360 kfd_smi_event_unmap_from_gpu(pdd->dev, p->lead_thread->pid,
1361 start, last, trigger);
1362
1363 r = svm_range_unmap_from_gpu(pdd->dev->adev,
1364 drm_priv_to_vm(pdd->drm_priv),
1365 start, last, &fence);
1366 if (r)
1367 break;
1368
1369 if (fence) {
1370 r = dma_fence_wait(fence, false);
1371 dma_fence_put(fence);
1372 fence = NULL;
1373 if (r)
1374 break;
1375 }
1376 kfd_flush_tlb(pdd, TLB_FLUSH_HEAVYWEIGHT);
1377 }
1378
1379 return r;
1380 }
1381
1382 static int
svm_range_map_to_gpu(struct kfd_process_device * pdd,struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,dma_addr_t * dma_addr,struct amdgpu_device * bo_adev,struct dma_fence ** fence,bool flush_tlb)1383 svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange,
1384 unsigned long offset, unsigned long npages, bool readonly,
1385 dma_addr_t *dma_addr, struct amdgpu_device *bo_adev,
1386 struct dma_fence **fence, bool flush_tlb)
1387 {
1388 struct amdgpu_device *adev = pdd->dev->adev;
1389 struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1390 uint64_t pte_flags;
1391 unsigned long last_start;
1392 int last_domain;
1393 int r = 0;
1394 int64_t i, j;
1395
1396 last_start = prange->start + offset;
1397
1398 pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms,
1399 last_start, last_start + npages - 1, readonly);
1400
1401 for (i = offset; i < offset + npages; i++) {
1402 last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN;
1403 dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN;
1404
1405 /* Collect all pages in the same address range and memory domain
1406 * that can be mapped with a single call to update mapping.
1407 */
1408 if (i < offset + npages - 1 &&
1409 last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN))
1410 continue;
1411
1412 pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n",
1413 last_start, prange->start + i, last_domain ? "GPU" : "CPU");
1414
1415 pte_flags = svm_range_get_pte_flags(pdd->dev, prange, last_domain);
1416 if (readonly)
1417 pte_flags &= ~AMDGPU_PTE_WRITEABLE;
1418
1419 pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n",
1420 prange->svms, last_start, prange->start + i,
1421 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0,
1422 pte_flags);
1423
1424 /* For dGPU mode, we use same vm_manager to allocate VRAM for
1425 * different memory partition based on fpfn/lpfn, we should use
1426 * same vm_manager.vram_base_offset regardless memory partition.
1427 */
1428 r = amdgpu_vm_update_range(adev, vm, false, false, flush_tlb, NULL,
1429 last_start, prange->start + i,
1430 pte_flags,
1431 (last_start - prange->start) << PAGE_SHIFT,
1432 bo_adev ? bo_adev->vm_manager.vram_base_offset : 0,
1433 NULL, dma_addr, &vm->last_update);
1434
1435 for (j = last_start - prange->start; j <= i; j++)
1436 dma_addr[j] |= last_domain;
1437
1438 if (r) {
1439 pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start);
1440 goto out;
1441 }
1442 last_start = prange->start + i + 1;
1443 }
1444
1445 r = amdgpu_vm_update_pdes(adev, vm, false);
1446 if (r) {
1447 pr_debug("failed %d to update directories 0x%lx\n", r,
1448 prange->start);
1449 goto out;
1450 }
1451
1452 if (fence)
1453 *fence = dma_fence_get(vm->last_update);
1454
1455 out:
1456 return r;
1457 }
1458
1459 static int
svm_range_map_to_gpus(struct svm_range * prange,unsigned long offset,unsigned long npages,bool readonly,unsigned long * bitmap,bool wait,bool flush_tlb)1460 svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset,
1461 unsigned long npages, bool readonly,
1462 unsigned long *bitmap, bool wait, bool flush_tlb)
1463 {
1464 struct kfd_process_device *pdd;
1465 struct amdgpu_device *bo_adev = NULL;
1466 struct kfd_process *p;
1467 struct dma_fence *fence = NULL;
1468 uint32_t gpuidx;
1469 int r = 0;
1470
1471 if (prange->svm_bo && prange->ttm_res)
1472 bo_adev = prange->svm_bo->node->adev;
1473
1474 p = container_of(prange->svms, struct kfd_process, svms);
1475 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1476 pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
1477 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1478 if (!pdd) {
1479 pr_debug("failed to find device idx %d\n", gpuidx);
1480 return -EINVAL;
1481 }
1482
1483 pdd = kfd_bind_process_to_device(pdd->dev, p);
1484 if (IS_ERR(pdd))
1485 return -EINVAL;
1486
1487 if (bo_adev && pdd->dev->adev != bo_adev &&
1488 !amdgpu_xgmi_same_hive(pdd->dev->adev, bo_adev)) {
1489 pr_debug("cannot map to device idx %d\n", gpuidx);
1490 continue;
1491 }
1492
1493 r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly,
1494 prange->dma_addr[gpuidx],
1495 bo_adev, wait ? &fence : NULL,
1496 flush_tlb);
1497 if (r)
1498 break;
1499
1500 if (fence) {
1501 r = dma_fence_wait(fence, false);
1502 dma_fence_put(fence);
1503 fence = NULL;
1504 if (r) {
1505 pr_debug("failed %d to dma fence wait\n", r);
1506 break;
1507 }
1508 }
1509
1510 kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
1511 }
1512
1513 return r;
1514 }
1515
1516 struct svm_validate_context {
1517 struct kfd_process *process;
1518 struct svm_range *prange;
1519 bool intr;
1520 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1521 struct drm_exec exec;
1522 };
1523
svm_range_reserve_bos(struct svm_validate_context * ctx,bool intr)1524 static int svm_range_reserve_bos(struct svm_validate_context *ctx, bool intr)
1525 {
1526 struct kfd_process_device *pdd;
1527 struct amdgpu_vm *vm;
1528 uint32_t gpuidx;
1529 int r;
1530
1531 drm_exec_init(&ctx->exec, intr ? DRM_EXEC_INTERRUPTIBLE_WAIT: 0);
1532 drm_exec_until_all_locked(&ctx->exec) {
1533 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1534 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1535 if (!pdd) {
1536 pr_debug("failed to find device idx %d\n", gpuidx);
1537 r = -EINVAL;
1538 goto unreserve_out;
1539 }
1540 vm = drm_priv_to_vm(pdd->drm_priv);
1541
1542 r = amdgpu_vm_lock_pd(vm, &ctx->exec, 2);
1543 drm_exec_retry_on_contention(&ctx->exec);
1544 if (unlikely(r)) {
1545 pr_debug("failed %d to reserve bo\n", r);
1546 goto unreserve_out;
1547 }
1548 }
1549 }
1550
1551 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1552 pdd = kfd_process_device_from_gpuidx(ctx->process, gpuidx);
1553 if (!pdd) {
1554 pr_debug("failed to find device idx %d\n", gpuidx);
1555 r = -EINVAL;
1556 goto unreserve_out;
1557 }
1558
1559 r = amdgpu_vm_validate_pt_bos(pdd->dev->adev,
1560 drm_priv_to_vm(pdd->drm_priv),
1561 svm_range_bo_validate, NULL);
1562 if (r) {
1563 pr_debug("failed %d validate pt bos\n", r);
1564 goto unreserve_out;
1565 }
1566 }
1567
1568 return 0;
1569
1570 unreserve_out:
1571 drm_exec_fini(&ctx->exec);
1572 return r;
1573 }
1574
svm_range_unreserve_bos(struct svm_validate_context * ctx)1575 static void svm_range_unreserve_bos(struct svm_validate_context *ctx)
1576 {
1577 drm_exec_fini(&ctx->exec);
1578 }
1579
kfd_svm_page_owner(struct kfd_process * p,int32_t gpuidx)1580 static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx)
1581 {
1582 struct kfd_process_device *pdd;
1583
1584 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1585 if (!pdd)
1586 return NULL;
1587
1588 return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev);
1589 }
1590
1591 /*
1592 * Validation+GPU mapping with concurrent invalidation (MMU notifiers)
1593 *
1594 * To prevent concurrent destruction or change of range attributes, the
1595 * svm_read_lock must be held. The caller must not hold the svm_write_lock
1596 * because that would block concurrent evictions and lead to deadlocks. To
1597 * serialize concurrent migrations or validations of the same range, the
1598 * prange->migrate_mutex must be held.
1599 *
1600 * For VRAM ranges, the SVM BO must be allocated and valid (protected by its
1601 * eviction fence.
1602 *
1603 * The following sequence ensures race-free validation and GPU mapping:
1604 *
1605 * 1. Reserve page table (and SVM BO if range is in VRAM)
1606 * 2. hmm_range_fault to get page addresses (if system memory)
1607 * 3. DMA-map pages (if system memory)
1608 * 4-a. Take notifier lock
1609 * 4-b. Check that pages still valid (mmu_interval_read_retry)
1610 * 4-c. Check that the range was not split or otherwise invalidated
1611 * 4-d. Update GPU page table
1612 * 4.e. Release notifier lock
1613 * 5. Release page table (and SVM BO) reservation
1614 */
svm_range_validate_and_map(struct mm_struct * mm,struct svm_range * prange,int32_t gpuidx,bool intr,bool wait,bool flush_tlb)1615 static int svm_range_validate_and_map(struct mm_struct *mm,
1616 struct svm_range *prange, int32_t gpuidx,
1617 bool intr, bool wait, bool flush_tlb)
1618 {
1619 struct svm_validate_context *ctx;
1620 unsigned long start, end, addr;
1621 struct kfd_process *p;
1622 void *owner;
1623 int32_t idx;
1624 int r = 0;
1625
1626 ctx = kzalloc(sizeof(struct svm_validate_context), GFP_KERNEL);
1627 if (!ctx)
1628 return -ENOMEM;
1629 ctx->process = container_of(prange->svms, struct kfd_process, svms);
1630 ctx->prange = prange;
1631 ctx->intr = intr;
1632
1633 if (gpuidx < MAX_GPU_INSTANCE) {
1634 bitmap_zero(ctx->bitmap, MAX_GPU_INSTANCE);
1635 bitmap_set(ctx->bitmap, gpuidx, 1);
1636 } else if (ctx->process->xnack_enabled) {
1637 bitmap_copy(ctx->bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
1638
1639 /* If prefetch range to GPU, or GPU retry fault migrate range to
1640 * GPU, which has ACCESS attribute to the range, create mapping
1641 * on that GPU.
1642 */
1643 if (prange->actual_loc) {
1644 gpuidx = kfd_process_gpuidx_from_gpuid(ctx->process,
1645 prange->actual_loc);
1646 if (gpuidx < 0) {
1647 WARN_ONCE(1, "failed get device by id 0x%x\n",
1648 prange->actual_loc);
1649 r = -EINVAL;
1650 goto free_ctx;
1651 }
1652 if (test_bit(gpuidx, prange->bitmap_access))
1653 bitmap_set(ctx->bitmap, gpuidx, 1);
1654 }
1655
1656 /*
1657 * If prange is already mapped or with always mapped flag,
1658 * update mapping on GPUs with ACCESS attribute
1659 */
1660 if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1661 if (prange->mapped_to_gpu ||
1662 prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)
1663 bitmap_copy(ctx->bitmap, prange->bitmap_access, MAX_GPU_INSTANCE);
1664 }
1665 } else {
1666 bitmap_or(ctx->bitmap, prange->bitmap_access,
1667 prange->bitmap_aip, MAX_GPU_INSTANCE);
1668 }
1669
1670 if (bitmap_empty(ctx->bitmap, MAX_GPU_INSTANCE)) {
1671 r = 0;
1672 goto free_ctx;
1673 }
1674
1675 if (prange->actual_loc && !prange->ttm_res) {
1676 /* This should never happen. actual_loc gets set by
1677 * svm_migrate_ram_to_vram after allocating a BO.
1678 */
1679 WARN_ONCE(1, "VRAM BO missing during validation\n");
1680 r = -EINVAL;
1681 goto free_ctx;
1682 }
1683
1684 svm_range_reserve_bos(ctx, intr);
1685
1686 p = container_of(prange->svms, struct kfd_process, svms);
1687 owner = kfd_svm_page_owner(p, find_first_bit(ctx->bitmap,
1688 MAX_GPU_INSTANCE));
1689 for_each_set_bit(idx, ctx->bitmap, MAX_GPU_INSTANCE) {
1690 if (kfd_svm_page_owner(p, idx) != owner) {
1691 owner = NULL;
1692 break;
1693 }
1694 }
1695
1696 start = prange->start << PAGE_SHIFT;
1697 end = (prange->last + 1) << PAGE_SHIFT;
1698 for (addr = start; !r && addr < end; ) {
1699 struct hmm_range *hmm_range;
1700 struct vm_area_struct *vma;
1701 unsigned long next = 0;
1702 unsigned long offset;
1703 unsigned long npages;
1704 bool readonly;
1705
1706 vma = vma_lookup(mm, addr);
1707 if (vma) {
1708 readonly = !(vma->vm_flags & VM_WRITE);
1709
1710 next = min(vma->vm_end, end);
1711 npages = (next - addr) >> PAGE_SHIFT;
1712 WRITE_ONCE(p->svms.faulting_task, current);
1713 r = amdgpu_hmm_range_get_pages(&prange->notifier, addr, npages,
1714 readonly, owner, NULL,
1715 &hmm_range);
1716 WRITE_ONCE(p->svms.faulting_task, NULL);
1717 if (r) {
1718 pr_debug("failed %d to get svm range pages\n", r);
1719 if (r == -EBUSY)
1720 r = -EAGAIN;
1721 }
1722 } else {
1723 r = -EFAULT;
1724 }
1725
1726 if (!r) {
1727 offset = (addr - start) >> PAGE_SHIFT;
1728 r = svm_range_dma_map(prange, ctx->bitmap, offset, npages,
1729 hmm_range->hmm_pfns);
1730 if (r)
1731 pr_debug("failed %d to dma map range\n", r);
1732 }
1733
1734 svm_range_lock(prange);
1735 if (!r && amdgpu_hmm_range_get_pages_done(hmm_range)) {
1736 pr_debug("hmm update the range, need validate again\n");
1737 r = -EAGAIN;
1738 }
1739
1740 if (!r && !list_empty(&prange->child_list)) {
1741 pr_debug("range split by unmap in parallel, validate again\n");
1742 r = -EAGAIN;
1743 }
1744
1745 if (!r)
1746 r = svm_range_map_to_gpus(prange, offset, npages, readonly,
1747 ctx->bitmap, wait, flush_tlb);
1748
1749 if (!r && next == end)
1750 prange->mapped_to_gpu = true;
1751
1752 svm_range_unlock(prange);
1753
1754 addr = next;
1755 }
1756
1757 svm_range_unreserve_bos(ctx);
1758 if (!r)
1759 prange->validate_timestamp = ktime_get_boottime();
1760
1761 free_ctx:
1762 kfree(ctx);
1763
1764 return r;
1765 }
1766
1767 /**
1768 * svm_range_list_lock_and_flush_work - flush pending deferred work
1769 *
1770 * @svms: the svm range list
1771 * @mm: the mm structure
1772 *
1773 * Context: Returns with mmap write lock held, pending deferred work flushed
1774 *
1775 */
1776 void
svm_range_list_lock_and_flush_work(struct svm_range_list * svms,struct mm_struct * mm)1777 svm_range_list_lock_and_flush_work(struct svm_range_list *svms,
1778 struct mm_struct *mm)
1779 {
1780 retry_flush_work:
1781 flush_work(&svms->deferred_list_work);
1782 mmap_write_lock(mm);
1783
1784 if (list_empty(&svms->deferred_range_list))
1785 return;
1786 mmap_write_unlock(mm);
1787 pr_debug("retry flush\n");
1788 goto retry_flush_work;
1789 }
1790
svm_range_restore_work(struct work_struct * work)1791 static void svm_range_restore_work(struct work_struct *work)
1792 {
1793 struct delayed_work *dwork = to_delayed_work(work);
1794 struct amdkfd_process_info *process_info;
1795 struct svm_range_list *svms;
1796 struct svm_range *prange;
1797 struct kfd_process *p;
1798 struct mm_struct *mm;
1799 int evicted_ranges;
1800 int invalid;
1801 int r;
1802
1803 svms = container_of(dwork, struct svm_range_list, restore_work);
1804 evicted_ranges = atomic_read(&svms->evicted_ranges);
1805 if (!evicted_ranges)
1806 return;
1807
1808 pr_debug("restore svm ranges\n");
1809
1810 p = container_of(svms, struct kfd_process, svms);
1811 process_info = p->kgd_process_info;
1812
1813 /* Keep mm reference when svm_range_validate_and_map ranges */
1814 mm = get_task_mm(p->lead_thread);
1815 if (!mm) {
1816 pr_debug("svms 0x%p process mm gone\n", svms);
1817 return;
1818 }
1819
1820 mutex_lock(&process_info->lock);
1821 svm_range_list_lock_and_flush_work(svms, mm);
1822 mutex_lock(&svms->lock);
1823
1824 evicted_ranges = atomic_read(&svms->evicted_ranges);
1825
1826 list_for_each_entry(prange, &svms->list, list) {
1827 invalid = atomic_read(&prange->invalid);
1828 if (!invalid)
1829 continue;
1830
1831 pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n",
1832 prange->svms, prange, prange->start, prange->last,
1833 invalid);
1834
1835 /*
1836 * If range is migrating, wait for migration is done.
1837 */
1838 mutex_lock(&prange->migrate_mutex);
1839
1840 r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE,
1841 false, true, false);
1842 if (r)
1843 pr_debug("failed %d to map 0x%lx to gpus\n", r,
1844 prange->start);
1845
1846 mutex_unlock(&prange->migrate_mutex);
1847 if (r)
1848 goto out_reschedule;
1849
1850 if (atomic_cmpxchg(&prange->invalid, invalid, 0) != invalid)
1851 goto out_reschedule;
1852 }
1853
1854 if (atomic_cmpxchg(&svms->evicted_ranges, evicted_ranges, 0) !=
1855 evicted_ranges)
1856 goto out_reschedule;
1857
1858 evicted_ranges = 0;
1859
1860 r = kgd2kfd_resume_mm(mm);
1861 if (r) {
1862 /* No recovery from this failure. Probably the CP is
1863 * hanging. No point trying again.
1864 */
1865 pr_debug("failed %d to resume KFD\n", r);
1866 }
1867
1868 pr_debug("restore svm ranges successfully\n");
1869
1870 out_reschedule:
1871 mutex_unlock(&svms->lock);
1872 mmap_write_unlock(mm);
1873 mutex_unlock(&process_info->lock);
1874
1875 /* If validation failed, reschedule another attempt */
1876 if (evicted_ranges) {
1877 pr_debug("reschedule to restore svm range\n");
1878 schedule_delayed_work(&svms->restore_work,
1879 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1880
1881 kfd_smi_event_queue_restore_rescheduled(mm);
1882 }
1883 mmput(mm);
1884 }
1885
1886 /**
1887 * svm_range_evict - evict svm range
1888 * @prange: svm range structure
1889 * @mm: current process mm_struct
1890 * @start: starting process queue number
1891 * @last: last process queue number
1892 * @event: mmu notifier event when range is evicted or migrated
1893 *
1894 * Stop all queues of the process to ensure GPU doesn't access the memory, then
1895 * return to let CPU evict the buffer and proceed CPU pagetable update.
1896 *
1897 * Don't need use lock to sync cpu pagetable invalidation with GPU execution.
1898 * If invalidation happens while restore work is running, restore work will
1899 * restart to ensure to get the latest CPU pages mapping to GPU, then start
1900 * the queues.
1901 */
1902 static int
svm_range_evict(struct svm_range * prange,struct mm_struct * mm,unsigned long start,unsigned long last,enum mmu_notifier_event event)1903 svm_range_evict(struct svm_range *prange, struct mm_struct *mm,
1904 unsigned long start, unsigned long last,
1905 enum mmu_notifier_event event)
1906 {
1907 struct svm_range_list *svms = prange->svms;
1908 struct svm_range *pchild;
1909 struct kfd_process *p;
1910 int r = 0;
1911
1912 p = container_of(svms, struct kfd_process, svms);
1913
1914 pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
1915 svms, prange->start, prange->last, start, last);
1916
1917 if (!p->xnack_enabled ||
1918 (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) {
1919 int evicted_ranges;
1920 bool mapped = prange->mapped_to_gpu;
1921
1922 list_for_each_entry(pchild, &prange->child_list, child_list) {
1923 if (!pchild->mapped_to_gpu)
1924 continue;
1925 mapped = true;
1926 mutex_lock_nested(&pchild->lock, 1);
1927 if (pchild->start <= last && pchild->last >= start) {
1928 pr_debug("increment pchild invalid [0x%lx 0x%lx]\n",
1929 pchild->start, pchild->last);
1930 atomic_inc(&pchild->invalid);
1931 }
1932 mutex_unlock(&pchild->lock);
1933 }
1934
1935 if (!mapped)
1936 return r;
1937
1938 if (prange->start <= last && prange->last >= start)
1939 atomic_inc(&prange->invalid);
1940
1941 evicted_ranges = atomic_inc_return(&svms->evicted_ranges);
1942 if (evicted_ranges != 1)
1943 return r;
1944
1945 pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n",
1946 prange->svms, prange->start, prange->last);
1947
1948 /* First eviction, stop the queues */
1949 r = kgd2kfd_quiesce_mm(mm, KFD_QUEUE_EVICTION_TRIGGER_SVM);
1950 if (r)
1951 pr_debug("failed to quiesce KFD\n");
1952
1953 pr_debug("schedule to restore svm %p ranges\n", svms);
1954 schedule_delayed_work(&svms->restore_work,
1955 msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1956 } else {
1957 unsigned long s, l;
1958 uint32_t trigger;
1959
1960 if (event == MMU_NOTIFY_MIGRATE)
1961 trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE;
1962 else
1963 trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY;
1964
1965 pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n",
1966 prange->svms, start, last);
1967 list_for_each_entry(pchild, &prange->child_list, child_list) {
1968 mutex_lock_nested(&pchild->lock, 1);
1969 s = max(start, pchild->start);
1970 l = min(last, pchild->last);
1971 if (l >= s)
1972 svm_range_unmap_from_gpus(pchild, s, l, trigger);
1973 mutex_unlock(&pchild->lock);
1974 }
1975 s = max(start, prange->start);
1976 l = min(last, prange->last);
1977 if (l >= s)
1978 svm_range_unmap_from_gpus(prange, s, l, trigger);
1979 }
1980
1981 return r;
1982 }
1983
svm_range_clone(struct svm_range * old)1984 static struct svm_range *svm_range_clone(struct svm_range *old)
1985 {
1986 struct svm_range *new;
1987
1988 new = svm_range_new(old->svms, old->start, old->last, false);
1989 if (!new)
1990 return NULL;
1991 if (svm_range_copy_dma_addrs(new, old)) {
1992 svm_range_free(new, false);
1993 return NULL;
1994 }
1995 if (old->svm_bo) {
1996 new->ttm_res = old->ttm_res;
1997 new->offset = old->offset;
1998 new->svm_bo = svm_range_bo_ref(old->svm_bo);
1999 spin_lock(&new->svm_bo->list_lock);
2000 list_add(&new->svm_bo_list, &new->svm_bo->range_list);
2001 spin_unlock(&new->svm_bo->list_lock);
2002 }
2003 new->flags = old->flags;
2004 new->preferred_loc = old->preferred_loc;
2005 new->prefetch_loc = old->prefetch_loc;
2006 new->actual_loc = old->actual_loc;
2007 new->granularity = old->granularity;
2008 new->mapped_to_gpu = old->mapped_to_gpu;
2009 bitmap_copy(new->bitmap_access, old->bitmap_access, MAX_GPU_INSTANCE);
2010 bitmap_copy(new->bitmap_aip, old->bitmap_aip, MAX_GPU_INSTANCE);
2011
2012 return new;
2013 }
2014
svm_range_set_max_pages(struct amdgpu_device * adev)2015 void svm_range_set_max_pages(struct amdgpu_device *adev)
2016 {
2017 uint64_t max_pages;
2018 uint64_t pages, _pages;
2019 uint64_t min_pages = 0;
2020 int i, id;
2021
2022 for (i = 0; i < adev->kfd.dev->num_nodes; i++) {
2023 if (adev->kfd.dev->nodes[i]->xcp)
2024 id = adev->kfd.dev->nodes[i]->xcp->id;
2025 else
2026 id = -1;
2027 pages = KFD_XCP_MEMORY_SIZE(adev, id) >> 17;
2028 pages = clamp(pages, 1ULL << 9, 1ULL << 18);
2029 pages = rounddown_pow_of_two(pages);
2030 min_pages = min_not_zero(min_pages, pages);
2031 }
2032
2033 do {
2034 max_pages = READ_ONCE(max_svm_range_pages);
2035 _pages = min_not_zero(max_pages, min_pages);
2036 } while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages);
2037 }
2038
2039 static int
svm_range_split_new(struct svm_range_list * svms,uint64_t start,uint64_t last,uint64_t max_pages,struct list_head * insert_list,struct list_head * update_list)2040 svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last,
2041 uint64_t max_pages, struct list_head *insert_list,
2042 struct list_head *update_list)
2043 {
2044 struct svm_range *prange;
2045 uint64_t l;
2046
2047 pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n",
2048 max_pages, start, last);
2049
2050 while (last >= start) {
2051 l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1);
2052
2053 prange = svm_range_new(svms, start, l, true);
2054 if (!prange)
2055 return -ENOMEM;
2056 list_add(&prange->list, insert_list);
2057 list_add(&prange->update_list, update_list);
2058
2059 start = l + 1;
2060 }
2061 return 0;
2062 }
2063
2064 /**
2065 * svm_range_add - add svm range and handle overlap
2066 * @p: the range add to this process svms
2067 * @start: page size aligned
2068 * @size: page size aligned
2069 * @nattr: number of attributes
2070 * @attrs: array of attributes
2071 * @update_list: output, the ranges need validate and update GPU mapping
2072 * @insert_list: output, the ranges need insert to svms
2073 * @remove_list: output, the ranges are replaced and need remove from svms
2074 *
2075 * Check if the virtual address range has overlap with any existing ranges,
2076 * split partly overlapping ranges and add new ranges in the gaps. All changes
2077 * should be applied to the range_list and interval tree transactionally. If
2078 * any range split or allocation fails, the entire update fails. Therefore any
2079 * existing overlapping svm_ranges are cloned and the original svm_ranges left
2080 * unchanged.
2081 *
2082 * If the transaction succeeds, the caller can update and insert clones and
2083 * new ranges, then free the originals.
2084 *
2085 * Otherwise the caller can free the clones and new ranges, while the old
2086 * svm_ranges remain unchanged.
2087 *
2088 * Context: Process context, caller must hold svms->lock
2089 *
2090 * Return:
2091 * 0 - OK, otherwise error code
2092 */
2093 static int
svm_range_add(struct kfd_process * p,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs,struct list_head * update_list,struct list_head * insert_list,struct list_head * remove_list)2094 svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size,
2095 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
2096 struct list_head *update_list, struct list_head *insert_list,
2097 struct list_head *remove_list)
2098 {
2099 unsigned long last = start + size - 1UL;
2100 struct svm_range_list *svms = &p->svms;
2101 struct interval_tree_node *node;
2102 struct svm_range *prange;
2103 struct svm_range *tmp;
2104 struct list_head new_list;
2105 int r = 0;
2106
2107 pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last);
2108
2109 INIT_LIST_HEAD(update_list);
2110 INIT_LIST_HEAD(insert_list);
2111 INIT_LIST_HEAD(remove_list);
2112 INIT_LIST_HEAD(&new_list);
2113
2114 node = interval_tree_iter_first(&svms->objects, start, last);
2115 while (node) {
2116 struct interval_tree_node *next;
2117 unsigned long next_start;
2118
2119 pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start,
2120 node->last);
2121
2122 prange = container_of(node, struct svm_range, it_node);
2123 next = interval_tree_iter_next(node, start, last);
2124 next_start = min(node->last, last) + 1;
2125
2126 if (svm_range_is_same_attrs(p, prange, nattr, attrs) &&
2127 prange->mapped_to_gpu) {
2128 /* nothing to do */
2129 } else if (node->start < start || node->last > last) {
2130 /* node intersects the update range and its attributes
2131 * will change. Clone and split it, apply updates only
2132 * to the overlapping part
2133 */
2134 struct svm_range *old = prange;
2135
2136 prange = svm_range_clone(old);
2137 if (!prange) {
2138 r = -ENOMEM;
2139 goto out;
2140 }
2141
2142 list_add(&old->update_list, remove_list);
2143 list_add(&prange->list, insert_list);
2144 list_add(&prange->update_list, update_list);
2145
2146 if (node->start < start) {
2147 pr_debug("change old range start\n");
2148 r = svm_range_split_head(prange, start,
2149 insert_list);
2150 if (r)
2151 goto out;
2152 }
2153 if (node->last > last) {
2154 pr_debug("change old range last\n");
2155 r = svm_range_split_tail(prange, last,
2156 insert_list);
2157 if (r)
2158 goto out;
2159 }
2160 } else {
2161 /* The node is contained within start..last,
2162 * just update it
2163 */
2164 list_add(&prange->update_list, update_list);
2165 }
2166
2167 /* insert a new node if needed */
2168 if (node->start > start) {
2169 r = svm_range_split_new(svms, start, node->start - 1,
2170 READ_ONCE(max_svm_range_pages),
2171 &new_list, update_list);
2172 if (r)
2173 goto out;
2174 }
2175
2176 node = next;
2177 start = next_start;
2178 }
2179
2180 /* add a final range at the end if needed */
2181 if (start <= last)
2182 r = svm_range_split_new(svms, start, last,
2183 READ_ONCE(max_svm_range_pages),
2184 &new_list, update_list);
2185
2186 out:
2187 if (r) {
2188 list_for_each_entry_safe(prange, tmp, insert_list, list)
2189 svm_range_free(prange, false);
2190 list_for_each_entry_safe(prange, tmp, &new_list, list)
2191 svm_range_free(prange, true);
2192 } else {
2193 list_splice(&new_list, insert_list);
2194 }
2195
2196 return r;
2197 }
2198
2199 static void
svm_range_update_notifier_and_interval_tree(struct mm_struct * mm,struct svm_range * prange)2200 svm_range_update_notifier_and_interval_tree(struct mm_struct *mm,
2201 struct svm_range *prange)
2202 {
2203 unsigned long start;
2204 unsigned long last;
2205
2206 start = prange->notifier.interval_tree.start >> PAGE_SHIFT;
2207 last = prange->notifier.interval_tree.last >> PAGE_SHIFT;
2208
2209 if (prange->start == start && prange->last == last)
2210 return;
2211
2212 pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
2213 prange->svms, prange, start, last, prange->start,
2214 prange->last);
2215
2216 if (start != 0 && last != 0) {
2217 interval_tree_remove(&prange->it_node, &prange->svms->objects);
2218 svm_range_remove_notifier(prange);
2219 }
2220 prange->it_node.start = prange->start;
2221 prange->it_node.last = prange->last;
2222
2223 interval_tree_insert(&prange->it_node, &prange->svms->objects);
2224 svm_range_add_notifier_locked(mm, prange);
2225 }
2226
2227 static void
svm_range_handle_list_op(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm)2228 svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange,
2229 struct mm_struct *mm)
2230 {
2231 switch (prange->work_item.op) {
2232 case SVM_OP_NULL:
2233 pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2234 svms, prange, prange->start, prange->last);
2235 break;
2236 case SVM_OP_UNMAP_RANGE:
2237 pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2238 svms, prange, prange->start, prange->last);
2239 svm_range_unlink(prange);
2240 svm_range_remove_notifier(prange);
2241 svm_range_free(prange, true);
2242 break;
2243 case SVM_OP_UPDATE_RANGE_NOTIFIER:
2244 pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2245 svms, prange, prange->start, prange->last);
2246 svm_range_update_notifier_and_interval_tree(mm, prange);
2247 break;
2248 case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP:
2249 pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2250 svms, prange, prange->start, prange->last);
2251 svm_range_update_notifier_and_interval_tree(mm, prange);
2252 /* TODO: implement deferred validation and mapping */
2253 break;
2254 case SVM_OP_ADD_RANGE:
2255 pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange,
2256 prange->start, prange->last);
2257 svm_range_add_to_svms(prange);
2258 svm_range_add_notifier_locked(mm, prange);
2259 break;
2260 case SVM_OP_ADD_RANGE_AND_MAP:
2261 pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms,
2262 prange, prange->start, prange->last);
2263 svm_range_add_to_svms(prange);
2264 svm_range_add_notifier_locked(mm, prange);
2265 /* TODO: implement deferred validation and mapping */
2266 break;
2267 default:
2268 WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange,
2269 prange->work_item.op);
2270 }
2271 }
2272
svm_range_drain_retry_fault(struct svm_range_list * svms)2273 static void svm_range_drain_retry_fault(struct svm_range_list *svms)
2274 {
2275 struct kfd_process_device *pdd;
2276 struct kfd_process *p;
2277 int drain;
2278 uint32_t i;
2279
2280 p = container_of(svms, struct kfd_process, svms);
2281
2282 restart:
2283 drain = atomic_read(&svms->drain_pagefaults);
2284 if (!drain)
2285 return;
2286
2287 for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2288 pdd = p->pdds[i];
2289 if (!pdd)
2290 continue;
2291
2292 pr_debug("drain retry fault gpu %d svms %p\n", i, svms);
2293
2294 amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2295 pdd->dev->adev->irq.retry_cam_enabled ?
2296 &pdd->dev->adev->irq.ih :
2297 &pdd->dev->adev->irq.ih1);
2298
2299 if (pdd->dev->adev->irq.retry_cam_enabled)
2300 amdgpu_ih_wait_on_checkpoint_process_ts(pdd->dev->adev,
2301 &pdd->dev->adev->irq.ih_soft);
2302
2303
2304 pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms);
2305 }
2306 if (atomic_cmpxchg(&svms->drain_pagefaults, drain, 0) != drain)
2307 goto restart;
2308 }
2309
svm_range_deferred_list_work(struct work_struct * work)2310 static void svm_range_deferred_list_work(struct work_struct *work)
2311 {
2312 struct svm_range_list *svms;
2313 struct svm_range *prange;
2314 struct mm_struct *mm;
2315
2316 svms = container_of(work, struct svm_range_list, deferred_list_work);
2317 pr_debug("enter svms 0x%p\n", svms);
2318
2319 spin_lock(&svms->deferred_list_lock);
2320 while (!list_empty(&svms->deferred_range_list)) {
2321 prange = list_first_entry(&svms->deferred_range_list,
2322 struct svm_range, deferred_list);
2323 spin_unlock(&svms->deferred_list_lock);
2324
2325 pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange,
2326 prange->start, prange->last, prange->work_item.op);
2327
2328 mm = prange->work_item.mm;
2329 retry:
2330 mmap_write_lock(mm);
2331
2332 /* Checking for the need to drain retry faults must be inside
2333 * mmap write lock to serialize with munmap notifiers.
2334 */
2335 if (unlikely(atomic_read(&svms->drain_pagefaults))) {
2336 mmap_write_unlock(mm);
2337 svm_range_drain_retry_fault(svms);
2338 goto retry;
2339 }
2340
2341 /* Remove from deferred_list must be inside mmap write lock, for
2342 * two race cases:
2343 * 1. unmap_from_cpu may change work_item.op and add the range
2344 * to deferred_list again, cause use after free bug.
2345 * 2. svm_range_list_lock_and_flush_work may hold mmap write
2346 * lock and continue because deferred_list is empty, but
2347 * deferred_list work is actually waiting for mmap lock.
2348 */
2349 spin_lock(&svms->deferred_list_lock);
2350 list_del_init(&prange->deferred_list);
2351 spin_unlock(&svms->deferred_list_lock);
2352
2353 mutex_lock(&svms->lock);
2354 mutex_lock(&prange->migrate_mutex);
2355 while (!list_empty(&prange->child_list)) {
2356 struct svm_range *pchild;
2357
2358 pchild = list_first_entry(&prange->child_list,
2359 struct svm_range, child_list);
2360 pr_debug("child prange 0x%p op %d\n", pchild,
2361 pchild->work_item.op);
2362 list_del_init(&pchild->child_list);
2363 svm_range_handle_list_op(svms, pchild, mm);
2364 }
2365 mutex_unlock(&prange->migrate_mutex);
2366
2367 svm_range_handle_list_op(svms, prange, mm);
2368 mutex_unlock(&svms->lock);
2369 mmap_write_unlock(mm);
2370
2371 /* Pairs with mmget in svm_range_add_list_work. If dropping the
2372 * last mm refcount, schedule release work to avoid circular locking
2373 */
2374 mmput_async(mm);
2375
2376 spin_lock(&svms->deferred_list_lock);
2377 }
2378 spin_unlock(&svms->deferred_list_lock);
2379 pr_debug("exit svms 0x%p\n", svms);
2380 }
2381
2382 void
svm_range_add_list_work(struct svm_range_list * svms,struct svm_range * prange,struct mm_struct * mm,enum svm_work_list_ops op)2383 svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange,
2384 struct mm_struct *mm, enum svm_work_list_ops op)
2385 {
2386 spin_lock(&svms->deferred_list_lock);
2387 /* if prange is on the deferred list */
2388 if (!list_empty(&prange->deferred_list)) {
2389 pr_debug("update exist prange 0x%p work op %d\n", prange, op);
2390 WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n");
2391 if (op != SVM_OP_NULL &&
2392 prange->work_item.op != SVM_OP_UNMAP_RANGE)
2393 prange->work_item.op = op;
2394 } else {
2395 /* Pairs with mmput in deferred_list_work.
2396 * If process is exiting and mm is gone, don't update mmu notifier.
2397 */
2398 if (mmget_not_zero(mm)) {
2399 prange->work_item.mm = mm;
2400 prange->work_item.op = op;
2401 list_add_tail(&prange->deferred_list,
2402 &prange->svms->deferred_range_list);
2403 pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n",
2404 prange, prange->start, prange->last, op);
2405 }
2406 }
2407 spin_unlock(&svms->deferred_list_lock);
2408 }
2409
schedule_deferred_list_work(struct svm_range_list * svms)2410 void schedule_deferred_list_work(struct svm_range_list *svms)
2411 {
2412 spin_lock(&svms->deferred_list_lock);
2413 if (!list_empty(&svms->deferred_range_list))
2414 schedule_work(&svms->deferred_list_work);
2415 spin_unlock(&svms->deferred_list_lock);
2416 }
2417
2418 static void
svm_range_unmap_split(struct svm_range * parent,struct svm_range * prange,unsigned long start,unsigned long last)2419 svm_range_unmap_split(struct svm_range *parent, struct svm_range *prange, unsigned long start,
2420 unsigned long last)
2421 {
2422 struct svm_range *head;
2423 struct svm_range *tail;
2424
2425 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2426 pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange,
2427 prange->start, prange->last);
2428 return;
2429 }
2430 if (start > prange->last || last < prange->start)
2431 return;
2432
2433 head = tail = prange;
2434 if (start > prange->start)
2435 svm_range_split(prange, prange->start, start - 1, &tail);
2436 if (last < tail->last)
2437 svm_range_split(tail, last + 1, tail->last, &head);
2438
2439 if (head != prange && tail != prange) {
2440 svm_range_add_child(parent, head, SVM_OP_UNMAP_RANGE);
2441 svm_range_add_child(parent, tail, SVM_OP_ADD_RANGE);
2442 } else if (tail != prange) {
2443 svm_range_add_child(parent, tail, SVM_OP_UNMAP_RANGE);
2444 } else if (head != prange) {
2445 svm_range_add_child(parent, head, SVM_OP_UNMAP_RANGE);
2446 } else if (parent != prange) {
2447 prange->work_item.op = SVM_OP_UNMAP_RANGE;
2448 }
2449 }
2450
2451 static void
svm_range_unmap_from_cpu(struct mm_struct * mm,struct svm_range * prange,unsigned long start,unsigned long last)2452 svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange,
2453 unsigned long start, unsigned long last)
2454 {
2455 uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU;
2456 struct svm_range_list *svms;
2457 struct svm_range *pchild;
2458 struct kfd_process *p;
2459 unsigned long s, l;
2460 bool unmap_parent;
2461
2462 p = kfd_lookup_process_by_mm(mm);
2463 if (!p)
2464 return;
2465 svms = &p->svms;
2466
2467 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms,
2468 prange, prange->start, prange->last, start, last);
2469
2470 /* Make sure pending page faults are drained in the deferred worker
2471 * before the range is freed to avoid straggler interrupts on
2472 * unmapped memory causing "phantom faults".
2473 */
2474 atomic_inc(&svms->drain_pagefaults);
2475
2476 unmap_parent = start <= prange->start && last >= prange->last;
2477
2478 list_for_each_entry(pchild, &prange->child_list, child_list) {
2479 mutex_lock_nested(&pchild->lock, 1);
2480 s = max(start, pchild->start);
2481 l = min(last, pchild->last);
2482 if (l >= s)
2483 svm_range_unmap_from_gpus(pchild, s, l, trigger);
2484 svm_range_unmap_split(prange, pchild, start, last);
2485 mutex_unlock(&pchild->lock);
2486 }
2487 s = max(start, prange->start);
2488 l = min(last, prange->last);
2489 if (l >= s)
2490 svm_range_unmap_from_gpus(prange, s, l, trigger);
2491 svm_range_unmap_split(prange, prange, start, last);
2492
2493 if (unmap_parent)
2494 svm_range_add_list_work(svms, prange, mm, SVM_OP_UNMAP_RANGE);
2495 else
2496 svm_range_add_list_work(svms, prange, mm,
2497 SVM_OP_UPDATE_RANGE_NOTIFIER);
2498 schedule_deferred_list_work(svms);
2499
2500 kfd_unref_process(p);
2501 }
2502
2503 /**
2504 * svm_range_cpu_invalidate_pagetables - interval notifier callback
2505 * @mni: mmu_interval_notifier struct
2506 * @range: mmu_notifier_range struct
2507 * @cur_seq: value to pass to mmu_interval_set_seq()
2508 *
2509 * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it
2510 * is from migration, or CPU page invalidation callback.
2511 *
2512 * For unmap event, unmap range from GPUs, remove prange from svms in a delayed
2513 * work thread, and split prange if only part of prange is unmapped.
2514 *
2515 * For invalidation event, if GPU retry fault is not enabled, evict the queues,
2516 * then schedule svm_range_restore_work to update GPU mapping and resume queues.
2517 * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will
2518 * update GPU mapping to recover.
2519 *
2520 * Context: mmap lock, notifier_invalidate_start lock are held
2521 * for invalidate event, prange lock is held if this is from migration
2522 */
2523 static bool
svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier * mni,const struct mmu_notifier_range * range,unsigned long cur_seq)2524 svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
2525 const struct mmu_notifier_range *range,
2526 unsigned long cur_seq)
2527 {
2528 struct svm_range *prange;
2529 unsigned long start;
2530 unsigned long last;
2531
2532 if (range->event == MMU_NOTIFY_RELEASE)
2533 return true;
2534
2535 start = mni->interval_tree.start;
2536 last = mni->interval_tree.last;
2537 start = max(start, range->start) >> PAGE_SHIFT;
2538 last = min(last, range->end - 1) >> PAGE_SHIFT;
2539 pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n",
2540 start, last, range->start >> PAGE_SHIFT,
2541 (range->end - 1) >> PAGE_SHIFT,
2542 mni->interval_tree.start >> PAGE_SHIFT,
2543 mni->interval_tree.last >> PAGE_SHIFT, range->event);
2544
2545 prange = container_of(mni, struct svm_range, notifier);
2546
2547 svm_range_lock(prange);
2548 mmu_interval_set_seq(mni, cur_seq);
2549
2550 switch (range->event) {
2551 case MMU_NOTIFY_UNMAP:
2552 svm_range_unmap_from_cpu(mni->mm, prange, start, last);
2553 break;
2554 default:
2555 svm_range_evict(prange, mni->mm, start, last, range->event);
2556 break;
2557 }
2558
2559 svm_range_unlock(prange);
2560
2561 return true;
2562 }
2563
2564 /**
2565 * svm_range_from_addr - find svm range from fault address
2566 * @svms: svm range list header
2567 * @addr: address to search range interval tree, in pages
2568 * @parent: parent range if range is on child list
2569 *
2570 * Context: The caller must hold svms->lock
2571 *
2572 * Return: the svm_range found or NULL
2573 */
2574 struct svm_range *
svm_range_from_addr(struct svm_range_list * svms,unsigned long addr,struct svm_range ** parent)2575 svm_range_from_addr(struct svm_range_list *svms, unsigned long addr,
2576 struct svm_range **parent)
2577 {
2578 struct interval_tree_node *node;
2579 struct svm_range *prange;
2580 struct svm_range *pchild;
2581
2582 node = interval_tree_iter_first(&svms->objects, addr, addr);
2583 if (!node)
2584 return NULL;
2585
2586 prange = container_of(node, struct svm_range, it_node);
2587 pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n",
2588 addr, prange->start, prange->last, node->start, node->last);
2589
2590 if (addr >= prange->start && addr <= prange->last) {
2591 if (parent)
2592 *parent = prange;
2593 return prange;
2594 }
2595 list_for_each_entry(pchild, &prange->child_list, child_list)
2596 if (addr >= pchild->start && addr <= pchild->last) {
2597 pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n",
2598 addr, pchild->start, pchild->last);
2599 if (parent)
2600 *parent = prange;
2601 return pchild;
2602 }
2603
2604 return NULL;
2605 }
2606
2607 /* svm_range_best_restore_location - decide the best fault restore location
2608 * @prange: svm range structure
2609 * @adev: the GPU on which vm fault happened
2610 *
2611 * This is only called when xnack is on, to decide the best location to restore
2612 * the range mapping after GPU vm fault. Caller uses the best location to do
2613 * migration if actual loc is not best location, then update GPU page table
2614 * mapping to the best location.
2615 *
2616 * If the preferred loc is accessible by faulting GPU, use preferred loc.
2617 * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu
2618 * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then
2619 * if range actual loc is cpu, best_loc is cpu
2620 * if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is
2621 * range actual loc.
2622 * Otherwise, GPU no access, best_loc is -1.
2623 *
2624 * Return:
2625 * -1 means vm fault GPU no access
2626 * 0 for CPU or GPU id
2627 */
2628 static int32_t
svm_range_best_restore_location(struct svm_range * prange,struct kfd_node * node,int32_t * gpuidx)2629 svm_range_best_restore_location(struct svm_range *prange,
2630 struct kfd_node *node,
2631 int32_t *gpuidx)
2632 {
2633 struct kfd_node *bo_node, *preferred_node;
2634 struct kfd_process *p;
2635 uint32_t gpuid;
2636 int r;
2637
2638 p = container_of(prange->svms, struct kfd_process, svms);
2639
2640 r = kfd_process_gpuid_from_node(p, node, &gpuid, gpuidx);
2641 if (r < 0) {
2642 pr_debug("failed to get gpuid from kgd\n");
2643 return -1;
2644 }
2645
2646 if (node->adev->gmc.is_app_apu)
2647 return 0;
2648
2649 if (prange->preferred_loc == gpuid ||
2650 prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) {
2651 return prange->preferred_loc;
2652 } else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
2653 preferred_node = svm_range_get_node_by_id(prange, prange->preferred_loc);
2654 if (preferred_node && svm_nodes_in_same_hive(node, preferred_node))
2655 return prange->preferred_loc;
2656 /* fall through */
2657 }
2658
2659 if (test_bit(*gpuidx, prange->bitmap_access))
2660 return gpuid;
2661
2662 if (test_bit(*gpuidx, prange->bitmap_aip)) {
2663 if (!prange->actual_loc)
2664 return 0;
2665
2666 bo_node = svm_range_get_node_by_id(prange, prange->actual_loc);
2667 if (bo_node && svm_nodes_in_same_hive(node, bo_node))
2668 return prange->actual_loc;
2669 else
2670 return 0;
2671 }
2672
2673 return -1;
2674 }
2675
2676 static int
svm_range_get_range_boundaries(struct kfd_process * p,int64_t addr,unsigned long * start,unsigned long * last,bool * is_heap_stack)2677 svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr,
2678 unsigned long *start, unsigned long *last,
2679 bool *is_heap_stack)
2680 {
2681 struct vm_area_struct *vma;
2682 struct interval_tree_node *node;
2683 struct rb_node *rb_node;
2684 unsigned long start_limit, end_limit;
2685
2686 vma = vma_lookup(p->mm, addr << PAGE_SHIFT);
2687 if (!vma) {
2688 pr_debug("VMA does not exist in address [0x%llx]\n", addr);
2689 return -EFAULT;
2690 }
2691
2692 *is_heap_stack = vma_is_initial_heap(vma) || vma_is_initial_stack(vma);
2693
2694 start_limit = max(vma->vm_start >> PAGE_SHIFT,
2695 (unsigned long)ALIGN_DOWN(addr, 2UL << 8));
2696 end_limit = min(vma->vm_end >> PAGE_SHIFT,
2697 (unsigned long)ALIGN(addr + 1, 2UL << 8));
2698 /* First range that starts after the fault address */
2699 node = interval_tree_iter_first(&p->svms.objects, addr + 1, ULONG_MAX);
2700 if (node) {
2701 end_limit = min(end_limit, node->start);
2702 /* Last range that ends before the fault address */
2703 rb_node = rb_prev(&node->rb);
2704 } else {
2705 /* Last range must end before addr because
2706 * there was no range after addr
2707 */
2708 rb_node = rb_last(&p->svms.objects.rb_root);
2709 }
2710 if (rb_node) {
2711 node = container_of(rb_node, struct interval_tree_node, rb);
2712 if (node->last >= addr) {
2713 WARN(1, "Overlap with prev node and page fault addr\n");
2714 return -EFAULT;
2715 }
2716 start_limit = max(start_limit, node->last + 1);
2717 }
2718
2719 *start = start_limit;
2720 *last = end_limit - 1;
2721
2722 pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n",
2723 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT,
2724 *start, *last, *is_heap_stack);
2725
2726 return 0;
2727 }
2728
2729 static int
svm_range_check_vm_userptr(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)2730 svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last,
2731 uint64_t *bo_s, uint64_t *bo_l)
2732 {
2733 struct amdgpu_bo_va_mapping *mapping;
2734 struct interval_tree_node *node;
2735 struct amdgpu_bo *bo = NULL;
2736 unsigned long userptr;
2737 uint32_t i;
2738 int r;
2739
2740 for (i = 0; i < p->n_pdds; i++) {
2741 struct amdgpu_vm *vm;
2742
2743 if (!p->pdds[i]->drm_priv)
2744 continue;
2745
2746 vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
2747 r = amdgpu_bo_reserve(vm->root.bo, false);
2748 if (r)
2749 return r;
2750
2751 /* Check userptr by searching entire vm->va interval tree */
2752 node = interval_tree_iter_first(&vm->va, 0, ~0ULL);
2753 while (node) {
2754 mapping = container_of((struct rb_node *)node,
2755 struct amdgpu_bo_va_mapping, rb);
2756 bo = mapping->bo_va->base.bo;
2757
2758 if (!amdgpu_ttm_tt_affect_userptr(bo->tbo.ttm,
2759 start << PAGE_SHIFT,
2760 last << PAGE_SHIFT,
2761 &userptr)) {
2762 node = interval_tree_iter_next(node, 0, ~0ULL);
2763 continue;
2764 }
2765
2766 pr_debug("[0x%llx 0x%llx] already userptr mapped\n",
2767 start, last);
2768 if (bo_s && bo_l) {
2769 *bo_s = userptr >> PAGE_SHIFT;
2770 *bo_l = *bo_s + bo->tbo.ttm->num_pages - 1;
2771 }
2772 amdgpu_bo_unreserve(vm->root.bo);
2773 return -EADDRINUSE;
2774 }
2775 amdgpu_bo_unreserve(vm->root.bo);
2776 }
2777 return 0;
2778 }
2779
2780 static struct
svm_range_create_unregistered_range(struct kfd_node * node,struct kfd_process * p,struct mm_struct * mm,int64_t addr)2781 svm_range *svm_range_create_unregistered_range(struct kfd_node *node,
2782 struct kfd_process *p,
2783 struct mm_struct *mm,
2784 int64_t addr)
2785 {
2786 struct svm_range *prange = NULL;
2787 unsigned long start, last;
2788 uint32_t gpuid, gpuidx;
2789 bool is_heap_stack;
2790 uint64_t bo_s = 0;
2791 uint64_t bo_l = 0;
2792 int r;
2793
2794 if (svm_range_get_range_boundaries(p, addr, &start, &last,
2795 &is_heap_stack))
2796 return NULL;
2797
2798 r = svm_range_check_vm(p, start, last, &bo_s, &bo_l);
2799 if (r != -EADDRINUSE)
2800 r = svm_range_check_vm_userptr(p, start, last, &bo_s, &bo_l);
2801
2802 if (r == -EADDRINUSE) {
2803 if (addr >= bo_s && addr <= bo_l)
2804 return NULL;
2805
2806 /* Create one page svm range if 2MB range overlapping */
2807 start = addr;
2808 last = addr;
2809 }
2810
2811 prange = svm_range_new(&p->svms, start, last, true);
2812 if (!prange) {
2813 pr_debug("Failed to create prange in address [0x%llx]\n", addr);
2814 return NULL;
2815 }
2816 if (kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx)) {
2817 pr_debug("failed to get gpuid from kgd\n");
2818 svm_range_free(prange, true);
2819 return NULL;
2820 }
2821
2822 if (is_heap_stack)
2823 prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM;
2824
2825 svm_range_add_to_svms(prange);
2826 svm_range_add_notifier_locked(mm, prange);
2827
2828 return prange;
2829 }
2830
2831 /* svm_range_skip_recover - decide if prange can be recovered
2832 * @prange: svm range structure
2833 *
2834 * GPU vm retry fault handle skip recover the range for cases:
2835 * 1. prange is on deferred list to be removed after unmap, it is stale fault,
2836 * deferred list work will drain the stale fault before free the prange.
2837 * 2. prange is on deferred list to add interval notifier after split, or
2838 * 3. prange is child range, it is split from parent prange, recover later
2839 * after interval notifier is added.
2840 *
2841 * Return: true to skip recover, false to recover
2842 */
svm_range_skip_recover(struct svm_range * prange)2843 static bool svm_range_skip_recover(struct svm_range *prange)
2844 {
2845 struct svm_range_list *svms = prange->svms;
2846
2847 spin_lock(&svms->deferred_list_lock);
2848 if (list_empty(&prange->deferred_list) &&
2849 list_empty(&prange->child_list)) {
2850 spin_unlock(&svms->deferred_list_lock);
2851 return false;
2852 }
2853 spin_unlock(&svms->deferred_list_lock);
2854
2855 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2856 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n",
2857 svms, prange, prange->start, prange->last);
2858 return true;
2859 }
2860 if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP ||
2861 prange->work_item.op == SVM_OP_ADD_RANGE) {
2862 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n",
2863 svms, prange, prange->start, prange->last);
2864 return true;
2865 }
2866 return false;
2867 }
2868
2869 static void
svm_range_count_fault(struct kfd_node * node,struct kfd_process * p,int32_t gpuidx)2870 svm_range_count_fault(struct kfd_node *node, struct kfd_process *p,
2871 int32_t gpuidx)
2872 {
2873 struct kfd_process_device *pdd;
2874
2875 /* fault is on different page of same range
2876 * or fault is skipped to recover later
2877 * or fault is on invalid virtual address
2878 */
2879 if (gpuidx == MAX_GPU_INSTANCE) {
2880 uint32_t gpuid;
2881 int r;
2882
2883 r = kfd_process_gpuid_from_node(p, node, &gpuid, &gpuidx);
2884 if (r < 0)
2885 return;
2886 }
2887
2888 /* fault is recovered
2889 * or fault cannot recover because GPU no access on the range
2890 */
2891 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
2892 if (pdd)
2893 WRITE_ONCE(pdd->faults, pdd->faults + 1);
2894 }
2895
2896 static bool
svm_fault_allowed(struct vm_area_struct * vma,bool write_fault)2897 svm_fault_allowed(struct vm_area_struct *vma, bool write_fault)
2898 {
2899 unsigned long requested = VM_READ;
2900
2901 if (write_fault)
2902 requested |= VM_WRITE;
2903
2904 pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested,
2905 vma->vm_flags);
2906 return (vma->vm_flags & requested) == requested;
2907 }
2908
2909 int
svm_range_restore_pages(struct amdgpu_device * adev,unsigned int pasid,uint32_t vmid,uint32_t node_id,uint64_t addr,bool write_fault)2910 svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid,
2911 uint32_t vmid, uint32_t node_id,
2912 uint64_t addr, bool write_fault)
2913 {
2914 struct mm_struct *mm = NULL;
2915 struct svm_range_list *svms;
2916 struct svm_range *prange;
2917 struct kfd_process *p;
2918 ktime_t timestamp = ktime_get_boottime();
2919 struct kfd_node *node;
2920 int32_t best_loc;
2921 int32_t gpuidx = MAX_GPU_INSTANCE;
2922 bool write_locked = false;
2923 struct vm_area_struct *vma;
2924 bool migration = false;
2925 int r = 0;
2926
2927 if (!KFD_IS_SVM_API_SUPPORTED(adev)) {
2928 pr_debug("device does not support SVM\n");
2929 return -EFAULT;
2930 }
2931
2932 p = kfd_lookup_process_by_pasid(pasid);
2933 if (!p) {
2934 pr_debug("kfd process not founded pasid 0x%x\n", pasid);
2935 return 0;
2936 }
2937 svms = &p->svms;
2938
2939 pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr);
2940
2941 if (atomic_read(&svms->drain_pagefaults)) {
2942 pr_debug("draining retry fault, drop fault 0x%llx\n", addr);
2943 r = 0;
2944 goto out;
2945 }
2946
2947 if (!p->xnack_enabled) {
2948 pr_debug("XNACK not enabled for pasid 0x%x\n", pasid);
2949 r = -EFAULT;
2950 goto out;
2951 }
2952
2953 /* p->lead_thread is available as kfd_process_wq_release flush the work
2954 * before releasing task ref.
2955 */
2956 mm = get_task_mm(p->lead_thread);
2957 if (!mm) {
2958 pr_debug("svms 0x%p failed to get mm\n", svms);
2959 r = 0;
2960 goto out;
2961 }
2962
2963 node = kfd_node_by_irq_ids(adev, node_id, vmid);
2964 if (!node) {
2965 pr_debug("kfd node does not exist node_id: %d, vmid: %d\n", node_id,
2966 vmid);
2967 r = -EFAULT;
2968 goto out;
2969 }
2970 mmap_read_lock(mm);
2971 retry_write_locked:
2972 mutex_lock(&svms->lock);
2973 prange = svm_range_from_addr(svms, addr, NULL);
2974 if (!prange) {
2975 pr_debug("failed to find prange svms 0x%p address [0x%llx]\n",
2976 svms, addr);
2977 if (!write_locked) {
2978 /* Need the write lock to create new range with MMU notifier.
2979 * Also flush pending deferred work to make sure the interval
2980 * tree is up to date before we add a new range
2981 */
2982 mutex_unlock(&svms->lock);
2983 mmap_read_unlock(mm);
2984 mmap_write_lock(mm);
2985 write_locked = true;
2986 goto retry_write_locked;
2987 }
2988 prange = svm_range_create_unregistered_range(node, p, mm, addr);
2989 if (!prange) {
2990 pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n",
2991 svms, addr);
2992 mmap_write_downgrade(mm);
2993 r = -EFAULT;
2994 goto out_unlock_svms;
2995 }
2996 }
2997 if (write_locked)
2998 mmap_write_downgrade(mm);
2999
3000 mutex_lock(&prange->migrate_mutex);
3001
3002 if (svm_range_skip_recover(prange)) {
3003 amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3004 r = 0;
3005 goto out_unlock_range;
3006 }
3007
3008 /* skip duplicate vm fault on different pages of same range */
3009 if (ktime_before(timestamp, ktime_add_ns(prange->validate_timestamp,
3010 AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) {
3011 pr_debug("svms 0x%p [0x%lx %lx] already restored\n",
3012 svms, prange->start, prange->last);
3013 r = 0;
3014 goto out_unlock_range;
3015 }
3016
3017 /* __do_munmap removed VMA, return success as we are handling stale
3018 * retry fault.
3019 */
3020 vma = vma_lookup(mm, addr << PAGE_SHIFT);
3021 if (!vma) {
3022 pr_debug("address 0x%llx VMA is removed\n", addr);
3023 r = 0;
3024 goto out_unlock_range;
3025 }
3026
3027 if (!svm_fault_allowed(vma, write_fault)) {
3028 pr_debug("fault addr 0x%llx no %s permission\n", addr,
3029 write_fault ? "write" : "read");
3030 r = -EPERM;
3031 goto out_unlock_range;
3032 }
3033
3034 best_loc = svm_range_best_restore_location(prange, node, &gpuidx);
3035 if (best_loc == -1) {
3036 pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n",
3037 svms, prange->start, prange->last);
3038 r = -EACCES;
3039 goto out_unlock_range;
3040 }
3041
3042 pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n",
3043 svms, prange->start, prange->last, best_loc,
3044 prange->actual_loc);
3045
3046 kfd_smi_event_page_fault_start(node, p->lead_thread->pid, addr,
3047 write_fault, timestamp);
3048
3049 if (prange->actual_loc != best_loc) {
3050 migration = true;
3051 if (best_loc) {
3052 r = svm_migrate_to_vram(prange, best_loc, mm,
3053 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU);
3054 if (r) {
3055 pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n",
3056 r, addr);
3057 /* Fallback to system memory if migration to
3058 * VRAM failed
3059 */
3060 if (prange->actual_loc)
3061 r = svm_migrate_vram_to_ram(prange, mm,
3062 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU,
3063 NULL);
3064 else
3065 r = 0;
3066 }
3067 } else {
3068 r = svm_migrate_vram_to_ram(prange, mm,
3069 KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU,
3070 NULL);
3071 }
3072 if (r) {
3073 pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n",
3074 r, svms, prange->start, prange->last);
3075 goto out_unlock_range;
3076 }
3077 }
3078
3079 r = svm_range_validate_and_map(mm, prange, gpuidx, false, false, false);
3080 if (r)
3081 pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n",
3082 r, svms, prange->start, prange->last);
3083
3084 kfd_smi_event_page_fault_end(node, p->lead_thread->pid, addr,
3085 migration);
3086
3087 out_unlock_range:
3088 mutex_unlock(&prange->migrate_mutex);
3089 out_unlock_svms:
3090 mutex_unlock(&svms->lock);
3091 mmap_read_unlock(mm);
3092
3093 svm_range_count_fault(node, p, gpuidx);
3094
3095 mmput(mm);
3096 out:
3097 kfd_unref_process(p);
3098
3099 if (r == -EAGAIN) {
3100 pr_debug("recover vm fault later\n");
3101 amdgpu_gmc_filter_faults_remove(node->adev, addr, pasid);
3102 r = 0;
3103 }
3104 return r;
3105 }
3106
3107 int
svm_range_switch_xnack_reserve_mem(struct kfd_process * p,bool xnack_enabled)3108 svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled)
3109 {
3110 struct svm_range *prange, *pchild;
3111 uint64_t reserved_size = 0;
3112 uint64_t size;
3113 int r = 0;
3114
3115 pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled);
3116
3117 mutex_lock(&p->svms.lock);
3118
3119 list_for_each_entry(prange, &p->svms.list, list) {
3120 svm_range_lock(prange);
3121 list_for_each_entry(pchild, &prange->child_list, child_list) {
3122 size = (pchild->last - pchild->start + 1) << PAGE_SHIFT;
3123 if (xnack_enabled) {
3124 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3125 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3126 } else {
3127 r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3128 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3129 if (r)
3130 goto out_unlock;
3131 reserved_size += size;
3132 }
3133 }
3134
3135 size = (prange->last - prange->start + 1) << PAGE_SHIFT;
3136 if (xnack_enabled) {
3137 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3138 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3139 } else {
3140 r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3141 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3142 if (r)
3143 goto out_unlock;
3144 reserved_size += size;
3145 }
3146 out_unlock:
3147 svm_range_unlock(prange);
3148 if (r)
3149 break;
3150 }
3151
3152 if (r)
3153 amdgpu_amdkfd_unreserve_mem_limit(NULL, reserved_size,
3154 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, 0);
3155 else
3156 /* Change xnack mode must be inside svms lock, to avoid race with
3157 * svm_range_deferred_list_work unreserve memory in parallel.
3158 */
3159 p->xnack_enabled = xnack_enabled;
3160
3161 mutex_unlock(&p->svms.lock);
3162 return r;
3163 }
3164
svm_range_list_fini(struct kfd_process * p)3165 void svm_range_list_fini(struct kfd_process *p)
3166 {
3167 struct svm_range *prange;
3168 struct svm_range *next;
3169
3170 pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms);
3171
3172 cancel_delayed_work_sync(&p->svms.restore_work);
3173
3174 /* Ensure list work is finished before process is destroyed */
3175 flush_work(&p->svms.deferred_list_work);
3176
3177 /*
3178 * Ensure no retry fault comes in afterwards, as page fault handler will
3179 * not find kfd process and take mm lock to recover fault.
3180 */
3181 atomic_inc(&p->svms.drain_pagefaults);
3182 svm_range_drain_retry_fault(&p->svms);
3183
3184 list_for_each_entry_safe(prange, next, &p->svms.list, list) {
3185 svm_range_unlink(prange);
3186 svm_range_remove_notifier(prange);
3187 svm_range_free(prange, true);
3188 }
3189
3190 mutex_destroy(&p->svms.lock);
3191
3192 pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms);
3193 }
3194
svm_range_list_init(struct kfd_process * p)3195 int svm_range_list_init(struct kfd_process *p)
3196 {
3197 struct svm_range_list *svms = &p->svms;
3198 int i;
3199
3200 svms->objects = RB_ROOT_CACHED;
3201 mutex_init(&svms->lock);
3202 INIT_LIST_HEAD(&svms->list);
3203 atomic_set(&svms->evicted_ranges, 0);
3204 atomic_set(&svms->drain_pagefaults, 0);
3205 INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work);
3206 INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work);
3207 INIT_LIST_HEAD(&svms->deferred_range_list);
3208 INIT_LIST_HEAD(&svms->criu_svm_metadata_list);
3209 spin_lock_init(&svms->deferred_list_lock);
3210
3211 for (i = 0; i < p->n_pdds; i++)
3212 if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev->adev))
3213 bitmap_set(svms->bitmap_supported, i, 1);
3214
3215 return 0;
3216 }
3217
3218 /**
3219 * svm_range_check_vm - check if virtual address range mapped already
3220 * @p: current kfd_process
3221 * @start: range start address, in pages
3222 * @last: range last address, in pages
3223 * @bo_s: mapping start address in pages if address range already mapped
3224 * @bo_l: mapping last address in pages if address range already mapped
3225 *
3226 * The purpose is to avoid virtual address ranges already allocated by
3227 * kfd_ioctl_alloc_memory_of_gpu ioctl.
3228 * It looks for each pdd in the kfd_process.
3229 *
3230 * Context: Process context
3231 *
3232 * Return 0 - OK, if the range is not mapped.
3233 * Otherwise error code:
3234 * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu
3235 * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by
3236 * a signal. Release all buffer reservations and return to user-space.
3237 */
3238 static int
svm_range_check_vm(struct kfd_process * p,uint64_t start,uint64_t last,uint64_t * bo_s,uint64_t * bo_l)3239 svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
3240 uint64_t *bo_s, uint64_t *bo_l)
3241 {
3242 struct amdgpu_bo_va_mapping *mapping;
3243 struct interval_tree_node *node;
3244 uint32_t i;
3245 int r;
3246
3247 for (i = 0; i < p->n_pdds; i++) {
3248 struct amdgpu_vm *vm;
3249
3250 if (!p->pdds[i]->drm_priv)
3251 continue;
3252
3253 vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
3254 r = amdgpu_bo_reserve(vm->root.bo, false);
3255 if (r)
3256 return r;
3257
3258 node = interval_tree_iter_first(&vm->va, start, last);
3259 if (node) {
3260 pr_debug("range [0x%llx 0x%llx] already TTM mapped\n",
3261 start, last);
3262 mapping = container_of((struct rb_node *)node,
3263 struct amdgpu_bo_va_mapping, rb);
3264 if (bo_s && bo_l) {
3265 *bo_s = mapping->start;
3266 *bo_l = mapping->last;
3267 }
3268 amdgpu_bo_unreserve(vm->root.bo);
3269 return -EADDRINUSE;
3270 }
3271 amdgpu_bo_unreserve(vm->root.bo);
3272 }
3273
3274 return 0;
3275 }
3276
3277 /**
3278 * svm_range_is_valid - check if virtual address range is valid
3279 * @p: current kfd_process
3280 * @start: range start address, in pages
3281 * @size: range size, in pages
3282 *
3283 * Valid virtual address range means it belongs to one or more VMAs
3284 *
3285 * Context: Process context
3286 *
3287 * Return:
3288 * 0 - OK, otherwise error code
3289 */
3290 static int
svm_range_is_valid(struct kfd_process * p,uint64_t start,uint64_t size)3291 svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size)
3292 {
3293 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
3294 struct vm_area_struct *vma;
3295 unsigned long end;
3296 unsigned long start_unchg = start;
3297
3298 start <<= PAGE_SHIFT;
3299 end = start + (size << PAGE_SHIFT);
3300 do {
3301 vma = vma_lookup(p->mm, start);
3302 if (!vma || (vma->vm_flags & device_vma))
3303 return -EFAULT;
3304 start = min(end, vma->vm_end);
3305 } while (start < end);
3306
3307 return svm_range_check_vm(p, start_unchg, (end - 1) >> PAGE_SHIFT, NULL,
3308 NULL);
3309 }
3310
3311 /**
3312 * svm_range_best_prefetch_location - decide the best prefetch location
3313 * @prange: svm range structure
3314 *
3315 * For xnack off:
3316 * If range map to single GPU, the best prefetch location is prefetch_loc, which
3317 * can be CPU or GPU.
3318 *
3319 * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on
3320 * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise
3321 * the best prefetch location is always CPU, because GPU can not have coherent
3322 * mapping VRAM of other GPUs even with large-BAR PCIe connection.
3323 *
3324 * For xnack on:
3325 * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is
3326 * prefetch_loc, other GPU access will generate vm fault and trigger migration.
3327 *
3328 * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same
3329 * hive, the best prefetch location is prefetch_loc GPU, otherwise the best
3330 * prefetch location is always CPU.
3331 *
3332 * Context: Process context
3333 *
3334 * Return:
3335 * 0 for CPU or GPU id
3336 */
3337 static uint32_t
svm_range_best_prefetch_location(struct svm_range * prange)3338 svm_range_best_prefetch_location(struct svm_range *prange)
3339 {
3340 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
3341 uint32_t best_loc = prange->prefetch_loc;
3342 struct kfd_process_device *pdd;
3343 struct kfd_node *bo_node;
3344 struct kfd_process *p;
3345 uint32_t gpuidx;
3346
3347 p = container_of(prange->svms, struct kfd_process, svms);
3348
3349 if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED)
3350 goto out;
3351
3352 bo_node = svm_range_get_node_by_id(prange, best_loc);
3353 if (!bo_node) {
3354 WARN_ONCE(1, "failed to get valid kfd node at id%x\n", best_loc);
3355 best_loc = 0;
3356 goto out;
3357 }
3358
3359 if (bo_node->adev->gmc.is_app_apu) {
3360 best_loc = 0;
3361 goto out;
3362 }
3363
3364 if (p->xnack_enabled)
3365 bitmap_copy(bitmap, prange->bitmap_aip, MAX_GPU_INSTANCE);
3366 else
3367 bitmap_or(bitmap, prange->bitmap_access, prange->bitmap_aip,
3368 MAX_GPU_INSTANCE);
3369
3370 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
3371 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
3372 if (!pdd) {
3373 pr_debug("failed to get device by idx 0x%x\n", gpuidx);
3374 continue;
3375 }
3376
3377 if (pdd->dev->adev == bo_node->adev)
3378 continue;
3379
3380 if (!svm_nodes_in_same_hive(pdd->dev, bo_node)) {
3381 best_loc = 0;
3382 break;
3383 }
3384 }
3385
3386 out:
3387 pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n",
3388 p->xnack_enabled, &p->svms, prange->start, prange->last,
3389 best_loc);
3390
3391 return best_loc;
3392 }
3393
3394 /* svm_range_trigger_migration - start page migration if prefetch loc changed
3395 * @mm: current process mm_struct
3396 * @prange: svm range structure
3397 * @migrated: output, true if migration is triggered
3398 *
3399 * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range
3400 * from ram to vram.
3401 * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range
3402 * from vram to ram.
3403 *
3404 * If GPU vm fault retry is not enabled, migration interact with MMU notifier
3405 * and restore work:
3406 * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict
3407 * stops all queues, schedule restore work
3408 * 2. svm_range_restore_work wait for migration is done by
3409 * a. svm_range_validate_vram takes prange->migrate_mutex
3410 * b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns
3411 * 3. restore work update mappings of GPU, resume all queues.
3412 *
3413 * Context: Process context
3414 *
3415 * Return:
3416 * 0 - OK, otherwise - error code of migration
3417 */
3418 static int
svm_range_trigger_migration(struct mm_struct * mm,struct svm_range * prange,bool * migrated)3419 svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange,
3420 bool *migrated)
3421 {
3422 uint32_t best_loc;
3423 int r = 0;
3424
3425 *migrated = false;
3426 best_loc = svm_range_best_prefetch_location(prange);
3427
3428 if (best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3429 best_loc == prange->actual_loc)
3430 return 0;
3431
3432 if (!best_loc) {
3433 r = svm_migrate_vram_to_ram(prange, mm,
3434 KFD_MIGRATE_TRIGGER_PREFETCH, NULL);
3435 *migrated = !r;
3436 return r;
3437 }
3438
3439 r = svm_migrate_to_vram(prange, best_loc, mm, KFD_MIGRATE_TRIGGER_PREFETCH);
3440 *migrated = !r;
3441
3442 return 0;
3443 }
3444
svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence * fence)3445 int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence)
3446 {
3447 /* Dereferencing fence->svm_bo is safe here because the fence hasn't
3448 * signaled yet and we're under the protection of the fence->lock.
3449 * After the fence is signaled in svm_range_bo_release, we cannot get
3450 * here any more.
3451 *
3452 * Reference is dropped in svm_range_evict_svm_bo_worker.
3453 */
3454 if (svm_bo_ref_unless_zero(fence->svm_bo)) {
3455 WRITE_ONCE(fence->svm_bo->evicting, 1);
3456 schedule_work(&fence->svm_bo->eviction_work);
3457 }
3458
3459 return 0;
3460 }
3461
svm_range_evict_svm_bo_worker(struct work_struct * work)3462 static void svm_range_evict_svm_bo_worker(struct work_struct *work)
3463 {
3464 struct svm_range_bo *svm_bo;
3465 struct mm_struct *mm;
3466 int r = 0;
3467
3468 svm_bo = container_of(work, struct svm_range_bo, eviction_work);
3469
3470 if (mmget_not_zero(svm_bo->eviction_fence->mm)) {
3471 mm = svm_bo->eviction_fence->mm;
3472 } else {
3473 svm_range_bo_unref(svm_bo);
3474 return;
3475 }
3476
3477 mmap_read_lock(mm);
3478 spin_lock(&svm_bo->list_lock);
3479 while (!list_empty(&svm_bo->range_list) && !r) {
3480 struct svm_range *prange =
3481 list_first_entry(&svm_bo->range_list,
3482 struct svm_range, svm_bo_list);
3483 int retries = 3;
3484
3485 list_del_init(&prange->svm_bo_list);
3486 spin_unlock(&svm_bo->list_lock);
3487
3488 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
3489 prange->start, prange->last);
3490
3491 mutex_lock(&prange->migrate_mutex);
3492 do {
3493 r = svm_migrate_vram_to_ram(prange, mm,
3494 KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL);
3495 } while (!r && prange->actual_loc && --retries);
3496
3497 if (!r && prange->actual_loc)
3498 pr_info_once("Migration failed during eviction");
3499
3500 if (!prange->actual_loc) {
3501 mutex_lock(&prange->lock);
3502 prange->svm_bo = NULL;
3503 mutex_unlock(&prange->lock);
3504 }
3505 mutex_unlock(&prange->migrate_mutex);
3506
3507 spin_lock(&svm_bo->list_lock);
3508 }
3509 spin_unlock(&svm_bo->list_lock);
3510 mmap_read_unlock(mm);
3511 mmput(mm);
3512
3513 dma_fence_signal(&svm_bo->eviction_fence->base);
3514
3515 /* This is the last reference to svm_bo, after svm_range_vram_node_free
3516 * has been called in svm_migrate_vram_to_ram
3517 */
3518 WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n");
3519 svm_range_bo_unref(svm_bo);
3520 }
3521
3522 static int
svm_range_set_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3523 svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm,
3524 uint64_t start, uint64_t size, uint32_t nattr,
3525 struct kfd_ioctl_svm_attribute *attrs)
3526 {
3527 struct amdkfd_process_info *process_info = p->kgd_process_info;
3528 struct list_head update_list;
3529 struct list_head insert_list;
3530 struct list_head remove_list;
3531 struct svm_range_list *svms;
3532 struct svm_range *prange;
3533 struct svm_range *next;
3534 bool update_mapping = false;
3535 bool flush_tlb;
3536 int r, ret = 0;
3537
3538 pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n",
3539 p->pasid, &p->svms, start, start + size - 1, size);
3540
3541 r = svm_range_check_attr(p, nattr, attrs);
3542 if (r)
3543 return r;
3544
3545 svms = &p->svms;
3546
3547 mutex_lock(&process_info->lock);
3548
3549 svm_range_list_lock_and_flush_work(svms, mm);
3550
3551 r = svm_range_is_valid(p, start, size);
3552 if (r) {
3553 pr_debug("invalid range r=%d\n", r);
3554 mmap_write_unlock(mm);
3555 goto out;
3556 }
3557
3558 mutex_lock(&svms->lock);
3559
3560 /* Add new range and split existing ranges as needed */
3561 r = svm_range_add(p, start, size, nattr, attrs, &update_list,
3562 &insert_list, &remove_list);
3563 if (r) {
3564 mutex_unlock(&svms->lock);
3565 mmap_write_unlock(mm);
3566 goto out;
3567 }
3568 /* Apply changes as a transaction */
3569 list_for_each_entry_safe(prange, next, &insert_list, list) {
3570 svm_range_add_to_svms(prange);
3571 svm_range_add_notifier_locked(mm, prange);
3572 }
3573 list_for_each_entry(prange, &update_list, update_list) {
3574 svm_range_apply_attrs(p, prange, nattr, attrs, &update_mapping);
3575 /* TODO: unmap ranges from GPU that lost access */
3576 }
3577 list_for_each_entry_safe(prange, next, &remove_list, update_list) {
3578 pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n",
3579 prange->svms, prange, prange->start,
3580 prange->last);
3581 svm_range_unlink(prange);
3582 svm_range_remove_notifier(prange);
3583 svm_range_free(prange, false);
3584 }
3585
3586 mmap_write_downgrade(mm);
3587 /* Trigger migrations and revalidate and map to GPUs as needed. If
3588 * this fails we may be left with partially completed actions. There
3589 * is no clean way of rolling back to the previous state in such a
3590 * case because the rollback wouldn't be guaranteed to work either.
3591 */
3592 list_for_each_entry(prange, &update_list, update_list) {
3593 bool migrated;
3594
3595 mutex_lock(&prange->migrate_mutex);
3596
3597 r = svm_range_trigger_migration(mm, prange, &migrated);
3598 if (r)
3599 goto out_unlock_range;
3600
3601 if (migrated && (!p->xnack_enabled ||
3602 (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) &&
3603 prange->mapped_to_gpu) {
3604 pr_debug("restore_work will update mappings of GPUs\n");
3605 mutex_unlock(&prange->migrate_mutex);
3606 continue;
3607 }
3608
3609 if (!migrated && !update_mapping) {
3610 mutex_unlock(&prange->migrate_mutex);
3611 continue;
3612 }
3613
3614 flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu;
3615
3616 r = svm_range_validate_and_map(mm, prange, MAX_GPU_INSTANCE,
3617 true, true, flush_tlb);
3618 if (r)
3619 pr_debug("failed %d to map svm range\n", r);
3620
3621 out_unlock_range:
3622 mutex_unlock(&prange->migrate_mutex);
3623 if (r)
3624 ret = r;
3625 }
3626
3627 dynamic_svm_range_dump(svms);
3628
3629 mutex_unlock(&svms->lock);
3630 mmap_read_unlock(mm);
3631 out:
3632 mutex_unlock(&process_info->lock);
3633
3634 pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid,
3635 &p->svms, start, start + size - 1, r);
3636
3637 return ret ? ret : r;
3638 }
3639
3640 static int
svm_range_get_attr(struct kfd_process * p,struct mm_struct * mm,uint64_t start,uint64_t size,uint32_t nattr,struct kfd_ioctl_svm_attribute * attrs)3641 svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm,
3642 uint64_t start, uint64_t size, uint32_t nattr,
3643 struct kfd_ioctl_svm_attribute *attrs)
3644 {
3645 DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE);
3646 DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE);
3647 bool get_preferred_loc = false;
3648 bool get_prefetch_loc = false;
3649 bool get_granularity = false;
3650 bool get_accessible = false;
3651 bool get_flags = false;
3652 uint64_t last = start + size - 1UL;
3653 uint8_t granularity = 0xff;
3654 struct interval_tree_node *node;
3655 struct svm_range_list *svms;
3656 struct svm_range *prange;
3657 uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3658 uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3659 uint32_t flags_and = 0xffffffff;
3660 uint32_t flags_or = 0;
3661 int gpuidx;
3662 uint32_t i;
3663 int r = 0;
3664
3665 pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start,
3666 start + size - 1, nattr);
3667
3668 /* Flush pending deferred work to avoid racing with deferred actions from
3669 * previous memory map changes (e.g. munmap). Concurrent memory map changes
3670 * can still race with get_attr because we don't hold the mmap lock. But that
3671 * would be a race condition in the application anyway, and undefined
3672 * behaviour is acceptable in that case.
3673 */
3674 flush_work(&p->svms.deferred_list_work);
3675
3676 mmap_read_lock(mm);
3677 r = svm_range_is_valid(p, start, size);
3678 mmap_read_unlock(mm);
3679 if (r) {
3680 pr_debug("invalid range r=%d\n", r);
3681 return r;
3682 }
3683
3684 for (i = 0; i < nattr; i++) {
3685 switch (attrs[i].type) {
3686 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3687 get_preferred_loc = true;
3688 break;
3689 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3690 get_prefetch_loc = true;
3691 break;
3692 case KFD_IOCTL_SVM_ATTR_ACCESS:
3693 get_accessible = true;
3694 break;
3695 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3696 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3697 get_flags = true;
3698 break;
3699 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3700 get_granularity = true;
3701 break;
3702 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
3703 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
3704 fallthrough;
3705 default:
3706 pr_debug("get invalid attr type 0x%x\n", attrs[i].type);
3707 return -EINVAL;
3708 }
3709 }
3710
3711 svms = &p->svms;
3712
3713 mutex_lock(&svms->lock);
3714
3715 node = interval_tree_iter_first(&svms->objects, start, last);
3716 if (!node) {
3717 pr_debug("range attrs not found return default values\n");
3718 svm_range_set_default_attributes(&location, &prefetch_loc,
3719 &granularity, &flags_and);
3720 flags_or = flags_and;
3721 if (p->xnack_enabled)
3722 bitmap_copy(bitmap_access, svms->bitmap_supported,
3723 MAX_GPU_INSTANCE);
3724 else
3725 bitmap_zero(bitmap_access, MAX_GPU_INSTANCE);
3726 bitmap_zero(bitmap_aip, MAX_GPU_INSTANCE);
3727 goto fill_values;
3728 }
3729 bitmap_copy(bitmap_access, svms->bitmap_supported, MAX_GPU_INSTANCE);
3730 bitmap_copy(bitmap_aip, svms->bitmap_supported, MAX_GPU_INSTANCE);
3731
3732 while (node) {
3733 struct interval_tree_node *next;
3734
3735 prange = container_of(node, struct svm_range, it_node);
3736 next = interval_tree_iter_next(node, start, last);
3737
3738 if (get_preferred_loc) {
3739 if (prange->preferred_loc ==
3740 KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3741 (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3742 location != prange->preferred_loc)) {
3743 location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3744 get_preferred_loc = false;
3745 } else {
3746 location = prange->preferred_loc;
3747 }
3748 }
3749 if (get_prefetch_loc) {
3750 if (prange->prefetch_loc ==
3751 KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3752 (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3753 prefetch_loc != prange->prefetch_loc)) {
3754 prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3755 get_prefetch_loc = false;
3756 } else {
3757 prefetch_loc = prange->prefetch_loc;
3758 }
3759 }
3760 if (get_accessible) {
3761 bitmap_and(bitmap_access, bitmap_access,
3762 prange->bitmap_access, MAX_GPU_INSTANCE);
3763 bitmap_and(bitmap_aip, bitmap_aip,
3764 prange->bitmap_aip, MAX_GPU_INSTANCE);
3765 }
3766 if (get_flags) {
3767 flags_and &= prange->flags;
3768 flags_or |= prange->flags;
3769 }
3770
3771 if (get_granularity && prange->granularity < granularity)
3772 granularity = prange->granularity;
3773
3774 node = next;
3775 }
3776 fill_values:
3777 mutex_unlock(&svms->lock);
3778
3779 for (i = 0; i < nattr; i++) {
3780 switch (attrs[i].type) {
3781 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3782 attrs[i].value = location;
3783 break;
3784 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3785 attrs[i].value = prefetch_loc;
3786 break;
3787 case KFD_IOCTL_SVM_ATTR_ACCESS:
3788 gpuidx = kfd_process_gpuidx_from_gpuid(p,
3789 attrs[i].value);
3790 if (gpuidx < 0) {
3791 pr_debug("invalid gpuid %x\n", attrs[i].value);
3792 return -EINVAL;
3793 }
3794 if (test_bit(gpuidx, bitmap_access))
3795 attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS;
3796 else if (test_bit(gpuidx, bitmap_aip))
3797 attrs[i].type =
3798 KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE;
3799 else
3800 attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS;
3801 break;
3802 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3803 attrs[i].value = flags_and;
3804 break;
3805 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3806 attrs[i].value = ~flags_or;
3807 break;
3808 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3809 attrs[i].value = (uint32_t)granularity;
3810 break;
3811 }
3812 }
3813
3814 return 0;
3815 }
3816
kfd_criu_resume_svm(struct kfd_process * p)3817 int kfd_criu_resume_svm(struct kfd_process *p)
3818 {
3819 struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL;
3820 int nattr_common = 4, nattr_accessibility = 1;
3821 struct criu_svm_metadata *criu_svm_md = NULL;
3822 struct svm_range_list *svms = &p->svms;
3823 struct criu_svm_metadata *next = NULL;
3824 uint32_t set_flags = 0xffffffff;
3825 int i, j, num_attrs, ret = 0;
3826 uint64_t set_attr_size;
3827 struct mm_struct *mm;
3828
3829 if (list_empty(&svms->criu_svm_metadata_list)) {
3830 pr_debug("No SVM data from CRIU restore stage 2\n");
3831 return ret;
3832 }
3833
3834 mm = get_task_mm(p->lead_thread);
3835 if (!mm) {
3836 pr_err("failed to get mm for the target process\n");
3837 return -ESRCH;
3838 }
3839
3840 num_attrs = nattr_common + (nattr_accessibility * p->n_pdds);
3841
3842 i = j = 0;
3843 list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) {
3844 pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n",
3845 i, criu_svm_md->data.start_addr, criu_svm_md->data.size);
3846
3847 for (j = 0; j < num_attrs; j++) {
3848 pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n",
3849 i, j, criu_svm_md->data.attrs[j].type,
3850 i, j, criu_svm_md->data.attrs[j].value);
3851 switch (criu_svm_md->data.attrs[j].type) {
3852 /* During Checkpoint operation, the query for
3853 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might
3854 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were
3855 * not used by the range which was checkpointed. Care
3856 * must be taken to not restore with an invalid value
3857 * otherwise the gpuidx value will be invalid and
3858 * set_attr would eventually fail so just replace those
3859 * with another dummy attribute such as
3860 * KFD_IOCTL_SVM_ATTR_SET_FLAGS.
3861 */
3862 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3863 if (criu_svm_md->data.attrs[j].value ==
3864 KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
3865 criu_svm_md->data.attrs[j].type =
3866 KFD_IOCTL_SVM_ATTR_SET_FLAGS;
3867 criu_svm_md->data.attrs[j].value = 0;
3868 }
3869 break;
3870 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3871 set_flags = criu_svm_md->data.attrs[j].value;
3872 break;
3873 default:
3874 break;
3875 }
3876 }
3877
3878 /* CLR_FLAGS is not available via get_attr during checkpoint but
3879 * it needs to be inserted before restoring the ranges so
3880 * allocate extra space for it before calling set_attr
3881 */
3882 set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
3883 (num_attrs + 1);
3884 set_attr_new = krealloc(set_attr, set_attr_size,
3885 GFP_KERNEL);
3886 if (!set_attr_new) {
3887 ret = -ENOMEM;
3888 goto exit;
3889 }
3890 set_attr = set_attr_new;
3891
3892 memcpy(set_attr, criu_svm_md->data.attrs, num_attrs *
3893 sizeof(struct kfd_ioctl_svm_attribute));
3894 set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS;
3895 set_attr[num_attrs].value = ~set_flags;
3896
3897 ret = svm_range_set_attr(p, mm, criu_svm_md->data.start_addr,
3898 criu_svm_md->data.size, num_attrs + 1,
3899 set_attr);
3900 if (ret) {
3901 pr_err("CRIU: failed to set range attributes\n");
3902 goto exit;
3903 }
3904
3905 i++;
3906 }
3907 exit:
3908 kfree(set_attr);
3909 list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) {
3910 pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n",
3911 criu_svm_md->data.start_addr);
3912 kfree(criu_svm_md);
3913 }
3914
3915 mmput(mm);
3916 return ret;
3917
3918 }
3919
kfd_criu_restore_svm(struct kfd_process * p,uint8_t __user * user_priv_ptr,uint64_t * priv_data_offset,uint64_t max_priv_data_size)3920 int kfd_criu_restore_svm(struct kfd_process *p,
3921 uint8_t __user *user_priv_ptr,
3922 uint64_t *priv_data_offset,
3923 uint64_t max_priv_data_size)
3924 {
3925 uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size;
3926 int nattr_common = 4, nattr_accessibility = 1;
3927 struct criu_svm_metadata *criu_svm_md = NULL;
3928 struct svm_range_list *svms = &p->svms;
3929 uint32_t num_devices;
3930 int ret = 0;
3931
3932 num_devices = p->n_pdds;
3933 /* Handle one SVM range object at a time, also the number of gpus are
3934 * assumed to be same on the restore node, checking must be done while
3935 * evaluating the topology earlier
3936 */
3937
3938 svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) *
3939 (nattr_common + nattr_accessibility * num_devices);
3940 svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size;
3941
3942 svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) +
3943 svm_attrs_size;
3944
3945 criu_svm_md = kzalloc(svm_object_md_size, GFP_KERNEL);
3946 if (!criu_svm_md) {
3947 pr_err("failed to allocate memory to store svm metadata\n");
3948 return -ENOMEM;
3949 }
3950 if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) {
3951 ret = -EINVAL;
3952 goto exit;
3953 }
3954
3955 ret = copy_from_user(&criu_svm_md->data, user_priv_ptr + *priv_data_offset,
3956 svm_priv_data_size);
3957 if (ret) {
3958 ret = -EFAULT;
3959 goto exit;
3960 }
3961 *priv_data_offset += svm_priv_data_size;
3962
3963 list_add_tail(&criu_svm_md->list, &svms->criu_svm_metadata_list);
3964
3965 return 0;
3966
3967
3968 exit:
3969 kfree(criu_svm_md);
3970 return ret;
3971 }
3972
svm_range_get_info(struct kfd_process * p,uint32_t * num_svm_ranges,uint64_t * svm_priv_data_size)3973 int svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges,
3974 uint64_t *svm_priv_data_size)
3975 {
3976 uint64_t total_size, accessibility_size, common_attr_size;
3977 int nattr_common = 4, nattr_accessibility = 1;
3978 int num_devices = p->n_pdds;
3979 struct svm_range_list *svms;
3980 struct svm_range *prange;
3981 uint32_t count = 0;
3982
3983 *svm_priv_data_size = 0;
3984
3985 svms = &p->svms;
3986 if (!svms)
3987 return -EINVAL;
3988
3989 mutex_lock(&svms->lock);
3990 list_for_each_entry(prange, &svms->list, list) {
3991 pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n",
3992 prange, prange->start, prange->npages,
3993 prange->start + prange->npages - 1);
3994 count++;
3995 }
3996 mutex_unlock(&svms->lock);
3997
3998 *num_svm_ranges = count;
3999 /* Only the accessbility attributes need to be queried for all the gpus
4000 * individually, remaining ones are spanned across the entire process
4001 * regardless of the various gpu nodes. Of the remaining attributes,
4002 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved.
4003 *
4004 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC
4005 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC
4006 * KFD_IOCTL_SVM_ATTR_SET_FLAGS
4007 * KFD_IOCTL_SVM_ATTR_GRANULARITY
4008 *
4009 * ** ACCESSBILITY ATTRIBUTES **
4010 * (Considered as one, type is altered during query, value is gpuid)
4011 * KFD_IOCTL_SVM_ATTR_ACCESS
4012 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE
4013 * KFD_IOCTL_SVM_ATTR_NO_ACCESS
4014 */
4015 if (*num_svm_ranges > 0) {
4016 common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4017 nattr_common;
4018 accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) *
4019 nattr_accessibility * num_devices;
4020
4021 total_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4022 common_attr_size + accessibility_size;
4023
4024 *svm_priv_data_size = *num_svm_ranges * total_size;
4025 }
4026
4027 pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges,
4028 *svm_priv_data_size);
4029 return 0;
4030 }
4031
kfd_criu_checkpoint_svm(struct kfd_process * p,uint8_t __user * user_priv_data,uint64_t * priv_data_offset)4032 int kfd_criu_checkpoint_svm(struct kfd_process *p,
4033 uint8_t __user *user_priv_data,
4034 uint64_t *priv_data_offset)
4035 {
4036 struct kfd_criu_svm_range_priv_data *svm_priv = NULL;
4037 struct kfd_ioctl_svm_attribute *query_attr = NULL;
4038 uint64_t svm_priv_data_size, query_attr_size = 0;
4039 int index, nattr_common = 4, ret = 0;
4040 struct svm_range_list *svms;
4041 int num_devices = p->n_pdds;
4042 struct svm_range *prange;
4043 struct mm_struct *mm;
4044
4045 svms = &p->svms;
4046 if (!svms)
4047 return -EINVAL;
4048
4049 mm = get_task_mm(p->lead_thread);
4050 if (!mm) {
4051 pr_err("failed to get mm for the target process\n");
4052 return -ESRCH;
4053 }
4054
4055 query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4056 (nattr_common + num_devices);
4057
4058 query_attr = kzalloc(query_attr_size, GFP_KERNEL);
4059 if (!query_attr) {
4060 ret = -ENOMEM;
4061 goto exit;
4062 }
4063
4064 query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC;
4065 query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC;
4066 query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS;
4067 query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY;
4068
4069 for (index = 0; index < num_devices; index++) {
4070 struct kfd_process_device *pdd = p->pdds[index];
4071
4072 query_attr[index + nattr_common].type =
4073 KFD_IOCTL_SVM_ATTR_ACCESS;
4074 query_attr[index + nattr_common].value = pdd->user_gpu_id;
4075 }
4076
4077 svm_priv_data_size = sizeof(*svm_priv) + query_attr_size;
4078
4079 svm_priv = kzalloc(svm_priv_data_size, GFP_KERNEL);
4080 if (!svm_priv) {
4081 ret = -ENOMEM;
4082 goto exit_query;
4083 }
4084
4085 index = 0;
4086 list_for_each_entry(prange, &svms->list, list) {
4087
4088 svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE;
4089 svm_priv->start_addr = prange->start;
4090 svm_priv->size = prange->npages;
4091 memcpy(&svm_priv->attrs, query_attr, query_attr_size);
4092 pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n",
4093 prange, prange->start, prange->npages,
4094 prange->start + prange->npages - 1,
4095 prange->npages * PAGE_SIZE);
4096
4097 ret = svm_range_get_attr(p, mm, svm_priv->start_addr,
4098 svm_priv->size,
4099 (nattr_common + num_devices),
4100 svm_priv->attrs);
4101 if (ret) {
4102 pr_err("CRIU: failed to obtain range attributes\n");
4103 goto exit_priv;
4104 }
4105
4106 if (copy_to_user(user_priv_data + *priv_data_offset, svm_priv,
4107 svm_priv_data_size)) {
4108 pr_err("Failed to copy svm priv to user\n");
4109 ret = -EFAULT;
4110 goto exit_priv;
4111 }
4112
4113 *priv_data_offset += svm_priv_data_size;
4114
4115 }
4116
4117
4118 exit_priv:
4119 kfree(svm_priv);
4120 exit_query:
4121 kfree(query_attr);
4122 exit:
4123 mmput(mm);
4124 return ret;
4125 }
4126
4127 int
svm_ioctl(struct kfd_process * p,enum kfd_ioctl_svm_op op,uint64_t start,uint64_t size,uint32_t nattrs,struct kfd_ioctl_svm_attribute * attrs)4128 svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start,
4129 uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs)
4130 {
4131 struct mm_struct *mm = current->mm;
4132 int r;
4133
4134 start >>= PAGE_SHIFT;
4135 size >>= PAGE_SHIFT;
4136
4137 switch (op) {
4138 case KFD_IOCTL_SVM_OP_SET_ATTR:
4139 r = svm_range_set_attr(p, mm, start, size, nattrs, attrs);
4140 break;
4141 case KFD_IOCTL_SVM_OP_GET_ATTR:
4142 r = svm_range_get_attr(p, mm, start, size, nattrs, attrs);
4143 break;
4144 default:
4145 r = EINVAL;
4146 break;
4147 }
4148
4149 return r;
4150 }
4151