xref: /openbmc/linux/drivers/pwm/pwm-sprd.c (revision 0a41b0c5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2019 Spreadtrum Communications Inc.
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/err.h>
8 #include <linux/io.h>
9 #include <linux/math64.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/module.h>
12 #include <linux/platform_device.h>
13 #include <linux/pwm.h>
14 
15 #define SPRD_PWM_PRESCALE	0x0
16 #define SPRD_PWM_MOD		0x4
17 #define SPRD_PWM_DUTY		0x8
18 #define SPRD_PWM_ENABLE		0x18
19 
20 #define SPRD_PWM_MOD_MAX	GENMASK(7, 0)
21 #define SPRD_PWM_DUTY_MSK	GENMASK(15, 0)
22 #define SPRD_PWM_PRESCALE_MSK	GENMASK(7, 0)
23 #define SPRD_PWM_ENABLE_BIT	BIT(0)
24 
25 #define SPRD_PWM_CHN_NUM	4
26 #define SPRD_PWM_REGS_SHIFT	5
27 #define SPRD_PWM_CHN_CLKS_NUM	2
28 #define SPRD_PWM_CHN_OUTPUT_CLK	1
29 
30 struct sprd_pwm_chn {
31 	struct clk_bulk_data clks[SPRD_PWM_CHN_CLKS_NUM];
32 	u32 clk_rate;
33 };
34 
35 struct sprd_pwm_chip {
36 	void __iomem *base;
37 	struct device *dev;
38 	struct pwm_chip chip;
39 	int num_pwms;
40 	struct sprd_pwm_chn chn[SPRD_PWM_CHN_NUM];
41 };
42 
43 /*
44  * The list of clocks required by PWM channels, and each channel has 2 clocks:
45  * enable clock and pwm clock.
46  */
47 static const char * const sprd_pwm_clks[] = {
48 	"enable0", "pwm0",
49 	"enable1", "pwm1",
50 	"enable2", "pwm2",
51 	"enable3", "pwm3",
52 };
53 
sprd_pwm_read(struct sprd_pwm_chip * spc,u32 hwid,u32 reg)54 static u32 sprd_pwm_read(struct sprd_pwm_chip *spc, u32 hwid, u32 reg)
55 {
56 	u32 offset = reg + (hwid << SPRD_PWM_REGS_SHIFT);
57 
58 	return readl_relaxed(spc->base + offset);
59 }
60 
sprd_pwm_write(struct sprd_pwm_chip * spc,u32 hwid,u32 reg,u32 val)61 static void sprd_pwm_write(struct sprd_pwm_chip *spc, u32 hwid,
62 			   u32 reg, u32 val)
63 {
64 	u32 offset = reg + (hwid << SPRD_PWM_REGS_SHIFT);
65 
66 	writel_relaxed(val, spc->base + offset);
67 }
68 
sprd_pwm_get_state(struct pwm_chip * chip,struct pwm_device * pwm,struct pwm_state * state)69 static int sprd_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
70 			      struct pwm_state *state)
71 {
72 	struct sprd_pwm_chip *spc =
73 		container_of(chip, struct sprd_pwm_chip, chip);
74 	struct sprd_pwm_chn *chn = &spc->chn[pwm->hwpwm];
75 	u32 val, duty, prescale;
76 	u64 tmp;
77 	int ret;
78 
79 	/*
80 	 * The clocks to PWM channel has to be enabled first before
81 	 * reading to the registers.
82 	 */
83 	ret = clk_bulk_prepare_enable(SPRD_PWM_CHN_CLKS_NUM, chn->clks);
84 	if (ret) {
85 		dev_err(spc->dev, "failed to enable pwm%u clocks\n",
86 			pwm->hwpwm);
87 		return ret;
88 	}
89 
90 	val = sprd_pwm_read(spc, pwm->hwpwm, SPRD_PWM_ENABLE);
91 	if (val & SPRD_PWM_ENABLE_BIT)
92 		state->enabled = true;
93 	else
94 		state->enabled = false;
95 
96 	/*
97 	 * The hardware provides a counter that is feed by the source clock.
98 	 * The period length is (PRESCALE + 1) * MOD counter steps.
99 	 * The duty cycle length is (PRESCALE + 1) * DUTY counter steps.
100 	 * Thus the period_ns and duty_ns calculation formula should be:
101 	 * period_ns = NSEC_PER_SEC * (prescale + 1) * mod / clk_rate
102 	 * duty_ns = NSEC_PER_SEC * (prescale + 1) * duty / clk_rate
103 	 */
104 	val = sprd_pwm_read(spc, pwm->hwpwm, SPRD_PWM_PRESCALE);
105 	prescale = val & SPRD_PWM_PRESCALE_MSK;
106 	tmp = (prescale + 1) * NSEC_PER_SEC * SPRD_PWM_MOD_MAX;
107 	state->period = DIV_ROUND_CLOSEST_ULL(tmp, chn->clk_rate);
108 
109 	val = sprd_pwm_read(spc, pwm->hwpwm, SPRD_PWM_DUTY);
110 	duty = val & SPRD_PWM_DUTY_MSK;
111 	tmp = (prescale + 1) * NSEC_PER_SEC * duty;
112 	state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, chn->clk_rate);
113 	state->polarity = PWM_POLARITY_NORMAL;
114 
115 	/* Disable PWM clocks if the PWM channel is not in enable state. */
116 	if (!state->enabled)
117 		clk_bulk_disable_unprepare(SPRD_PWM_CHN_CLKS_NUM, chn->clks);
118 
119 	return 0;
120 }
121 
sprd_pwm_config(struct sprd_pwm_chip * spc,struct pwm_device * pwm,int duty_ns,int period_ns)122 static int sprd_pwm_config(struct sprd_pwm_chip *spc, struct pwm_device *pwm,
123 			   int duty_ns, int period_ns)
124 {
125 	struct sprd_pwm_chn *chn = &spc->chn[pwm->hwpwm];
126 	u32 prescale, duty;
127 	u64 tmp;
128 
129 	/*
130 	 * The hardware provides a counter that is feed by the source clock.
131 	 * The period length is (PRESCALE + 1) * MOD counter steps.
132 	 * The duty cycle length is (PRESCALE + 1) * DUTY counter steps.
133 	 *
134 	 * To keep the maths simple we're always using MOD = SPRD_PWM_MOD_MAX.
135 	 * The value for PRESCALE is selected such that the resulting period
136 	 * gets the maximal length not bigger than the requested one with the
137 	 * given settings (MOD = SPRD_PWM_MOD_MAX and input clock).
138 	 */
139 	duty = duty_ns * SPRD_PWM_MOD_MAX / period_ns;
140 
141 	tmp = (u64)chn->clk_rate * period_ns;
142 	do_div(tmp, NSEC_PER_SEC);
143 	prescale = DIV_ROUND_CLOSEST_ULL(tmp, SPRD_PWM_MOD_MAX) - 1;
144 	if (prescale > SPRD_PWM_PRESCALE_MSK)
145 		prescale = SPRD_PWM_PRESCALE_MSK;
146 
147 	/*
148 	 * Note: Writing DUTY triggers the hardware to actually apply the
149 	 * values written to MOD and DUTY to the output, so must keep writing
150 	 * DUTY last.
151 	 *
152 	 * The hardware can ensures that current running period is completed
153 	 * before changing a new configuration to avoid mixed settings.
154 	 */
155 	sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_PRESCALE, prescale);
156 	sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_MOD, SPRD_PWM_MOD_MAX);
157 	sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_DUTY, duty);
158 
159 	return 0;
160 }
161 
sprd_pwm_apply(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_state * state)162 static int sprd_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
163 			  const struct pwm_state *state)
164 {
165 	struct sprd_pwm_chip *spc =
166 		container_of(chip, struct sprd_pwm_chip, chip);
167 	struct sprd_pwm_chn *chn = &spc->chn[pwm->hwpwm];
168 	struct pwm_state *cstate = &pwm->state;
169 	int ret;
170 
171 	if (state->polarity != PWM_POLARITY_NORMAL)
172 		return -EINVAL;
173 
174 	if (state->enabled) {
175 		if (!cstate->enabled) {
176 			/*
177 			 * The clocks to PWM channel has to be enabled first
178 			 * before writing to the registers.
179 			 */
180 			ret = clk_bulk_prepare_enable(SPRD_PWM_CHN_CLKS_NUM,
181 						      chn->clks);
182 			if (ret) {
183 				dev_err(spc->dev,
184 					"failed to enable pwm%u clocks\n",
185 					pwm->hwpwm);
186 				return ret;
187 			}
188 		}
189 
190 		ret = sprd_pwm_config(spc, pwm, state->duty_cycle,
191 				      state->period);
192 		if (ret)
193 			return ret;
194 
195 		sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_ENABLE, 1);
196 	} else if (cstate->enabled) {
197 		/*
198 		 * Note: After setting SPRD_PWM_ENABLE to zero, the controller
199 		 * will not wait for current period to be completed, instead it
200 		 * will stop the PWM channel immediately.
201 		 */
202 		sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_ENABLE, 0);
203 
204 		clk_bulk_disable_unprepare(SPRD_PWM_CHN_CLKS_NUM, chn->clks);
205 	}
206 
207 	return 0;
208 }
209 
210 static const struct pwm_ops sprd_pwm_ops = {
211 	.apply = sprd_pwm_apply,
212 	.get_state = sprd_pwm_get_state,
213 	.owner = THIS_MODULE,
214 };
215 
sprd_pwm_clk_init(struct sprd_pwm_chip * spc)216 static int sprd_pwm_clk_init(struct sprd_pwm_chip *spc)
217 {
218 	struct clk *clk_pwm;
219 	int ret, i;
220 
221 	for (i = 0; i < SPRD_PWM_CHN_NUM; i++) {
222 		struct sprd_pwm_chn *chn = &spc->chn[i];
223 		int j;
224 
225 		for (j = 0; j < SPRD_PWM_CHN_CLKS_NUM; ++j)
226 			chn->clks[j].id =
227 				sprd_pwm_clks[i * SPRD_PWM_CHN_CLKS_NUM + j];
228 
229 		ret = devm_clk_bulk_get(spc->dev, SPRD_PWM_CHN_CLKS_NUM,
230 					chn->clks);
231 		if (ret) {
232 			if (ret == -ENOENT)
233 				break;
234 
235 			return dev_err_probe(spc->dev, ret,
236 					     "failed to get channel clocks\n");
237 		}
238 
239 		clk_pwm = chn->clks[SPRD_PWM_CHN_OUTPUT_CLK].clk;
240 		chn->clk_rate = clk_get_rate(clk_pwm);
241 	}
242 
243 	if (!i) {
244 		dev_err(spc->dev, "no available PWM channels\n");
245 		return -ENODEV;
246 	}
247 
248 	spc->num_pwms = i;
249 
250 	return 0;
251 }
252 
sprd_pwm_probe(struct platform_device * pdev)253 static int sprd_pwm_probe(struct platform_device *pdev)
254 {
255 	struct sprd_pwm_chip *spc;
256 	int ret;
257 
258 	spc = devm_kzalloc(&pdev->dev, sizeof(*spc), GFP_KERNEL);
259 	if (!spc)
260 		return -ENOMEM;
261 
262 	spc->base = devm_platform_ioremap_resource(pdev, 0);
263 	if (IS_ERR(spc->base))
264 		return PTR_ERR(spc->base);
265 
266 	spc->dev = &pdev->dev;
267 	platform_set_drvdata(pdev, spc);
268 
269 	ret = sprd_pwm_clk_init(spc);
270 	if (ret)
271 		return ret;
272 
273 	spc->chip.dev = &pdev->dev;
274 	spc->chip.ops = &sprd_pwm_ops;
275 	spc->chip.npwm = spc->num_pwms;
276 
277 	ret = pwmchip_add(&spc->chip);
278 	if (ret)
279 		dev_err(&pdev->dev, "failed to add PWM chip\n");
280 
281 	return ret;
282 }
283 
sprd_pwm_remove(struct platform_device * pdev)284 static void sprd_pwm_remove(struct platform_device *pdev)
285 {
286 	struct sprd_pwm_chip *spc = platform_get_drvdata(pdev);
287 
288 	pwmchip_remove(&spc->chip);
289 }
290 
291 static const struct of_device_id sprd_pwm_of_match[] = {
292 	{ .compatible = "sprd,ums512-pwm", },
293 	{ },
294 };
295 MODULE_DEVICE_TABLE(of, sprd_pwm_of_match);
296 
297 static struct platform_driver sprd_pwm_driver = {
298 	.driver = {
299 		.name = "sprd-pwm",
300 		.of_match_table = sprd_pwm_of_match,
301 	},
302 	.probe = sprd_pwm_probe,
303 	.remove_new = sprd_pwm_remove,
304 };
305 
306 module_platform_driver(sprd_pwm_driver);
307 
308 MODULE_DESCRIPTION("Spreadtrum PWM Driver");
309 MODULE_LICENSE("GPL v2");
310