xref: /openbmc/linux/fs/jfs/jfs_dmap.c (revision 278002edb19bce2c628fafb0af936e77000f3a5b)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   *   Copyright (C) International Business Machines Corp., 2000-2004
4   *   Portions Copyright (C) Tino Reichardt, 2012
5   */
6  
7  #include <linux/fs.h>
8  #include <linux/slab.h>
9  #include "jfs_incore.h"
10  #include "jfs_superblock.h"
11  #include "jfs_dmap.h"
12  #include "jfs_imap.h"
13  #include "jfs_lock.h"
14  #include "jfs_metapage.h"
15  #include "jfs_debug.h"
16  #include "jfs_discard.h"
17  
18  /*
19   *	SERIALIZATION of the Block Allocation Map.
20   *
21   *	the working state of the block allocation map is accessed in
22   *	two directions:
23   *
24   *	1) allocation and free requests that start at the dmap
25   *	   level and move up through the dmap control pages (i.e.
26   *	   the vast majority of requests).
27   *
28   *	2) allocation requests that start at dmap control page
29   *	   level and work down towards the dmaps.
30   *
31   *	the serialization scheme used here is as follows.
32   *
33   *	requests which start at the bottom are serialized against each
34   *	other through buffers and each requests holds onto its buffers
35   *	as it works it way up from a single dmap to the required level
36   *	of dmap control page.
37   *	requests that start at the top are serialized against each other
38   *	and request that start from the bottom by the multiple read/single
39   *	write inode lock of the bmap inode. requests starting at the top
40   *	take this lock in write mode while request starting at the bottom
41   *	take the lock in read mode.  a single top-down request may proceed
42   *	exclusively while multiple bottoms-up requests may proceed
43   *	simultaneously (under the protection of busy buffers).
44   *
45   *	in addition to information found in dmaps and dmap control pages,
46   *	the working state of the block allocation map also includes read/
47   *	write information maintained in the bmap descriptor (i.e. total
48   *	free block count, allocation group level free block counts).
49   *	a single exclusive lock (BMAP_LOCK) is used to guard this information
50   *	in the face of multiple-bottoms up requests.
51   *	(lock ordering: IREAD_LOCK, BMAP_LOCK);
52   *
53   *	accesses to the persistent state of the block allocation map (limited
54   *	to the persistent bitmaps in dmaps) is guarded by (busy) buffers.
55   */
56  
57  #define BMAP_LOCK_INIT(bmp)	mutex_init(&bmp->db_bmaplock)
58  #define BMAP_LOCK(bmp)		mutex_lock(&bmp->db_bmaplock)
59  #define BMAP_UNLOCK(bmp)	mutex_unlock(&bmp->db_bmaplock)
60  
61  /*
62   * forward references
63   */
64  static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
65  			int nblocks);
66  static void dbSplit(dmtree_t *tp, int leafno, int splitsz, int newval, bool is_ctl);
67  static int dbBackSplit(dmtree_t *tp, int leafno, bool is_ctl);
68  static int dbJoin(dmtree_t *tp, int leafno, int newval, bool is_ctl);
69  static void dbAdjTree(dmtree_t *tp, int leafno, int newval, bool is_ctl);
70  static int dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc,
71  		    int level);
72  static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results);
73  static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
74  		       int nblocks);
75  static int dbAllocNear(struct bmap * bmp, struct dmap * dp, s64 blkno,
76  		       int nblocks,
77  		       int l2nb, s64 * results);
78  static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
79  		       int nblocks);
80  static int dbAllocDmapLev(struct bmap * bmp, struct dmap * dp, int nblocks,
81  			  int l2nb,
82  			  s64 * results);
83  static int dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb,
84  		     s64 * results);
85  static int dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno,
86  		      s64 * results);
87  static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks);
88  static int dbFindBits(u32 word, int l2nb);
89  static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno);
90  static int dbFindLeaf(dmtree_t *tp, int l2nb, int *leafidx, bool is_ctl);
91  static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
92  		      int nblocks);
93  static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
94  		      int nblocks);
95  static int dbMaxBud(u8 * cp);
96  static int blkstol2(s64 nb);
97  
98  static int cntlz(u32 value);
99  static int cnttz(u32 word);
100  
101  static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
102  			 int nblocks);
103  static int dbInitDmap(struct dmap * dp, s64 blkno, int nblocks);
104  static int dbInitDmapTree(struct dmap * dp);
105  static int dbInitTree(struct dmaptree * dtp);
106  static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i);
107  static int dbGetL2AGSize(s64 nblocks);
108  
109  /*
110   *	buddy table
111   *
112   * table used for determining buddy sizes within characters of
113   * dmap bitmap words.  the characters themselves serve as indexes
114   * into the table, with the table elements yielding the maximum
115   * binary buddy of free bits within the character.
116   */
117  static const s8 budtab[256] = {
118  	3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
119  	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
120  	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
121  	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
122  	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
123  	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
124  	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
125  	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
126  	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
127  	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
128  	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
129  	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
130  	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
131  	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
132  	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
133  	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1
134  };
135  
136  /*
137   * NAME:	dbMount()
138   *
139   * FUNCTION:	initializate the block allocation map.
140   *
141   *		memory is allocated for the in-core bmap descriptor and
142   *		the in-core descriptor is initialized from disk.
143   *
144   * PARAMETERS:
145   *	ipbmap	- pointer to in-core inode for the block map.
146   *
147   * RETURN VALUES:
148   *	0	- success
149   *	-ENOMEM	- insufficient memory
150   *	-EIO	- i/o error
151   *	-EINVAL - wrong bmap data
152   */
dbMount(struct inode * ipbmap)153  int dbMount(struct inode *ipbmap)
154  {
155  	struct bmap *bmp;
156  	struct dbmap_disk *dbmp_le;
157  	struct metapage *mp;
158  	int i, err;
159  
160  	/*
161  	 * allocate/initialize the in-memory bmap descriptor
162  	 */
163  	/* allocate memory for the in-memory bmap descriptor */
164  	bmp = kmalloc(sizeof(struct bmap), GFP_KERNEL);
165  	if (bmp == NULL)
166  		return -ENOMEM;
167  
168  	/* read the on-disk bmap descriptor. */
169  	mp = read_metapage(ipbmap,
170  			   BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
171  			   PSIZE, 0);
172  	if (mp == NULL) {
173  		err = -EIO;
174  		goto err_kfree_bmp;
175  	}
176  
177  	/* copy the on-disk bmap descriptor to its in-memory version. */
178  	dbmp_le = (struct dbmap_disk *) mp->data;
179  	bmp->db_mapsize = le64_to_cpu(dbmp_le->dn_mapsize);
180  	bmp->db_nfree = le64_to_cpu(dbmp_le->dn_nfree);
181  
182  	bmp->db_l2nbperpage = le32_to_cpu(dbmp_le->dn_l2nbperpage);
183  	if (bmp->db_l2nbperpage > L2PSIZE - L2MINBLOCKSIZE ||
184  		bmp->db_l2nbperpage < 0) {
185  		err = -EINVAL;
186  		goto err_release_metapage;
187  	}
188  
189  	bmp->db_numag = le32_to_cpu(dbmp_le->dn_numag);
190  	if (!bmp->db_numag || bmp->db_numag > MAXAG) {
191  		err = -EINVAL;
192  		goto err_release_metapage;
193  	}
194  
195  	bmp->db_maxlevel = le32_to_cpu(dbmp_le->dn_maxlevel);
196  	bmp->db_maxag = le32_to_cpu(dbmp_le->dn_maxag);
197  	bmp->db_agpref = le32_to_cpu(dbmp_le->dn_agpref);
198  	if (bmp->db_maxag >= MAXAG || bmp->db_maxag < 0 ||
199  		bmp->db_agpref >= MAXAG || bmp->db_agpref < 0) {
200  		err = -EINVAL;
201  		goto err_release_metapage;
202  	}
203  
204  	bmp->db_aglevel = le32_to_cpu(dbmp_le->dn_aglevel);
205  	bmp->db_agheight = le32_to_cpu(dbmp_le->dn_agheight);
206  	bmp->db_agwidth = le32_to_cpu(dbmp_le->dn_agwidth);
207  	bmp->db_agstart = le32_to_cpu(dbmp_le->dn_agstart);
208  	bmp->db_agl2size = le32_to_cpu(dbmp_le->dn_agl2size);
209  	if (bmp->db_agl2size > L2MAXL2SIZE - L2MAXAG ||
210  	    bmp->db_agl2size < 0) {
211  		err = -EINVAL;
212  		goto err_release_metapage;
213  	}
214  
215  	if (((bmp->db_mapsize - 1) >> bmp->db_agl2size) > MAXAG) {
216  		err = -EINVAL;
217  		goto err_release_metapage;
218  	}
219  
220  	for (i = 0; i < MAXAG; i++)
221  		bmp->db_agfree[i] = le64_to_cpu(dbmp_le->dn_agfree[i]);
222  	bmp->db_agsize = le64_to_cpu(dbmp_le->dn_agsize);
223  	bmp->db_maxfreebud = dbmp_le->dn_maxfreebud;
224  
225  	/* release the buffer. */
226  	release_metapage(mp);
227  
228  	/* bind the bmap inode and the bmap descriptor to each other. */
229  	bmp->db_ipbmap = ipbmap;
230  	JFS_SBI(ipbmap->i_sb)->bmap = bmp;
231  
232  	memset(bmp->db_active, 0, sizeof(bmp->db_active));
233  
234  	/*
235  	 * allocate/initialize the bmap lock
236  	 */
237  	BMAP_LOCK_INIT(bmp);
238  
239  	return (0);
240  
241  err_release_metapage:
242  	release_metapage(mp);
243  err_kfree_bmp:
244  	kfree(bmp);
245  	return err;
246  }
247  
248  
249  /*
250   * NAME:	dbUnmount()
251   *
252   * FUNCTION:	terminate the block allocation map in preparation for
253   *		file system unmount.
254   *
255   *		the in-core bmap descriptor is written to disk and
256   *		the memory for this descriptor is freed.
257   *
258   * PARAMETERS:
259   *	ipbmap	- pointer to in-core inode for the block map.
260   *
261   * RETURN VALUES:
262   *	0	- success
263   *	-EIO	- i/o error
264   */
dbUnmount(struct inode * ipbmap,int mounterror)265  int dbUnmount(struct inode *ipbmap, int mounterror)
266  {
267  	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
268  
269  	if (!(mounterror || isReadOnly(ipbmap)))
270  		dbSync(ipbmap);
271  
272  	/*
273  	 * Invalidate the page cache buffers
274  	 */
275  	truncate_inode_pages(ipbmap->i_mapping, 0);
276  
277  	/* free the memory for the in-memory bmap. */
278  	kfree(bmp);
279  	JFS_SBI(ipbmap->i_sb)->bmap = NULL;
280  
281  	return (0);
282  }
283  
284  /*
285   *	dbSync()
286   */
dbSync(struct inode * ipbmap)287  int dbSync(struct inode *ipbmap)
288  {
289  	struct dbmap_disk *dbmp_le;
290  	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
291  	struct metapage *mp;
292  	int i;
293  
294  	/*
295  	 * write bmap global control page
296  	 */
297  	/* get the buffer for the on-disk bmap descriptor. */
298  	mp = read_metapage(ipbmap,
299  			   BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
300  			   PSIZE, 0);
301  	if (mp == NULL) {
302  		jfs_err("dbSync: read_metapage failed!");
303  		return -EIO;
304  	}
305  	/* copy the in-memory version of the bmap to the on-disk version */
306  	dbmp_le = (struct dbmap_disk *) mp->data;
307  	dbmp_le->dn_mapsize = cpu_to_le64(bmp->db_mapsize);
308  	dbmp_le->dn_nfree = cpu_to_le64(bmp->db_nfree);
309  	dbmp_le->dn_l2nbperpage = cpu_to_le32(bmp->db_l2nbperpage);
310  	dbmp_le->dn_numag = cpu_to_le32(bmp->db_numag);
311  	dbmp_le->dn_maxlevel = cpu_to_le32(bmp->db_maxlevel);
312  	dbmp_le->dn_maxag = cpu_to_le32(bmp->db_maxag);
313  	dbmp_le->dn_agpref = cpu_to_le32(bmp->db_agpref);
314  	dbmp_le->dn_aglevel = cpu_to_le32(bmp->db_aglevel);
315  	dbmp_le->dn_agheight = cpu_to_le32(bmp->db_agheight);
316  	dbmp_le->dn_agwidth = cpu_to_le32(bmp->db_agwidth);
317  	dbmp_le->dn_agstart = cpu_to_le32(bmp->db_agstart);
318  	dbmp_le->dn_agl2size = cpu_to_le32(bmp->db_agl2size);
319  	for (i = 0; i < MAXAG; i++)
320  		dbmp_le->dn_agfree[i] = cpu_to_le64(bmp->db_agfree[i]);
321  	dbmp_le->dn_agsize = cpu_to_le64(bmp->db_agsize);
322  	dbmp_le->dn_maxfreebud = bmp->db_maxfreebud;
323  
324  	/* write the buffer */
325  	write_metapage(mp);
326  
327  	/*
328  	 * write out dirty pages of bmap
329  	 */
330  	filemap_write_and_wait(ipbmap->i_mapping);
331  
332  	diWriteSpecial(ipbmap, 0);
333  
334  	return (0);
335  }
336  
337  /*
338   * NAME:	dbFree()
339   *
340   * FUNCTION:	free the specified block range from the working block
341   *		allocation map.
342   *
343   *		the blocks will be free from the working map one dmap
344   *		at a time.
345   *
346   * PARAMETERS:
347   *	ip	- pointer to in-core inode;
348   *	blkno	- starting block number to be freed.
349   *	nblocks	- number of blocks to be freed.
350   *
351   * RETURN VALUES:
352   *	0	- success
353   *	-EIO	- i/o error
354   */
dbFree(struct inode * ip,s64 blkno,s64 nblocks)355  int dbFree(struct inode *ip, s64 blkno, s64 nblocks)
356  {
357  	struct metapage *mp;
358  	struct dmap *dp;
359  	int nb, rc;
360  	s64 lblkno, rem;
361  	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
362  	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
363  	struct super_block *sb = ipbmap->i_sb;
364  
365  	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
366  
367  	/* block to be freed better be within the mapsize. */
368  	if (unlikely((blkno == 0) || (blkno + nblocks > bmp->db_mapsize))) {
369  		IREAD_UNLOCK(ipbmap);
370  		printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
371  		       (unsigned long long) blkno,
372  		       (unsigned long long) nblocks);
373  		jfs_error(ip->i_sb, "block to be freed is outside the map\n");
374  		return -EIO;
375  	}
376  
377  	/**
378  	 * TRIM the blocks, when mounted with discard option
379  	 */
380  	if (JFS_SBI(sb)->flag & JFS_DISCARD)
381  		if (JFS_SBI(sb)->minblks_trim <= nblocks)
382  			jfs_issue_discard(ipbmap, blkno, nblocks);
383  
384  	/*
385  	 * free the blocks a dmap at a time.
386  	 */
387  	mp = NULL;
388  	for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
389  		/* release previous dmap if any */
390  		if (mp) {
391  			write_metapage(mp);
392  		}
393  
394  		/* get the buffer for the current dmap. */
395  		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
396  		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
397  		if (mp == NULL) {
398  			IREAD_UNLOCK(ipbmap);
399  			return -EIO;
400  		}
401  		dp = (struct dmap *) mp->data;
402  
403  		/* determine the number of blocks to be freed from
404  		 * this dmap.
405  		 */
406  		nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
407  
408  		/* free the blocks. */
409  		if ((rc = dbFreeDmap(bmp, dp, blkno, nb))) {
410  			jfs_error(ip->i_sb, "error in block map\n");
411  			release_metapage(mp);
412  			IREAD_UNLOCK(ipbmap);
413  			return (rc);
414  		}
415  	}
416  
417  	/* write the last buffer. */
418  	if (mp)
419  		write_metapage(mp);
420  
421  	IREAD_UNLOCK(ipbmap);
422  
423  	return (0);
424  }
425  
426  
427  /*
428   * NAME:	dbUpdatePMap()
429   *
430   * FUNCTION:	update the allocation state (free or allocate) of the
431   *		specified block range in the persistent block allocation map.
432   *
433   *		the blocks will be updated in the persistent map one
434   *		dmap at a time.
435   *
436   * PARAMETERS:
437   *	ipbmap	- pointer to in-core inode for the block map.
438   *	free	- 'true' if block range is to be freed from the persistent
439   *		  map; 'false' if it is to be allocated.
440   *	blkno	- starting block number of the range.
441   *	nblocks	- number of contiguous blocks in the range.
442   *	tblk	- transaction block;
443   *
444   * RETURN VALUES:
445   *	0	- success
446   *	-EIO	- i/o error
447   */
448  int
dbUpdatePMap(struct inode * ipbmap,int free,s64 blkno,s64 nblocks,struct tblock * tblk)449  dbUpdatePMap(struct inode *ipbmap,
450  	     int free, s64 blkno, s64 nblocks, struct tblock * tblk)
451  {
452  	int nblks, dbitno, wbitno, rbits;
453  	int word, nbits, nwords;
454  	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
455  	s64 lblkno, rem, lastlblkno;
456  	u32 mask;
457  	struct dmap *dp;
458  	struct metapage *mp;
459  	struct jfs_log *log;
460  	int lsn, difft, diffp;
461  	unsigned long flags;
462  
463  	/* the blocks better be within the mapsize. */
464  	if (blkno + nblocks > bmp->db_mapsize) {
465  		printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
466  		       (unsigned long long) blkno,
467  		       (unsigned long long) nblocks);
468  		jfs_error(ipbmap->i_sb, "blocks are outside the map\n");
469  		return -EIO;
470  	}
471  
472  	/* compute delta of transaction lsn from log syncpt */
473  	lsn = tblk->lsn;
474  	log = (struct jfs_log *) JFS_SBI(tblk->sb)->log;
475  	logdiff(difft, lsn, log);
476  
477  	/*
478  	 * update the block state a dmap at a time.
479  	 */
480  	mp = NULL;
481  	lastlblkno = 0;
482  	for (rem = nblocks; rem > 0; rem -= nblks, blkno += nblks) {
483  		/* get the buffer for the current dmap. */
484  		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
485  		if (lblkno != lastlblkno) {
486  			if (mp) {
487  				write_metapage(mp);
488  			}
489  
490  			mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE,
491  					   0);
492  			if (mp == NULL)
493  				return -EIO;
494  			metapage_wait_for_io(mp);
495  		}
496  		dp = (struct dmap *) mp->data;
497  
498  		/* determine the bit number and word within the dmap of
499  		 * the starting block.  also determine how many blocks
500  		 * are to be updated within this dmap.
501  		 */
502  		dbitno = blkno & (BPERDMAP - 1);
503  		word = dbitno >> L2DBWORD;
504  		nblks = min(rem, (s64)BPERDMAP - dbitno);
505  
506  		/* update the bits of the dmap words. the first and last
507  		 * words may only have a subset of their bits updated. if
508  		 * this is the case, we'll work against that word (i.e.
509  		 * partial first and/or last) only in a single pass.  a
510  		 * single pass will also be used to update all words that
511  		 * are to have all their bits updated.
512  		 */
513  		for (rbits = nblks; rbits > 0;
514  		     rbits -= nbits, dbitno += nbits) {
515  			/* determine the bit number within the word and
516  			 * the number of bits within the word.
517  			 */
518  			wbitno = dbitno & (DBWORD - 1);
519  			nbits = min(rbits, DBWORD - wbitno);
520  
521  			/* check if only part of the word is to be updated. */
522  			if (nbits < DBWORD) {
523  				/* update (free or allocate) the bits
524  				 * in this word.
525  				 */
526  				mask =
527  				    (ONES << (DBWORD - nbits) >> wbitno);
528  				if (free)
529  					dp->pmap[word] &=
530  					    cpu_to_le32(~mask);
531  				else
532  					dp->pmap[word] |=
533  					    cpu_to_le32(mask);
534  
535  				word += 1;
536  			} else {
537  				/* one or more words are to have all
538  				 * their bits updated.  determine how
539  				 * many words and how many bits.
540  				 */
541  				nwords = rbits >> L2DBWORD;
542  				nbits = nwords << L2DBWORD;
543  
544  				/* update (free or allocate) the bits
545  				 * in these words.
546  				 */
547  				if (free)
548  					memset(&dp->pmap[word], 0,
549  					       nwords * 4);
550  				else
551  					memset(&dp->pmap[word], (int) ONES,
552  					       nwords * 4);
553  
554  				word += nwords;
555  			}
556  		}
557  
558  		/*
559  		 * update dmap lsn
560  		 */
561  		if (lblkno == lastlblkno)
562  			continue;
563  
564  		lastlblkno = lblkno;
565  
566  		LOGSYNC_LOCK(log, flags);
567  		if (mp->lsn != 0) {
568  			/* inherit older/smaller lsn */
569  			logdiff(diffp, mp->lsn, log);
570  			if (difft < diffp) {
571  				mp->lsn = lsn;
572  
573  				/* move bp after tblock in logsync list */
574  				list_move(&mp->synclist, &tblk->synclist);
575  			}
576  
577  			/* inherit younger/larger clsn */
578  			logdiff(difft, tblk->clsn, log);
579  			logdiff(diffp, mp->clsn, log);
580  			if (difft > diffp)
581  				mp->clsn = tblk->clsn;
582  		} else {
583  			mp->log = log;
584  			mp->lsn = lsn;
585  
586  			/* insert bp after tblock in logsync list */
587  			log->count++;
588  			list_add(&mp->synclist, &tblk->synclist);
589  
590  			mp->clsn = tblk->clsn;
591  		}
592  		LOGSYNC_UNLOCK(log, flags);
593  	}
594  
595  	/* write the last buffer. */
596  	if (mp) {
597  		write_metapage(mp);
598  	}
599  
600  	return (0);
601  }
602  
603  
604  /*
605   * NAME:	dbNextAG()
606   *
607   * FUNCTION:	find the preferred allocation group for new allocations.
608   *
609   *		Within the allocation groups, we maintain a preferred
610   *		allocation group which consists of a group with at least
611   *		average free space.  It is the preferred group that we target
612   *		new inode allocation towards.  The tie-in between inode
613   *		allocation and block allocation occurs as we allocate the
614   *		first (data) block of an inode and specify the inode (block)
615   *		as the allocation hint for this block.
616   *
617   *		We try to avoid having more than one open file growing in
618   *		an allocation group, as this will lead to fragmentation.
619   *		This differs from the old OS/2 method of trying to keep
620   *		empty ags around for large allocations.
621   *
622   * PARAMETERS:
623   *	ipbmap	- pointer to in-core inode for the block map.
624   *
625   * RETURN VALUES:
626   *	the preferred allocation group number.
627   */
dbNextAG(struct inode * ipbmap)628  int dbNextAG(struct inode *ipbmap)
629  {
630  	s64 avgfree;
631  	int agpref;
632  	s64 hwm = 0;
633  	int i;
634  	int next_best = -1;
635  	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
636  
637  	BMAP_LOCK(bmp);
638  
639  	/* determine the average number of free blocks within the ags. */
640  	avgfree = (u32)bmp->db_nfree / bmp->db_numag;
641  
642  	/*
643  	 * if the current preferred ag does not have an active allocator
644  	 * and has at least average freespace, return it
645  	 */
646  	agpref = bmp->db_agpref;
647  	if ((atomic_read(&bmp->db_active[agpref]) == 0) &&
648  	    (bmp->db_agfree[agpref] >= avgfree))
649  		goto unlock;
650  
651  	/* From the last preferred ag, find the next one with at least
652  	 * average free space.
653  	 */
654  	for (i = 0 ; i < bmp->db_numag; i++, agpref++) {
655  		if (agpref >= bmp->db_numag)
656  			agpref = 0;
657  
658  		if (atomic_read(&bmp->db_active[agpref]))
659  			/* open file is currently growing in this ag */
660  			continue;
661  		if (bmp->db_agfree[agpref] >= avgfree) {
662  			/* Return this one */
663  			bmp->db_agpref = agpref;
664  			goto unlock;
665  		} else if (bmp->db_agfree[agpref] > hwm) {
666  			/* Less than avg. freespace, but best so far */
667  			hwm = bmp->db_agfree[agpref];
668  			next_best = agpref;
669  		}
670  	}
671  
672  	/*
673  	 * If no inactive ag was found with average freespace, use the
674  	 * next best
675  	 */
676  	if (next_best != -1)
677  		bmp->db_agpref = next_best;
678  	/* else leave db_agpref unchanged */
679  unlock:
680  	BMAP_UNLOCK(bmp);
681  
682  	/* return the preferred group.
683  	 */
684  	return (bmp->db_agpref);
685  }
686  
687  /*
688   * NAME:	dbAlloc()
689   *
690   * FUNCTION:	attempt to allocate a specified number of contiguous free
691   *		blocks from the working allocation block map.
692   *
693   *		the block allocation policy uses hints and a multi-step
694   *		approach.
695   *
696   *		for allocation requests smaller than the number of blocks
697   *		per dmap, we first try to allocate the new blocks
698   *		immediately following the hint.  if these blocks are not
699   *		available, we try to allocate blocks near the hint.  if
700   *		no blocks near the hint are available, we next try to
701   *		allocate within the same dmap as contains the hint.
702   *
703   *		if no blocks are available in the dmap or the allocation
704   *		request is larger than the dmap size, we try to allocate
705   *		within the same allocation group as contains the hint. if
706   *		this does not succeed, we finally try to allocate anywhere
707   *		within the aggregate.
708   *
709   *		we also try to allocate anywhere within the aggregate
710   *		for allocation requests larger than the allocation group
711   *		size or requests that specify no hint value.
712   *
713   * PARAMETERS:
714   *	ip	- pointer to in-core inode;
715   *	hint	- allocation hint.
716   *	nblocks	- number of contiguous blocks in the range.
717   *	results	- on successful return, set to the starting block number
718   *		  of the newly allocated contiguous range.
719   *
720   * RETURN VALUES:
721   *	0	- success
722   *	-ENOSPC	- insufficient disk resources
723   *	-EIO	- i/o error
724   */
dbAlloc(struct inode * ip,s64 hint,s64 nblocks,s64 * results)725  int dbAlloc(struct inode *ip, s64 hint, s64 nblocks, s64 * results)
726  {
727  	int rc, agno;
728  	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
729  	struct bmap *bmp;
730  	struct metapage *mp;
731  	s64 lblkno, blkno;
732  	struct dmap *dp;
733  	int l2nb;
734  	s64 mapSize;
735  	int writers;
736  
737  	/* assert that nblocks is valid */
738  	assert(nblocks > 0);
739  
740  	/* get the log2 number of blocks to be allocated.
741  	 * if the number of blocks is not a log2 multiple,
742  	 * it will be rounded up to the next log2 multiple.
743  	 */
744  	l2nb = BLKSTOL2(nblocks);
745  
746  	bmp = JFS_SBI(ip->i_sb)->bmap;
747  
748  	mapSize = bmp->db_mapsize;
749  
750  	/* the hint should be within the map */
751  	if (hint >= mapSize) {
752  		jfs_error(ip->i_sb, "the hint is outside the map\n");
753  		return -EIO;
754  	}
755  
756  	/* if the number of blocks to be allocated is greater than the
757  	 * allocation group size, try to allocate anywhere.
758  	 */
759  	if (l2nb > bmp->db_agl2size) {
760  		IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
761  
762  		rc = dbAllocAny(bmp, nblocks, l2nb, results);
763  
764  		goto write_unlock;
765  	}
766  
767  	/*
768  	 * If no hint, let dbNextAG recommend an allocation group
769  	 */
770  	if (hint == 0)
771  		goto pref_ag;
772  
773  	/* we would like to allocate close to the hint.  adjust the
774  	 * hint to the block following the hint since the allocators
775  	 * will start looking for free space starting at this point.
776  	 */
777  	blkno = hint + 1;
778  
779  	if (blkno >= bmp->db_mapsize)
780  		goto pref_ag;
781  
782  	agno = blkno >> bmp->db_agl2size;
783  
784  	/* check if blkno crosses over into a new allocation group.
785  	 * if so, check if we should allow allocations within this
786  	 * allocation group.
787  	 */
788  	if ((blkno & (bmp->db_agsize - 1)) == 0)
789  		/* check if the AG is currently being written to.
790  		 * if so, call dbNextAG() to find a non-busy
791  		 * AG with sufficient free space.
792  		 */
793  		if (atomic_read(&bmp->db_active[agno]))
794  			goto pref_ag;
795  
796  	/* check if the allocation request size can be satisfied from a
797  	 * single dmap.  if so, try to allocate from the dmap containing
798  	 * the hint using a tiered strategy.
799  	 */
800  	if (nblocks <= BPERDMAP) {
801  		IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
802  
803  		/* get the buffer for the dmap containing the hint.
804  		 */
805  		rc = -EIO;
806  		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
807  		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
808  		if (mp == NULL)
809  			goto read_unlock;
810  
811  		dp = (struct dmap *) mp->data;
812  
813  		/* first, try to satisfy the allocation request with the
814  		 * blocks beginning at the hint.
815  		 */
816  		if ((rc = dbAllocNext(bmp, dp, blkno, (int) nblocks))
817  		    != -ENOSPC) {
818  			if (rc == 0) {
819  				*results = blkno;
820  				mark_metapage_dirty(mp);
821  			}
822  
823  			release_metapage(mp);
824  			goto read_unlock;
825  		}
826  
827  		writers = atomic_read(&bmp->db_active[agno]);
828  		if ((writers > 1) ||
829  		    ((writers == 1) && (JFS_IP(ip)->active_ag != agno))) {
830  			/*
831  			 * Someone else is writing in this allocation
832  			 * group.  To avoid fragmenting, try another ag
833  			 */
834  			release_metapage(mp);
835  			IREAD_UNLOCK(ipbmap);
836  			goto pref_ag;
837  		}
838  
839  		/* next, try to satisfy the allocation request with blocks
840  		 * near the hint.
841  		 */
842  		if ((rc =
843  		     dbAllocNear(bmp, dp, blkno, (int) nblocks, l2nb, results))
844  		    != -ENOSPC) {
845  			if (rc == 0)
846  				mark_metapage_dirty(mp);
847  
848  			release_metapage(mp);
849  			goto read_unlock;
850  		}
851  
852  		/* try to satisfy the allocation request with blocks within
853  		 * the same dmap as the hint.
854  		 */
855  		if ((rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results))
856  		    != -ENOSPC) {
857  			if (rc == 0)
858  				mark_metapage_dirty(mp);
859  
860  			release_metapage(mp);
861  			goto read_unlock;
862  		}
863  
864  		release_metapage(mp);
865  		IREAD_UNLOCK(ipbmap);
866  	}
867  
868  	/* try to satisfy the allocation request with blocks within
869  	 * the same allocation group as the hint.
870  	 */
871  	IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
872  	if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) != -ENOSPC)
873  		goto write_unlock;
874  
875  	IWRITE_UNLOCK(ipbmap);
876  
877  
878        pref_ag:
879  	/*
880  	 * Let dbNextAG recommend a preferred allocation group
881  	 */
882  	agno = dbNextAG(ipbmap);
883  	IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
884  
885  	/* Try to allocate within this allocation group.  if that fails, try to
886  	 * allocate anywhere in the map.
887  	 */
888  	if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) == -ENOSPC)
889  		rc = dbAllocAny(bmp, nblocks, l2nb, results);
890  
891        write_unlock:
892  	IWRITE_UNLOCK(ipbmap);
893  
894  	return (rc);
895  
896        read_unlock:
897  	IREAD_UNLOCK(ipbmap);
898  
899  	return (rc);
900  }
901  
902  /*
903   * NAME:	dbReAlloc()
904   *
905   * FUNCTION:	attempt to extend a current allocation by a specified
906   *		number of blocks.
907   *
908   *		this routine attempts to satisfy the allocation request
909   *		by first trying to extend the existing allocation in
910   *		place by allocating the additional blocks as the blocks
911   *		immediately following the current allocation.  if these
912   *		blocks are not available, this routine will attempt to
913   *		allocate a new set of contiguous blocks large enough
914   *		to cover the existing allocation plus the additional
915   *		number of blocks required.
916   *
917   * PARAMETERS:
918   *	ip	    -  pointer to in-core inode requiring allocation.
919   *	blkno	    -  starting block of the current allocation.
920   *	nblocks	    -  number of contiguous blocks within the current
921   *		       allocation.
922   *	addnblocks  -  number of blocks to add to the allocation.
923   *	results	-      on successful return, set to the starting block number
924   *		       of the existing allocation if the existing allocation
925   *		       was extended in place or to a newly allocated contiguous
926   *		       range if the existing allocation could not be extended
927   *		       in place.
928   *
929   * RETURN VALUES:
930   *	0	- success
931   *	-ENOSPC	- insufficient disk resources
932   *	-EIO	- i/o error
933   */
934  int
dbReAlloc(struct inode * ip,s64 blkno,s64 nblocks,s64 addnblocks,s64 * results)935  dbReAlloc(struct inode *ip,
936  	  s64 blkno, s64 nblocks, s64 addnblocks, s64 * results)
937  {
938  	int rc;
939  
940  	/* try to extend the allocation in place.
941  	 */
942  	if ((rc = dbExtend(ip, blkno, nblocks, addnblocks)) == 0) {
943  		*results = blkno;
944  		return (0);
945  	} else {
946  		if (rc != -ENOSPC)
947  			return (rc);
948  	}
949  
950  	/* could not extend the allocation in place, so allocate a
951  	 * new set of blocks for the entire request (i.e. try to get
952  	 * a range of contiguous blocks large enough to cover the
953  	 * existing allocation plus the additional blocks.)
954  	 */
955  	return (dbAlloc
956  		(ip, blkno + nblocks - 1, addnblocks + nblocks, results));
957  }
958  
959  
960  /*
961   * NAME:	dbExtend()
962   *
963   * FUNCTION:	attempt to extend a current allocation by a specified
964   *		number of blocks.
965   *
966   *		this routine attempts to satisfy the allocation request
967   *		by first trying to extend the existing allocation in
968   *		place by allocating the additional blocks as the blocks
969   *		immediately following the current allocation.
970   *
971   * PARAMETERS:
972   *	ip	    -  pointer to in-core inode requiring allocation.
973   *	blkno	    -  starting block of the current allocation.
974   *	nblocks	    -  number of contiguous blocks within the current
975   *		       allocation.
976   *	addnblocks  -  number of blocks to add to the allocation.
977   *
978   * RETURN VALUES:
979   *	0	- success
980   *	-ENOSPC	- insufficient disk resources
981   *	-EIO	- i/o error
982   */
dbExtend(struct inode * ip,s64 blkno,s64 nblocks,s64 addnblocks)983  static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks)
984  {
985  	struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
986  	s64 lblkno, lastblkno, extblkno;
987  	uint rel_block;
988  	struct metapage *mp;
989  	struct dmap *dp;
990  	int rc;
991  	struct inode *ipbmap = sbi->ipbmap;
992  	struct bmap *bmp;
993  
994  	/*
995  	 * We don't want a non-aligned extent to cross a page boundary
996  	 */
997  	if (((rel_block = blkno & (sbi->nbperpage - 1))) &&
998  	    (rel_block + nblocks + addnblocks > sbi->nbperpage))
999  		return -ENOSPC;
1000  
1001  	/* get the last block of the current allocation */
1002  	lastblkno = blkno + nblocks - 1;
1003  
1004  	/* determine the block number of the block following
1005  	 * the existing allocation.
1006  	 */
1007  	extblkno = lastblkno + 1;
1008  
1009  	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
1010  
1011  	/* better be within the file system */
1012  	bmp = sbi->bmap;
1013  	if (lastblkno < 0 || lastblkno >= bmp->db_mapsize) {
1014  		IREAD_UNLOCK(ipbmap);
1015  		jfs_error(ip->i_sb, "the block is outside the filesystem\n");
1016  		return -EIO;
1017  	}
1018  
1019  	/* we'll attempt to extend the current allocation in place by
1020  	 * allocating the additional blocks as the blocks immediately
1021  	 * following the current allocation.  we only try to extend the
1022  	 * current allocation in place if the number of additional blocks
1023  	 * can fit into a dmap, the last block of the current allocation
1024  	 * is not the last block of the file system, and the start of the
1025  	 * inplace extension is not on an allocation group boundary.
1026  	 */
1027  	if (addnblocks > BPERDMAP || extblkno >= bmp->db_mapsize ||
1028  	    (extblkno & (bmp->db_agsize - 1)) == 0) {
1029  		IREAD_UNLOCK(ipbmap);
1030  		return -ENOSPC;
1031  	}
1032  
1033  	/* get the buffer for the dmap containing the first block
1034  	 * of the extension.
1035  	 */
1036  	lblkno = BLKTODMAP(extblkno, bmp->db_l2nbperpage);
1037  	mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
1038  	if (mp == NULL) {
1039  		IREAD_UNLOCK(ipbmap);
1040  		return -EIO;
1041  	}
1042  
1043  	dp = (struct dmap *) mp->data;
1044  
1045  	/* try to allocate the blocks immediately following the
1046  	 * current allocation.
1047  	 */
1048  	rc = dbAllocNext(bmp, dp, extblkno, (int) addnblocks);
1049  
1050  	IREAD_UNLOCK(ipbmap);
1051  
1052  	/* were we successful ? */
1053  	if (rc == 0)
1054  		write_metapage(mp);
1055  	else
1056  		/* we were not successful */
1057  		release_metapage(mp);
1058  
1059  	return (rc);
1060  }
1061  
1062  
1063  /*
1064   * NAME:	dbAllocNext()
1065   *
1066   * FUNCTION:	attempt to allocate the blocks of the specified block
1067   *		range within a dmap.
1068   *
1069   * PARAMETERS:
1070   *	bmp	-  pointer to bmap descriptor
1071   *	dp	-  pointer to dmap.
1072   *	blkno	-  starting block number of the range.
1073   *	nblocks	-  number of contiguous free blocks of the range.
1074   *
1075   * RETURN VALUES:
1076   *	0	- success
1077   *	-ENOSPC	- insufficient disk resources
1078   *	-EIO	- i/o error
1079   *
1080   * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1081   */
dbAllocNext(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)1082  static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
1083  		       int nblocks)
1084  {
1085  	int dbitno, word, rembits, nb, nwords, wbitno, nw;
1086  	int l2size;
1087  	s8 *leaf;
1088  	u32 mask;
1089  
1090  	if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1091  		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1092  		return -EIO;
1093  	}
1094  
1095  	/* pick up a pointer to the leaves of the dmap tree.
1096  	 */
1097  	leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1098  
1099  	/* determine the bit number and word within the dmap of the
1100  	 * starting block.
1101  	 */
1102  	dbitno = blkno & (BPERDMAP - 1);
1103  	word = dbitno >> L2DBWORD;
1104  
1105  	/* check if the specified block range is contained within
1106  	 * this dmap.
1107  	 */
1108  	if (dbitno + nblocks > BPERDMAP)
1109  		return -ENOSPC;
1110  
1111  	/* check if the starting leaf indicates that anything
1112  	 * is free.
1113  	 */
1114  	if (leaf[word] == NOFREE)
1115  		return -ENOSPC;
1116  
1117  	/* check the dmaps words corresponding to block range to see
1118  	 * if the block range is free.  not all bits of the first and
1119  	 * last words may be contained within the block range.  if this
1120  	 * is the case, we'll work against those words (i.e. partial first
1121  	 * and/or last) on an individual basis (a single pass) and examine
1122  	 * the actual bits to determine if they are free.  a single pass
1123  	 * will be used for all dmap words fully contained within the
1124  	 * specified range.  within this pass, the leaves of the dmap
1125  	 * tree will be examined to determine if the blocks are free. a
1126  	 * single leaf may describe the free space of multiple dmap
1127  	 * words, so we may visit only a subset of the actual leaves
1128  	 * corresponding to the dmap words of the block range.
1129  	 */
1130  	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
1131  		/* determine the bit number within the word and
1132  		 * the number of bits within the word.
1133  		 */
1134  		wbitno = dbitno & (DBWORD - 1);
1135  		nb = min(rembits, DBWORD - wbitno);
1136  
1137  		/* check if only part of the word is to be examined.
1138  		 */
1139  		if (nb < DBWORD) {
1140  			/* check if the bits are free.
1141  			 */
1142  			mask = (ONES << (DBWORD - nb) >> wbitno);
1143  			if ((mask & ~le32_to_cpu(dp->wmap[word])) != mask)
1144  				return -ENOSPC;
1145  
1146  			word += 1;
1147  		} else {
1148  			/* one or more dmap words are fully contained
1149  			 * within the block range.  determine how many
1150  			 * words and how many bits.
1151  			 */
1152  			nwords = rembits >> L2DBWORD;
1153  			nb = nwords << L2DBWORD;
1154  
1155  			/* now examine the appropriate leaves to determine
1156  			 * if the blocks are free.
1157  			 */
1158  			while (nwords > 0) {
1159  				/* does the leaf describe any free space ?
1160  				 */
1161  				if (leaf[word] < BUDMIN)
1162  					return -ENOSPC;
1163  
1164  				/* determine the l2 number of bits provided
1165  				 * by this leaf.
1166  				 */
1167  				l2size =
1168  				    min_t(int, leaf[word], NLSTOL2BSZ(nwords));
1169  
1170  				/* determine how many words were handled.
1171  				 */
1172  				nw = BUDSIZE(l2size, BUDMIN);
1173  
1174  				nwords -= nw;
1175  				word += nw;
1176  			}
1177  		}
1178  	}
1179  
1180  	/* allocate the blocks.
1181  	 */
1182  	return (dbAllocDmap(bmp, dp, blkno, nblocks));
1183  }
1184  
1185  
1186  /*
1187   * NAME:	dbAllocNear()
1188   *
1189   * FUNCTION:	attempt to allocate a number of contiguous free blocks near
1190   *		a specified block (hint) within a dmap.
1191   *
1192   *		starting with the dmap leaf that covers the hint, we'll
1193   *		check the next four contiguous leaves for sufficient free
1194   *		space.  if sufficient free space is found, we'll allocate
1195   *		the desired free space.
1196   *
1197   * PARAMETERS:
1198   *	bmp	-  pointer to bmap descriptor
1199   *	dp	-  pointer to dmap.
1200   *	blkno	-  block number to allocate near.
1201   *	nblocks	-  actual number of contiguous free blocks desired.
1202   *	l2nb	-  log2 number of contiguous free blocks desired.
1203   *	results	-  on successful return, set to the starting block number
1204   *		   of the newly allocated range.
1205   *
1206   * RETURN VALUES:
1207   *	0	- success
1208   *	-ENOSPC	- insufficient disk resources
1209   *	-EIO	- i/o error
1210   *
1211   * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1212   */
1213  static int
dbAllocNear(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks,int l2nb,s64 * results)1214  dbAllocNear(struct bmap * bmp,
1215  	    struct dmap * dp, s64 blkno, int nblocks, int l2nb, s64 * results)
1216  {
1217  	int word, lword, rc;
1218  	s8 *leaf;
1219  
1220  	if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1221  		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1222  		return -EIO;
1223  	}
1224  
1225  	leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1226  
1227  	/* determine the word within the dmap that holds the hint
1228  	 * (i.e. blkno).  also, determine the last word in the dmap
1229  	 * that we'll include in our examination.
1230  	 */
1231  	word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
1232  	lword = min(word + 4, LPERDMAP);
1233  
1234  	/* examine the leaves for sufficient free space.
1235  	 */
1236  	for (; word < lword; word++) {
1237  		/* does the leaf describe sufficient free space ?
1238  		 */
1239  		if (leaf[word] < l2nb)
1240  			continue;
1241  
1242  		/* determine the block number within the file system
1243  		 * of the first block described by this dmap word.
1244  		 */
1245  		blkno = le64_to_cpu(dp->start) + (word << L2DBWORD);
1246  
1247  		/* if not all bits of the dmap word are free, get the
1248  		 * starting bit number within the dmap word of the required
1249  		 * string of free bits and adjust the block number with the
1250  		 * value.
1251  		 */
1252  		if (leaf[word] < BUDMIN)
1253  			blkno +=
1254  			    dbFindBits(le32_to_cpu(dp->wmap[word]), l2nb);
1255  
1256  		/* allocate the blocks.
1257  		 */
1258  		if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1259  			*results = blkno;
1260  
1261  		return (rc);
1262  	}
1263  
1264  	return -ENOSPC;
1265  }
1266  
1267  
1268  /*
1269   * NAME:	dbAllocAG()
1270   *
1271   * FUNCTION:	attempt to allocate the specified number of contiguous
1272   *		free blocks within the specified allocation group.
1273   *
1274   *		unless the allocation group size is equal to the number
1275   *		of blocks per dmap, the dmap control pages will be used to
1276   *		find the required free space, if available.  we start the
1277   *		search at the highest dmap control page level which
1278   *		distinctly describes the allocation group's free space
1279   *		(i.e. the highest level at which the allocation group's
1280   *		free space is not mixed in with that of any other group).
1281   *		in addition, we start the search within this level at a
1282   *		height of the dmapctl dmtree at which the nodes distinctly
1283   *		describe the allocation group's free space.  at this height,
1284   *		the allocation group's free space may be represented by 1
1285   *		or two sub-trees, depending on the allocation group size.
1286   *		we search the top nodes of these subtrees left to right for
1287   *		sufficient free space.  if sufficient free space is found,
1288   *		the subtree is searched to find the leftmost leaf that
1289   *		has free space.  once we have made it to the leaf, we
1290   *		move the search to the next lower level dmap control page
1291   *		corresponding to this leaf.  we continue down the dmap control
1292   *		pages until we find the dmap that contains or starts the
1293   *		sufficient free space and we allocate at this dmap.
1294   *
1295   *		if the allocation group size is equal to the dmap size,
1296   *		we'll start at the dmap corresponding to the allocation
1297   *		group and attempt the allocation at this level.
1298   *
1299   *		the dmap control page search is also not performed if the
1300   *		allocation group is completely free and we go to the first
1301   *		dmap of the allocation group to do the allocation.  this is
1302   *		done because the allocation group may be part (not the first
1303   *		part) of a larger binary buddy system, causing the dmap
1304   *		control pages to indicate no free space (NOFREE) within
1305   *		the allocation group.
1306   *
1307   * PARAMETERS:
1308   *	bmp	-  pointer to bmap descriptor
1309   *	agno	- allocation group number.
1310   *	nblocks	-  actual number of contiguous free blocks desired.
1311   *	l2nb	-  log2 number of contiguous free blocks desired.
1312   *	results	-  on successful return, set to the starting block number
1313   *		   of the newly allocated range.
1314   *
1315   * RETURN VALUES:
1316   *	0	- success
1317   *	-ENOSPC	- insufficient disk resources
1318   *	-EIO	- i/o error
1319   *
1320   * note: IWRITE_LOCK(ipmap) held on entry/exit;
1321   */
1322  static int
dbAllocAG(struct bmap * bmp,int agno,s64 nblocks,int l2nb,s64 * results)1323  dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb, s64 * results)
1324  {
1325  	struct metapage *mp;
1326  	struct dmapctl *dcp;
1327  	int rc, ti, i, k, m, n, agperlev;
1328  	s64 blkno, lblkno;
1329  	int budmin;
1330  
1331  	/* allocation request should not be for more than the
1332  	 * allocation group size.
1333  	 */
1334  	if (l2nb > bmp->db_agl2size) {
1335  		jfs_error(bmp->db_ipbmap->i_sb,
1336  			  "allocation request is larger than the allocation group size\n");
1337  		return -EIO;
1338  	}
1339  
1340  	/* determine the starting block number of the allocation
1341  	 * group.
1342  	 */
1343  	blkno = (s64) agno << bmp->db_agl2size;
1344  
1345  	/* check if the allocation group size is the minimum allocation
1346  	 * group size or if the allocation group is completely free. if
1347  	 * the allocation group size is the minimum size of BPERDMAP (i.e.
1348  	 * 1 dmap), there is no need to search the dmap control page (below)
1349  	 * that fully describes the allocation group since the allocation
1350  	 * group is already fully described by a dmap.  in this case, we
1351  	 * just call dbAllocCtl() to search the dmap tree and allocate the
1352  	 * required space if available.
1353  	 *
1354  	 * if the allocation group is completely free, dbAllocCtl() is
1355  	 * also called to allocate the required space.  this is done for
1356  	 * two reasons.  first, it makes no sense searching the dmap control
1357  	 * pages for free space when we know that free space exists.  second,
1358  	 * the dmap control pages may indicate that the allocation group
1359  	 * has no free space if the allocation group is part (not the first
1360  	 * part) of a larger binary buddy system.
1361  	 */
1362  	if (bmp->db_agsize == BPERDMAP
1363  	    || bmp->db_agfree[agno] == bmp->db_agsize) {
1364  		rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1365  		if ((rc == -ENOSPC) &&
1366  		    (bmp->db_agfree[agno] == bmp->db_agsize)) {
1367  			printk(KERN_ERR "blkno = %Lx, blocks = %Lx\n",
1368  			       (unsigned long long) blkno,
1369  			       (unsigned long long) nblocks);
1370  			jfs_error(bmp->db_ipbmap->i_sb,
1371  				  "dbAllocCtl failed in free AG\n");
1372  		}
1373  		return (rc);
1374  	}
1375  
1376  	/* the buffer for the dmap control page that fully describes the
1377  	 * allocation group.
1378  	 */
1379  	lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, bmp->db_aglevel);
1380  	mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1381  	if (mp == NULL)
1382  		return -EIO;
1383  	dcp = (struct dmapctl *) mp->data;
1384  	budmin = dcp->budmin;
1385  
1386  	if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1387  		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
1388  		release_metapage(mp);
1389  		return -EIO;
1390  	}
1391  
1392  	/* search the subtree(s) of the dmap control page that describes
1393  	 * the allocation group, looking for sufficient free space.  to begin,
1394  	 * determine how many allocation groups are represented in a dmap
1395  	 * control page at the control page level (i.e. L0, L1, L2) that
1396  	 * fully describes an allocation group. next, determine the starting
1397  	 * tree index of this allocation group within the control page.
1398  	 */
1399  	agperlev =
1400  	    (1 << (L2LPERCTL - (bmp->db_agheight << 1))) / bmp->db_agwidth;
1401  	ti = bmp->db_agstart + bmp->db_agwidth * (agno & (agperlev - 1));
1402  
1403  	/* dmap control page trees fan-out by 4 and a single allocation
1404  	 * group may be described by 1 or 2 subtrees within the ag level
1405  	 * dmap control page, depending upon the ag size. examine the ag's
1406  	 * subtrees for sufficient free space, starting with the leftmost
1407  	 * subtree.
1408  	 */
1409  	for (i = 0; i < bmp->db_agwidth; i++, ti++) {
1410  		/* is there sufficient free space ?
1411  		 */
1412  		if (l2nb > dcp->stree[ti])
1413  			continue;
1414  
1415  		/* sufficient free space found in a subtree. now search down
1416  		 * the subtree to find the leftmost leaf that describes this
1417  		 * free space.
1418  		 */
1419  		for (k = bmp->db_agheight; k > 0; k--) {
1420  			for (n = 0, m = (ti << 2) + 1; n < 4; n++) {
1421  				if (l2nb <= dcp->stree[m + n]) {
1422  					ti = m + n;
1423  					break;
1424  				}
1425  			}
1426  			if (n == 4) {
1427  				jfs_error(bmp->db_ipbmap->i_sb,
1428  					  "failed descending stree\n");
1429  				release_metapage(mp);
1430  				return -EIO;
1431  			}
1432  		}
1433  
1434  		/* determine the block number within the file system
1435  		 * that corresponds to this leaf.
1436  		 */
1437  		if (bmp->db_aglevel == 2)
1438  			blkno = 0;
1439  		else if (bmp->db_aglevel == 1)
1440  			blkno &= ~(MAXL1SIZE - 1);
1441  		else		/* bmp->db_aglevel == 0 */
1442  			blkno &= ~(MAXL0SIZE - 1);
1443  
1444  		blkno +=
1445  		    ((s64) (ti - le32_to_cpu(dcp->leafidx))) << budmin;
1446  
1447  		/* release the buffer in preparation for going down
1448  		 * the next level of dmap control pages.
1449  		 */
1450  		release_metapage(mp);
1451  
1452  		/* check if we need to continue to search down the lower
1453  		 * level dmap control pages.  we need to if the number of
1454  		 * blocks required is less than maximum number of blocks
1455  		 * described at the next lower level.
1456  		 */
1457  		if (l2nb < budmin) {
1458  
1459  			/* search the lower level dmap control pages to get
1460  			 * the starting block number of the dmap that
1461  			 * contains or starts off the free space.
1462  			 */
1463  			if ((rc =
1464  			     dbFindCtl(bmp, l2nb, bmp->db_aglevel - 1,
1465  				       &blkno))) {
1466  				if (rc == -ENOSPC) {
1467  					jfs_error(bmp->db_ipbmap->i_sb,
1468  						  "control page inconsistent\n");
1469  					return -EIO;
1470  				}
1471  				return (rc);
1472  			}
1473  		}
1474  
1475  		/* allocate the blocks.
1476  		 */
1477  		rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1478  		if (rc == -ENOSPC) {
1479  			jfs_error(bmp->db_ipbmap->i_sb,
1480  				  "unable to allocate blocks\n");
1481  			rc = -EIO;
1482  		}
1483  		return (rc);
1484  	}
1485  
1486  	/* no space in the allocation group.  release the buffer and
1487  	 * return -ENOSPC.
1488  	 */
1489  	release_metapage(mp);
1490  
1491  	return -ENOSPC;
1492  }
1493  
1494  
1495  /*
1496   * NAME:	dbAllocAny()
1497   *
1498   * FUNCTION:	attempt to allocate the specified number of contiguous
1499   *		free blocks anywhere in the file system.
1500   *
1501   *		dbAllocAny() attempts to find the sufficient free space by
1502   *		searching down the dmap control pages, starting with the
1503   *		highest level (i.e. L0, L1, L2) control page.  if free space
1504   *		large enough to satisfy the desired free space is found, the
1505   *		desired free space is allocated.
1506   *
1507   * PARAMETERS:
1508   *	bmp	-  pointer to bmap descriptor
1509   *	nblocks	 -  actual number of contiguous free blocks desired.
1510   *	l2nb	 -  log2 number of contiguous free blocks desired.
1511   *	results	-  on successful return, set to the starting block number
1512   *		   of the newly allocated range.
1513   *
1514   * RETURN VALUES:
1515   *	0	- success
1516   *	-ENOSPC	- insufficient disk resources
1517   *	-EIO	- i/o error
1518   *
1519   * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1520   */
dbAllocAny(struct bmap * bmp,s64 nblocks,int l2nb,s64 * results)1521  static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results)
1522  {
1523  	int rc;
1524  	s64 blkno = 0;
1525  
1526  	/* starting with the top level dmap control page, search
1527  	 * down the dmap control levels for sufficient free space.
1528  	 * if free space is found, dbFindCtl() returns the starting
1529  	 * block number of the dmap that contains or starts off the
1530  	 * range of free space.
1531  	 */
1532  	if ((rc = dbFindCtl(bmp, l2nb, bmp->db_maxlevel, &blkno)))
1533  		return (rc);
1534  
1535  	/* allocate the blocks.
1536  	 */
1537  	rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1538  	if (rc == -ENOSPC) {
1539  		jfs_error(bmp->db_ipbmap->i_sb, "unable to allocate blocks\n");
1540  		return -EIO;
1541  	}
1542  	return (rc);
1543  }
1544  
1545  
1546  /*
1547   * NAME:	dbDiscardAG()
1548   *
1549   * FUNCTION:	attempt to discard (TRIM) all free blocks of specific AG
1550   *
1551   *		algorithm:
1552   *		1) allocate blocks, as large as possible and save them
1553   *		   while holding IWRITE_LOCK on ipbmap
1554   *		2) trim all these saved block/length values
1555   *		3) mark the blocks free again
1556   *
1557   *		benefit:
1558   *		- we work only on one ag at some time, minimizing how long we
1559   *		  need to lock ipbmap
1560   *		- reading / writing the fs is possible most time, even on
1561   *		  trimming
1562   *
1563   *		downside:
1564   *		- we write two times to the dmapctl and dmap pages
1565   *		- but for me, this seems the best way, better ideas?
1566   *		/TR 2012
1567   *
1568   * PARAMETERS:
1569   *	ip	- pointer to in-core inode
1570   *	agno	- ag to trim
1571   *	minlen	- minimum value of contiguous blocks
1572   *
1573   * RETURN VALUES:
1574   *	s64	- actual number of blocks trimmed
1575   */
dbDiscardAG(struct inode * ip,int agno,s64 minlen)1576  s64 dbDiscardAG(struct inode *ip, int agno, s64 minlen)
1577  {
1578  	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
1579  	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
1580  	s64 nblocks, blkno;
1581  	u64 trimmed = 0;
1582  	int rc, l2nb;
1583  	struct super_block *sb = ipbmap->i_sb;
1584  
1585  	struct range2trim {
1586  		u64 blkno;
1587  		u64 nblocks;
1588  	} *totrim, *tt;
1589  
1590  	/* max blkno / nblocks pairs to trim */
1591  	int count = 0, range_cnt;
1592  	u64 max_ranges;
1593  
1594  	/* prevent others from writing new stuff here, while trimming */
1595  	IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
1596  
1597  	nblocks = bmp->db_agfree[agno];
1598  	max_ranges = nblocks;
1599  	do_div(max_ranges, minlen);
1600  	range_cnt = min_t(u64, max_ranges + 1, 32 * 1024);
1601  	totrim = kmalloc_array(range_cnt, sizeof(struct range2trim), GFP_NOFS);
1602  	if (totrim == NULL) {
1603  		jfs_error(bmp->db_ipbmap->i_sb, "no memory for trim array\n");
1604  		IWRITE_UNLOCK(ipbmap);
1605  		return 0;
1606  	}
1607  
1608  	tt = totrim;
1609  	while (nblocks >= minlen) {
1610  		l2nb = BLKSTOL2(nblocks);
1611  
1612  		/* 0 = okay, -EIO = fatal, -ENOSPC -> try smaller block */
1613  		rc = dbAllocAG(bmp, agno, nblocks, l2nb, &blkno);
1614  		if (rc == 0) {
1615  			tt->blkno = blkno;
1616  			tt->nblocks = nblocks;
1617  			tt++; count++;
1618  
1619  			/* the whole ag is free, trim now */
1620  			if (bmp->db_agfree[agno] == 0)
1621  				break;
1622  
1623  			/* give a hint for the next while */
1624  			nblocks = bmp->db_agfree[agno];
1625  			continue;
1626  		} else if (rc == -ENOSPC) {
1627  			/* search for next smaller log2 block */
1628  			l2nb = BLKSTOL2(nblocks) - 1;
1629  			if (unlikely(l2nb < 0))
1630  				break;
1631  			nblocks = 1LL << l2nb;
1632  		} else {
1633  			/* Trim any already allocated blocks */
1634  			jfs_error(bmp->db_ipbmap->i_sb, "-EIO\n");
1635  			break;
1636  		}
1637  
1638  		/* check, if our trim array is full */
1639  		if (unlikely(count >= range_cnt - 1))
1640  			break;
1641  	}
1642  	IWRITE_UNLOCK(ipbmap);
1643  
1644  	tt->nblocks = 0; /* mark the current end */
1645  	for (tt = totrim; tt->nblocks != 0; tt++) {
1646  		/* when mounted with online discard, dbFree() will
1647  		 * call jfs_issue_discard() itself */
1648  		if (!(JFS_SBI(sb)->flag & JFS_DISCARD))
1649  			jfs_issue_discard(ip, tt->blkno, tt->nblocks);
1650  		dbFree(ip, tt->blkno, tt->nblocks);
1651  		trimmed += tt->nblocks;
1652  	}
1653  	kfree(totrim);
1654  
1655  	return trimmed;
1656  }
1657  
1658  /*
1659   * NAME:	dbFindCtl()
1660   *
1661   * FUNCTION:	starting at a specified dmap control page level and block
1662   *		number, search down the dmap control levels for a range of
1663   *		contiguous free blocks large enough to satisfy an allocation
1664   *		request for the specified number of free blocks.
1665   *
1666   *		if sufficient contiguous free blocks are found, this routine
1667   *		returns the starting block number within a dmap page that
1668   *		contains or starts a range of contiqious free blocks that
1669   *		is sufficient in size.
1670   *
1671   * PARAMETERS:
1672   *	bmp	-  pointer to bmap descriptor
1673   *	level	-  starting dmap control page level.
1674   *	l2nb	-  log2 number of contiguous free blocks desired.
1675   *	*blkno	-  on entry, starting block number for conducting the search.
1676   *		   on successful return, the first block within a dmap page
1677   *		   that contains or starts a range of contiguous free blocks.
1678   *
1679   * RETURN VALUES:
1680   *	0	- success
1681   *	-ENOSPC	- insufficient disk resources
1682   *	-EIO	- i/o error
1683   *
1684   * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1685   */
dbFindCtl(struct bmap * bmp,int l2nb,int level,s64 * blkno)1686  static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno)
1687  {
1688  	int rc, leafidx, lev;
1689  	s64 b, lblkno;
1690  	struct dmapctl *dcp;
1691  	int budmin;
1692  	struct metapage *mp;
1693  
1694  	/* starting at the specified dmap control page level and block
1695  	 * number, search down the dmap control levels for the starting
1696  	 * block number of a dmap page that contains or starts off
1697  	 * sufficient free blocks.
1698  	 */
1699  	for (lev = level, b = *blkno; lev >= 0; lev--) {
1700  		/* get the buffer of the dmap control page for the block
1701  		 * number and level (i.e. L0, L1, L2).
1702  		 */
1703  		lblkno = BLKTOCTL(b, bmp->db_l2nbperpage, lev);
1704  		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1705  		if (mp == NULL)
1706  			return -EIO;
1707  		dcp = (struct dmapctl *) mp->data;
1708  		budmin = dcp->budmin;
1709  
1710  		if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1711  			jfs_error(bmp->db_ipbmap->i_sb,
1712  				  "Corrupt dmapctl page\n");
1713  			release_metapage(mp);
1714  			return -EIO;
1715  		}
1716  
1717  		/* search the tree within the dmap control page for
1718  		 * sufficient free space.  if sufficient free space is found,
1719  		 * dbFindLeaf() returns the index of the leaf at which
1720  		 * free space was found.
1721  		 */
1722  		rc = dbFindLeaf((dmtree_t *) dcp, l2nb, &leafidx, true);
1723  
1724  		/* release the buffer.
1725  		 */
1726  		release_metapage(mp);
1727  
1728  		/* space found ?
1729  		 */
1730  		if (rc) {
1731  			if (lev != level) {
1732  				jfs_error(bmp->db_ipbmap->i_sb,
1733  					  "dmap inconsistent\n");
1734  				return -EIO;
1735  			}
1736  			return -ENOSPC;
1737  		}
1738  
1739  		/* adjust the block number to reflect the location within
1740  		 * the dmap control page (i.e. the leaf) at which free
1741  		 * space was found.
1742  		 */
1743  		b += (((s64) leafidx) << budmin);
1744  
1745  		/* we stop the search at this dmap control page level if
1746  		 * the number of blocks required is greater than or equal
1747  		 * to the maximum number of blocks described at the next
1748  		 * (lower) level.
1749  		 */
1750  		if (l2nb >= budmin)
1751  			break;
1752  	}
1753  
1754  	*blkno = b;
1755  	return (0);
1756  }
1757  
1758  
1759  /*
1760   * NAME:	dbAllocCtl()
1761   *
1762   * FUNCTION:	attempt to allocate a specified number of contiguous
1763   *		blocks starting within a specific dmap.
1764   *
1765   *		this routine is called by higher level routines that search
1766   *		the dmap control pages above the actual dmaps for contiguous
1767   *		free space.  the result of successful searches by these
1768   *		routines are the starting block numbers within dmaps, with
1769   *		the dmaps themselves containing the desired contiguous free
1770   *		space or starting a contiguous free space of desired size
1771   *		that is made up of the blocks of one or more dmaps. these
1772   *		calls should not fail due to insufficent resources.
1773   *
1774   *		this routine is called in some cases where it is not known
1775   *		whether it will fail due to insufficient resources.  more
1776   *		specifically, this occurs when allocating from an allocation
1777   *		group whose size is equal to the number of blocks per dmap.
1778   *		in this case, the dmap control pages are not examined prior
1779   *		to calling this routine (to save pathlength) and the call
1780   *		might fail.
1781   *
1782   *		for a request size that fits within a dmap, this routine relies
1783   *		upon the dmap's dmtree to find the requested contiguous free
1784   *		space.  for request sizes that are larger than a dmap, the
1785   *		requested free space will start at the first block of the
1786   *		first dmap (i.e. blkno).
1787   *
1788   * PARAMETERS:
1789   *	bmp	-  pointer to bmap descriptor
1790   *	nblocks	 -  actual number of contiguous free blocks to allocate.
1791   *	l2nb	 -  log2 number of contiguous free blocks to allocate.
1792   *	blkno	 -  starting block number of the dmap to start the allocation
1793   *		    from.
1794   *	results	-  on successful return, set to the starting block number
1795   *		   of the newly allocated range.
1796   *
1797   * RETURN VALUES:
1798   *	0	- success
1799   *	-ENOSPC	- insufficient disk resources
1800   *	-EIO	- i/o error
1801   *
1802   * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1803   */
1804  static int
dbAllocCtl(struct bmap * bmp,s64 nblocks,int l2nb,s64 blkno,s64 * results)1805  dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno, s64 * results)
1806  {
1807  	int rc, nb;
1808  	s64 b, lblkno, n;
1809  	struct metapage *mp;
1810  	struct dmap *dp;
1811  
1812  	/* check if the allocation request is confined to a single dmap.
1813  	 */
1814  	if (l2nb <= L2BPERDMAP) {
1815  		/* get the buffer for the dmap.
1816  		 */
1817  		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
1818  		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1819  		if (mp == NULL)
1820  			return -EIO;
1821  		dp = (struct dmap *) mp->data;
1822  
1823  		if (dp->tree.budmin < 0)
1824  			return -EIO;
1825  
1826  		/* try to allocate the blocks.
1827  		 */
1828  		rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results);
1829  		if (rc == 0)
1830  			mark_metapage_dirty(mp);
1831  
1832  		release_metapage(mp);
1833  
1834  		return (rc);
1835  	}
1836  
1837  	/* allocation request involving multiple dmaps. it must start on
1838  	 * a dmap boundary.
1839  	 */
1840  	assert((blkno & (BPERDMAP - 1)) == 0);
1841  
1842  	/* allocate the blocks dmap by dmap.
1843  	 */
1844  	for (n = nblocks, b = blkno; n > 0; n -= nb, b += nb) {
1845  		/* get the buffer for the dmap.
1846  		 */
1847  		lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1848  		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1849  		if (mp == NULL) {
1850  			rc = -EIO;
1851  			goto backout;
1852  		}
1853  		dp = (struct dmap *) mp->data;
1854  
1855  		/* the dmap better be all free.
1856  		 */
1857  		if (dp->tree.stree[ROOT] != L2BPERDMAP) {
1858  			release_metapage(mp);
1859  			jfs_error(bmp->db_ipbmap->i_sb,
1860  				  "the dmap is not all free\n");
1861  			rc = -EIO;
1862  			goto backout;
1863  		}
1864  
1865  		/* determine how many blocks to allocate from this dmap.
1866  		 */
1867  		nb = min_t(s64, n, BPERDMAP);
1868  
1869  		/* allocate the blocks from the dmap.
1870  		 */
1871  		if ((rc = dbAllocDmap(bmp, dp, b, nb))) {
1872  			release_metapage(mp);
1873  			goto backout;
1874  		}
1875  
1876  		/* write the buffer.
1877  		 */
1878  		write_metapage(mp);
1879  	}
1880  
1881  	/* set the results (starting block number) and return.
1882  	 */
1883  	*results = blkno;
1884  	return (0);
1885  
1886  	/* something failed in handling an allocation request involving
1887  	 * multiple dmaps.  we'll try to clean up by backing out any
1888  	 * allocation that has already happened for this request.  if
1889  	 * we fail in backing out the allocation, we'll mark the file
1890  	 * system to indicate that blocks have been leaked.
1891  	 */
1892        backout:
1893  
1894  	/* try to backout the allocations dmap by dmap.
1895  	 */
1896  	for (n = nblocks - n, b = blkno; n > 0;
1897  	     n -= BPERDMAP, b += BPERDMAP) {
1898  		/* get the buffer for this dmap.
1899  		 */
1900  		lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1901  		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1902  		if (mp == NULL) {
1903  			/* could not back out.  mark the file system
1904  			 * to indicate that we have leaked blocks.
1905  			 */
1906  			jfs_error(bmp->db_ipbmap->i_sb,
1907  				  "I/O Error: Block Leakage\n");
1908  			continue;
1909  		}
1910  		dp = (struct dmap *) mp->data;
1911  
1912  		/* free the blocks is this dmap.
1913  		 */
1914  		if (dbFreeDmap(bmp, dp, b, BPERDMAP)) {
1915  			/* could not back out.  mark the file system
1916  			 * to indicate that we have leaked blocks.
1917  			 */
1918  			release_metapage(mp);
1919  			jfs_error(bmp->db_ipbmap->i_sb, "Block Leakage\n");
1920  			continue;
1921  		}
1922  
1923  		/* write the buffer.
1924  		 */
1925  		write_metapage(mp);
1926  	}
1927  
1928  	return (rc);
1929  }
1930  
1931  
1932  /*
1933   * NAME:	dbAllocDmapLev()
1934   *
1935   * FUNCTION:	attempt to allocate a specified number of contiguous blocks
1936   *		from a specified dmap.
1937   *
1938   *		this routine checks if the contiguous blocks are available.
1939   *		if so, nblocks of blocks are allocated; otherwise, ENOSPC is
1940   *		returned.
1941   *
1942   * PARAMETERS:
1943   *	mp	-  pointer to bmap descriptor
1944   *	dp	-  pointer to dmap to attempt to allocate blocks from.
1945   *	l2nb	-  log2 number of contiguous block desired.
1946   *	nblocks	-  actual number of contiguous block desired.
1947   *	results	-  on successful return, set to the starting block number
1948   *		   of the newly allocated range.
1949   *
1950   * RETURN VALUES:
1951   *	0	- success
1952   *	-ENOSPC	- insufficient disk resources
1953   *	-EIO	- i/o error
1954   *
1955   * serialization: IREAD_LOCK(ipbmap), e.g., from dbAlloc(), or
1956   *	IWRITE_LOCK(ipbmap), e.g., dbAllocCtl(), held on entry/exit;
1957   */
1958  static int
dbAllocDmapLev(struct bmap * bmp,struct dmap * dp,int nblocks,int l2nb,s64 * results)1959  dbAllocDmapLev(struct bmap * bmp,
1960  	       struct dmap * dp, int nblocks, int l2nb, s64 * results)
1961  {
1962  	s64 blkno;
1963  	int leafidx, rc;
1964  
1965  	/* can't be more than a dmaps worth of blocks */
1966  	assert(l2nb <= L2BPERDMAP);
1967  
1968  	/* search the tree within the dmap page for sufficient
1969  	 * free space.  if sufficient free space is found, dbFindLeaf()
1970  	 * returns the index of the leaf at which free space was found.
1971  	 */
1972  	if (dbFindLeaf((dmtree_t *) &dp->tree, l2nb, &leafidx, false))
1973  		return -ENOSPC;
1974  
1975  	if (leafidx < 0)
1976  		return -EIO;
1977  
1978  	/* determine the block number within the file system corresponding
1979  	 * to the leaf at which free space was found.
1980  	 */
1981  	blkno = le64_to_cpu(dp->start) + (leafidx << L2DBWORD);
1982  
1983  	/* if not all bits of the dmap word are free, get the starting
1984  	 * bit number within the dmap word of the required string of free
1985  	 * bits and adjust the block number with this value.
1986  	 */
1987  	if (dp->tree.stree[leafidx + LEAFIND] < BUDMIN)
1988  		blkno += dbFindBits(le32_to_cpu(dp->wmap[leafidx]), l2nb);
1989  
1990  	/* allocate the blocks */
1991  	if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1992  		*results = blkno;
1993  
1994  	return (rc);
1995  }
1996  
1997  
1998  /*
1999   * NAME:	dbAllocDmap()
2000   *
2001   * FUNCTION:	adjust the disk allocation map to reflect the allocation
2002   *		of a specified block range within a dmap.
2003   *
2004   *		this routine allocates the specified blocks from the dmap
2005   *		through a call to dbAllocBits(). if the allocation of the
2006   *		block range causes the maximum string of free blocks within
2007   *		the dmap to change (i.e. the value of the root of the dmap's
2008   *		dmtree), this routine will cause this change to be reflected
2009   *		up through the appropriate levels of the dmap control pages
2010   *		by a call to dbAdjCtl() for the L0 dmap control page that
2011   *		covers this dmap.
2012   *
2013   * PARAMETERS:
2014   *	bmp	-  pointer to bmap descriptor
2015   *	dp	-  pointer to dmap to allocate the block range from.
2016   *	blkno	-  starting block number of the block to be allocated.
2017   *	nblocks	-  number of blocks to be allocated.
2018   *
2019   * RETURN VALUES:
2020   *	0	- success
2021   *	-EIO	- i/o error
2022   *
2023   * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2024   */
dbAllocDmap(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2025  static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2026  		       int nblocks)
2027  {
2028  	s8 oldroot;
2029  	int rc;
2030  
2031  	/* save the current value of the root (i.e. maximum free string)
2032  	 * of the dmap tree.
2033  	 */
2034  	oldroot = dp->tree.stree[ROOT];
2035  
2036  	/* allocate the specified (blocks) bits */
2037  	dbAllocBits(bmp, dp, blkno, nblocks);
2038  
2039  	/* if the root has not changed, done. */
2040  	if (dp->tree.stree[ROOT] == oldroot)
2041  		return (0);
2042  
2043  	/* root changed. bubble the change up to the dmap control pages.
2044  	 * if the adjustment of the upper level control pages fails,
2045  	 * backout the bit allocation (thus making everything consistent).
2046  	 */
2047  	if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 1, 0)))
2048  		dbFreeBits(bmp, dp, blkno, nblocks);
2049  
2050  	return (rc);
2051  }
2052  
2053  
2054  /*
2055   * NAME:	dbFreeDmap()
2056   *
2057   * FUNCTION:	adjust the disk allocation map to reflect the allocation
2058   *		of a specified block range within a dmap.
2059   *
2060   *		this routine frees the specified blocks from the dmap through
2061   *		a call to dbFreeBits(). if the deallocation of the block range
2062   *		causes the maximum string of free blocks within the dmap to
2063   *		change (i.e. the value of the root of the dmap's dmtree), this
2064   *		routine will cause this change to be reflected up through the
2065   *		appropriate levels of the dmap control pages by a call to
2066   *		dbAdjCtl() for the L0 dmap control page that covers this dmap.
2067   *
2068   * PARAMETERS:
2069   *	bmp	-  pointer to bmap descriptor
2070   *	dp	-  pointer to dmap to free the block range from.
2071   *	blkno	-  starting block number of the block to be freed.
2072   *	nblocks	-  number of blocks to be freed.
2073   *
2074   * RETURN VALUES:
2075   *	0	- success
2076   *	-EIO	- i/o error
2077   *
2078   * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2079   */
dbFreeDmap(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2080  static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2081  		      int nblocks)
2082  {
2083  	s8 oldroot;
2084  	int rc = 0, word;
2085  
2086  	/* save the current value of the root (i.e. maximum free string)
2087  	 * of the dmap tree.
2088  	 */
2089  	oldroot = dp->tree.stree[ROOT];
2090  
2091  	/* free the specified (blocks) bits */
2092  	rc = dbFreeBits(bmp, dp, blkno, nblocks);
2093  
2094  	/* if error or the root has not changed, done. */
2095  	if (rc || (dp->tree.stree[ROOT] == oldroot))
2096  		return (rc);
2097  
2098  	/* root changed. bubble the change up to the dmap control pages.
2099  	 * if the adjustment of the upper level control pages fails,
2100  	 * backout the deallocation.
2101  	 */
2102  	if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 0, 0))) {
2103  		word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
2104  
2105  		/* as part of backing out the deallocation, we will have
2106  		 * to back split the dmap tree if the deallocation caused
2107  		 * the freed blocks to become part of a larger binary buddy
2108  		 * system.
2109  		 */
2110  		if (dp->tree.stree[word] == NOFREE)
2111  			dbBackSplit((dmtree_t *)&dp->tree, word, false);
2112  
2113  		dbAllocBits(bmp, dp, blkno, nblocks);
2114  	}
2115  
2116  	return (rc);
2117  }
2118  
2119  
2120  /*
2121   * NAME:	dbAllocBits()
2122   *
2123   * FUNCTION:	allocate a specified block range from a dmap.
2124   *
2125   *		this routine updates the dmap to reflect the working
2126   *		state allocation of the specified block range. it directly
2127   *		updates the bits of the working map and causes the adjustment
2128   *		of the binary buddy system described by the dmap's dmtree
2129   *		leaves to reflect the bits allocated.  it also causes the
2130   *		dmap's dmtree, as a whole, to reflect the allocated range.
2131   *
2132   * PARAMETERS:
2133   *	bmp	-  pointer to bmap descriptor
2134   *	dp	-  pointer to dmap to allocate bits from.
2135   *	blkno	-  starting block number of the bits to be allocated.
2136   *	nblocks	-  number of bits to be allocated.
2137   *
2138   * RETURN VALUES: none
2139   *
2140   * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2141   */
dbAllocBits(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2142  static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2143  			int nblocks)
2144  {
2145  	int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2146  	dmtree_t *tp = (dmtree_t *) & dp->tree;
2147  	int size;
2148  	s8 *leaf;
2149  
2150  	/* pick up a pointer to the leaves of the dmap tree */
2151  	leaf = dp->tree.stree + LEAFIND;
2152  
2153  	/* determine the bit number and word within the dmap of the
2154  	 * starting block.
2155  	 */
2156  	dbitno = blkno & (BPERDMAP - 1);
2157  	word = dbitno >> L2DBWORD;
2158  
2159  	/* block range better be within the dmap */
2160  	assert(dbitno + nblocks <= BPERDMAP);
2161  
2162  	/* allocate the bits of the dmap's words corresponding to the block
2163  	 * range. not all bits of the first and last words may be contained
2164  	 * within the block range.  if this is the case, we'll work against
2165  	 * those words (i.e. partial first and/or last) on an individual basis
2166  	 * (a single pass), allocating the bits of interest by hand and
2167  	 * updating the leaf corresponding to the dmap word. a single pass
2168  	 * will be used for all dmap words fully contained within the
2169  	 * specified range.  within this pass, the bits of all fully contained
2170  	 * dmap words will be marked as free in a single shot and the leaves
2171  	 * will be updated. a single leaf may describe the free space of
2172  	 * multiple dmap words, so we may update only a subset of the actual
2173  	 * leaves corresponding to the dmap words of the block range.
2174  	 */
2175  	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2176  		/* determine the bit number within the word and
2177  		 * the number of bits within the word.
2178  		 */
2179  		wbitno = dbitno & (DBWORD - 1);
2180  		nb = min(rembits, DBWORD - wbitno);
2181  
2182  		/* check if only part of a word is to be allocated.
2183  		 */
2184  		if (nb < DBWORD) {
2185  			/* allocate (set to 1) the appropriate bits within
2186  			 * this dmap word.
2187  			 */
2188  			dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
2189  						      >> wbitno);
2190  
2191  			/* update the leaf for this dmap word. in addition
2192  			 * to setting the leaf value to the binary buddy max
2193  			 * of the updated dmap word, dbSplit() will split
2194  			 * the binary system of the leaves if need be.
2195  			 */
2196  			dbSplit(tp, word, BUDMIN,
2197  				dbMaxBud((u8 *)&dp->wmap[word]), false);
2198  
2199  			word += 1;
2200  		} else {
2201  			/* one or more dmap words are fully contained
2202  			 * within the block range.  determine how many
2203  			 * words and allocate (set to 1) the bits of these
2204  			 * words.
2205  			 */
2206  			nwords = rembits >> L2DBWORD;
2207  			memset(&dp->wmap[word], (int) ONES, nwords * 4);
2208  
2209  			/* determine how many bits.
2210  			 */
2211  			nb = nwords << L2DBWORD;
2212  
2213  			/* now update the appropriate leaves to reflect
2214  			 * the allocated words.
2215  			 */
2216  			for (; nwords > 0; nwords -= nw) {
2217  				if (leaf[word] < BUDMIN) {
2218  					jfs_error(bmp->db_ipbmap->i_sb,
2219  						  "leaf page corrupt\n");
2220  					break;
2221  				}
2222  
2223  				/* determine what the leaf value should be
2224  				 * updated to as the minimum of the l2 number
2225  				 * of bits being allocated and the l2 number
2226  				 * of bits currently described by this leaf.
2227  				 */
2228  				size = min_t(int, leaf[word],
2229  					     NLSTOL2BSZ(nwords));
2230  
2231  				/* update the leaf to reflect the allocation.
2232  				 * in addition to setting the leaf value to
2233  				 * NOFREE, dbSplit() will split the binary
2234  				 * system of the leaves to reflect the current
2235  				 * allocation (size).
2236  				 */
2237  				dbSplit(tp, word, size, NOFREE, false);
2238  
2239  				/* get the number of dmap words handled */
2240  				nw = BUDSIZE(size, BUDMIN);
2241  				word += nw;
2242  			}
2243  		}
2244  	}
2245  
2246  	/* update the free count for this dmap */
2247  	le32_add_cpu(&dp->nfree, -nblocks);
2248  
2249  	BMAP_LOCK(bmp);
2250  
2251  	/* if this allocation group is completely free,
2252  	 * update the maximum allocation group number if this allocation
2253  	 * group is the new max.
2254  	 */
2255  	agno = blkno >> bmp->db_agl2size;
2256  	if (agno > bmp->db_maxag)
2257  		bmp->db_maxag = agno;
2258  
2259  	/* update the free count for the allocation group and map */
2260  	bmp->db_agfree[agno] -= nblocks;
2261  	bmp->db_nfree -= nblocks;
2262  
2263  	BMAP_UNLOCK(bmp);
2264  }
2265  
2266  
2267  /*
2268   * NAME:	dbFreeBits()
2269   *
2270   * FUNCTION:	free a specified block range from a dmap.
2271   *
2272   *		this routine updates the dmap to reflect the working
2273   *		state allocation of the specified block range. it directly
2274   *		updates the bits of the working map and causes the adjustment
2275   *		of the binary buddy system described by the dmap's dmtree
2276   *		leaves to reflect the bits freed.  it also causes the dmap's
2277   *		dmtree, as a whole, to reflect the deallocated range.
2278   *
2279   * PARAMETERS:
2280   *	bmp	-  pointer to bmap descriptor
2281   *	dp	-  pointer to dmap to free bits from.
2282   *	blkno	-  starting block number of the bits to be freed.
2283   *	nblocks	-  number of bits to be freed.
2284   *
2285   * RETURN VALUES: 0 for success
2286   *
2287   * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2288   */
dbFreeBits(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2289  static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2290  		       int nblocks)
2291  {
2292  	int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2293  	dmtree_t *tp = (dmtree_t *) & dp->tree;
2294  	int rc = 0;
2295  	int size;
2296  
2297  	/* determine the bit number and word within the dmap of the
2298  	 * starting block.
2299  	 */
2300  	dbitno = blkno & (BPERDMAP - 1);
2301  	word = dbitno >> L2DBWORD;
2302  
2303  	/* block range better be within the dmap.
2304  	 */
2305  	assert(dbitno + nblocks <= BPERDMAP);
2306  
2307  	/* free the bits of the dmaps words corresponding to the block range.
2308  	 * not all bits of the first and last words may be contained within
2309  	 * the block range.  if this is the case, we'll work against those
2310  	 * words (i.e. partial first and/or last) on an individual basis
2311  	 * (a single pass), freeing the bits of interest by hand and updating
2312  	 * the leaf corresponding to the dmap word. a single pass will be used
2313  	 * for all dmap words fully contained within the specified range.
2314  	 * within this pass, the bits of all fully contained dmap words will
2315  	 * be marked as free in a single shot and the leaves will be updated. a
2316  	 * single leaf may describe the free space of multiple dmap words,
2317  	 * so we may update only a subset of the actual leaves corresponding
2318  	 * to the dmap words of the block range.
2319  	 *
2320  	 * dbJoin() is used to update leaf values and will join the binary
2321  	 * buddy system of the leaves if the new leaf values indicate this
2322  	 * should be done.
2323  	 */
2324  	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2325  		/* determine the bit number within the word and
2326  		 * the number of bits within the word.
2327  		 */
2328  		wbitno = dbitno & (DBWORD - 1);
2329  		nb = min(rembits, DBWORD - wbitno);
2330  
2331  		/* check if only part of a word is to be freed.
2332  		 */
2333  		if (nb < DBWORD) {
2334  			/* free (zero) the appropriate bits within this
2335  			 * dmap word.
2336  			 */
2337  			dp->wmap[word] &=
2338  			    cpu_to_le32(~(ONES << (DBWORD - nb)
2339  					  >> wbitno));
2340  
2341  			/* update the leaf for this dmap word.
2342  			 */
2343  			rc = dbJoin(tp, word,
2344  				    dbMaxBud((u8 *)&dp->wmap[word]), false);
2345  			if (rc)
2346  				return rc;
2347  
2348  			word += 1;
2349  		} else {
2350  			/* one or more dmap words are fully contained
2351  			 * within the block range.  determine how many
2352  			 * words and free (zero) the bits of these words.
2353  			 */
2354  			nwords = rembits >> L2DBWORD;
2355  			memset(&dp->wmap[word], 0, nwords * 4);
2356  
2357  			/* determine how many bits.
2358  			 */
2359  			nb = nwords << L2DBWORD;
2360  
2361  			/* now update the appropriate leaves to reflect
2362  			 * the freed words.
2363  			 */
2364  			for (; nwords > 0; nwords -= nw) {
2365  				/* determine what the leaf value should be
2366  				 * updated to as the minimum of the l2 number
2367  				 * of bits being freed and the l2 (max) number
2368  				 * of bits that can be described by this leaf.
2369  				 */
2370  				size =
2371  				    min(LITOL2BSZ
2372  					(word, L2LPERDMAP, BUDMIN),
2373  					NLSTOL2BSZ(nwords));
2374  
2375  				/* update the leaf.
2376  				 */
2377  				rc = dbJoin(tp, word, size, false);
2378  				if (rc)
2379  					return rc;
2380  
2381  				/* get the number of dmap words handled.
2382  				 */
2383  				nw = BUDSIZE(size, BUDMIN);
2384  				word += nw;
2385  			}
2386  		}
2387  	}
2388  
2389  	/* update the free count for this dmap.
2390  	 */
2391  	le32_add_cpu(&dp->nfree, nblocks);
2392  
2393  	BMAP_LOCK(bmp);
2394  
2395  	/* update the free count for the allocation group and
2396  	 * map.
2397  	 */
2398  	agno = blkno >> bmp->db_agl2size;
2399  	bmp->db_nfree += nblocks;
2400  	bmp->db_agfree[agno] += nblocks;
2401  
2402  	/* check if this allocation group is not completely free and
2403  	 * if it is currently the maximum (rightmost) allocation group.
2404  	 * if so, establish the new maximum allocation group number by
2405  	 * searching left for the first allocation group with allocation.
2406  	 */
2407  	if ((bmp->db_agfree[agno] == bmp->db_agsize && agno == bmp->db_maxag) ||
2408  	    (agno == bmp->db_numag - 1 &&
2409  	     bmp->db_agfree[agno] == (bmp-> db_mapsize & (BPERDMAP - 1)))) {
2410  		while (bmp->db_maxag > 0) {
2411  			bmp->db_maxag -= 1;
2412  			if (bmp->db_agfree[bmp->db_maxag] !=
2413  			    bmp->db_agsize)
2414  				break;
2415  		}
2416  
2417  		/* re-establish the allocation group preference if the
2418  		 * current preference is right of the maximum allocation
2419  		 * group.
2420  		 */
2421  		if (bmp->db_agpref > bmp->db_maxag)
2422  			bmp->db_agpref = bmp->db_maxag;
2423  	}
2424  
2425  	BMAP_UNLOCK(bmp);
2426  
2427  	return 0;
2428  }
2429  
2430  
2431  /*
2432   * NAME:	dbAdjCtl()
2433   *
2434   * FUNCTION:	adjust a dmap control page at a specified level to reflect
2435   *		the change in a lower level dmap or dmap control page's
2436   *		maximum string of free blocks (i.e. a change in the root
2437   *		of the lower level object's dmtree) due to the allocation
2438   *		or deallocation of a range of blocks with a single dmap.
2439   *
2440   *		on entry, this routine is provided with the new value of
2441   *		the lower level dmap or dmap control page root and the
2442   *		starting block number of the block range whose allocation
2443   *		or deallocation resulted in the root change.  this range
2444   *		is respresented by a single leaf of the current dmapctl
2445   *		and the leaf will be updated with this value, possibly
2446   *		causing a binary buddy system within the leaves to be
2447   *		split or joined.  the update may also cause the dmapctl's
2448   *		dmtree to be updated.
2449   *
2450   *		if the adjustment of the dmap control page, itself, causes its
2451   *		root to change, this change will be bubbled up to the next dmap
2452   *		control level by a recursive call to this routine, specifying
2453   *		the new root value and the next dmap control page level to
2454   *		be adjusted.
2455   * PARAMETERS:
2456   *	bmp	-  pointer to bmap descriptor
2457   *	blkno	-  the first block of a block range within a dmap.  it is
2458   *		   the allocation or deallocation of this block range that
2459   *		   requires the dmap control page to be adjusted.
2460   *	newval	-  the new value of the lower level dmap or dmap control
2461   *		   page root.
2462   *	alloc	-  'true' if adjustment is due to an allocation.
2463   *	level	-  current level of dmap control page (i.e. L0, L1, L2) to
2464   *		   be adjusted.
2465   *
2466   * RETURN VALUES:
2467   *	0	- success
2468   *	-EIO	- i/o error
2469   *
2470   * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2471   */
2472  static int
dbAdjCtl(struct bmap * bmp,s64 blkno,int newval,int alloc,int level)2473  dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc, int level)
2474  {
2475  	struct metapage *mp;
2476  	s8 oldroot;
2477  	int oldval;
2478  	s64 lblkno;
2479  	struct dmapctl *dcp;
2480  	int rc, leafno, ti;
2481  
2482  	/* get the buffer for the dmap control page for the specified
2483  	 * block number and control page level.
2484  	 */
2485  	lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, level);
2486  	mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
2487  	if (mp == NULL)
2488  		return -EIO;
2489  	dcp = (struct dmapctl *) mp->data;
2490  
2491  	if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
2492  		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
2493  		release_metapage(mp);
2494  		return -EIO;
2495  	}
2496  
2497  	/* determine the leaf number corresponding to the block and
2498  	 * the index within the dmap control tree.
2499  	 */
2500  	leafno = BLKTOCTLLEAF(blkno, dcp->budmin);
2501  	ti = leafno + le32_to_cpu(dcp->leafidx);
2502  
2503  	/* save the current leaf value and the current root level (i.e.
2504  	 * maximum l2 free string described by this dmapctl).
2505  	 */
2506  	oldval = dcp->stree[ti];
2507  	oldroot = dcp->stree[ROOT];
2508  
2509  	/* check if this is a control page update for an allocation.
2510  	 * if so, update the leaf to reflect the new leaf value using
2511  	 * dbSplit(); otherwise (deallocation), use dbJoin() to update
2512  	 * the leaf with the new value.  in addition to updating the
2513  	 * leaf, dbSplit() will also split the binary buddy system of
2514  	 * the leaves, if required, and bubble new values within the
2515  	 * dmapctl tree, if required.  similarly, dbJoin() will join
2516  	 * the binary buddy system of leaves and bubble new values up
2517  	 * the dmapctl tree as required by the new leaf value.
2518  	 */
2519  	if (alloc) {
2520  		/* check if we are in the middle of a binary buddy
2521  		 * system.  this happens when we are performing the
2522  		 * first allocation out of an allocation group that
2523  		 * is part (not the first part) of a larger binary
2524  		 * buddy system.  if we are in the middle, back split
2525  		 * the system prior to calling dbSplit() which assumes
2526  		 * that it is at the front of a binary buddy system.
2527  		 */
2528  		if (oldval == NOFREE) {
2529  			rc = dbBackSplit((dmtree_t *)dcp, leafno, true);
2530  			if (rc) {
2531  				release_metapage(mp);
2532  				return rc;
2533  			}
2534  			oldval = dcp->stree[ti];
2535  		}
2536  		dbSplit((dmtree_t *) dcp, leafno, dcp->budmin, newval, true);
2537  	} else {
2538  		rc = dbJoin((dmtree_t *) dcp, leafno, newval, true);
2539  		if (rc) {
2540  			release_metapage(mp);
2541  			return rc;
2542  		}
2543  	}
2544  
2545  	/* check if the root of the current dmap control page changed due
2546  	 * to the update and if the current dmap control page is not at
2547  	 * the current top level (i.e. L0, L1, L2) of the map.  if so (i.e.
2548  	 * root changed and this is not the top level), call this routine
2549  	 * again (recursion) for the next higher level of the mapping to
2550  	 * reflect the change in root for the current dmap control page.
2551  	 */
2552  	if (dcp->stree[ROOT] != oldroot) {
2553  		/* are we below the top level of the map.  if so,
2554  		 * bubble the root up to the next higher level.
2555  		 */
2556  		if (level < bmp->db_maxlevel) {
2557  			/* bubble up the new root of this dmap control page to
2558  			 * the next level.
2559  			 */
2560  			if ((rc =
2561  			     dbAdjCtl(bmp, blkno, dcp->stree[ROOT], alloc,
2562  				      level + 1))) {
2563  				/* something went wrong in bubbling up the new
2564  				 * root value, so backout the changes to the
2565  				 * current dmap control page.
2566  				 */
2567  				if (alloc) {
2568  					dbJoin((dmtree_t *) dcp, leafno,
2569  					       oldval, true);
2570  				} else {
2571  					/* the dbJoin() above might have
2572  					 * caused a larger binary buddy system
2573  					 * to form and we may now be in the
2574  					 * middle of it.  if this is the case,
2575  					 * back split the buddies.
2576  					 */
2577  					if (dcp->stree[ti] == NOFREE)
2578  						dbBackSplit((dmtree_t *)
2579  							    dcp, leafno, true);
2580  					dbSplit((dmtree_t *) dcp, leafno,
2581  						dcp->budmin, oldval, true);
2582  				}
2583  
2584  				/* release the buffer and return the error.
2585  				 */
2586  				release_metapage(mp);
2587  				return (rc);
2588  			}
2589  		} else {
2590  			/* we're at the top level of the map. update
2591  			 * the bmap control page to reflect the size
2592  			 * of the maximum free buddy system.
2593  			 */
2594  			assert(level == bmp->db_maxlevel);
2595  			if (bmp->db_maxfreebud != oldroot) {
2596  				jfs_error(bmp->db_ipbmap->i_sb,
2597  					  "the maximum free buddy is not the old root\n");
2598  			}
2599  			bmp->db_maxfreebud = dcp->stree[ROOT];
2600  		}
2601  	}
2602  
2603  	/* write the buffer.
2604  	 */
2605  	write_metapage(mp);
2606  
2607  	return (0);
2608  }
2609  
2610  
2611  /*
2612   * NAME:	dbSplit()
2613   *
2614   * FUNCTION:	update the leaf of a dmtree with a new value, splitting
2615   *		the leaf from the binary buddy system of the dmtree's
2616   *		leaves, as required.
2617   *
2618   * PARAMETERS:
2619   *	tp	- pointer to the tree containing the leaf.
2620   *	leafno	- the number of the leaf to be updated.
2621   *	splitsz	- the size the binary buddy system starting at the leaf
2622   *		  must be split to, specified as the log2 number of blocks.
2623   *	newval	- the new value for the leaf.
2624   *
2625   * RETURN VALUES: none
2626   *
2627   * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2628   */
dbSplit(dmtree_t * tp,int leafno,int splitsz,int newval,bool is_ctl)2629  static void dbSplit(dmtree_t *tp, int leafno, int splitsz, int newval, bool is_ctl)
2630  {
2631  	int budsz;
2632  	int cursz;
2633  	s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2634  
2635  	/* check if the leaf needs to be split.
2636  	 */
2637  	if (leaf[leafno] > tp->dmt_budmin) {
2638  		/* the split occurs by cutting the buddy system in half
2639  		 * at the specified leaf until we reach the specified
2640  		 * size.  pick up the starting split size (current size
2641  		 * - 1 in l2) and the corresponding buddy size.
2642  		 */
2643  		cursz = leaf[leafno] - 1;
2644  		budsz = BUDSIZE(cursz, tp->dmt_budmin);
2645  
2646  		/* split until we reach the specified size.
2647  		 */
2648  		while (cursz >= splitsz) {
2649  			/* update the buddy's leaf with its new value.
2650  			 */
2651  			dbAdjTree(tp, leafno ^ budsz, cursz, is_ctl);
2652  
2653  			/* on to the next size and buddy.
2654  			 */
2655  			cursz -= 1;
2656  			budsz >>= 1;
2657  		}
2658  	}
2659  
2660  	/* adjust the dmap tree to reflect the specified leaf's new
2661  	 * value.
2662  	 */
2663  	dbAdjTree(tp, leafno, newval, is_ctl);
2664  }
2665  
2666  
2667  /*
2668   * NAME:	dbBackSplit()
2669   *
2670   * FUNCTION:	back split the binary buddy system of dmtree leaves
2671   *		that hold a specified leaf until the specified leaf
2672   *		starts its own binary buddy system.
2673   *
2674   *		the allocators typically perform allocations at the start
2675   *		of binary buddy systems and dbSplit() is used to accomplish
2676   *		any required splits.  in some cases, however, allocation
2677   *		may occur in the middle of a binary system and requires a
2678   *		back split, with the split proceeding out from the middle of
2679   *		the system (less efficient) rather than the start of the
2680   *		system (more efficient).  the cases in which a back split
2681   *		is required are rare and are limited to the first allocation
2682   *		within an allocation group which is a part (not first part)
2683   *		of a larger binary buddy system and a few exception cases
2684   *		in which a previous join operation must be backed out.
2685   *
2686   * PARAMETERS:
2687   *	tp	- pointer to the tree containing the leaf.
2688   *	leafno	- the number of the leaf to be updated.
2689   *
2690   * RETURN VALUES: none
2691   *
2692   * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2693   */
dbBackSplit(dmtree_t * tp,int leafno,bool is_ctl)2694  static int dbBackSplit(dmtree_t *tp, int leafno, bool is_ctl)
2695  {
2696  	int budsz, bud, w, bsz, size;
2697  	int cursz;
2698  	s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2699  
2700  	/* leaf should be part (not first part) of a binary
2701  	 * buddy system.
2702  	 */
2703  	assert(leaf[leafno] == NOFREE);
2704  
2705  	/* the back split is accomplished by iteratively finding the leaf
2706  	 * that starts the buddy system that contains the specified leaf and
2707  	 * splitting that system in two.  this iteration continues until
2708  	 * the specified leaf becomes the start of a buddy system.
2709  	 *
2710  	 * determine maximum possible l2 size for the specified leaf.
2711  	 */
2712  	size =
2713  	    LITOL2BSZ(leafno, le32_to_cpu(tp->dmt_l2nleafs),
2714  		      tp->dmt_budmin);
2715  
2716  	/* determine the number of leaves covered by this size.  this
2717  	 * is the buddy size that we will start with as we search for
2718  	 * the buddy system that contains the specified leaf.
2719  	 */
2720  	budsz = BUDSIZE(size, tp->dmt_budmin);
2721  
2722  	/* back split.
2723  	 */
2724  	while (leaf[leafno] == NOFREE) {
2725  		/* find the leftmost buddy leaf.
2726  		 */
2727  		for (w = leafno, bsz = budsz;; bsz <<= 1,
2728  		     w = (w < bud) ? w : bud) {
2729  			if (bsz >= le32_to_cpu(tp->dmt_nleafs)) {
2730  				jfs_err("JFS: block map error in dbBackSplit");
2731  				return -EIO;
2732  			}
2733  
2734  			/* determine the buddy.
2735  			 */
2736  			bud = w ^ bsz;
2737  
2738  			/* check if this buddy is the start of the system.
2739  			 */
2740  			if (leaf[bud] != NOFREE) {
2741  				/* split the leaf at the start of the
2742  				 * system in two.
2743  				 */
2744  				cursz = leaf[bud] - 1;
2745  				dbSplit(tp, bud, cursz, cursz, is_ctl);
2746  				break;
2747  			}
2748  		}
2749  	}
2750  
2751  	if (leaf[leafno] != size) {
2752  		jfs_err("JFS: wrong leaf value in dbBackSplit");
2753  		return -EIO;
2754  	}
2755  	return 0;
2756  }
2757  
2758  
2759  /*
2760   * NAME:	dbJoin()
2761   *
2762   * FUNCTION:	update the leaf of a dmtree with a new value, joining
2763   *		the leaf with other leaves of the dmtree into a multi-leaf
2764   *		binary buddy system, as required.
2765   *
2766   * PARAMETERS:
2767   *	tp	- pointer to the tree containing the leaf.
2768   *	leafno	- the number of the leaf to be updated.
2769   *	newval	- the new value for the leaf.
2770   *
2771   * RETURN VALUES: none
2772   */
dbJoin(dmtree_t * tp,int leafno,int newval,bool is_ctl)2773  static int dbJoin(dmtree_t *tp, int leafno, int newval, bool is_ctl)
2774  {
2775  	int budsz, buddy;
2776  	s8 *leaf;
2777  
2778  	/* can the new leaf value require a join with other leaves ?
2779  	 */
2780  	if (newval >= tp->dmt_budmin) {
2781  		/* pickup a pointer to the leaves of the tree.
2782  		 */
2783  		leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2784  
2785  		/* try to join the specified leaf into a large binary
2786  		 * buddy system.  the join proceeds by attempting to join
2787  		 * the specified leafno with its buddy (leaf) at new value.
2788  		 * if the join occurs, we attempt to join the left leaf
2789  		 * of the joined buddies with its buddy at new value + 1.
2790  		 * we continue to join until we find a buddy that cannot be
2791  		 * joined (does not have a value equal to the size of the
2792  		 * last join) or until all leaves have been joined into a
2793  		 * single system.
2794  		 *
2795  		 * get the buddy size (number of words covered) of
2796  		 * the new value.
2797  		 */
2798  		budsz = BUDSIZE(newval, tp->dmt_budmin);
2799  
2800  		/* try to join.
2801  		 */
2802  		while (budsz < le32_to_cpu(tp->dmt_nleafs)) {
2803  			/* get the buddy leaf.
2804  			 */
2805  			buddy = leafno ^ budsz;
2806  
2807  			/* if the leaf's new value is greater than its
2808  			 * buddy's value, we join no more.
2809  			 */
2810  			if (newval > leaf[buddy])
2811  				break;
2812  
2813  			/* It shouldn't be less */
2814  			if (newval < leaf[buddy])
2815  				return -EIO;
2816  
2817  			/* check which (leafno or buddy) is the left buddy.
2818  			 * the left buddy gets to claim the blocks resulting
2819  			 * from the join while the right gets to claim none.
2820  			 * the left buddy is also eligible to participate in
2821  			 * a join at the next higher level while the right
2822  			 * is not.
2823  			 *
2824  			 */
2825  			if (leafno < buddy) {
2826  				/* leafno is the left buddy.
2827  				 */
2828  				dbAdjTree(tp, buddy, NOFREE, is_ctl);
2829  			} else {
2830  				/* buddy is the left buddy and becomes
2831  				 * leafno.
2832  				 */
2833  				dbAdjTree(tp, leafno, NOFREE, is_ctl);
2834  				leafno = buddy;
2835  			}
2836  
2837  			/* on to try the next join.
2838  			 */
2839  			newval += 1;
2840  			budsz <<= 1;
2841  		}
2842  	}
2843  
2844  	/* update the leaf value.
2845  	 */
2846  	dbAdjTree(tp, leafno, newval, is_ctl);
2847  
2848  	return 0;
2849  }
2850  
2851  
2852  /*
2853   * NAME:	dbAdjTree()
2854   *
2855   * FUNCTION:	update a leaf of a dmtree with a new value, adjusting
2856   *		the dmtree, as required, to reflect the new leaf value.
2857   *		the combination of any buddies must already be done before
2858   *		this is called.
2859   *
2860   * PARAMETERS:
2861   *	tp	- pointer to the tree to be adjusted.
2862   *	leafno	- the number of the leaf to be updated.
2863   *	newval	- the new value for the leaf.
2864   *
2865   * RETURN VALUES: none
2866   */
dbAdjTree(dmtree_t * tp,int leafno,int newval,bool is_ctl)2867  static void dbAdjTree(dmtree_t *tp, int leafno, int newval, bool is_ctl)
2868  {
2869  	int lp, pp, k;
2870  	int max, size;
2871  
2872  	size = is_ctl ? CTLTREESIZE : TREESIZE;
2873  
2874  	/* pick up the index of the leaf for this leafno.
2875  	 */
2876  	lp = leafno + le32_to_cpu(tp->dmt_leafidx);
2877  
2878  	if (WARN_ON_ONCE(lp >= size || lp < 0))
2879  		return;
2880  
2881  	/* is the current value the same as the old value ?  if so,
2882  	 * there is nothing to do.
2883  	 */
2884  	if (tp->dmt_stree[lp] == newval)
2885  		return;
2886  
2887  	/* set the new value.
2888  	 */
2889  	tp->dmt_stree[lp] = newval;
2890  
2891  	/* bubble the new value up the tree as required.
2892  	 */
2893  	for (k = 0; k < le32_to_cpu(tp->dmt_height); k++) {
2894  		if (lp == 0)
2895  			break;
2896  
2897  		/* get the index of the first leaf of the 4 leaf
2898  		 * group containing the specified leaf (leafno).
2899  		 */
2900  		lp = ((lp - 1) & ~0x03) + 1;
2901  
2902  		/* get the index of the parent of this 4 leaf group.
2903  		 */
2904  		pp = (lp - 1) >> 2;
2905  
2906  		/* determine the maximum of the 4 leaves.
2907  		 */
2908  		max = TREEMAX(&tp->dmt_stree[lp]);
2909  
2910  		/* if the maximum of the 4 is the same as the
2911  		 * parent's value, we're done.
2912  		 */
2913  		if (tp->dmt_stree[pp] == max)
2914  			break;
2915  
2916  		/* parent gets new value.
2917  		 */
2918  		tp->dmt_stree[pp] = max;
2919  
2920  		/* parent becomes leaf for next go-round.
2921  		 */
2922  		lp = pp;
2923  	}
2924  }
2925  
2926  
2927  /*
2928   * NAME:	dbFindLeaf()
2929   *
2930   * FUNCTION:	search a dmtree_t for sufficient free blocks, returning
2931   *		the index of a leaf describing the free blocks if
2932   *		sufficient free blocks are found.
2933   *
2934   *		the search starts at the top of the dmtree_t tree and
2935   *		proceeds down the tree to the leftmost leaf with sufficient
2936   *		free space.
2937   *
2938   * PARAMETERS:
2939   *	tp	- pointer to the tree to be searched.
2940   *	l2nb	- log2 number of free blocks to search for.
2941   *	leafidx	- return pointer to be set to the index of the leaf
2942   *		  describing at least l2nb free blocks if sufficient
2943   *		  free blocks are found.
2944   *	is_ctl	- determines if the tree is of type ctl
2945   *
2946   * RETURN VALUES:
2947   *	0	- success
2948   *	-ENOSPC	- insufficient free blocks.
2949   */
dbFindLeaf(dmtree_t * tp,int l2nb,int * leafidx,bool is_ctl)2950  static int dbFindLeaf(dmtree_t *tp, int l2nb, int *leafidx, bool is_ctl)
2951  {
2952  	int ti, n = 0, k, x = 0;
2953  	int max_size, max_idx;
2954  
2955  	max_size = is_ctl ? CTLTREESIZE : TREESIZE;
2956  	max_idx = is_ctl ? LPERCTL : LPERDMAP;
2957  
2958  	/* first check the root of the tree to see if there is
2959  	 * sufficient free space.
2960  	 */
2961  	if (l2nb > tp->dmt_stree[ROOT])
2962  		return -ENOSPC;
2963  
2964  	/* sufficient free space available. now search down the tree
2965  	 * starting at the next level for the leftmost leaf that
2966  	 * describes sufficient free space.
2967  	 */
2968  	for (k = le32_to_cpu(tp->dmt_height), ti = 1;
2969  	     k > 0; k--, ti = ((ti + n) << 2) + 1) {
2970  		/* search the four nodes at this level, starting from
2971  		 * the left.
2972  		 */
2973  		for (x = ti, n = 0; n < 4; n++) {
2974  			/* sufficient free space found.  move to the next
2975  			 * level (or quit if this is the last level).
2976  			 */
2977  			if (x + n > max_size)
2978  				return -ENOSPC;
2979  			if (l2nb <= tp->dmt_stree[x + n])
2980  				break;
2981  		}
2982  
2983  		/* better have found something since the higher
2984  		 * levels of the tree said it was here.
2985  		 */
2986  		assert(n < 4);
2987  	}
2988  	if (le32_to_cpu(tp->dmt_leafidx) >= max_idx)
2989  		return -ENOSPC;
2990  
2991  	/* set the return to the leftmost leaf describing sufficient
2992  	 * free space.
2993  	 */
2994  	*leafidx = x + n - le32_to_cpu(tp->dmt_leafidx);
2995  
2996  	return (0);
2997  }
2998  
2999  
3000  /*
3001   * NAME:	dbFindBits()
3002   *
3003   * FUNCTION:	find a specified number of binary buddy free bits within a
3004   *		dmap bitmap word value.
3005   *
3006   *		this routine searches the bitmap value for (1 << l2nb) free
3007   *		bits at (1 << l2nb) alignments within the value.
3008   *
3009   * PARAMETERS:
3010   *	word	-  dmap bitmap word value.
3011   *	l2nb	-  number of free bits specified as a log2 number.
3012   *
3013   * RETURN VALUES:
3014   *	starting bit number of free bits.
3015   */
dbFindBits(u32 word,int l2nb)3016  static int dbFindBits(u32 word, int l2nb)
3017  {
3018  	int bitno, nb;
3019  	u32 mask;
3020  
3021  	/* get the number of bits.
3022  	 */
3023  	nb = 1 << l2nb;
3024  	assert(nb <= DBWORD);
3025  
3026  	/* complement the word so we can use a mask (i.e. 0s represent
3027  	 * free bits) and compute the mask.
3028  	 */
3029  	word = ~word;
3030  	mask = ONES << (DBWORD - nb);
3031  
3032  	/* scan the word for nb free bits at nb alignments.
3033  	 */
3034  	for (bitno = 0; mask != 0; bitno += nb, mask = (mask >> nb)) {
3035  		if ((mask & word) == mask)
3036  			break;
3037  	}
3038  
3039  	ASSERT(bitno < 32);
3040  
3041  	/* return the bit number.
3042  	 */
3043  	return (bitno);
3044  }
3045  
3046  
3047  /*
3048   * NAME:	dbMaxBud(u8 *cp)
3049   *
3050   * FUNCTION:	determine the largest binary buddy string of free
3051   *		bits within 32-bits of the map.
3052   *
3053   * PARAMETERS:
3054   *	cp	-  pointer to the 32-bit value.
3055   *
3056   * RETURN VALUES:
3057   *	largest binary buddy of free bits within a dmap word.
3058   */
dbMaxBud(u8 * cp)3059  static int dbMaxBud(u8 * cp)
3060  {
3061  	signed char tmp1, tmp2;
3062  
3063  	/* check if the wmap word is all free. if so, the
3064  	 * free buddy size is BUDMIN.
3065  	 */
3066  	if (*((uint *) cp) == 0)
3067  		return (BUDMIN);
3068  
3069  	/* check if the wmap word is half free. if so, the
3070  	 * free buddy size is BUDMIN-1.
3071  	 */
3072  	if (*((u16 *) cp) == 0 || *((u16 *) cp + 1) == 0)
3073  		return (BUDMIN - 1);
3074  
3075  	/* not all free or half free. determine the free buddy
3076  	 * size thru table lookup using quarters of the wmap word.
3077  	 */
3078  	tmp1 = max(budtab[cp[2]], budtab[cp[3]]);
3079  	tmp2 = max(budtab[cp[0]], budtab[cp[1]]);
3080  	return (max(tmp1, tmp2));
3081  }
3082  
3083  
3084  /*
3085   * NAME:	cnttz(uint word)
3086   *
3087   * FUNCTION:	determine the number of trailing zeros within a 32-bit
3088   *		value.
3089   *
3090   * PARAMETERS:
3091   *	value	-  32-bit value to be examined.
3092   *
3093   * RETURN VALUES:
3094   *	count of trailing zeros
3095   */
cnttz(u32 word)3096  static int cnttz(u32 word)
3097  {
3098  	int n;
3099  
3100  	for (n = 0; n < 32; n++, word >>= 1) {
3101  		if (word & 0x01)
3102  			break;
3103  	}
3104  
3105  	return (n);
3106  }
3107  
3108  
3109  /*
3110   * NAME:	cntlz(u32 value)
3111   *
3112   * FUNCTION:	determine the number of leading zeros within a 32-bit
3113   *		value.
3114   *
3115   * PARAMETERS:
3116   *	value	-  32-bit value to be examined.
3117   *
3118   * RETURN VALUES:
3119   *	count of leading zeros
3120   */
cntlz(u32 value)3121  static int cntlz(u32 value)
3122  {
3123  	int n;
3124  
3125  	for (n = 0; n < 32; n++, value <<= 1) {
3126  		if (value & HIGHORDER)
3127  			break;
3128  	}
3129  	return (n);
3130  }
3131  
3132  
3133  /*
3134   * NAME:	blkstol2(s64 nb)
3135   *
3136   * FUNCTION:	convert a block count to its log2 value. if the block
3137   *		count is not a l2 multiple, it is rounded up to the next
3138   *		larger l2 multiple.
3139   *
3140   * PARAMETERS:
3141   *	nb	-  number of blocks
3142   *
3143   * RETURN VALUES:
3144   *	log2 number of blocks
3145   */
blkstol2(s64 nb)3146  static int blkstol2(s64 nb)
3147  {
3148  	int l2nb;
3149  	s64 mask;		/* meant to be signed */
3150  
3151  	mask = (s64) 1 << (64 - 1);
3152  
3153  	/* count the leading bits.
3154  	 */
3155  	for (l2nb = 0; l2nb < 64; l2nb++, mask >>= 1) {
3156  		/* leading bit found.
3157  		 */
3158  		if (nb & mask) {
3159  			/* determine the l2 value.
3160  			 */
3161  			l2nb = (64 - 1) - l2nb;
3162  
3163  			/* check if we need to round up.
3164  			 */
3165  			if (~mask & nb)
3166  				l2nb++;
3167  
3168  			return (l2nb);
3169  		}
3170  	}
3171  	assert(0);
3172  	return 0;		/* fix compiler warning */
3173  }
3174  
3175  
3176  /*
3177   * NAME:	dbAllocBottomUp()
3178   *
3179   * FUNCTION:	alloc the specified block range from the working block
3180   *		allocation map.
3181   *
3182   *		the blocks will be alloc from the working map one dmap
3183   *		at a time.
3184   *
3185   * PARAMETERS:
3186   *	ip	-  pointer to in-core inode;
3187   *	blkno	-  starting block number to be freed.
3188   *	nblocks	-  number of blocks to be freed.
3189   *
3190   * RETURN VALUES:
3191   *	0	- success
3192   *	-EIO	- i/o error
3193   */
dbAllocBottomUp(struct inode * ip,s64 blkno,s64 nblocks)3194  int dbAllocBottomUp(struct inode *ip, s64 blkno, s64 nblocks)
3195  {
3196  	struct metapage *mp;
3197  	struct dmap *dp;
3198  	int nb, rc;
3199  	s64 lblkno, rem;
3200  	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
3201  	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
3202  
3203  	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
3204  
3205  	/* block to be allocated better be within the mapsize. */
3206  	ASSERT(nblocks <= bmp->db_mapsize - blkno);
3207  
3208  	/*
3209  	 * allocate the blocks a dmap at a time.
3210  	 */
3211  	mp = NULL;
3212  	for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
3213  		/* release previous dmap if any */
3214  		if (mp) {
3215  			write_metapage(mp);
3216  		}
3217  
3218  		/* get the buffer for the current dmap. */
3219  		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
3220  		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
3221  		if (mp == NULL) {
3222  			IREAD_UNLOCK(ipbmap);
3223  			return -EIO;
3224  		}
3225  		dp = (struct dmap *) mp->data;
3226  
3227  		/* determine the number of blocks to be allocated from
3228  		 * this dmap.
3229  		 */
3230  		nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
3231  
3232  		/* allocate the blocks. */
3233  		if ((rc = dbAllocDmapBU(bmp, dp, blkno, nb))) {
3234  			release_metapage(mp);
3235  			IREAD_UNLOCK(ipbmap);
3236  			return (rc);
3237  		}
3238  	}
3239  
3240  	/* write the last buffer. */
3241  	write_metapage(mp);
3242  
3243  	IREAD_UNLOCK(ipbmap);
3244  
3245  	return (0);
3246  }
3247  
3248  
dbAllocDmapBU(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)3249  static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
3250  			 int nblocks)
3251  {
3252  	int rc;
3253  	int dbitno, word, rembits, nb, nwords, wbitno, agno;
3254  	s8 oldroot;
3255  	struct dmaptree *tp = (struct dmaptree *) & dp->tree;
3256  
3257  	/* save the current value of the root (i.e. maximum free string)
3258  	 * of the dmap tree.
3259  	 */
3260  	oldroot = tp->stree[ROOT];
3261  
3262  	/* determine the bit number and word within the dmap of the
3263  	 * starting block.
3264  	 */
3265  	dbitno = blkno & (BPERDMAP - 1);
3266  	word = dbitno >> L2DBWORD;
3267  
3268  	/* block range better be within the dmap */
3269  	assert(dbitno + nblocks <= BPERDMAP);
3270  
3271  	/* allocate the bits of the dmap's words corresponding to the block
3272  	 * range. not all bits of the first and last words may be contained
3273  	 * within the block range.  if this is the case, we'll work against
3274  	 * those words (i.e. partial first and/or last) on an individual basis
3275  	 * (a single pass), allocating the bits of interest by hand and
3276  	 * updating the leaf corresponding to the dmap word. a single pass
3277  	 * will be used for all dmap words fully contained within the
3278  	 * specified range.  within this pass, the bits of all fully contained
3279  	 * dmap words will be marked as free in a single shot and the leaves
3280  	 * will be updated. a single leaf may describe the free space of
3281  	 * multiple dmap words, so we may update only a subset of the actual
3282  	 * leaves corresponding to the dmap words of the block range.
3283  	 */
3284  	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
3285  		/* determine the bit number within the word and
3286  		 * the number of bits within the word.
3287  		 */
3288  		wbitno = dbitno & (DBWORD - 1);
3289  		nb = min(rembits, DBWORD - wbitno);
3290  
3291  		/* check if only part of a word is to be allocated.
3292  		 */
3293  		if (nb < DBWORD) {
3294  			/* allocate (set to 1) the appropriate bits within
3295  			 * this dmap word.
3296  			 */
3297  			dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
3298  						      >> wbitno);
3299  
3300  			word++;
3301  		} else {
3302  			/* one or more dmap words are fully contained
3303  			 * within the block range.  determine how many
3304  			 * words and allocate (set to 1) the bits of these
3305  			 * words.
3306  			 */
3307  			nwords = rembits >> L2DBWORD;
3308  			memset(&dp->wmap[word], (int) ONES, nwords * 4);
3309  
3310  			/* determine how many bits */
3311  			nb = nwords << L2DBWORD;
3312  			word += nwords;
3313  		}
3314  	}
3315  
3316  	/* update the free count for this dmap */
3317  	le32_add_cpu(&dp->nfree, -nblocks);
3318  
3319  	/* reconstruct summary tree */
3320  	dbInitDmapTree(dp);
3321  
3322  	BMAP_LOCK(bmp);
3323  
3324  	/* if this allocation group is completely free,
3325  	 * update the highest active allocation group number
3326  	 * if this allocation group is the new max.
3327  	 */
3328  	agno = blkno >> bmp->db_agl2size;
3329  	if (agno > bmp->db_maxag)
3330  		bmp->db_maxag = agno;
3331  
3332  	/* update the free count for the allocation group and map */
3333  	bmp->db_agfree[agno] -= nblocks;
3334  	bmp->db_nfree -= nblocks;
3335  
3336  	BMAP_UNLOCK(bmp);
3337  
3338  	/* if the root has not changed, done. */
3339  	if (tp->stree[ROOT] == oldroot)
3340  		return (0);
3341  
3342  	/* root changed. bubble the change up to the dmap control pages.
3343  	 * if the adjustment of the upper level control pages fails,
3344  	 * backout the bit allocation (thus making everything consistent).
3345  	 */
3346  	if ((rc = dbAdjCtl(bmp, blkno, tp->stree[ROOT], 1, 0)))
3347  		dbFreeBits(bmp, dp, blkno, nblocks);
3348  
3349  	return (rc);
3350  }
3351  
3352  
3353  /*
3354   * NAME:	dbExtendFS()
3355   *
3356   * FUNCTION:	extend bmap from blkno for nblocks;
3357   *		dbExtendFS() updates bmap ready for dbAllocBottomUp();
3358   *
3359   * L2
3360   *  |
3361   *   L1---------------------------------L1
3362   *    |					 |
3363   *     L0---------L0---------L0		  L0---------L0---------L0
3364   *      |	   |	      |		   |	      |		 |
3365   *	 d0,...,dn  d0,...,dn  d0,...,dn    d0,...,dn  d0,...,dn  d0,.,dm;
3366   * L2L1L0d0,...,dnL0d0,...,dnL0d0,...,dnL1L0d0,...,dnL0d0,...,dnL0d0,..dm
3367   *
3368   * <---old---><----------------------------extend----------------------->
3369   */
dbExtendFS(struct inode * ipbmap,s64 blkno,s64 nblocks)3370  int dbExtendFS(struct inode *ipbmap, s64 blkno,	s64 nblocks)
3371  {
3372  	struct jfs_sb_info *sbi = JFS_SBI(ipbmap->i_sb);
3373  	int nbperpage = sbi->nbperpage;
3374  	int i, i0 = true, j, j0 = true, k, n;
3375  	s64 newsize;
3376  	s64 p;
3377  	struct metapage *mp, *l2mp, *l1mp = NULL, *l0mp = NULL;
3378  	struct dmapctl *l2dcp, *l1dcp, *l0dcp;
3379  	struct dmap *dp;
3380  	s8 *l0leaf, *l1leaf, *l2leaf;
3381  	struct bmap *bmp = sbi->bmap;
3382  	int agno, l2agsize, oldl2agsize;
3383  	s64 ag_rem;
3384  
3385  	newsize = blkno + nblocks;
3386  
3387  	jfs_info("dbExtendFS: blkno:%Ld nblocks:%Ld newsize:%Ld",
3388  		 (long long) blkno, (long long) nblocks, (long long) newsize);
3389  
3390  	/*
3391  	 *	initialize bmap control page.
3392  	 *
3393  	 * all the data in bmap control page should exclude
3394  	 * the mkfs hidden dmap page.
3395  	 */
3396  
3397  	/* update mapsize */
3398  	bmp->db_mapsize = newsize;
3399  	bmp->db_maxlevel = BMAPSZTOLEV(bmp->db_mapsize);
3400  
3401  	/* compute new AG size */
3402  	l2agsize = dbGetL2AGSize(newsize);
3403  	oldl2agsize = bmp->db_agl2size;
3404  
3405  	bmp->db_agl2size = l2agsize;
3406  	bmp->db_agsize = 1 << l2agsize;
3407  
3408  	/* compute new number of AG */
3409  	agno = bmp->db_numag;
3410  	bmp->db_numag = newsize >> l2agsize;
3411  	bmp->db_numag += ((u32) newsize % (u32) bmp->db_agsize) ? 1 : 0;
3412  
3413  	/*
3414  	 *	reconfigure db_agfree[]
3415  	 * from old AG configuration to new AG configuration;
3416  	 *
3417  	 * coalesce contiguous k (newAGSize/oldAGSize) AGs;
3418  	 * i.e., (AGi, ..., AGj) where i = k*n and j = k*(n+1) - 1 to AGn;
3419  	 * note: new AG size = old AG size * (2**x).
3420  	 */
3421  	if (l2agsize == oldl2agsize)
3422  		goto extend;
3423  	k = 1 << (l2agsize - oldl2agsize);
3424  	ag_rem = bmp->db_agfree[0];	/* save agfree[0] */
3425  	for (i = 0, n = 0; i < agno; n++) {
3426  		bmp->db_agfree[n] = 0;	/* init collection point */
3427  
3428  		/* coalesce contiguous k AGs; */
3429  		for (j = 0; j < k && i < agno; j++, i++) {
3430  			/* merge AGi to AGn */
3431  			bmp->db_agfree[n] += bmp->db_agfree[i];
3432  		}
3433  	}
3434  	bmp->db_agfree[0] += ag_rem;	/* restore agfree[0] */
3435  
3436  	for (; n < MAXAG; n++)
3437  		bmp->db_agfree[n] = 0;
3438  
3439  	/*
3440  	 * update highest active ag number
3441  	 */
3442  
3443  	bmp->db_maxag = bmp->db_maxag / k;
3444  
3445  	/*
3446  	 *	extend bmap
3447  	 *
3448  	 * update bit maps and corresponding level control pages;
3449  	 * global control page db_nfree, db_agfree[agno], db_maxfreebud;
3450  	 */
3451        extend:
3452  	/* get L2 page */
3453  	p = BMAPBLKNO + nbperpage;	/* L2 page */
3454  	l2mp = read_metapage(ipbmap, p, PSIZE, 0);
3455  	if (!l2mp) {
3456  		jfs_error(ipbmap->i_sb, "L2 page could not be read\n");
3457  		return -EIO;
3458  	}
3459  	l2dcp = (struct dmapctl *) l2mp->data;
3460  
3461  	/* compute start L1 */
3462  	k = blkno >> L2MAXL1SIZE;
3463  	l2leaf = l2dcp->stree + CTLLEAFIND + k;
3464  	p = BLKTOL1(blkno, sbi->l2nbperpage);	/* L1 page */
3465  
3466  	/*
3467  	 * extend each L1 in L2
3468  	 */
3469  	for (; k < LPERCTL; k++, p += nbperpage) {
3470  		/* get L1 page */
3471  		if (j0) {
3472  			/* read in L1 page: (blkno & (MAXL1SIZE - 1)) */
3473  			l1mp = read_metapage(ipbmap, p, PSIZE, 0);
3474  			if (l1mp == NULL)
3475  				goto errout;
3476  			l1dcp = (struct dmapctl *) l1mp->data;
3477  
3478  			/* compute start L0 */
3479  			j = (blkno & (MAXL1SIZE - 1)) >> L2MAXL0SIZE;
3480  			l1leaf = l1dcp->stree + CTLLEAFIND + j;
3481  			p = BLKTOL0(blkno, sbi->l2nbperpage);
3482  			j0 = false;
3483  		} else {
3484  			/* assign/init L1 page */
3485  			l1mp = get_metapage(ipbmap, p, PSIZE, 0);
3486  			if (l1mp == NULL)
3487  				goto errout;
3488  
3489  			l1dcp = (struct dmapctl *) l1mp->data;
3490  
3491  			/* compute start L0 */
3492  			j = 0;
3493  			l1leaf = l1dcp->stree + CTLLEAFIND;
3494  			p += nbperpage;	/* 1st L0 of L1.k */
3495  		}
3496  
3497  		/*
3498  		 * extend each L0 in L1
3499  		 */
3500  		for (; j < LPERCTL; j++) {
3501  			/* get L0 page */
3502  			if (i0) {
3503  				/* read in L0 page: (blkno & (MAXL0SIZE - 1)) */
3504  
3505  				l0mp = read_metapage(ipbmap, p, PSIZE, 0);
3506  				if (l0mp == NULL)
3507  					goto errout;
3508  				l0dcp = (struct dmapctl *) l0mp->data;
3509  
3510  				/* compute start dmap */
3511  				i = (blkno & (MAXL0SIZE - 1)) >>
3512  				    L2BPERDMAP;
3513  				l0leaf = l0dcp->stree + CTLLEAFIND + i;
3514  				p = BLKTODMAP(blkno,
3515  					      sbi->l2nbperpage);
3516  				i0 = false;
3517  			} else {
3518  				/* assign/init L0 page */
3519  				l0mp = get_metapage(ipbmap, p, PSIZE, 0);
3520  				if (l0mp == NULL)
3521  					goto errout;
3522  
3523  				l0dcp = (struct dmapctl *) l0mp->data;
3524  
3525  				/* compute start dmap */
3526  				i = 0;
3527  				l0leaf = l0dcp->stree + CTLLEAFIND;
3528  				p += nbperpage;	/* 1st dmap of L0.j */
3529  			}
3530  
3531  			/*
3532  			 * extend each dmap in L0
3533  			 */
3534  			for (; i < LPERCTL; i++) {
3535  				/*
3536  				 * reconstruct the dmap page, and
3537  				 * initialize corresponding parent L0 leaf
3538  				 */
3539  				if ((n = blkno & (BPERDMAP - 1))) {
3540  					/* read in dmap page: */
3541  					mp = read_metapage(ipbmap, p,
3542  							   PSIZE, 0);
3543  					if (mp == NULL)
3544  						goto errout;
3545  					n = min(nblocks, (s64)BPERDMAP - n);
3546  				} else {
3547  					/* assign/init dmap page */
3548  					mp = read_metapage(ipbmap, p,
3549  							   PSIZE, 0);
3550  					if (mp == NULL)
3551  						goto errout;
3552  
3553  					n = min_t(s64, nblocks, BPERDMAP);
3554  				}
3555  
3556  				dp = (struct dmap *) mp->data;
3557  				*l0leaf = dbInitDmap(dp, blkno, n);
3558  
3559  				bmp->db_nfree += n;
3560  				agno = le64_to_cpu(dp->start) >> l2agsize;
3561  				bmp->db_agfree[agno] += n;
3562  
3563  				write_metapage(mp);
3564  
3565  				l0leaf++;
3566  				p += nbperpage;
3567  
3568  				blkno += n;
3569  				nblocks -= n;
3570  				if (nblocks == 0)
3571  					break;
3572  			}	/* for each dmap in a L0 */
3573  
3574  			/*
3575  			 * build current L0 page from its leaves, and
3576  			 * initialize corresponding parent L1 leaf
3577  			 */
3578  			*l1leaf = dbInitDmapCtl(l0dcp, 0, ++i);
3579  			write_metapage(l0mp);
3580  			l0mp = NULL;
3581  
3582  			if (nblocks)
3583  				l1leaf++;	/* continue for next L0 */
3584  			else {
3585  				/* more than 1 L0 ? */
3586  				if (j > 0)
3587  					break;	/* build L1 page */
3588  				else {
3589  					/* summarize in global bmap page */
3590  					bmp->db_maxfreebud = *l1leaf;
3591  					release_metapage(l1mp);
3592  					release_metapage(l2mp);
3593  					goto finalize;
3594  				}
3595  			}
3596  		}		/* for each L0 in a L1 */
3597  
3598  		/*
3599  		 * build current L1 page from its leaves, and
3600  		 * initialize corresponding parent L2 leaf
3601  		 */
3602  		*l2leaf = dbInitDmapCtl(l1dcp, 1, ++j);
3603  		write_metapage(l1mp);
3604  		l1mp = NULL;
3605  
3606  		if (nblocks)
3607  			l2leaf++;	/* continue for next L1 */
3608  		else {
3609  			/* more than 1 L1 ? */
3610  			if (k > 0)
3611  				break;	/* build L2 page */
3612  			else {
3613  				/* summarize in global bmap page */
3614  				bmp->db_maxfreebud = *l2leaf;
3615  				release_metapage(l2mp);
3616  				goto finalize;
3617  			}
3618  		}
3619  	}			/* for each L1 in a L2 */
3620  
3621  	jfs_error(ipbmap->i_sb, "function has not returned as expected\n");
3622  errout:
3623  	if (l0mp)
3624  		release_metapage(l0mp);
3625  	if (l1mp)
3626  		release_metapage(l1mp);
3627  	release_metapage(l2mp);
3628  	return -EIO;
3629  
3630  	/*
3631  	 *	finalize bmap control page
3632  	 */
3633  finalize:
3634  
3635  	return 0;
3636  }
3637  
3638  
3639  /*
3640   *	dbFinalizeBmap()
3641   */
dbFinalizeBmap(struct inode * ipbmap)3642  void dbFinalizeBmap(struct inode *ipbmap)
3643  {
3644  	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
3645  	int actags, inactags, l2nl;
3646  	s64 ag_rem, actfree, inactfree, avgfree;
3647  	int i, n;
3648  
3649  	/*
3650  	 *	finalize bmap control page
3651  	 */
3652  //finalize:
3653  	/*
3654  	 * compute db_agpref: preferred ag to allocate from
3655  	 * (the leftmost ag with average free space in it);
3656  	 */
3657  //agpref:
3658  	/* get the number of active ags and inactive ags */
3659  	actags = bmp->db_maxag + 1;
3660  	inactags = bmp->db_numag - actags;
3661  	ag_rem = bmp->db_mapsize & (bmp->db_agsize - 1);	/* ??? */
3662  
3663  	/* determine how many blocks are in the inactive allocation
3664  	 * groups. in doing this, we must account for the fact that
3665  	 * the rightmost group might be a partial group (i.e. file
3666  	 * system size is not a multiple of the group size).
3667  	 */
3668  	inactfree = (inactags && ag_rem) ?
3669  	    ((inactags - 1) << bmp->db_agl2size) + ag_rem
3670  	    : inactags << bmp->db_agl2size;
3671  
3672  	/* determine how many free blocks are in the active
3673  	 * allocation groups plus the average number of free blocks
3674  	 * within the active ags.
3675  	 */
3676  	actfree = bmp->db_nfree - inactfree;
3677  	avgfree = (u32) actfree / (u32) actags;
3678  
3679  	/* if the preferred allocation group has not average free space.
3680  	 * re-establish the preferred group as the leftmost
3681  	 * group with average free space.
3682  	 */
3683  	if (bmp->db_agfree[bmp->db_agpref] < avgfree) {
3684  		for (bmp->db_agpref = 0; bmp->db_agpref < actags;
3685  		     bmp->db_agpref++) {
3686  			if (bmp->db_agfree[bmp->db_agpref] >= avgfree)
3687  				break;
3688  		}
3689  		if (bmp->db_agpref >= bmp->db_numag) {
3690  			jfs_error(ipbmap->i_sb,
3691  				  "cannot find ag with average freespace\n");
3692  		}
3693  	}
3694  
3695  	/*
3696  	 * compute db_aglevel, db_agheight, db_width, db_agstart:
3697  	 * an ag is covered in aglevel dmapctl summary tree,
3698  	 * at agheight level height (from leaf) with agwidth number of nodes
3699  	 * each, which starts at agstart index node of the smmary tree node
3700  	 * array;
3701  	 */
3702  	bmp->db_aglevel = BMAPSZTOLEV(bmp->db_agsize);
3703  	l2nl =
3704  	    bmp->db_agl2size - (L2BPERDMAP + bmp->db_aglevel * L2LPERCTL);
3705  	bmp->db_agheight = l2nl >> 1;
3706  	bmp->db_agwidth = 1 << (l2nl - (bmp->db_agheight << 1));
3707  	for (i = 5 - bmp->db_agheight, bmp->db_agstart = 0, n = 1; i > 0;
3708  	     i--) {
3709  		bmp->db_agstart += n;
3710  		n <<= 2;
3711  	}
3712  
3713  }
3714  
3715  
3716  /*
3717   * NAME:	dbInitDmap()/ujfs_idmap_page()
3718   *
3719   * FUNCTION:	initialize working/persistent bitmap of the dmap page
3720   *		for the specified number of blocks:
3721   *
3722   *		at entry, the bitmaps had been initialized as free (ZEROS);
3723   *		The number of blocks will only account for the actually
3724   *		existing blocks. Blocks which don't actually exist in
3725   *		the aggregate will be marked as allocated (ONES);
3726   *
3727   * PARAMETERS:
3728   *	dp	- pointer to page of map
3729   *	nblocks	- number of blocks this page
3730   *
3731   * RETURNS: NONE
3732   */
dbInitDmap(struct dmap * dp,s64 Blkno,int nblocks)3733  static int dbInitDmap(struct dmap * dp, s64 Blkno, int nblocks)
3734  {
3735  	int blkno, w, b, r, nw, nb, i;
3736  
3737  	/* starting block number within the dmap */
3738  	blkno = Blkno & (BPERDMAP - 1);
3739  
3740  	if (blkno == 0) {
3741  		dp->nblocks = dp->nfree = cpu_to_le32(nblocks);
3742  		dp->start = cpu_to_le64(Blkno);
3743  
3744  		if (nblocks == BPERDMAP) {
3745  			memset(&dp->wmap[0], 0, LPERDMAP * 4);
3746  			memset(&dp->pmap[0], 0, LPERDMAP * 4);
3747  			goto initTree;
3748  		}
3749  	} else {
3750  		le32_add_cpu(&dp->nblocks, nblocks);
3751  		le32_add_cpu(&dp->nfree, nblocks);
3752  	}
3753  
3754  	/* word number containing start block number */
3755  	w = blkno >> L2DBWORD;
3756  
3757  	/*
3758  	 * free the bits corresponding to the block range (ZEROS):
3759  	 * note: not all bits of the first and last words may be contained
3760  	 * within the block range.
3761  	 */
3762  	for (r = nblocks; r > 0; r -= nb, blkno += nb) {
3763  		/* number of bits preceding range to be freed in the word */
3764  		b = blkno & (DBWORD - 1);
3765  		/* number of bits to free in the word */
3766  		nb = min(r, DBWORD - b);
3767  
3768  		/* is partial word to be freed ? */
3769  		if (nb < DBWORD) {
3770  			/* free (set to 0) from the bitmap word */
3771  			dp->wmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3772  						     >> b));
3773  			dp->pmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3774  						     >> b));
3775  
3776  			/* skip the word freed */
3777  			w++;
3778  		} else {
3779  			/* free (set to 0) contiguous bitmap words */
3780  			nw = r >> L2DBWORD;
3781  			memset(&dp->wmap[w], 0, nw * 4);
3782  			memset(&dp->pmap[w], 0, nw * 4);
3783  
3784  			/* skip the words freed */
3785  			nb = nw << L2DBWORD;
3786  			w += nw;
3787  		}
3788  	}
3789  
3790  	/*
3791  	 * mark bits following the range to be freed (non-existing
3792  	 * blocks) as allocated (ONES)
3793  	 */
3794  
3795  	if (blkno == BPERDMAP)
3796  		goto initTree;
3797  
3798  	/* the first word beyond the end of existing blocks */
3799  	w = blkno >> L2DBWORD;
3800  
3801  	/* does nblocks fall on a 32-bit boundary ? */
3802  	b = blkno & (DBWORD - 1);
3803  	if (b) {
3804  		/* mark a partial word allocated */
3805  		dp->wmap[w] = dp->pmap[w] = cpu_to_le32(ONES >> b);
3806  		w++;
3807  	}
3808  
3809  	/* set the rest of the words in the page to allocated (ONES) */
3810  	for (i = w; i < LPERDMAP; i++)
3811  		dp->pmap[i] = dp->wmap[i] = cpu_to_le32(ONES);
3812  
3813  	/*
3814  	 * init tree
3815  	 */
3816        initTree:
3817  	return (dbInitDmapTree(dp));
3818  }
3819  
3820  
3821  /*
3822   * NAME:	dbInitDmapTree()/ujfs_complete_dmap()
3823   *
3824   * FUNCTION:	initialize summary tree of the specified dmap:
3825   *
3826   *		at entry, bitmap of the dmap has been initialized;
3827   *
3828   * PARAMETERS:
3829   *	dp	- dmap to complete
3830   *	blkno	- starting block number for this dmap
3831   *	treemax	- will be filled in with max free for this dmap
3832   *
3833   * RETURNS:	max free string at the root of the tree
3834   */
dbInitDmapTree(struct dmap * dp)3835  static int dbInitDmapTree(struct dmap * dp)
3836  {
3837  	struct dmaptree *tp;
3838  	s8 *cp;
3839  	int i;
3840  
3841  	/* init fixed info of tree */
3842  	tp = &dp->tree;
3843  	tp->nleafs = cpu_to_le32(LPERDMAP);
3844  	tp->l2nleafs = cpu_to_le32(L2LPERDMAP);
3845  	tp->leafidx = cpu_to_le32(LEAFIND);
3846  	tp->height = cpu_to_le32(4);
3847  	tp->budmin = BUDMIN;
3848  
3849  	/* init each leaf from corresponding wmap word:
3850  	 * note: leaf is set to NOFREE(-1) if all blocks of corresponding
3851  	 * bitmap word are allocated.
3852  	 */
3853  	cp = tp->stree + le32_to_cpu(tp->leafidx);
3854  	for (i = 0; i < LPERDMAP; i++)
3855  		*cp++ = dbMaxBud((u8 *) & dp->wmap[i]);
3856  
3857  	/* build the dmap's binary buddy summary tree */
3858  	return (dbInitTree(tp));
3859  }
3860  
3861  
3862  /*
3863   * NAME:	dbInitTree()/ujfs_adjtree()
3864   *
3865   * FUNCTION:	initialize binary buddy summary tree of a dmap or dmapctl.
3866   *
3867   *		at entry, the leaves of the tree has been initialized
3868   *		from corresponding bitmap word or root of summary tree
3869   *		of the child control page;
3870   *		configure binary buddy system at the leaf level, then
3871   *		bubble up the values of the leaf nodes up the tree.
3872   *
3873   * PARAMETERS:
3874   *	cp	- Pointer to the root of the tree
3875   *	l2leaves- Number of leaf nodes as a power of 2
3876   *	l2min	- Number of blocks that can be covered by a leaf
3877   *		  as a power of 2
3878   *
3879   * RETURNS: max free string at the root of the tree
3880   */
dbInitTree(struct dmaptree * dtp)3881  static int dbInitTree(struct dmaptree * dtp)
3882  {
3883  	int l2max, l2free, bsize, nextb, i;
3884  	int child, parent, nparent;
3885  	s8 *tp, *cp, *cp1;
3886  
3887  	tp = dtp->stree;
3888  
3889  	/* Determine the maximum free string possible for the leaves */
3890  	l2max = le32_to_cpu(dtp->l2nleafs) + dtp->budmin;
3891  
3892  	/*
3893  	 * configure the leaf level into binary buddy system
3894  	 *
3895  	 * Try to combine buddies starting with a buddy size of 1
3896  	 * (i.e. two leaves). At a buddy size of 1 two buddy leaves
3897  	 * can be combined if both buddies have a maximum free of l2min;
3898  	 * the combination will result in the left-most buddy leaf having
3899  	 * a maximum free of l2min+1.
3900  	 * After processing all buddies for a given size, process buddies
3901  	 * at the next higher buddy size (i.e. current size * 2) and
3902  	 * the next maximum free (current free + 1).
3903  	 * This continues until the maximum possible buddy combination
3904  	 * yields maximum free.
3905  	 */
3906  	for (l2free = dtp->budmin, bsize = 1; l2free < l2max;
3907  	     l2free++, bsize = nextb) {
3908  		/* get next buddy size == current buddy pair size */
3909  		nextb = bsize << 1;
3910  
3911  		/* scan each adjacent buddy pair at current buddy size */
3912  		for (i = 0, cp = tp + le32_to_cpu(dtp->leafidx);
3913  		     i < le32_to_cpu(dtp->nleafs);
3914  		     i += nextb, cp += nextb) {
3915  			/* coalesce if both adjacent buddies are max free */
3916  			if (*cp == l2free && *(cp + bsize) == l2free) {
3917  				*cp = l2free + 1;	/* left take right */
3918  				*(cp + bsize) = -1;	/* right give left */
3919  			}
3920  		}
3921  	}
3922  
3923  	/*
3924  	 * bubble summary information of leaves up the tree.
3925  	 *
3926  	 * Starting at the leaf node level, the four nodes described by
3927  	 * the higher level parent node are compared for a maximum free and
3928  	 * this maximum becomes the value of the parent node.
3929  	 * when all lower level nodes are processed in this fashion then
3930  	 * move up to the next level (parent becomes a lower level node) and
3931  	 * continue the process for that level.
3932  	 */
3933  	for (child = le32_to_cpu(dtp->leafidx),
3934  	     nparent = le32_to_cpu(dtp->nleafs) >> 2;
3935  	     nparent > 0; nparent >>= 2, child = parent) {
3936  		/* get index of 1st node of parent level */
3937  		parent = (child - 1) >> 2;
3938  
3939  		/* set the value of the parent node as the maximum
3940  		 * of the four nodes of the current level.
3941  		 */
3942  		for (i = 0, cp = tp + child, cp1 = tp + parent;
3943  		     i < nparent; i++, cp += 4, cp1++)
3944  			*cp1 = TREEMAX(cp);
3945  	}
3946  
3947  	return (*tp);
3948  }
3949  
3950  
3951  /*
3952   *	dbInitDmapCtl()
3953   *
3954   * function: initialize dmapctl page
3955   */
dbInitDmapCtl(struct dmapctl * dcp,int level,int i)3956  static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i)
3957  {				/* start leaf index not covered by range */
3958  	s8 *cp;
3959  
3960  	dcp->nleafs = cpu_to_le32(LPERCTL);
3961  	dcp->l2nleafs = cpu_to_le32(L2LPERCTL);
3962  	dcp->leafidx = cpu_to_le32(CTLLEAFIND);
3963  	dcp->height = cpu_to_le32(5);
3964  	dcp->budmin = L2BPERDMAP + L2LPERCTL * level;
3965  
3966  	/*
3967  	 * initialize the leaves of current level that were not covered
3968  	 * by the specified input block range (i.e. the leaves have no
3969  	 * low level dmapctl or dmap).
3970  	 */
3971  	cp = &dcp->stree[CTLLEAFIND + i];
3972  	for (; i < LPERCTL; i++)
3973  		*cp++ = NOFREE;
3974  
3975  	/* build the dmap's binary buddy summary tree */
3976  	return (dbInitTree((struct dmaptree *) dcp));
3977  }
3978  
3979  
3980  /*
3981   * NAME:	dbGetL2AGSize()/ujfs_getagl2size()
3982   *
3983   * FUNCTION:	Determine log2(allocation group size) from aggregate size
3984   *
3985   * PARAMETERS:
3986   *	nblocks	- Number of blocks in aggregate
3987   *
3988   * RETURNS: log2(allocation group size) in aggregate blocks
3989   */
dbGetL2AGSize(s64 nblocks)3990  static int dbGetL2AGSize(s64 nblocks)
3991  {
3992  	s64 sz;
3993  	s64 m;
3994  	int l2sz;
3995  
3996  	if (nblocks < BPERDMAP * MAXAG)
3997  		return (L2BPERDMAP);
3998  
3999  	/* round up aggregate size to power of 2 */
4000  	m = ((u64) 1 << (64 - 1));
4001  	for (l2sz = 64; l2sz >= 0; l2sz--, m >>= 1) {
4002  		if (m & nblocks)
4003  			break;
4004  	}
4005  
4006  	sz = (s64) 1 << l2sz;
4007  	if (sz < nblocks)
4008  		l2sz += 1;
4009  
4010  	/* agsize = roundupSize/max_number_of_ag */
4011  	return (l2sz - L2MAXAG);
4012  }
4013  
4014  
4015  /*
4016   * NAME:	dbMapFileSizeToMapSize()
4017   *
4018   * FUNCTION:	compute number of blocks the block allocation map file
4019   *		can cover from the map file size;
4020   *
4021   * RETURNS:	Number of blocks which can be covered by this block map file;
4022   */
4023  
4024  /*
4025   * maximum number of map pages at each level including control pages
4026   */
4027  #define MAXL0PAGES	(1 + LPERCTL)
4028  #define MAXL1PAGES	(1 + LPERCTL * MAXL0PAGES)
4029  
4030  /*
4031   * convert number of map pages to the zero origin top dmapctl level
4032   */
4033  #define BMAPPGTOLEV(npages)	\
4034  	(((npages) <= 3 + MAXL0PAGES) ? 0 : \
4035  	 ((npages) <= 2 + MAXL1PAGES) ? 1 : 2)
4036  
dbMapFileSizeToMapSize(struct inode * ipbmap)4037  s64 dbMapFileSizeToMapSize(struct inode * ipbmap)
4038  {
4039  	struct super_block *sb = ipbmap->i_sb;
4040  	s64 nblocks;
4041  	s64 npages, ndmaps;
4042  	int level, i;
4043  	int complete, factor;
4044  
4045  	nblocks = ipbmap->i_size >> JFS_SBI(sb)->l2bsize;
4046  	npages = nblocks >> JFS_SBI(sb)->l2nbperpage;
4047  	level = BMAPPGTOLEV(npages);
4048  
4049  	/* At each level, accumulate the number of dmap pages covered by
4050  	 * the number of full child levels below it;
4051  	 * repeat for the last incomplete child level.
4052  	 */
4053  	ndmaps = 0;
4054  	npages--;		/* skip the first global control page */
4055  	/* skip higher level control pages above top level covered by map */
4056  	npages -= (2 - level);
4057  	npages--;		/* skip top level's control page */
4058  	for (i = level; i >= 0; i--) {
4059  		factor =
4060  		    (i == 2) ? MAXL1PAGES : ((i == 1) ? MAXL0PAGES : 1);
4061  		complete = (u32) npages / factor;
4062  		ndmaps += complete * ((i == 2) ? LPERCTL * LPERCTL :
4063  				      ((i == 1) ? LPERCTL : 1));
4064  
4065  		/* pages in last/incomplete child */
4066  		npages = (u32) npages % factor;
4067  		/* skip incomplete child's level control page */
4068  		npages--;
4069  	}
4070  
4071  	/* convert the number of dmaps into the number of blocks
4072  	 * which can be covered by the dmaps;
4073  	 */
4074  	nblocks = ndmaps << L2BPERDMAP;
4075  
4076  	return (nblocks);
4077  }
4078