1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Parallel SCSI (SPI) transport specific attributes exported to sysfs.
4 *
5 * Copyright (c) 2003 Silicon Graphics, Inc. All rights reserved.
6 * Copyright (c) 2004, 2005 James Bottomley <James.Bottomley@SteelEye.com>
7 */
8 #include <linux/ctype.h>
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/workqueue.h>
12 #include <linux/blkdev.h>
13 #include <linux/mutex.h>
14 #include <linux/sysfs.h>
15 #include <linux/slab.h>
16 #include <linux/suspend.h>
17 #include <scsi/scsi.h>
18 #include "scsi_priv.h"
19 #include <scsi/scsi_device.h>
20 #include <scsi/scsi_host.h>
21 #include <scsi/scsi_cmnd.h>
22 #include <scsi/scsi_eh.h>
23 #include <scsi/scsi_tcq.h>
24 #include <scsi/scsi_transport.h>
25 #include <scsi/scsi_transport_spi.h>
26
27 #define SPI_NUM_ATTRS 14 /* increase this if you add attributes */
28 #define SPI_OTHER_ATTRS 1 /* Increase this if you add "always
29 * on" attributes */
30 #define SPI_HOST_ATTRS 1
31
32 #define SPI_MAX_ECHO_BUFFER_SIZE 4096
33
34 #define DV_LOOPS 3
35 #define DV_TIMEOUT (10*HZ)
36 #define DV_RETRIES 3 /* should only need at most
37 * two cc/ua clears */
38
39 /* Our blacklist flags */
40 enum {
41 SPI_BLIST_NOIUS = (__force blist_flags_t)0x1,
42 };
43
44 /* blacklist table, modelled on scsi_devinfo.c */
45 static struct {
46 char *vendor;
47 char *model;
48 blist_flags_t flags;
49 } spi_static_device_list[] __initdata = {
50 {"HP", "Ultrium 3-SCSI", SPI_BLIST_NOIUS },
51 {"IBM", "ULTRIUM-TD3", SPI_BLIST_NOIUS },
52 {NULL, NULL, 0}
53 };
54
55 /* Private data accessors (keep these out of the header file) */
56 #define spi_dv_in_progress(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_in_progress)
57 #define spi_dv_mutex(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_mutex)
58
59 struct spi_internal {
60 struct scsi_transport_template t;
61 struct spi_function_template *f;
62 };
63
64 #define to_spi_internal(tmpl) container_of(tmpl, struct spi_internal, t)
65
66 static const int ppr_to_ps[] = {
67 /* The PPR values 0-6 are reserved, fill them in when
68 * the committee defines them */
69 -1, /* 0x00 */
70 -1, /* 0x01 */
71 -1, /* 0x02 */
72 -1, /* 0x03 */
73 -1, /* 0x04 */
74 -1, /* 0x05 */
75 -1, /* 0x06 */
76 3125, /* 0x07 */
77 6250, /* 0x08 */
78 12500, /* 0x09 */
79 25000, /* 0x0a */
80 30300, /* 0x0b */
81 50000, /* 0x0c */
82 };
83 /* The PPR values at which you calculate the period in ns by multiplying
84 * by 4 */
85 #define SPI_STATIC_PPR 0x0c
86
sprint_frac(char * dest,int value,int denom)87 static int sprint_frac(char *dest, int value, int denom)
88 {
89 int frac = value % denom;
90 int result = sprintf(dest, "%d", value / denom);
91
92 if (frac == 0)
93 return result;
94 dest[result++] = '.';
95
96 do {
97 denom /= 10;
98 sprintf(dest + result, "%d", frac / denom);
99 result++;
100 frac %= denom;
101 } while (frac);
102
103 dest[result++] = '\0';
104 return result;
105 }
106
spi_execute(struct scsi_device * sdev,const void * cmd,enum req_op op,void * buffer,unsigned int bufflen,struct scsi_sense_hdr * sshdr)107 static int spi_execute(struct scsi_device *sdev, const void *cmd,
108 enum req_op op, void *buffer, unsigned int bufflen,
109 struct scsi_sense_hdr *sshdr)
110 {
111 int i, result;
112 struct scsi_sense_hdr sshdr_tmp;
113 blk_opf_t opf = op | REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT |
114 REQ_FAILFAST_DRIVER;
115 const struct scsi_exec_args exec_args = {
116 .req_flags = BLK_MQ_REQ_PM,
117 .sshdr = sshdr ? : &sshdr_tmp,
118 };
119
120 sshdr = exec_args.sshdr;
121
122 for(i = 0; i < DV_RETRIES; i++) {
123 /*
124 * The purpose of the RQF_PM flag below is to bypass the
125 * SDEV_QUIESCE state.
126 */
127 result = scsi_execute_cmd(sdev, cmd, opf, buffer, bufflen,
128 DV_TIMEOUT, 1, &exec_args);
129 if (result < 0 || !scsi_sense_valid(sshdr) ||
130 sshdr->sense_key != UNIT_ATTENTION)
131 break;
132 }
133 return result;
134 }
135
136 static struct {
137 enum spi_signal_type value;
138 char *name;
139 } signal_types[] = {
140 { SPI_SIGNAL_UNKNOWN, "unknown" },
141 { SPI_SIGNAL_SE, "SE" },
142 { SPI_SIGNAL_LVD, "LVD" },
143 { SPI_SIGNAL_HVD, "HVD" },
144 };
145
spi_signal_to_string(enum spi_signal_type type)146 static inline const char *spi_signal_to_string(enum spi_signal_type type)
147 {
148 int i;
149
150 for (i = 0; i < ARRAY_SIZE(signal_types); i++) {
151 if (type == signal_types[i].value)
152 return signal_types[i].name;
153 }
154 return NULL;
155 }
spi_signal_to_value(const char * name)156 static inline enum spi_signal_type spi_signal_to_value(const char *name)
157 {
158 int i, len;
159
160 for (i = 0; i < ARRAY_SIZE(signal_types); i++) {
161 len = strlen(signal_types[i].name);
162 if (strncmp(name, signal_types[i].name, len) == 0 &&
163 (name[len] == '\n' || name[len] == '\0'))
164 return signal_types[i].value;
165 }
166 return SPI_SIGNAL_UNKNOWN;
167 }
168
spi_host_setup(struct transport_container * tc,struct device * dev,struct device * cdev)169 static int spi_host_setup(struct transport_container *tc, struct device *dev,
170 struct device *cdev)
171 {
172 struct Scsi_Host *shost = dev_to_shost(dev);
173
174 spi_signalling(shost) = SPI_SIGNAL_UNKNOWN;
175
176 return 0;
177 }
178
179 static int spi_host_configure(struct transport_container *tc,
180 struct device *dev,
181 struct device *cdev);
182
183 static DECLARE_TRANSPORT_CLASS(spi_host_class,
184 "spi_host",
185 spi_host_setup,
186 NULL,
187 spi_host_configure);
188
spi_host_match(struct attribute_container * cont,struct device * dev)189 static int spi_host_match(struct attribute_container *cont,
190 struct device *dev)
191 {
192 struct Scsi_Host *shost;
193
194 if (!scsi_is_host_device(dev))
195 return 0;
196
197 shost = dev_to_shost(dev);
198 if (!shost->transportt || shost->transportt->host_attrs.ac.class
199 != &spi_host_class.class)
200 return 0;
201
202 return &shost->transportt->host_attrs.ac == cont;
203 }
204
205 static int spi_target_configure(struct transport_container *tc,
206 struct device *dev,
207 struct device *cdev);
208
spi_device_configure(struct transport_container * tc,struct device * dev,struct device * cdev)209 static int spi_device_configure(struct transport_container *tc,
210 struct device *dev,
211 struct device *cdev)
212 {
213 struct scsi_device *sdev = to_scsi_device(dev);
214 struct scsi_target *starget = sdev->sdev_target;
215 blist_flags_t bflags;
216
217 bflags = scsi_get_device_flags_keyed(sdev, &sdev->inquiry[8],
218 &sdev->inquiry[16],
219 SCSI_DEVINFO_SPI);
220
221 /* Populate the target capability fields with the values
222 * gleaned from the device inquiry */
223
224 spi_support_sync(starget) = scsi_device_sync(sdev);
225 spi_support_wide(starget) = scsi_device_wide(sdev);
226 spi_support_dt(starget) = scsi_device_dt(sdev);
227 spi_support_dt_only(starget) = scsi_device_dt_only(sdev);
228 spi_support_ius(starget) = scsi_device_ius(sdev);
229 if (bflags & SPI_BLIST_NOIUS) {
230 dev_info(dev, "Information Units disabled by blacklist\n");
231 spi_support_ius(starget) = 0;
232 }
233 spi_support_qas(starget) = scsi_device_qas(sdev);
234
235 return 0;
236 }
237
spi_setup_transport_attrs(struct transport_container * tc,struct device * dev,struct device * cdev)238 static int spi_setup_transport_attrs(struct transport_container *tc,
239 struct device *dev,
240 struct device *cdev)
241 {
242 struct scsi_target *starget = to_scsi_target(dev);
243
244 spi_period(starget) = -1; /* illegal value */
245 spi_min_period(starget) = 0;
246 spi_offset(starget) = 0; /* async */
247 spi_max_offset(starget) = 255;
248 spi_width(starget) = 0; /* narrow */
249 spi_max_width(starget) = 1;
250 spi_iu(starget) = 0; /* no IU */
251 spi_max_iu(starget) = 1;
252 spi_dt(starget) = 0; /* ST */
253 spi_qas(starget) = 0;
254 spi_max_qas(starget) = 1;
255 spi_wr_flow(starget) = 0;
256 spi_rd_strm(starget) = 0;
257 spi_rti(starget) = 0;
258 spi_pcomp_en(starget) = 0;
259 spi_hold_mcs(starget) = 0;
260 spi_dv_pending(starget) = 0;
261 spi_dv_in_progress(starget) = 0;
262 spi_initial_dv(starget) = 0;
263 mutex_init(&spi_dv_mutex(starget));
264
265 return 0;
266 }
267
268 #define spi_transport_show_simple(field, format_string) \
269 \
270 static ssize_t \
271 show_spi_transport_##field(struct device *dev, \
272 struct device_attribute *attr, char *buf) \
273 { \
274 struct scsi_target *starget = transport_class_to_starget(dev); \
275 struct spi_transport_attrs *tp; \
276 \
277 tp = (struct spi_transport_attrs *)&starget->starget_data; \
278 return snprintf(buf, 20, format_string, tp->field); \
279 }
280
281 #define spi_transport_store_simple(field, format_string) \
282 \
283 static ssize_t \
284 store_spi_transport_##field(struct device *dev, \
285 struct device_attribute *attr, \
286 const char *buf, size_t count) \
287 { \
288 int val; \
289 struct scsi_target *starget = transport_class_to_starget(dev); \
290 struct spi_transport_attrs *tp; \
291 \
292 tp = (struct spi_transport_attrs *)&starget->starget_data; \
293 val = simple_strtoul(buf, NULL, 0); \
294 tp->field = val; \
295 return count; \
296 }
297
298 #define spi_transport_show_function(field, format_string) \
299 \
300 static ssize_t \
301 show_spi_transport_##field(struct device *dev, \
302 struct device_attribute *attr, char *buf) \
303 { \
304 struct scsi_target *starget = transport_class_to_starget(dev); \
305 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
306 struct spi_transport_attrs *tp; \
307 struct spi_internal *i = to_spi_internal(shost->transportt); \
308 tp = (struct spi_transport_attrs *)&starget->starget_data; \
309 if (i->f->get_##field) \
310 i->f->get_##field(starget); \
311 return snprintf(buf, 20, format_string, tp->field); \
312 }
313
314 #define spi_transport_store_function(field, format_string) \
315 static ssize_t \
316 store_spi_transport_##field(struct device *dev, \
317 struct device_attribute *attr, \
318 const char *buf, size_t count) \
319 { \
320 int val; \
321 struct scsi_target *starget = transport_class_to_starget(dev); \
322 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
323 struct spi_internal *i = to_spi_internal(shost->transportt); \
324 \
325 if (!i->f->set_##field) \
326 return -EINVAL; \
327 val = simple_strtoul(buf, NULL, 0); \
328 i->f->set_##field(starget, val); \
329 return count; \
330 }
331
332 #define spi_transport_store_max(field, format_string) \
333 static ssize_t \
334 store_spi_transport_##field(struct device *dev, \
335 struct device_attribute *attr, \
336 const char *buf, size_t count) \
337 { \
338 int val; \
339 struct scsi_target *starget = transport_class_to_starget(dev); \
340 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
341 struct spi_internal *i = to_spi_internal(shost->transportt); \
342 struct spi_transport_attrs *tp \
343 = (struct spi_transport_attrs *)&starget->starget_data; \
344 \
345 if (!i->f->set_##field) \
346 return -EINVAL; \
347 val = simple_strtoul(buf, NULL, 0); \
348 if (val > tp->max_##field) \
349 val = tp->max_##field; \
350 i->f->set_##field(starget, val); \
351 return count; \
352 }
353
354 #define spi_transport_rd_attr(field, format_string) \
355 spi_transport_show_function(field, format_string) \
356 spi_transport_store_function(field, format_string) \
357 static DEVICE_ATTR(field, S_IRUGO, \
358 show_spi_transport_##field, \
359 store_spi_transport_##field);
360
361 #define spi_transport_simple_attr(field, format_string) \
362 spi_transport_show_simple(field, format_string) \
363 spi_transport_store_simple(field, format_string) \
364 static DEVICE_ATTR(field, S_IRUGO, \
365 show_spi_transport_##field, \
366 store_spi_transport_##field);
367
368 #define spi_transport_max_attr(field, format_string) \
369 spi_transport_show_function(field, format_string) \
370 spi_transport_store_max(field, format_string) \
371 spi_transport_simple_attr(max_##field, format_string) \
372 static DEVICE_ATTR(field, S_IRUGO, \
373 show_spi_transport_##field, \
374 store_spi_transport_##field);
375
376 /* The Parallel SCSI Tranport Attributes: */
377 spi_transport_max_attr(offset, "%d\n");
378 spi_transport_max_attr(width, "%d\n");
379 spi_transport_max_attr(iu, "%d\n");
380 spi_transport_rd_attr(dt, "%d\n");
381 spi_transport_max_attr(qas, "%d\n");
382 spi_transport_rd_attr(wr_flow, "%d\n");
383 spi_transport_rd_attr(rd_strm, "%d\n");
384 spi_transport_rd_attr(rti, "%d\n");
385 spi_transport_rd_attr(pcomp_en, "%d\n");
386 spi_transport_rd_attr(hold_mcs, "%d\n");
387
388 /* we only care about the first child device that's a real SCSI device
389 * so we return 1 to terminate the iteration when we find it */
child_iter(struct device * dev,void * data)390 static int child_iter(struct device *dev, void *data)
391 {
392 if (!scsi_is_sdev_device(dev))
393 return 0;
394
395 spi_dv_device(to_scsi_device(dev));
396 return 1;
397 }
398
399 static ssize_t
store_spi_revalidate(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)400 store_spi_revalidate(struct device *dev, struct device_attribute *attr,
401 const char *buf, size_t count)
402 {
403 struct scsi_target *starget = transport_class_to_starget(dev);
404
405 device_for_each_child(&starget->dev, NULL, child_iter);
406 return count;
407 }
408 static DEVICE_ATTR(revalidate, S_IWUSR, NULL, store_spi_revalidate);
409
410 /* Translate the period into ns according to the current spec
411 * for SDTR/PPR messages */
period_to_str(char * buf,int period)412 static int period_to_str(char *buf, int period)
413 {
414 int len, picosec;
415
416 if (period < 0 || period > 0xff) {
417 picosec = -1;
418 } else if (period <= SPI_STATIC_PPR) {
419 picosec = ppr_to_ps[period];
420 } else {
421 picosec = period * 4000;
422 }
423
424 if (picosec == -1) {
425 len = sprintf(buf, "reserved");
426 } else {
427 len = sprint_frac(buf, picosec, 1000);
428 }
429
430 return len;
431 }
432
433 static ssize_t
show_spi_transport_period_helper(char * buf,int period)434 show_spi_transport_period_helper(char *buf, int period)
435 {
436 int len = period_to_str(buf, period);
437 buf[len++] = '\n';
438 buf[len] = '\0';
439 return len;
440 }
441
442 static ssize_t
store_spi_transport_period_helper(struct device * dev,const char * buf,size_t count,int * periodp)443 store_spi_transport_period_helper(struct device *dev, const char *buf,
444 size_t count, int *periodp)
445 {
446 int j, picosec, period = -1;
447 char *endp;
448
449 picosec = simple_strtoul(buf, &endp, 10) * 1000;
450 if (*endp == '.') {
451 int mult = 100;
452 do {
453 endp++;
454 if (!isdigit(*endp))
455 break;
456 picosec += (*endp - '0') * mult;
457 mult /= 10;
458 } while (mult > 0);
459 }
460
461 for (j = 0; j <= SPI_STATIC_PPR; j++) {
462 if (ppr_to_ps[j] < picosec)
463 continue;
464 period = j;
465 break;
466 }
467
468 if (period == -1)
469 period = picosec / 4000;
470
471 if (period > 0xff)
472 period = 0xff;
473
474 *periodp = period;
475
476 return count;
477 }
478
479 static ssize_t
show_spi_transport_period(struct device * dev,struct device_attribute * attr,char * buf)480 show_spi_transport_period(struct device *dev,
481 struct device_attribute *attr, char *buf)
482 {
483 struct scsi_target *starget = transport_class_to_starget(dev);
484 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
485 struct spi_internal *i = to_spi_internal(shost->transportt);
486 struct spi_transport_attrs *tp =
487 (struct spi_transport_attrs *)&starget->starget_data;
488
489 if (i->f->get_period)
490 i->f->get_period(starget);
491
492 return show_spi_transport_period_helper(buf, tp->period);
493 }
494
495 static ssize_t
store_spi_transport_period(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)496 store_spi_transport_period(struct device *cdev, struct device_attribute *attr,
497 const char *buf, size_t count)
498 {
499 struct scsi_target *starget = transport_class_to_starget(cdev);
500 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
501 struct spi_internal *i = to_spi_internal(shost->transportt);
502 struct spi_transport_attrs *tp =
503 (struct spi_transport_attrs *)&starget->starget_data;
504 int period, retval;
505
506 if (!i->f->set_period)
507 return -EINVAL;
508
509 retval = store_spi_transport_period_helper(cdev, buf, count, &period);
510
511 if (period < tp->min_period)
512 period = tp->min_period;
513
514 i->f->set_period(starget, period);
515
516 return retval;
517 }
518
519 static DEVICE_ATTR(period, S_IRUGO,
520 show_spi_transport_period,
521 store_spi_transport_period);
522
523 static ssize_t
show_spi_transport_min_period(struct device * cdev,struct device_attribute * attr,char * buf)524 show_spi_transport_min_period(struct device *cdev,
525 struct device_attribute *attr, char *buf)
526 {
527 struct scsi_target *starget = transport_class_to_starget(cdev);
528 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
529 struct spi_internal *i = to_spi_internal(shost->transportt);
530 struct spi_transport_attrs *tp =
531 (struct spi_transport_attrs *)&starget->starget_data;
532
533 if (!i->f->set_period)
534 return -EINVAL;
535
536 return show_spi_transport_period_helper(buf, tp->min_period);
537 }
538
539 static ssize_t
store_spi_transport_min_period(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)540 store_spi_transport_min_period(struct device *cdev,
541 struct device_attribute *attr,
542 const char *buf, size_t count)
543 {
544 struct scsi_target *starget = transport_class_to_starget(cdev);
545 struct spi_transport_attrs *tp =
546 (struct spi_transport_attrs *)&starget->starget_data;
547
548 return store_spi_transport_period_helper(cdev, buf, count,
549 &tp->min_period);
550 }
551
552
553 static DEVICE_ATTR(min_period, S_IRUGO,
554 show_spi_transport_min_period,
555 store_spi_transport_min_period);
556
557
show_spi_host_signalling(struct device * cdev,struct device_attribute * attr,char * buf)558 static ssize_t show_spi_host_signalling(struct device *cdev,
559 struct device_attribute *attr,
560 char *buf)
561 {
562 struct Scsi_Host *shost = transport_class_to_shost(cdev);
563 struct spi_internal *i = to_spi_internal(shost->transportt);
564
565 if (i->f->get_signalling)
566 i->f->get_signalling(shost);
567
568 return sprintf(buf, "%s\n", spi_signal_to_string(spi_signalling(shost)));
569 }
store_spi_host_signalling(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)570 static ssize_t store_spi_host_signalling(struct device *dev,
571 struct device_attribute *attr,
572 const char *buf, size_t count)
573 {
574 struct Scsi_Host *shost = transport_class_to_shost(dev);
575 struct spi_internal *i = to_spi_internal(shost->transportt);
576 enum spi_signal_type type = spi_signal_to_value(buf);
577
578 if (!i->f->set_signalling)
579 return -EINVAL;
580
581 if (type != SPI_SIGNAL_UNKNOWN)
582 i->f->set_signalling(shost, type);
583
584 return count;
585 }
586 static DEVICE_ATTR(signalling, S_IRUGO,
587 show_spi_host_signalling,
588 store_spi_host_signalling);
589
show_spi_host_width(struct device * cdev,struct device_attribute * attr,char * buf)590 static ssize_t show_spi_host_width(struct device *cdev,
591 struct device_attribute *attr,
592 char *buf)
593 {
594 struct Scsi_Host *shost = transport_class_to_shost(cdev);
595
596 return sprintf(buf, "%s\n", shost->max_id == 16 ? "wide" : "narrow");
597 }
598 static DEVICE_ATTR(host_width, S_IRUGO,
599 show_spi_host_width, NULL);
600
show_spi_host_hba_id(struct device * cdev,struct device_attribute * attr,char * buf)601 static ssize_t show_spi_host_hba_id(struct device *cdev,
602 struct device_attribute *attr,
603 char *buf)
604 {
605 struct Scsi_Host *shost = transport_class_to_shost(cdev);
606
607 return sprintf(buf, "%d\n", shost->this_id);
608 }
609 static DEVICE_ATTR(hba_id, S_IRUGO,
610 show_spi_host_hba_id, NULL);
611
612 #define DV_SET(x, y) \
613 if(i->f->set_##x) \
614 i->f->set_##x(sdev->sdev_target, y)
615
616 enum spi_compare_returns {
617 SPI_COMPARE_SUCCESS,
618 SPI_COMPARE_FAILURE,
619 SPI_COMPARE_SKIP_TEST,
620 };
621
622
623 /* This is for read/write Domain Validation: If the device supports
624 * an echo buffer, we do read/write tests to it */
625 static enum spi_compare_returns
spi_dv_device_echo_buffer(struct scsi_device * sdev,u8 * buffer,u8 * ptr,const int retries)626 spi_dv_device_echo_buffer(struct scsi_device *sdev, u8 *buffer,
627 u8 *ptr, const int retries)
628 {
629 int len = ptr - buffer;
630 int j, k, r, result;
631 unsigned int pattern = 0x0000ffff;
632 struct scsi_sense_hdr sshdr;
633
634 const char spi_write_buffer[] = {
635 WRITE_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0
636 };
637 const char spi_read_buffer[] = {
638 READ_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0
639 };
640
641 /* set up the pattern buffer. Doesn't matter if we spill
642 * slightly beyond since that's where the read buffer is */
643 for (j = 0; j < len; ) {
644
645 /* fill the buffer with counting (test a) */
646 for ( ; j < min(len, 32); j++)
647 buffer[j] = j;
648 k = j;
649 /* fill the buffer with alternating words of 0x0 and
650 * 0xffff (test b) */
651 for ( ; j < min(len, k + 32); j += 2) {
652 u16 *word = (u16 *)&buffer[j];
653
654 *word = (j & 0x02) ? 0x0000 : 0xffff;
655 }
656 k = j;
657 /* fill with crosstalk (alternating 0x5555 0xaaa)
658 * (test c) */
659 for ( ; j < min(len, k + 32); j += 2) {
660 u16 *word = (u16 *)&buffer[j];
661
662 *word = (j & 0x02) ? 0x5555 : 0xaaaa;
663 }
664 k = j;
665 /* fill with shifting bits (test d) */
666 for ( ; j < min(len, k + 32); j += 4) {
667 u32 *word = (unsigned int *)&buffer[j];
668 u32 roll = (pattern & 0x80000000) ? 1 : 0;
669
670 *word = pattern;
671 pattern = (pattern << 1) | roll;
672 }
673 /* don't bother with random data (test e) */
674 }
675
676 for (r = 0; r < retries; r++) {
677 result = spi_execute(sdev, spi_write_buffer, REQ_OP_DRV_OUT,
678 buffer, len, &sshdr);
679 if (result || !scsi_device_online(sdev)) {
680
681 scsi_device_set_state(sdev, SDEV_QUIESCE);
682 if (result > 0 && scsi_sense_valid(&sshdr)
683 && sshdr.sense_key == ILLEGAL_REQUEST
684 /* INVALID FIELD IN CDB */
685 && sshdr.asc == 0x24 && sshdr.ascq == 0x00)
686 /* This would mean that the drive lied
687 * to us about supporting an echo
688 * buffer (unfortunately some Western
689 * Digital drives do precisely this)
690 */
691 return SPI_COMPARE_SKIP_TEST;
692
693
694 sdev_printk(KERN_ERR, sdev, "Write Buffer failure %x\n", result);
695 return SPI_COMPARE_FAILURE;
696 }
697
698 memset(ptr, 0, len);
699 spi_execute(sdev, spi_read_buffer, REQ_OP_DRV_IN,
700 ptr, len, NULL);
701 scsi_device_set_state(sdev, SDEV_QUIESCE);
702
703 if (memcmp(buffer, ptr, len) != 0)
704 return SPI_COMPARE_FAILURE;
705 }
706 return SPI_COMPARE_SUCCESS;
707 }
708
709 /* This is for the simplest form of Domain Validation: a read test
710 * on the inquiry data from the device */
711 static enum spi_compare_returns
spi_dv_device_compare_inquiry(struct scsi_device * sdev,u8 * buffer,u8 * ptr,const int retries)712 spi_dv_device_compare_inquiry(struct scsi_device *sdev, u8 *buffer,
713 u8 *ptr, const int retries)
714 {
715 int r, result;
716 const int len = sdev->inquiry_len;
717 const char spi_inquiry[] = {
718 INQUIRY, 0, 0, 0, len, 0
719 };
720
721 for (r = 0; r < retries; r++) {
722 memset(ptr, 0, len);
723
724 result = spi_execute(sdev, spi_inquiry, REQ_OP_DRV_IN,
725 ptr, len, NULL);
726
727 if(result || !scsi_device_online(sdev)) {
728 scsi_device_set_state(sdev, SDEV_QUIESCE);
729 return SPI_COMPARE_FAILURE;
730 }
731
732 /* If we don't have the inquiry data already, the
733 * first read gets it */
734 if (ptr == buffer) {
735 ptr += len;
736 --r;
737 continue;
738 }
739
740 if (memcmp(buffer, ptr, len) != 0)
741 /* failure */
742 return SPI_COMPARE_FAILURE;
743 }
744 return SPI_COMPARE_SUCCESS;
745 }
746
747 static enum spi_compare_returns
spi_dv_retrain(struct scsi_device * sdev,u8 * buffer,u8 * ptr,enum spi_compare_returns (* compare_fn)(struct scsi_device *,u8 *,u8 *,int))748 spi_dv_retrain(struct scsi_device *sdev, u8 *buffer, u8 *ptr,
749 enum spi_compare_returns
750 (*compare_fn)(struct scsi_device *, u8 *, u8 *, int))
751 {
752 struct spi_internal *i = to_spi_internal(sdev->host->transportt);
753 struct scsi_target *starget = sdev->sdev_target;
754 int period = 0, prevperiod = 0;
755 enum spi_compare_returns retval;
756
757
758 for (;;) {
759 int newperiod;
760 retval = compare_fn(sdev, buffer, ptr, DV_LOOPS);
761
762 if (retval == SPI_COMPARE_SUCCESS
763 || retval == SPI_COMPARE_SKIP_TEST)
764 break;
765
766 /* OK, retrain, fallback */
767 if (i->f->get_iu)
768 i->f->get_iu(starget);
769 if (i->f->get_qas)
770 i->f->get_qas(starget);
771 if (i->f->get_period)
772 i->f->get_period(sdev->sdev_target);
773
774 /* Here's the fallback sequence; first try turning off
775 * IU, then QAS (if we can control them), then finally
776 * fall down the periods */
777 if (i->f->set_iu && spi_iu(starget)) {
778 starget_printk(KERN_ERR, starget, "Domain Validation Disabling Information Units\n");
779 DV_SET(iu, 0);
780 } else if (i->f->set_qas && spi_qas(starget)) {
781 starget_printk(KERN_ERR, starget, "Domain Validation Disabling Quick Arbitration and Selection\n");
782 DV_SET(qas, 0);
783 } else {
784 newperiod = spi_period(starget);
785 period = newperiod > period ? newperiod : period;
786 if (period < 0x0d)
787 period++;
788 else
789 period += period >> 1;
790
791 if (unlikely(period > 0xff || period == prevperiod)) {
792 /* Total failure; set to async and return */
793 starget_printk(KERN_ERR, starget, "Domain Validation Failure, dropping back to Asynchronous\n");
794 DV_SET(offset, 0);
795 return SPI_COMPARE_FAILURE;
796 }
797 starget_printk(KERN_ERR, starget, "Domain Validation detected failure, dropping back\n");
798 DV_SET(period, period);
799 prevperiod = period;
800 }
801 }
802 return retval;
803 }
804
805 static int
spi_dv_device_get_echo_buffer(struct scsi_device * sdev,u8 * buffer)806 spi_dv_device_get_echo_buffer(struct scsi_device *sdev, u8 *buffer)
807 {
808 int l, result;
809
810 /* first off do a test unit ready. This can error out
811 * because of reservations or some other reason. If it
812 * fails, the device won't let us write to the echo buffer
813 * so just return failure */
814
815 static const char spi_test_unit_ready[] = {
816 TEST_UNIT_READY, 0, 0, 0, 0, 0
817 };
818
819 static const char spi_read_buffer_descriptor[] = {
820 READ_BUFFER, 0x0b, 0, 0, 0, 0, 0, 0, 4, 0
821 };
822
823
824 /* We send a set of three TURs to clear any outstanding
825 * unit attention conditions if they exist (Otherwise the
826 * buffer tests won't be happy). If the TUR still fails
827 * (reservation conflict, device not ready, etc) just
828 * skip the write tests */
829 for (l = 0; ; l++) {
830 result = spi_execute(sdev, spi_test_unit_ready, REQ_OP_DRV_IN,
831 NULL, 0, NULL);
832
833 if(result) {
834 if(l >= 3)
835 return 0;
836 } else {
837 /* TUR succeeded */
838 break;
839 }
840 }
841
842 result = spi_execute(sdev, spi_read_buffer_descriptor,
843 REQ_OP_DRV_IN, buffer, 4, NULL);
844
845 if (result)
846 /* Device has no echo buffer */
847 return 0;
848
849 return buffer[3] + ((buffer[2] & 0x1f) << 8);
850 }
851
852 static void
spi_dv_device_internal(struct scsi_device * sdev,u8 * buffer)853 spi_dv_device_internal(struct scsi_device *sdev, u8 *buffer)
854 {
855 struct spi_internal *i = to_spi_internal(sdev->host->transportt);
856 struct scsi_target *starget = sdev->sdev_target;
857 struct Scsi_Host *shost = sdev->host;
858 int len = sdev->inquiry_len;
859 int min_period = spi_min_period(starget);
860 int max_width = spi_max_width(starget);
861 /* first set us up for narrow async */
862 DV_SET(offset, 0);
863 DV_SET(width, 0);
864
865 if (spi_dv_device_compare_inquiry(sdev, buffer, buffer, DV_LOOPS)
866 != SPI_COMPARE_SUCCESS) {
867 starget_printk(KERN_ERR, starget, "Domain Validation Initial Inquiry Failed\n");
868 /* FIXME: should probably offline the device here? */
869 return;
870 }
871
872 if (!spi_support_wide(starget)) {
873 spi_max_width(starget) = 0;
874 max_width = 0;
875 }
876
877 /* test width */
878 if (i->f->set_width && max_width) {
879 i->f->set_width(starget, 1);
880
881 if (spi_dv_device_compare_inquiry(sdev, buffer,
882 buffer + len,
883 DV_LOOPS)
884 != SPI_COMPARE_SUCCESS) {
885 starget_printk(KERN_ERR, starget, "Wide Transfers Fail\n");
886 i->f->set_width(starget, 0);
887 /* Make sure we don't force wide back on by asking
888 * for a transfer period that requires it */
889 max_width = 0;
890 if (min_period < 10)
891 min_period = 10;
892 }
893 }
894
895 if (!i->f->set_period)
896 return;
897
898 /* device can't handle synchronous */
899 if (!spi_support_sync(starget) && !spi_support_dt(starget))
900 return;
901
902 /* len == -1 is the signal that we need to ascertain the
903 * presence of an echo buffer before trying to use it. len ==
904 * 0 means we don't have an echo buffer */
905 len = -1;
906
907 retry:
908
909 /* now set up to the maximum */
910 DV_SET(offset, spi_max_offset(starget));
911 DV_SET(period, min_period);
912
913 /* try QAS requests; this should be harmless to set if the
914 * target supports it */
915 if (spi_support_qas(starget) && spi_max_qas(starget)) {
916 DV_SET(qas, 1);
917 } else {
918 DV_SET(qas, 0);
919 }
920
921 if (spi_support_ius(starget) && spi_max_iu(starget) &&
922 min_period < 9) {
923 /* This u320 (or u640). Set IU transfers */
924 DV_SET(iu, 1);
925 /* Then set the optional parameters */
926 DV_SET(rd_strm, 1);
927 DV_SET(wr_flow, 1);
928 DV_SET(rti, 1);
929 if (min_period == 8)
930 DV_SET(pcomp_en, 1);
931 } else {
932 DV_SET(iu, 0);
933 }
934
935 /* now that we've done all this, actually check the bus
936 * signal type (if known). Some devices are stupid on
937 * a SE bus and still claim they can try LVD only settings */
938 if (i->f->get_signalling)
939 i->f->get_signalling(shost);
940 if (spi_signalling(shost) == SPI_SIGNAL_SE ||
941 spi_signalling(shost) == SPI_SIGNAL_HVD ||
942 !spi_support_dt(starget)) {
943 DV_SET(dt, 0);
944 } else {
945 DV_SET(dt, 1);
946 }
947 /* set width last because it will pull all the other
948 * parameters down to required values */
949 DV_SET(width, max_width);
950
951 /* Do the read only INQUIRY tests */
952 spi_dv_retrain(sdev, buffer, buffer + sdev->inquiry_len,
953 spi_dv_device_compare_inquiry);
954 /* See if we actually managed to negotiate and sustain DT */
955 if (i->f->get_dt)
956 i->f->get_dt(starget);
957
958 /* see if the device has an echo buffer. If it does we can do
959 * the SPI pattern write tests. Because of some broken
960 * devices, we *only* try this on a device that has actually
961 * negotiated DT */
962
963 if (len == -1 && spi_dt(starget))
964 len = spi_dv_device_get_echo_buffer(sdev, buffer);
965
966 if (len <= 0) {
967 starget_printk(KERN_INFO, starget, "Domain Validation skipping write tests\n");
968 return;
969 }
970
971 if (len > SPI_MAX_ECHO_BUFFER_SIZE) {
972 starget_printk(KERN_WARNING, starget, "Echo buffer size %d is too big, trimming to %d\n", len, SPI_MAX_ECHO_BUFFER_SIZE);
973 len = SPI_MAX_ECHO_BUFFER_SIZE;
974 }
975
976 if (spi_dv_retrain(sdev, buffer, buffer + len,
977 spi_dv_device_echo_buffer)
978 == SPI_COMPARE_SKIP_TEST) {
979 /* OK, the stupid drive can't do a write echo buffer
980 * test after all, fall back to the read tests */
981 len = 0;
982 goto retry;
983 }
984 }
985
986
987 /** spi_dv_device - Do Domain Validation on the device
988 * @sdev: scsi device to validate
989 *
990 * Performs the domain validation on the given device in the
991 * current execution thread. Since DV operations may sleep,
992 * the current thread must have user context. Also no SCSI
993 * related locks that would deadlock I/O issued by the DV may
994 * be held.
995 */
996 void
spi_dv_device(struct scsi_device * sdev)997 spi_dv_device(struct scsi_device *sdev)
998 {
999 struct scsi_target *starget = sdev->sdev_target;
1000 const int len = SPI_MAX_ECHO_BUFFER_SIZE*2;
1001 unsigned int sleep_flags;
1002 u8 *buffer;
1003
1004 /*
1005 * Because this function and the power management code both call
1006 * scsi_device_quiesce(), it is not safe to perform domain validation
1007 * while suspend or resume is in progress. Hence the
1008 * lock/unlock_system_sleep() calls.
1009 */
1010 sleep_flags = lock_system_sleep();
1011
1012 if (scsi_autopm_get_device(sdev))
1013 goto unlock_system_sleep;
1014
1015 if (unlikely(spi_dv_in_progress(starget)))
1016 goto put_autopm;
1017
1018 if (unlikely(scsi_device_get(sdev)))
1019 goto put_autopm;
1020
1021 spi_dv_in_progress(starget) = 1;
1022
1023 buffer = kzalloc(len, GFP_KERNEL);
1024
1025 if (unlikely(!buffer))
1026 goto put_sdev;
1027
1028 /* We need to verify that the actual device will quiesce; the
1029 * later target quiesce is just a nice to have */
1030 if (unlikely(scsi_device_quiesce(sdev)))
1031 goto free_buffer;
1032
1033 scsi_target_quiesce(starget);
1034
1035 spi_dv_pending(starget) = 1;
1036 mutex_lock(&spi_dv_mutex(starget));
1037
1038 starget_printk(KERN_INFO, starget, "Beginning Domain Validation\n");
1039
1040 spi_dv_device_internal(sdev, buffer);
1041
1042 starget_printk(KERN_INFO, starget, "Ending Domain Validation\n");
1043
1044 mutex_unlock(&spi_dv_mutex(starget));
1045 spi_dv_pending(starget) = 0;
1046
1047 scsi_target_resume(starget);
1048
1049 spi_initial_dv(starget) = 1;
1050
1051 free_buffer:
1052 kfree(buffer);
1053
1054 put_sdev:
1055 spi_dv_in_progress(starget) = 0;
1056 scsi_device_put(sdev);
1057 put_autopm:
1058 scsi_autopm_put_device(sdev);
1059
1060 unlock_system_sleep:
1061 unlock_system_sleep(sleep_flags);
1062 }
1063 EXPORT_SYMBOL(spi_dv_device);
1064
1065 struct work_queue_wrapper {
1066 struct work_struct work;
1067 struct scsi_device *sdev;
1068 };
1069
1070 static void
spi_dv_device_work_wrapper(struct work_struct * work)1071 spi_dv_device_work_wrapper(struct work_struct *work)
1072 {
1073 struct work_queue_wrapper *wqw =
1074 container_of(work, struct work_queue_wrapper, work);
1075 struct scsi_device *sdev = wqw->sdev;
1076
1077 kfree(wqw);
1078 spi_dv_device(sdev);
1079 spi_dv_pending(sdev->sdev_target) = 0;
1080 scsi_device_put(sdev);
1081 }
1082
1083
1084 /**
1085 * spi_schedule_dv_device - schedule domain validation to occur on the device
1086 * @sdev: The device to validate
1087 *
1088 * Identical to spi_dv_device() above, except that the DV will be
1089 * scheduled to occur in a workqueue later. All memory allocations
1090 * are atomic, so may be called from any context including those holding
1091 * SCSI locks.
1092 */
1093 void
spi_schedule_dv_device(struct scsi_device * sdev)1094 spi_schedule_dv_device(struct scsi_device *sdev)
1095 {
1096 struct work_queue_wrapper *wqw =
1097 kmalloc(sizeof(struct work_queue_wrapper), GFP_ATOMIC);
1098
1099 if (unlikely(!wqw))
1100 return;
1101
1102 if (unlikely(spi_dv_pending(sdev->sdev_target))) {
1103 kfree(wqw);
1104 return;
1105 }
1106 /* Set pending early (dv_device doesn't check it, only sets it) */
1107 spi_dv_pending(sdev->sdev_target) = 1;
1108 if (unlikely(scsi_device_get(sdev))) {
1109 kfree(wqw);
1110 spi_dv_pending(sdev->sdev_target) = 0;
1111 return;
1112 }
1113
1114 INIT_WORK(&wqw->work, spi_dv_device_work_wrapper);
1115 wqw->sdev = sdev;
1116
1117 schedule_work(&wqw->work);
1118 }
1119 EXPORT_SYMBOL(spi_schedule_dv_device);
1120
1121 /**
1122 * spi_display_xfer_agreement - Print the current target transfer agreement
1123 * @starget: The target for which to display the agreement
1124 *
1125 * Each SPI port is required to maintain a transfer agreement for each
1126 * other port on the bus. This function prints a one-line summary of
1127 * the current agreement; more detailed information is available in sysfs.
1128 */
spi_display_xfer_agreement(struct scsi_target * starget)1129 void spi_display_xfer_agreement(struct scsi_target *starget)
1130 {
1131 struct spi_transport_attrs *tp;
1132 tp = (struct spi_transport_attrs *)&starget->starget_data;
1133
1134 if (tp->offset > 0 && tp->period > 0) {
1135 unsigned int picosec, kb100;
1136 char *scsi = "FAST-?";
1137 char tmp[8];
1138
1139 if (tp->period <= SPI_STATIC_PPR) {
1140 picosec = ppr_to_ps[tp->period];
1141 switch (tp->period) {
1142 case 7: scsi = "FAST-320"; break;
1143 case 8: scsi = "FAST-160"; break;
1144 case 9: scsi = "FAST-80"; break;
1145 case 10:
1146 case 11: scsi = "FAST-40"; break;
1147 case 12: scsi = "FAST-20"; break;
1148 }
1149 } else {
1150 picosec = tp->period * 4000;
1151 if (tp->period < 25)
1152 scsi = "FAST-20";
1153 else if (tp->period < 50)
1154 scsi = "FAST-10";
1155 else
1156 scsi = "FAST-5";
1157 }
1158
1159 kb100 = (10000000 + picosec / 2) / picosec;
1160 if (tp->width)
1161 kb100 *= 2;
1162 sprint_frac(tmp, picosec, 1000);
1163
1164 dev_info(&starget->dev,
1165 "%s %sSCSI %d.%d MB/s %s%s%s%s%s%s%s%s (%s ns, offset %d)\n",
1166 scsi, tp->width ? "WIDE " : "", kb100/10, kb100 % 10,
1167 tp->dt ? "DT" : "ST",
1168 tp->iu ? " IU" : "",
1169 tp->qas ? " QAS" : "",
1170 tp->rd_strm ? " RDSTRM" : "",
1171 tp->rti ? " RTI" : "",
1172 tp->wr_flow ? " WRFLOW" : "",
1173 tp->pcomp_en ? " PCOMP" : "",
1174 tp->hold_mcs ? " HMCS" : "",
1175 tmp, tp->offset);
1176 } else {
1177 dev_info(&starget->dev, "%sasynchronous\n",
1178 tp->width ? "wide " : "");
1179 }
1180 }
1181 EXPORT_SYMBOL(spi_display_xfer_agreement);
1182
spi_populate_width_msg(unsigned char * msg,int width)1183 int spi_populate_width_msg(unsigned char *msg, int width)
1184 {
1185 msg[0] = EXTENDED_MESSAGE;
1186 msg[1] = 2;
1187 msg[2] = EXTENDED_WDTR;
1188 msg[3] = width;
1189 return 4;
1190 }
1191 EXPORT_SYMBOL_GPL(spi_populate_width_msg);
1192
spi_populate_sync_msg(unsigned char * msg,int period,int offset)1193 int spi_populate_sync_msg(unsigned char *msg, int period, int offset)
1194 {
1195 msg[0] = EXTENDED_MESSAGE;
1196 msg[1] = 3;
1197 msg[2] = EXTENDED_SDTR;
1198 msg[3] = period;
1199 msg[4] = offset;
1200 return 5;
1201 }
1202 EXPORT_SYMBOL_GPL(spi_populate_sync_msg);
1203
spi_populate_ppr_msg(unsigned char * msg,int period,int offset,int width,int options)1204 int spi_populate_ppr_msg(unsigned char *msg, int period, int offset,
1205 int width, int options)
1206 {
1207 msg[0] = EXTENDED_MESSAGE;
1208 msg[1] = 6;
1209 msg[2] = EXTENDED_PPR;
1210 msg[3] = period;
1211 msg[4] = 0;
1212 msg[5] = offset;
1213 msg[6] = width;
1214 msg[7] = options;
1215 return 8;
1216 }
1217 EXPORT_SYMBOL_GPL(spi_populate_ppr_msg);
1218
1219 /**
1220 * spi_populate_tag_msg - place a tag message in a buffer
1221 * @msg: pointer to the area to place the tag
1222 * @cmd: pointer to the scsi command for the tag
1223 *
1224 * Notes:
1225 * designed to create the correct type of tag message for the
1226 * particular request. Returns the size of the tag message.
1227 * May return 0 if TCQ is disabled for this device.
1228 **/
spi_populate_tag_msg(unsigned char * msg,struct scsi_cmnd * cmd)1229 int spi_populate_tag_msg(unsigned char *msg, struct scsi_cmnd *cmd)
1230 {
1231 if (cmd->flags & SCMD_TAGGED) {
1232 *msg++ = SIMPLE_QUEUE_TAG;
1233 *msg++ = scsi_cmd_to_rq(cmd)->tag;
1234 return 2;
1235 }
1236
1237 return 0;
1238 }
1239 EXPORT_SYMBOL_GPL(spi_populate_tag_msg);
1240
1241 #ifdef CONFIG_SCSI_CONSTANTS
1242 static const char * const one_byte_msgs[] = {
1243 /* 0x00 */ "Task Complete", NULL /* Extended Message */, "Save Pointers",
1244 /* 0x03 */ "Restore Pointers", "Disconnect", "Initiator Error",
1245 /* 0x06 */ "Abort Task Set", "Message Reject", "Nop", "Message Parity Error",
1246 /* 0x0a */ "Linked Command Complete", "Linked Command Complete w/flag",
1247 /* 0x0c */ "Target Reset", "Abort Task", "Clear Task Set",
1248 /* 0x0f */ "Initiate Recovery", "Release Recovery",
1249 /* 0x11 */ "Terminate Process", "Continue Task", "Target Transfer Disable",
1250 /* 0x14 */ NULL, NULL, "Clear ACA", "LUN Reset"
1251 };
1252
1253 static const char * const two_byte_msgs[] = {
1254 /* 0x20 */ "Simple Queue Tag", "Head of Queue Tag", "Ordered Queue Tag",
1255 /* 0x23 */ "Ignore Wide Residue", "ACA"
1256 };
1257
1258 static const char * const extended_msgs[] = {
1259 /* 0x00 */ "Modify Data Pointer", "Synchronous Data Transfer Request",
1260 /* 0x02 */ "SCSI-I Extended Identify", "Wide Data Transfer Request",
1261 /* 0x04 */ "Parallel Protocol Request", "Modify Bidirectional Data Pointer"
1262 };
1263
print_nego(const unsigned char * msg,int per,int off,int width)1264 static void print_nego(const unsigned char *msg, int per, int off, int width)
1265 {
1266 if (per) {
1267 char buf[20];
1268 period_to_str(buf, msg[per]);
1269 printk("period = %s ns ", buf);
1270 }
1271
1272 if (off)
1273 printk("offset = %d ", msg[off]);
1274 if (width)
1275 printk("width = %d ", 8 << msg[width]);
1276 }
1277
print_ptr(const unsigned char * msg,int msb,const char * desc)1278 static void print_ptr(const unsigned char *msg, int msb, const char *desc)
1279 {
1280 int ptr = (msg[msb] << 24) | (msg[msb+1] << 16) | (msg[msb+2] << 8) |
1281 msg[msb+3];
1282 printk("%s = %d ", desc, ptr);
1283 }
1284
spi_print_msg(const unsigned char * msg)1285 int spi_print_msg(const unsigned char *msg)
1286 {
1287 int len = 1, i;
1288 if (msg[0] == EXTENDED_MESSAGE) {
1289 len = 2 + msg[1];
1290 if (len == 2)
1291 len += 256;
1292 if (msg[2] < ARRAY_SIZE(extended_msgs))
1293 printk ("%s ", extended_msgs[msg[2]]);
1294 else
1295 printk ("Extended Message, reserved code (0x%02x) ",
1296 (int) msg[2]);
1297 switch (msg[2]) {
1298 case EXTENDED_MODIFY_DATA_POINTER:
1299 print_ptr(msg, 3, "pointer");
1300 break;
1301 case EXTENDED_SDTR:
1302 print_nego(msg, 3, 4, 0);
1303 break;
1304 case EXTENDED_WDTR:
1305 print_nego(msg, 0, 0, 3);
1306 break;
1307 case EXTENDED_PPR:
1308 print_nego(msg, 3, 5, 6);
1309 break;
1310 case EXTENDED_MODIFY_BIDI_DATA_PTR:
1311 print_ptr(msg, 3, "out");
1312 print_ptr(msg, 7, "in");
1313 break;
1314 default:
1315 for (i = 2; i < len; ++i)
1316 printk("%02x ", msg[i]);
1317 }
1318 /* Identify */
1319 } else if (msg[0] & 0x80) {
1320 printk("Identify disconnect %sallowed %s %d ",
1321 (msg[0] & 0x40) ? "" : "not ",
1322 (msg[0] & 0x20) ? "target routine" : "lun",
1323 msg[0] & 0x7);
1324 /* Normal One byte */
1325 } else if (msg[0] < 0x1f) {
1326 if (msg[0] < ARRAY_SIZE(one_byte_msgs) && one_byte_msgs[msg[0]])
1327 printk("%s ", one_byte_msgs[msg[0]]);
1328 else
1329 printk("reserved (%02x) ", msg[0]);
1330 } else if (msg[0] == 0x55) {
1331 printk("QAS Request ");
1332 /* Two byte */
1333 } else if (msg[0] <= 0x2f) {
1334 if ((msg[0] - 0x20) < ARRAY_SIZE(two_byte_msgs))
1335 printk("%s %02x ", two_byte_msgs[msg[0] - 0x20],
1336 msg[1]);
1337 else
1338 printk("reserved two byte (%02x %02x) ",
1339 msg[0], msg[1]);
1340 len = 2;
1341 } else
1342 printk("reserved ");
1343 return len;
1344 }
1345 EXPORT_SYMBOL(spi_print_msg);
1346
1347 #else /* ifndef CONFIG_SCSI_CONSTANTS */
1348
spi_print_msg(const unsigned char * msg)1349 int spi_print_msg(const unsigned char *msg)
1350 {
1351 int len = 1, i;
1352
1353 if (msg[0] == EXTENDED_MESSAGE) {
1354 len = 2 + msg[1];
1355 if (len == 2)
1356 len += 256;
1357 for (i = 0; i < len; ++i)
1358 printk("%02x ", msg[i]);
1359 /* Identify */
1360 } else if (msg[0] & 0x80) {
1361 printk("%02x ", msg[0]);
1362 /* Normal One byte */
1363 } else if ((msg[0] < 0x1f) || (msg[0] == 0x55)) {
1364 printk("%02x ", msg[0]);
1365 /* Two byte */
1366 } else if (msg[0] <= 0x2f) {
1367 printk("%02x %02x", msg[0], msg[1]);
1368 len = 2;
1369 } else
1370 printk("%02x ", msg[0]);
1371 return len;
1372 }
1373 EXPORT_SYMBOL(spi_print_msg);
1374 #endif /* ! CONFIG_SCSI_CONSTANTS */
1375
spi_device_match(struct attribute_container * cont,struct device * dev)1376 static int spi_device_match(struct attribute_container *cont,
1377 struct device *dev)
1378 {
1379 struct scsi_device *sdev;
1380 struct Scsi_Host *shost;
1381 struct spi_internal *i;
1382
1383 if (!scsi_is_sdev_device(dev))
1384 return 0;
1385
1386 sdev = to_scsi_device(dev);
1387 shost = sdev->host;
1388 if (!shost->transportt || shost->transportt->host_attrs.ac.class
1389 != &spi_host_class.class)
1390 return 0;
1391 /* Note: this class has no device attributes, so it has
1392 * no per-HBA allocation and thus we don't need to distinguish
1393 * the attribute containers for the device */
1394 i = to_spi_internal(shost->transportt);
1395 if (i->f->deny_binding && i->f->deny_binding(sdev->sdev_target))
1396 return 0;
1397 return 1;
1398 }
1399
spi_target_match(struct attribute_container * cont,struct device * dev)1400 static int spi_target_match(struct attribute_container *cont,
1401 struct device *dev)
1402 {
1403 struct Scsi_Host *shost;
1404 struct scsi_target *starget;
1405 struct spi_internal *i;
1406
1407 if (!scsi_is_target_device(dev))
1408 return 0;
1409
1410 shost = dev_to_shost(dev->parent);
1411 if (!shost->transportt || shost->transportt->host_attrs.ac.class
1412 != &spi_host_class.class)
1413 return 0;
1414
1415 i = to_spi_internal(shost->transportt);
1416 starget = to_scsi_target(dev);
1417
1418 if (i->f->deny_binding && i->f->deny_binding(starget))
1419 return 0;
1420
1421 return &i->t.target_attrs.ac == cont;
1422 }
1423
1424 static DECLARE_TRANSPORT_CLASS(spi_transport_class,
1425 "spi_transport",
1426 spi_setup_transport_attrs,
1427 NULL,
1428 spi_target_configure);
1429
1430 static DECLARE_ANON_TRANSPORT_CLASS(spi_device_class,
1431 spi_device_match,
1432 spi_device_configure);
1433
1434 static struct attribute *host_attributes[] = {
1435 &dev_attr_signalling.attr,
1436 &dev_attr_host_width.attr,
1437 &dev_attr_hba_id.attr,
1438 NULL
1439 };
1440
1441 static struct attribute_group host_attribute_group = {
1442 .attrs = host_attributes,
1443 };
1444
spi_host_configure(struct transport_container * tc,struct device * dev,struct device * cdev)1445 static int spi_host_configure(struct transport_container *tc,
1446 struct device *dev,
1447 struct device *cdev)
1448 {
1449 struct kobject *kobj = &cdev->kobj;
1450 struct Scsi_Host *shost = transport_class_to_shost(cdev);
1451 struct spi_internal *si = to_spi_internal(shost->transportt);
1452 struct attribute *attr = &dev_attr_signalling.attr;
1453 int rc = 0;
1454
1455 if (si->f->set_signalling)
1456 rc = sysfs_chmod_file(kobj, attr, attr->mode | S_IWUSR);
1457
1458 return rc;
1459 }
1460
1461 /* returns true if we should be showing the variable. Also
1462 * overloads the return by setting 1<<1 if the attribute should
1463 * be writeable */
1464 #define TARGET_ATTRIBUTE_HELPER(name) \
1465 (si->f->show_##name ? S_IRUGO : 0) | \
1466 (si->f->set_##name ? S_IWUSR : 0)
1467
target_attribute_is_visible(struct kobject * kobj,struct attribute * attr,int i)1468 static umode_t target_attribute_is_visible(struct kobject *kobj,
1469 struct attribute *attr, int i)
1470 {
1471 struct device *cdev = container_of(kobj, struct device, kobj);
1472 struct scsi_target *starget = transport_class_to_starget(cdev);
1473 struct Scsi_Host *shost = transport_class_to_shost(cdev);
1474 struct spi_internal *si = to_spi_internal(shost->transportt);
1475
1476 if (attr == &dev_attr_period.attr &&
1477 spi_support_sync(starget))
1478 return TARGET_ATTRIBUTE_HELPER(period);
1479 else if (attr == &dev_attr_min_period.attr &&
1480 spi_support_sync(starget))
1481 return TARGET_ATTRIBUTE_HELPER(period);
1482 else if (attr == &dev_attr_offset.attr &&
1483 spi_support_sync(starget))
1484 return TARGET_ATTRIBUTE_HELPER(offset);
1485 else if (attr == &dev_attr_max_offset.attr &&
1486 spi_support_sync(starget))
1487 return TARGET_ATTRIBUTE_HELPER(offset);
1488 else if (attr == &dev_attr_width.attr &&
1489 spi_support_wide(starget))
1490 return TARGET_ATTRIBUTE_HELPER(width);
1491 else if (attr == &dev_attr_max_width.attr &&
1492 spi_support_wide(starget))
1493 return TARGET_ATTRIBUTE_HELPER(width);
1494 else if (attr == &dev_attr_iu.attr &&
1495 spi_support_ius(starget))
1496 return TARGET_ATTRIBUTE_HELPER(iu);
1497 else if (attr == &dev_attr_max_iu.attr &&
1498 spi_support_ius(starget))
1499 return TARGET_ATTRIBUTE_HELPER(iu);
1500 else if (attr == &dev_attr_dt.attr &&
1501 spi_support_dt(starget))
1502 return TARGET_ATTRIBUTE_HELPER(dt);
1503 else if (attr == &dev_attr_qas.attr &&
1504 spi_support_qas(starget))
1505 return TARGET_ATTRIBUTE_HELPER(qas);
1506 else if (attr == &dev_attr_max_qas.attr &&
1507 spi_support_qas(starget))
1508 return TARGET_ATTRIBUTE_HELPER(qas);
1509 else if (attr == &dev_attr_wr_flow.attr &&
1510 spi_support_ius(starget))
1511 return TARGET_ATTRIBUTE_HELPER(wr_flow);
1512 else if (attr == &dev_attr_rd_strm.attr &&
1513 spi_support_ius(starget))
1514 return TARGET_ATTRIBUTE_HELPER(rd_strm);
1515 else if (attr == &dev_attr_rti.attr &&
1516 spi_support_ius(starget))
1517 return TARGET_ATTRIBUTE_HELPER(rti);
1518 else if (attr == &dev_attr_pcomp_en.attr &&
1519 spi_support_ius(starget))
1520 return TARGET_ATTRIBUTE_HELPER(pcomp_en);
1521 else if (attr == &dev_attr_hold_mcs.attr &&
1522 spi_support_ius(starget))
1523 return TARGET_ATTRIBUTE_HELPER(hold_mcs);
1524 else if (attr == &dev_attr_revalidate.attr)
1525 return S_IWUSR;
1526
1527 return 0;
1528 }
1529
1530 static struct attribute *target_attributes[] = {
1531 &dev_attr_period.attr,
1532 &dev_attr_min_period.attr,
1533 &dev_attr_offset.attr,
1534 &dev_attr_max_offset.attr,
1535 &dev_attr_width.attr,
1536 &dev_attr_max_width.attr,
1537 &dev_attr_iu.attr,
1538 &dev_attr_max_iu.attr,
1539 &dev_attr_dt.attr,
1540 &dev_attr_qas.attr,
1541 &dev_attr_max_qas.attr,
1542 &dev_attr_wr_flow.attr,
1543 &dev_attr_rd_strm.attr,
1544 &dev_attr_rti.attr,
1545 &dev_attr_pcomp_en.attr,
1546 &dev_attr_hold_mcs.attr,
1547 &dev_attr_revalidate.attr,
1548 NULL
1549 };
1550
1551 static struct attribute_group target_attribute_group = {
1552 .attrs = target_attributes,
1553 .is_visible = target_attribute_is_visible,
1554 };
1555
spi_target_configure(struct transport_container * tc,struct device * dev,struct device * cdev)1556 static int spi_target_configure(struct transport_container *tc,
1557 struct device *dev,
1558 struct device *cdev)
1559 {
1560 struct kobject *kobj = &cdev->kobj;
1561
1562 /* force an update based on parameters read from the device */
1563 sysfs_update_group(kobj, &target_attribute_group);
1564
1565 return 0;
1566 }
1567
1568 struct scsi_transport_template *
spi_attach_transport(struct spi_function_template * ft)1569 spi_attach_transport(struct spi_function_template *ft)
1570 {
1571 struct spi_internal *i = kzalloc(sizeof(struct spi_internal),
1572 GFP_KERNEL);
1573
1574 if (unlikely(!i))
1575 return NULL;
1576
1577 i->t.target_attrs.ac.class = &spi_transport_class.class;
1578 i->t.target_attrs.ac.grp = &target_attribute_group;
1579 i->t.target_attrs.ac.match = spi_target_match;
1580 transport_container_register(&i->t.target_attrs);
1581 i->t.target_size = sizeof(struct spi_transport_attrs);
1582 i->t.host_attrs.ac.class = &spi_host_class.class;
1583 i->t.host_attrs.ac.grp = &host_attribute_group;
1584 i->t.host_attrs.ac.match = spi_host_match;
1585 transport_container_register(&i->t.host_attrs);
1586 i->t.host_size = sizeof(struct spi_host_attrs);
1587 i->f = ft;
1588
1589 return &i->t;
1590 }
1591 EXPORT_SYMBOL(spi_attach_transport);
1592
spi_release_transport(struct scsi_transport_template * t)1593 void spi_release_transport(struct scsi_transport_template *t)
1594 {
1595 struct spi_internal *i = to_spi_internal(t);
1596
1597 transport_container_unregister(&i->t.target_attrs);
1598 transport_container_unregister(&i->t.host_attrs);
1599
1600 kfree(i);
1601 }
1602 EXPORT_SYMBOL(spi_release_transport);
1603
spi_transport_init(void)1604 static __init int spi_transport_init(void)
1605 {
1606 int error = scsi_dev_info_add_list(SCSI_DEVINFO_SPI,
1607 "SCSI Parallel Transport Class");
1608 if (!error) {
1609 int i;
1610
1611 for (i = 0; spi_static_device_list[i].vendor; i++)
1612 scsi_dev_info_list_add_keyed(1, /* compatible */
1613 spi_static_device_list[i].vendor,
1614 spi_static_device_list[i].model,
1615 NULL,
1616 spi_static_device_list[i].flags,
1617 SCSI_DEVINFO_SPI);
1618 }
1619
1620 error = transport_class_register(&spi_transport_class);
1621 if (error)
1622 return error;
1623 error = anon_transport_class_register(&spi_device_class);
1624 return transport_class_register(&spi_host_class);
1625 }
1626
spi_transport_exit(void)1627 static void __exit spi_transport_exit(void)
1628 {
1629 transport_class_unregister(&spi_transport_class);
1630 anon_transport_class_unregister(&spi_device_class);
1631 transport_class_unregister(&spi_host_class);
1632 scsi_dev_info_remove_list(SCSI_DEVINFO_SPI);
1633 }
1634
1635 MODULE_AUTHOR("Martin Hicks");
1636 MODULE_DESCRIPTION("SPI Transport Attributes");
1637 MODULE_LICENSE("GPL");
1638
1639 module_init(spi_transport_init);
1640 module_exit(spi_transport_exit);
1641