xref: /openbmc/linux/include/linux/spi/spi.h (revision 96474ea4)
1 /* SPDX-License-Identifier: GPL-2.0-or-later
2  *
3  * Copyright (C) 2005 David Brownell
4  */
5 
6 #ifndef __LINUX_SPI_H
7 #define __LINUX_SPI_H
8 
9 #include <linux/acpi.h>
10 #include <linux/bits.h>
11 #include <linux/completion.h>
12 #include <linux/device.h>
13 #include <linux/gpio/consumer.h>
14 #include <linux/kthread.h>
15 #include <linux/mod_devicetable.h>
16 #include <linux/overflow.h>
17 #include <linux/scatterlist.h>
18 #include <linux/slab.h>
19 #include <linux/u64_stats_sync.h>
20 
21 #include <uapi/linux/spi/spi.h>
22 
23 struct dma_chan;
24 struct software_node;
25 struct ptp_system_timestamp;
26 struct spi_controller;
27 struct spi_transfer;
28 struct spi_controller_mem_ops;
29 struct spi_controller_mem_caps;
30 struct spi_message;
31 
32 /*
33  * INTERFACES between SPI master-side drivers and SPI slave protocol handlers,
34  * and SPI infrastructure.
35  */
36 extern struct bus_type spi_bus_type;
37 
38 /**
39  * struct spi_statistics - statistics for spi transfers
40  * @syncp:         seqcount to protect members in this struct for per-cpu update
41  *                 on 32-bit systems
42  *
43  * @messages:      number of spi-messages handled
44  * @transfers:     number of spi_transfers handled
45  * @errors:        number of errors during spi_transfer
46  * @timedout:      number of timeouts during spi_transfer
47  *
48  * @spi_sync:      number of times spi_sync is used
49  * @spi_sync_immediate:
50  *                 number of times spi_sync is executed immediately
51  *                 in calling context without queuing and scheduling
52  * @spi_async:     number of times spi_async is used
53  *
54  * @bytes:         number of bytes transferred to/from device
55  * @bytes_tx:      number of bytes sent to device
56  * @bytes_rx:      number of bytes received from device
57  *
58  * @transfer_bytes_histo:
59  *                 transfer bytes histogram
60  *
61  * @transfers_split_maxsize:
62  *                 number of transfers that have been split because of
63  *                 maxsize limit
64  */
65 struct spi_statistics {
66 	struct u64_stats_sync	syncp;
67 
68 	u64_stats_t		messages;
69 	u64_stats_t		transfers;
70 	u64_stats_t		errors;
71 	u64_stats_t		timedout;
72 
73 	u64_stats_t		spi_sync;
74 	u64_stats_t		spi_sync_immediate;
75 	u64_stats_t		spi_async;
76 
77 	u64_stats_t		bytes;
78 	u64_stats_t		bytes_rx;
79 	u64_stats_t		bytes_tx;
80 
81 #define SPI_STATISTICS_HISTO_SIZE 17
82 	u64_stats_t	transfer_bytes_histo[SPI_STATISTICS_HISTO_SIZE];
83 
84 	u64_stats_t	transfers_split_maxsize;
85 };
86 
87 #define SPI_STATISTICS_ADD_TO_FIELD(pcpu_stats, field, count)		\
88 	do {								\
89 		struct spi_statistics *__lstats;			\
90 		get_cpu();						\
91 		__lstats = this_cpu_ptr(pcpu_stats);			\
92 		u64_stats_update_begin(&__lstats->syncp);		\
93 		u64_stats_add(&__lstats->field, count);			\
94 		u64_stats_update_end(&__lstats->syncp);			\
95 		put_cpu();						\
96 	} while (0)
97 
98 #define SPI_STATISTICS_INCREMENT_FIELD(pcpu_stats, field)		\
99 	do {								\
100 		struct spi_statistics *__lstats;			\
101 		get_cpu();						\
102 		__lstats = this_cpu_ptr(pcpu_stats);			\
103 		u64_stats_update_begin(&__lstats->syncp);		\
104 		u64_stats_inc(&__lstats->field);			\
105 		u64_stats_update_end(&__lstats->syncp);			\
106 		put_cpu();						\
107 	} while (0)
108 
109 /**
110  * struct spi_delay - SPI delay information
111  * @value: Value for the delay
112  * @unit: Unit for the delay
113  */
114 struct spi_delay {
115 #define SPI_DELAY_UNIT_USECS	0
116 #define SPI_DELAY_UNIT_NSECS	1
117 #define SPI_DELAY_UNIT_SCK	2
118 	u16	value;
119 	u8	unit;
120 };
121 
122 extern int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer);
123 extern int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer);
124 extern void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
125 						  struct spi_transfer *xfer);
126 
127 /**
128  * struct spi_device - Controller side proxy for an SPI slave device
129  * @dev: Driver model representation of the device.
130  * @controller: SPI controller used with the device.
131  * @master: Copy of controller, for backwards compatibility.
132  * @max_speed_hz: Maximum clock rate to be used with this chip
133  *	(on this board); may be changed by the device's driver.
134  *	The spi_transfer.speed_hz can override this for each transfer.
135  * @chip_select: Chipselect, distinguishing chips handled by @controller.
136  * @mode: The spi mode defines how data is clocked out and in.
137  *	This may be changed by the device's driver.
138  *	The "active low" default for chipselect mode can be overridden
139  *	(by specifying SPI_CS_HIGH) as can the "MSB first" default for
140  *	each word in a transfer (by specifying SPI_LSB_FIRST).
141  * @bits_per_word: Data transfers involve one or more words; word sizes
142  *	like eight or 12 bits are common.  In-memory wordsizes are
143  *	powers of two bytes (e.g. 20 bit samples use 32 bits).
144  *	This may be changed by the device's driver, or left at the
145  *	default (0) indicating protocol words are eight bit bytes.
146  *	The spi_transfer.bits_per_word can override this for each transfer.
147  * @rt: Make the pump thread real time priority.
148  * @irq: Negative, or the number passed to request_irq() to receive
149  *	interrupts from this device.
150  * @controller_state: Controller's runtime state
151  * @controller_data: Board-specific definitions for controller, such as
152  *	FIFO initialization parameters; from board_info.controller_data
153  * @modalias: Name of the driver to use with this device, or an alias
154  *	for that name.  This appears in the sysfs "modalias" attribute
155  *	for driver coldplugging, and in uevents used for hotplugging
156  * @driver_override: If the name of a driver is written to this attribute, then
157  *	the device will bind to the named driver and only the named driver.
158  *	Do not set directly, because core frees it; use driver_set_override() to
159  *	set or clear it.
160  * @cs_gpiod: GPIO descriptor of the chipselect line (optional, NULL when
161  *	not using a GPIO line)
162  * @word_delay: delay to be inserted between consecutive
163  *	words of a transfer
164  * @cs_setup: delay to be introduced by the controller after CS is asserted
165  * @cs_hold: delay to be introduced by the controller before CS is deasserted
166  * @cs_inactive: delay to be introduced by the controller after CS is
167  *	deasserted. If @cs_change_delay is used from @spi_transfer, then the
168  *	two delays will be added up.
169  * @pcpu_statistics: statistics for the spi_device
170  *
171  * A @spi_device is used to interchange data between an SPI slave
172  * (usually a discrete chip) and CPU memory.
173  *
174  * In @dev, the platform_data is used to hold information about this
175  * device that's meaningful to the device's protocol driver, but not
176  * to its controller.  One example might be an identifier for a chip
177  * variant with slightly different functionality; another might be
178  * information about how this particular board wires the chip's pins.
179  */
180 struct spi_device {
181 	struct device		dev;
182 	struct spi_controller	*controller;
183 	struct spi_controller	*master;	/* Compatibility layer */
184 	u32			max_speed_hz;
185 	u8			chip_select;
186 	u8			bits_per_word;
187 	bool			rt;
188 #define SPI_NO_TX		BIT(31)		/* No transmit wire */
189 #define SPI_NO_RX		BIT(30)		/* No receive wire */
190 	/*
191 	 * TPM specification defines flow control over SPI. Client device
192 	 * can insert a wait state on MISO when address is transmitted by
193 	 * controller on MOSI. Detecting the wait state in software is only
194 	 * possible for full duplex controllers. For controllers that support
195 	 * only half-duplex, the wait state detection needs to be implemented
196 	 * in hardware. TPM devices would set this flag when hardware flow
197 	 * control is expected from SPI controller.
198 	 */
199 #define SPI_TPM_HW_FLOW		BIT(29)		/* TPM HW flow control */
200 	/*
201 	 * All bits defined above should be covered by SPI_MODE_KERNEL_MASK.
202 	 * The SPI_MODE_KERNEL_MASK has the SPI_MODE_USER_MASK counterpart,
203 	 * which is defined in 'include/uapi/linux/spi/spi.h'.
204 	 * The bits defined here are from bit 31 downwards, while in
205 	 * SPI_MODE_USER_MASK are from 0 upwards.
206 	 * These bits must not overlap. A static assert check should make sure of that.
207 	 * If adding extra bits, make sure to decrease the bit index below as well.
208 	 */
209 #define SPI_MODE_KERNEL_MASK	(~(BIT(29) - 1))
210 	u32			mode;
211 	int			irq;
212 	void			*controller_state;
213 	void			*controller_data;
214 	char			modalias[SPI_NAME_SIZE];
215 	const char		*driver_override;
216 	struct gpio_desc	*cs_gpiod;	/* Chip select GPIO descriptor */
217 	struct spi_delay	word_delay; /* Inter-word delay */
218 	/* CS delays */
219 	struct spi_delay	cs_setup;
220 	struct spi_delay	cs_hold;
221 	struct spi_delay	cs_inactive;
222 
223 	/* The statistics */
224 	struct spi_statistics __percpu	*pcpu_statistics;
225 
226 	/*
227 	 * Likely need more hooks for more protocol options affecting how
228 	 * the controller talks to each chip, like:
229 	 *  - memory packing (12 bit samples into low bits, others zeroed)
230 	 *  - priority
231 	 *  - chipselect delays
232 	 *  - ...
233 	 */
234 };
235 
236 /* Make sure that SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK don't overlap */
237 static_assert((SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK) == 0,
238 	      "SPI_MODE_USER_MASK & SPI_MODE_KERNEL_MASK must not overlap");
239 
to_spi_device(const struct device * dev)240 static inline struct spi_device *to_spi_device(const struct device *dev)
241 {
242 	return dev ? container_of(dev, struct spi_device, dev) : NULL;
243 }
244 
245 /* Most drivers won't need to care about device refcounting */
spi_dev_get(struct spi_device * spi)246 static inline struct spi_device *spi_dev_get(struct spi_device *spi)
247 {
248 	return (spi && get_device(&spi->dev)) ? spi : NULL;
249 }
250 
spi_dev_put(struct spi_device * spi)251 static inline void spi_dev_put(struct spi_device *spi)
252 {
253 	if (spi)
254 		put_device(&spi->dev);
255 }
256 
257 /* ctldata is for the bus_controller driver's runtime state */
spi_get_ctldata(const struct spi_device * spi)258 static inline void *spi_get_ctldata(const struct spi_device *spi)
259 {
260 	return spi->controller_state;
261 }
262 
spi_set_ctldata(struct spi_device * spi,void * state)263 static inline void spi_set_ctldata(struct spi_device *spi, void *state)
264 {
265 	spi->controller_state = state;
266 }
267 
268 /* Device driver data */
269 
spi_set_drvdata(struct spi_device * spi,void * data)270 static inline void spi_set_drvdata(struct spi_device *spi, void *data)
271 {
272 	dev_set_drvdata(&spi->dev, data);
273 }
274 
spi_get_drvdata(const struct spi_device * spi)275 static inline void *spi_get_drvdata(const struct spi_device *spi)
276 {
277 	return dev_get_drvdata(&spi->dev);
278 }
279 
spi_get_chipselect(const struct spi_device * spi,u8 idx)280 static inline u8 spi_get_chipselect(const struct spi_device *spi, u8 idx)
281 {
282 	return spi->chip_select;
283 }
284 
spi_set_chipselect(struct spi_device * spi,u8 idx,u8 chipselect)285 static inline void spi_set_chipselect(struct spi_device *spi, u8 idx, u8 chipselect)
286 {
287 	spi->chip_select = chipselect;
288 }
289 
spi_get_csgpiod(const struct spi_device * spi,u8 idx)290 static inline struct gpio_desc *spi_get_csgpiod(const struct spi_device *spi, u8 idx)
291 {
292 	return spi->cs_gpiod;
293 }
294 
spi_set_csgpiod(struct spi_device * spi,u8 idx,struct gpio_desc * csgpiod)295 static inline void spi_set_csgpiod(struct spi_device *spi, u8 idx, struct gpio_desc *csgpiod)
296 {
297 	spi->cs_gpiod = csgpiod;
298 }
299 
300 /**
301  * struct spi_driver - Host side "protocol" driver
302  * @id_table: List of SPI devices supported by this driver
303  * @probe: Binds this driver to the SPI device.  Drivers can verify
304  *	that the device is actually present, and may need to configure
305  *	characteristics (such as bits_per_word) which weren't needed for
306  *	the initial configuration done during system setup.
307  * @remove: Unbinds this driver from the SPI device
308  * @shutdown: Standard shutdown callback used during system state
309  *	transitions such as powerdown/halt and kexec
310  * @driver: SPI device drivers should initialize the name and owner
311  *	field of this structure.
312  *
313  * This represents the kind of device driver that uses SPI messages to
314  * interact with the hardware at the other end of a SPI link.  It's called
315  * a "protocol" driver because it works through messages rather than talking
316  * directly to SPI hardware (which is what the underlying SPI controller
317  * driver does to pass those messages).  These protocols are defined in the
318  * specification for the device(s) supported by the driver.
319  *
320  * As a rule, those device protocols represent the lowest level interface
321  * supported by a driver, and it will support upper level interfaces too.
322  * Examples of such upper levels include frameworks like MTD, networking,
323  * MMC, RTC, filesystem character device nodes, and hardware monitoring.
324  */
325 struct spi_driver {
326 	const struct spi_device_id *id_table;
327 	int			(*probe)(struct spi_device *spi);
328 	void			(*remove)(struct spi_device *spi);
329 	void			(*shutdown)(struct spi_device *spi);
330 	struct device_driver	driver;
331 };
332 
to_spi_driver(struct device_driver * drv)333 static inline struct spi_driver *to_spi_driver(struct device_driver *drv)
334 {
335 	return drv ? container_of(drv, struct spi_driver, driver) : NULL;
336 }
337 
338 extern int __spi_register_driver(struct module *owner, struct spi_driver *sdrv);
339 
340 /**
341  * spi_unregister_driver - reverse effect of spi_register_driver
342  * @sdrv: the driver to unregister
343  * Context: can sleep
344  */
spi_unregister_driver(struct spi_driver * sdrv)345 static inline void spi_unregister_driver(struct spi_driver *sdrv)
346 {
347 	if (sdrv)
348 		driver_unregister(&sdrv->driver);
349 }
350 
351 extern struct spi_device *spi_new_ancillary_device(struct spi_device *spi, u8 chip_select);
352 
353 /* Use a define to avoid include chaining to get THIS_MODULE */
354 #define spi_register_driver(driver) \
355 	__spi_register_driver(THIS_MODULE, driver)
356 
357 /**
358  * module_spi_driver() - Helper macro for registering a SPI driver
359  * @__spi_driver: spi_driver struct
360  *
361  * Helper macro for SPI drivers which do not do anything special in module
362  * init/exit. This eliminates a lot of boilerplate. Each module may only
363  * use this macro once, and calling it replaces module_init() and module_exit()
364  */
365 #define module_spi_driver(__spi_driver) \
366 	module_driver(__spi_driver, spi_register_driver, \
367 			spi_unregister_driver)
368 
369 /**
370  * struct spi_controller - interface to SPI master or slave controller
371  * @dev: device interface to this driver
372  * @list: link with the global spi_controller list
373  * @bus_num: board-specific (and often SOC-specific) identifier for a
374  *	given SPI controller.
375  * @num_chipselect: chipselects are used to distinguish individual
376  *	SPI slaves, and are numbered from zero to num_chipselects.
377  *	each slave has a chipselect signal, but it's common that not
378  *	every chipselect is connected to a slave.
379  * @dma_alignment: SPI controller constraint on DMA buffers alignment.
380  * @mode_bits: flags understood by this controller driver
381  * @buswidth_override_bits: flags to override for this controller driver
382  * @bits_per_word_mask: A mask indicating which values of bits_per_word are
383  *	supported by the driver. Bit n indicates that a bits_per_word n+1 is
384  *	supported. If set, the SPI core will reject any transfer with an
385  *	unsupported bits_per_word. If not set, this value is simply ignored,
386  *	and it's up to the individual driver to perform any validation.
387  * @min_speed_hz: Lowest supported transfer speed
388  * @max_speed_hz: Highest supported transfer speed
389  * @flags: other constraints relevant to this driver
390  * @slave: indicates that this is an SPI slave controller
391  * @target: indicates that this is an SPI target controller
392  * @devm_allocated: whether the allocation of this struct is devres-managed
393  * @max_transfer_size: function that returns the max transfer size for
394  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
395  * @max_message_size: function that returns the max message size for
396  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
397  * @io_mutex: mutex for physical bus access
398  * @add_lock: mutex to avoid adding devices to the same chipselect
399  * @bus_lock_spinlock: spinlock for SPI bus locking
400  * @bus_lock_mutex: mutex for exclusion of multiple callers
401  * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use
402  * @setup: updates the device mode and clocking records used by a
403  *	device's SPI controller; protocol code may call this.  This
404  *	must fail if an unrecognized or unsupported mode is requested.
405  *	It's always safe to call this unless transfers are pending on
406  *	the device whose settings are being modified.
407  * @set_cs_timing: optional hook for SPI devices to request SPI master
408  * controller for configuring specific CS setup time, hold time and inactive
409  * delay interms of clock counts
410  * @transfer: adds a message to the controller's transfer queue.
411  * @cleanup: frees controller-specific state
412  * @can_dma: determine whether this controller supports DMA
413  * @dma_map_dev: device which can be used for DMA mapping
414  * @cur_rx_dma_dev: device which is currently used for RX DMA mapping
415  * @cur_tx_dma_dev: device which is currently used for TX DMA mapping
416  * @queued: whether this controller is providing an internal message queue
417  * @kworker: pointer to thread struct for message pump
418  * @pump_messages: work struct for scheduling work to the message pump
419  * @queue_lock: spinlock to synchronise access to message queue
420  * @queue: message queue
421  * @cur_msg: the currently in-flight message
422  * @cur_msg_completion: a completion for the current in-flight message
423  * @cur_msg_incomplete: Flag used internally to opportunistically skip
424  *	the @cur_msg_completion. This flag is used to check if the driver has
425  *	already called spi_finalize_current_message().
426  * @cur_msg_need_completion: Flag used internally to opportunistically skip
427  *	the @cur_msg_completion. This flag is used to signal the context that
428  *	is running spi_finalize_current_message() that it needs to complete()
429  * @cur_msg_mapped: message has been mapped for DMA
430  * @last_cs: the last chip_select that is recorded by set_cs, -1 on non chip
431  *           selected
432  * @last_cs_mode_high: was (mode & SPI_CS_HIGH) true on the last call to set_cs.
433  * @xfer_completion: used by core transfer_one_message()
434  * @busy: message pump is busy
435  * @running: message pump is running
436  * @rt: whether this queue is set to run as a realtime task
437  * @auto_runtime_pm: the core should ensure a runtime PM reference is held
438  *                   while the hardware is prepared, using the parent
439  *                   device for the spidev
440  * @max_dma_len: Maximum length of a DMA transfer for the device.
441  * @prepare_transfer_hardware: a message will soon arrive from the queue
442  *	so the subsystem requests the driver to prepare the transfer hardware
443  *	by issuing this call
444  * @transfer_one_message: the subsystem calls the driver to transfer a single
445  *	message while queuing transfers that arrive in the meantime. When the
446  *	driver is finished with this message, it must call
447  *	spi_finalize_current_message() so the subsystem can issue the next
448  *	message
449  * @unprepare_transfer_hardware: there are currently no more messages on the
450  *	queue so the subsystem notifies the driver that it may relax the
451  *	hardware by issuing this call
452  *
453  * @set_cs: set the logic level of the chip select line.  May be called
454  *          from interrupt context.
455  * @prepare_message: set up the controller to transfer a single message,
456  *                   for example doing DMA mapping.  Called from threaded
457  *                   context.
458  * @transfer_one: transfer a single spi_transfer.
459  *
460  *                  - return 0 if the transfer is finished,
461  *                  - return 1 if the transfer is still in progress. When
462  *                    the driver is finished with this transfer it must
463  *                    call spi_finalize_current_transfer() so the subsystem
464  *                    can issue the next transfer. Note: transfer_one and
465  *                    transfer_one_message are mutually exclusive; when both
466  *                    are set, the generic subsystem does not call your
467  *                    transfer_one callback.
468  * @handle_err: the subsystem calls the driver to handle an error that occurs
469  *		in the generic implementation of transfer_one_message().
470  * @mem_ops: optimized/dedicated operations for interactions with SPI memory.
471  *	     This field is optional and should only be implemented if the
472  *	     controller has native support for memory like operations.
473  * @mem_caps: controller capabilities for the handling of memory operations.
474  * @unprepare_message: undo any work done by prepare_message().
475  * @slave_abort: abort the ongoing transfer request on an SPI slave controller
476  * @target_abort: abort the ongoing transfer request on an SPI target controller
477  * @cs_gpiods: Array of GPIO descriptors to use as chip select lines; one per CS
478  *	number. Any individual value may be NULL for CS lines that
479  *	are not GPIOs (driven by the SPI controller itself).
480  * @use_gpio_descriptors: Turns on the code in the SPI core to parse and grab
481  *	GPIO descriptors. This will fill in @cs_gpiods and SPI devices will have
482  *	the cs_gpiod assigned if a GPIO line is found for the chipselect.
483  * @unused_native_cs: When cs_gpiods is used, spi_register_controller() will
484  *	fill in this field with the first unused native CS, to be used by SPI
485  *	controller drivers that need to drive a native CS when using GPIO CS.
486  * @max_native_cs: When cs_gpiods is used, and this field is filled in,
487  *	spi_register_controller() will validate all native CS (including the
488  *	unused native CS) against this value.
489  * @pcpu_statistics: statistics for the spi_controller
490  * @dma_tx: DMA transmit channel
491  * @dma_rx: DMA receive channel
492  * @dummy_rx: dummy receive buffer for full-duplex devices
493  * @dummy_tx: dummy transmit buffer for full-duplex devices
494  * @fw_translate_cs: If the boot firmware uses different numbering scheme
495  *	what Linux expects, this optional hook can be used to translate
496  *	between the two.
497  * @ptp_sts_supported: If the driver sets this to true, it must provide a
498  *	time snapshot in @spi_transfer->ptp_sts as close as possible to the
499  *	moment in time when @spi_transfer->ptp_sts_word_pre and
500  *	@spi_transfer->ptp_sts_word_post were transmitted.
501  *	If the driver does not set this, the SPI core takes the snapshot as
502  *	close to the driver hand-over as possible.
503  * @irq_flags: Interrupt enable state during PTP system timestamping
504  * @fallback: fallback to PIO if DMA transfer return failure with
505  *	SPI_TRANS_FAIL_NO_START.
506  * @queue_empty: signal green light for opportunistically skipping the queue
507  *	for spi_sync transfers.
508  * @must_async: disable all fast paths in the core
509  *
510  * Each SPI controller can communicate with one or more @spi_device
511  * children.  These make a small bus, sharing MOSI, MISO and SCK signals
512  * but not chip select signals.  Each device may be configured to use a
513  * different clock rate, since those shared signals are ignored unless
514  * the chip is selected.
515  *
516  * The driver for an SPI controller manages access to those devices through
517  * a queue of spi_message transactions, copying data between CPU memory and
518  * an SPI slave device.  For each such message it queues, it calls the
519  * message's completion function when the transaction completes.
520  */
521 struct spi_controller {
522 	struct device	dev;
523 
524 	struct list_head list;
525 
526 	/*
527 	 * Other than negative (== assign one dynamically), bus_num is fully
528 	 * board-specific. Usually that simplifies to being SoC-specific.
529 	 * example: one SoC has three SPI controllers, numbered 0..2,
530 	 * and one board's schematics might show it using SPI-2. Software
531 	 * would normally use bus_num=2 for that controller.
532 	 */
533 	s16			bus_num;
534 
535 	/*
536 	 * Chipselects will be integral to many controllers; some others
537 	 * might use board-specific GPIOs.
538 	 */
539 	u16			num_chipselect;
540 
541 	/* Some SPI controllers pose alignment requirements on DMAable
542 	 * buffers; let protocol drivers know about these requirements.
543 	 */
544 	u16			dma_alignment;
545 
546 	/* spi_device.mode flags understood by this controller driver */
547 	u32			mode_bits;
548 
549 	/* spi_device.mode flags override flags for this controller */
550 	u32			buswidth_override_bits;
551 
552 	/* Bitmask of supported bits_per_word for transfers */
553 	u32			bits_per_word_mask;
554 #define SPI_BPW_MASK(bits) BIT((bits) - 1)
555 #define SPI_BPW_RANGE_MASK(min, max) GENMASK((max) - 1, (min) - 1)
556 
557 	/* Limits on transfer speed */
558 	u32			min_speed_hz;
559 	u32			max_speed_hz;
560 
561 	/* Other constraints relevant to this driver */
562 	u16			flags;
563 #define SPI_CONTROLLER_HALF_DUPLEX	BIT(0)	/* Can't do full duplex */
564 #define SPI_CONTROLLER_NO_RX		BIT(1)	/* Can't do buffer read */
565 #define SPI_CONTROLLER_NO_TX		BIT(2)	/* Can't do buffer write */
566 #define SPI_CONTROLLER_MUST_RX		BIT(3)	/* Requires rx */
567 #define SPI_CONTROLLER_MUST_TX		BIT(4)	/* Requires tx */
568 #define SPI_CONTROLLER_GPIO_SS		BIT(5)	/* GPIO CS must select slave */
569 #define SPI_CONTROLLER_SUSPENDED	BIT(6)	/* Currently suspended */
570 
571 	/* Flag indicating if the allocation of this struct is devres-managed */
572 	bool			devm_allocated;
573 
574 	union {
575 		/* Flag indicating this is an SPI slave controller */
576 		bool			slave;
577 		/* Flag indicating this is an SPI target controller */
578 		bool			target;
579 	};
580 
581 	/*
582 	 * On some hardware transfer / message size may be constrained
583 	 * the limit may depend on device transfer settings.
584 	 */
585 	size_t (*max_transfer_size)(struct spi_device *spi);
586 	size_t (*max_message_size)(struct spi_device *spi);
587 
588 	/* I/O mutex */
589 	struct mutex		io_mutex;
590 
591 	/* Used to avoid adding the same CS twice */
592 	struct mutex		add_lock;
593 
594 	/* Lock and mutex for SPI bus locking */
595 	spinlock_t		bus_lock_spinlock;
596 	struct mutex		bus_lock_mutex;
597 
598 	/* Flag indicating that the SPI bus is locked for exclusive use */
599 	bool			bus_lock_flag;
600 
601 	/*
602 	 * Setup mode and clock, etc (SPI driver may call many times).
603 	 *
604 	 * IMPORTANT:  this may be called when transfers to another
605 	 * device are active.  DO NOT UPDATE SHARED REGISTERS in ways
606 	 * which could break those transfers.
607 	 */
608 	int			(*setup)(struct spi_device *spi);
609 
610 	/*
611 	 * set_cs_timing() method is for SPI controllers that supports
612 	 * configuring CS timing.
613 	 *
614 	 * This hook allows SPI client drivers to request SPI controllers
615 	 * to configure specific CS timing through spi_set_cs_timing() after
616 	 * spi_setup().
617 	 */
618 	int (*set_cs_timing)(struct spi_device *spi);
619 
620 	/*
621 	 * Bidirectional bulk transfers
622 	 *
623 	 * + The transfer() method may not sleep; its main role is
624 	 *   just to add the message to the queue.
625 	 * + For now there's no remove-from-queue operation, or
626 	 *   any other request management
627 	 * + To a given spi_device, message queueing is pure FIFO
628 	 *
629 	 * + The controller's main job is to process its message queue,
630 	 *   selecting a chip (for masters), then transferring data
631 	 * + If there are multiple spi_device children, the i/o queue
632 	 *   arbitration algorithm is unspecified (round robin, FIFO,
633 	 *   priority, reservations, preemption, etc)
634 	 *
635 	 * + Chipselect stays active during the entire message
636 	 *   (unless modified by spi_transfer.cs_change != 0).
637 	 * + The message transfers use clock and SPI mode parameters
638 	 *   previously established by setup() for this device
639 	 */
640 	int			(*transfer)(struct spi_device *spi,
641 						struct spi_message *mesg);
642 
643 	/* Called on release() to free memory provided by spi_controller */
644 	void			(*cleanup)(struct spi_device *spi);
645 
646 	/*
647 	 * Used to enable core support for DMA handling, if can_dma()
648 	 * exists and returns true then the transfer will be mapped
649 	 * prior to transfer_one() being called.  The driver should
650 	 * not modify or store xfer and dma_tx and dma_rx must be set
651 	 * while the device is prepared.
652 	 */
653 	bool			(*can_dma)(struct spi_controller *ctlr,
654 					   struct spi_device *spi,
655 					   struct spi_transfer *xfer);
656 	struct device *dma_map_dev;
657 	struct device *cur_rx_dma_dev;
658 	struct device *cur_tx_dma_dev;
659 
660 	/*
661 	 * These hooks are for drivers that want to use the generic
662 	 * controller transfer queueing mechanism. If these are used, the
663 	 * transfer() function above must NOT be specified by the driver.
664 	 * Over time we expect SPI drivers to be phased over to this API.
665 	 */
666 	bool				queued;
667 	struct kthread_worker		*kworker;
668 	struct kthread_work		pump_messages;
669 	spinlock_t			queue_lock;
670 	struct list_head		queue;
671 	struct spi_message		*cur_msg;
672 	struct completion               cur_msg_completion;
673 	bool				cur_msg_incomplete;
674 	bool				cur_msg_need_completion;
675 	bool				busy;
676 	bool				running;
677 	bool				rt;
678 	bool				auto_runtime_pm;
679 	bool				cur_msg_mapped;
680 	char				last_cs;
681 	bool				last_cs_mode_high;
682 	bool                            fallback;
683 	struct completion               xfer_completion;
684 	size_t				max_dma_len;
685 
686 	int (*prepare_transfer_hardware)(struct spi_controller *ctlr);
687 	int (*transfer_one_message)(struct spi_controller *ctlr,
688 				    struct spi_message *mesg);
689 	int (*unprepare_transfer_hardware)(struct spi_controller *ctlr);
690 	int (*prepare_message)(struct spi_controller *ctlr,
691 			       struct spi_message *message);
692 	int (*unprepare_message)(struct spi_controller *ctlr,
693 				 struct spi_message *message);
694 	union {
695 		int (*slave_abort)(struct spi_controller *ctlr);
696 		int (*target_abort)(struct spi_controller *ctlr);
697 	};
698 
699 	/*
700 	 * These hooks are for drivers that use a generic implementation
701 	 * of transfer_one_message() provided by the core.
702 	 */
703 	void (*set_cs)(struct spi_device *spi, bool enable);
704 	int (*transfer_one)(struct spi_controller *ctlr, struct spi_device *spi,
705 			    struct spi_transfer *transfer);
706 	void (*handle_err)(struct spi_controller *ctlr,
707 			   struct spi_message *message);
708 
709 	/* Optimized handlers for SPI memory-like operations. */
710 	const struct spi_controller_mem_ops *mem_ops;
711 	const struct spi_controller_mem_caps *mem_caps;
712 
713 	/* GPIO chip select */
714 	struct gpio_desc	**cs_gpiods;
715 	bool			use_gpio_descriptors;
716 	s8			unused_native_cs;
717 	s8			max_native_cs;
718 
719 	/* Statistics */
720 	struct spi_statistics __percpu	*pcpu_statistics;
721 
722 	/* DMA channels for use with core dmaengine helpers */
723 	struct dma_chan		*dma_tx;
724 	struct dma_chan		*dma_rx;
725 
726 	/* Dummy data for full duplex devices */
727 	void			*dummy_rx;
728 	void			*dummy_tx;
729 
730 	int (*fw_translate_cs)(struct spi_controller *ctlr, unsigned cs);
731 
732 	/*
733 	 * Driver sets this field to indicate it is able to snapshot SPI
734 	 * transfers (needed e.g. for reading the time of POSIX clocks)
735 	 */
736 	bool			ptp_sts_supported;
737 
738 	/* Interrupt enable state during PTP system timestamping */
739 	unsigned long		irq_flags;
740 
741 	/* Flag for enabling opportunistic skipping of the queue in spi_sync */
742 	bool			queue_empty;
743 	bool			must_async;
744 };
745 
spi_controller_get_devdata(struct spi_controller * ctlr)746 static inline void *spi_controller_get_devdata(struct spi_controller *ctlr)
747 {
748 	return dev_get_drvdata(&ctlr->dev);
749 }
750 
spi_controller_set_devdata(struct spi_controller * ctlr,void * data)751 static inline void spi_controller_set_devdata(struct spi_controller *ctlr,
752 					      void *data)
753 {
754 	dev_set_drvdata(&ctlr->dev, data);
755 }
756 
spi_controller_get(struct spi_controller * ctlr)757 static inline struct spi_controller *spi_controller_get(struct spi_controller *ctlr)
758 {
759 	if (!ctlr || !get_device(&ctlr->dev))
760 		return NULL;
761 	return ctlr;
762 }
763 
spi_controller_put(struct spi_controller * ctlr)764 static inline void spi_controller_put(struct spi_controller *ctlr)
765 {
766 	if (ctlr)
767 		put_device(&ctlr->dev);
768 }
769 
spi_controller_is_slave(struct spi_controller * ctlr)770 static inline bool spi_controller_is_slave(struct spi_controller *ctlr)
771 {
772 	return IS_ENABLED(CONFIG_SPI_SLAVE) && ctlr->slave;
773 }
774 
spi_controller_is_target(struct spi_controller * ctlr)775 static inline bool spi_controller_is_target(struct spi_controller *ctlr)
776 {
777 	return IS_ENABLED(CONFIG_SPI_SLAVE) && ctlr->target;
778 }
779 
780 /* PM calls that need to be issued by the driver */
781 extern int spi_controller_suspend(struct spi_controller *ctlr);
782 extern int spi_controller_resume(struct spi_controller *ctlr);
783 
784 /* Calls the driver make to interact with the message queue */
785 extern struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr);
786 extern void spi_finalize_current_message(struct spi_controller *ctlr);
787 extern void spi_finalize_current_transfer(struct spi_controller *ctlr);
788 
789 /* Helper calls for driver to timestamp transfer */
790 void spi_take_timestamp_pre(struct spi_controller *ctlr,
791 			    struct spi_transfer *xfer,
792 			    size_t progress, bool irqs_off);
793 void spi_take_timestamp_post(struct spi_controller *ctlr,
794 			     struct spi_transfer *xfer,
795 			     size_t progress, bool irqs_off);
796 
797 /* The SPI driver core manages memory for the spi_controller classdev */
798 extern struct spi_controller *__spi_alloc_controller(struct device *host,
799 						unsigned int size, bool slave);
800 
spi_alloc_master(struct device * host,unsigned int size)801 static inline struct spi_controller *spi_alloc_master(struct device *host,
802 						      unsigned int size)
803 {
804 	return __spi_alloc_controller(host, size, false);
805 }
806 
spi_alloc_slave(struct device * host,unsigned int size)807 static inline struct spi_controller *spi_alloc_slave(struct device *host,
808 						     unsigned int size)
809 {
810 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
811 		return NULL;
812 
813 	return __spi_alloc_controller(host, size, true);
814 }
815 
spi_alloc_host(struct device * dev,unsigned int size)816 static inline struct spi_controller *spi_alloc_host(struct device *dev,
817 						    unsigned int size)
818 {
819 	return __spi_alloc_controller(dev, size, false);
820 }
821 
spi_alloc_target(struct device * dev,unsigned int size)822 static inline struct spi_controller *spi_alloc_target(struct device *dev,
823 						      unsigned int size)
824 {
825 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
826 		return NULL;
827 
828 	return __spi_alloc_controller(dev, size, true);
829 }
830 
831 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
832 						   unsigned int size,
833 						   bool slave);
834 
devm_spi_alloc_master(struct device * dev,unsigned int size)835 static inline struct spi_controller *devm_spi_alloc_master(struct device *dev,
836 							   unsigned int size)
837 {
838 	return __devm_spi_alloc_controller(dev, size, false);
839 }
840 
devm_spi_alloc_slave(struct device * dev,unsigned int size)841 static inline struct spi_controller *devm_spi_alloc_slave(struct device *dev,
842 							  unsigned int size)
843 {
844 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
845 		return NULL;
846 
847 	return __devm_spi_alloc_controller(dev, size, true);
848 }
849 
devm_spi_alloc_host(struct device * dev,unsigned int size)850 static inline struct spi_controller *devm_spi_alloc_host(struct device *dev,
851 							 unsigned int size)
852 {
853 	return __devm_spi_alloc_controller(dev, size, false);
854 }
855 
devm_spi_alloc_target(struct device * dev,unsigned int size)856 static inline struct spi_controller *devm_spi_alloc_target(struct device *dev,
857 							   unsigned int size)
858 {
859 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
860 		return NULL;
861 
862 	return __devm_spi_alloc_controller(dev, size, true);
863 }
864 
865 extern int spi_register_controller(struct spi_controller *ctlr);
866 extern int devm_spi_register_controller(struct device *dev,
867 					struct spi_controller *ctlr);
868 extern void spi_unregister_controller(struct spi_controller *ctlr);
869 
870 #if IS_ENABLED(CONFIG_ACPI)
871 extern struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
872 						struct acpi_device *adev,
873 						int index);
874 int acpi_spi_count_resources(struct acpi_device *adev);
875 #endif
876 
877 /*
878  * SPI resource management while processing a SPI message
879  */
880 
881 typedef void (*spi_res_release_t)(struct spi_controller *ctlr,
882 				  struct spi_message *msg,
883 				  void *res);
884 
885 /**
886  * struct spi_res - SPI resource management structure
887  * @entry:   list entry
888  * @release: release code called prior to freeing this resource
889  * @data:    extra data allocated for the specific use-case
890  *
891  * This is based on ideas from devres, but focused on life-cycle
892  * management during spi_message processing.
893  */
894 struct spi_res {
895 	struct list_head        entry;
896 	spi_res_release_t       release;
897 	unsigned long long      data[]; /* Guarantee ull alignment */
898 };
899 
900 /*---------------------------------------------------------------------------*/
901 
902 /*
903  * I/O INTERFACE between SPI controller and protocol drivers
904  *
905  * Protocol drivers use a queue of spi_messages, each transferring data
906  * between the controller and memory buffers.
907  *
908  * The spi_messages themselves consist of a series of read+write transfer
909  * segments.  Those segments always read the same number of bits as they
910  * write; but one or the other is easily ignored by passing a NULL buffer
911  * pointer.  (This is unlike most types of I/O API, because SPI hardware
912  * is full duplex.)
913  *
914  * NOTE:  Allocation of spi_transfer and spi_message memory is entirely
915  * up to the protocol driver, which guarantees the integrity of both (as
916  * well as the data buffers) for as long as the message is queued.
917  */
918 
919 /**
920  * struct spi_transfer - a read/write buffer pair
921  * @tx_buf: data to be written (DMA-safe memory), or NULL
922  * @rx_buf: data to be read (DMA-safe memory), or NULL
923  * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
924  * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
925  * @tx_nbits: number of bits used for writing. If 0 the default
926  *      (SPI_NBITS_SINGLE) is used.
927  * @rx_nbits: number of bits used for reading. If 0 the default
928  *      (SPI_NBITS_SINGLE) is used.
929  * @len: size of rx and tx buffers (in bytes)
930  * @speed_hz: Select a speed other than the device default for this
931  *      transfer. If 0 the default (from @spi_device) is used.
932  * @bits_per_word: select a bits_per_word other than the device default
933  *      for this transfer. If 0 the default (from @spi_device) is used.
934  * @dummy_data: indicates transfer is dummy bytes transfer.
935  * @cs_off: performs the transfer with chipselect off.
936  * @cs_change: affects chipselect after this transfer completes
937  * @cs_change_delay: delay between cs deassert and assert when
938  *      @cs_change is set and @spi_transfer is not the last in @spi_message
939  * @delay: delay to be introduced after this transfer before
940  *	(optionally) changing the chipselect status, then starting
941  *	the next transfer or completing this @spi_message.
942  * @word_delay: inter word delay to be introduced after each word size
943  *	(set by bits_per_word) transmission.
944  * @effective_speed_hz: the effective SCK-speed that was used to
945  *      transfer this transfer. Set to 0 if the SPI bus driver does
946  *      not support it.
947  * @transfer_list: transfers are sequenced through @spi_message.transfers
948  * @tx_sg: Scatterlist for transmit, currently not for client use
949  * @rx_sg: Scatterlist for receive, currently not for client use
950  * @ptp_sts_word_pre: The word (subject to bits_per_word semantics) offset
951  *	within @tx_buf for which the SPI device is requesting that the time
952  *	snapshot for this transfer begins. Upon completing the SPI transfer,
953  *	this value may have changed compared to what was requested, depending
954  *	on the available snapshotting resolution (DMA transfer,
955  *	@ptp_sts_supported is false, etc).
956  * @ptp_sts_word_post: See @ptp_sts_word_post. The two can be equal (meaning
957  *	that a single byte should be snapshotted).
958  *	If the core takes care of the timestamp (if @ptp_sts_supported is false
959  *	for this controller), it will set @ptp_sts_word_pre to 0, and
960  *	@ptp_sts_word_post to the length of the transfer. This is done
961  *	purposefully (instead of setting to spi_transfer->len - 1) to denote
962  *	that a transfer-level snapshot taken from within the driver may still
963  *	be of higher quality.
964  * @ptp_sts: Pointer to a memory location held by the SPI slave device where a
965  *	PTP system timestamp structure may lie. If drivers use PIO or their
966  *	hardware has some sort of assist for retrieving exact transfer timing,
967  *	they can (and should) assert @ptp_sts_supported and populate this
968  *	structure using the ptp_read_system_*ts helper functions.
969  *	The timestamp must represent the time at which the SPI slave device has
970  *	processed the word, i.e. the "pre" timestamp should be taken before
971  *	transmitting the "pre" word, and the "post" timestamp after receiving
972  *	transmit confirmation from the controller for the "post" word.
973  * @timestamped: true if the transfer has been timestamped
974  * @error: Error status logged by SPI controller driver.
975  *
976  * SPI transfers always write the same number of bytes as they read.
977  * Protocol drivers should always provide @rx_buf and/or @tx_buf.
978  * In some cases, they may also want to provide DMA addresses for
979  * the data being transferred; that may reduce overhead, when the
980  * underlying driver uses DMA.
981  *
982  * If the transmit buffer is NULL, zeroes will be shifted out
983  * while filling @rx_buf.  If the receive buffer is NULL, the data
984  * shifted in will be discarded.  Only "len" bytes shift out (or in).
985  * It's an error to try to shift out a partial word.  (For example, by
986  * shifting out three bytes with word size of sixteen or twenty bits;
987  * the former uses two bytes per word, the latter uses four bytes.)
988  *
989  * In-memory data values are always in native CPU byte order, translated
990  * from the wire byte order (big-endian except with SPI_LSB_FIRST).  So
991  * for example when bits_per_word is sixteen, buffers are 2N bytes long
992  * (@len = 2N) and hold N sixteen bit words in CPU byte order.
993  *
994  * When the word size of the SPI transfer is not a power-of-two multiple
995  * of eight bits, those in-memory words include extra bits.  In-memory
996  * words are always seen by protocol drivers as right-justified, so the
997  * undefined (rx) or unused (tx) bits are always the most significant bits.
998  *
999  * All SPI transfers start with the relevant chipselect active.  Normally
1000  * it stays selected until after the last transfer in a message.  Drivers
1001  * can affect the chipselect signal using cs_change.
1002  *
1003  * (i) If the transfer isn't the last one in the message, this flag is
1004  * used to make the chipselect briefly go inactive in the middle of the
1005  * message.  Toggling chipselect in this way may be needed to terminate
1006  * a chip command, letting a single spi_message perform all of group of
1007  * chip transactions together.
1008  *
1009  * (ii) When the transfer is the last one in the message, the chip may
1010  * stay selected until the next transfer.  On multi-device SPI busses
1011  * with nothing blocking messages going to other devices, this is just
1012  * a performance hint; starting a message to another device deselects
1013  * this one.  But in other cases, this can be used to ensure correctness.
1014  * Some devices need protocol transactions to be built from a series of
1015  * spi_message submissions, where the content of one message is determined
1016  * by the results of previous messages and where the whole transaction
1017  * ends when the chipselect goes inactive.
1018  *
1019  * When SPI can transfer in 1x,2x or 4x. It can get this transfer information
1020  * from device through @tx_nbits and @rx_nbits. In Bi-direction, these
1021  * two should both be set. User can set transfer mode with SPI_NBITS_SINGLE(1x)
1022  * SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer.
1023  *
1024  * The code that submits an spi_message (and its spi_transfers)
1025  * to the lower layers is responsible for managing its memory.
1026  * Zero-initialize every field you don't set up explicitly, to
1027  * insulate against future API updates.  After you submit a message
1028  * and its transfers, ignore them until its completion callback.
1029  */
1030 struct spi_transfer {
1031 	/*
1032 	 * It's okay if tx_buf == rx_buf (right?).
1033 	 * For MicroWire, one buffer must be NULL.
1034 	 * Buffers must work with dma_*map_single() calls, unless
1035 	 * spi_message.is_dma_mapped reports a pre-existing mapping.
1036 	 */
1037 	const void	*tx_buf;
1038 	void		*rx_buf;
1039 	unsigned	len;
1040 
1041 #define SPI_TRANS_FAIL_NO_START	BIT(0)
1042 	u16		error;
1043 
1044 	dma_addr_t	tx_dma;
1045 	dma_addr_t	rx_dma;
1046 	struct sg_table tx_sg;
1047 	struct sg_table rx_sg;
1048 
1049 	unsigned	dummy_data:1;
1050 	unsigned	cs_off:1;
1051 	unsigned	cs_change:1;
1052 	unsigned	tx_nbits:3;
1053 	unsigned	rx_nbits:3;
1054 	unsigned	timestamped:1;
1055 #define	SPI_NBITS_SINGLE	0x01 /* 1-bit transfer */
1056 #define	SPI_NBITS_DUAL		0x02 /* 2-bit transfer */
1057 #define	SPI_NBITS_QUAD		0x04 /* 4-bit transfer */
1058 	u8		bits_per_word;
1059 	struct spi_delay	delay;
1060 	struct spi_delay	cs_change_delay;
1061 	struct spi_delay	word_delay;
1062 	u32		speed_hz;
1063 
1064 	u32		effective_speed_hz;
1065 
1066 	unsigned int	ptp_sts_word_pre;
1067 	unsigned int	ptp_sts_word_post;
1068 
1069 	struct ptp_system_timestamp *ptp_sts;
1070 
1071 	struct list_head transfer_list;
1072 };
1073 
1074 /**
1075  * struct spi_message - one multi-segment SPI transaction
1076  * @transfers: list of transfer segments in this transaction
1077  * @spi: SPI device to which the transaction is queued
1078  * @is_dma_mapped: if true, the caller provided both DMA and CPU virtual
1079  *	addresses for each transfer buffer
1080  * @complete: called to report transaction completions
1081  * @context: the argument to complete() when it's called
1082  * @frame_length: the total number of bytes in the message
1083  * @actual_length: the total number of bytes that were transferred in all
1084  *	successful segments
1085  * @status: zero for success, else negative errno
1086  * @queue: for use by whichever driver currently owns the message
1087  * @state: for use by whichever driver currently owns the message
1088  * @resources: for resource management when the SPI message is processed
1089  * @prepared: spi_prepare_message was called for the this message
1090  * @t: for use with spi_message_alloc() when message and transfers have
1091  *	been allocated together
1092  *
1093  * A @spi_message is used to execute an atomic sequence of data transfers,
1094  * each represented by a struct spi_transfer.  The sequence is "atomic"
1095  * in the sense that no other spi_message may use that SPI bus until that
1096  * sequence completes.  On some systems, many such sequences can execute as
1097  * a single programmed DMA transfer.  On all systems, these messages are
1098  * queued, and might complete after transactions to other devices.  Messages
1099  * sent to a given spi_device are always executed in FIFO order.
1100  *
1101  * The code that submits an spi_message (and its spi_transfers)
1102  * to the lower layers is responsible for managing its memory.
1103  * Zero-initialize every field you don't set up explicitly, to
1104  * insulate against future API updates.  After you submit a message
1105  * and its transfers, ignore them until its completion callback.
1106  */
1107 struct spi_message {
1108 	struct list_head	transfers;
1109 
1110 	struct spi_device	*spi;
1111 
1112 	unsigned		is_dma_mapped:1;
1113 
1114 	/* spi_prepare_message() was called for this message */
1115 	bool			prepared;
1116 
1117 	/*
1118 	 * REVISIT: we might want a flag affecting the behavior of the
1119 	 * last transfer ... allowing things like "read 16 bit length L"
1120 	 * immediately followed by "read L bytes".  Basically imposing
1121 	 * a specific message scheduling algorithm.
1122 	 *
1123 	 * Some controller drivers (message-at-a-time queue processing)
1124 	 * could provide that as their default scheduling algorithm.  But
1125 	 * others (with multi-message pipelines) could need a flag to
1126 	 * tell them about such special cases.
1127 	 */
1128 
1129 	/* Completion is reported through a callback */
1130 	int			status;
1131 	void			(*complete)(void *context);
1132 	void			*context;
1133 	unsigned		frame_length;
1134 	unsigned		actual_length;
1135 
1136 	/*
1137 	 * For optional use by whatever driver currently owns the
1138 	 * spi_message ...  between calls to spi_async and then later
1139 	 * complete(), that's the spi_controller controller driver.
1140 	 */
1141 	struct list_head	queue;
1142 	void			*state;
1143 
1144 	/* List of spi_res resources when the SPI message is processed */
1145 	struct list_head        resources;
1146 
1147 	/* For embedding transfers into the memory of the message */
1148 	struct spi_transfer	t[];
1149 };
1150 
spi_message_init_no_memset(struct spi_message * m)1151 static inline void spi_message_init_no_memset(struct spi_message *m)
1152 {
1153 	INIT_LIST_HEAD(&m->transfers);
1154 	INIT_LIST_HEAD(&m->resources);
1155 }
1156 
spi_message_init(struct spi_message * m)1157 static inline void spi_message_init(struct spi_message *m)
1158 {
1159 	memset(m, 0, sizeof *m);
1160 	spi_message_init_no_memset(m);
1161 }
1162 
1163 static inline void
spi_message_add_tail(struct spi_transfer * t,struct spi_message * m)1164 spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
1165 {
1166 	list_add_tail(&t->transfer_list, &m->transfers);
1167 }
1168 
1169 static inline void
spi_transfer_del(struct spi_transfer * t)1170 spi_transfer_del(struct spi_transfer *t)
1171 {
1172 	list_del(&t->transfer_list);
1173 }
1174 
1175 static inline int
spi_transfer_delay_exec(struct spi_transfer * t)1176 spi_transfer_delay_exec(struct spi_transfer *t)
1177 {
1178 	return spi_delay_exec(&t->delay, t);
1179 }
1180 
1181 /**
1182  * spi_message_init_with_transfers - Initialize spi_message and append transfers
1183  * @m: spi_message to be initialized
1184  * @xfers: An array of SPI transfers
1185  * @num_xfers: Number of items in the xfer array
1186  *
1187  * This function initializes the given spi_message and adds each spi_transfer in
1188  * the given array to the message.
1189  */
1190 static inline void
spi_message_init_with_transfers(struct spi_message * m,struct spi_transfer * xfers,unsigned int num_xfers)1191 spi_message_init_with_transfers(struct spi_message *m,
1192 struct spi_transfer *xfers, unsigned int num_xfers)
1193 {
1194 	unsigned int i;
1195 
1196 	spi_message_init(m);
1197 	for (i = 0; i < num_xfers; ++i)
1198 		spi_message_add_tail(&xfers[i], m);
1199 }
1200 
1201 /*
1202  * It's fine to embed message and transaction structures in other data
1203  * structures so long as you don't free them while they're in use.
1204  */
spi_message_alloc(unsigned ntrans,gfp_t flags)1205 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
1206 {
1207 	struct spi_message *m;
1208 
1209 	m = kzalloc(struct_size(m, t, ntrans), flags);
1210 	if (m) {
1211 		unsigned i;
1212 
1213 		spi_message_init_no_memset(m);
1214 		for (i = 0; i < ntrans; i++)
1215 			spi_message_add_tail(&m->t[i], m);
1216 	}
1217 	return m;
1218 }
1219 
spi_message_free(struct spi_message * m)1220 static inline void spi_message_free(struct spi_message *m)
1221 {
1222 	kfree(m);
1223 }
1224 
1225 extern int spi_setup(struct spi_device *spi);
1226 extern int spi_async(struct spi_device *spi, struct spi_message *message);
1227 extern int spi_slave_abort(struct spi_device *spi);
1228 extern int spi_target_abort(struct spi_device *spi);
1229 
1230 static inline size_t
spi_max_message_size(struct spi_device * spi)1231 spi_max_message_size(struct spi_device *spi)
1232 {
1233 	struct spi_controller *ctlr = spi->controller;
1234 
1235 	if (!ctlr->max_message_size)
1236 		return SIZE_MAX;
1237 	return ctlr->max_message_size(spi);
1238 }
1239 
1240 static inline size_t
spi_max_transfer_size(struct spi_device * spi)1241 spi_max_transfer_size(struct spi_device *spi)
1242 {
1243 	struct spi_controller *ctlr = spi->controller;
1244 	size_t tr_max = SIZE_MAX;
1245 	size_t msg_max = spi_max_message_size(spi);
1246 
1247 	if (ctlr->max_transfer_size)
1248 		tr_max = ctlr->max_transfer_size(spi);
1249 
1250 	/* Transfer size limit must not be greater than message size limit */
1251 	return min(tr_max, msg_max);
1252 }
1253 
1254 /**
1255  * spi_is_bpw_supported - Check if bits per word is supported
1256  * @spi: SPI device
1257  * @bpw: Bits per word
1258  *
1259  * This function checks to see if the SPI controller supports @bpw.
1260  *
1261  * Returns:
1262  * True if @bpw is supported, false otherwise.
1263  */
spi_is_bpw_supported(struct spi_device * spi,u32 bpw)1264 static inline bool spi_is_bpw_supported(struct spi_device *spi, u32 bpw)
1265 {
1266 	u32 bpw_mask = spi->master->bits_per_word_mask;
1267 
1268 	if (bpw == 8 || (bpw <= 32 && bpw_mask & SPI_BPW_MASK(bpw)))
1269 		return true;
1270 
1271 	return false;
1272 }
1273 
1274 /**
1275  * spi_controller_xfer_timeout - Compute a suitable timeout value
1276  * @ctlr: SPI device
1277  * @xfer: Transfer descriptor
1278  *
1279  * Compute a relevant timeout value for the given transfer. We derive the time
1280  * that it would take on a single data line and take twice this amount of time
1281  * with a minimum of 500ms to avoid false positives on loaded systems.
1282  *
1283  * Returns: Transfer timeout value in milliseconds.
1284  */
spi_controller_xfer_timeout(struct spi_controller * ctlr,struct spi_transfer * xfer)1285 static inline unsigned int spi_controller_xfer_timeout(struct spi_controller *ctlr,
1286 						       struct spi_transfer *xfer)
1287 {
1288 	return max(xfer->len * 8 * 2 / (xfer->speed_hz / 1000), 500U);
1289 }
1290 
1291 /*---------------------------------------------------------------------------*/
1292 
1293 /* SPI transfer replacement methods which make use of spi_res */
1294 
1295 struct spi_replaced_transfers;
1296 typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr,
1297 				       struct spi_message *msg,
1298 				       struct spi_replaced_transfers *res);
1299 /**
1300  * struct spi_replaced_transfers - structure describing the spi_transfer
1301  *                                 replacements that have occurred
1302  *                                 so that they can get reverted
1303  * @release:            some extra release code to get executed prior to
1304  *                      releasing this structure
1305  * @extradata:          pointer to some extra data if requested or NULL
1306  * @replaced_transfers: transfers that have been replaced and which need
1307  *                      to get restored
1308  * @replaced_after:     the transfer after which the @replaced_transfers
1309  *                      are to get re-inserted
1310  * @inserted:           number of transfers inserted
1311  * @inserted_transfers: array of spi_transfers of array-size @inserted,
1312  *                      that have been replacing replaced_transfers
1313  *
1314  * Note: that @extradata will point to @inserted_transfers[@inserted]
1315  * if some extra allocation is requested, so alignment will be the same
1316  * as for spi_transfers.
1317  */
1318 struct spi_replaced_transfers {
1319 	spi_replaced_release_t release;
1320 	void *extradata;
1321 	struct list_head replaced_transfers;
1322 	struct list_head *replaced_after;
1323 	size_t inserted;
1324 	struct spi_transfer inserted_transfers[];
1325 };
1326 
1327 /*---------------------------------------------------------------------------*/
1328 
1329 /* SPI transfer transformation methods */
1330 
1331 extern int spi_split_transfers_maxsize(struct spi_controller *ctlr,
1332 				       struct spi_message *msg,
1333 				       size_t maxsize,
1334 				       gfp_t gfp);
1335 extern int spi_split_transfers_maxwords(struct spi_controller *ctlr,
1336 					struct spi_message *msg,
1337 					size_t maxwords,
1338 					gfp_t gfp);
1339 
1340 /*---------------------------------------------------------------------------*/
1341 
1342 /*
1343  * All these synchronous SPI transfer routines are utilities layered
1344  * over the core async transfer primitive.  Here, "synchronous" means
1345  * they will sleep uninterruptibly until the async transfer completes.
1346  */
1347 
1348 extern int spi_sync(struct spi_device *spi, struct spi_message *message);
1349 extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message);
1350 extern int spi_bus_lock(struct spi_controller *ctlr);
1351 extern int spi_bus_unlock(struct spi_controller *ctlr);
1352 
1353 /**
1354  * spi_sync_transfer - synchronous SPI data transfer
1355  * @spi: device with which data will be exchanged
1356  * @xfers: An array of spi_transfers
1357  * @num_xfers: Number of items in the xfer array
1358  * Context: can sleep
1359  *
1360  * Does a synchronous SPI data transfer of the given spi_transfer array.
1361  *
1362  * For more specific semantics see spi_sync().
1363  *
1364  * Return: zero on success, else a negative error code.
1365  */
1366 static inline int
spi_sync_transfer(struct spi_device * spi,struct spi_transfer * xfers,unsigned int num_xfers)1367 spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers,
1368 	unsigned int num_xfers)
1369 {
1370 	struct spi_message msg;
1371 
1372 	spi_message_init_with_transfers(&msg, xfers, num_xfers);
1373 
1374 	return spi_sync(spi, &msg);
1375 }
1376 
1377 /**
1378  * spi_write - SPI synchronous write
1379  * @spi: device to which data will be written
1380  * @buf: data buffer
1381  * @len: data buffer size
1382  * Context: can sleep
1383  *
1384  * This function writes the buffer @buf.
1385  * Callable only from contexts that can sleep.
1386  *
1387  * Return: zero on success, else a negative error code.
1388  */
1389 static inline int
spi_write(struct spi_device * spi,const void * buf,size_t len)1390 spi_write(struct spi_device *spi, const void *buf, size_t len)
1391 {
1392 	struct spi_transfer	t = {
1393 			.tx_buf		= buf,
1394 			.len		= len,
1395 		};
1396 
1397 	return spi_sync_transfer(spi, &t, 1);
1398 }
1399 
1400 /**
1401  * spi_read - SPI synchronous read
1402  * @spi: device from which data will be read
1403  * @buf: data buffer
1404  * @len: data buffer size
1405  * Context: can sleep
1406  *
1407  * This function reads the buffer @buf.
1408  * Callable only from contexts that can sleep.
1409  *
1410  * Return: zero on success, else a negative error code.
1411  */
1412 static inline int
spi_read(struct spi_device * spi,void * buf,size_t len)1413 spi_read(struct spi_device *spi, void *buf, size_t len)
1414 {
1415 	struct spi_transfer	t = {
1416 			.rx_buf		= buf,
1417 			.len		= len,
1418 		};
1419 
1420 	return spi_sync_transfer(spi, &t, 1);
1421 }
1422 
1423 /* This copies txbuf and rxbuf data; for small transfers only! */
1424 extern int spi_write_then_read(struct spi_device *spi,
1425 		const void *txbuf, unsigned n_tx,
1426 		void *rxbuf, unsigned n_rx);
1427 
1428 /**
1429  * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
1430  * @spi: device with which data will be exchanged
1431  * @cmd: command to be written before data is read back
1432  * Context: can sleep
1433  *
1434  * Callable only from contexts that can sleep.
1435  *
1436  * Return: the (unsigned) eight bit number returned by the
1437  * device, or else a negative error code.
1438  */
spi_w8r8(struct spi_device * spi,u8 cmd)1439 static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
1440 {
1441 	ssize_t			status;
1442 	u8			result;
1443 
1444 	status = spi_write_then_read(spi, &cmd, 1, &result, 1);
1445 
1446 	/* Return negative errno or unsigned value */
1447 	return (status < 0) ? status : result;
1448 }
1449 
1450 /**
1451  * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
1452  * @spi: device with which data will be exchanged
1453  * @cmd: command to be written before data is read back
1454  * Context: can sleep
1455  *
1456  * The number is returned in wire-order, which is at least sometimes
1457  * big-endian.
1458  *
1459  * Callable only from contexts that can sleep.
1460  *
1461  * Return: the (unsigned) sixteen bit number returned by the
1462  * device, or else a negative error code.
1463  */
spi_w8r16(struct spi_device * spi,u8 cmd)1464 static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
1465 {
1466 	ssize_t			status;
1467 	u16			result;
1468 
1469 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1470 
1471 	/* Return negative errno or unsigned value */
1472 	return (status < 0) ? status : result;
1473 }
1474 
1475 /**
1476  * spi_w8r16be - SPI synchronous 8 bit write followed by 16 bit big-endian read
1477  * @spi: device with which data will be exchanged
1478  * @cmd: command to be written before data is read back
1479  * Context: can sleep
1480  *
1481  * This function is similar to spi_w8r16, with the exception that it will
1482  * convert the read 16 bit data word from big-endian to native endianness.
1483  *
1484  * Callable only from contexts that can sleep.
1485  *
1486  * Return: the (unsigned) sixteen bit number returned by the device in CPU
1487  * endianness, or else a negative error code.
1488  */
spi_w8r16be(struct spi_device * spi,u8 cmd)1489 static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
1490 
1491 {
1492 	ssize_t status;
1493 	__be16 result;
1494 
1495 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1496 	if (status < 0)
1497 		return status;
1498 
1499 	return be16_to_cpu(result);
1500 }
1501 
1502 /*---------------------------------------------------------------------------*/
1503 
1504 /*
1505  * INTERFACE between board init code and SPI infrastructure.
1506  *
1507  * No SPI driver ever sees these SPI device table segments, but
1508  * it's how the SPI core (or adapters that get hotplugged) grows
1509  * the driver model tree.
1510  *
1511  * As a rule, SPI devices can't be probed.  Instead, board init code
1512  * provides a table listing the devices which are present, with enough
1513  * information to bind and set up the device's driver.  There's basic
1514  * support for non-static configurations too; enough to handle adding
1515  * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
1516  */
1517 
1518 /**
1519  * struct spi_board_info - board-specific template for a SPI device
1520  * @modalias: Initializes spi_device.modalias; identifies the driver.
1521  * @platform_data: Initializes spi_device.platform_data; the particular
1522  *	data stored there is driver-specific.
1523  * @swnode: Software node for the device.
1524  * @controller_data: Initializes spi_device.controller_data; some
1525  *	controllers need hints about hardware setup, e.g. for DMA.
1526  * @irq: Initializes spi_device.irq; depends on how the board is wired.
1527  * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
1528  *	from the chip datasheet and board-specific signal quality issues.
1529  * @bus_num: Identifies which spi_controller parents the spi_device; unused
1530  *	by spi_new_device(), and otherwise depends on board wiring.
1531  * @chip_select: Initializes spi_device.chip_select; depends on how
1532  *	the board is wired.
1533  * @mode: Initializes spi_device.mode; based on the chip datasheet, board
1534  *	wiring (some devices support both 3WIRE and standard modes), and
1535  *	possibly presence of an inverter in the chipselect path.
1536  *
1537  * When adding new SPI devices to the device tree, these structures serve
1538  * as a partial device template.  They hold information which can't always
1539  * be determined by drivers.  Information that probe() can establish (such
1540  * as the default transfer wordsize) is not included here.
1541  *
1542  * These structures are used in two places.  Their primary role is to
1543  * be stored in tables of board-specific device descriptors, which are
1544  * declared early in board initialization and then used (much later) to
1545  * populate a controller's device tree after the that controller's driver
1546  * initializes.  A secondary (and atypical) role is as a parameter to
1547  * spi_new_device() call, which happens after those controller drivers
1548  * are active in some dynamic board configuration models.
1549  */
1550 struct spi_board_info {
1551 	/*
1552 	 * The device name and module name are coupled, like platform_bus;
1553 	 * "modalias" is normally the driver name.
1554 	 *
1555 	 * platform_data goes to spi_device.dev.platform_data,
1556 	 * controller_data goes to spi_device.controller_data,
1557 	 * IRQ is copied too.
1558 	 */
1559 	char		modalias[SPI_NAME_SIZE];
1560 	const void	*platform_data;
1561 	const struct software_node *swnode;
1562 	void		*controller_data;
1563 	int		irq;
1564 
1565 	/* Slower signaling on noisy or low voltage boards */
1566 	u32		max_speed_hz;
1567 
1568 
1569 	/*
1570 	 * bus_num is board specific and matches the bus_num of some
1571 	 * spi_controller that will probably be registered later.
1572 	 *
1573 	 * chip_select reflects how this chip is wired to that master;
1574 	 * it's less than num_chipselect.
1575 	 */
1576 	u16		bus_num;
1577 	u16		chip_select;
1578 
1579 	/*
1580 	 * mode becomes spi_device.mode, and is essential for chips
1581 	 * where the default of SPI_CS_HIGH = 0 is wrong.
1582 	 */
1583 	u32		mode;
1584 
1585 	/*
1586 	 * ... may need additional spi_device chip config data here.
1587 	 * avoid stuff protocol drivers can set; but include stuff
1588 	 * needed to behave without being bound to a driver:
1589 	 *  - quirks like clock rate mattering when not selected
1590 	 */
1591 };
1592 
1593 #ifdef	CONFIG_SPI
1594 extern int
1595 spi_register_board_info(struct spi_board_info const *info, unsigned n);
1596 #else
1597 /* Board init code may ignore whether SPI is configured or not */
1598 static inline int
spi_register_board_info(struct spi_board_info const * info,unsigned n)1599 spi_register_board_info(struct spi_board_info const *info, unsigned n)
1600 	{ return 0; }
1601 #endif
1602 
1603 /*
1604  * If you're hotplugging an adapter with devices (parport, USB, etc)
1605  * use spi_new_device() to describe each device.  You can also call
1606  * spi_unregister_device() to start making that device vanish, but
1607  * normally that would be handled by spi_unregister_controller().
1608  *
1609  * You can also use spi_alloc_device() and spi_add_device() to use a two
1610  * stage registration sequence for each spi_device. This gives the caller
1611  * some more control over the spi_device structure before it is registered,
1612  * but requires that caller to initialize fields that would otherwise
1613  * be defined using the board info.
1614  */
1615 extern struct spi_device *
1616 spi_alloc_device(struct spi_controller *ctlr);
1617 
1618 extern int
1619 spi_add_device(struct spi_device *spi);
1620 
1621 extern struct spi_device *
1622 spi_new_device(struct spi_controller *, struct spi_board_info *);
1623 
1624 extern void spi_unregister_device(struct spi_device *spi);
1625 
1626 extern const struct spi_device_id *
1627 spi_get_device_id(const struct spi_device *sdev);
1628 
1629 extern const void *
1630 spi_get_device_match_data(const struct spi_device *sdev);
1631 
1632 static inline bool
spi_transfer_is_last(struct spi_controller * ctlr,struct spi_transfer * xfer)1633 spi_transfer_is_last(struct spi_controller *ctlr, struct spi_transfer *xfer)
1634 {
1635 	return list_is_last(&xfer->transfer_list, &ctlr->cur_msg->transfers);
1636 }
1637 
1638 /* Compatibility layer */
1639 #define spi_master			spi_controller
1640 
1641 #define SPI_MASTER_HALF_DUPLEX		SPI_CONTROLLER_HALF_DUPLEX
1642 
1643 #define spi_master_get_devdata(_ctlr)	spi_controller_get_devdata(_ctlr)
1644 #define spi_master_set_devdata(_ctlr, _data)	\
1645 	spi_controller_set_devdata(_ctlr, _data)
1646 #define spi_master_get(_ctlr)		spi_controller_get(_ctlr)
1647 #define spi_master_put(_ctlr)		spi_controller_put(_ctlr)
1648 #define spi_master_suspend(_ctlr)	spi_controller_suspend(_ctlr)
1649 #define spi_master_resume(_ctlr)	spi_controller_resume(_ctlr)
1650 
1651 #define spi_register_master(_ctlr)	spi_register_controller(_ctlr)
1652 #define devm_spi_register_master(_dev, _ctlr) \
1653 	devm_spi_register_controller(_dev, _ctlr)
1654 #define spi_unregister_master(_ctlr)	spi_unregister_controller(_ctlr)
1655 
1656 #endif /* __LINUX_SPI_H */
1657