1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3 // Copyright (C) 2008 Juergen Beisert
4
5 #include <linux/bits.h>
6 #include <linux/clk.h>
7 #include <linux/completion.h>
8 #include <linux/delay.h>
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/err.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/irq.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/pinctrl/consumer.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/slab.h>
21 #include <linux/spi/spi.h>
22 #include <linux/types.h>
23 #include <linux/of.h>
24 #include <linux/property.h>
25
26 #include <linux/dma/imx-dma.h>
27
28 #define DRIVER_NAME "spi_imx"
29
30 static bool use_dma = true;
31 module_param(use_dma, bool, 0644);
32 MODULE_PARM_DESC(use_dma, "Enable usage of DMA when available (default)");
33
34 /* define polling limits */
35 static unsigned int polling_limit_us = 30;
36 module_param(polling_limit_us, uint, 0664);
37 MODULE_PARM_DESC(polling_limit_us,
38 "time in us to run a transfer in polling mode\n");
39
40 #define MXC_RPM_TIMEOUT 2000 /* 2000ms */
41
42 #define MXC_CSPIRXDATA 0x00
43 #define MXC_CSPITXDATA 0x04
44 #define MXC_CSPICTRL 0x08
45 #define MXC_CSPIINT 0x0c
46 #define MXC_RESET 0x1c
47
48 /* generic defines to abstract from the different register layouts */
49 #define MXC_INT_RR (1 << 0) /* Receive data ready interrupt */
50 #define MXC_INT_TE (1 << 1) /* Transmit FIFO empty interrupt */
51 #define MXC_INT_RDR BIT(4) /* Receive date threshold interrupt */
52
53 /* The maximum bytes that a sdma BD can transfer. */
54 #define MAX_SDMA_BD_BYTES (1 << 15)
55 #define MX51_ECSPI_CTRL_MAX_BURST 512
56 /* The maximum bytes that IMX53_ECSPI can transfer in target mode.*/
57 #define MX53_MAX_TRANSFER_BYTES 512
58
59 enum spi_imx_devtype {
60 IMX1_CSPI,
61 IMX21_CSPI,
62 IMX27_CSPI,
63 IMX31_CSPI,
64 IMX35_CSPI, /* CSPI on all i.mx except above */
65 IMX51_ECSPI, /* ECSPI on i.mx51 */
66 IMX53_ECSPI, /* ECSPI on i.mx53 and later */
67 };
68
69 struct spi_imx_data;
70
71 struct spi_imx_devtype_data {
72 void (*intctrl)(struct spi_imx_data *spi_imx, int enable);
73 int (*prepare_message)(struct spi_imx_data *spi_imx, struct spi_message *msg);
74 int (*prepare_transfer)(struct spi_imx_data *spi_imx, struct spi_device *spi);
75 void (*trigger)(struct spi_imx_data *spi_imx);
76 int (*rx_available)(struct spi_imx_data *spi_imx);
77 void (*reset)(struct spi_imx_data *spi_imx);
78 void (*setup_wml)(struct spi_imx_data *spi_imx);
79 void (*disable)(struct spi_imx_data *spi_imx);
80 bool has_dmamode;
81 bool has_targetmode;
82 unsigned int fifo_size;
83 bool dynamic_burst;
84 /*
85 * ERR009165 fixed or not:
86 * https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf
87 */
88 bool tx_glitch_fixed;
89 enum spi_imx_devtype devtype;
90 };
91
92 struct spi_imx_data {
93 struct spi_controller *controller;
94 struct device *dev;
95
96 struct completion xfer_done;
97 void __iomem *base;
98 unsigned long base_phys;
99
100 struct clk *clk_per;
101 struct clk *clk_ipg;
102 unsigned long spi_clk;
103 unsigned int spi_bus_clk;
104
105 unsigned int bits_per_word;
106 unsigned int spi_drctl;
107
108 unsigned int count, remainder;
109 void (*tx)(struct spi_imx_data *spi_imx);
110 void (*rx)(struct spi_imx_data *spi_imx);
111 void *rx_buf;
112 const void *tx_buf;
113 unsigned int txfifo; /* number of words pushed in tx FIFO */
114 unsigned int dynamic_burst;
115 bool rx_only;
116
117 /* Target mode */
118 bool target_mode;
119 bool target_aborted;
120 unsigned int target_burst;
121
122 /* DMA */
123 bool usedma;
124 u32 wml;
125 struct completion dma_rx_completion;
126 struct completion dma_tx_completion;
127
128 const struct spi_imx_devtype_data *devtype_data;
129 };
130
is_imx27_cspi(struct spi_imx_data * d)131 static inline int is_imx27_cspi(struct spi_imx_data *d)
132 {
133 return d->devtype_data->devtype == IMX27_CSPI;
134 }
135
is_imx35_cspi(struct spi_imx_data * d)136 static inline int is_imx35_cspi(struct spi_imx_data *d)
137 {
138 return d->devtype_data->devtype == IMX35_CSPI;
139 }
140
is_imx51_ecspi(struct spi_imx_data * d)141 static inline int is_imx51_ecspi(struct spi_imx_data *d)
142 {
143 return d->devtype_data->devtype == IMX51_ECSPI;
144 }
145
is_imx53_ecspi(struct spi_imx_data * d)146 static inline int is_imx53_ecspi(struct spi_imx_data *d)
147 {
148 return d->devtype_data->devtype == IMX53_ECSPI;
149 }
150
151 #define MXC_SPI_BUF_RX(type) \
152 static void spi_imx_buf_rx_##type(struct spi_imx_data *spi_imx) \
153 { \
154 unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA); \
155 \
156 if (spi_imx->rx_buf) { \
157 *(type *)spi_imx->rx_buf = val; \
158 spi_imx->rx_buf += sizeof(type); \
159 } \
160 \
161 spi_imx->remainder -= sizeof(type); \
162 }
163
164 #define MXC_SPI_BUF_TX(type) \
165 static void spi_imx_buf_tx_##type(struct spi_imx_data *spi_imx) \
166 { \
167 type val = 0; \
168 \
169 if (spi_imx->tx_buf) { \
170 val = *(type *)spi_imx->tx_buf; \
171 spi_imx->tx_buf += sizeof(type); \
172 } \
173 \
174 spi_imx->count -= sizeof(type); \
175 \
176 writel(val, spi_imx->base + MXC_CSPITXDATA); \
177 }
178
179 MXC_SPI_BUF_RX(u8)
180 MXC_SPI_BUF_TX(u8)
181 MXC_SPI_BUF_RX(u16)
182 MXC_SPI_BUF_TX(u16)
183 MXC_SPI_BUF_RX(u32)
184 MXC_SPI_BUF_TX(u32)
185
186 /* First entry is reserved, second entry is valid only if SDHC_SPIEN is set
187 * (which is currently not the case in this driver)
188 */
189 static int mxc_clkdivs[] = {0, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192,
190 256, 384, 512, 768, 1024};
191
192 /* MX21, MX27 */
spi_imx_clkdiv_1(unsigned int fin,unsigned int fspi,unsigned int max,unsigned int * fres)193 static unsigned int spi_imx_clkdiv_1(unsigned int fin,
194 unsigned int fspi, unsigned int max, unsigned int *fres)
195 {
196 int i;
197
198 for (i = 2; i < max; i++)
199 if (fspi * mxc_clkdivs[i] >= fin)
200 break;
201
202 *fres = fin / mxc_clkdivs[i];
203 return i;
204 }
205
206 /* MX1, MX31, MX35, MX51 CSPI */
spi_imx_clkdiv_2(unsigned int fin,unsigned int fspi,unsigned int * fres)207 static unsigned int spi_imx_clkdiv_2(unsigned int fin,
208 unsigned int fspi, unsigned int *fres)
209 {
210 int i, div = 4;
211
212 for (i = 0; i < 7; i++) {
213 if (fspi * div >= fin)
214 goto out;
215 div <<= 1;
216 }
217
218 out:
219 *fres = fin / div;
220 return i;
221 }
222
spi_imx_bytes_per_word(const int bits_per_word)223 static int spi_imx_bytes_per_word(const int bits_per_word)
224 {
225 if (bits_per_word <= 8)
226 return 1;
227 else if (bits_per_word <= 16)
228 return 2;
229 else
230 return 4;
231 }
232
spi_imx_can_dma(struct spi_controller * controller,struct spi_device * spi,struct spi_transfer * transfer)233 static bool spi_imx_can_dma(struct spi_controller *controller, struct spi_device *spi,
234 struct spi_transfer *transfer)
235 {
236 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
237
238 if (!use_dma || controller->fallback)
239 return false;
240
241 if (!controller->dma_rx)
242 return false;
243
244 if (spi_imx->target_mode)
245 return false;
246
247 if (transfer->len < spi_imx->devtype_data->fifo_size)
248 return false;
249
250 spi_imx->dynamic_burst = 0;
251
252 return true;
253 }
254
255 /*
256 * Note the number of natively supported chip selects for MX51 is 4. Some
257 * devices may have less actual SS pins but the register map supports 4. When
258 * using gpio chip selects the cs values passed into the macros below can go
259 * outside the range 0 - 3. We therefore need to limit the cs value to avoid
260 * corrupting bits outside the allocated locations.
261 *
262 * The simplest way to do this is to just mask the cs bits to 2 bits. This
263 * still allows all 4 native chip selects to work as well as gpio chip selects
264 * (which can use any of the 4 chip select configurations).
265 */
266
267 #define MX51_ECSPI_CTRL 0x08
268 #define MX51_ECSPI_CTRL_ENABLE (1 << 0)
269 #define MX51_ECSPI_CTRL_XCH (1 << 2)
270 #define MX51_ECSPI_CTRL_SMC (1 << 3)
271 #define MX51_ECSPI_CTRL_MODE_MASK (0xf << 4)
272 #define MX51_ECSPI_CTRL_DRCTL(drctl) ((drctl) << 16)
273 #define MX51_ECSPI_CTRL_POSTDIV_OFFSET 8
274 #define MX51_ECSPI_CTRL_PREDIV_OFFSET 12
275 #define MX51_ECSPI_CTRL_CS(cs) ((cs & 3) << 18)
276 #define MX51_ECSPI_CTRL_BL_OFFSET 20
277 #define MX51_ECSPI_CTRL_BL_MASK (0xfff << 20)
278
279 #define MX51_ECSPI_CONFIG 0x0c
280 #define MX51_ECSPI_CONFIG_SCLKPHA(cs) (1 << ((cs & 3) + 0))
281 #define MX51_ECSPI_CONFIG_SCLKPOL(cs) (1 << ((cs & 3) + 4))
282 #define MX51_ECSPI_CONFIG_SBBCTRL(cs) (1 << ((cs & 3) + 8))
283 #define MX51_ECSPI_CONFIG_SSBPOL(cs) (1 << ((cs & 3) + 12))
284 #define MX51_ECSPI_CONFIG_DATACTL(cs) (1 << ((cs & 3) + 16))
285 #define MX51_ECSPI_CONFIG_SCLKCTL(cs) (1 << ((cs & 3) + 20))
286
287 #define MX51_ECSPI_INT 0x10
288 #define MX51_ECSPI_INT_TEEN (1 << 0)
289 #define MX51_ECSPI_INT_RREN (1 << 3)
290 #define MX51_ECSPI_INT_RDREN (1 << 4)
291
292 #define MX51_ECSPI_DMA 0x14
293 #define MX51_ECSPI_DMA_TX_WML(wml) ((wml) & 0x3f)
294 #define MX51_ECSPI_DMA_RX_WML(wml) (((wml) & 0x3f) << 16)
295 #define MX51_ECSPI_DMA_RXT_WML(wml) (((wml) & 0x3f) << 24)
296
297 #define MX51_ECSPI_DMA_TEDEN (1 << 7)
298 #define MX51_ECSPI_DMA_RXDEN (1 << 23)
299 #define MX51_ECSPI_DMA_RXTDEN (1 << 31)
300
301 #define MX51_ECSPI_STAT 0x18
302 #define MX51_ECSPI_STAT_RR (1 << 3)
303
304 #define MX51_ECSPI_TESTREG 0x20
305 #define MX51_ECSPI_TESTREG_LBC BIT(31)
306
spi_imx_buf_rx_swap_u32(struct spi_imx_data * spi_imx)307 static void spi_imx_buf_rx_swap_u32(struct spi_imx_data *spi_imx)
308 {
309 unsigned int val = readl(spi_imx->base + MXC_CSPIRXDATA);
310
311 if (spi_imx->rx_buf) {
312 #ifdef __LITTLE_ENDIAN
313 unsigned int bytes_per_word;
314
315 bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
316 if (bytes_per_word == 1)
317 swab32s(&val);
318 else if (bytes_per_word == 2)
319 swahw32s(&val);
320 #endif
321 *(u32 *)spi_imx->rx_buf = val;
322 spi_imx->rx_buf += sizeof(u32);
323 }
324
325 spi_imx->remainder -= sizeof(u32);
326 }
327
spi_imx_buf_rx_swap(struct spi_imx_data * spi_imx)328 static void spi_imx_buf_rx_swap(struct spi_imx_data *spi_imx)
329 {
330 int unaligned;
331 u32 val;
332
333 unaligned = spi_imx->remainder % 4;
334
335 if (!unaligned) {
336 spi_imx_buf_rx_swap_u32(spi_imx);
337 return;
338 }
339
340 if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) {
341 spi_imx_buf_rx_u16(spi_imx);
342 return;
343 }
344
345 val = readl(spi_imx->base + MXC_CSPIRXDATA);
346
347 while (unaligned--) {
348 if (spi_imx->rx_buf) {
349 *(u8 *)spi_imx->rx_buf = (val >> (8 * unaligned)) & 0xff;
350 spi_imx->rx_buf++;
351 }
352 spi_imx->remainder--;
353 }
354 }
355
spi_imx_buf_tx_swap_u32(struct spi_imx_data * spi_imx)356 static void spi_imx_buf_tx_swap_u32(struct spi_imx_data *spi_imx)
357 {
358 u32 val = 0;
359 #ifdef __LITTLE_ENDIAN
360 unsigned int bytes_per_word;
361 #endif
362
363 if (spi_imx->tx_buf) {
364 val = *(u32 *)spi_imx->tx_buf;
365 spi_imx->tx_buf += sizeof(u32);
366 }
367
368 spi_imx->count -= sizeof(u32);
369 #ifdef __LITTLE_ENDIAN
370 bytes_per_word = spi_imx_bytes_per_word(spi_imx->bits_per_word);
371
372 if (bytes_per_word == 1)
373 swab32s(&val);
374 else if (bytes_per_word == 2)
375 swahw32s(&val);
376 #endif
377 writel(val, spi_imx->base + MXC_CSPITXDATA);
378 }
379
spi_imx_buf_tx_swap(struct spi_imx_data * spi_imx)380 static void spi_imx_buf_tx_swap(struct spi_imx_data *spi_imx)
381 {
382 int unaligned;
383 u32 val = 0;
384
385 unaligned = spi_imx->count % 4;
386
387 if (!unaligned) {
388 spi_imx_buf_tx_swap_u32(spi_imx);
389 return;
390 }
391
392 if (spi_imx_bytes_per_word(spi_imx->bits_per_word) == 2) {
393 spi_imx_buf_tx_u16(spi_imx);
394 return;
395 }
396
397 while (unaligned--) {
398 if (spi_imx->tx_buf) {
399 val |= *(u8 *)spi_imx->tx_buf << (8 * unaligned);
400 spi_imx->tx_buf++;
401 }
402 spi_imx->count--;
403 }
404
405 writel(val, spi_imx->base + MXC_CSPITXDATA);
406 }
407
mx53_ecspi_rx_target(struct spi_imx_data * spi_imx)408 static void mx53_ecspi_rx_target(struct spi_imx_data *spi_imx)
409 {
410 u32 val = be32_to_cpu(readl(spi_imx->base + MXC_CSPIRXDATA));
411
412 if (spi_imx->rx_buf) {
413 int n_bytes = spi_imx->target_burst % sizeof(val);
414
415 if (!n_bytes)
416 n_bytes = sizeof(val);
417
418 memcpy(spi_imx->rx_buf,
419 ((u8 *)&val) + sizeof(val) - n_bytes, n_bytes);
420
421 spi_imx->rx_buf += n_bytes;
422 spi_imx->target_burst -= n_bytes;
423 }
424
425 spi_imx->remainder -= sizeof(u32);
426 }
427
mx53_ecspi_tx_target(struct spi_imx_data * spi_imx)428 static void mx53_ecspi_tx_target(struct spi_imx_data *spi_imx)
429 {
430 u32 val = 0;
431 int n_bytes = spi_imx->count % sizeof(val);
432
433 if (!n_bytes)
434 n_bytes = sizeof(val);
435
436 if (spi_imx->tx_buf) {
437 memcpy(((u8 *)&val) + sizeof(val) - n_bytes,
438 spi_imx->tx_buf, n_bytes);
439 val = cpu_to_be32(val);
440 spi_imx->tx_buf += n_bytes;
441 }
442
443 spi_imx->count -= n_bytes;
444
445 writel(val, spi_imx->base + MXC_CSPITXDATA);
446 }
447
448 /* MX51 eCSPI */
mx51_ecspi_clkdiv(struct spi_imx_data * spi_imx,unsigned int fspi,unsigned int * fres)449 static unsigned int mx51_ecspi_clkdiv(struct spi_imx_data *spi_imx,
450 unsigned int fspi, unsigned int *fres)
451 {
452 /*
453 * there are two 4-bit dividers, the pre-divider divides by
454 * $pre, the post-divider by 2^$post
455 */
456 unsigned int pre, post;
457 unsigned int fin = spi_imx->spi_clk;
458
459 fspi = min(fspi, fin);
460
461 post = fls(fin) - fls(fspi);
462 if (fin > fspi << post)
463 post++;
464
465 /* now we have: (fin <= fspi << post) with post being minimal */
466
467 post = max(4U, post) - 4;
468 if (unlikely(post > 0xf)) {
469 dev_err(spi_imx->dev, "cannot set clock freq: %u (base freq: %u)\n",
470 fspi, fin);
471 return 0xff;
472 }
473
474 pre = DIV_ROUND_UP(fin, fspi << post) - 1;
475
476 dev_dbg(spi_imx->dev, "%s: fin: %u, fspi: %u, post: %u, pre: %u\n",
477 __func__, fin, fspi, post, pre);
478
479 /* Resulting frequency for the SCLK line. */
480 *fres = (fin / (pre + 1)) >> post;
481
482 return (pre << MX51_ECSPI_CTRL_PREDIV_OFFSET) |
483 (post << MX51_ECSPI_CTRL_POSTDIV_OFFSET);
484 }
485
mx51_ecspi_intctrl(struct spi_imx_data * spi_imx,int enable)486 static void mx51_ecspi_intctrl(struct spi_imx_data *spi_imx, int enable)
487 {
488 unsigned int val = 0;
489
490 if (enable & MXC_INT_TE)
491 val |= MX51_ECSPI_INT_TEEN;
492
493 if (enable & MXC_INT_RR)
494 val |= MX51_ECSPI_INT_RREN;
495
496 if (enable & MXC_INT_RDR)
497 val |= MX51_ECSPI_INT_RDREN;
498
499 writel(val, spi_imx->base + MX51_ECSPI_INT);
500 }
501
mx51_ecspi_trigger(struct spi_imx_data * spi_imx)502 static void mx51_ecspi_trigger(struct spi_imx_data *spi_imx)
503 {
504 u32 reg;
505
506 reg = readl(spi_imx->base + MX51_ECSPI_CTRL);
507 reg |= MX51_ECSPI_CTRL_XCH;
508 writel(reg, spi_imx->base + MX51_ECSPI_CTRL);
509 }
510
mx51_ecspi_disable(struct spi_imx_data * spi_imx)511 static void mx51_ecspi_disable(struct spi_imx_data *spi_imx)
512 {
513 u32 ctrl;
514
515 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
516 ctrl &= ~MX51_ECSPI_CTRL_ENABLE;
517 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
518 }
519
mx51_ecspi_channel(const struct spi_device * spi)520 static int mx51_ecspi_channel(const struct spi_device *spi)
521 {
522 if (!spi_get_csgpiod(spi, 0))
523 return spi_get_chipselect(spi, 0);
524 return spi->controller->unused_native_cs;
525 }
526
mx51_ecspi_prepare_message(struct spi_imx_data * spi_imx,struct spi_message * msg)527 static int mx51_ecspi_prepare_message(struct spi_imx_data *spi_imx,
528 struct spi_message *msg)
529 {
530 struct spi_device *spi = msg->spi;
531 struct spi_transfer *xfer;
532 u32 ctrl = MX51_ECSPI_CTRL_ENABLE;
533 u32 min_speed_hz = ~0U;
534 u32 testreg, delay;
535 u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
536 u32 current_cfg = cfg;
537 int channel = mx51_ecspi_channel(spi);
538
539 /* set Host or Target mode */
540 if (spi_imx->target_mode)
541 ctrl &= ~MX51_ECSPI_CTRL_MODE_MASK;
542 else
543 ctrl |= MX51_ECSPI_CTRL_MODE_MASK;
544
545 /*
546 * Enable SPI_RDY handling (falling edge/level triggered).
547 */
548 if (spi->mode & SPI_READY)
549 ctrl |= MX51_ECSPI_CTRL_DRCTL(spi_imx->spi_drctl);
550
551 /* set chip select to use */
552 ctrl |= MX51_ECSPI_CTRL_CS(channel);
553
554 /*
555 * The ctrl register must be written first, with the EN bit set other
556 * registers must not be written to.
557 */
558 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
559
560 testreg = readl(spi_imx->base + MX51_ECSPI_TESTREG);
561 if (spi->mode & SPI_LOOP)
562 testreg |= MX51_ECSPI_TESTREG_LBC;
563 else
564 testreg &= ~MX51_ECSPI_TESTREG_LBC;
565 writel(testreg, spi_imx->base + MX51_ECSPI_TESTREG);
566
567 /*
568 * eCSPI burst completion by Chip Select signal in Target mode
569 * is not functional for imx53 Soc, config SPI burst completed when
570 * BURST_LENGTH + 1 bits are received
571 */
572 if (spi_imx->target_mode && is_imx53_ecspi(spi_imx))
573 cfg &= ~MX51_ECSPI_CONFIG_SBBCTRL(channel);
574 else
575 cfg |= MX51_ECSPI_CONFIG_SBBCTRL(channel);
576
577 if (spi->mode & SPI_CPOL) {
578 cfg |= MX51_ECSPI_CONFIG_SCLKPOL(channel);
579 cfg |= MX51_ECSPI_CONFIG_SCLKCTL(channel);
580 } else {
581 cfg &= ~MX51_ECSPI_CONFIG_SCLKPOL(channel);
582 cfg &= ~MX51_ECSPI_CONFIG_SCLKCTL(channel);
583 }
584
585 if (spi->mode & SPI_MOSI_IDLE_LOW)
586 cfg |= MX51_ECSPI_CONFIG_DATACTL(channel);
587 else
588 cfg &= ~MX51_ECSPI_CONFIG_DATACTL(channel);
589
590 if (spi->mode & SPI_CS_HIGH)
591 cfg |= MX51_ECSPI_CONFIG_SSBPOL(channel);
592 else
593 cfg &= ~MX51_ECSPI_CONFIG_SSBPOL(channel);
594
595 if (cfg == current_cfg)
596 return 0;
597
598 writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
599
600 /*
601 * Wait until the changes in the configuration register CONFIGREG
602 * propagate into the hardware. It takes exactly one tick of the
603 * SCLK clock, but we will wait two SCLK clock just to be sure. The
604 * effect of the delay it takes for the hardware to apply changes
605 * is noticable if the SCLK clock run very slow. In such a case, if
606 * the polarity of SCLK should be inverted, the GPIO ChipSelect might
607 * be asserted before the SCLK polarity changes, which would disrupt
608 * the SPI communication as the device on the other end would consider
609 * the change of SCLK polarity as a clock tick already.
610 *
611 * Because spi_imx->spi_bus_clk is only set in prepare_message
612 * callback, iterate over all the transfers in spi_message, find the
613 * one with lowest bus frequency, and use that bus frequency for the
614 * delay calculation. In case all transfers have speed_hz == 0, then
615 * min_speed_hz is ~0 and the resulting delay is zero.
616 */
617 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
618 if (!xfer->speed_hz)
619 continue;
620 min_speed_hz = min(xfer->speed_hz, min_speed_hz);
621 }
622
623 delay = (2 * 1000000) / min_speed_hz;
624 if (likely(delay < 10)) /* SCLK is faster than 200 kHz */
625 udelay(delay);
626 else /* SCLK is _very_ slow */
627 usleep_range(delay, delay + 10);
628
629 return 0;
630 }
631
mx51_configure_cpha(struct spi_imx_data * spi_imx,struct spi_device * spi)632 static void mx51_configure_cpha(struct spi_imx_data *spi_imx,
633 struct spi_device *spi)
634 {
635 bool cpha = (spi->mode & SPI_CPHA);
636 bool flip_cpha = (spi->mode & SPI_RX_CPHA_FLIP) && spi_imx->rx_only;
637 u32 cfg = readl(spi_imx->base + MX51_ECSPI_CONFIG);
638 int channel = mx51_ecspi_channel(spi);
639
640 /* Flip cpha logical value iff flip_cpha */
641 cpha ^= flip_cpha;
642
643 if (cpha)
644 cfg |= MX51_ECSPI_CONFIG_SCLKPHA(channel);
645 else
646 cfg &= ~MX51_ECSPI_CONFIG_SCLKPHA(channel);
647
648 writel(cfg, spi_imx->base + MX51_ECSPI_CONFIG);
649 }
650
mx51_ecspi_prepare_transfer(struct spi_imx_data * spi_imx,struct spi_device * spi)651 static int mx51_ecspi_prepare_transfer(struct spi_imx_data *spi_imx,
652 struct spi_device *spi)
653 {
654 u32 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
655 u32 clk;
656
657 /* Clear BL field and set the right value */
658 ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
659 if (spi_imx->target_mode && is_imx53_ecspi(spi_imx))
660 ctrl |= (spi_imx->target_burst * 8 - 1)
661 << MX51_ECSPI_CTRL_BL_OFFSET;
662 else {
663 ctrl |= (spi_imx->bits_per_word - 1)
664 << MX51_ECSPI_CTRL_BL_OFFSET;
665 }
666
667 /* set clock speed */
668 ctrl &= ~(0xf << MX51_ECSPI_CTRL_POSTDIV_OFFSET |
669 0xf << MX51_ECSPI_CTRL_PREDIV_OFFSET);
670 ctrl |= mx51_ecspi_clkdiv(spi_imx, spi_imx->spi_bus_clk, &clk);
671 spi_imx->spi_bus_clk = clk;
672
673 mx51_configure_cpha(spi_imx, spi);
674
675 /*
676 * ERR009165: work in XHC mode instead of SMC as PIO on the chips
677 * before i.mx6ul.
678 */
679 if (spi_imx->usedma && spi_imx->devtype_data->tx_glitch_fixed)
680 ctrl |= MX51_ECSPI_CTRL_SMC;
681 else
682 ctrl &= ~MX51_ECSPI_CTRL_SMC;
683
684 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
685
686 return 0;
687 }
688
mx51_setup_wml(struct spi_imx_data * spi_imx)689 static void mx51_setup_wml(struct spi_imx_data *spi_imx)
690 {
691 u32 tx_wml = 0;
692
693 if (spi_imx->devtype_data->tx_glitch_fixed)
694 tx_wml = spi_imx->wml;
695 /*
696 * Configure the DMA register: setup the watermark
697 * and enable DMA request.
698 */
699 writel(MX51_ECSPI_DMA_RX_WML(spi_imx->wml - 1) |
700 MX51_ECSPI_DMA_TX_WML(tx_wml) |
701 MX51_ECSPI_DMA_RXT_WML(spi_imx->wml) |
702 MX51_ECSPI_DMA_TEDEN | MX51_ECSPI_DMA_RXDEN |
703 MX51_ECSPI_DMA_RXTDEN, spi_imx->base + MX51_ECSPI_DMA);
704 }
705
mx51_ecspi_rx_available(struct spi_imx_data * spi_imx)706 static int mx51_ecspi_rx_available(struct spi_imx_data *spi_imx)
707 {
708 return readl(spi_imx->base + MX51_ECSPI_STAT) & MX51_ECSPI_STAT_RR;
709 }
710
mx51_ecspi_reset(struct spi_imx_data * spi_imx)711 static void mx51_ecspi_reset(struct spi_imx_data *spi_imx)
712 {
713 /* drain receive buffer */
714 while (mx51_ecspi_rx_available(spi_imx))
715 readl(spi_imx->base + MXC_CSPIRXDATA);
716 }
717
718 #define MX31_INTREG_TEEN (1 << 0)
719 #define MX31_INTREG_RREN (1 << 3)
720
721 #define MX31_CSPICTRL_ENABLE (1 << 0)
722 #define MX31_CSPICTRL_HOST (1 << 1)
723 #define MX31_CSPICTRL_XCH (1 << 2)
724 #define MX31_CSPICTRL_SMC (1 << 3)
725 #define MX31_CSPICTRL_POL (1 << 4)
726 #define MX31_CSPICTRL_PHA (1 << 5)
727 #define MX31_CSPICTRL_SSCTL (1 << 6)
728 #define MX31_CSPICTRL_SSPOL (1 << 7)
729 #define MX31_CSPICTRL_BC_SHIFT 8
730 #define MX35_CSPICTRL_BL_SHIFT 20
731 #define MX31_CSPICTRL_CS_SHIFT 24
732 #define MX35_CSPICTRL_CS_SHIFT 12
733 #define MX31_CSPICTRL_DR_SHIFT 16
734
735 #define MX31_CSPI_DMAREG 0x10
736 #define MX31_DMAREG_RH_DEN (1<<4)
737 #define MX31_DMAREG_TH_DEN (1<<1)
738
739 #define MX31_CSPISTATUS 0x14
740 #define MX31_STATUS_RR (1 << 3)
741
742 #define MX31_CSPI_TESTREG 0x1C
743 #define MX31_TEST_LBC (1 << 14)
744
745 /* These functions also work for the i.MX35, but be aware that
746 * the i.MX35 has a slightly different register layout for bits
747 * we do not use here.
748 */
mx31_intctrl(struct spi_imx_data * spi_imx,int enable)749 static void mx31_intctrl(struct spi_imx_data *spi_imx, int enable)
750 {
751 unsigned int val = 0;
752
753 if (enable & MXC_INT_TE)
754 val |= MX31_INTREG_TEEN;
755 if (enable & MXC_INT_RR)
756 val |= MX31_INTREG_RREN;
757
758 writel(val, spi_imx->base + MXC_CSPIINT);
759 }
760
mx31_trigger(struct spi_imx_data * spi_imx)761 static void mx31_trigger(struct spi_imx_data *spi_imx)
762 {
763 unsigned int reg;
764
765 reg = readl(spi_imx->base + MXC_CSPICTRL);
766 reg |= MX31_CSPICTRL_XCH;
767 writel(reg, spi_imx->base + MXC_CSPICTRL);
768 }
769
mx31_prepare_message(struct spi_imx_data * spi_imx,struct spi_message * msg)770 static int mx31_prepare_message(struct spi_imx_data *spi_imx,
771 struct spi_message *msg)
772 {
773 return 0;
774 }
775
mx31_prepare_transfer(struct spi_imx_data * spi_imx,struct spi_device * spi)776 static int mx31_prepare_transfer(struct spi_imx_data *spi_imx,
777 struct spi_device *spi)
778 {
779 unsigned int reg = MX31_CSPICTRL_ENABLE | MX31_CSPICTRL_HOST;
780 unsigned int clk;
781
782 reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) <<
783 MX31_CSPICTRL_DR_SHIFT;
784 spi_imx->spi_bus_clk = clk;
785
786 if (is_imx35_cspi(spi_imx)) {
787 reg |= (spi_imx->bits_per_word - 1) << MX35_CSPICTRL_BL_SHIFT;
788 reg |= MX31_CSPICTRL_SSCTL;
789 } else {
790 reg |= (spi_imx->bits_per_word - 1) << MX31_CSPICTRL_BC_SHIFT;
791 }
792
793 if (spi->mode & SPI_CPHA)
794 reg |= MX31_CSPICTRL_PHA;
795 if (spi->mode & SPI_CPOL)
796 reg |= MX31_CSPICTRL_POL;
797 if (spi->mode & SPI_CS_HIGH)
798 reg |= MX31_CSPICTRL_SSPOL;
799 if (!spi_get_csgpiod(spi, 0))
800 reg |= (spi_get_chipselect(spi, 0)) <<
801 (is_imx35_cspi(spi_imx) ? MX35_CSPICTRL_CS_SHIFT :
802 MX31_CSPICTRL_CS_SHIFT);
803
804 if (spi_imx->usedma)
805 reg |= MX31_CSPICTRL_SMC;
806
807 writel(reg, spi_imx->base + MXC_CSPICTRL);
808
809 reg = readl(spi_imx->base + MX31_CSPI_TESTREG);
810 if (spi->mode & SPI_LOOP)
811 reg |= MX31_TEST_LBC;
812 else
813 reg &= ~MX31_TEST_LBC;
814 writel(reg, spi_imx->base + MX31_CSPI_TESTREG);
815
816 if (spi_imx->usedma) {
817 /*
818 * configure DMA requests when RXFIFO is half full and
819 * when TXFIFO is half empty
820 */
821 writel(MX31_DMAREG_RH_DEN | MX31_DMAREG_TH_DEN,
822 spi_imx->base + MX31_CSPI_DMAREG);
823 }
824
825 return 0;
826 }
827
mx31_rx_available(struct spi_imx_data * spi_imx)828 static int mx31_rx_available(struct spi_imx_data *spi_imx)
829 {
830 return readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR;
831 }
832
mx31_reset(struct spi_imx_data * spi_imx)833 static void mx31_reset(struct spi_imx_data *spi_imx)
834 {
835 /* drain receive buffer */
836 while (readl(spi_imx->base + MX31_CSPISTATUS) & MX31_STATUS_RR)
837 readl(spi_imx->base + MXC_CSPIRXDATA);
838 }
839
840 #define MX21_INTREG_RR (1 << 4)
841 #define MX21_INTREG_TEEN (1 << 9)
842 #define MX21_INTREG_RREN (1 << 13)
843
844 #define MX21_CSPICTRL_POL (1 << 5)
845 #define MX21_CSPICTRL_PHA (1 << 6)
846 #define MX21_CSPICTRL_SSPOL (1 << 8)
847 #define MX21_CSPICTRL_XCH (1 << 9)
848 #define MX21_CSPICTRL_ENABLE (1 << 10)
849 #define MX21_CSPICTRL_HOST (1 << 11)
850 #define MX21_CSPICTRL_DR_SHIFT 14
851 #define MX21_CSPICTRL_CS_SHIFT 19
852
mx21_intctrl(struct spi_imx_data * spi_imx,int enable)853 static void mx21_intctrl(struct spi_imx_data *spi_imx, int enable)
854 {
855 unsigned int val = 0;
856
857 if (enable & MXC_INT_TE)
858 val |= MX21_INTREG_TEEN;
859 if (enable & MXC_INT_RR)
860 val |= MX21_INTREG_RREN;
861
862 writel(val, spi_imx->base + MXC_CSPIINT);
863 }
864
mx21_trigger(struct spi_imx_data * spi_imx)865 static void mx21_trigger(struct spi_imx_data *spi_imx)
866 {
867 unsigned int reg;
868
869 reg = readl(spi_imx->base + MXC_CSPICTRL);
870 reg |= MX21_CSPICTRL_XCH;
871 writel(reg, spi_imx->base + MXC_CSPICTRL);
872 }
873
mx21_prepare_message(struct spi_imx_data * spi_imx,struct spi_message * msg)874 static int mx21_prepare_message(struct spi_imx_data *spi_imx,
875 struct spi_message *msg)
876 {
877 return 0;
878 }
879
mx21_prepare_transfer(struct spi_imx_data * spi_imx,struct spi_device * spi)880 static int mx21_prepare_transfer(struct spi_imx_data *spi_imx,
881 struct spi_device *spi)
882 {
883 unsigned int reg = MX21_CSPICTRL_ENABLE | MX21_CSPICTRL_HOST;
884 unsigned int max = is_imx27_cspi(spi_imx) ? 16 : 18;
885 unsigned int clk;
886
887 reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, spi_imx->spi_bus_clk, max, &clk)
888 << MX21_CSPICTRL_DR_SHIFT;
889 spi_imx->spi_bus_clk = clk;
890
891 reg |= spi_imx->bits_per_word - 1;
892
893 if (spi->mode & SPI_CPHA)
894 reg |= MX21_CSPICTRL_PHA;
895 if (spi->mode & SPI_CPOL)
896 reg |= MX21_CSPICTRL_POL;
897 if (spi->mode & SPI_CS_HIGH)
898 reg |= MX21_CSPICTRL_SSPOL;
899 if (!spi_get_csgpiod(spi, 0))
900 reg |= spi_get_chipselect(spi, 0) << MX21_CSPICTRL_CS_SHIFT;
901
902 writel(reg, spi_imx->base + MXC_CSPICTRL);
903
904 return 0;
905 }
906
mx21_rx_available(struct spi_imx_data * spi_imx)907 static int mx21_rx_available(struct spi_imx_data *spi_imx)
908 {
909 return readl(spi_imx->base + MXC_CSPIINT) & MX21_INTREG_RR;
910 }
911
mx21_reset(struct spi_imx_data * spi_imx)912 static void mx21_reset(struct spi_imx_data *spi_imx)
913 {
914 writel(1, spi_imx->base + MXC_RESET);
915 }
916
917 #define MX1_INTREG_RR (1 << 3)
918 #define MX1_INTREG_TEEN (1 << 8)
919 #define MX1_INTREG_RREN (1 << 11)
920
921 #define MX1_CSPICTRL_POL (1 << 4)
922 #define MX1_CSPICTRL_PHA (1 << 5)
923 #define MX1_CSPICTRL_XCH (1 << 8)
924 #define MX1_CSPICTRL_ENABLE (1 << 9)
925 #define MX1_CSPICTRL_HOST (1 << 10)
926 #define MX1_CSPICTRL_DR_SHIFT 13
927
mx1_intctrl(struct spi_imx_data * spi_imx,int enable)928 static void mx1_intctrl(struct spi_imx_data *spi_imx, int enable)
929 {
930 unsigned int val = 0;
931
932 if (enable & MXC_INT_TE)
933 val |= MX1_INTREG_TEEN;
934 if (enable & MXC_INT_RR)
935 val |= MX1_INTREG_RREN;
936
937 writel(val, spi_imx->base + MXC_CSPIINT);
938 }
939
mx1_trigger(struct spi_imx_data * spi_imx)940 static void mx1_trigger(struct spi_imx_data *spi_imx)
941 {
942 unsigned int reg;
943
944 reg = readl(spi_imx->base + MXC_CSPICTRL);
945 reg |= MX1_CSPICTRL_XCH;
946 writel(reg, spi_imx->base + MXC_CSPICTRL);
947 }
948
mx1_prepare_message(struct spi_imx_data * spi_imx,struct spi_message * msg)949 static int mx1_prepare_message(struct spi_imx_data *spi_imx,
950 struct spi_message *msg)
951 {
952 return 0;
953 }
954
mx1_prepare_transfer(struct spi_imx_data * spi_imx,struct spi_device * spi)955 static int mx1_prepare_transfer(struct spi_imx_data *spi_imx,
956 struct spi_device *spi)
957 {
958 unsigned int reg = MX1_CSPICTRL_ENABLE | MX1_CSPICTRL_HOST;
959 unsigned int clk;
960
961 reg |= spi_imx_clkdiv_2(spi_imx->spi_clk, spi_imx->spi_bus_clk, &clk) <<
962 MX1_CSPICTRL_DR_SHIFT;
963 spi_imx->spi_bus_clk = clk;
964
965 reg |= spi_imx->bits_per_word - 1;
966
967 if (spi->mode & SPI_CPHA)
968 reg |= MX1_CSPICTRL_PHA;
969 if (spi->mode & SPI_CPOL)
970 reg |= MX1_CSPICTRL_POL;
971
972 writel(reg, spi_imx->base + MXC_CSPICTRL);
973
974 return 0;
975 }
976
mx1_rx_available(struct spi_imx_data * spi_imx)977 static int mx1_rx_available(struct spi_imx_data *spi_imx)
978 {
979 return readl(spi_imx->base + MXC_CSPIINT) & MX1_INTREG_RR;
980 }
981
mx1_reset(struct spi_imx_data * spi_imx)982 static void mx1_reset(struct spi_imx_data *spi_imx)
983 {
984 writel(1, spi_imx->base + MXC_RESET);
985 }
986
987 static struct spi_imx_devtype_data imx1_cspi_devtype_data = {
988 .intctrl = mx1_intctrl,
989 .prepare_message = mx1_prepare_message,
990 .prepare_transfer = mx1_prepare_transfer,
991 .trigger = mx1_trigger,
992 .rx_available = mx1_rx_available,
993 .reset = mx1_reset,
994 .fifo_size = 8,
995 .has_dmamode = false,
996 .dynamic_burst = false,
997 .has_targetmode = false,
998 .devtype = IMX1_CSPI,
999 };
1000
1001 static struct spi_imx_devtype_data imx21_cspi_devtype_data = {
1002 .intctrl = mx21_intctrl,
1003 .prepare_message = mx21_prepare_message,
1004 .prepare_transfer = mx21_prepare_transfer,
1005 .trigger = mx21_trigger,
1006 .rx_available = mx21_rx_available,
1007 .reset = mx21_reset,
1008 .fifo_size = 8,
1009 .has_dmamode = false,
1010 .dynamic_burst = false,
1011 .has_targetmode = false,
1012 .devtype = IMX21_CSPI,
1013 };
1014
1015 static struct spi_imx_devtype_data imx27_cspi_devtype_data = {
1016 /* i.mx27 cspi shares the functions with i.mx21 one */
1017 .intctrl = mx21_intctrl,
1018 .prepare_message = mx21_prepare_message,
1019 .prepare_transfer = mx21_prepare_transfer,
1020 .trigger = mx21_trigger,
1021 .rx_available = mx21_rx_available,
1022 .reset = mx21_reset,
1023 .fifo_size = 8,
1024 .has_dmamode = false,
1025 .dynamic_burst = false,
1026 .has_targetmode = false,
1027 .devtype = IMX27_CSPI,
1028 };
1029
1030 static struct spi_imx_devtype_data imx31_cspi_devtype_data = {
1031 .intctrl = mx31_intctrl,
1032 .prepare_message = mx31_prepare_message,
1033 .prepare_transfer = mx31_prepare_transfer,
1034 .trigger = mx31_trigger,
1035 .rx_available = mx31_rx_available,
1036 .reset = mx31_reset,
1037 .fifo_size = 8,
1038 .has_dmamode = false,
1039 .dynamic_burst = false,
1040 .has_targetmode = false,
1041 .devtype = IMX31_CSPI,
1042 };
1043
1044 static struct spi_imx_devtype_data imx35_cspi_devtype_data = {
1045 /* i.mx35 and later cspi shares the functions with i.mx31 one */
1046 .intctrl = mx31_intctrl,
1047 .prepare_message = mx31_prepare_message,
1048 .prepare_transfer = mx31_prepare_transfer,
1049 .trigger = mx31_trigger,
1050 .rx_available = mx31_rx_available,
1051 .reset = mx31_reset,
1052 .fifo_size = 8,
1053 .has_dmamode = false,
1054 .dynamic_burst = false,
1055 .has_targetmode = false,
1056 .devtype = IMX35_CSPI,
1057 };
1058
1059 static struct spi_imx_devtype_data imx51_ecspi_devtype_data = {
1060 .intctrl = mx51_ecspi_intctrl,
1061 .prepare_message = mx51_ecspi_prepare_message,
1062 .prepare_transfer = mx51_ecspi_prepare_transfer,
1063 .trigger = mx51_ecspi_trigger,
1064 .rx_available = mx51_ecspi_rx_available,
1065 .reset = mx51_ecspi_reset,
1066 .setup_wml = mx51_setup_wml,
1067 .fifo_size = 64,
1068 .has_dmamode = true,
1069 .dynamic_burst = true,
1070 .has_targetmode = true,
1071 .disable = mx51_ecspi_disable,
1072 .devtype = IMX51_ECSPI,
1073 };
1074
1075 static struct spi_imx_devtype_data imx53_ecspi_devtype_data = {
1076 .intctrl = mx51_ecspi_intctrl,
1077 .prepare_message = mx51_ecspi_prepare_message,
1078 .prepare_transfer = mx51_ecspi_prepare_transfer,
1079 .trigger = mx51_ecspi_trigger,
1080 .rx_available = mx51_ecspi_rx_available,
1081 .reset = mx51_ecspi_reset,
1082 .fifo_size = 64,
1083 .has_dmamode = true,
1084 .has_targetmode = true,
1085 .disable = mx51_ecspi_disable,
1086 .devtype = IMX53_ECSPI,
1087 };
1088
1089 static struct spi_imx_devtype_data imx6ul_ecspi_devtype_data = {
1090 .intctrl = mx51_ecspi_intctrl,
1091 .prepare_message = mx51_ecspi_prepare_message,
1092 .prepare_transfer = mx51_ecspi_prepare_transfer,
1093 .trigger = mx51_ecspi_trigger,
1094 .rx_available = mx51_ecspi_rx_available,
1095 .reset = mx51_ecspi_reset,
1096 .setup_wml = mx51_setup_wml,
1097 .fifo_size = 64,
1098 .has_dmamode = true,
1099 .dynamic_burst = true,
1100 .has_targetmode = true,
1101 .tx_glitch_fixed = true,
1102 .disable = mx51_ecspi_disable,
1103 .devtype = IMX51_ECSPI,
1104 };
1105
1106 static const struct of_device_id spi_imx_dt_ids[] = {
1107 { .compatible = "fsl,imx1-cspi", .data = &imx1_cspi_devtype_data, },
1108 { .compatible = "fsl,imx21-cspi", .data = &imx21_cspi_devtype_data, },
1109 { .compatible = "fsl,imx27-cspi", .data = &imx27_cspi_devtype_data, },
1110 { .compatible = "fsl,imx31-cspi", .data = &imx31_cspi_devtype_data, },
1111 { .compatible = "fsl,imx35-cspi", .data = &imx35_cspi_devtype_data, },
1112 { .compatible = "fsl,imx51-ecspi", .data = &imx51_ecspi_devtype_data, },
1113 { .compatible = "fsl,imx53-ecspi", .data = &imx53_ecspi_devtype_data, },
1114 { .compatible = "fsl,imx6ul-ecspi", .data = &imx6ul_ecspi_devtype_data, },
1115 { /* sentinel */ }
1116 };
1117 MODULE_DEVICE_TABLE(of, spi_imx_dt_ids);
1118
spi_imx_set_burst_len(struct spi_imx_data * spi_imx,int n_bits)1119 static void spi_imx_set_burst_len(struct spi_imx_data *spi_imx, int n_bits)
1120 {
1121 u32 ctrl;
1122
1123 ctrl = readl(spi_imx->base + MX51_ECSPI_CTRL);
1124 ctrl &= ~MX51_ECSPI_CTRL_BL_MASK;
1125 ctrl |= ((n_bits - 1) << MX51_ECSPI_CTRL_BL_OFFSET);
1126 writel(ctrl, spi_imx->base + MX51_ECSPI_CTRL);
1127 }
1128
spi_imx_push(struct spi_imx_data * spi_imx)1129 static void spi_imx_push(struct spi_imx_data *spi_imx)
1130 {
1131 unsigned int burst_len;
1132
1133 /*
1134 * Reload the FIFO when the remaining bytes to be transferred in the
1135 * current burst is 0. This only applies when bits_per_word is a
1136 * multiple of 8.
1137 */
1138 if (!spi_imx->remainder) {
1139 if (spi_imx->dynamic_burst) {
1140
1141 /* We need to deal unaligned data first */
1142 burst_len = spi_imx->count % MX51_ECSPI_CTRL_MAX_BURST;
1143
1144 if (!burst_len)
1145 burst_len = MX51_ECSPI_CTRL_MAX_BURST;
1146
1147 spi_imx_set_burst_len(spi_imx, burst_len * 8);
1148
1149 spi_imx->remainder = burst_len;
1150 } else {
1151 spi_imx->remainder = spi_imx_bytes_per_word(spi_imx->bits_per_word);
1152 }
1153 }
1154
1155 while (spi_imx->txfifo < spi_imx->devtype_data->fifo_size) {
1156 if (!spi_imx->count)
1157 break;
1158 if (spi_imx->dynamic_burst &&
1159 spi_imx->txfifo >= DIV_ROUND_UP(spi_imx->remainder, 4))
1160 break;
1161 spi_imx->tx(spi_imx);
1162 spi_imx->txfifo++;
1163 }
1164
1165 if (!spi_imx->target_mode)
1166 spi_imx->devtype_data->trigger(spi_imx);
1167 }
1168
spi_imx_isr(int irq,void * dev_id)1169 static irqreturn_t spi_imx_isr(int irq, void *dev_id)
1170 {
1171 struct spi_imx_data *spi_imx = dev_id;
1172
1173 while (spi_imx->txfifo &&
1174 spi_imx->devtype_data->rx_available(spi_imx)) {
1175 spi_imx->rx(spi_imx);
1176 spi_imx->txfifo--;
1177 }
1178
1179 if (spi_imx->count) {
1180 spi_imx_push(spi_imx);
1181 return IRQ_HANDLED;
1182 }
1183
1184 if (spi_imx->txfifo) {
1185 /* No data left to push, but still waiting for rx data,
1186 * enable receive data available interrupt.
1187 */
1188 spi_imx->devtype_data->intctrl(
1189 spi_imx, MXC_INT_RR);
1190 return IRQ_HANDLED;
1191 }
1192
1193 spi_imx->devtype_data->intctrl(spi_imx, 0);
1194 complete(&spi_imx->xfer_done);
1195
1196 return IRQ_HANDLED;
1197 }
1198
spi_imx_dma_configure(struct spi_controller * controller)1199 static int spi_imx_dma_configure(struct spi_controller *controller)
1200 {
1201 int ret;
1202 enum dma_slave_buswidth buswidth;
1203 struct dma_slave_config rx = {}, tx = {};
1204 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1205
1206 switch (spi_imx_bytes_per_word(spi_imx->bits_per_word)) {
1207 case 4:
1208 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1209 break;
1210 case 2:
1211 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1212 break;
1213 case 1:
1214 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1215 break;
1216 default:
1217 return -EINVAL;
1218 }
1219
1220 tx.direction = DMA_MEM_TO_DEV;
1221 tx.dst_addr = spi_imx->base_phys + MXC_CSPITXDATA;
1222 tx.dst_addr_width = buswidth;
1223 tx.dst_maxburst = spi_imx->wml;
1224 ret = dmaengine_slave_config(controller->dma_tx, &tx);
1225 if (ret) {
1226 dev_err(spi_imx->dev, "TX dma configuration failed with %d\n", ret);
1227 return ret;
1228 }
1229
1230 rx.direction = DMA_DEV_TO_MEM;
1231 rx.src_addr = spi_imx->base_phys + MXC_CSPIRXDATA;
1232 rx.src_addr_width = buswidth;
1233 rx.src_maxburst = spi_imx->wml;
1234 ret = dmaengine_slave_config(controller->dma_rx, &rx);
1235 if (ret) {
1236 dev_err(spi_imx->dev, "RX dma configuration failed with %d\n", ret);
1237 return ret;
1238 }
1239
1240 return 0;
1241 }
1242
spi_imx_setupxfer(struct spi_device * spi,struct spi_transfer * t)1243 static int spi_imx_setupxfer(struct spi_device *spi,
1244 struct spi_transfer *t)
1245 {
1246 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1247
1248 if (!t)
1249 return 0;
1250
1251 if (!t->speed_hz) {
1252 if (!spi->max_speed_hz) {
1253 dev_err(&spi->dev, "no speed_hz provided!\n");
1254 return -EINVAL;
1255 }
1256 dev_dbg(&spi->dev, "using spi->max_speed_hz!\n");
1257 spi_imx->spi_bus_clk = spi->max_speed_hz;
1258 } else
1259 spi_imx->spi_bus_clk = t->speed_hz;
1260
1261 spi_imx->bits_per_word = t->bits_per_word;
1262 spi_imx->count = t->len;
1263
1264 /*
1265 * Initialize the functions for transfer. To transfer non byte-aligned
1266 * words, we have to use multiple word-size bursts, we can't use
1267 * dynamic_burst in that case.
1268 */
1269 if (spi_imx->devtype_data->dynamic_burst && !spi_imx->target_mode &&
1270 !(spi->mode & SPI_CS_WORD) &&
1271 (spi_imx->bits_per_word == 8 ||
1272 spi_imx->bits_per_word == 16 ||
1273 spi_imx->bits_per_word == 32)) {
1274
1275 spi_imx->rx = spi_imx_buf_rx_swap;
1276 spi_imx->tx = spi_imx_buf_tx_swap;
1277 spi_imx->dynamic_burst = 1;
1278
1279 } else {
1280 if (spi_imx->bits_per_word <= 8) {
1281 spi_imx->rx = spi_imx_buf_rx_u8;
1282 spi_imx->tx = spi_imx_buf_tx_u8;
1283 } else if (spi_imx->bits_per_word <= 16) {
1284 spi_imx->rx = spi_imx_buf_rx_u16;
1285 spi_imx->tx = spi_imx_buf_tx_u16;
1286 } else {
1287 spi_imx->rx = spi_imx_buf_rx_u32;
1288 spi_imx->tx = spi_imx_buf_tx_u32;
1289 }
1290 spi_imx->dynamic_burst = 0;
1291 }
1292
1293 if (spi_imx_can_dma(spi_imx->controller, spi, t))
1294 spi_imx->usedma = true;
1295 else
1296 spi_imx->usedma = false;
1297
1298 spi_imx->rx_only = ((t->tx_buf == NULL)
1299 || (t->tx_buf == spi->controller->dummy_tx));
1300
1301 if (is_imx53_ecspi(spi_imx) && spi_imx->target_mode) {
1302 spi_imx->rx = mx53_ecspi_rx_target;
1303 spi_imx->tx = mx53_ecspi_tx_target;
1304 spi_imx->target_burst = t->len;
1305 }
1306
1307 spi_imx->devtype_data->prepare_transfer(spi_imx, spi);
1308
1309 return 0;
1310 }
1311
spi_imx_sdma_exit(struct spi_imx_data * spi_imx)1312 static void spi_imx_sdma_exit(struct spi_imx_data *spi_imx)
1313 {
1314 struct spi_controller *controller = spi_imx->controller;
1315
1316 if (controller->dma_rx) {
1317 dma_release_channel(controller->dma_rx);
1318 controller->dma_rx = NULL;
1319 }
1320
1321 if (controller->dma_tx) {
1322 dma_release_channel(controller->dma_tx);
1323 controller->dma_tx = NULL;
1324 }
1325 }
1326
spi_imx_sdma_init(struct device * dev,struct spi_imx_data * spi_imx,struct spi_controller * controller)1327 static int spi_imx_sdma_init(struct device *dev, struct spi_imx_data *spi_imx,
1328 struct spi_controller *controller)
1329 {
1330 int ret;
1331
1332 spi_imx->wml = spi_imx->devtype_data->fifo_size / 2;
1333
1334 /* Prepare for TX DMA: */
1335 controller->dma_tx = dma_request_chan(dev, "tx");
1336 if (IS_ERR(controller->dma_tx)) {
1337 ret = PTR_ERR(controller->dma_tx);
1338 dev_dbg(dev, "can't get the TX DMA channel, error %d!\n", ret);
1339 controller->dma_tx = NULL;
1340 goto err;
1341 }
1342
1343 /* Prepare for RX : */
1344 controller->dma_rx = dma_request_chan(dev, "rx");
1345 if (IS_ERR(controller->dma_rx)) {
1346 ret = PTR_ERR(controller->dma_rx);
1347 dev_dbg(dev, "can't get the RX DMA channel, error %d\n", ret);
1348 controller->dma_rx = NULL;
1349 goto err;
1350 }
1351
1352 init_completion(&spi_imx->dma_rx_completion);
1353 init_completion(&spi_imx->dma_tx_completion);
1354 controller->can_dma = spi_imx_can_dma;
1355 controller->max_dma_len = MAX_SDMA_BD_BYTES;
1356 spi_imx->controller->flags = SPI_CONTROLLER_MUST_RX |
1357 SPI_CONTROLLER_MUST_TX;
1358
1359 return 0;
1360 err:
1361 spi_imx_sdma_exit(spi_imx);
1362 return ret;
1363 }
1364
spi_imx_dma_rx_callback(void * cookie)1365 static void spi_imx_dma_rx_callback(void *cookie)
1366 {
1367 struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
1368
1369 complete(&spi_imx->dma_rx_completion);
1370 }
1371
spi_imx_dma_tx_callback(void * cookie)1372 static void spi_imx_dma_tx_callback(void *cookie)
1373 {
1374 struct spi_imx_data *spi_imx = (struct spi_imx_data *)cookie;
1375
1376 complete(&spi_imx->dma_tx_completion);
1377 }
1378
spi_imx_calculate_timeout(struct spi_imx_data * spi_imx,int size)1379 static int spi_imx_calculate_timeout(struct spi_imx_data *spi_imx, int size)
1380 {
1381 unsigned long timeout = 0;
1382
1383 /* Time with actual data transfer and CS change delay related to HW */
1384 timeout = (8 + 4) * size / spi_imx->spi_bus_clk;
1385
1386 /* Add extra second for scheduler related activities */
1387 timeout += 1;
1388
1389 /* Double calculated timeout */
1390 return msecs_to_jiffies(2 * timeout * MSEC_PER_SEC);
1391 }
1392
spi_imx_dma_transfer(struct spi_imx_data * spi_imx,struct spi_transfer * transfer)1393 static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx,
1394 struct spi_transfer *transfer)
1395 {
1396 struct dma_async_tx_descriptor *desc_tx, *desc_rx;
1397 unsigned long transfer_timeout;
1398 unsigned long timeout;
1399 struct spi_controller *controller = spi_imx->controller;
1400 struct sg_table *tx = &transfer->tx_sg, *rx = &transfer->rx_sg;
1401 struct scatterlist *last_sg = sg_last(rx->sgl, rx->nents);
1402 unsigned int bytes_per_word, i;
1403 int ret;
1404
1405 /* Get the right burst length from the last sg to ensure no tail data */
1406 bytes_per_word = spi_imx_bytes_per_word(transfer->bits_per_word);
1407 for (i = spi_imx->devtype_data->fifo_size / 2; i > 0; i--) {
1408 if (!(sg_dma_len(last_sg) % (i * bytes_per_word)))
1409 break;
1410 }
1411 /* Use 1 as wml in case no available burst length got */
1412 if (i == 0)
1413 i = 1;
1414
1415 spi_imx->wml = i;
1416
1417 ret = spi_imx_dma_configure(controller);
1418 if (ret)
1419 goto dma_failure_no_start;
1420
1421 if (!spi_imx->devtype_data->setup_wml) {
1422 dev_err(spi_imx->dev, "No setup_wml()?\n");
1423 ret = -EINVAL;
1424 goto dma_failure_no_start;
1425 }
1426 spi_imx->devtype_data->setup_wml(spi_imx);
1427
1428 /*
1429 * The TX DMA setup starts the transfer, so make sure RX is configured
1430 * before TX.
1431 */
1432 desc_rx = dmaengine_prep_slave_sg(controller->dma_rx,
1433 rx->sgl, rx->nents, DMA_DEV_TO_MEM,
1434 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1435 if (!desc_rx) {
1436 ret = -EINVAL;
1437 goto dma_failure_no_start;
1438 }
1439
1440 desc_rx->callback = spi_imx_dma_rx_callback;
1441 desc_rx->callback_param = (void *)spi_imx;
1442 dmaengine_submit(desc_rx);
1443 reinit_completion(&spi_imx->dma_rx_completion);
1444 dma_async_issue_pending(controller->dma_rx);
1445
1446 desc_tx = dmaengine_prep_slave_sg(controller->dma_tx,
1447 tx->sgl, tx->nents, DMA_MEM_TO_DEV,
1448 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1449 if (!desc_tx) {
1450 dmaengine_terminate_all(controller->dma_tx);
1451 dmaengine_terminate_all(controller->dma_rx);
1452 return -EINVAL;
1453 }
1454
1455 desc_tx->callback = spi_imx_dma_tx_callback;
1456 desc_tx->callback_param = (void *)spi_imx;
1457 dmaengine_submit(desc_tx);
1458 reinit_completion(&spi_imx->dma_tx_completion);
1459 dma_async_issue_pending(controller->dma_tx);
1460
1461 transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
1462
1463 /* Wait SDMA to finish the data transfer.*/
1464 timeout = wait_for_completion_timeout(&spi_imx->dma_tx_completion,
1465 transfer_timeout);
1466 if (!timeout) {
1467 dev_err(spi_imx->dev, "I/O Error in DMA TX\n");
1468 dmaengine_terminate_all(controller->dma_tx);
1469 dmaengine_terminate_all(controller->dma_rx);
1470 return -ETIMEDOUT;
1471 }
1472
1473 timeout = wait_for_completion_timeout(&spi_imx->dma_rx_completion,
1474 transfer_timeout);
1475 if (!timeout) {
1476 dev_err(&controller->dev, "I/O Error in DMA RX\n");
1477 spi_imx->devtype_data->reset(spi_imx);
1478 dmaengine_terminate_all(controller->dma_rx);
1479 return -ETIMEDOUT;
1480 }
1481
1482 return 0;
1483 /* fallback to pio */
1484 dma_failure_no_start:
1485 transfer->error |= SPI_TRANS_FAIL_NO_START;
1486 return ret;
1487 }
1488
spi_imx_pio_transfer(struct spi_device * spi,struct spi_transfer * transfer)1489 static int spi_imx_pio_transfer(struct spi_device *spi,
1490 struct spi_transfer *transfer)
1491 {
1492 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1493 unsigned long transfer_timeout;
1494 unsigned long timeout;
1495
1496 spi_imx->tx_buf = transfer->tx_buf;
1497 spi_imx->rx_buf = transfer->rx_buf;
1498 spi_imx->count = transfer->len;
1499 spi_imx->txfifo = 0;
1500 spi_imx->remainder = 0;
1501
1502 reinit_completion(&spi_imx->xfer_done);
1503
1504 spi_imx_push(spi_imx);
1505
1506 spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE);
1507
1508 transfer_timeout = spi_imx_calculate_timeout(spi_imx, transfer->len);
1509
1510 timeout = wait_for_completion_timeout(&spi_imx->xfer_done,
1511 transfer_timeout);
1512 if (!timeout) {
1513 dev_err(&spi->dev, "I/O Error in PIO\n");
1514 spi_imx->devtype_data->reset(spi_imx);
1515 return -ETIMEDOUT;
1516 }
1517
1518 return 0;
1519 }
1520
spi_imx_poll_transfer(struct spi_device * spi,struct spi_transfer * transfer)1521 static int spi_imx_poll_transfer(struct spi_device *spi,
1522 struct spi_transfer *transfer)
1523 {
1524 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1525 unsigned long timeout;
1526
1527 spi_imx->tx_buf = transfer->tx_buf;
1528 spi_imx->rx_buf = transfer->rx_buf;
1529 spi_imx->count = transfer->len;
1530 spi_imx->txfifo = 0;
1531 spi_imx->remainder = 0;
1532
1533 /* fill in the fifo before timeout calculations if we are
1534 * interrupted here, then the data is getting transferred by
1535 * the HW while we are interrupted
1536 */
1537 spi_imx_push(spi_imx);
1538
1539 timeout = spi_imx_calculate_timeout(spi_imx, transfer->len) + jiffies;
1540 while (spi_imx->txfifo) {
1541 /* RX */
1542 while (spi_imx->txfifo &&
1543 spi_imx->devtype_data->rx_available(spi_imx)) {
1544 spi_imx->rx(spi_imx);
1545 spi_imx->txfifo--;
1546 }
1547
1548 /* TX */
1549 if (spi_imx->count) {
1550 spi_imx_push(spi_imx);
1551 continue;
1552 }
1553
1554 if (spi_imx->txfifo &&
1555 time_after(jiffies, timeout)) {
1556
1557 dev_err_ratelimited(&spi->dev,
1558 "timeout period reached: jiffies: %lu- falling back to interrupt mode\n",
1559 jiffies - timeout);
1560
1561 /* fall back to interrupt mode */
1562 return spi_imx_pio_transfer(spi, transfer);
1563 }
1564 }
1565
1566 return 0;
1567 }
1568
spi_imx_pio_transfer_target(struct spi_device * spi,struct spi_transfer * transfer)1569 static int spi_imx_pio_transfer_target(struct spi_device *spi,
1570 struct spi_transfer *transfer)
1571 {
1572 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1573 int ret = 0;
1574
1575 if (is_imx53_ecspi(spi_imx) &&
1576 transfer->len > MX53_MAX_TRANSFER_BYTES) {
1577 dev_err(&spi->dev, "Transaction too big, max size is %d bytes\n",
1578 MX53_MAX_TRANSFER_BYTES);
1579 return -EMSGSIZE;
1580 }
1581
1582 spi_imx->tx_buf = transfer->tx_buf;
1583 spi_imx->rx_buf = transfer->rx_buf;
1584 spi_imx->count = transfer->len;
1585 spi_imx->txfifo = 0;
1586 spi_imx->remainder = 0;
1587
1588 reinit_completion(&spi_imx->xfer_done);
1589 spi_imx->target_aborted = false;
1590
1591 spi_imx_push(spi_imx);
1592
1593 spi_imx->devtype_data->intctrl(spi_imx, MXC_INT_TE | MXC_INT_RDR);
1594
1595 if (wait_for_completion_interruptible(&spi_imx->xfer_done) ||
1596 spi_imx->target_aborted) {
1597 dev_dbg(&spi->dev, "interrupted\n");
1598 ret = -EINTR;
1599 }
1600
1601 /* ecspi has a HW issue when works in Target mode,
1602 * after 64 words writtern to TXFIFO, even TXFIFO becomes empty,
1603 * ECSPI_TXDATA keeps shift out the last word data,
1604 * so we have to disable ECSPI when in target mode after the
1605 * transfer completes
1606 */
1607 if (spi_imx->devtype_data->disable)
1608 spi_imx->devtype_data->disable(spi_imx);
1609
1610 return ret;
1611 }
1612
spi_imx_transfer_one(struct spi_controller * controller,struct spi_device * spi,struct spi_transfer * transfer)1613 static int spi_imx_transfer_one(struct spi_controller *controller,
1614 struct spi_device *spi,
1615 struct spi_transfer *transfer)
1616 {
1617 struct spi_imx_data *spi_imx = spi_controller_get_devdata(spi->controller);
1618 unsigned long hz_per_byte, byte_limit;
1619
1620 spi_imx_setupxfer(spi, transfer);
1621 transfer->effective_speed_hz = spi_imx->spi_bus_clk;
1622
1623 /* flush rxfifo before transfer */
1624 while (spi_imx->devtype_data->rx_available(spi_imx))
1625 readl(spi_imx->base + MXC_CSPIRXDATA);
1626
1627 if (spi_imx->target_mode)
1628 return spi_imx_pio_transfer_target(spi, transfer);
1629
1630 /*
1631 * If we decided in spi_imx_can_dma() that we want to do a DMA
1632 * transfer, the SPI transfer has already been mapped, so we
1633 * have to do the DMA transfer here.
1634 */
1635 if (spi_imx->usedma)
1636 return spi_imx_dma_transfer(spi_imx, transfer);
1637 /*
1638 * Calculate the estimated time in us the transfer runs. Find
1639 * the number of Hz per byte per polling limit.
1640 */
1641 hz_per_byte = polling_limit_us ? ((8 + 4) * USEC_PER_SEC) / polling_limit_us : 0;
1642 byte_limit = hz_per_byte ? transfer->effective_speed_hz / hz_per_byte : 1;
1643
1644 /* run in polling mode for short transfers */
1645 if (transfer->len < byte_limit)
1646 return spi_imx_poll_transfer(spi, transfer);
1647
1648 return spi_imx_pio_transfer(spi, transfer);
1649 }
1650
spi_imx_setup(struct spi_device * spi)1651 static int spi_imx_setup(struct spi_device *spi)
1652 {
1653 dev_dbg(&spi->dev, "%s: mode %d, %u bpw, %d hz\n", __func__,
1654 spi->mode, spi->bits_per_word, spi->max_speed_hz);
1655
1656 return 0;
1657 }
1658
spi_imx_cleanup(struct spi_device * spi)1659 static void spi_imx_cleanup(struct spi_device *spi)
1660 {
1661 }
1662
1663 static int
spi_imx_prepare_message(struct spi_controller * controller,struct spi_message * msg)1664 spi_imx_prepare_message(struct spi_controller *controller, struct spi_message *msg)
1665 {
1666 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1667 int ret;
1668
1669 ret = pm_runtime_resume_and_get(spi_imx->dev);
1670 if (ret < 0) {
1671 dev_err(spi_imx->dev, "failed to enable clock\n");
1672 return ret;
1673 }
1674
1675 ret = spi_imx->devtype_data->prepare_message(spi_imx, msg);
1676 if (ret) {
1677 pm_runtime_mark_last_busy(spi_imx->dev);
1678 pm_runtime_put_autosuspend(spi_imx->dev);
1679 }
1680
1681 return ret;
1682 }
1683
1684 static int
spi_imx_unprepare_message(struct spi_controller * controller,struct spi_message * msg)1685 spi_imx_unprepare_message(struct spi_controller *controller, struct spi_message *msg)
1686 {
1687 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1688
1689 pm_runtime_mark_last_busy(spi_imx->dev);
1690 pm_runtime_put_autosuspend(spi_imx->dev);
1691 return 0;
1692 }
1693
spi_imx_target_abort(struct spi_controller * controller)1694 static int spi_imx_target_abort(struct spi_controller *controller)
1695 {
1696 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1697
1698 spi_imx->target_aborted = true;
1699 complete(&spi_imx->xfer_done);
1700
1701 return 0;
1702 }
1703
spi_imx_probe(struct platform_device * pdev)1704 static int spi_imx_probe(struct platform_device *pdev)
1705 {
1706 struct device_node *np = pdev->dev.of_node;
1707 struct spi_controller *controller;
1708 struct spi_imx_data *spi_imx;
1709 struct resource *res;
1710 int ret, irq, spi_drctl;
1711 const struct spi_imx_devtype_data *devtype_data =
1712 of_device_get_match_data(&pdev->dev);
1713 bool target_mode;
1714 u32 val;
1715
1716 target_mode = devtype_data->has_targetmode &&
1717 of_property_read_bool(np, "spi-slave");
1718 if (target_mode)
1719 controller = spi_alloc_target(&pdev->dev,
1720 sizeof(struct spi_imx_data));
1721 else
1722 controller = spi_alloc_host(&pdev->dev,
1723 sizeof(struct spi_imx_data));
1724 if (!controller)
1725 return -ENOMEM;
1726
1727 ret = of_property_read_u32(np, "fsl,spi-rdy-drctl", &spi_drctl);
1728 if ((ret < 0) || (spi_drctl >= 0x3)) {
1729 /* '11' is reserved */
1730 spi_drctl = 0;
1731 }
1732
1733 platform_set_drvdata(pdev, controller);
1734
1735 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(1, 32);
1736 controller->bus_num = np ? -1 : pdev->id;
1737 controller->use_gpio_descriptors = true;
1738
1739 spi_imx = spi_controller_get_devdata(controller);
1740 spi_imx->controller = controller;
1741 spi_imx->dev = &pdev->dev;
1742 spi_imx->target_mode = target_mode;
1743
1744 spi_imx->devtype_data = devtype_data;
1745
1746 /*
1747 * Get number of chip selects from device properties. This can be
1748 * coming from device tree or boardfiles, if it is not defined,
1749 * a default value of 3 chip selects will be used, as all the legacy
1750 * board files have <= 3 chip selects.
1751 */
1752 if (!device_property_read_u32(&pdev->dev, "num-cs", &val))
1753 controller->num_chipselect = val;
1754 else
1755 controller->num_chipselect = 3;
1756
1757 controller->transfer_one = spi_imx_transfer_one;
1758 controller->setup = spi_imx_setup;
1759 controller->cleanup = spi_imx_cleanup;
1760 controller->prepare_message = spi_imx_prepare_message;
1761 controller->unprepare_message = spi_imx_unprepare_message;
1762 controller->target_abort = spi_imx_target_abort;
1763 controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_NO_CS |
1764 SPI_MOSI_IDLE_LOW;
1765
1766 if (is_imx35_cspi(spi_imx) || is_imx51_ecspi(spi_imx) ||
1767 is_imx53_ecspi(spi_imx))
1768 controller->mode_bits |= SPI_LOOP | SPI_READY;
1769
1770 if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx))
1771 controller->mode_bits |= SPI_RX_CPHA_FLIP;
1772
1773 if (is_imx51_ecspi(spi_imx) &&
1774 device_property_read_u32(&pdev->dev, "cs-gpios", NULL))
1775 /*
1776 * When using HW-CS implementing SPI_CS_WORD can be done by just
1777 * setting the burst length to the word size. This is
1778 * considerably faster than manually controlling the CS.
1779 */
1780 controller->mode_bits |= SPI_CS_WORD;
1781
1782 if (is_imx51_ecspi(spi_imx) || is_imx53_ecspi(spi_imx)) {
1783 controller->max_native_cs = 4;
1784 controller->flags |= SPI_CONTROLLER_GPIO_SS;
1785 }
1786
1787 spi_imx->spi_drctl = spi_drctl;
1788
1789 init_completion(&spi_imx->xfer_done);
1790
1791 spi_imx->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1792 if (IS_ERR(spi_imx->base)) {
1793 ret = PTR_ERR(spi_imx->base);
1794 goto out_controller_put;
1795 }
1796 spi_imx->base_phys = res->start;
1797
1798 irq = platform_get_irq(pdev, 0);
1799 if (irq < 0) {
1800 ret = irq;
1801 goto out_controller_put;
1802 }
1803
1804 ret = devm_request_irq(&pdev->dev, irq, spi_imx_isr, 0,
1805 dev_name(&pdev->dev), spi_imx);
1806 if (ret) {
1807 dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret);
1808 goto out_controller_put;
1809 }
1810
1811 spi_imx->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
1812 if (IS_ERR(spi_imx->clk_ipg)) {
1813 ret = PTR_ERR(spi_imx->clk_ipg);
1814 goto out_controller_put;
1815 }
1816
1817 spi_imx->clk_per = devm_clk_get(&pdev->dev, "per");
1818 if (IS_ERR(spi_imx->clk_per)) {
1819 ret = PTR_ERR(spi_imx->clk_per);
1820 goto out_controller_put;
1821 }
1822
1823 ret = clk_prepare_enable(spi_imx->clk_per);
1824 if (ret)
1825 goto out_controller_put;
1826
1827 ret = clk_prepare_enable(spi_imx->clk_ipg);
1828 if (ret)
1829 goto out_put_per;
1830
1831 pm_runtime_set_autosuspend_delay(spi_imx->dev, MXC_RPM_TIMEOUT);
1832 pm_runtime_use_autosuspend(spi_imx->dev);
1833 pm_runtime_get_noresume(spi_imx->dev);
1834 pm_runtime_set_active(spi_imx->dev);
1835 pm_runtime_enable(spi_imx->dev);
1836
1837 spi_imx->spi_clk = clk_get_rate(spi_imx->clk_per);
1838 /*
1839 * Only validated on i.mx35 and i.mx6 now, can remove the constraint
1840 * if validated on other chips.
1841 */
1842 if (spi_imx->devtype_data->has_dmamode) {
1843 ret = spi_imx_sdma_init(&pdev->dev, spi_imx, controller);
1844 if (ret == -EPROBE_DEFER)
1845 goto out_runtime_pm_put;
1846
1847 if (ret < 0)
1848 dev_dbg(&pdev->dev, "dma setup error %d, use pio\n",
1849 ret);
1850 }
1851
1852 spi_imx->devtype_data->reset(spi_imx);
1853
1854 spi_imx->devtype_data->intctrl(spi_imx, 0);
1855
1856 controller->dev.of_node = pdev->dev.of_node;
1857 ret = spi_register_controller(controller);
1858 if (ret) {
1859 dev_err_probe(&pdev->dev, ret, "register controller failed\n");
1860 goto out_register_controller;
1861 }
1862
1863 pm_runtime_mark_last_busy(spi_imx->dev);
1864 pm_runtime_put_autosuspend(spi_imx->dev);
1865
1866 return ret;
1867
1868 out_register_controller:
1869 if (spi_imx->devtype_data->has_dmamode)
1870 spi_imx_sdma_exit(spi_imx);
1871 out_runtime_pm_put:
1872 pm_runtime_dont_use_autosuspend(spi_imx->dev);
1873 pm_runtime_disable(spi_imx->dev);
1874 pm_runtime_set_suspended(&pdev->dev);
1875
1876 clk_disable_unprepare(spi_imx->clk_ipg);
1877 out_put_per:
1878 clk_disable_unprepare(spi_imx->clk_per);
1879 out_controller_put:
1880 spi_controller_put(controller);
1881
1882 return ret;
1883 }
1884
spi_imx_remove(struct platform_device * pdev)1885 static void spi_imx_remove(struct platform_device *pdev)
1886 {
1887 struct spi_controller *controller = platform_get_drvdata(pdev);
1888 struct spi_imx_data *spi_imx = spi_controller_get_devdata(controller);
1889 int ret;
1890
1891 spi_unregister_controller(controller);
1892
1893 ret = pm_runtime_get_sync(spi_imx->dev);
1894 if (ret >= 0)
1895 writel(0, spi_imx->base + MXC_CSPICTRL);
1896 else
1897 dev_warn(spi_imx->dev, "failed to enable clock, skip hw disable\n");
1898
1899 pm_runtime_dont_use_autosuspend(spi_imx->dev);
1900 pm_runtime_put_sync(spi_imx->dev);
1901 pm_runtime_disable(spi_imx->dev);
1902
1903 spi_imx_sdma_exit(spi_imx);
1904 }
1905
spi_imx_runtime_resume(struct device * dev)1906 static int __maybe_unused spi_imx_runtime_resume(struct device *dev)
1907 {
1908 struct spi_controller *controller = dev_get_drvdata(dev);
1909 struct spi_imx_data *spi_imx;
1910 int ret;
1911
1912 spi_imx = spi_controller_get_devdata(controller);
1913
1914 ret = clk_prepare_enable(spi_imx->clk_per);
1915 if (ret)
1916 return ret;
1917
1918 ret = clk_prepare_enable(spi_imx->clk_ipg);
1919 if (ret) {
1920 clk_disable_unprepare(spi_imx->clk_per);
1921 return ret;
1922 }
1923
1924 return 0;
1925 }
1926
spi_imx_runtime_suspend(struct device * dev)1927 static int __maybe_unused spi_imx_runtime_suspend(struct device *dev)
1928 {
1929 struct spi_controller *controller = dev_get_drvdata(dev);
1930 struct spi_imx_data *spi_imx;
1931
1932 spi_imx = spi_controller_get_devdata(controller);
1933
1934 clk_disable_unprepare(spi_imx->clk_per);
1935 clk_disable_unprepare(spi_imx->clk_ipg);
1936
1937 return 0;
1938 }
1939
spi_imx_suspend(struct device * dev)1940 static int __maybe_unused spi_imx_suspend(struct device *dev)
1941 {
1942 pinctrl_pm_select_sleep_state(dev);
1943 return 0;
1944 }
1945
spi_imx_resume(struct device * dev)1946 static int __maybe_unused spi_imx_resume(struct device *dev)
1947 {
1948 pinctrl_pm_select_default_state(dev);
1949 return 0;
1950 }
1951
1952 static const struct dev_pm_ops imx_spi_pm = {
1953 SET_RUNTIME_PM_OPS(spi_imx_runtime_suspend,
1954 spi_imx_runtime_resume, NULL)
1955 SET_SYSTEM_SLEEP_PM_OPS(spi_imx_suspend, spi_imx_resume)
1956 };
1957
1958 static struct platform_driver spi_imx_driver = {
1959 .driver = {
1960 .name = DRIVER_NAME,
1961 .of_match_table = spi_imx_dt_ids,
1962 .pm = &imx_spi_pm,
1963 },
1964 .probe = spi_imx_probe,
1965 .remove_new = spi_imx_remove,
1966 };
1967 module_platform_driver(spi_imx_driver);
1968
1969 MODULE_DESCRIPTION("i.MX SPI Controller driver");
1970 MODULE_AUTHOR("Sascha Hauer, Pengutronix");
1971 MODULE_LICENSE("GPL");
1972 MODULE_ALIAS("platform:" DRIVER_NAME);
1973