1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/cpu.h>
9 #include <linux/prctl.h>
10 #include <linux/slab.h>
11 #include <linux/sched.h>
12 #include <linux/sched/idle.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/init.h>
17 #include <linux/export.h>
18 #include <linux/pm.h>
19 #include <linux/tick.h>
20 #include <linux/random.h>
21 #include <linux/user-return-notifier.h>
22 #include <linux/dmi.h>
23 #include <linux/utsname.h>
24 #include <linux/stackprotector.h>
25 #include <linux/cpuidle.h>
26 #include <linux/acpi.h>
27 #include <linux/elf-randomize.h>
28 #include <linux/static_call.h>
29 #include <trace/events/power.h>
30 #include <linux/hw_breakpoint.h>
31 #include <linux/entry-common.h>
32 #include <asm/cpu.h>
33 #include <asm/apic.h>
34 #include <linux/uaccess.h>
35 #include <asm/mwait.h>
36 #include <asm/fpu/api.h>
37 #include <asm/fpu/sched.h>
38 #include <asm/fpu/xstate.h>
39 #include <asm/debugreg.h>
40 #include <asm/nmi.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mce.h>
43 #include <asm/vm86.h>
44 #include <asm/switch_to.h>
45 #include <asm/desc.h>
46 #include <asm/prctl.h>
47 #include <asm/spec-ctrl.h>
48 #include <asm/io_bitmap.h>
49 #include <asm/proto.h>
50 #include <asm/frame.h>
51 #include <asm/unwind.h>
52 #include <asm/tdx.h>
53 #include <asm/mmu_context.h>
54 #include <asm/shstk.h>
55
56 #include "process.h"
57
58 /*
59 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
60 * no more per-task TSS's. The TSS size is kept cacheline-aligned
61 * so they are allowed to end up in the .data..cacheline_aligned
62 * section. Since TSS's are completely CPU-local, we want them
63 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
64 */
65 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
66 .x86_tss = {
67 /*
68 * .sp0 is only used when entering ring 0 from a lower
69 * privilege level. Since the init task never runs anything
70 * but ring 0 code, there is no need for a valid value here.
71 * Poison it.
72 */
73 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
74
75 #ifdef CONFIG_X86_32
76 .sp1 = TOP_OF_INIT_STACK,
77
78 .ss0 = __KERNEL_DS,
79 .ss1 = __KERNEL_CS,
80 #endif
81 .io_bitmap_base = IO_BITMAP_OFFSET_INVALID,
82 },
83 };
84 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
85
86 DEFINE_PER_CPU(bool, __tss_limit_invalid);
87 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
88
89 /*
90 * this gets called so that we can store lazy state into memory and copy the
91 * current task into the new thread.
92 */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)93 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
94 {
95 /* init_task is not dynamically sized (incomplete FPU state) */
96 if (unlikely(src == &init_task))
97 memcpy_and_pad(dst, arch_task_struct_size, src, sizeof(init_task), 0);
98 else
99 memcpy(dst, src, arch_task_struct_size);
100
101 #ifdef CONFIG_VM86
102 dst->thread.vm86 = NULL;
103 #endif
104 /* Drop the copied pointer to current's fpstate */
105 dst->thread.fpu.fpstate = NULL;
106
107 return 0;
108 }
109
110 #ifdef CONFIG_X86_64
arch_release_task_struct(struct task_struct * tsk)111 void arch_release_task_struct(struct task_struct *tsk)
112 {
113 if (fpu_state_size_dynamic())
114 fpstate_free(&tsk->thread.fpu);
115 }
116 #endif
117
118 /*
119 * Free thread data structures etc..
120 */
exit_thread(struct task_struct * tsk)121 void exit_thread(struct task_struct *tsk)
122 {
123 struct thread_struct *t = &tsk->thread;
124 struct fpu *fpu = &t->fpu;
125
126 if (test_thread_flag(TIF_IO_BITMAP))
127 io_bitmap_exit(tsk);
128
129 free_vm86(t);
130
131 shstk_free(tsk);
132 fpu__drop(fpu);
133 }
134
set_new_tls(struct task_struct * p,unsigned long tls)135 static int set_new_tls(struct task_struct *p, unsigned long tls)
136 {
137 struct user_desc __user *utls = (struct user_desc __user *)tls;
138
139 if (in_ia32_syscall())
140 return do_set_thread_area(p, -1, utls, 0);
141 else
142 return do_set_thread_area_64(p, ARCH_SET_FS, tls);
143 }
144
ret_from_fork(struct task_struct * prev,struct pt_regs * regs,int (* fn)(void *),void * fn_arg)145 __visible void ret_from_fork(struct task_struct *prev, struct pt_regs *regs,
146 int (*fn)(void *), void *fn_arg)
147 {
148 schedule_tail(prev);
149
150 /* Is this a kernel thread? */
151 if (unlikely(fn)) {
152 fn(fn_arg);
153 /*
154 * A kernel thread is allowed to return here after successfully
155 * calling kernel_execve(). Exit to userspace to complete the
156 * execve() syscall.
157 */
158 regs->ax = 0;
159 }
160
161 syscall_exit_to_user_mode(regs);
162 }
163
copy_thread(struct task_struct * p,const struct kernel_clone_args * args)164 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
165 {
166 unsigned long clone_flags = args->flags;
167 unsigned long sp = args->stack;
168 unsigned long tls = args->tls;
169 struct inactive_task_frame *frame;
170 struct fork_frame *fork_frame;
171 struct pt_regs *childregs;
172 unsigned long new_ssp;
173 int ret = 0;
174
175 childregs = task_pt_regs(p);
176 fork_frame = container_of(childregs, struct fork_frame, regs);
177 frame = &fork_frame->frame;
178
179 frame->bp = encode_frame_pointer(childregs);
180 frame->ret_addr = (unsigned long) ret_from_fork_asm;
181 p->thread.sp = (unsigned long) fork_frame;
182 p->thread.io_bitmap = NULL;
183 p->thread.iopl_warn = 0;
184 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
185
186 #ifdef CONFIG_X86_64
187 current_save_fsgs();
188 p->thread.fsindex = current->thread.fsindex;
189 p->thread.fsbase = current->thread.fsbase;
190 p->thread.gsindex = current->thread.gsindex;
191 p->thread.gsbase = current->thread.gsbase;
192
193 savesegment(es, p->thread.es);
194 savesegment(ds, p->thread.ds);
195
196 if (p->mm && (clone_flags & (CLONE_VM | CLONE_VFORK)) == CLONE_VM)
197 set_bit(MM_CONTEXT_LOCK_LAM, &p->mm->context.flags);
198 #else
199 p->thread.sp0 = (unsigned long) (childregs + 1);
200 savesegment(gs, p->thread.gs);
201 /*
202 * Clear all status flags including IF and set fixed bit. 64bit
203 * does not have this initialization as the frame does not contain
204 * flags. The flags consistency (especially vs. AC) is there
205 * ensured via objtool, which lacks 32bit support.
206 */
207 frame->flags = X86_EFLAGS_FIXED;
208 #endif
209
210 /*
211 * Allocate a new shadow stack for thread if needed. If shadow stack,
212 * is disabled, new_ssp will remain 0, and fpu_clone() will know not to
213 * update it.
214 */
215 new_ssp = shstk_alloc_thread_stack(p, clone_flags, args->stack_size);
216 if (IS_ERR_VALUE(new_ssp))
217 return PTR_ERR((void *)new_ssp);
218
219 fpu_clone(p, clone_flags, args->fn, new_ssp);
220
221 /* Kernel thread ? */
222 if (unlikely(p->flags & PF_KTHREAD)) {
223 p->thread.pkru = pkru_get_init_value();
224 memset(childregs, 0, sizeof(struct pt_regs));
225 kthread_frame_init(frame, args->fn, args->fn_arg);
226 return 0;
227 }
228
229 /*
230 * Clone current's PKRU value from hardware. tsk->thread.pkru
231 * is only valid when scheduled out.
232 */
233 p->thread.pkru = read_pkru();
234
235 frame->bx = 0;
236 *childregs = *current_pt_regs();
237 childregs->ax = 0;
238 if (sp)
239 childregs->sp = sp;
240
241 if (unlikely(args->fn)) {
242 /*
243 * A user space thread, but it doesn't return to
244 * ret_after_fork().
245 *
246 * In order to indicate that to tools like gdb,
247 * we reset the stack and instruction pointers.
248 *
249 * It does the same kernel frame setup to return to a kernel
250 * function that a kernel thread does.
251 */
252 childregs->sp = 0;
253 childregs->ip = 0;
254 kthread_frame_init(frame, args->fn, args->fn_arg);
255 return 0;
256 }
257
258 /* Set a new TLS for the child thread? */
259 if (clone_flags & CLONE_SETTLS)
260 ret = set_new_tls(p, tls);
261
262 if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
263 io_bitmap_share(p);
264
265 return ret;
266 }
267
pkru_flush_thread(void)268 static void pkru_flush_thread(void)
269 {
270 /*
271 * If PKRU is enabled the default PKRU value has to be loaded into
272 * the hardware right here (similar to context switch).
273 */
274 pkru_write_default();
275 }
276
flush_thread(void)277 void flush_thread(void)
278 {
279 struct task_struct *tsk = current;
280
281 flush_ptrace_hw_breakpoint(tsk);
282 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
283
284 fpu_flush_thread();
285 pkru_flush_thread();
286 }
287
disable_TSC(void)288 void disable_TSC(void)
289 {
290 preempt_disable();
291 if (!test_and_set_thread_flag(TIF_NOTSC))
292 /*
293 * Must flip the CPU state synchronously with
294 * TIF_NOTSC in the current running context.
295 */
296 cr4_set_bits(X86_CR4_TSD);
297 preempt_enable();
298 }
299
enable_TSC(void)300 static void enable_TSC(void)
301 {
302 preempt_disable();
303 if (test_and_clear_thread_flag(TIF_NOTSC))
304 /*
305 * Must flip the CPU state synchronously with
306 * TIF_NOTSC in the current running context.
307 */
308 cr4_clear_bits(X86_CR4_TSD);
309 preempt_enable();
310 }
311
get_tsc_mode(unsigned long adr)312 int get_tsc_mode(unsigned long adr)
313 {
314 unsigned int val;
315
316 if (test_thread_flag(TIF_NOTSC))
317 val = PR_TSC_SIGSEGV;
318 else
319 val = PR_TSC_ENABLE;
320
321 return put_user(val, (unsigned int __user *)adr);
322 }
323
set_tsc_mode(unsigned int val)324 int set_tsc_mode(unsigned int val)
325 {
326 if (val == PR_TSC_SIGSEGV)
327 disable_TSC();
328 else if (val == PR_TSC_ENABLE)
329 enable_TSC();
330 else
331 return -EINVAL;
332
333 return 0;
334 }
335
336 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
337
set_cpuid_faulting(bool on)338 static void set_cpuid_faulting(bool on)
339 {
340 u64 msrval;
341
342 msrval = this_cpu_read(msr_misc_features_shadow);
343 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
344 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
345 this_cpu_write(msr_misc_features_shadow, msrval);
346 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
347 }
348
disable_cpuid(void)349 static void disable_cpuid(void)
350 {
351 preempt_disable();
352 if (!test_and_set_thread_flag(TIF_NOCPUID)) {
353 /*
354 * Must flip the CPU state synchronously with
355 * TIF_NOCPUID in the current running context.
356 */
357 set_cpuid_faulting(true);
358 }
359 preempt_enable();
360 }
361
enable_cpuid(void)362 static void enable_cpuid(void)
363 {
364 preempt_disable();
365 if (test_and_clear_thread_flag(TIF_NOCPUID)) {
366 /*
367 * Must flip the CPU state synchronously with
368 * TIF_NOCPUID in the current running context.
369 */
370 set_cpuid_faulting(false);
371 }
372 preempt_enable();
373 }
374
get_cpuid_mode(void)375 static int get_cpuid_mode(void)
376 {
377 return !test_thread_flag(TIF_NOCPUID);
378 }
379
set_cpuid_mode(unsigned long cpuid_enabled)380 static int set_cpuid_mode(unsigned long cpuid_enabled)
381 {
382 if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
383 return -ENODEV;
384
385 if (cpuid_enabled)
386 enable_cpuid();
387 else
388 disable_cpuid();
389
390 return 0;
391 }
392
393 /*
394 * Called immediately after a successful exec.
395 */
arch_setup_new_exec(void)396 void arch_setup_new_exec(void)
397 {
398 /* If cpuid was previously disabled for this task, re-enable it. */
399 if (test_thread_flag(TIF_NOCPUID))
400 enable_cpuid();
401
402 /*
403 * Don't inherit TIF_SSBD across exec boundary when
404 * PR_SPEC_DISABLE_NOEXEC is used.
405 */
406 if (test_thread_flag(TIF_SSBD) &&
407 task_spec_ssb_noexec(current)) {
408 clear_thread_flag(TIF_SSBD);
409 task_clear_spec_ssb_disable(current);
410 task_clear_spec_ssb_noexec(current);
411 speculation_ctrl_update(read_thread_flags());
412 }
413
414 mm_reset_untag_mask(current->mm);
415 }
416
417 #ifdef CONFIG_X86_IOPL_IOPERM
switch_to_bitmap(unsigned long tifp)418 static inline void switch_to_bitmap(unsigned long tifp)
419 {
420 /*
421 * Invalidate I/O bitmap if the previous task used it. This prevents
422 * any possible leakage of an active I/O bitmap.
423 *
424 * If the next task has an I/O bitmap it will handle it on exit to
425 * user mode.
426 */
427 if (tifp & _TIF_IO_BITMAP)
428 tss_invalidate_io_bitmap();
429 }
430
tss_copy_io_bitmap(struct tss_struct * tss,struct io_bitmap * iobm)431 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
432 {
433 /*
434 * Copy at least the byte range of the incoming tasks bitmap which
435 * covers the permitted I/O ports.
436 *
437 * If the previous task which used an I/O bitmap had more bits
438 * permitted, then the copy needs to cover those as well so they
439 * get turned off.
440 */
441 memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
442 max(tss->io_bitmap.prev_max, iobm->max));
443
444 /*
445 * Store the new max and the sequence number of this bitmap
446 * and a pointer to the bitmap itself.
447 */
448 tss->io_bitmap.prev_max = iobm->max;
449 tss->io_bitmap.prev_sequence = iobm->sequence;
450 }
451
452 /**
453 * native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode
454 */
native_tss_update_io_bitmap(void)455 void native_tss_update_io_bitmap(void)
456 {
457 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
458 struct thread_struct *t = ¤t->thread;
459 u16 *base = &tss->x86_tss.io_bitmap_base;
460
461 if (!test_thread_flag(TIF_IO_BITMAP)) {
462 native_tss_invalidate_io_bitmap();
463 return;
464 }
465
466 if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
467 *base = IO_BITMAP_OFFSET_VALID_ALL;
468 } else {
469 struct io_bitmap *iobm = t->io_bitmap;
470
471 /*
472 * Only copy bitmap data when the sequence number differs. The
473 * update time is accounted to the incoming task.
474 */
475 if (tss->io_bitmap.prev_sequence != iobm->sequence)
476 tss_copy_io_bitmap(tss, iobm);
477
478 /* Enable the bitmap */
479 *base = IO_BITMAP_OFFSET_VALID_MAP;
480 }
481
482 /*
483 * Make sure that the TSS limit is covering the IO bitmap. It might have
484 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
485 * access from user space to trigger a #GP because tbe bitmap is outside
486 * the TSS limit.
487 */
488 refresh_tss_limit();
489 }
490 #else /* CONFIG_X86_IOPL_IOPERM */
switch_to_bitmap(unsigned long tifp)491 static inline void switch_to_bitmap(unsigned long tifp) { }
492 #endif
493
494 #ifdef CONFIG_SMP
495
496 struct ssb_state {
497 struct ssb_state *shared_state;
498 raw_spinlock_t lock;
499 unsigned int disable_state;
500 unsigned long local_state;
501 };
502
503 #define LSTATE_SSB 0
504
505 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
506
speculative_store_bypass_ht_init(void)507 void speculative_store_bypass_ht_init(void)
508 {
509 struct ssb_state *st = this_cpu_ptr(&ssb_state);
510 unsigned int this_cpu = smp_processor_id();
511 unsigned int cpu;
512
513 st->local_state = 0;
514
515 /*
516 * Shared state setup happens once on the first bringup
517 * of the CPU. It's not destroyed on CPU hotunplug.
518 */
519 if (st->shared_state)
520 return;
521
522 raw_spin_lock_init(&st->lock);
523
524 /*
525 * Go over HT siblings and check whether one of them has set up the
526 * shared state pointer already.
527 */
528 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
529 if (cpu == this_cpu)
530 continue;
531
532 if (!per_cpu(ssb_state, cpu).shared_state)
533 continue;
534
535 /* Link it to the state of the sibling: */
536 st->shared_state = per_cpu(ssb_state, cpu).shared_state;
537 return;
538 }
539
540 /*
541 * First HT sibling to come up on the core. Link shared state of
542 * the first HT sibling to itself. The siblings on the same core
543 * which come up later will see the shared state pointer and link
544 * themselves to the state of this CPU.
545 */
546 st->shared_state = st;
547 }
548
549 /*
550 * Logic is: First HT sibling enables SSBD for both siblings in the core
551 * and last sibling to disable it, disables it for the whole core. This how
552 * MSR_SPEC_CTRL works in "hardware":
553 *
554 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
555 */
amd_set_core_ssb_state(unsigned long tifn)556 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
557 {
558 struct ssb_state *st = this_cpu_ptr(&ssb_state);
559 u64 msr = x86_amd_ls_cfg_base;
560
561 if (!static_cpu_has(X86_FEATURE_ZEN)) {
562 msr |= ssbd_tif_to_amd_ls_cfg(tifn);
563 wrmsrl(MSR_AMD64_LS_CFG, msr);
564 return;
565 }
566
567 if (tifn & _TIF_SSBD) {
568 /*
569 * Since this can race with prctl(), block reentry on the
570 * same CPU.
571 */
572 if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
573 return;
574
575 msr |= x86_amd_ls_cfg_ssbd_mask;
576
577 raw_spin_lock(&st->shared_state->lock);
578 /* First sibling enables SSBD: */
579 if (!st->shared_state->disable_state)
580 wrmsrl(MSR_AMD64_LS_CFG, msr);
581 st->shared_state->disable_state++;
582 raw_spin_unlock(&st->shared_state->lock);
583 } else {
584 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
585 return;
586
587 raw_spin_lock(&st->shared_state->lock);
588 st->shared_state->disable_state--;
589 if (!st->shared_state->disable_state)
590 wrmsrl(MSR_AMD64_LS_CFG, msr);
591 raw_spin_unlock(&st->shared_state->lock);
592 }
593 }
594 #else
amd_set_core_ssb_state(unsigned long tifn)595 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
596 {
597 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
598
599 wrmsrl(MSR_AMD64_LS_CFG, msr);
600 }
601 #endif
602
amd_set_ssb_virt_state(unsigned long tifn)603 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
604 {
605 /*
606 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
607 * so ssbd_tif_to_spec_ctrl() just works.
608 */
609 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
610 }
611
612 /*
613 * Update the MSRs managing speculation control, during context switch.
614 *
615 * tifp: Previous task's thread flags
616 * tifn: Next task's thread flags
617 */
__speculation_ctrl_update(unsigned long tifp,unsigned long tifn)618 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
619 unsigned long tifn)
620 {
621 unsigned long tif_diff = tifp ^ tifn;
622 u64 msr = x86_spec_ctrl_base;
623 bool updmsr = false;
624
625 lockdep_assert_irqs_disabled();
626
627 /* Handle change of TIF_SSBD depending on the mitigation method. */
628 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
629 if (tif_diff & _TIF_SSBD)
630 amd_set_ssb_virt_state(tifn);
631 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
632 if (tif_diff & _TIF_SSBD)
633 amd_set_core_ssb_state(tifn);
634 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
635 static_cpu_has(X86_FEATURE_AMD_SSBD)) {
636 updmsr |= !!(tif_diff & _TIF_SSBD);
637 msr |= ssbd_tif_to_spec_ctrl(tifn);
638 }
639
640 /* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
641 if (IS_ENABLED(CONFIG_SMP) &&
642 static_branch_unlikely(&switch_to_cond_stibp)) {
643 updmsr |= !!(tif_diff & _TIF_SPEC_IB);
644 msr |= stibp_tif_to_spec_ctrl(tifn);
645 }
646
647 if (updmsr)
648 update_spec_ctrl_cond(msr);
649 }
650
speculation_ctrl_update_tif(struct task_struct * tsk)651 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
652 {
653 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
654 if (task_spec_ssb_disable(tsk))
655 set_tsk_thread_flag(tsk, TIF_SSBD);
656 else
657 clear_tsk_thread_flag(tsk, TIF_SSBD);
658
659 if (task_spec_ib_disable(tsk))
660 set_tsk_thread_flag(tsk, TIF_SPEC_IB);
661 else
662 clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
663 }
664 /* Return the updated threadinfo flags*/
665 return read_task_thread_flags(tsk);
666 }
667
speculation_ctrl_update(unsigned long tif)668 void speculation_ctrl_update(unsigned long tif)
669 {
670 unsigned long flags;
671
672 /* Forced update. Make sure all relevant TIF flags are different */
673 local_irq_save(flags);
674 __speculation_ctrl_update(~tif, tif);
675 local_irq_restore(flags);
676 }
677
678 /* Called from seccomp/prctl update */
speculation_ctrl_update_current(void)679 void speculation_ctrl_update_current(void)
680 {
681 preempt_disable();
682 speculation_ctrl_update(speculation_ctrl_update_tif(current));
683 preempt_enable();
684 }
685
cr4_toggle_bits_irqsoff(unsigned long mask)686 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
687 {
688 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
689
690 newval = cr4 ^ mask;
691 if (newval != cr4) {
692 this_cpu_write(cpu_tlbstate.cr4, newval);
693 __write_cr4(newval);
694 }
695 }
696
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p)697 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
698 {
699 unsigned long tifp, tifn;
700
701 tifn = read_task_thread_flags(next_p);
702 tifp = read_task_thread_flags(prev_p);
703
704 switch_to_bitmap(tifp);
705
706 propagate_user_return_notify(prev_p, next_p);
707
708 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
709 arch_has_block_step()) {
710 unsigned long debugctl, msk;
711
712 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
713 debugctl &= ~DEBUGCTLMSR_BTF;
714 msk = tifn & _TIF_BLOCKSTEP;
715 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
716 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
717 }
718
719 if ((tifp ^ tifn) & _TIF_NOTSC)
720 cr4_toggle_bits_irqsoff(X86_CR4_TSD);
721
722 if ((tifp ^ tifn) & _TIF_NOCPUID)
723 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
724
725 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
726 __speculation_ctrl_update(tifp, tifn);
727 } else {
728 speculation_ctrl_update_tif(prev_p);
729 tifn = speculation_ctrl_update_tif(next_p);
730
731 /* Enforce MSR update to ensure consistent state */
732 __speculation_ctrl_update(~tifn, tifn);
733 }
734 }
735
736 /*
737 * Idle related variables and functions
738 */
739 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
740 EXPORT_SYMBOL(boot_option_idle_override);
741
742 /*
743 * We use this if we don't have any better idle routine..
744 */
default_idle(void)745 void __cpuidle default_idle(void)
746 {
747 raw_safe_halt();
748 raw_local_irq_disable();
749 }
750 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
751 EXPORT_SYMBOL(default_idle);
752 #endif
753
754 DEFINE_STATIC_CALL_NULL(x86_idle, default_idle);
755
x86_idle_set(void)756 static bool x86_idle_set(void)
757 {
758 return !!static_call_query(x86_idle);
759 }
760
761 #ifndef CONFIG_SMP
play_dead(void)762 static inline void __noreturn play_dead(void)
763 {
764 BUG();
765 }
766 #endif
767
arch_cpu_idle_enter(void)768 void arch_cpu_idle_enter(void)
769 {
770 tsc_verify_tsc_adjust(false);
771 local_touch_nmi();
772 }
773
arch_cpu_idle_dead(void)774 void __noreturn arch_cpu_idle_dead(void)
775 {
776 play_dead();
777 }
778
779 /*
780 * Called from the generic idle code.
781 */
arch_cpu_idle(void)782 void __cpuidle arch_cpu_idle(void)
783 {
784 static_call(x86_idle)();
785 }
786 EXPORT_SYMBOL_GPL(arch_cpu_idle);
787
788 #ifdef CONFIG_XEN
xen_set_default_idle(void)789 bool xen_set_default_idle(void)
790 {
791 bool ret = x86_idle_set();
792
793 static_call_update(x86_idle, default_idle);
794
795 return ret;
796 }
797 #endif
798
799 struct cpumask cpus_stop_mask;
800
stop_this_cpu(void * dummy)801 void __noreturn stop_this_cpu(void *dummy)
802 {
803 struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
804 unsigned int cpu = smp_processor_id();
805
806 local_irq_disable();
807
808 /*
809 * Remove this CPU from the online mask and disable it
810 * unconditionally. This might be redundant in case that the reboot
811 * vector was handled late and stop_other_cpus() sent an NMI.
812 *
813 * According to SDM and APM NMIs can be accepted even after soft
814 * disabling the local APIC.
815 */
816 set_cpu_online(cpu, false);
817 disable_local_APIC();
818 mcheck_cpu_clear(c);
819
820 /*
821 * Use wbinvd on processors that support SME. This provides support
822 * for performing a successful kexec when going from SME inactive
823 * to SME active (or vice-versa). The cache must be cleared so that
824 * if there are entries with the same physical address, both with and
825 * without the encryption bit, they don't race each other when flushed
826 * and potentially end up with the wrong entry being committed to
827 * memory.
828 *
829 * Test the CPUID bit directly because the machine might've cleared
830 * X86_FEATURE_SME due to cmdline options.
831 */
832 if (c->extended_cpuid_level >= 0x8000001f && (cpuid_eax(0x8000001f) & BIT(0)))
833 native_wbinvd();
834
835 /*
836 * This brings a cache line back and dirties it, but
837 * native_stop_other_cpus() will overwrite cpus_stop_mask after it
838 * observed that all CPUs reported stop. This write will invalidate
839 * the related cache line on this CPU.
840 */
841 cpumask_clear_cpu(cpu, &cpus_stop_mask);
842
843 for (;;) {
844 /*
845 * Use native_halt() so that memory contents don't change
846 * (stack usage and variables) after possibly issuing the
847 * native_wbinvd() above.
848 */
849 native_halt();
850 }
851 }
852
853 /*
854 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
855 * states (local apic timer and TSC stop).
856 *
857 * XXX this function is completely buggered vs RCU and tracing.
858 */
amd_e400_idle(void)859 static void amd_e400_idle(void)
860 {
861 /*
862 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
863 * gets set after static_cpu_has() places have been converted via
864 * alternatives.
865 */
866 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
867 default_idle();
868 return;
869 }
870
871 tick_broadcast_enter();
872
873 default_idle();
874
875 tick_broadcast_exit();
876 }
877
878 /*
879 * Prefer MWAIT over HALT if MWAIT is supported, MWAIT_CPUID leaf
880 * exists and whenever MONITOR/MWAIT extensions are present there is at
881 * least one C1 substate.
882 *
883 * Do not prefer MWAIT if MONITOR instruction has a bug or idle=nomwait
884 * is passed to kernel commandline parameter.
885 */
prefer_mwait_c1_over_halt(const struct cpuinfo_x86 * c)886 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
887 {
888 u32 eax, ebx, ecx, edx;
889
890 /* User has disallowed the use of MWAIT. Fallback to HALT */
891 if (boot_option_idle_override == IDLE_NOMWAIT)
892 return 0;
893
894 /* MWAIT is not supported on this platform. Fallback to HALT */
895 if (!cpu_has(c, X86_FEATURE_MWAIT))
896 return 0;
897
898 /* Monitor has a bug. Fallback to HALT */
899 if (boot_cpu_has_bug(X86_BUG_MONITOR))
900 return 0;
901
902 cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
903
904 /*
905 * If MWAIT extensions are not available, it is safe to use MWAIT
906 * with EAX=0, ECX=0.
907 */
908 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED))
909 return 1;
910
911 /*
912 * If MWAIT extensions are available, there should be at least one
913 * MWAIT C1 substate present.
914 */
915 return (edx & MWAIT_C1_SUBSTATE_MASK);
916 }
917
918 /*
919 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
920 * with interrupts enabled and no flags, which is backwards compatible with the
921 * original MWAIT implementation.
922 */
mwait_idle(void)923 static __cpuidle void mwait_idle(void)
924 {
925 if (!current_set_polling_and_test()) {
926 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
927 mb(); /* quirk */
928 clflush((void *)¤t_thread_info()->flags);
929 mb(); /* quirk */
930 }
931
932 __monitor((void *)¤t_thread_info()->flags, 0, 0);
933 if (!need_resched()) {
934 __sti_mwait(0, 0);
935 raw_local_irq_disable();
936 }
937 }
938 __current_clr_polling();
939 }
940
select_idle_routine(const struct cpuinfo_x86 * c)941 void select_idle_routine(const struct cpuinfo_x86 *c)
942 {
943 #ifdef CONFIG_SMP
944 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
945 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
946 #endif
947 if (x86_idle_set() || boot_option_idle_override == IDLE_POLL)
948 return;
949
950 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
951 pr_info("using AMD E400 aware idle routine\n");
952 static_call_update(x86_idle, amd_e400_idle);
953 } else if (prefer_mwait_c1_over_halt(c)) {
954 pr_info("using mwait in idle threads\n");
955 static_call_update(x86_idle, mwait_idle);
956 } else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
957 pr_info("using TDX aware idle routine\n");
958 static_call_update(x86_idle, tdx_safe_halt);
959 } else
960 static_call_update(x86_idle, default_idle);
961 }
962
amd_e400_c1e_apic_setup(void)963 void amd_e400_c1e_apic_setup(void)
964 {
965 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
966 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
967 local_irq_disable();
968 tick_broadcast_force();
969 local_irq_enable();
970 }
971 }
972
arch_post_acpi_subsys_init(void)973 void __init arch_post_acpi_subsys_init(void)
974 {
975 u32 lo, hi;
976
977 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
978 return;
979
980 /*
981 * AMD E400 detection needs to happen after ACPI has been enabled. If
982 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
983 * MSR_K8_INT_PENDING_MSG.
984 */
985 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
986 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
987 return;
988
989 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
990
991 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
992 mark_tsc_unstable("TSC halt in AMD C1E");
993 pr_info("System has AMD C1E enabled\n");
994 }
995
idle_setup(char * str)996 static int __init idle_setup(char *str)
997 {
998 if (!str)
999 return -EINVAL;
1000
1001 if (!strcmp(str, "poll")) {
1002 pr_info("using polling idle threads\n");
1003 boot_option_idle_override = IDLE_POLL;
1004 cpu_idle_poll_ctrl(true);
1005 } else if (!strcmp(str, "halt")) {
1006 /*
1007 * When the boot option of idle=halt is added, halt is
1008 * forced to be used for CPU idle. In such case CPU C2/C3
1009 * won't be used again.
1010 * To continue to load the CPU idle driver, don't touch
1011 * the boot_option_idle_override.
1012 */
1013 static_call_update(x86_idle, default_idle);
1014 boot_option_idle_override = IDLE_HALT;
1015 } else if (!strcmp(str, "nomwait")) {
1016 /*
1017 * If the boot option of "idle=nomwait" is added,
1018 * it means that mwait will be disabled for CPU C1/C2/C3
1019 * states.
1020 */
1021 boot_option_idle_override = IDLE_NOMWAIT;
1022 } else
1023 return -1;
1024
1025 return 0;
1026 }
1027 early_param("idle", idle_setup);
1028
arch_align_stack(unsigned long sp)1029 unsigned long arch_align_stack(unsigned long sp)
1030 {
1031 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1032 sp -= get_random_u32_below(8192);
1033 return sp & ~0xf;
1034 }
1035
arch_randomize_brk(struct mm_struct * mm)1036 unsigned long arch_randomize_brk(struct mm_struct *mm)
1037 {
1038 if (mmap_is_ia32())
1039 return randomize_page(mm->brk, SZ_32M);
1040
1041 return randomize_page(mm->brk, SZ_1G);
1042 }
1043
1044 /*
1045 * Called from fs/proc with a reference on @p to find the function
1046 * which called into schedule(). This needs to be done carefully
1047 * because the task might wake up and we might look at a stack
1048 * changing under us.
1049 */
__get_wchan(struct task_struct * p)1050 unsigned long __get_wchan(struct task_struct *p)
1051 {
1052 struct unwind_state state;
1053 unsigned long addr = 0;
1054
1055 if (!try_get_task_stack(p))
1056 return 0;
1057
1058 for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state);
1059 unwind_next_frame(&state)) {
1060 addr = unwind_get_return_address(&state);
1061 if (!addr)
1062 break;
1063 if (in_sched_functions(addr))
1064 continue;
1065 break;
1066 }
1067
1068 put_task_stack(p);
1069
1070 return addr;
1071 }
1072
do_arch_prctl_common(int option,unsigned long arg2)1073 long do_arch_prctl_common(int option, unsigned long arg2)
1074 {
1075 switch (option) {
1076 case ARCH_GET_CPUID:
1077 return get_cpuid_mode();
1078 case ARCH_SET_CPUID:
1079 return set_cpuid_mode(arg2);
1080 case ARCH_GET_XCOMP_SUPP:
1081 case ARCH_GET_XCOMP_PERM:
1082 case ARCH_REQ_XCOMP_PERM:
1083 case ARCH_GET_XCOMP_GUEST_PERM:
1084 case ARCH_REQ_XCOMP_GUEST_PERM:
1085 return fpu_xstate_prctl(option, arg2);
1086 }
1087
1088 return -EINVAL;
1089 }
1090