xref: /openbmc/linux/arch/x86/kernel/process.c (revision b694e3c604e999343258c49e574abd7be012e726)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/cpu.h>
9 #include <linux/prctl.h>
10 #include <linux/slab.h>
11 #include <linux/sched.h>
12 #include <linux/sched/idle.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/init.h>
17 #include <linux/export.h>
18 #include <linux/pm.h>
19 #include <linux/tick.h>
20 #include <linux/random.h>
21 #include <linux/user-return-notifier.h>
22 #include <linux/dmi.h>
23 #include <linux/utsname.h>
24 #include <linux/stackprotector.h>
25 #include <linux/cpuidle.h>
26 #include <linux/acpi.h>
27 #include <linux/elf-randomize.h>
28 #include <linux/static_call.h>
29 #include <trace/events/power.h>
30 #include <linux/hw_breakpoint.h>
31 #include <linux/entry-common.h>
32 #include <asm/cpu.h>
33 #include <asm/apic.h>
34 #include <linux/uaccess.h>
35 #include <asm/mwait.h>
36 #include <asm/fpu/api.h>
37 #include <asm/fpu/sched.h>
38 #include <asm/fpu/xstate.h>
39 #include <asm/debugreg.h>
40 #include <asm/nmi.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mce.h>
43 #include <asm/vm86.h>
44 #include <asm/switch_to.h>
45 #include <asm/desc.h>
46 #include <asm/prctl.h>
47 #include <asm/spec-ctrl.h>
48 #include <asm/io_bitmap.h>
49 #include <asm/proto.h>
50 #include <asm/frame.h>
51 #include <asm/unwind.h>
52 #include <asm/tdx.h>
53 #include <asm/mmu_context.h>
54 #include <asm/shstk.h>
55 
56 #include "process.h"
57 
58 /*
59  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
60  * no more per-task TSS's. The TSS size is kept cacheline-aligned
61  * so they are allowed to end up in the .data..cacheline_aligned
62  * section. Since TSS's are completely CPU-local, we want them
63  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
64  */
65 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
66 	.x86_tss = {
67 		/*
68 		 * .sp0 is only used when entering ring 0 from a lower
69 		 * privilege level.  Since the init task never runs anything
70 		 * but ring 0 code, there is no need for a valid value here.
71 		 * Poison it.
72 		 */
73 		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
74 
75 #ifdef CONFIG_X86_32
76 		.sp1 = TOP_OF_INIT_STACK,
77 
78 		.ss0 = __KERNEL_DS,
79 		.ss1 = __KERNEL_CS,
80 #endif
81 		.io_bitmap_base	= IO_BITMAP_OFFSET_INVALID,
82 	 },
83 };
84 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
85 
86 DEFINE_PER_CPU(bool, __tss_limit_invalid);
87 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
88 
89 /*
90  * this gets called so that we can store lazy state into memory and copy the
91  * current task into the new thread.
92  */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)93 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
94 {
95 	/* init_task is not dynamically sized (incomplete FPU state) */
96 	if (unlikely(src == &init_task))
97 		memcpy_and_pad(dst, arch_task_struct_size, src, sizeof(init_task), 0);
98 	else
99 		memcpy(dst, src, arch_task_struct_size);
100 
101 #ifdef CONFIG_VM86
102 	dst->thread.vm86 = NULL;
103 #endif
104 	/* Drop the copied pointer to current's fpstate */
105 	dst->thread.fpu.fpstate = NULL;
106 
107 	return 0;
108 }
109 
110 #ifdef CONFIG_X86_64
arch_release_task_struct(struct task_struct * tsk)111 void arch_release_task_struct(struct task_struct *tsk)
112 {
113 	if (fpu_state_size_dynamic())
114 		fpstate_free(&tsk->thread.fpu);
115 }
116 #endif
117 
118 /*
119  * Free thread data structures etc..
120  */
exit_thread(struct task_struct * tsk)121 void exit_thread(struct task_struct *tsk)
122 {
123 	struct thread_struct *t = &tsk->thread;
124 	struct fpu *fpu = &t->fpu;
125 
126 	if (test_thread_flag(TIF_IO_BITMAP))
127 		io_bitmap_exit(tsk);
128 
129 	free_vm86(t);
130 
131 	shstk_free(tsk);
132 	fpu__drop(fpu);
133 }
134 
set_new_tls(struct task_struct * p,unsigned long tls)135 static int set_new_tls(struct task_struct *p, unsigned long tls)
136 {
137 	struct user_desc __user *utls = (struct user_desc __user *)tls;
138 
139 	if (in_ia32_syscall())
140 		return do_set_thread_area(p, -1, utls, 0);
141 	else
142 		return do_set_thread_area_64(p, ARCH_SET_FS, tls);
143 }
144 
ret_from_fork(struct task_struct * prev,struct pt_regs * regs,int (* fn)(void *),void * fn_arg)145 __visible void ret_from_fork(struct task_struct *prev, struct pt_regs *regs,
146 				     int (*fn)(void *), void *fn_arg)
147 {
148 	schedule_tail(prev);
149 
150 	/* Is this a kernel thread? */
151 	if (unlikely(fn)) {
152 		fn(fn_arg);
153 		/*
154 		 * A kernel thread is allowed to return here after successfully
155 		 * calling kernel_execve().  Exit to userspace to complete the
156 		 * execve() syscall.
157 		 */
158 		regs->ax = 0;
159 	}
160 
161 	syscall_exit_to_user_mode(regs);
162 }
163 
copy_thread(struct task_struct * p,const struct kernel_clone_args * args)164 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
165 {
166 	unsigned long clone_flags = args->flags;
167 	unsigned long sp = args->stack;
168 	unsigned long tls = args->tls;
169 	struct inactive_task_frame *frame;
170 	struct fork_frame *fork_frame;
171 	struct pt_regs *childregs;
172 	unsigned long new_ssp;
173 	int ret = 0;
174 
175 	childregs = task_pt_regs(p);
176 	fork_frame = container_of(childregs, struct fork_frame, regs);
177 	frame = &fork_frame->frame;
178 
179 	frame->bp = encode_frame_pointer(childregs);
180 	frame->ret_addr = (unsigned long) ret_from_fork_asm;
181 	p->thread.sp = (unsigned long) fork_frame;
182 	p->thread.io_bitmap = NULL;
183 	p->thread.iopl_warn = 0;
184 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
185 
186 #ifdef CONFIG_X86_64
187 	current_save_fsgs();
188 	p->thread.fsindex = current->thread.fsindex;
189 	p->thread.fsbase = current->thread.fsbase;
190 	p->thread.gsindex = current->thread.gsindex;
191 	p->thread.gsbase = current->thread.gsbase;
192 
193 	savesegment(es, p->thread.es);
194 	savesegment(ds, p->thread.ds);
195 
196 	if (p->mm && (clone_flags & (CLONE_VM | CLONE_VFORK)) == CLONE_VM)
197 		set_bit(MM_CONTEXT_LOCK_LAM, &p->mm->context.flags);
198 #else
199 	p->thread.sp0 = (unsigned long) (childregs + 1);
200 	savesegment(gs, p->thread.gs);
201 	/*
202 	 * Clear all status flags including IF and set fixed bit. 64bit
203 	 * does not have this initialization as the frame does not contain
204 	 * flags. The flags consistency (especially vs. AC) is there
205 	 * ensured via objtool, which lacks 32bit support.
206 	 */
207 	frame->flags = X86_EFLAGS_FIXED;
208 #endif
209 
210 	/*
211 	 * Allocate a new shadow stack for thread if needed. If shadow stack,
212 	 * is disabled, new_ssp will remain 0, and fpu_clone() will know not to
213 	 * update it.
214 	 */
215 	new_ssp = shstk_alloc_thread_stack(p, clone_flags, args->stack_size);
216 	if (IS_ERR_VALUE(new_ssp))
217 		return PTR_ERR((void *)new_ssp);
218 
219 	fpu_clone(p, clone_flags, args->fn, new_ssp);
220 
221 	/* Kernel thread ? */
222 	if (unlikely(p->flags & PF_KTHREAD)) {
223 		p->thread.pkru = pkru_get_init_value();
224 		memset(childregs, 0, sizeof(struct pt_regs));
225 		kthread_frame_init(frame, args->fn, args->fn_arg);
226 		return 0;
227 	}
228 
229 	/*
230 	 * Clone current's PKRU value from hardware. tsk->thread.pkru
231 	 * is only valid when scheduled out.
232 	 */
233 	p->thread.pkru = read_pkru();
234 
235 	frame->bx = 0;
236 	*childregs = *current_pt_regs();
237 	childregs->ax = 0;
238 	if (sp)
239 		childregs->sp = sp;
240 
241 	if (unlikely(args->fn)) {
242 		/*
243 		 * A user space thread, but it doesn't return to
244 		 * ret_after_fork().
245 		 *
246 		 * In order to indicate that to tools like gdb,
247 		 * we reset the stack and instruction pointers.
248 		 *
249 		 * It does the same kernel frame setup to return to a kernel
250 		 * function that a kernel thread does.
251 		 */
252 		childregs->sp = 0;
253 		childregs->ip = 0;
254 		kthread_frame_init(frame, args->fn, args->fn_arg);
255 		return 0;
256 	}
257 
258 	/* Set a new TLS for the child thread? */
259 	if (clone_flags & CLONE_SETTLS)
260 		ret = set_new_tls(p, tls);
261 
262 	if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
263 		io_bitmap_share(p);
264 
265 	return ret;
266 }
267 
pkru_flush_thread(void)268 static void pkru_flush_thread(void)
269 {
270 	/*
271 	 * If PKRU is enabled the default PKRU value has to be loaded into
272 	 * the hardware right here (similar to context switch).
273 	 */
274 	pkru_write_default();
275 }
276 
flush_thread(void)277 void flush_thread(void)
278 {
279 	struct task_struct *tsk = current;
280 
281 	flush_ptrace_hw_breakpoint(tsk);
282 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
283 
284 	fpu_flush_thread();
285 	pkru_flush_thread();
286 }
287 
disable_TSC(void)288 void disable_TSC(void)
289 {
290 	preempt_disable();
291 	if (!test_and_set_thread_flag(TIF_NOTSC))
292 		/*
293 		 * Must flip the CPU state synchronously with
294 		 * TIF_NOTSC in the current running context.
295 		 */
296 		cr4_set_bits(X86_CR4_TSD);
297 	preempt_enable();
298 }
299 
enable_TSC(void)300 static void enable_TSC(void)
301 {
302 	preempt_disable();
303 	if (test_and_clear_thread_flag(TIF_NOTSC))
304 		/*
305 		 * Must flip the CPU state synchronously with
306 		 * TIF_NOTSC in the current running context.
307 		 */
308 		cr4_clear_bits(X86_CR4_TSD);
309 	preempt_enable();
310 }
311 
get_tsc_mode(unsigned long adr)312 int get_tsc_mode(unsigned long adr)
313 {
314 	unsigned int val;
315 
316 	if (test_thread_flag(TIF_NOTSC))
317 		val = PR_TSC_SIGSEGV;
318 	else
319 		val = PR_TSC_ENABLE;
320 
321 	return put_user(val, (unsigned int __user *)adr);
322 }
323 
set_tsc_mode(unsigned int val)324 int set_tsc_mode(unsigned int val)
325 {
326 	if (val == PR_TSC_SIGSEGV)
327 		disable_TSC();
328 	else if (val == PR_TSC_ENABLE)
329 		enable_TSC();
330 	else
331 		return -EINVAL;
332 
333 	return 0;
334 }
335 
336 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
337 
set_cpuid_faulting(bool on)338 static void set_cpuid_faulting(bool on)
339 {
340 	u64 msrval;
341 
342 	msrval = this_cpu_read(msr_misc_features_shadow);
343 	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
344 	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
345 	this_cpu_write(msr_misc_features_shadow, msrval);
346 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
347 }
348 
disable_cpuid(void)349 static void disable_cpuid(void)
350 {
351 	preempt_disable();
352 	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
353 		/*
354 		 * Must flip the CPU state synchronously with
355 		 * TIF_NOCPUID in the current running context.
356 		 */
357 		set_cpuid_faulting(true);
358 	}
359 	preempt_enable();
360 }
361 
enable_cpuid(void)362 static void enable_cpuid(void)
363 {
364 	preempt_disable();
365 	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
366 		/*
367 		 * Must flip the CPU state synchronously with
368 		 * TIF_NOCPUID in the current running context.
369 		 */
370 		set_cpuid_faulting(false);
371 	}
372 	preempt_enable();
373 }
374 
get_cpuid_mode(void)375 static int get_cpuid_mode(void)
376 {
377 	return !test_thread_flag(TIF_NOCPUID);
378 }
379 
set_cpuid_mode(unsigned long cpuid_enabled)380 static int set_cpuid_mode(unsigned long cpuid_enabled)
381 {
382 	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
383 		return -ENODEV;
384 
385 	if (cpuid_enabled)
386 		enable_cpuid();
387 	else
388 		disable_cpuid();
389 
390 	return 0;
391 }
392 
393 /*
394  * Called immediately after a successful exec.
395  */
arch_setup_new_exec(void)396 void arch_setup_new_exec(void)
397 {
398 	/* If cpuid was previously disabled for this task, re-enable it. */
399 	if (test_thread_flag(TIF_NOCPUID))
400 		enable_cpuid();
401 
402 	/*
403 	 * Don't inherit TIF_SSBD across exec boundary when
404 	 * PR_SPEC_DISABLE_NOEXEC is used.
405 	 */
406 	if (test_thread_flag(TIF_SSBD) &&
407 	    task_spec_ssb_noexec(current)) {
408 		clear_thread_flag(TIF_SSBD);
409 		task_clear_spec_ssb_disable(current);
410 		task_clear_spec_ssb_noexec(current);
411 		speculation_ctrl_update(read_thread_flags());
412 	}
413 
414 	mm_reset_untag_mask(current->mm);
415 }
416 
417 #ifdef CONFIG_X86_IOPL_IOPERM
switch_to_bitmap(unsigned long tifp)418 static inline void switch_to_bitmap(unsigned long tifp)
419 {
420 	/*
421 	 * Invalidate I/O bitmap if the previous task used it. This prevents
422 	 * any possible leakage of an active I/O bitmap.
423 	 *
424 	 * If the next task has an I/O bitmap it will handle it on exit to
425 	 * user mode.
426 	 */
427 	if (tifp & _TIF_IO_BITMAP)
428 		tss_invalidate_io_bitmap();
429 }
430 
tss_copy_io_bitmap(struct tss_struct * tss,struct io_bitmap * iobm)431 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
432 {
433 	/*
434 	 * Copy at least the byte range of the incoming tasks bitmap which
435 	 * covers the permitted I/O ports.
436 	 *
437 	 * If the previous task which used an I/O bitmap had more bits
438 	 * permitted, then the copy needs to cover those as well so they
439 	 * get turned off.
440 	 */
441 	memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
442 	       max(tss->io_bitmap.prev_max, iobm->max));
443 
444 	/*
445 	 * Store the new max and the sequence number of this bitmap
446 	 * and a pointer to the bitmap itself.
447 	 */
448 	tss->io_bitmap.prev_max = iobm->max;
449 	tss->io_bitmap.prev_sequence = iobm->sequence;
450 }
451 
452 /**
453  * native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode
454  */
native_tss_update_io_bitmap(void)455 void native_tss_update_io_bitmap(void)
456 {
457 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
458 	struct thread_struct *t = &current->thread;
459 	u16 *base = &tss->x86_tss.io_bitmap_base;
460 
461 	if (!test_thread_flag(TIF_IO_BITMAP)) {
462 		native_tss_invalidate_io_bitmap();
463 		return;
464 	}
465 
466 	if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
467 		*base = IO_BITMAP_OFFSET_VALID_ALL;
468 	} else {
469 		struct io_bitmap *iobm = t->io_bitmap;
470 
471 		/*
472 		 * Only copy bitmap data when the sequence number differs. The
473 		 * update time is accounted to the incoming task.
474 		 */
475 		if (tss->io_bitmap.prev_sequence != iobm->sequence)
476 			tss_copy_io_bitmap(tss, iobm);
477 
478 		/* Enable the bitmap */
479 		*base = IO_BITMAP_OFFSET_VALID_MAP;
480 	}
481 
482 	/*
483 	 * Make sure that the TSS limit is covering the IO bitmap. It might have
484 	 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
485 	 * access from user space to trigger a #GP because tbe bitmap is outside
486 	 * the TSS limit.
487 	 */
488 	refresh_tss_limit();
489 }
490 #else /* CONFIG_X86_IOPL_IOPERM */
switch_to_bitmap(unsigned long tifp)491 static inline void switch_to_bitmap(unsigned long tifp) { }
492 #endif
493 
494 #ifdef CONFIG_SMP
495 
496 struct ssb_state {
497 	struct ssb_state	*shared_state;
498 	raw_spinlock_t		lock;
499 	unsigned int		disable_state;
500 	unsigned long		local_state;
501 };
502 
503 #define LSTATE_SSB	0
504 
505 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
506 
speculative_store_bypass_ht_init(void)507 void speculative_store_bypass_ht_init(void)
508 {
509 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
510 	unsigned int this_cpu = smp_processor_id();
511 	unsigned int cpu;
512 
513 	st->local_state = 0;
514 
515 	/*
516 	 * Shared state setup happens once on the first bringup
517 	 * of the CPU. It's not destroyed on CPU hotunplug.
518 	 */
519 	if (st->shared_state)
520 		return;
521 
522 	raw_spin_lock_init(&st->lock);
523 
524 	/*
525 	 * Go over HT siblings and check whether one of them has set up the
526 	 * shared state pointer already.
527 	 */
528 	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
529 		if (cpu == this_cpu)
530 			continue;
531 
532 		if (!per_cpu(ssb_state, cpu).shared_state)
533 			continue;
534 
535 		/* Link it to the state of the sibling: */
536 		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
537 		return;
538 	}
539 
540 	/*
541 	 * First HT sibling to come up on the core.  Link shared state of
542 	 * the first HT sibling to itself. The siblings on the same core
543 	 * which come up later will see the shared state pointer and link
544 	 * themselves to the state of this CPU.
545 	 */
546 	st->shared_state = st;
547 }
548 
549 /*
550  * Logic is: First HT sibling enables SSBD for both siblings in the core
551  * and last sibling to disable it, disables it for the whole core. This how
552  * MSR_SPEC_CTRL works in "hardware":
553  *
554  *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
555  */
amd_set_core_ssb_state(unsigned long tifn)556 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
557 {
558 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
559 	u64 msr = x86_amd_ls_cfg_base;
560 
561 	if (!static_cpu_has(X86_FEATURE_ZEN)) {
562 		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
563 		wrmsrl(MSR_AMD64_LS_CFG, msr);
564 		return;
565 	}
566 
567 	if (tifn & _TIF_SSBD) {
568 		/*
569 		 * Since this can race with prctl(), block reentry on the
570 		 * same CPU.
571 		 */
572 		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
573 			return;
574 
575 		msr |= x86_amd_ls_cfg_ssbd_mask;
576 
577 		raw_spin_lock(&st->shared_state->lock);
578 		/* First sibling enables SSBD: */
579 		if (!st->shared_state->disable_state)
580 			wrmsrl(MSR_AMD64_LS_CFG, msr);
581 		st->shared_state->disable_state++;
582 		raw_spin_unlock(&st->shared_state->lock);
583 	} else {
584 		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
585 			return;
586 
587 		raw_spin_lock(&st->shared_state->lock);
588 		st->shared_state->disable_state--;
589 		if (!st->shared_state->disable_state)
590 			wrmsrl(MSR_AMD64_LS_CFG, msr);
591 		raw_spin_unlock(&st->shared_state->lock);
592 	}
593 }
594 #else
amd_set_core_ssb_state(unsigned long tifn)595 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
596 {
597 	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
598 
599 	wrmsrl(MSR_AMD64_LS_CFG, msr);
600 }
601 #endif
602 
amd_set_ssb_virt_state(unsigned long tifn)603 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
604 {
605 	/*
606 	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
607 	 * so ssbd_tif_to_spec_ctrl() just works.
608 	 */
609 	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
610 }
611 
612 /*
613  * Update the MSRs managing speculation control, during context switch.
614  *
615  * tifp: Previous task's thread flags
616  * tifn: Next task's thread flags
617  */
__speculation_ctrl_update(unsigned long tifp,unsigned long tifn)618 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
619 						      unsigned long tifn)
620 {
621 	unsigned long tif_diff = tifp ^ tifn;
622 	u64 msr = x86_spec_ctrl_base;
623 	bool updmsr = false;
624 
625 	lockdep_assert_irqs_disabled();
626 
627 	/* Handle change of TIF_SSBD depending on the mitigation method. */
628 	if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
629 		if (tif_diff & _TIF_SSBD)
630 			amd_set_ssb_virt_state(tifn);
631 	} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
632 		if (tif_diff & _TIF_SSBD)
633 			amd_set_core_ssb_state(tifn);
634 	} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
635 		   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
636 		updmsr |= !!(tif_diff & _TIF_SSBD);
637 		msr |= ssbd_tif_to_spec_ctrl(tifn);
638 	}
639 
640 	/* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
641 	if (IS_ENABLED(CONFIG_SMP) &&
642 	    static_branch_unlikely(&switch_to_cond_stibp)) {
643 		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
644 		msr |= stibp_tif_to_spec_ctrl(tifn);
645 	}
646 
647 	if (updmsr)
648 		update_spec_ctrl_cond(msr);
649 }
650 
speculation_ctrl_update_tif(struct task_struct * tsk)651 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
652 {
653 	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
654 		if (task_spec_ssb_disable(tsk))
655 			set_tsk_thread_flag(tsk, TIF_SSBD);
656 		else
657 			clear_tsk_thread_flag(tsk, TIF_SSBD);
658 
659 		if (task_spec_ib_disable(tsk))
660 			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
661 		else
662 			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
663 	}
664 	/* Return the updated threadinfo flags*/
665 	return read_task_thread_flags(tsk);
666 }
667 
speculation_ctrl_update(unsigned long tif)668 void speculation_ctrl_update(unsigned long tif)
669 {
670 	unsigned long flags;
671 
672 	/* Forced update. Make sure all relevant TIF flags are different */
673 	local_irq_save(flags);
674 	__speculation_ctrl_update(~tif, tif);
675 	local_irq_restore(flags);
676 }
677 
678 /* Called from seccomp/prctl update */
speculation_ctrl_update_current(void)679 void speculation_ctrl_update_current(void)
680 {
681 	preempt_disable();
682 	speculation_ctrl_update(speculation_ctrl_update_tif(current));
683 	preempt_enable();
684 }
685 
cr4_toggle_bits_irqsoff(unsigned long mask)686 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
687 {
688 	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
689 
690 	newval = cr4 ^ mask;
691 	if (newval != cr4) {
692 		this_cpu_write(cpu_tlbstate.cr4, newval);
693 		__write_cr4(newval);
694 	}
695 }
696 
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p)697 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
698 {
699 	unsigned long tifp, tifn;
700 
701 	tifn = read_task_thread_flags(next_p);
702 	tifp = read_task_thread_flags(prev_p);
703 
704 	switch_to_bitmap(tifp);
705 
706 	propagate_user_return_notify(prev_p, next_p);
707 
708 	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
709 	    arch_has_block_step()) {
710 		unsigned long debugctl, msk;
711 
712 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
713 		debugctl &= ~DEBUGCTLMSR_BTF;
714 		msk = tifn & _TIF_BLOCKSTEP;
715 		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
716 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
717 	}
718 
719 	if ((tifp ^ tifn) & _TIF_NOTSC)
720 		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
721 
722 	if ((tifp ^ tifn) & _TIF_NOCPUID)
723 		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
724 
725 	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
726 		__speculation_ctrl_update(tifp, tifn);
727 	} else {
728 		speculation_ctrl_update_tif(prev_p);
729 		tifn = speculation_ctrl_update_tif(next_p);
730 
731 		/* Enforce MSR update to ensure consistent state */
732 		__speculation_ctrl_update(~tifn, tifn);
733 	}
734 }
735 
736 /*
737  * Idle related variables and functions
738  */
739 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
740 EXPORT_SYMBOL(boot_option_idle_override);
741 
742 /*
743  * We use this if we don't have any better idle routine..
744  */
default_idle(void)745 void __cpuidle default_idle(void)
746 {
747 	raw_safe_halt();
748 	raw_local_irq_disable();
749 }
750 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
751 EXPORT_SYMBOL(default_idle);
752 #endif
753 
754 DEFINE_STATIC_CALL_NULL(x86_idle, default_idle);
755 
x86_idle_set(void)756 static bool x86_idle_set(void)
757 {
758 	return !!static_call_query(x86_idle);
759 }
760 
761 #ifndef CONFIG_SMP
play_dead(void)762 static inline void __noreturn play_dead(void)
763 {
764 	BUG();
765 }
766 #endif
767 
arch_cpu_idle_enter(void)768 void arch_cpu_idle_enter(void)
769 {
770 	tsc_verify_tsc_adjust(false);
771 	local_touch_nmi();
772 }
773 
arch_cpu_idle_dead(void)774 void __noreturn arch_cpu_idle_dead(void)
775 {
776 	play_dead();
777 }
778 
779 /*
780  * Called from the generic idle code.
781  */
arch_cpu_idle(void)782 void __cpuidle arch_cpu_idle(void)
783 {
784 	static_call(x86_idle)();
785 }
786 EXPORT_SYMBOL_GPL(arch_cpu_idle);
787 
788 #ifdef CONFIG_XEN
xen_set_default_idle(void)789 bool xen_set_default_idle(void)
790 {
791 	bool ret = x86_idle_set();
792 
793 	static_call_update(x86_idle, default_idle);
794 
795 	return ret;
796 }
797 #endif
798 
799 struct cpumask cpus_stop_mask;
800 
stop_this_cpu(void * dummy)801 void __noreturn stop_this_cpu(void *dummy)
802 {
803 	struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
804 	unsigned int cpu = smp_processor_id();
805 
806 	local_irq_disable();
807 
808 	/*
809 	 * Remove this CPU from the online mask and disable it
810 	 * unconditionally. This might be redundant in case that the reboot
811 	 * vector was handled late and stop_other_cpus() sent an NMI.
812 	 *
813 	 * According to SDM and APM NMIs can be accepted even after soft
814 	 * disabling the local APIC.
815 	 */
816 	set_cpu_online(cpu, false);
817 	disable_local_APIC();
818 	mcheck_cpu_clear(c);
819 
820 	/*
821 	 * Use wbinvd on processors that support SME. This provides support
822 	 * for performing a successful kexec when going from SME inactive
823 	 * to SME active (or vice-versa). The cache must be cleared so that
824 	 * if there are entries with the same physical address, both with and
825 	 * without the encryption bit, they don't race each other when flushed
826 	 * and potentially end up with the wrong entry being committed to
827 	 * memory.
828 	 *
829 	 * Test the CPUID bit directly because the machine might've cleared
830 	 * X86_FEATURE_SME due to cmdline options.
831 	 */
832 	if (c->extended_cpuid_level >= 0x8000001f && (cpuid_eax(0x8000001f) & BIT(0)))
833 		native_wbinvd();
834 
835 	/*
836 	 * This brings a cache line back and dirties it, but
837 	 * native_stop_other_cpus() will overwrite cpus_stop_mask after it
838 	 * observed that all CPUs reported stop. This write will invalidate
839 	 * the related cache line on this CPU.
840 	 */
841 	cpumask_clear_cpu(cpu, &cpus_stop_mask);
842 
843 	for (;;) {
844 		/*
845 		 * Use native_halt() so that memory contents don't change
846 		 * (stack usage and variables) after possibly issuing the
847 		 * native_wbinvd() above.
848 		 */
849 		native_halt();
850 	}
851 }
852 
853 /*
854  * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
855  * states (local apic timer and TSC stop).
856  *
857  * XXX this function is completely buggered vs RCU and tracing.
858  */
amd_e400_idle(void)859 static void amd_e400_idle(void)
860 {
861 	/*
862 	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
863 	 * gets set after static_cpu_has() places have been converted via
864 	 * alternatives.
865 	 */
866 	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
867 		default_idle();
868 		return;
869 	}
870 
871 	tick_broadcast_enter();
872 
873 	default_idle();
874 
875 	tick_broadcast_exit();
876 }
877 
878 /*
879  * Prefer MWAIT over HALT if MWAIT is supported, MWAIT_CPUID leaf
880  * exists and whenever MONITOR/MWAIT extensions are present there is at
881  * least one C1 substate.
882  *
883  * Do not prefer MWAIT if MONITOR instruction has a bug or idle=nomwait
884  * is passed to kernel commandline parameter.
885  */
prefer_mwait_c1_over_halt(const struct cpuinfo_x86 * c)886 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
887 {
888 	u32 eax, ebx, ecx, edx;
889 
890 	/* User has disallowed the use of MWAIT. Fallback to HALT */
891 	if (boot_option_idle_override == IDLE_NOMWAIT)
892 		return 0;
893 
894 	/* MWAIT is not supported on this platform. Fallback to HALT */
895 	if (!cpu_has(c, X86_FEATURE_MWAIT))
896 		return 0;
897 
898 	/* Monitor has a bug. Fallback to HALT */
899 	if (boot_cpu_has_bug(X86_BUG_MONITOR))
900 		return 0;
901 
902 	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
903 
904 	/*
905 	 * If MWAIT extensions are not available, it is safe to use MWAIT
906 	 * with EAX=0, ECX=0.
907 	 */
908 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED))
909 		return 1;
910 
911 	/*
912 	 * If MWAIT extensions are available, there should be at least one
913 	 * MWAIT C1 substate present.
914 	 */
915 	return (edx & MWAIT_C1_SUBSTATE_MASK);
916 }
917 
918 /*
919  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
920  * with interrupts enabled and no flags, which is backwards compatible with the
921  * original MWAIT implementation.
922  */
mwait_idle(void)923 static __cpuidle void mwait_idle(void)
924 {
925 	if (!current_set_polling_and_test()) {
926 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
927 			mb(); /* quirk */
928 			clflush((void *)&current_thread_info()->flags);
929 			mb(); /* quirk */
930 		}
931 
932 		__monitor((void *)&current_thread_info()->flags, 0, 0);
933 		if (!need_resched()) {
934 			__sti_mwait(0, 0);
935 			raw_local_irq_disable();
936 		}
937 	}
938 	__current_clr_polling();
939 }
940 
select_idle_routine(const struct cpuinfo_x86 * c)941 void select_idle_routine(const struct cpuinfo_x86 *c)
942 {
943 #ifdef CONFIG_SMP
944 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
945 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
946 #endif
947 	if (x86_idle_set() || boot_option_idle_override == IDLE_POLL)
948 		return;
949 
950 	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
951 		pr_info("using AMD E400 aware idle routine\n");
952 		static_call_update(x86_idle, amd_e400_idle);
953 	} else if (prefer_mwait_c1_over_halt(c)) {
954 		pr_info("using mwait in idle threads\n");
955 		static_call_update(x86_idle, mwait_idle);
956 	} else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
957 		pr_info("using TDX aware idle routine\n");
958 		static_call_update(x86_idle, tdx_safe_halt);
959 	} else
960 		static_call_update(x86_idle, default_idle);
961 }
962 
amd_e400_c1e_apic_setup(void)963 void amd_e400_c1e_apic_setup(void)
964 {
965 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
966 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
967 		local_irq_disable();
968 		tick_broadcast_force();
969 		local_irq_enable();
970 	}
971 }
972 
arch_post_acpi_subsys_init(void)973 void __init arch_post_acpi_subsys_init(void)
974 {
975 	u32 lo, hi;
976 
977 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
978 		return;
979 
980 	/*
981 	 * AMD E400 detection needs to happen after ACPI has been enabled. If
982 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
983 	 * MSR_K8_INT_PENDING_MSG.
984 	 */
985 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
986 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
987 		return;
988 
989 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
990 
991 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
992 		mark_tsc_unstable("TSC halt in AMD C1E");
993 	pr_info("System has AMD C1E enabled\n");
994 }
995 
idle_setup(char * str)996 static int __init idle_setup(char *str)
997 {
998 	if (!str)
999 		return -EINVAL;
1000 
1001 	if (!strcmp(str, "poll")) {
1002 		pr_info("using polling idle threads\n");
1003 		boot_option_idle_override = IDLE_POLL;
1004 		cpu_idle_poll_ctrl(true);
1005 	} else if (!strcmp(str, "halt")) {
1006 		/*
1007 		 * When the boot option of idle=halt is added, halt is
1008 		 * forced to be used for CPU idle. In such case CPU C2/C3
1009 		 * won't be used again.
1010 		 * To continue to load the CPU idle driver, don't touch
1011 		 * the boot_option_idle_override.
1012 		 */
1013 		static_call_update(x86_idle, default_idle);
1014 		boot_option_idle_override = IDLE_HALT;
1015 	} else if (!strcmp(str, "nomwait")) {
1016 		/*
1017 		 * If the boot option of "idle=nomwait" is added,
1018 		 * it means that mwait will be disabled for CPU C1/C2/C3
1019 		 * states.
1020 		 */
1021 		boot_option_idle_override = IDLE_NOMWAIT;
1022 	} else
1023 		return -1;
1024 
1025 	return 0;
1026 }
1027 early_param("idle", idle_setup);
1028 
arch_align_stack(unsigned long sp)1029 unsigned long arch_align_stack(unsigned long sp)
1030 {
1031 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1032 		sp -= get_random_u32_below(8192);
1033 	return sp & ~0xf;
1034 }
1035 
arch_randomize_brk(struct mm_struct * mm)1036 unsigned long arch_randomize_brk(struct mm_struct *mm)
1037 {
1038 	if (mmap_is_ia32())
1039 		return randomize_page(mm->brk, SZ_32M);
1040 
1041 	return randomize_page(mm->brk, SZ_1G);
1042 }
1043 
1044 /*
1045  * Called from fs/proc with a reference on @p to find the function
1046  * which called into schedule(). This needs to be done carefully
1047  * because the task might wake up and we might look at a stack
1048  * changing under us.
1049  */
__get_wchan(struct task_struct * p)1050 unsigned long __get_wchan(struct task_struct *p)
1051 {
1052 	struct unwind_state state;
1053 	unsigned long addr = 0;
1054 
1055 	if (!try_get_task_stack(p))
1056 		return 0;
1057 
1058 	for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state);
1059 	     unwind_next_frame(&state)) {
1060 		addr = unwind_get_return_address(&state);
1061 		if (!addr)
1062 			break;
1063 		if (in_sched_functions(addr))
1064 			continue;
1065 		break;
1066 	}
1067 
1068 	put_task_stack(p);
1069 
1070 	return addr;
1071 }
1072 
do_arch_prctl_common(int option,unsigned long arg2)1073 long do_arch_prctl_common(int option, unsigned long arg2)
1074 {
1075 	switch (option) {
1076 	case ARCH_GET_CPUID:
1077 		return get_cpuid_mode();
1078 	case ARCH_SET_CPUID:
1079 		return set_cpuid_mode(arg2);
1080 	case ARCH_GET_XCOMP_SUPP:
1081 	case ARCH_GET_XCOMP_PERM:
1082 	case ARCH_REQ_XCOMP_PERM:
1083 	case ARCH_GET_XCOMP_GUEST_PERM:
1084 	case ARCH_REQ_XCOMP_GUEST_PERM:
1085 		return fpu_xstate_prctl(option, arg2);
1086 	}
1087 
1088 	return -EINVAL;
1089 }
1090