xref: /openbmc/linux/arch/x86/kernel/process.c (revision 44ad3baf1cca483e418b6aadf2d3994f69e0f16a)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/cpu.h>
9 #include <linux/prctl.h>
10 #include <linux/slab.h>
11 #include <linux/sched.h>
12 #include <linux/sched/idle.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/init.h>
17 #include <linux/export.h>
18 #include <linux/pm.h>
19 #include <linux/tick.h>
20 #include <linux/random.h>
21 #include <linux/user-return-notifier.h>
22 #include <linux/dmi.h>
23 #include <linux/utsname.h>
24 #include <linux/stackprotector.h>
25 #include <linux/cpuidle.h>
26 #include <linux/acpi.h>
27 #include <linux/elf-randomize.h>
28 #include <linux/static_call.h>
29 #include <trace/events/power.h>
30 #include <linux/hw_breakpoint.h>
31 #include <linux/entry-common.h>
32 #include <asm/cpu.h>
33 #include <asm/apic.h>
34 #include <linux/uaccess.h>
35 #include <asm/mwait.h>
36 #include <asm/fpu/api.h>
37 #include <asm/fpu/sched.h>
38 #include <asm/fpu/xstate.h>
39 #include <asm/debugreg.h>
40 #include <asm/nmi.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mce.h>
43 #include <asm/vm86.h>
44 #include <asm/switch_to.h>
45 #include <asm/desc.h>
46 #include <asm/prctl.h>
47 #include <asm/spec-ctrl.h>
48 #include <asm/io_bitmap.h>
49 #include <asm/proto.h>
50 #include <asm/frame.h>
51 #include <asm/unwind.h>
52 #include <asm/tdx.h>
53 #include <asm/mmu_context.h>
54 #include <asm/shstk.h>
55 
56 #include "process.h"
57 
58 /*
59  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
60  * no more per-task TSS's. The TSS size is kept cacheline-aligned
61  * so they are allowed to end up in the .data..cacheline_aligned
62  * section. Since TSS's are completely CPU-local, we want them
63  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
64  */
65 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
66 	.x86_tss = {
67 		/*
68 		 * .sp0 is only used when entering ring 0 from a lower
69 		 * privilege level.  Since the init task never runs anything
70 		 * but ring 0 code, there is no need for a valid value here.
71 		 * Poison it.
72 		 */
73 		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
74 
75 #ifdef CONFIG_X86_32
76 		.sp1 = TOP_OF_INIT_STACK,
77 
78 		.ss0 = __KERNEL_DS,
79 		.ss1 = __KERNEL_CS,
80 #endif
81 		.io_bitmap_base	= IO_BITMAP_OFFSET_INVALID,
82 	 },
83 };
84 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
85 
86 DEFINE_PER_CPU(bool, __tss_limit_invalid);
87 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
88 
89 /*
90  * this gets called so that we can store lazy state into memory and copy the
91  * current task into the new thread.
92  */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)93 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
94 {
95 	/* init_task is not dynamically sized (incomplete FPU state) */
96 	if (unlikely(src == &init_task))
97 		memcpy_and_pad(dst, arch_task_struct_size, src, sizeof(init_task), 0);
98 	else
99 		memcpy(dst, src, arch_task_struct_size);
100 
101 #ifdef CONFIG_VM86
102 	dst->thread.vm86 = NULL;
103 #endif
104 	/* Drop the copied pointer to current's fpstate */
105 	dst->thread.fpu.fpstate = NULL;
106 
107 	return 0;
108 }
109 
110 #ifdef CONFIG_X86_64
arch_release_task_struct(struct task_struct * tsk)111 void arch_release_task_struct(struct task_struct *tsk)
112 {
113 	if (fpu_state_size_dynamic())
114 		fpstate_free(&tsk->thread.fpu);
115 }
116 #endif
117 
118 /*
119  * Free thread data structures etc..
120  */
exit_thread(struct task_struct * tsk)121 void exit_thread(struct task_struct *tsk)
122 {
123 	struct thread_struct *t = &tsk->thread;
124 	struct fpu *fpu = &t->fpu;
125 
126 	if (test_thread_flag(TIF_IO_BITMAP))
127 		io_bitmap_exit(tsk);
128 
129 	free_vm86(t);
130 
131 	shstk_free(tsk);
132 	fpu__drop(fpu);
133 }
134 
set_new_tls(struct task_struct * p,unsigned long tls)135 static int set_new_tls(struct task_struct *p, unsigned long tls)
136 {
137 	struct user_desc __user *utls = (struct user_desc __user *)tls;
138 
139 	if (in_ia32_syscall())
140 		return do_set_thread_area(p, -1, utls, 0);
141 	else
142 		return do_set_thread_area_64(p, ARCH_SET_FS, tls);
143 }
144 
ret_from_fork(struct task_struct * prev,struct pt_regs * regs,int (* fn)(void *),void * fn_arg)145 __visible void ret_from_fork(struct task_struct *prev, struct pt_regs *regs,
146 				     int (*fn)(void *), void *fn_arg)
147 {
148 	schedule_tail(prev);
149 
150 	/* Is this a kernel thread? */
151 	if (unlikely(fn)) {
152 		fn(fn_arg);
153 		/*
154 		 * A kernel thread is allowed to return here after successfully
155 		 * calling kernel_execve().  Exit to userspace to complete the
156 		 * execve() syscall.
157 		 */
158 		regs->ax = 0;
159 	}
160 
161 	syscall_exit_to_user_mode(regs);
162 }
163 
copy_thread(struct task_struct * p,const struct kernel_clone_args * args)164 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
165 {
166 	unsigned long clone_flags = args->flags;
167 	unsigned long sp = args->stack;
168 	unsigned long tls = args->tls;
169 	struct inactive_task_frame *frame;
170 	struct fork_frame *fork_frame;
171 	struct pt_regs *childregs;
172 	unsigned long new_ssp;
173 	int ret = 0;
174 
175 	childregs = task_pt_regs(p);
176 	fork_frame = container_of(childregs, struct fork_frame, regs);
177 	frame = &fork_frame->frame;
178 
179 	frame->bp = encode_frame_pointer(childregs);
180 	frame->ret_addr = (unsigned long) ret_from_fork_asm;
181 	p->thread.sp = (unsigned long) fork_frame;
182 	p->thread.io_bitmap = NULL;
183 	clear_tsk_thread_flag(p, TIF_IO_BITMAP);
184 	p->thread.iopl_warn = 0;
185 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
186 
187 #ifdef CONFIG_X86_64
188 	current_save_fsgs();
189 	p->thread.fsindex = current->thread.fsindex;
190 	p->thread.fsbase = current->thread.fsbase;
191 	p->thread.gsindex = current->thread.gsindex;
192 	p->thread.gsbase = current->thread.gsbase;
193 
194 	savesegment(es, p->thread.es);
195 	savesegment(ds, p->thread.ds);
196 
197 	if (p->mm && (clone_flags & (CLONE_VM | CLONE_VFORK)) == CLONE_VM)
198 		set_bit(MM_CONTEXT_LOCK_LAM, &p->mm->context.flags);
199 #else
200 	p->thread.sp0 = (unsigned long) (childregs + 1);
201 	savesegment(gs, p->thread.gs);
202 	/*
203 	 * Clear all status flags including IF and set fixed bit. 64bit
204 	 * does not have this initialization as the frame does not contain
205 	 * flags. The flags consistency (especially vs. AC) is there
206 	 * ensured via objtool, which lacks 32bit support.
207 	 */
208 	frame->flags = X86_EFLAGS_FIXED;
209 #endif
210 
211 	/*
212 	 * Allocate a new shadow stack for thread if needed. If shadow stack,
213 	 * is disabled, new_ssp will remain 0, and fpu_clone() will know not to
214 	 * update it.
215 	 */
216 	new_ssp = shstk_alloc_thread_stack(p, clone_flags, args->stack_size);
217 	if (IS_ERR_VALUE(new_ssp))
218 		return PTR_ERR((void *)new_ssp);
219 
220 	fpu_clone(p, clone_flags, args->fn, new_ssp);
221 
222 	/* Kernel thread ? */
223 	if (unlikely(p->flags & PF_KTHREAD)) {
224 		p->thread.pkru = pkru_get_init_value();
225 		memset(childregs, 0, sizeof(struct pt_regs));
226 		kthread_frame_init(frame, args->fn, args->fn_arg);
227 		return 0;
228 	}
229 
230 	/*
231 	 * Clone current's PKRU value from hardware. tsk->thread.pkru
232 	 * is only valid when scheduled out.
233 	 */
234 	p->thread.pkru = read_pkru();
235 
236 	frame->bx = 0;
237 	*childregs = *current_pt_regs();
238 	childregs->ax = 0;
239 	if (sp)
240 		childregs->sp = sp;
241 
242 	if (unlikely(args->fn)) {
243 		/*
244 		 * A user space thread, but it doesn't return to
245 		 * ret_after_fork().
246 		 *
247 		 * In order to indicate that to tools like gdb,
248 		 * we reset the stack and instruction pointers.
249 		 *
250 		 * It does the same kernel frame setup to return to a kernel
251 		 * function that a kernel thread does.
252 		 */
253 		childregs->sp = 0;
254 		childregs->ip = 0;
255 		kthread_frame_init(frame, args->fn, args->fn_arg);
256 		return 0;
257 	}
258 
259 	/* Set a new TLS for the child thread? */
260 	if (clone_flags & CLONE_SETTLS)
261 		ret = set_new_tls(p, tls);
262 
263 	if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
264 		io_bitmap_share(p);
265 
266 	return ret;
267 }
268 
pkru_flush_thread(void)269 static void pkru_flush_thread(void)
270 {
271 	/*
272 	 * If PKRU is enabled the default PKRU value has to be loaded into
273 	 * the hardware right here (similar to context switch).
274 	 */
275 	pkru_write_default();
276 }
277 
flush_thread(void)278 void flush_thread(void)
279 {
280 	struct task_struct *tsk = current;
281 
282 	flush_ptrace_hw_breakpoint(tsk);
283 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
284 
285 	fpu_flush_thread();
286 	pkru_flush_thread();
287 }
288 
disable_TSC(void)289 void disable_TSC(void)
290 {
291 	preempt_disable();
292 	if (!test_and_set_thread_flag(TIF_NOTSC))
293 		/*
294 		 * Must flip the CPU state synchronously with
295 		 * TIF_NOTSC in the current running context.
296 		 */
297 		cr4_set_bits(X86_CR4_TSD);
298 	preempt_enable();
299 }
300 
enable_TSC(void)301 static void enable_TSC(void)
302 {
303 	preempt_disable();
304 	if (test_and_clear_thread_flag(TIF_NOTSC))
305 		/*
306 		 * Must flip the CPU state synchronously with
307 		 * TIF_NOTSC in the current running context.
308 		 */
309 		cr4_clear_bits(X86_CR4_TSD);
310 	preempt_enable();
311 }
312 
get_tsc_mode(unsigned long adr)313 int get_tsc_mode(unsigned long adr)
314 {
315 	unsigned int val;
316 
317 	if (test_thread_flag(TIF_NOTSC))
318 		val = PR_TSC_SIGSEGV;
319 	else
320 		val = PR_TSC_ENABLE;
321 
322 	return put_user(val, (unsigned int __user *)adr);
323 }
324 
set_tsc_mode(unsigned int val)325 int set_tsc_mode(unsigned int val)
326 {
327 	if (val == PR_TSC_SIGSEGV)
328 		disable_TSC();
329 	else if (val == PR_TSC_ENABLE)
330 		enable_TSC();
331 	else
332 		return -EINVAL;
333 
334 	return 0;
335 }
336 
337 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
338 
set_cpuid_faulting(bool on)339 static void set_cpuid_faulting(bool on)
340 {
341 	u64 msrval;
342 
343 	msrval = this_cpu_read(msr_misc_features_shadow);
344 	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
345 	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
346 	this_cpu_write(msr_misc_features_shadow, msrval);
347 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
348 }
349 
disable_cpuid(void)350 static void disable_cpuid(void)
351 {
352 	preempt_disable();
353 	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
354 		/*
355 		 * Must flip the CPU state synchronously with
356 		 * TIF_NOCPUID in the current running context.
357 		 */
358 		set_cpuid_faulting(true);
359 	}
360 	preempt_enable();
361 }
362 
enable_cpuid(void)363 static void enable_cpuid(void)
364 {
365 	preempt_disable();
366 	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
367 		/*
368 		 * Must flip the CPU state synchronously with
369 		 * TIF_NOCPUID in the current running context.
370 		 */
371 		set_cpuid_faulting(false);
372 	}
373 	preempt_enable();
374 }
375 
get_cpuid_mode(void)376 static int get_cpuid_mode(void)
377 {
378 	return !test_thread_flag(TIF_NOCPUID);
379 }
380 
set_cpuid_mode(unsigned long cpuid_enabled)381 static int set_cpuid_mode(unsigned long cpuid_enabled)
382 {
383 	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
384 		return -ENODEV;
385 
386 	if (cpuid_enabled)
387 		enable_cpuid();
388 	else
389 		disable_cpuid();
390 
391 	return 0;
392 }
393 
394 /*
395  * Called immediately after a successful exec.
396  */
arch_setup_new_exec(void)397 void arch_setup_new_exec(void)
398 {
399 	/* If cpuid was previously disabled for this task, re-enable it. */
400 	if (test_thread_flag(TIF_NOCPUID))
401 		enable_cpuid();
402 
403 	/*
404 	 * Don't inherit TIF_SSBD across exec boundary when
405 	 * PR_SPEC_DISABLE_NOEXEC is used.
406 	 */
407 	if (test_thread_flag(TIF_SSBD) &&
408 	    task_spec_ssb_noexec(current)) {
409 		clear_thread_flag(TIF_SSBD);
410 		task_clear_spec_ssb_disable(current);
411 		task_clear_spec_ssb_noexec(current);
412 		speculation_ctrl_update(read_thread_flags());
413 	}
414 
415 	mm_reset_untag_mask(current->mm);
416 }
417 
418 #ifdef CONFIG_X86_IOPL_IOPERM
switch_to_bitmap(unsigned long tifp)419 static inline void switch_to_bitmap(unsigned long tifp)
420 {
421 	/*
422 	 * Invalidate I/O bitmap if the previous task used it. This prevents
423 	 * any possible leakage of an active I/O bitmap.
424 	 *
425 	 * If the next task has an I/O bitmap it will handle it on exit to
426 	 * user mode.
427 	 */
428 	if (tifp & _TIF_IO_BITMAP)
429 		tss_invalidate_io_bitmap();
430 }
431 
tss_copy_io_bitmap(struct tss_struct * tss,struct io_bitmap * iobm)432 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
433 {
434 	/*
435 	 * Copy at least the byte range of the incoming tasks bitmap which
436 	 * covers the permitted I/O ports.
437 	 *
438 	 * If the previous task which used an I/O bitmap had more bits
439 	 * permitted, then the copy needs to cover those as well so they
440 	 * get turned off.
441 	 */
442 	memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
443 	       max(tss->io_bitmap.prev_max, iobm->max));
444 
445 	/*
446 	 * Store the new max and the sequence number of this bitmap
447 	 * and a pointer to the bitmap itself.
448 	 */
449 	tss->io_bitmap.prev_max = iobm->max;
450 	tss->io_bitmap.prev_sequence = iobm->sequence;
451 }
452 
453 /**
454  * native_tss_update_io_bitmap - Update I/O bitmap before exiting to user mode
455  */
native_tss_update_io_bitmap(void)456 void native_tss_update_io_bitmap(void)
457 {
458 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
459 	struct thread_struct *t = &current->thread;
460 	u16 *base = &tss->x86_tss.io_bitmap_base;
461 
462 	if (!test_thread_flag(TIF_IO_BITMAP)) {
463 		native_tss_invalidate_io_bitmap();
464 		return;
465 	}
466 
467 	if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
468 		*base = IO_BITMAP_OFFSET_VALID_ALL;
469 	} else {
470 		struct io_bitmap *iobm = t->io_bitmap;
471 
472 		if (WARN_ON_ONCE(!iobm)) {
473 			clear_thread_flag(TIF_IO_BITMAP);
474 			native_tss_invalidate_io_bitmap();
475 		}
476 
477 		/*
478 		 * Only copy bitmap data when the sequence number differs. The
479 		 * update time is accounted to the incoming task.
480 		 */
481 		if (tss->io_bitmap.prev_sequence != iobm->sequence)
482 			tss_copy_io_bitmap(tss, iobm);
483 
484 		/* Enable the bitmap */
485 		*base = IO_BITMAP_OFFSET_VALID_MAP;
486 	}
487 
488 	/*
489 	 * Make sure that the TSS limit is covering the IO bitmap. It might have
490 	 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
491 	 * access from user space to trigger a #GP because tbe bitmap is outside
492 	 * the TSS limit.
493 	 */
494 	refresh_tss_limit();
495 }
496 #else /* CONFIG_X86_IOPL_IOPERM */
switch_to_bitmap(unsigned long tifp)497 static inline void switch_to_bitmap(unsigned long tifp) { }
498 #endif
499 
500 #ifdef CONFIG_SMP
501 
502 struct ssb_state {
503 	struct ssb_state	*shared_state;
504 	raw_spinlock_t		lock;
505 	unsigned int		disable_state;
506 	unsigned long		local_state;
507 };
508 
509 #define LSTATE_SSB	0
510 
511 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
512 
speculative_store_bypass_ht_init(void)513 void speculative_store_bypass_ht_init(void)
514 {
515 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
516 	unsigned int this_cpu = smp_processor_id();
517 	unsigned int cpu;
518 
519 	st->local_state = 0;
520 
521 	/*
522 	 * Shared state setup happens once on the first bringup
523 	 * of the CPU. It's not destroyed on CPU hotunplug.
524 	 */
525 	if (st->shared_state)
526 		return;
527 
528 	raw_spin_lock_init(&st->lock);
529 
530 	/*
531 	 * Go over HT siblings and check whether one of them has set up the
532 	 * shared state pointer already.
533 	 */
534 	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
535 		if (cpu == this_cpu)
536 			continue;
537 
538 		if (!per_cpu(ssb_state, cpu).shared_state)
539 			continue;
540 
541 		/* Link it to the state of the sibling: */
542 		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
543 		return;
544 	}
545 
546 	/*
547 	 * First HT sibling to come up on the core.  Link shared state of
548 	 * the first HT sibling to itself. The siblings on the same core
549 	 * which come up later will see the shared state pointer and link
550 	 * themselves to the state of this CPU.
551 	 */
552 	st->shared_state = st;
553 }
554 
555 /*
556  * Logic is: First HT sibling enables SSBD for both siblings in the core
557  * and last sibling to disable it, disables it for the whole core. This how
558  * MSR_SPEC_CTRL works in "hardware":
559  *
560  *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
561  */
amd_set_core_ssb_state(unsigned long tifn)562 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
563 {
564 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
565 	u64 msr = x86_amd_ls_cfg_base;
566 
567 	if (!static_cpu_has(X86_FEATURE_ZEN)) {
568 		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
569 		wrmsrl(MSR_AMD64_LS_CFG, msr);
570 		return;
571 	}
572 
573 	if (tifn & _TIF_SSBD) {
574 		/*
575 		 * Since this can race with prctl(), block reentry on the
576 		 * same CPU.
577 		 */
578 		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
579 			return;
580 
581 		msr |= x86_amd_ls_cfg_ssbd_mask;
582 
583 		raw_spin_lock(&st->shared_state->lock);
584 		/* First sibling enables SSBD: */
585 		if (!st->shared_state->disable_state)
586 			wrmsrl(MSR_AMD64_LS_CFG, msr);
587 		st->shared_state->disable_state++;
588 		raw_spin_unlock(&st->shared_state->lock);
589 	} else {
590 		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
591 			return;
592 
593 		raw_spin_lock(&st->shared_state->lock);
594 		st->shared_state->disable_state--;
595 		if (!st->shared_state->disable_state)
596 			wrmsrl(MSR_AMD64_LS_CFG, msr);
597 		raw_spin_unlock(&st->shared_state->lock);
598 	}
599 }
600 #else
amd_set_core_ssb_state(unsigned long tifn)601 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
602 {
603 	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
604 
605 	wrmsrl(MSR_AMD64_LS_CFG, msr);
606 }
607 #endif
608 
amd_set_ssb_virt_state(unsigned long tifn)609 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
610 {
611 	/*
612 	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
613 	 * so ssbd_tif_to_spec_ctrl() just works.
614 	 */
615 	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
616 }
617 
618 /*
619  * Update the MSRs managing speculation control, during context switch.
620  *
621  * tifp: Previous task's thread flags
622  * tifn: Next task's thread flags
623  */
__speculation_ctrl_update(unsigned long tifp,unsigned long tifn)624 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
625 						      unsigned long tifn)
626 {
627 	unsigned long tif_diff = tifp ^ tifn;
628 	u64 msr = x86_spec_ctrl_base;
629 	bool updmsr = false;
630 
631 	lockdep_assert_irqs_disabled();
632 
633 	/* Handle change of TIF_SSBD depending on the mitigation method. */
634 	if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
635 		if (tif_diff & _TIF_SSBD)
636 			amd_set_ssb_virt_state(tifn);
637 	} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
638 		if (tif_diff & _TIF_SSBD)
639 			amd_set_core_ssb_state(tifn);
640 	} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
641 		   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
642 		updmsr |= !!(tif_diff & _TIF_SSBD);
643 		msr |= ssbd_tif_to_spec_ctrl(tifn);
644 	}
645 
646 	/* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
647 	if (IS_ENABLED(CONFIG_SMP) &&
648 	    static_branch_unlikely(&switch_to_cond_stibp)) {
649 		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
650 		msr |= stibp_tif_to_spec_ctrl(tifn);
651 	}
652 
653 	if (updmsr)
654 		update_spec_ctrl_cond(msr);
655 }
656 
speculation_ctrl_update_tif(struct task_struct * tsk)657 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
658 {
659 	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
660 		if (task_spec_ssb_disable(tsk))
661 			set_tsk_thread_flag(tsk, TIF_SSBD);
662 		else
663 			clear_tsk_thread_flag(tsk, TIF_SSBD);
664 
665 		if (task_spec_ib_disable(tsk))
666 			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
667 		else
668 			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
669 	}
670 	/* Return the updated threadinfo flags*/
671 	return read_task_thread_flags(tsk);
672 }
673 
speculation_ctrl_update(unsigned long tif)674 void speculation_ctrl_update(unsigned long tif)
675 {
676 	unsigned long flags;
677 
678 	/* Forced update. Make sure all relevant TIF flags are different */
679 	local_irq_save(flags);
680 	__speculation_ctrl_update(~tif, tif);
681 	local_irq_restore(flags);
682 }
683 
684 /* Called from seccomp/prctl update */
speculation_ctrl_update_current(void)685 void speculation_ctrl_update_current(void)
686 {
687 	preempt_disable();
688 	speculation_ctrl_update(speculation_ctrl_update_tif(current));
689 	preempt_enable();
690 }
691 
cr4_toggle_bits_irqsoff(unsigned long mask)692 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
693 {
694 	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
695 
696 	newval = cr4 ^ mask;
697 	if (newval != cr4) {
698 		this_cpu_write(cpu_tlbstate.cr4, newval);
699 		__write_cr4(newval);
700 	}
701 }
702 
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p)703 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
704 {
705 	unsigned long tifp, tifn;
706 
707 	tifn = read_task_thread_flags(next_p);
708 	tifp = read_task_thread_flags(prev_p);
709 
710 	switch_to_bitmap(tifp);
711 
712 	propagate_user_return_notify(prev_p, next_p);
713 
714 	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
715 	    arch_has_block_step()) {
716 		unsigned long debugctl, msk;
717 
718 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
719 		debugctl &= ~DEBUGCTLMSR_BTF;
720 		msk = tifn & _TIF_BLOCKSTEP;
721 		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
722 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
723 	}
724 
725 	if ((tifp ^ tifn) & _TIF_NOTSC)
726 		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
727 
728 	if ((tifp ^ tifn) & _TIF_NOCPUID)
729 		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
730 
731 	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
732 		__speculation_ctrl_update(tifp, tifn);
733 	} else {
734 		speculation_ctrl_update_tif(prev_p);
735 		tifn = speculation_ctrl_update_tif(next_p);
736 
737 		/* Enforce MSR update to ensure consistent state */
738 		__speculation_ctrl_update(~tifn, tifn);
739 	}
740 }
741 
742 /*
743  * Idle related variables and functions
744  */
745 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
746 EXPORT_SYMBOL(boot_option_idle_override);
747 
748 /*
749  * We use this if we don't have any better idle routine..
750  */
default_idle(void)751 void __cpuidle default_idle(void)
752 {
753 	raw_safe_halt();
754 	raw_local_irq_disable();
755 }
756 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
757 EXPORT_SYMBOL(default_idle);
758 #endif
759 
760 DEFINE_STATIC_CALL_NULL(x86_idle, default_idle);
761 
x86_idle_set(void)762 static bool x86_idle_set(void)
763 {
764 	return !!static_call_query(x86_idle);
765 }
766 
767 #ifndef CONFIG_SMP
play_dead(void)768 static inline void __noreturn play_dead(void)
769 {
770 	BUG();
771 }
772 #endif
773 
arch_cpu_idle_enter(void)774 void arch_cpu_idle_enter(void)
775 {
776 	tsc_verify_tsc_adjust(false);
777 	local_touch_nmi();
778 }
779 
arch_cpu_idle_dead(void)780 void __noreturn arch_cpu_idle_dead(void)
781 {
782 	play_dead();
783 }
784 
785 /*
786  * Called from the generic idle code.
787  */
arch_cpu_idle(void)788 void __cpuidle arch_cpu_idle(void)
789 {
790 	static_call(x86_idle)();
791 }
792 EXPORT_SYMBOL_GPL(arch_cpu_idle);
793 
794 #ifdef CONFIG_XEN
xen_set_default_idle(void)795 bool xen_set_default_idle(void)
796 {
797 	bool ret = x86_idle_set();
798 
799 	static_call_update(x86_idle, default_idle);
800 
801 	return ret;
802 }
803 #endif
804 
805 struct cpumask cpus_stop_mask;
806 
stop_this_cpu(void * dummy)807 void __noreturn stop_this_cpu(void *dummy)
808 {
809 	struct cpuinfo_x86 *c = this_cpu_ptr(&cpu_info);
810 	unsigned int cpu = smp_processor_id();
811 
812 	local_irq_disable();
813 
814 	/*
815 	 * Remove this CPU from the online mask and disable it
816 	 * unconditionally. This might be redundant in case that the reboot
817 	 * vector was handled late and stop_other_cpus() sent an NMI.
818 	 *
819 	 * According to SDM and APM NMIs can be accepted even after soft
820 	 * disabling the local APIC.
821 	 */
822 	set_cpu_online(cpu, false);
823 	disable_local_APIC();
824 	mcheck_cpu_clear(c);
825 
826 	/*
827 	 * Use wbinvd on processors that support SME. This provides support
828 	 * for performing a successful kexec when going from SME inactive
829 	 * to SME active (or vice-versa). The cache must be cleared so that
830 	 * if there are entries with the same physical address, both with and
831 	 * without the encryption bit, they don't race each other when flushed
832 	 * and potentially end up with the wrong entry being committed to
833 	 * memory.
834 	 *
835 	 * Test the CPUID bit directly because the machine might've cleared
836 	 * X86_FEATURE_SME due to cmdline options.
837 	 */
838 	if (c->extended_cpuid_level >= 0x8000001f && (cpuid_eax(0x8000001f) & BIT(0)))
839 		native_wbinvd();
840 
841 	/*
842 	 * This brings a cache line back and dirties it, but
843 	 * native_stop_other_cpus() will overwrite cpus_stop_mask after it
844 	 * observed that all CPUs reported stop. This write will invalidate
845 	 * the related cache line on this CPU.
846 	 */
847 	cpumask_clear_cpu(cpu, &cpus_stop_mask);
848 
849 	for (;;) {
850 		/*
851 		 * Use native_halt() so that memory contents don't change
852 		 * (stack usage and variables) after possibly issuing the
853 		 * native_wbinvd() above.
854 		 */
855 		native_halt();
856 	}
857 }
858 
859 /*
860  * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
861  * states (local apic timer and TSC stop).
862  *
863  * XXX this function is completely buggered vs RCU and tracing.
864  */
amd_e400_idle(void)865 static void amd_e400_idle(void)
866 {
867 	/*
868 	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
869 	 * gets set after static_cpu_has() places have been converted via
870 	 * alternatives.
871 	 */
872 	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
873 		default_idle();
874 		return;
875 	}
876 
877 	tick_broadcast_enter();
878 
879 	default_idle();
880 
881 	tick_broadcast_exit();
882 }
883 
884 /*
885  * Prefer MWAIT over HALT if MWAIT is supported, MWAIT_CPUID leaf
886  * exists and whenever MONITOR/MWAIT extensions are present there is at
887  * least one C1 substate.
888  *
889  * Do not prefer MWAIT if MONITOR instruction has a bug or idle=nomwait
890  * is passed to kernel commandline parameter.
891  */
prefer_mwait_c1_over_halt(const struct cpuinfo_x86 * c)892 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
893 {
894 	u32 eax, ebx, ecx, edx;
895 
896 	/* User has disallowed the use of MWAIT. Fallback to HALT */
897 	if (boot_option_idle_override == IDLE_NOMWAIT)
898 		return 0;
899 
900 	/* MWAIT is not supported on this platform. Fallback to HALT */
901 	if (!cpu_has(c, X86_FEATURE_MWAIT))
902 		return 0;
903 
904 	/* Monitor has a bug. Fallback to HALT */
905 	if (boot_cpu_has_bug(X86_BUG_MONITOR))
906 		return 0;
907 
908 	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
909 
910 	/*
911 	 * If MWAIT extensions are not available, it is safe to use MWAIT
912 	 * with EAX=0, ECX=0.
913 	 */
914 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED))
915 		return 1;
916 
917 	/*
918 	 * If MWAIT extensions are available, there should be at least one
919 	 * MWAIT C1 substate present.
920 	 */
921 	return (edx & MWAIT_C1_SUBSTATE_MASK);
922 }
923 
924 /*
925  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
926  * with interrupts enabled and no flags, which is backwards compatible with the
927  * original MWAIT implementation.
928  */
mwait_idle(void)929 static __cpuidle void mwait_idle(void)
930 {
931 	if (!current_set_polling_and_test()) {
932 		const void *addr = &current_thread_info()->flags;
933 
934 		alternative_input("", "clflush (%[addr])", X86_BUG_CLFLUSH_MONITOR, [addr] "a" (addr));
935 		__monitor(addr, 0, 0);
936 		if (!need_resched()) {
937 			__sti_mwait(0, 0);
938 			raw_local_irq_disable();
939 		}
940 	}
941 	__current_clr_polling();
942 }
943 
select_idle_routine(const struct cpuinfo_x86 * c)944 void select_idle_routine(const struct cpuinfo_x86 *c)
945 {
946 #ifdef CONFIG_SMP
947 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
948 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
949 #endif
950 	if (x86_idle_set() || boot_option_idle_override == IDLE_POLL)
951 		return;
952 
953 	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
954 		pr_info("using AMD E400 aware idle routine\n");
955 		static_call_update(x86_idle, amd_e400_idle);
956 	} else if (prefer_mwait_c1_over_halt(c)) {
957 		pr_info("using mwait in idle threads\n");
958 		static_call_update(x86_idle, mwait_idle);
959 	} else if (cpu_feature_enabled(X86_FEATURE_TDX_GUEST)) {
960 		pr_info("using TDX aware idle routine\n");
961 		static_call_update(x86_idle, tdx_halt);
962 	} else
963 		static_call_update(x86_idle, default_idle);
964 }
965 
amd_e400_c1e_apic_setup(void)966 void amd_e400_c1e_apic_setup(void)
967 {
968 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
969 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
970 		local_irq_disable();
971 		tick_broadcast_force();
972 		local_irq_enable();
973 	}
974 }
975 
arch_post_acpi_subsys_init(void)976 void __init arch_post_acpi_subsys_init(void)
977 {
978 	u32 lo, hi;
979 
980 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
981 		return;
982 
983 	/*
984 	 * AMD E400 detection needs to happen after ACPI has been enabled. If
985 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
986 	 * MSR_K8_INT_PENDING_MSG.
987 	 */
988 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
989 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
990 		return;
991 
992 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
993 
994 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
995 		mark_tsc_unstable("TSC halt in AMD C1E");
996 	pr_info("System has AMD C1E enabled\n");
997 }
998 
idle_setup(char * str)999 static int __init idle_setup(char *str)
1000 {
1001 	if (!str)
1002 		return -EINVAL;
1003 
1004 	if (!strcmp(str, "poll")) {
1005 		pr_info("using polling idle threads\n");
1006 		boot_option_idle_override = IDLE_POLL;
1007 		cpu_idle_poll_ctrl(true);
1008 	} else if (!strcmp(str, "halt")) {
1009 		/*
1010 		 * When the boot option of idle=halt is added, halt is
1011 		 * forced to be used for CPU idle. In such case CPU C2/C3
1012 		 * won't be used again.
1013 		 * To continue to load the CPU idle driver, don't touch
1014 		 * the boot_option_idle_override.
1015 		 */
1016 		static_call_update(x86_idle, default_idle);
1017 		boot_option_idle_override = IDLE_HALT;
1018 	} else if (!strcmp(str, "nomwait")) {
1019 		/*
1020 		 * If the boot option of "idle=nomwait" is added,
1021 		 * it means that mwait will be disabled for CPU C1/C2/C3
1022 		 * states.
1023 		 */
1024 		boot_option_idle_override = IDLE_NOMWAIT;
1025 	} else
1026 		return -1;
1027 
1028 	return 0;
1029 }
1030 early_param("idle", idle_setup);
1031 
arch_align_stack(unsigned long sp)1032 unsigned long arch_align_stack(unsigned long sp)
1033 {
1034 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1035 		sp -= get_random_u32_below(8192);
1036 	return sp & ~0xf;
1037 }
1038 
arch_randomize_brk(struct mm_struct * mm)1039 unsigned long arch_randomize_brk(struct mm_struct *mm)
1040 {
1041 	if (mmap_is_ia32())
1042 		return randomize_page(mm->brk, SZ_32M);
1043 
1044 	return randomize_page(mm->brk, SZ_1G);
1045 }
1046 
1047 /*
1048  * Called from fs/proc with a reference on @p to find the function
1049  * which called into schedule(). This needs to be done carefully
1050  * because the task might wake up and we might look at a stack
1051  * changing under us.
1052  */
__get_wchan(struct task_struct * p)1053 unsigned long __get_wchan(struct task_struct *p)
1054 {
1055 	struct unwind_state state;
1056 	unsigned long addr = 0;
1057 
1058 	if (!try_get_task_stack(p))
1059 		return 0;
1060 
1061 	for (unwind_start(&state, p, NULL, NULL); !unwind_done(&state);
1062 	     unwind_next_frame(&state)) {
1063 		addr = unwind_get_return_address(&state);
1064 		if (!addr)
1065 			break;
1066 		if (in_sched_functions(addr))
1067 			continue;
1068 		break;
1069 	}
1070 
1071 	put_task_stack(p);
1072 
1073 	return addr;
1074 }
1075 
do_arch_prctl_common(int option,unsigned long arg2)1076 long do_arch_prctl_common(int option, unsigned long arg2)
1077 {
1078 	switch (option) {
1079 	case ARCH_GET_CPUID:
1080 		return get_cpuid_mode();
1081 	case ARCH_SET_CPUID:
1082 		return set_cpuid_mode(arg2);
1083 	case ARCH_GET_XCOMP_SUPP:
1084 	case ARCH_GET_XCOMP_PERM:
1085 	case ARCH_REQ_XCOMP_PERM:
1086 	case ARCH_GET_XCOMP_GUEST_PERM:
1087 	case ARCH_REQ_XCOMP_GUEST_PERM:
1088 		return fpu_xstate_prctl(option, arg2);
1089 	}
1090 
1091 	return -EINVAL;
1092 }
1093