1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 *******************************************************************************
4 **
5 ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
6 ** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved.
7 **
8 **
9 *******************************************************************************
10 ******************************************************************************/
11
12 /*
13 * lowcomms.c
14 *
15 * This is the "low-level" comms layer.
16 *
17 * It is responsible for sending/receiving messages
18 * from other nodes in the cluster.
19 *
20 * Cluster nodes are referred to by their nodeids. nodeids are
21 * simply 32 bit numbers to the locking module - if they need to
22 * be expanded for the cluster infrastructure then that is its
23 * responsibility. It is this layer's
24 * responsibility to resolve these into IP address or
25 * whatever it needs for inter-node communication.
26 *
27 * The comms level is two kernel threads that deal mainly with
28 * the receiving of messages from other nodes and passing them
29 * up to the mid-level comms layer (which understands the
30 * message format) for execution by the locking core, and
31 * a send thread which does all the setting up of connections
32 * to remote nodes and the sending of data. Threads are not allowed
33 * to send their own data because it may cause them to wait in times
34 * of high load. Also, this way, the sending thread can collect together
35 * messages bound for one node and send them in one block.
36 *
37 * lowcomms will choose to use either TCP or SCTP as its transport layer
38 * depending on the configuration variable 'protocol'. This should be set
39 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40 * cluster-wide mechanism as it must be the same on all nodes of the cluster
41 * for the DLM to function.
42 *
43 */
44
45 #include <asm/ioctls.h>
46 #include <net/sock.h>
47 #include <net/tcp.h>
48 #include <linux/pagemap.h>
49 #include <linux/file.h>
50 #include <linux/mutex.h>
51 #include <linux/sctp.h>
52 #include <linux/slab.h>
53 #include <net/sctp/sctp.h>
54 #include <net/ipv6.h>
55
56 #include <trace/events/dlm.h>
57 #include <trace/events/sock.h>
58
59 #include "dlm_internal.h"
60 #include "lowcomms.h"
61 #include "midcomms.h"
62 #include "memory.h"
63 #include "config.h"
64
65 #define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(5000)
66 #define NEEDED_RMEM (4*1024*1024)
67
68 struct connection {
69 struct socket *sock; /* NULL if not connected */
70 uint32_t nodeid; /* So we know who we are in the list */
71 /* this semaphore is used to allow parallel recv/send in read
72 * lock mode. When we release a sock we need to held the write lock.
73 *
74 * However this is locking code and not nice. When we remove the
75 * othercon handling we can look into other mechanism to synchronize
76 * io handling to call sock_release() at the right time.
77 */
78 struct rw_semaphore sock_lock;
79 unsigned long flags;
80 #define CF_APP_LIMITED 0
81 #define CF_RECV_PENDING 1
82 #define CF_SEND_PENDING 2
83 #define CF_RECV_INTR 3
84 #define CF_IO_STOP 4
85 #define CF_IS_OTHERCON 5
86 struct list_head writequeue; /* List of outgoing writequeue_entries */
87 spinlock_t writequeue_lock;
88 int retries;
89 struct hlist_node list;
90 /* due some connect()/accept() races we currently have this cross over
91 * connection attempt second connection for one node.
92 *
93 * There is a solution to avoid the race by introducing a connect
94 * rule as e.g. our_nodeid > nodeid_to_connect who is allowed to
95 * connect. Otherside can connect but will only be considered that
96 * the other side wants to have a reconnect.
97 *
98 * However changing to this behaviour will break backwards compatible.
99 * In a DLM protocol major version upgrade we should remove this!
100 */
101 struct connection *othercon;
102 struct work_struct rwork; /* receive worker */
103 struct work_struct swork; /* send worker */
104 wait_queue_head_t shutdown_wait;
105 unsigned char rx_leftover_buf[DLM_MAX_SOCKET_BUFSIZE];
106 int rx_leftover;
107 int mark;
108 int addr_count;
109 int curr_addr_index;
110 struct sockaddr_storage addr[DLM_MAX_ADDR_COUNT];
111 spinlock_t addrs_lock;
112 struct rcu_head rcu;
113 };
114 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
115
116 struct listen_connection {
117 struct socket *sock;
118 struct work_struct rwork;
119 };
120
121 #define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end)
122 #define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset)
123
124 /* An entry waiting to be sent */
125 struct writequeue_entry {
126 struct list_head list;
127 struct page *page;
128 int offset;
129 int len;
130 int end;
131 int users;
132 bool dirty;
133 struct connection *con;
134 struct list_head msgs;
135 struct kref ref;
136 };
137
138 struct dlm_msg {
139 struct writequeue_entry *entry;
140 struct dlm_msg *orig_msg;
141 bool retransmit;
142 void *ppc;
143 int len;
144 int idx; /* new()/commit() idx exchange */
145
146 struct list_head list;
147 struct kref ref;
148 };
149
150 struct processqueue_entry {
151 unsigned char *buf;
152 int nodeid;
153 int buflen;
154
155 struct list_head list;
156 };
157
158 struct dlm_proto_ops {
159 bool try_new_addr;
160 const char *name;
161 int proto;
162
163 int (*connect)(struct connection *con, struct socket *sock,
164 struct sockaddr *addr, int addr_len);
165 void (*sockopts)(struct socket *sock);
166 int (*bind)(struct socket *sock);
167 int (*listen_validate)(void);
168 void (*listen_sockopts)(struct socket *sock);
169 int (*listen_bind)(struct socket *sock);
170 };
171
172 static struct listen_sock_callbacks {
173 void (*sk_error_report)(struct sock *);
174 void (*sk_data_ready)(struct sock *);
175 void (*sk_state_change)(struct sock *);
176 void (*sk_write_space)(struct sock *);
177 } listen_sock;
178
179 static struct listen_connection listen_con;
180 static struct sockaddr_storage dlm_local_addr[DLM_MAX_ADDR_COUNT];
181 static int dlm_local_count;
182
183 /* Work queues */
184 static struct workqueue_struct *io_workqueue;
185 static struct workqueue_struct *process_workqueue;
186
187 static struct hlist_head connection_hash[CONN_HASH_SIZE];
188 static DEFINE_SPINLOCK(connections_lock);
189 DEFINE_STATIC_SRCU(connections_srcu);
190
191 static const struct dlm_proto_ops *dlm_proto_ops;
192
193 #define DLM_IO_SUCCESS 0
194 #define DLM_IO_END 1
195 #define DLM_IO_EOF 2
196 #define DLM_IO_RESCHED 3
197
198 static void process_recv_sockets(struct work_struct *work);
199 static void process_send_sockets(struct work_struct *work);
200 static void process_dlm_messages(struct work_struct *work);
201
202 static DECLARE_WORK(process_work, process_dlm_messages);
203 static DEFINE_SPINLOCK(processqueue_lock);
204 static bool process_dlm_messages_pending;
205 static LIST_HEAD(processqueue);
206
dlm_lowcomms_is_running(void)207 bool dlm_lowcomms_is_running(void)
208 {
209 return !!listen_con.sock;
210 }
211
lowcomms_queue_swork(struct connection * con)212 static void lowcomms_queue_swork(struct connection *con)
213 {
214 assert_spin_locked(&con->writequeue_lock);
215
216 if (!test_bit(CF_IO_STOP, &con->flags) &&
217 !test_bit(CF_APP_LIMITED, &con->flags) &&
218 !test_and_set_bit(CF_SEND_PENDING, &con->flags))
219 queue_work(io_workqueue, &con->swork);
220 }
221
lowcomms_queue_rwork(struct connection * con)222 static void lowcomms_queue_rwork(struct connection *con)
223 {
224 #ifdef CONFIG_LOCKDEP
225 WARN_ON_ONCE(!lockdep_sock_is_held(con->sock->sk));
226 #endif
227
228 if (!test_bit(CF_IO_STOP, &con->flags) &&
229 !test_and_set_bit(CF_RECV_PENDING, &con->flags))
230 queue_work(io_workqueue, &con->rwork);
231 }
232
writequeue_entry_ctor(void * data)233 static void writequeue_entry_ctor(void *data)
234 {
235 struct writequeue_entry *entry = data;
236
237 INIT_LIST_HEAD(&entry->msgs);
238 }
239
dlm_lowcomms_writequeue_cache_create(void)240 struct kmem_cache *dlm_lowcomms_writequeue_cache_create(void)
241 {
242 return kmem_cache_create("dlm_writequeue", sizeof(struct writequeue_entry),
243 0, 0, writequeue_entry_ctor);
244 }
245
dlm_lowcomms_msg_cache_create(void)246 struct kmem_cache *dlm_lowcomms_msg_cache_create(void)
247 {
248 return kmem_cache_create("dlm_msg", sizeof(struct dlm_msg), 0, 0, NULL);
249 }
250
251 /* need to held writequeue_lock */
con_next_wq(struct connection * con)252 static struct writequeue_entry *con_next_wq(struct connection *con)
253 {
254 struct writequeue_entry *e;
255
256 e = list_first_entry_or_null(&con->writequeue, struct writequeue_entry,
257 list);
258 /* if len is zero nothing is to send, if there are users filling
259 * buffers we wait until the users are done so we can send more.
260 */
261 if (!e || e->users || e->len == 0)
262 return NULL;
263
264 return e;
265 }
266
__find_con(int nodeid,int r)267 static struct connection *__find_con(int nodeid, int r)
268 {
269 struct connection *con;
270
271 hlist_for_each_entry_rcu(con, &connection_hash[r], list) {
272 if (con->nodeid == nodeid)
273 return con;
274 }
275
276 return NULL;
277 }
278
dlm_con_init(struct connection * con,int nodeid)279 static void dlm_con_init(struct connection *con, int nodeid)
280 {
281 con->nodeid = nodeid;
282 init_rwsem(&con->sock_lock);
283 INIT_LIST_HEAD(&con->writequeue);
284 spin_lock_init(&con->writequeue_lock);
285 INIT_WORK(&con->swork, process_send_sockets);
286 INIT_WORK(&con->rwork, process_recv_sockets);
287 spin_lock_init(&con->addrs_lock);
288 init_waitqueue_head(&con->shutdown_wait);
289 }
290
291 /*
292 * If 'allocation' is zero then we don't attempt to create a new
293 * connection structure for this node.
294 */
nodeid2con(int nodeid,gfp_t alloc)295 static struct connection *nodeid2con(int nodeid, gfp_t alloc)
296 {
297 struct connection *con, *tmp;
298 int r;
299
300 r = nodeid_hash(nodeid);
301 con = __find_con(nodeid, r);
302 if (con || !alloc)
303 return con;
304
305 con = kzalloc(sizeof(*con), alloc);
306 if (!con)
307 return NULL;
308
309 dlm_con_init(con, nodeid);
310
311 spin_lock(&connections_lock);
312 /* Because multiple workqueues/threads calls this function it can
313 * race on multiple cpu's. Instead of locking hot path __find_con()
314 * we just check in rare cases of recently added nodes again
315 * under protection of connections_lock. If this is the case we
316 * abort our connection creation and return the existing connection.
317 */
318 tmp = __find_con(nodeid, r);
319 if (tmp) {
320 spin_unlock(&connections_lock);
321 kfree(con);
322 return tmp;
323 }
324
325 hlist_add_head_rcu(&con->list, &connection_hash[r]);
326 spin_unlock(&connections_lock);
327
328 return con;
329 }
330
addr_compare(const struct sockaddr_storage * x,const struct sockaddr_storage * y)331 static int addr_compare(const struct sockaddr_storage *x,
332 const struct sockaddr_storage *y)
333 {
334 switch (x->ss_family) {
335 case AF_INET: {
336 struct sockaddr_in *sinx = (struct sockaddr_in *)x;
337 struct sockaddr_in *siny = (struct sockaddr_in *)y;
338 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
339 return 0;
340 if (sinx->sin_port != siny->sin_port)
341 return 0;
342 break;
343 }
344 case AF_INET6: {
345 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
346 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
347 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
348 return 0;
349 if (sinx->sin6_port != siny->sin6_port)
350 return 0;
351 break;
352 }
353 default:
354 return 0;
355 }
356 return 1;
357 }
358
nodeid_to_addr(int nodeid,struct sockaddr_storage * sas_out,struct sockaddr * sa_out,bool try_new_addr,unsigned int * mark)359 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
360 struct sockaddr *sa_out, bool try_new_addr,
361 unsigned int *mark)
362 {
363 struct sockaddr_storage sas;
364 struct connection *con;
365 int idx;
366
367 if (!dlm_local_count)
368 return -1;
369
370 idx = srcu_read_lock(&connections_srcu);
371 con = nodeid2con(nodeid, 0);
372 if (!con) {
373 srcu_read_unlock(&connections_srcu, idx);
374 return -ENOENT;
375 }
376
377 spin_lock(&con->addrs_lock);
378 if (!con->addr_count) {
379 spin_unlock(&con->addrs_lock);
380 srcu_read_unlock(&connections_srcu, idx);
381 return -ENOENT;
382 }
383
384 memcpy(&sas, &con->addr[con->curr_addr_index],
385 sizeof(struct sockaddr_storage));
386
387 if (try_new_addr) {
388 con->curr_addr_index++;
389 if (con->curr_addr_index == con->addr_count)
390 con->curr_addr_index = 0;
391 }
392
393 *mark = con->mark;
394 spin_unlock(&con->addrs_lock);
395
396 if (sas_out)
397 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
398
399 if (!sa_out) {
400 srcu_read_unlock(&connections_srcu, idx);
401 return 0;
402 }
403
404 if (dlm_local_addr[0].ss_family == AF_INET) {
405 struct sockaddr_in *in4 = (struct sockaddr_in *) &sas;
406 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
407 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
408 } else {
409 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &sas;
410 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
411 ret6->sin6_addr = in6->sin6_addr;
412 }
413
414 srcu_read_unlock(&connections_srcu, idx);
415 return 0;
416 }
417
addr_to_nodeid(struct sockaddr_storage * addr,int * nodeid,unsigned int * mark)418 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid,
419 unsigned int *mark)
420 {
421 struct connection *con;
422 int i, idx, addr_i;
423
424 idx = srcu_read_lock(&connections_srcu);
425 for (i = 0; i < CONN_HASH_SIZE; i++) {
426 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
427 WARN_ON_ONCE(!con->addr_count);
428
429 spin_lock(&con->addrs_lock);
430 for (addr_i = 0; addr_i < con->addr_count; addr_i++) {
431 if (addr_compare(&con->addr[addr_i], addr)) {
432 *nodeid = con->nodeid;
433 *mark = con->mark;
434 spin_unlock(&con->addrs_lock);
435 srcu_read_unlock(&connections_srcu, idx);
436 return 0;
437 }
438 }
439 spin_unlock(&con->addrs_lock);
440 }
441 }
442 srcu_read_unlock(&connections_srcu, idx);
443
444 return -ENOENT;
445 }
446
dlm_lowcomms_con_has_addr(const struct connection * con,const struct sockaddr_storage * addr)447 static bool dlm_lowcomms_con_has_addr(const struct connection *con,
448 const struct sockaddr_storage *addr)
449 {
450 int i;
451
452 for (i = 0; i < con->addr_count; i++) {
453 if (addr_compare(&con->addr[i], addr))
454 return true;
455 }
456
457 return false;
458 }
459
dlm_lowcomms_addr(int nodeid,struct sockaddr_storage * addr,int len)460 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
461 {
462 struct connection *con;
463 bool ret;
464 int idx;
465
466 idx = srcu_read_lock(&connections_srcu);
467 con = nodeid2con(nodeid, GFP_NOFS);
468 if (!con) {
469 srcu_read_unlock(&connections_srcu, idx);
470 return -ENOMEM;
471 }
472
473 spin_lock(&con->addrs_lock);
474 if (!con->addr_count) {
475 memcpy(&con->addr[0], addr, sizeof(*addr));
476 con->addr_count = 1;
477 con->mark = dlm_config.ci_mark;
478 spin_unlock(&con->addrs_lock);
479 srcu_read_unlock(&connections_srcu, idx);
480 return 0;
481 }
482
483 ret = dlm_lowcomms_con_has_addr(con, addr);
484 if (ret) {
485 spin_unlock(&con->addrs_lock);
486 srcu_read_unlock(&connections_srcu, idx);
487 return -EEXIST;
488 }
489
490 if (con->addr_count >= DLM_MAX_ADDR_COUNT) {
491 spin_unlock(&con->addrs_lock);
492 srcu_read_unlock(&connections_srcu, idx);
493 return -ENOSPC;
494 }
495
496 memcpy(&con->addr[con->addr_count++], addr, sizeof(*addr));
497 srcu_read_unlock(&connections_srcu, idx);
498 spin_unlock(&con->addrs_lock);
499 return 0;
500 }
501
502 /* Data available on socket or listen socket received a connect */
lowcomms_data_ready(struct sock * sk)503 static void lowcomms_data_ready(struct sock *sk)
504 {
505 struct connection *con = sock2con(sk);
506
507 trace_sk_data_ready(sk);
508
509 set_bit(CF_RECV_INTR, &con->flags);
510 lowcomms_queue_rwork(con);
511 }
512
lowcomms_write_space(struct sock * sk)513 static void lowcomms_write_space(struct sock *sk)
514 {
515 struct connection *con = sock2con(sk);
516
517 clear_bit(SOCK_NOSPACE, &con->sock->flags);
518
519 spin_lock_bh(&con->writequeue_lock);
520 if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
521 con->sock->sk->sk_write_pending--;
522 clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
523 }
524
525 lowcomms_queue_swork(con);
526 spin_unlock_bh(&con->writequeue_lock);
527 }
528
lowcomms_state_change(struct sock * sk)529 static void lowcomms_state_change(struct sock *sk)
530 {
531 /* SCTP layer is not calling sk_data_ready when the connection
532 * is done, so we catch the signal through here.
533 */
534 if (sk->sk_shutdown == RCV_SHUTDOWN)
535 lowcomms_data_ready(sk);
536 }
537
lowcomms_listen_data_ready(struct sock * sk)538 static void lowcomms_listen_data_ready(struct sock *sk)
539 {
540 trace_sk_data_ready(sk);
541
542 queue_work(io_workqueue, &listen_con.rwork);
543 }
544
dlm_lowcomms_connect_node(int nodeid)545 int dlm_lowcomms_connect_node(int nodeid)
546 {
547 struct connection *con;
548 int idx;
549
550 idx = srcu_read_lock(&connections_srcu);
551 con = nodeid2con(nodeid, 0);
552 if (WARN_ON_ONCE(!con)) {
553 srcu_read_unlock(&connections_srcu, idx);
554 return -ENOENT;
555 }
556
557 down_read(&con->sock_lock);
558 if (!con->sock) {
559 spin_lock_bh(&con->writequeue_lock);
560 lowcomms_queue_swork(con);
561 spin_unlock_bh(&con->writequeue_lock);
562 }
563 up_read(&con->sock_lock);
564 srcu_read_unlock(&connections_srcu, idx);
565
566 cond_resched();
567 return 0;
568 }
569
dlm_lowcomms_nodes_set_mark(int nodeid,unsigned int mark)570 int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark)
571 {
572 struct connection *con;
573 int idx;
574
575 idx = srcu_read_lock(&connections_srcu);
576 con = nodeid2con(nodeid, 0);
577 if (!con) {
578 srcu_read_unlock(&connections_srcu, idx);
579 return -ENOENT;
580 }
581
582 spin_lock(&con->addrs_lock);
583 con->mark = mark;
584 spin_unlock(&con->addrs_lock);
585 srcu_read_unlock(&connections_srcu, idx);
586 return 0;
587 }
588
lowcomms_error_report(struct sock * sk)589 static void lowcomms_error_report(struct sock *sk)
590 {
591 struct connection *con = sock2con(sk);
592 struct inet_sock *inet;
593
594 inet = inet_sk(sk);
595 switch (sk->sk_family) {
596 case AF_INET:
597 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
598 "sending to node %d at %pI4, dport %d, "
599 "sk_err=%d/%d\n", dlm_our_nodeid(),
600 con->nodeid, &inet->inet_daddr,
601 ntohs(inet->inet_dport), sk->sk_err,
602 READ_ONCE(sk->sk_err_soft));
603 break;
604 #if IS_ENABLED(CONFIG_IPV6)
605 case AF_INET6:
606 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
607 "sending to node %d at %pI6c, "
608 "dport %d, sk_err=%d/%d\n", dlm_our_nodeid(),
609 con->nodeid, &sk->sk_v6_daddr,
610 ntohs(inet->inet_dport), sk->sk_err,
611 READ_ONCE(sk->sk_err_soft));
612 break;
613 #endif
614 default:
615 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
616 "invalid socket family %d set, "
617 "sk_err=%d/%d\n", dlm_our_nodeid(),
618 sk->sk_family, sk->sk_err,
619 READ_ONCE(sk->sk_err_soft));
620 break;
621 }
622
623 dlm_midcomms_unack_msg_resend(con->nodeid);
624
625 listen_sock.sk_error_report(sk);
626 }
627
restore_callbacks(struct sock * sk)628 static void restore_callbacks(struct sock *sk)
629 {
630 #ifdef CONFIG_LOCKDEP
631 WARN_ON_ONCE(!lockdep_sock_is_held(sk));
632 #endif
633
634 sk->sk_user_data = NULL;
635 sk->sk_data_ready = listen_sock.sk_data_ready;
636 sk->sk_state_change = listen_sock.sk_state_change;
637 sk->sk_write_space = listen_sock.sk_write_space;
638 sk->sk_error_report = listen_sock.sk_error_report;
639 }
640
641 /* Make a socket active */
add_sock(struct socket * sock,struct connection * con)642 static void add_sock(struct socket *sock, struct connection *con)
643 {
644 struct sock *sk = sock->sk;
645
646 lock_sock(sk);
647 con->sock = sock;
648
649 sk->sk_user_data = con;
650 sk->sk_data_ready = lowcomms_data_ready;
651 sk->sk_write_space = lowcomms_write_space;
652 if (dlm_config.ci_protocol == DLM_PROTO_SCTP)
653 sk->sk_state_change = lowcomms_state_change;
654 sk->sk_allocation = GFP_NOFS;
655 sk->sk_use_task_frag = false;
656 sk->sk_error_report = lowcomms_error_report;
657 release_sock(sk);
658 }
659
660 /* Add the port number to an IPv6 or 4 sockaddr and return the address
661 length */
make_sockaddr(struct sockaddr_storage * saddr,uint16_t port,int * addr_len)662 static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
663 int *addr_len)
664 {
665 saddr->ss_family = dlm_local_addr[0].ss_family;
666 if (saddr->ss_family == AF_INET) {
667 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
668 in4_addr->sin_port = cpu_to_be16(port);
669 *addr_len = sizeof(struct sockaddr_in);
670 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
671 } else {
672 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
673 in6_addr->sin6_port = cpu_to_be16(port);
674 *addr_len = sizeof(struct sockaddr_in6);
675 }
676 memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
677 }
678
dlm_page_release(struct kref * kref)679 static void dlm_page_release(struct kref *kref)
680 {
681 struct writequeue_entry *e = container_of(kref, struct writequeue_entry,
682 ref);
683
684 __free_page(e->page);
685 dlm_free_writequeue(e);
686 }
687
dlm_msg_release(struct kref * kref)688 static void dlm_msg_release(struct kref *kref)
689 {
690 struct dlm_msg *msg = container_of(kref, struct dlm_msg, ref);
691
692 kref_put(&msg->entry->ref, dlm_page_release);
693 dlm_free_msg(msg);
694 }
695
free_entry(struct writequeue_entry * e)696 static void free_entry(struct writequeue_entry *e)
697 {
698 struct dlm_msg *msg, *tmp;
699
700 list_for_each_entry_safe(msg, tmp, &e->msgs, list) {
701 if (msg->orig_msg) {
702 msg->orig_msg->retransmit = false;
703 kref_put(&msg->orig_msg->ref, dlm_msg_release);
704 }
705
706 list_del(&msg->list);
707 kref_put(&msg->ref, dlm_msg_release);
708 }
709
710 list_del(&e->list);
711 kref_put(&e->ref, dlm_page_release);
712 }
713
dlm_close_sock(struct socket ** sock)714 static void dlm_close_sock(struct socket **sock)
715 {
716 lock_sock((*sock)->sk);
717 restore_callbacks((*sock)->sk);
718 release_sock((*sock)->sk);
719
720 sock_release(*sock);
721 *sock = NULL;
722 }
723
allow_connection_io(struct connection * con)724 static void allow_connection_io(struct connection *con)
725 {
726 if (con->othercon)
727 clear_bit(CF_IO_STOP, &con->othercon->flags);
728 clear_bit(CF_IO_STOP, &con->flags);
729 }
730
stop_connection_io(struct connection * con)731 static void stop_connection_io(struct connection *con)
732 {
733 if (con->othercon)
734 stop_connection_io(con->othercon);
735
736 spin_lock_bh(&con->writequeue_lock);
737 set_bit(CF_IO_STOP, &con->flags);
738 spin_unlock_bh(&con->writequeue_lock);
739
740 down_write(&con->sock_lock);
741 if (con->sock) {
742 lock_sock(con->sock->sk);
743 restore_callbacks(con->sock->sk);
744 release_sock(con->sock->sk);
745 }
746 up_write(&con->sock_lock);
747
748 cancel_work_sync(&con->swork);
749 cancel_work_sync(&con->rwork);
750 }
751
752 /* Close a remote connection and tidy up */
close_connection(struct connection * con,bool and_other)753 static void close_connection(struct connection *con, bool and_other)
754 {
755 struct writequeue_entry *e;
756
757 if (con->othercon && and_other)
758 close_connection(con->othercon, false);
759
760 down_write(&con->sock_lock);
761 if (!con->sock) {
762 up_write(&con->sock_lock);
763 return;
764 }
765
766 dlm_close_sock(&con->sock);
767
768 /* if we send a writequeue entry only a half way, we drop the
769 * whole entry because reconnection and that we not start of the
770 * middle of a msg which will confuse the other end.
771 *
772 * we can always drop messages because retransmits, but what we
773 * cannot allow is to transmit half messages which may be processed
774 * at the other side.
775 *
776 * our policy is to start on a clean state when disconnects, we don't
777 * know what's send/received on transport layer in this case.
778 */
779 spin_lock_bh(&con->writequeue_lock);
780 if (!list_empty(&con->writequeue)) {
781 e = list_first_entry(&con->writequeue, struct writequeue_entry,
782 list);
783 if (e->dirty)
784 free_entry(e);
785 }
786 spin_unlock_bh(&con->writequeue_lock);
787
788 con->rx_leftover = 0;
789 con->retries = 0;
790 clear_bit(CF_APP_LIMITED, &con->flags);
791 clear_bit(CF_RECV_PENDING, &con->flags);
792 clear_bit(CF_SEND_PENDING, &con->flags);
793 up_write(&con->sock_lock);
794 }
795
shutdown_connection(struct connection * con,bool and_other)796 static void shutdown_connection(struct connection *con, bool and_other)
797 {
798 int ret;
799
800 if (con->othercon && and_other)
801 shutdown_connection(con->othercon, false);
802
803 flush_workqueue(io_workqueue);
804 down_read(&con->sock_lock);
805 /* nothing to shutdown */
806 if (!con->sock) {
807 up_read(&con->sock_lock);
808 return;
809 }
810
811 ret = kernel_sock_shutdown(con->sock, SHUT_WR);
812 up_read(&con->sock_lock);
813 if (ret) {
814 log_print("Connection %p failed to shutdown: %d will force close",
815 con, ret);
816 goto force_close;
817 } else {
818 ret = wait_event_timeout(con->shutdown_wait, !con->sock,
819 DLM_SHUTDOWN_WAIT_TIMEOUT);
820 if (ret == 0) {
821 log_print("Connection %p shutdown timed out, will force close",
822 con);
823 goto force_close;
824 }
825 }
826
827 return;
828
829 force_close:
830 close_connection(con, false);
831 }
832
new_processqueue_entry(int nodeid,int buflen)833 static struct processqueue_entry *new_processqueue_entry(int nodeid,
834 int buflen)
835 {
836 struct processqueue_entry *pentry;
837
838 pentry = kmalloc(sizeof(*pentry), GFP_NOFS);
839 if (!pentry)
840 return NULL;
841
842 pentry->buf = kmalloc(buflen, GFP_NOFS);
843 if (!pentry->buf) {
844 kfree(pentry);
845 return NULL;
846 }
847
848 pentry->nodeid = nodeid;
849 return pentry;
850 }
851
free_processqueue_entry(struct processqueue_entry * pentry)852 static void free_processqueue_entry(struct processqueue_entry *pentry)
853 {
854 kfree(pentry->buf);
855 kfree(pentry);
856 }
857
858 struct dlm_processed_nodes {
859 int nodeid;
860
861 struct list_head list;
862 };
863
process_dlm_messages(struct work_struct * work)864 static void process_dlm_messages(struct work_struct *work)
865 {
866 struct processqueue_entry *pentry;
867
868 spin_lock(&processqueue_lock);
869 pentry = list_first_entry_or_null(&processqueue,
870 struct processqueue_entry, list);
871 if (WARN_ON_ONCE(!pentry)) {
872 process_dlm_messages_pending = false;
873 spin_unlock(&processqueue_lock);
874 return;
875 }
876
877 list_del(&pentry->list);
878 spin_unlock(&processqueue_lock);
879
880 for (;;) {
881 dlm_process_incoming_buffer(pentry->nodeid, pentry->buf,
882 pentry->buflen);
883 free_processqueue_entry(pentry);
884
885 spin_lock(&processqueue_lock);
886 pentry = list_first_entry_or_null(&processqueue,
887 struct processqueue_entry, list);
888 if (!pentry) {
889 process_dlm_messages_pending = false;
890 spin_unlock(&processqueue_lock);
891 break;
892 }
893
894 list_del(&pentry->list);
895 spin_unlock(&processqueue_lock);
896 }
897 }
898
899 /* Data received from remote end */
receive_from_sock(struct connection * con,int buflen)900 static int receive_from_sock(struct connection *con, int buflen)
901 {
902 struct processqueue_entry *pentry;
903 int ret, buflen_real;
904 struct msghdr msg;
905 struct kvec iov;
906
907 pentry = new_processqueue_entry(con->nodeid, buflen);
908 if (!pentry)
909 return DLM_IO_RESCHED;
910
911 memcpy(pentry->buf, con->rx_leftover_buf, con->rx_leftover);
912
913 /* calculate new buffer parameter regarding last receive and
914 * possible leftover bytes
915 */
916 iov.iov_base = pentry->buf + con->rx_leftover;
917 iov.iov_len = buflen - con->rx_leftover;
918
919 memset(&msg, 0, sizeof(msg));
920 msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
921 clear_bit(CF_RECV_INTR, &con->flags);
922 again:
923 ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len,
924 msg.msg_flags);
925 trace_dlm_recv(con->nodeid, ret);
926 if (ret == -EAGAIN) {
927 lock_sock(con->sock->sk);
928 if (test_and_clear_bit(CF_RECV_INTR, &con->flags)) {
929 release_sock(con->sock->sk);
930 goto again;
931 }
932
933 clear_bit(CF_RECV_PENDING, &con->flags);
934 release_sock(con->sock->sk);
935 free_processqueue_entry(pentry);
936 return DLM_IO_END;
937 } else if (ret == 0) {
938 /* close will clear CF_RECV_PENDING */
939 free_processqueue_entry(pentry);
940 return DLM_IO_EOF;
941 } else if (ret < 0) {
942 free_processqueue_entry(pentry);
943 return ret;
944 }
945
946 /* new buflen according readed bytes and leftover from last receive */
947 buflen_real = ret + con->rx_leftover;
948 ret = dlm_validate_incoming_buffer(con->nodeid, pentry->buf,
949 buflen_real);
950 if (ret < 0) {
951 free_processqueue_entry(pentry);
952 return ret;
953 }
954
955 pentry->buflen = ret;
956
957 /* calculate leftover bytes from process and put it into begin of
958 * the receive buffer, so next receive we have the full message
959 * at the start address of the receive buffer.
960 */
961 con->rx_leftover = buflen_real - ret;
962 memmove(con->rx_leftover_buf, pentry->buf + ret,
963 con->rx_leftover);
964
965 spin_lock(&processqueue_lock);
966 list_add_tail(&pentry->list, &processqueue);
967 if (!process_dlm_messages_pending) {
968 process_dlm_messages_pending = true;
969 queue_work(process_workqueue, &process_work);
970 }
971 spin_unlock(&processqueue_lock);
972
973 return DLM_IO_SUCCESS;
974 }
975
976 /* Listening socket is busy, accept a connection */
accept_from_sock(void)977 static int accept_from_sock(void)
978 {
979 struct sockaddr_storage peeraddr;
980 int len, idx, result, nodeid;
981 struct connection *newcon;
982 struct socket *newsock;
983 unsigned int mark;
984
985 result = kernel_accept(listen_con.sock, &newsock, O_NONBLOCK);
986 if (result == -EAGAIN)
987 return DLM_IO_END;
988 else if (result < 0)
989 goto accept_err;
990
991 /* Get the connected socket's peer */
992 memset(&peeraddr, 0, sizeof(peeraddr));
993 len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
994 if (len < 0) {
995 result = -ECONNABORTED;
996 goto accept_err;
997 }
998
999 /* Get the new node's NODEID */
1000 make_sockaddr(&peeraddr, 0, &len);
1001 if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) {
1002 switch (peeraddr.ss_family) {
1003 case AF_INET: {
1004 struct sockaddr_in *sin = (struct sockaddr_in *)&peeraddr;
1005
1006 log_print("connect from non cluster IPv4 node %pI4",
1007 &sin->sin_addr);
1008 break;
1009 }
1010 #if IS_ENABLED(CONFIG_IPV6)
1011 case AF_INET6: {
1012 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&peeraddr;
1013
1014 log_print("connect from non cluster IPv6 node %pI6c",
1015 &sin6->sin6_addr);
1016 break;
1017 }
1018 #endif
1019 default:
1020 log_print("invalid family from non cluster node");
1021 break;
1022 }
1023
1024 sock_release(newsock);
1025 return -1;
1026 }
1027
1028 log_print("got connection from %d", nodeid);
1029
1030 /* Check to see if we already have a connection to this node. This
1031 * could happen if the two nodes initiate a connection at roughly
1032 * the same time and the connections cross on the wire.
1033 * In this case we store the incoming one in "othercon"
1034 */
1035 idx = srcu_read_lock(&connections_srcu);
1036 newcon = nodeid2con(nodeid, 0);
1037 if (WARN_ON_ONCE(!newcon)) {
1038 srcu_read_unlock(&connections_srcu, idx);
1039 result = -ENOENT;
1040 goto accept_err;
1041 }
1042
1043 sock_set_mark(newsock->sk, mark);
1044
1045 down_write(&newcon->sock_lock);
1046 if (newcon->sock) {
1047 struct connection *othercon = newcon->othercon;
1048
1049 if (!othercon) {
1050 othercon = kzalloc(sizeof(*othercon), GFP_NOFS);
1051 if (!othercon) {
1052 log_print("failed to allocate incoming socket");
1053 up_write(&newcon->sock_lock);
1054 srcu_read_unlock(&connections_srcu, idx);
1055 result = -ENOMEM;
1056 goto accept_err;
1057 }
1058
1059 dlm_con_init(othercon, nodeid);
1060 lockdep_set_subclass(&othercon->sock_lock, 1);
1061 newcon->othercon = othercon;
1062 set_bit(CF_IS_OTHERCON, &othercon->flags);
1063 } else {
1064 /* close other sock con if we have something new */
1065 close_connection(othercon, false);
1066 }
1067
1068 down_write(&othercon->sock_lock);
1069 add_sock(newsock, othercon);
1070
1071 /* check if we receved something while adding */
1072 lock_sock(othercon->sock->sk);
1073 lowcomms_queue_rwork(othercon);
1074 release_sock(othercon->sock->sk);
1075 up_write(&othercon->sock_lock);
1076 }
1077 else {
1078 /* accept copies the sk after we've saved the callbacks, so we
1079 don't want to save them a second time or comm errors will
1080 result in calling sk_error_report recursively. */
1081 add_sock(newsock, newcon);
1082
1083 /* check if we receved something while adding */
1084 lock_sock(newcon->sock->sk);
1085 lowcomms_queue_rwork(newcon);
1086 release_sock(newcon->sock->sk);
1087 }
1088 up_write(&newcon->sock_lock);
1089 srcu_read_unlock(&connections_srcu, idx);
1090
1091 return DLM_IO_SUCCESS;
1092
1093 accept_err:
1094 if (newsock)
1095 sock_release(newsock);
1096
1097 return result;
1098 }
1099
1100 /*
1101 * writequeue_entry_complete - try to delete and free write queue entry
1102 * @e: write queue entry to try to delete
1103 * @completed: bytes completed
1104 *
1105 * writequeue_lock must be held.
1106 */
writequeue_entry_complete(struct writequeue_entry * e,int completed)1107 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
1108 {
1109 e->offset += completed;
1110 e->len -= completed;
1111 /* signal that page was half way transmitted */
1112 e->dirty = true;
1113
1114 if (e->len == 0 && e->users == 0)
1115 free_entry(e);
1116 }
1117
1118 /*
1119 * sctp_bind_addrs - bind a SCTP socket to all our addresses
1120 */
sctp_bind_addrs(struct socket * sock,uint16_t port)1121 static int sctp_bind_addrs(struct socket *sock, uint16_t port)
1122 {
1123 struct sockaddr_storage localaddr;
1124 struct sockaddr *addr = (struct sockaddr *)&localaddr;
1125 int i, addr_len, result = 0;
1126
1127 for (i = 0; i < dlm_local_count; i++) {
1128 memcpy(&localaddr, &dlm_local_addr[i], sizeof(localaddr));
1129 make_sockaddr(&localaddr, port, &addr_len);
1130
1131 if (!i)
1132 result = kernel_bind(sock, addr, addr_len);
1133 else
1134 result = sock_bind_add(sock->sk, addr, addr_len);
1135
1136 if (result < 0) {
1137 log_print("Can't bind to %d addr number %d, %d.\n",
1138 port, i + 1, result);
1139 break;
1140 }
1141 }
1142 return result;
1143 }
1144
1145 /* Get local addresses */
init_local(void)1146 static void init_local(void)
1147 {
1148 struct sockaddr_storage sas;
1149 int i;
1150
1151 dlm_local_count = 0;
1152 for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1153 if (dlm_our_addr(&sas, i))
1154 break;
1155
1156 memcpy(&dlm_local_addr[dlm_local_count++], &sas, sizeof(sas));
1157 }
1158 }
1159
new_writequeue_entry(struct connection * con)1160 static struct writequeue_entry *new_writequeue_entry(struct connection *con)
1161 {
1162 struct writequeue_entry *entry;
1163
1164 entry = dlm_allocate_writequeue();
1165 if (!entry)
1166 return NULL;
1167
1168 entry->page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
1169 if (!entry->page) {
1170 dlm_free_writequeue(entry);
1171 return NULL;
1172 }
1173
1174 entry->offset = 0;
1175 entry->len = 0;
1176 entry->end = 0;
1177 entry->dirty = false;
1178 entry->con = con;
1179 entry->users = 1;
1180 kref_init(&entry->ref);
1181 return entry;
1182 }
1183
new_wq_entry(struct connection * con,int len,char ** ppc,void (* cb)(void * data),void * data)1184 static struct writequeue_entry *new_wq_entry(struct connection *con, int len,
1185 char **ppc, void (*cb)(void *data),
1186 void *data)
1187 {
1188 struct writequeue_entry *e;
1189
1190 spin_lock_bh(&con->writequeue_lock);
1191 if (!list_empty(&con->writequeue)) {
1192 e = list_last_entry(&con->writequeue, struct writequeue_entry, list);
1193 if (DLM_WQ_REMAIN_BYTES(e) >= len) {
1194 kref_get(&e->ref);
1195
1196 *ppc = page_address(e->page) + e->end;
1197 if (cb)
1198 cb(data);
1199
1200 e->end += len;
1201 e->users++;
1202 goto out;
1203 }
1204 }
1205
1206 e = new_writequeue_entry(con);
1207 if (!e)
1208 goto out;
1209
1210 kref_get(&e->ref);
1211 *ppc = page_address(e->page);
1212 e->end += len;
1213 if (cb)
1214 cb(data);
1215
1216 list_add_tail(&e->list, &con->writequeue);
1217
1218 out:
1219 spin_unlock_bh(&con->writequeue_lock);
1220 return e;
1221 };
1222
dlm_lowcomms_new_msg_con(struct connection * con,int len,gfp_t allocation,char ** ppc,void (* cb)(void * data),void * data)1223 static struct dlm_msg *dlm_lowcomms_new_msg_con(struct connection *con, int len,
1224 gfp_t allocation, char **ppc,
1225 void (*cb)(void *data),
1226 void *data)
1227 {
1228 struct writequeue_entry *e;
1229 struct dlm_msg *msg;
1230
1231 msg = dlm_allocate_msg(allocation);
1232 if (!msg)
1233 return NULL;
1234
1235 kref_init(&msg->ref);
1236
1237 e = new_wq_entry(con, len, ppc, cb, data);
1238 if (!e) {
1239 dlm_free_msg(msg);
1240 return NULL;
1241 }
1242
1243 msg->retransmit = false;
1244 msg->orig_msg = NULL;
1245 msg->ppc = *ppc;
1246 msg->len = len;
1247 msg->entry = e;
1248
1249 return msg;
1250 }
1251
1252 /* avoid false positive for nodes_srcu, unlock happens in
1253 * dlm_lowcomms_commit_msg which is a must call if success
1254 */
1255 #ifndef __CHECKER__
dlm_lowcomms_new_msg(int nodeid,int len,gfp_t allocation,char ** ppc,void (* cb)(void * data),void * data)1256 struct dlm_msg *dlm_lowcomms_new_msg(int nodeid, int len, gfp_t allocation,
1257 char **ppc, void (*cb)(void *data),
1258 void *data)
1259 {
1260 struct connection *con;
1261 struct dlm_msg *msg;
1262 int idx;
1263
1264 if (len > DLM_MAX_SOCKET_BUFSIZE ||
1265 len < sizeof(struct dlm_header)) {
1266 BUILD_BUG_ON(PAGE_SIZE < DLM_MAX_SOCKET_BUFSIZE);
1267 log_print("failed to allocate a buffer of size %d", len);
1268 WARN_ON_ONCE(1);
1269 return NULL;
1270 }
1271
1272 idx = srcu_read_lock(&connections_srcu);
1273 con = nodeid2con(nodeid, 0);
1274 if (WARN_ON_ONCE(!con)) {
1275 srcu_read_unlock(&connections_srcu, idx);
1276 return NULL;
1277 }
1278
1279 msg = dlm_lowcomms_new_msg_con(con, len, allocation, ppc, cb, data);
1280 if (!msg) {
1281 srcu_read_unlock(&connections_srcu, idx);
1282 return NULL;
1283 }
1284
1285 /* for dlm_lowcomms_commit_msg() */
1286 kref_get(&msg->ref);
1287 /* we assume if successful commit must called */
1288 msg->idx = idx;
1289 return msg;
1290 }
1291 #endif
1292
_dlm_lowcomms_commit_msg(struct dlm_msg * msg)1293 static void _dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1294 {
1295 struct writequeue_entry *e = msg->entry;
1296 struct connection *con = e->con;
1297 int users;
1298
1299 spin_lock_bh(&con->writequeue_lock);
1300 kref_get(&msg->ref);
1301 list_add(&msg->list, &e->msgs);
1302
1303 users = --e->users;
1304 if (users)
1305 goto out;
1306
1307 e->len = DLM_WQ_LENGTH_BYTES(e);
1308
1309 lowcomms_queue_swork(con);
1310
1311 out:
1312 spin_unlock_bh(&con->writequeue_lock);
1313 return;
1314 }
1315
1316 /* avoid false positive for nodes_srcu, lock was happen in
1317 * dlm_lowcomms_new_msg
1318 */
1319 #ifndef __CHECKER__
dlm_lowcomms_commit_msg(struct dlm_msg * msg)1320 void dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1321 {
1322 _dlm_lowcomms_commit_msg(msg);
1323 srcu_read_unlock(&connections_srcu, msg->idx);
1324 /* because dlm_lowcomms_new_msg() */
1325 kref_put(&msg->ref, dlm_msg_release);
1326 }
1327 #endif
1328
dlm_lowcomms_put_msg(struct dlm_msg * msg)1329 void dlm_lowcomms_put_msg(struct dlm_msg *msg)
1330 {
1331 kref_put(&msg->ref, dlm_msg_release);
1332 }
1333
1334 /* does not held connections_srcu, usage lowcomms_error_report only */
dlm_lowcomms_resend_msg(struct dlm_msg * msg)1335 int dlm_lowcomms_resend_msg(struct dlm_msg *msg)
1336 {
1337 struct dlm_msg *msg_resend;
1338 char *ppc;
1339
1340 if (msg->retransmit)
1341 return 1;
1342
1343 msg_resend = dlm_lowcomms_new_msg_con(msg->entry->con, msg->len,
1344 GFP_ATOMIC, &ppc, NULL, NULL);
1345 if (!msg_resend)
1346 return -ENOMEM;
1347
1348 msg->retransmit = true;
1349 kref_get(&msg->ref);
1350 msg_resend->orig_msg = msg;
1351
1352 memcpy(ppc, msg->ppc, msg->len);
1353 _dlm_lowcomms_commit_msg(msg_resend);
1354 dlm_lowcomms_put_msg(msg_resend);
1355
1356 return 0;
1357 }
1358
1359 /* Send a message */
send_to_sock(struct connection * con)1360 static int send_to_sock(struct connection *con)
1361 {
1362 struct writequeue_entry *e;
1363 struct bio_vec bvec;
1364 struct msghdr msg = {
1365 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT | MSG_NOSIGNAL,
1366 };
1367 int len, offset, ret;
1368
1369 spin_lock_bh(&con->writequeue_lock);
1370 e = con_next_wq(con);
1371 if (!e) {
1372 clear_bit(CF_SEND_PENDING, &con->flags);
1373 spin_unlock_bh(&con->writequeue_lock);
1374 return DLM_IO_END;
1375 }
1376
1377 len = e->len;
1378 offset = e->offset;
1379 WARN_ON_ONCE(len == 0 && e->users == 0);
1380 spin_unlock_bh(&con->writequeue_lock);
1381
1382 bvec_set_page(&bvec, e->page, len, offset);
1383 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1384 ret = sock_sendmsg(con->sock, &msg);
1385 trace_dlm_send(con->nodeid, ret);
1386 if (ret == -EAGAIN || ret == 0) {
1387 lock_sock(con->sock->sk);
1388 spin_lock_bh(&con->writequeue_lock);
1389 if (test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1390 !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1391 /* Notify TCP that we're limited by the
1392 * application window size.
1393 */
1394 set_bit(SOCK_NOSPACE, &con->sock->sk->sk_socket->flags);
1395 con->sock->sk->sk_write_pending++;
1396
1397 clear_bit(CF_SEND_PENDING, &con->flags);
1398 spin_unlock_bh(&con->writequeue_lock);
1399 release_sock(con->sock->sk);
1400
1401 /* wait for write_space() event */
1402 return DLM_IO_END;
1403 }
1404 spin_unlock_bh(&con->writequeue_lock);
1405 release_sock(con->sock->sk);
1406
1407 return DLM_IO_RESCHED;
1408 } else if (ret < 0) {
1409 return ret;
1410 }
1411
1412 spin_lock_bh(&con->writequeue_lock);
1413 writequeue_entry_complete(e, ret);
1414 spin_unlock_bh(&con->writequeue_lock);
1415
1416 return DLM_IO_SUCCESS;
1417 }
1418
clean_one_writequeue(struct connection * con)1419 static void clean_one_writequeue(struct connection *con)
1420 {
1421 struct writequeue_entry *e, *safe;
1422
1423 spin_lock_bh(&con->writequeue_lock);
1424 list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1425 free_entry(e);
1426 }
1427 spin_unlock_bh(&con->writequeue_lock);
1428 }
1429
connection_release(struct rcu_head * rcu)1430 static void connection_release(struct rcu_head *rcu)
1431 {
1432 struct connection *con = container_of(rcu, struct connection, rcu);
1433
1434 WARN_ON_ONCE(!list_empty(&con->writequeue));
1435 WARN_ON_ONCE(con->sock);
1436 kfree(con);
1437 }
1438
1439 /* Called from recovery when it knows that a node has
1440 left the cluster */
dlm_lowcomms_close(int nodeid)1441 int dlm_lowcomms_close(int nodeid)
1442 {
1443 struct connection *con;
1444 int idx;
1445
1446 log_print("closing connection to node %d", nodeid);
1447
1448 idx = srcu_read_lock(&connections_srcu);
1449 con = nodeid2con(nodeid, 0);
1450 if (WARN_ON_ONCE(!con)) {
1451 srcu_read_unlock(&connections_srcu, idx);
1452 return -ENOENT;
1453 }
1454
1455 stop_connection_io(con);
1456 log_print("io handling for node: %d stopped", nodeid);
1457 close_connection(con, true);
1458
1459 spin_lock(&connections_lock);
1460 hlist_del_rcu(&con->list);
1461 spin_unlock(&connections_lock);
1462
1463 clean_one_writequeue(con);
1464 call_srcu(&connections_srcu, &con->rcu, connection_release);
1465 if (con->othercon) {
1466 clean_one_writequeue(con->othercon);
1467 call_srcu(&connections_srcu, &con->othercon->rcu, connection_release);
1468 }
1469 srcu_read_unlock(&connections_srcu, idx);
1470
1471 /* for debugging we print when we are done to compare with other
1472 * messages in between. This function need to be correctly synchronized
1473 * with io handling
1474 */
1475 log_print("closing connection to node %d done", nodeid);
1476
1477 return 0;
1478 }
1479
1480 /* Receive worker function */
process_recv_sockets(struct work_struct * work)1481 static void process_recv_sockets(struct work_struct *work)
1482 {
1483 struct connection *con = container_of(work, struct connection, rwork);
1484 int ret, buflen;
1485
1486 down_read(&con->sock_lock);
1487 if (!con->sock) {
1488 up_read(&con->sock_lock);
1489 return;
1490 }
1491
1492 buflen = READ_ONCE(dlm_config.ci_buffer_size);
1493 do {
1494 ret = receive_from_sock(con, buflen);
1495 } while (ret == DLM_IO_SUCCESS);
1496 up_read(&con->sock_lock);
1497
1498 switch (ret) {
1499 case DLM_IO_END:
1500 /* CF_RECV_PENDING cleared */
1501 break;
1502 case DLM_IO_EOF:
1503 close_connection(con, false);
1504 wake_up(&con->shutdown_wait);
1505 /* CF_RECV_PENDING cleared */
1506 break;
1507 case DLM_IO_RESCHED:
1508 cond_resched();
1509 queue_work(io_workqueue, &con->rwork);
1510 /* CF_RECV_PENDING not cleared */
1511 break;
1512 default:
1513 if (ret < 0) {
1514 if (test_bit(CF_IS_OTHERCON, &con->flags)) {
1515 close_connection(con, false);
1516 } else {
1517 spin_lock_bh(&con->writequeue_lock);
1518 lowcomms_queue_swork(con);
1519 spin_unlock_bh(&con->writequeue_lock);
1520 }
1521
1522 /* CF_RECV_PENDING cleared for othercon
1523 * we trigger send queue if not already done
1524 * and process_send_sockets will handle it
1525 */
1526 break;
1527 }
1528
1529 WARN_ON_ONCE(1);
1530 break;
1531 }
1532 }
1533
process_listen_recv_socket(struct work_struct * work)1534 static void process_listen_recv_socket(struct work_struct *work)
1535 {
1536 int ret;
1537
1538 if (WARN_ON_ONCE(!listen_con.sock))
1539 return;
1540
1541 do {
1542 ret = accept_from_sock();
1543 } while (ret == DLM_IO_SUCCESS);
1544
1545 if (ret < 0)
1546 log_print("critical error accepting connection: %d", ret);
1547 }
1548
dlm_connect(struct connection * con)1549 static int dlm_connect(struct connection *con)
1550 {
1551 struct sockaddr_storage addr;
1552 int result, addr_len;
1553 struct socket *sock;
1554 unsigned int mark;
1555
1556 memset(&addr, 0, sizeof(addr));
1557 result = nodeid_to_addr(con->nodeid, &addr, NULL,
1558 dlm_proto_ops->try_new_addr, &mark);
1559 if (result < 0) {
1560 log_print("no address for nodeid %d", con->nodeid);
1561 return result;
1562 }
1563
1564 /* Create a socket to communicate with */
1565 result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1566 SOCK_STREAM, dlm_proto_ops->proto, &sock);
1567 if (result < 0)
1568 return result;
1569
1570 sock_set_mark(sock->sk, mark);
1571 dlm_proto_ops->sockopts(sock);
1572
1573 result = dlm_proto_ops->bind(sock);
1574 if (result < 0) {
1575 sock_release(sock);
1576 return result;
1577 }
1578
1579 add_sock(sock, con);
1580
1581 log_print_ratelimited("connecting to %d", con->nodeid);
1582 make_sockaddr(&addr, dlm_config.ci_tcp_port, &addr_len);
1583 result = dlm_proto_ops->connect(con, sock, (struct sockaddr *)&addr,
1584 addr_len);
1585 switch (result) {
1586 case -EINPROGRESS:
1587 /* not an error */
1588 fallthrough;
1589 case 0:
1590 break;
1591 default:
1592 if (result < 0)
1593 dlm_close_sock(&con->sock);
1594
1595 break;
1596 }
1597
1598 return result;
1599 }
1600
1601 /* Send worker function */
process_send_sockets(struct work_struct * work)1602 static void process_send_sockets(struct work_struct *work)
1603 {
1604 struct connection *con = container_of(work, struct connection, swork);
1605 int ret;
1606
1607 WARN_ON_ONCE(test_bit(CF_IS_OTHERCON, &con->flags));
1608
1609 down_read(&con->sock_lock);
1610 if (!con->sock) {
1611 up_read(&con->sock_lock);
1612 down_write(&con->sock_lock);
1613 if (!con->sock) {
1614 ret = dlm_connect(con);
1615 switch (ret) {
1616 case 0:
1617 break;
1618 case -EINPROGRESS:
1619 /* avoid spamming resched on connection
1620 * we might can switch to a state_change
1621 * event based mechanism if established
1622 */
1623 msleep(100);
1624 break;
1625 default:
1626 /* CF_SEND_PENDING not cleared */
1627 up_write(&con->sock_lock);
1628 log_print("connect to node %d try %d error %d",
1629 con->nodeid, con->retries++, ret);
1630 msleep(1000);
1631 /* For now we try forever to reconnect. In
1632 * future we should send a event to cluster
1633 * manager to fence itself after certain amount
1634 * of retries.
1635 */
1636 queue_work(io_workqueue, &con->swork);
1637 return;
1638 }
1639 }
1640 downgrade_write(&con->sock_lock);
1641 }
1642
1643 do {
1644 ret = send_to_sock(con);
1645 } while (ret == DLM_IO_SUCCESS);
1646 up_read(&con->sock_lock);
1647
1648 switch (ret) {
1649 case DLM_IO_END:
1650 /* CF_SEND_PENDING cleared */
1651 break;
1652 case DLM_IO_RESCHED:
1653 /* CF_SEND_PENDING not cleared */
1654 cond_resched();
1655 queue_work(io_workqueue, &con->swork);
1656 break;
1657 default:
1658 if (ret < 0) {
1659 close_connection(con, false);
1660
1661 /* CF_SEND_PENDING cleared */
1662 spin_lock_bh(&con->writequeue_lock);
1663 lowcomms_queue_swork(con);
1664 spin_unlock_bh(&con->writequeue_lock);
1665 break;
1666 }
1667
1668 WARN_ON_ONCE(1);
1669 break;
1670 }
1671 }
1672
work_stop(void)1673 static void work_stop(void)
1674 {
1675 if (io_workqueue) {
1676 destroy_workqueue(io_workqueue);
1677 io_workqueue = NULL;
1678 }
1679
1680 if (process_workqueue) {
1681 destroy_workqueue(process_workqueue);
1682 process_workqueue = NULL;
1683 }
1684 }
1685
work_start(void)1686 static int work_start(void)
1687 {
1688 io_workqueue = alloc_workqueue("dlm_io", WQ_HIGHPRI | WQ_MEM_RECLAIM |
1689 WQ_UNBOUND, 0);
1690 if (!io_workqueue) {
1691 log_print("can't start dlm_io");
1692 return -ENOMEM;
1693 }
1694
1695 /* ordered dlm message process queue,
1696 * should be converted to a tasklet
1697 */
1698 process_workqueue = alloc_ordered_workqueue("dlm_process",
1699 WQ_HIGHPRI | WQ_MEM_RECLAIM);
1700 if (!process_workqueue) {
1701 log_print("can't start dlm_process");
1702 destroy_workqueue(io_workqueue);
1703 io_workqueue = NULL;
1704 return -ENOMEM;
1705 }
1706
1707 return 0;
1708 }
1709
dlm_lowcomms_shutdown(void)1710 void dlm_lowcomms_shutdown(void)
1711 {
1712 struct connection *con;
1713 int i, idx;
1714
1715 /* stop lowcomms_listen_data_ready calls */
1716 lock_sock(listen_con.sock->sk);
1717 listen_con.sock->sk->sk_data_ready = listen_sock.sk_data_ready;
1718 release_sock(listen_con.sock->sk);
1719
1720 cancel_work_sync(&listen_con.rwork);
1721 dlm_close_sock(&listen_con.sock);
1722
1723 idx = srcu_read_lock(&connections_srcu);
1724 for (i = 0; i < CONN_HASH_SIZE; i++) {
1725 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1726 shutdown_connection(con, true);
1727 stop_connection_io(con);
1728 flush_workqueue(process_workqueue);
1729 close_connection(con, true);
1730
1731 clean_one_writequeue(con);
1732 if (con->othercon)
1733 clean_one_writequeue(con->othercon);
1734 allow_connection_io(con);
1735 }
1736 }
1737 srcu_read_unlock(&connections_srcu, idx);
1738 }
1739
dlm_lowcomms_stop(void)1740 void dlm_lowcomms_stop(void)
1741 {
1742 work_stop();
1743 dlm_proto_ops = NULL;
1744 }
1745
dlm_listen_for_all(void)1746 static int dlm_listen_for_all(void)
1747 {
1748 struct socket *sock;
1749 int result;
1750
1751 log_print("Using %s for communications",
1752 dlm_proto_ops->name);
1753
1754 result = dlm_proto_ops->listen_validate();
1755 if (result < 0)
1756 return result;
1757
1758 result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1759 SOCK_STREAM, dlm_proto_ops->proto, &sock);
1760 if (result < 0) {
1761 log_print("Can't create comms socket: %d", result);
1762 return result;
1763 }
1764
1765 sock_set_mark(sock->sk, dlm_config.ci_mark);
1766 dlm_proto_ops->listen_sockopts(sock);
1767
1768 result = dlm_proto_ops->listen_bind(sock);
1769 if (result < 0)
1770 goto out;
1771
1772 lock_sock(sock->sk);
1773 listen_sock.sk_data_ready = sock->sk->sk_data_ready;
1774 listen_sock.sk_write_space = sock->sk->sk_write_space;
1775 listen_sock.sk_error_report = sock->sk->sk_error_report;
1776 listen_sock.sk_state_change = sock->sk->sk_state_change;
1777
1778 listen_con.sock = sock;
1779
1780 sock->sk->sk_allocation = GFP_NOFS;
1781 sock->sk->sk_use_task_frag = false;
1782 sock->sk->sk_data_ready = lowcomms_listen_data_ready;
1783 release_sock(sock->sk);
1784
1785 result = sock->ops->listen(sock, 128);
1786 if (result < 0) {
1787 dlm_close_sock(&listen_con.sock);
1788 return result;
1789 }
1790
1791 return 0;
1792
1793 out:
1794 sock_release(sock);
1795 return result;
1796 }
1797
dlm_tcp_bind(struct socket * sock)1798 static int dlm_tcp_bind(struct socket *sock)
1799 {
1800 struct sockaddr_storage src_addr;
1801 int result, addr_len;
1802
1803 /* Bind to our cluster-known address connecting to avoid
1804 * routing problems.
1805 */
1806 memcpy(&src_addr, &dlm_local_addr[0], sizeof(src_addr));
1807 make_sockaddr(&src_addr, 0, &addr_len);
1808
1809 result = kernel_bind(sock, (struct sockaddr *)&src_addr,
1810 addr_len);
1811 if (result < 0) {
1812 /* This *may* not indicate a critical error */
1813 log_print("could not bind for connect: %d", result);
1814 }
1815
1816 return 0;
1817 }
1818
dlm_tcp_connect(struct connection * con,struct socket * sock,struct sockaddr * addr,int addr_len)1819 static int dlm_tcp_connect(struct connection *con, struct socket *sock,
1820 struct sockaddr *addr, int addr_len)
1821 {
1822 return kernel_connect(sock, addr, addr_len, O_NONBLOCK);
1823 }
1824
dlm_tcp_listen_validate(void)1825 static int dlm_tcp_listen_validate(void)
1826 {
1827 /* We don't support multi-homed hosts */
1828 if (dlm_local_count > 1) {
1829 log_print("TCP protocol can't handle multi-homed hosts, try SCTP");
1830 return -EINVAL;
1831 }
1832
1833 return 0;
1834 }
1835
dlm_tcp_sockopts(struct socket * sock)1836 static void dlm_tcp_sockopts(struct socket *sock)
1837 {
1838 /* Turn off Nagle's algorithm */
1839 tcp_sock_set_nodelay(sock->sk);
1840 }
1841
dlm_tcp_listen_sockopts(struct socket * sock)1842 static void dlm_tcp_listen_sockopts(struct socket *sock)
1843 {
1844 dlm_tcp_sockopts(sock);
1845 sock_set_reuseaddr(sock->sk);
1846 }
1847
dlm_tcp_listen_bind(struct socket * sock)1848 static int dlm_tcp_listen_bind(struct socket *sock)
1849 {
1850 int addr_len;
1851
1852 /* Bind to our port */
1853 make_sockaddr(&dlm_local_addr[0], dlm_config.ci_tcp_port, &addr_len);
1854 return kernel_bind(sock, (struct sockaddr *)&dlm_local_addr[0],
1855 addr_len);
1856 }
1857
1858 static const struct dlm_proto_ops dlm_tcp_ops = {
1859 .name = "TCP",
1860 .proto = IPPROTO_TCP,
1861 .connect = dlm_tcp_connect,
1862 .sockopts = dlm_tcp_sockopts,
1863 .bind = dlm_tcp_bind,
1864 .listen_validate = dlm_tcp_listen_validate,
1865 .listen_sockopts = dlm_tcp_listen_sockopts,
1866 .listen_bind = dlm_tcp_listen_bind,
1867 };
1868
dlm_sctp_bind(struct socket * sock)1869 static int dlm_sctp_bind(struct socket *sock)
1870 {
1871 return sctp_bind_addrs(sock, 0);
1872 }
1873
dlm_sctp_connect(struct connection * con,struct socket * sock,struct sockaddr * addr,int addr_len)1874 static int dlm_sctp_connect(struct connection *con, struct socket *sock,
1875 struct sockaddr *addr, int addr_len)
1876 {
1877 int ret;
1878
1879 /*
1880 * Make kernel_connect() function return in specified time,
1881 * since O_NONBLOCK argument in connect() function does not work here,
1882 * then, we should restore the default value of this attribute.
1883 */
1884 sock_set_sndtimeo(sock->sk, 5);
1885 ret = kernel_connect(sock, addr, addr_len, 0);
1886 sock_set_sndtimeo(sock->sk, 0);
1887 return ret;
1888 }
1889
dlm_sctp_listen_validate(void)1890 static int dlm_sctp_listen_validate(void)
1891 {
1892 if (!IS_ENABLED(CONFIG_IP_SCTP)) {
1893 log_print("SCTP is not enabled by this kernel");
1894 return -EOPNOTSUPP;
1895 }
1896
1897 request_module("sctp");
1898 return 0;
1899 }
1900
dlm_sctp_bind_listen(struct socket * sock)1901 static int dlm_sctp_bind_listen(struct socket *sock)
1902 {
1903 return sctp_bind_addrs(sock, dlm_config.ci_tcp_port);
1904 }
1905
dlm_sctp_sockopts(struct socket * sock)1906 static void dlm_sctp_sockopts(struct socket *sock)
1907 {
1908 /* Turn off Nagle's algorithm */
1909 sctp_sock_set_nodelay(sock->sk);
1910 sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1911 }
1912
1913 static const struct dlm_proto_ops dlm_sctp_ops = {
1914 .name = "SCTP",
1915 .proto = IPPROTO_SCTP,
1916 .try_new_addr = true,
1917 .connect = dlm_sctp_connect,
1918 .sockopts = dlm_sctp_sockopts,
1919 .bind = dlm_sctp_bind,
1920 .listen_validate = dlm_sctp_listen_validate,
1921 .listen_sockopts = dlm_sctp_sockopts,
1922 .listen_bind = dlm_sctp_bind_listen,
1923 };
1924
dlm_lowcomms_start(void)1925 int dlm_lowcomms_start(void)
1926 {
1927 int error;
1928
1929 init_local();
1930 if (!dlm_local_count) {
1931 error = -ENOTCONN;
1932 log_print("no local IP address has been set");
1933 goto fail;
1934 }
1935
1936 error = work_start();
1937 if (error)
1938 goto fail;
1939
1940 /* Start listening */
1941 switch (dlm_config.ci_protocol) {
1942 case DLM_PROTO_TCP:
1943 dlm_proto_ops = &dlm_tcp_ops;
1944 break;
1945 case DLM_PROTO_SCTP:
1946 dlm_proto_ops = &dlm_sctp_ops;
1947 break;
1948 default:
1949 log_print("Invalid protocol identifier %d set",
1950 dlm_config.ci_protocol);
1951 error = -EINVAL;
1952 goto fail_proto_ops;
1953 }
1954
1955 error = dlm_listen_for_all();
1956 if (error)
1957 goto fail_listen;
1958
1959 return 0;
1960
1961 fail_listen:
1962 dlm_proto_ops = NULL;
1963 fail_proto_ops:
1964 work_stop();
1965 fail:
1966 return error;
1967 }
1968
dlm_lowcomms_init(void)1969 void dlm_lowcomms_init(void)
1970 {
1971 int i;
1972
1973 for (i = 0; i < CONN_HASH_SIZE; i++)
1974 INIT_HLIST_HEAD(&connection_hash[i]);
1975
1976 INIT_WORK(&listen_con.rwork, process_listen_recv_socket);
1977 }
1978
dlm_lowcomms_exit(void)1979 void dlm_lowcomms_exit(void)
1980 {
1981 struct connection *con;
1982 int i, idx;
1983
1984 idx = srcu_read_lock(&connections_srcu);
1985 for (i = 0; i < CONN_HASH_SIZE; i++) {
1986 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1987 spin_lock(&connections_lock);
1988 hlist_del_rcu(&con->list);
1989 spin_unlock(&connections_lock);
1990
1991 if (con->othercon)
1992 call_srcu(&connections_srcu, &con->othercon->rcu,
1993 connection_release);
1994 call_srcu(&connections_srcu, &con->rcu, connection_release);
1995 }
1996 }
1997 srcu_read_unlock(&connections_srcu, idx);
1998 }
1999