1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Takashi Iwai <tiwai@suse.de>
5 *
6 * Generic memory allocators
7 */
8
9 #include <linux/slab.h>
10 #include <linux/mm.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dma-map-ops.h>
13 #include <linux/genalloc.h>
14 #include <linux/highmem.h>
15 #include <linux/vmalloc.h>
16 #ifdef CONFIG_X86
17 #include <asm/set_memory.h>
18 #endif
19 #include <sound/memalloc.h>
20 #include "memalloc_local.h"
21
22 #define DEFAULT_GFP \
23 (GFP_KERNEL | \
24 __GFP_RETRY_MAYFAIL | /* don't trigger OOM-killer */ \
25 __GFP_NOWARN) /* no stack trace print - this call is non-critical */
26
27 static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab);
28
29 #ifdef CONFIG_SND_DMA_SGBUF
30 static void *snd_dma_sg_fallback_alloc(struct snd_dma_buffer *dmab, size_t size);
31 #endif
32
__snd_dma_alloc_pages(struct snd_dma_buffer * dmab,size_t size)33 static void *__snd_dma_alloc_pages(struct snd_dma_buffer *dmab, size_t size)
34 {
35 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
36
37 if (WARN_ON_ONCE(!ops || !ops->alloc))
38 return NULL;
39 return ops->alloc(dmab, size);
40 }
41
42 /**
43 * snd_dma_alloc_dir_pages - allocate the buffer area according to the given
44 * type and direction
45 * @type: the DMA buffer type
46 * @device: the device pointer
47 * @dir: DMA direction
48 * @size: the buffer size to allocate
49 * @dmab: buffer allocation record to store the allocated data
50 *
51 * Calls the memory-allocator function for the corresponding
52 * buffer type.
53 *
54 * Return: Zero if the buffer with the given size is allocated successfully,
55 * otherwise a negative value on error.
56 */
snd_dma_alloc_dir_pages(int type,struct device * device,enum dma_data_direction dir,size_t size,struct snd_dma_buffer * dmab)57 int snd_dma_alloc_dir_pages(int type, struct device *device,
58 enum dma_data_direction dir, size_t size,
59 struct snd_dma_buffer *dmab)
60 {
61 if (WARN_ON(!size))
62 return -ENXIO;
63 if (WARN_ON(!dmab))
64 return -ENXIO;
65
66 size = PAGE_ALIGN(size);
67 dmab->dev.type = type;
68 dmab->dev.dev = device;
69 dmab->dev.dir = dir;
70 dmab->bytes = 0;
71 dmab->addr = 0;
72 dmab->private_data = NULL;
73 dmab->area = __snd_dma_alloc_pages(dmab, size);
74 if (!dmab->area)
75 return -ENOMEM;
76 dmab->bytes = size;
77 return 0;
78 }
79 EXPORT_SYMBOL(snd_dma_alloc_dir_pages);
80
81 /**
82 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
83 * @type: the DMA buffer type
84 * @device: the device pointer
85 * @size: the buffer size to allocate
86 * @dmab: buffer allocation record to store the allocated data
87 *
88 * Calls the memory-allocator function for the corresponding
89 * buffer type. When no space is left, this function reduces the size and
90 * tries to allocate again. The size actually allocated is stored in
91 * res_size argument.
92 *
93 * Return: Zero if the buffer with the given size is allocated successfully,
94 * otherwise a negative value on error.
95 */
snd_dma_alloc_pages_fallback(int type,struct device * device,size_t size,struct snd_dma_buffer * dmab)96 int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size,
97 struct snd_dma_buffer *dmab)
98 {
99 int err;
100
101 while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) {
102 if (err != -ENOMEM)
103 return err;
104 if (size <= PAGE_SIZE)
105 return -ENOMEM;
106 size >>= 1;
107 size = PAGE_SIZE << get_order(size);
108 }
109 if (! dmab->area)
110 return -ENOMEM;
111 return 0;
112 }
113 EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);
114
115 /**
116 * snd_dma_free_pages - release the allocated buffer
117 * @dmab: the buffer allocation record to release
118 *
119 * Releases the allocated buffer via snd_dma_alloc_pages().
120 */
snd_dma_free_pages(struct snd_dma_buffer * dmab)121 void snd_dma_free_pages(struct snd_dma_buffer *dmab)
122 {
123 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
124
125 if (ops && ops->free)
126 ops->free(dmab);
127 }
128 EXPORT_SYMBOL(snd_dma_free_pages);
129
130 /* called by devres */
__snd_release_pages(struct device * dev,void * res)131 static void __snd_release_pages(struct device *dev, void *res)
132 {
133 snd_dma_free_pages(res);
134 }
135
136 /**
137 * snd_devm_alloc_dir_pages - allocate the buffer and manage with devres
138 * @dev: the device pointer
139 * @type: the DMA buffer type
140 * @dir: DMA direction
141 * @size: the buffer size to allocate
142 *
143 * Allocate buffer pages depending on the given type and manage using devres.
144 * The pages will be released automatically at the device removal.
145 *
146 * Unlike snd_dma_alloc_pages(), this function requires the real device pointer,
147 * hence it can't work with SNDRV_DMA_TYPE_CONTINUOUS or
148 * SNDRV_DMA_TYPE_VMALLOC type.
149 *
150 * Return: the snd_dma_buffer object at success, or NULL if failed
151 */
152 struct snd_dma_buffer *
snd_devm_alloc_dir_pages(struct device * dev,int type,enum dma_data_direction dir,size_t size)153 snd_devm_alloc_dir_pages(struct device *dev, int type,
154 enum dma_data_direction dir, size_t size)
155 {
156 struct snd_dma_buffer *dmab;
157 int err;
158
159 if (WARN_ON(type == SNDRV_DMA_TYPE_CONTINUOUS ||
160 type == SNDRV_DMA_TYPE_VMALLOC))
161 return NULL;
162
163 dmab = devres_alloc(__snd_release_pages, sizeof(*dmab), GFP_KERNEL);
164 if (!dmab)
165 return NULL;
166
167 err = snd_dma_alloc_dir_pages(type, dev, dir, size, dmab);
168 if (err < 0) {
169 devres_free(dmab);
170 return NULL;
171 }
172
173 devres_add(dev, dmab);
174 return dmab;
175 }
176 EXPORT_SYMBOL_GPL(snd_devm_alloc_dir_pages);
177
178 /**
179 * snd_dma_buffer_mmap - perform mmap of the given DMA buffer
180 * @dmab: buffer allocation information
181 * @area: VM area information
182 *
183 * Return: zero if successful, or a negative error code
184 */
snd_dma_buffer_mmap(struct snd_dma_buffer * dmab,struct vm_area_struct * area)185 int snd_dma_buffer_mmap(struct snd_dma_buffer *dmab,
186 struct vm_area_struct *area)
187 {
188 const struct snd_malloc_ops *ops;
189
190 if (!dmab)
191 return -ENOENT;
192 ops = snd_dma_get_ops(dmab);
193 if (ops && ops->mmap)
194 return ops->mmap(dmab, area);
195 else
196 return -ENOENT;
197 }
198 EXPORT_SYMBOL(snd_dma_buffer_mmap);
199
200 #ifdef CONFIG_HAS_DMA
201 /**
202 * snd_dma_buffer_sync - sync DMA buffer between CPU and device
203 * @dmab: buffer allocation information
204 * @mode: sync mode
205 */
snd_dma_buffer_sync(struct snd_dma_buffer * dmab,enum snd_dma_sync_mode mode)206 void snd_dma_buffer_sync(struct snd_dma_buffer *dmab,
207 enum snd_dma_sync_mode mode)
208 {
209 const struct snd_malloc_ops *ops;
210
211 if (!dmab || !dmab->dev.need_sync)
212 return;
213 ops = snd_dma_get_ops(dmab);
214 if (ops && ops->sync)
215 ops->sync(dmab, mode);
216 }
217 EXPORT_SYMBOL_GPL(snd_dma_buffer_sync);
218 #endif /* CONFIG_HAS_DMA */
219
220 /**
221 * snd_sgbuf_get_addr - return the physical address at the corresponding offset
222 * @dmab: buffer allocation information
223 * @offset: offset in the ring buffer
224 *
225 * Return: the physical address
226 */
snd_sgbuf_get_addr(struct snd_dma_buffer * dmab,size_t offset)227 dma_addr_t snd_sgbuf_get_addr(struct snd_dma_buffer *dmab, size_t offset)
228 {
229 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
230
231 if (ops && ops->get_addr)
232 return ops->get_addr(dmab, offset);
233 else
234 return dmab->addr + offset;
235 }
236 EXPORT_SYMBOL(snd_sgbuf_get_addr);
237
238 /**
239 * snd_sgbuf_get_page - return the physical page at the corresponding offset
240 * @dmab: buffer allocation information
241 * @offset: offset in the ring buffer
242 *
243 * Return: the page pointer
244 */
snd_sgbuf_get_page(struct snd_dma_buffer * dmab,size_t offset)245 struct page *snd_sgbuf_get_page(struct snd_dma_buffer *dmab, size_t offset)
246 {
247 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
248
249 if (ops && ops->get_page)
250 return ops->get_page(dmab, offset);
251 else
252 return virt_to_page(dmab->area + offset);
253 }
254 EXPORT_SYMBOL(snd_sgbuf_get_page);
255
256 /**
257 * snd_sgbuf_get_chunk_size - compute the max chunk size with continuous pages
258 * on sg-buffer
259 * @dmab: buffer allocation information
260 * @ofs: offset in the ring buffer
261 * @size: the requested size
262 *
263 * Return: the chunk size
264 */
snd_sgbuf_get_chunk_size(struct snd_dma_buffer * dmab,unsigned int ofs,unsigned int size)265 unsigned int snd_sgbuf_get_chunk_size(struct snd_dma_buffer *dmab,
266 unsigned int ofs, unsigned int size)
267 {
268 const struct snd_malloc_ops *ops = snd_dma_get_ops(dmab);
269
270 if (ops && ops->get_chunk_size)
271 return ops->get_chunk_size(dmab, ofs, size);
272 else
273 return size;
274 }
275 EXPORT_SYMBOL(snd_sgbuf_get_chunk_size);
276
277 /*
278 * Continuous pages allocator
279 */
do_alloc_pages(struct device * dev,size_t size,dma_addr_t * addr,bool wc)280 static void *do_alloc_pages(struct device *dev, size_t size, dma_addr_t *addr,
281 bool wc)
282 {
283 void *p;
284 gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
285
286 again:
287 p = alloc_pages_exact(size, gfp);
288 if (!p)
289 return NULL;
290 *addr = page_to_phys(virt_to_page(p));
291 if (!dev)
292 return p;
293 if ((*addr + size - 1) & ~dev->coherent_dma_mask) {
294 if (IS_ENABLED(CONFIG_ZONE_DMA32) && !(gfp & GFP_DMA32)) {
295 gfp |= GFP_DMA32;
296 goto again;
297 }
298 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
299 gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
300 goto again;
301 }
302 }
303 #ifdef CONFIG_X86
304 if (wc)
305 set_memory_wc((unsigned long)(p), size >> PAGE_SHIFT);
306 #endif
307 return p;
308 }
309
do_free_pages(void * p,size_t size,bool wc)310 static void do_free_pages(void *p, size_t size, bool wc)
311 {
312 #ifdef CONFIG_X86
313 if (wc)
314 set_memory_wb((unsigned long)(p), size >> PAGE_SHIFT);
315 #endif
316 free_pages_exact(p, size);
317 }
318
319
snd_dma_continuous_alloc(struct snd_dma_buffer * dmab,size_t size)320 static void *snd_dma_continuous_alloc(struct snd_dma_buffer *dmab, size_t size)
321 {
322 return do_alloc_pages(dmab->dev.dev, size, &dmab->addr, false);
323 }
324
snd_dma_continuous_free(struct snd_dma_buffer * dmab)325 static void snd_dma_continuous_free(struct snd_dma_buffer *dmab)
326 {
327 do_free_pages(dmab->area, dmab->bytes, false);
328 }
329
snd_dma_continuous_mmap(struct snd_dma_buffer * dmab,struct vm_area_struct * area)330 static int snd_dma_continuous_mmap(struct snd_dma_buffer *dmab,
331 struct vm_area_struct *area)
332 {
333 return remap_pfn_range(area, area->vm_start,
334 dmab->addr >> PAGE_SHIFT,
335 area->vm_end - area->vm_start,
336 area->vm_page_prot);
337 }
338
339 static const struct snd_malloc_ops snd_dma_continuous_ops = {
340 .alloc = snd_dma_continuous_alloc,
341 .free = snd_dma_continuous_free,
342 .mmap = snd_dma_continuous_mmap,
343 };
344
345 /*
346 * VMALLOC allocator
347 */
snd_dma_vmalloc_alloc(struct snd_dma_buffer * dmab,size_t size)348 static void *snd_dma_vmalloc_alloc(struct snd_dma_buffer *dmab, size_t size)
349 {
350 return vmalloc(size);
351 }
352
snd_dma_vmalloc_free(struct snd_dma_buffer * dmab)353 static void snd_dma_vmalloc_free(struct snd_dma_buffer *dmab)
354 {
355 vfree(dmab->area);
356 }
357
snd_dma_vmalloc_mmap(struct snd_dma_buffer * dmab,struct vm_area_struct * area)358 static int snd_dma_vmalloc_mmap(struct snd_dma_buffer *dmab,
359 struct vm_area_struct *area)
360 {
361 return remap_vmalloc_range(area, dmab->area, 0);
362 }
363
364 #define get_vmalloc_page_addr(dmab, offset) \
365 page_to_phys(vmalloc_to_page((dmab)->area + (offset)))
366
snd_dma_vmalloc_get_addr(struct snd_dma_buffer * dmab,size_t offset)367 static dma_addr_t snd_dma_vmalloc_get_addr(struct snd_dma_buffer *dmab,
368 size_t offset)
369 {
370 return get_vmalloc_page_addr(dmab, offset) + offset % PAGE_SIZE;
371 }
372
snd_dma_vmalloc_get_page(struct snd_dma_buffer * dmab,size_t offset)373 static struct page *snd_dma_vmalloc_get_page(struct snd_dma_buffer *dmab,
374 size_t offset)
375 {
376 return vmalloc_to_page(dmab->area + offset);
377 }
378
379 static unsigned int
snd_dma_vmalloc_get_chunk_size(struct snd_dma_buffer * dmab,unsigned int ofs,unsigned int size)380 snd_dma_vmalloc_get_chunk_size(struct snd_dma_buffer *dmab,
381 unsigned int ofs, unsigned int size)
382 {
383 unsigned int start, end;
384 unsigned long addr;
385
386 start = ALIGN_DOWN(ofs, PAGE_SIZE);
387 end = ofs + size - 1; /* the last byte address */
388 /* check page continuity */
389 addr = get_vmalloc_page_addr(dmab, start);
390 for (;;) {
391 start += PAGE_SIZE;
392 if (start > end)
393 break;
394 addr += PAGE_SIZE;
395 if (get_vmalloc_page_addr(dmab, start) != addr)
396 return start - ofs;
397 }
398 /* ok, all on continuous pages */
399 return size;
400 }
401
402 static const struct snd_malloc_ops snd_dma_vmalloc_ops = {
403 .alloc = snd_dma_vmalloc_alloc,
404 .free = snd_dma_vmalloc_free,
405 .mmap = snd_dma_vmalloc_mmap,
406 .get_addr = snd_dma_vmalloc_get_addr,
407 .get_page = snd_dma_vmalloc_get_page,
408 .get_chunk_size = snd_dma_vmalloc_get_chunk_size,
409 };
410
411 #ifdef CONFIG_HAS_DMA
412 /*
413 * IRAM allocator
414 */
415 #ifdef CONFIG_GENERIC_ALLOCATOR
snd_dma_iram_alloc(struct snd_dma_buffer * dmab,size_t size)416 static void *snd_dma_iram_alloc(struct snd_dma_buffer *dmab, size_t size)
417 {
418 struct device *dev = dmab->dev.dev;
419 struct gen_pool *pool;
420 void *p;
421
422 if (dev->of_node) {
423 pool = of_gen_pool_get(dev->of_node, "iram", 0);
424 /* Assign the pool into private_data field */
425 dmab->private_data = pool;
426
427 p = gen_pool_dma_alloc_align(pool, size, &dmab->addr, PAGE_SIZE);
428 if (p)
429 return p;
430 }
431
432 /* Internal memory might have limited size and no enough space,
433 * so if we fail to malloc, try to fetch memory traditionally.
434 */
435 dmab->dev.type = SNDRV_DMA_TYPE_DEV;
436 return __snd_dma_alloc_pages(dmab, size);
437 }
438
snd_dma_iram_free(struct snd_dma_buffer * dmab)439 static void snd_dma_iram_free(struct snd_dma_buffer *dmab)
440 {
441 struct gen_pool *pool = dmab->private_data;
442
443 if (pool && dmab->area)
444 gen_pool_free(pool, (unsigned long)dmab->area, dmab->bytes);
445 }
446
snd_dma_iram_mmap(struct snd_dma_buffer * dmab,struct vm_area_struct * area)447 static int snd_dma_iram_mmap(struct snd_dma_buffer *dmab,
448 struct vm_area_struct *area)
449 {
450 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
451 return remap_pfn_range(area, area->vm_start,
452 dmab->addr >> PAGE_SHIFT,
453 area->vm_end - area->vm_start,
454 area->vm_page_prot);
455 }
456
457 static const struct snd_malloc_ops snd_dma_iram_ops = {
458 .alloc = snd_dma_iram_alloc,
459 .free = snd_dma_iram_free,
460 .mmap = snd_dma_iram_mmap,
461 };
462 #endif /* CONFIG_GENERIC_ALLOCATOR */
463
464 /*
465 * Coherent device pages allocator
466 */
snd_dma_dev_alloc(struct snd_dma_buffer * dmab,size_t size)467 static void *snd_dma_dev_alloc(struct snd_dma_buffer *dmab, size_t size)
468 {
469 return dma_alloc_coherent(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP);
470 }
471
snd_dma_dev_free(struct snd_dma_buffer * dmab)472 static void snd_dma_dev_free(struct snd_dma_buffer *dmab)
473 {
474 dma_free_coherent(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
475 }
476
snd_dma_dev_mmap(struct snd_dma_buffer * dmab,struct vm_area_struct * area)477 static int snd_dma_dev_mmap(struct snd_dma_buffer *dmab,
478 struct vm_area_struct *area)
479 {
480 return dma_mmap_coherent(dmab->dev.dev, area,
481 dmab->area, dmab->addr, dmab->bytes);
482 }
483
484 static const struct snd_malloc_ops snd_dma_dev_ops = {
485 .alloc = snd_dma_dev_alloc,
486 .free = snd_dma_dev_free,
487 .mmap = snd_dma_dev_mmap,
488 };
489
490 /*
491 * Write-combined pages
492 */
493 /* x86-specific allocations */
494 #ifdef CONFIG_SND_DMA_SGBUF
snd_dma_wc_alloc(struct snd_dma_buffer * dmab,size_t size)495 static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size)
496 {
497 return do_alloc_pages(dmab->dev.dev, size, &dmab->addr, true);
498 }
499
snd_dma_wc_free(struct snd_dma_buffer * dmab)500 static void snd_dma_wc_free(struct snd_dma_buffer *dmab)
501 {
502 do_free_pages(dmab->area, dmab->bytes, true);
503 }
504
snd_dma_wc_mmap(struct snd_dma_buffer * dmab,struct vm_area_struct * area)505 static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab,
506 struct vm_area_struct *area)
507 {
508 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
509 return snd_dma_continuous_mmap(dmab, area);
510 }
511 #else
snd_dma_wc_alloc(struct snd_dma_buffer * dmab,size_t size)512 static void *snd_dma_wc_alloc(struct snd_dma_buffer *dmab, size_t size)
513 {
514 return dma_alloc_wc(dmab->dev.dev, size, &dmab->addr, DEFAULT_GFP);
515 }
516
snd_dma_wc_free(struct snd_dma_buffer * dmab)517 static void snd_dma_wc_free(struct snd_dma_buffer *dmab)
518 {
519 dma_free_wc(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
520 }
521
snd_dma_wc_mmap(struct snd_dma_buffer * dmab,struct vm_area_struct * area)522 static int snd_dma_wc_mmap(struct snd_dma_buffer *dmab,
523 struct vm_area_struct *area)
524 {
525 return dma_mmap_wc(dmab->dev.dev, area,
526 dmab->area, dmab->addr, dmab->bytes);
527 }
528 #endif /* CONFIG_SND_DMA_SGBUF */
529
530 static const struct snd_malloc_ops snd_dma_wc_ops = {
531 .alloc = snd_dma_wc_alloc,
532 .free = snd_dma_wc_free,
533 .mmap = snd_dma_wc_mmap,
534 };
535
536 /*
537 * Non-contiguous pages allocator
538 */
snd_dma_noncontig_alloc(struct snd_dma_buffer * dmab,size_t size)539 static void *snd_dma_noncontig_alloc(struct snd_dma_buffer *dmab, size_t size)
540 {
541 struct sg_table *sgt;
542 void *p;
543
544 #ifdef CONFIG_SND_DMA_SGBUF
545 if (cpu_feature_enabled(X86_FEATURE_XENPV))
546 return snd_dma_sg_fallback_alloc(dmab, size);
547 #endif
548 sgt = dma_alloc_noncontiguous(dmab->dev.dev, size, dmab->dev.dir,
549 DEFAULT_GFP, 0);
550 #ifdef CONFIG_SND_DMA_SGBUF
551 if (!sgt && !get_dma_ops(dmab->dev.dev))
552 return snd_dma_sg_fallback_alloc(dmab, size);
553 #endif
554 if (!sgt)
555 return NULL;
556
557 dmab->dev.need_sync = dma_need_sync(dmab->dev.dev,
558 sg_dma_address(sgt->sgl));
559 p = dma_vmap_noncontiguous(dmab->dev.dev, size, sgt);
560 if (p) {
561 dmab->private_data = sgt;
562 /* store the first page address for convenience */
563 dmab->addr = snd_sgbuf_get_addr(dmab, 0);
564 } else {
565 dma_free_noncontiguous(dmab->dev.dev, size, sgt, dmab->dev.dir);
566 }
567 return p;
568 }
569
snd_dma_noncontig_free(struct snd_dma_buffer * dmab)570 static void snd_dma_noncontig_free(struct snd_dma_buffer *dmab)
571 {
572 dma_vunmap_noncontiguous(dmab->dev.dev, dmab->area);
573 dma_free_noncontiguous(dmab->dev.dev, dmab->bytes, dmab->private_data,
574 dmab->dev.dir);
575 }
576
snd_dma_noncontig_mmap(struct snd_dma_buffer * dmab,struct vm_area_struct * area)577 static int snd_dma_noncontig_mmap(struct snd_dma_buffer *dmab,
578 struct vm_area_struct *area)
579 {
580 return dma_mmap_noncontiguous(dmab->dev.dev, area,
581 dmab->bytes, dmab->private_data);
582 }
583
snd_dma_noncontig_sync(struct snd_dma_buffer * dmab,enum snd_dma_sync_mode mode)584 static void snd_dma_noncontig_sync(struct snd_dma_buffer *dmab,
585 enum snd_dma_sync_mode mode)
586 {
587 if (mode == SNDRV_DMA_SYNC_CPU) {
588 if (dmab->dev.dir == DMA_TO_DEVICE)
589 return;
590 invalidate_kernel_vmap_range(dmab->area, dmab->bytes);
591 dma_sync_sgtable_for_cpu(dmab->dev.dev, dmab->private_data,
592 dmab->dev.dir);
593 } else {
594 if (dmab->dev.dir == DMA_FROM_DEVICE)
595 return;
596 flush_kernel_vmap_range(dmab->area, dmab->bytes);
597 dma_sync_sgtable_for_device(dmab->dev.dev, dmab->private_data,
598 dmab->dev.dir);
599 }
600 }
601
snd_dma_noncontig_iter_set(struct snd_dma_buffer * dmab,struct sg_page_iter * piter,size_t offset)602 static inline void snd_dma_noncontig_iter_set(struct snd_dma_buffer *dmab,
603 struct sg_page_iter *piter,
604 size_t offset)
605 {
606 struct sg_table *sgt = dmab->private_data;
607
608 __sg_page_iter_start(piter, sgt->sgl, sgt->orig_nents,
609 offset >> PAGE_SHIFT);
610 }
611
snd_dma_noncontig_get_addr(struct snd_dma_buffer * dmab,size_t offset)612 static dma_addr_t snd_dma_noncontig_get_addr(struct snd_dma_buffer *dmab,
613 size_t offset)
614 {
615 struct sg_dma_page_iter iter;
616
617 snd_dma_noncontig_iter_set(dmab, &iter.base, offset);
618 __sg_page_iter_dma_next(&iter);
619 return sg_page_iter_dma_address(&iter) + offset % PAGE_SIZE;
620 }
621
snd_dma_noncontig_get_page(struct snd_dma_buffer * dmab,size_t offset)622 static struct page *snd_dma_noncontig_get_page(struct snd_dma_buffer *dmab,
623 size_t offset)
624 {
625 struct sg_page_iter iter;
626
627 snd_dma_noncontig_iter_set(dmab, &iter, offset);
628 __sg_page_iter_next(&iter);
629 return sg_page_iter_page(&iter);
630 }
631
632 static unsigned int
snd_dma_noncontig_get_chunk_size(struct snd_dma_buffer * dmab,unsigned int ofs,unsigned int size)633 snd_dma_noncontig_get_chunk_size(struct snd_dma_buffer *dmab,
634 unsigned int ofs, unsigned int size)
635 {
636 struct sg_dma_page_iter iter;
637 unsigned int start, end;
638 unsigned long addr;
639
640 start = ALIGN_DOWN(ofs, PAGE_SIZE);
641 end = ofs + size - 1; /* the last byte address */
642 snd_dma_noncontig_iter_set(dmab, &iter.base, start);
643 if (!__sg_page_iter_dma_next(&iter))
644 return 0;
645 /* check page continuity */
646 addr = sg_page_iter_dma_address(&iter);
647 for (;;) {
648 start += PAGE_SIZE;
649 if (start > end)
650 break;
651 addr += PAGE_SIZE;
652 if (!__sg_page_iter_dma_next(&iter) ||
653 sg_page_iter_dma_address(&iter) != addr)
654 return start - ofs;
655 }
656 /* ok, all on continuous pages */
657 return size;
658 }
659
660 static const struct snd_malloc_ops snd_dma_noncontig_ops = {
661 .alloc = snd_dma_noncontig_alloc,
662 .free = snd_dma_noncontig_free,
663 .mmap = snd_dma_noncontig_mmap,
664 .sync = snd_dma_noncontig_sync,
665 .get_addr = snd_dma_noncontig_get_addr,
666 .get_page = snd_dma_noncontig_get_page,
667 .get_chunk_size = snd_dma_noncontig_get_chunk_size,
668 };
669
670 /* x86-specific SG-buffer with WC pages */
671 #ifdef CONFIG_SND_DMA_SGBUF
672 #define sg_wc_address(it) ((unsigned long)page_address(sg_page_iter_page(it)))
673
snd_dma_sg_wc_alloc(struct snd_dma_buffer * dmab,size_t size)674 static void *snd_dma_sg_wc_alloc(struct snd_dma_buffer *dmab, size_t size)
675 {
676 void *p = snd_dma_noncontig_alloc(dmab, size);
677 struct sg_table *sgt = dmab->private_data;
678 struct sg_page_iter iter;
679
680 if (!p)
681 return NULL;
682 if (dmab->dev.type != SNDRV_DMA_TYPE_DEV_WC_SG)
683 return p;
684 for_each_sgtable_page(sgt, &iter, 0)
685 set_memory_wc(sg_wc_address(&iter), 1);
686 return p;
687 }
688
snd_dma_sg_wc_free(struct snd_dma_buffer * dmab)689 static void snd_dma_sg_wc_free(struct snd_dma_buffer *dmab)
690 {
691 struct sg_table *sgt = dmab->private_data;
692 struct sg_page_iter iter;
693
694 for_each_sgtable_page(sgt, &iter, 0)
695 set_memory_wb(sg_wc_address(&iter), 1);
696 snd_dma_noncontig_free(dmab);
697 }
698
snd_dma_sg_wc_mmap(struct snd_dma_buffer * dmab,struct vm_area_struct * area)699 static int snd_dma_sg_wc_mmap(struct snd_dma_buffer *dmab,
700 struct vm_area_struct *area)
701 {
702 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
703 return dma_mmap_noncontiguous(dmab->dev.dev, area,
704 dmab->bytes, dmab->private_data);
705 }
706
707 static const struct snd_malloc_ops snd_dma_sg_wc_ops = {
708 .alloc = snd_dma_sg_wc_alloc,
709 .free = snd_dma_sg_wc_free,
710 .mmap = snd_dma_sg_wc_mmap,
711 .sync = snd_dma_noncontig_sync,
712 .get_addr = snd_dma_noncontig_get_addr,
713 .get_page = snd_dma_noncontig_get_page,
714 .get_chunk_size = snd_dma_noncontig_get_chunk_size,
715 };
716
717 /* Fallback SG-buffer allocations for x86 */
718 struct snd_dma_sg_fallback {
719 bool use_dma_alloc_coherent;
720 size_t count;
721 struct page **pages;
722 /* DMA address array; the first page contains #pages in ~PAGE_MASK */
723 dma_addr_t *addrs;
724 };
725
__snd_dma_sg_fallback_free(struct snd_dma_buffer * dmab,struct snd_dma_sg_fallback * sgbuf)726 static void __snd_dma_sg_fallback_free(struct snd_dma_buffer *dmab,
727 struct snd_dma_sg_fallback *sgbuf)
728 {
729 size_t i, size;
730
731 if (sgbuf->pages && sgbuf->addrs) {
732 i = 0;
733 while (i < sgbuf->count) {
734 if (!sgbuf->pages[i] || !sgbuf->addrs[i])
735 break;
736 size = sgbuf->addrs[i] & ~PAGE_MASK;
737 if (WARN_ON(!size))
738 break;
739 if (sgbuf->use_dma_alloc_coherent)
740 dma_free_coherent(dmab->dev.dev, size << PAGE_SHIFT,
741 page_address(sgbuf->pages[i]),
742 sgbuf->addrs[i] & PAGE_MASK);
743 else
744 do_free_pages(page_address(sgbuf->pages[i]),
745 size << PAGE_SHIFT, false);
746 i += size;
747 }
748 }
749 kvfree(sgbuf->pages);
750 kvfree(sgbuf->addrs);
751 kfree(sgbuf);
752 }
753
snd_dma_sg_fallback_alloc(struct snd_dma_buffer * dmab,size_t size)754 static void *snd_dma_sg_fallback_alloc(struct snd_dma_buffer *dmab, size_t size)
755 {
756 struct snd_dma_sg_fallback *sgbuf;
757 struct page **pagep, *curp;
758 size_t chunk, npages;
759 dma_addr_t *addrp;
760 dma_addr_t addr;
761 void *p;
762
763 /* correct the type */
764 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_SG)
765 dmab->dev.type = SNDRV_DMA_TYPE_DEV_SG_FALLBACK;
766 else if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG)
767 dmab->dev.type = SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK;
768
769 sgbuf = kzalloc(sizeof(*sgbuf), GFP_KERNEL);
770 if (!sgbuf)
771 return NULL;
772 sgbuf->use_dma_alloc_coherent = cpu_feature_enabled(X86_FEATURE_XENPV);
773 size = PAGE_ALIGN(size);
774 sgbuf->count = size >> PAGE_SHIFT;
775 sgbuf->pages = kvcalloc(sgbuf->count, sizeof(*sgbuf->pages), GFP_KERNEL);
776 sgbuf->addrs = kvcalloc(sgbuf->count, sizeof(*sgbuf->addrs), GFP_KERNEL);
777 if (!sgbuf->pages || !sgbuf->addrs)
778 goto error;
779
780 pagep = sgbuf->pages;
781 addrp = sgbuf->addrs;
782 chunk = (PAGE_SIZE - 1) << PAGE_SHIFT; /* to fit in low bits in addrs */
783 while (size > 0) {
784 chunk = min(size, chunk);
785 if (sgbuf->use_dma_alloc_coherent)
786 p = dma_alloc_coherent(dmab->dev.dev, chunk, &addr, DEFAULT_GFP);
787 else
788 p = do_alloc_pages(dmab->dev.dev, chunk, &addr, false);
789 if (!p) {
790 if (chunk <= PAGE_SIZE)
791 goto error;
792 chunk >>= 1;
793 chunk = PAGE_SIZE << get_order(chunk);
794 continue;
795 }
796
797 size -= chunk;
798 /* fill pages */
799 npages = chunk >> PAGE_SHIFT;
800 *addrp = npages; /* store in lower bits */
801 curp = virt_to_page(p);
802 while (npages--) {
803 *pagep++ = curp++;
804 *addrp++ |= addr;
805 addr += PAGE_SIZE;
806 }
807 }
808
809 p = vmap(sgbuf->pages, sgbuf->count, VM_MAP, PAGE_KERNEL);
810 if (!p)
811 goto error;
812
813 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK)
814 set_pages_array_wc(sgbuf->pages, sgbuf->count);
815
816 dmab->private_data = sgbuf;
817 /* store the first page address for convenience */
818 dmab->addr = sgbuf->addrs[0] & PAGE_MASK;
819 return p;
820
821 error:
822 __snd_dma_sg_fallback_free(dmab, sgbuf);
823 return NULL;
824 }
825
snd_dma_sg_fallback_free(struct snd_dma_buffer * dmab)826 static void snd_dma_sg_fallback_free(struct snd_dma_buffer *dmab)
827 {
828 struct snd_dma_sg_fallback *sgbuf = dmab->private_data;
829
830 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK)
831 set_pages_array_wb(sgbuf->pages, sgbuf->count);
832 vunmap(dmab->area);
833 __snd_dma_sg_fallback_free(dmab, dmab->private_data);
834 }
835
snd_dma_sg_fallback_get_addr(struct snd_dma_buffer * dmab,size_t offset)836 static dma_addr_t snd_dma_sg_fallback_get_addr(struct snd_dma_buffer *dmab,
837 size_t offset)
838 {
839 struct snd_dma_sg_fallback *sgbuf = dmab->private_data;
840 size_t index = offset >> PAGE_SHIFT;
841
842 return (sgbuf->addrs[index] & PAGE_MASK) | (offset & ~PAGE_MASK);
843 }
844
snd_dma_sg_fallback_mmap(struct snd_dma_buffer * dmab,struct vm_area_struct * area)845 static int snd_dma_sg_fallback_mmap(struct snd_dma_buffer *dmab,
846 struct vm_area_struct *area)
847 {
848 struct snd_dma_sg_fallback *sgbuf = dmab->private_data;
849
850 if (dmab->dev.type == SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK)
851 area->vm_page_prot = pgprot_writecombine(area->vm_page_prot);
852 return vm_map_pages(area, sgbuf->pages, sgbuf->count);
853 }
854
855 static const struct snd_malloc_ops snd_dma_sg_fallback_ops = {
856 .alloc = snd_dma_sg_fallback_alloc,
857 .free = snd_dma_sg_fallback_free,
858 .mmap = snd_dma_sg_fallback_mmap,
859 .get_addr = snd_dma_sg_fallback_get_addr,
860 /* reuse vmalloc helpers */
861 .get_page = snd_dma_vmalloc_get_page,
862 .get_chunk_size = snd_dma_vmalloc_get_chunk_size,
863 };
864 #endif /* CONFIG_SND_DMA_SGBUF */
865
866 /*
867 * Non-coherent pages allocator
868 */
snd_dma_noncoherent_alloc(struct snd_dma_buffer * dmab,size_t size)869 static void *snd_dma_noncoherent_alloc(struct snd_dma_buffer *dmab, size_t size)
870 {
871 void *p;
872
873 p = dma_alloc_noncoherent(dmab->dev.dev, size, &dmab->addr,
874 dmab->dev.dir, DEFAULT_GFP);
875 if (p)
876 dmab->dev.need_sync = dma_need_sync(dmab->dev.dev, dmab->addr);
877 return p;
878 }
879
snd_dma_noncoherent_free(struct snd_dma_buffer * dmab)880 static void snd_dma_noncoherent_free(struct snd_dma_buffer *dmab)
881 {
882 dma_free_noncoherent(dmab->dev.dev, dmab->bytes, dmab->area,
883 dmab->addr, dmab->dev.dir);
884 }
885
snd_dma_noncoherent_mmap(struct snd_dma_buffer * dmab,struct vm_area_struct * area)886 static int snd_dma_noncoherent_mmap(struct snd_dma_buffer *dmab,
887 struct vm_area_struct *area)
888 {
889 area->vm_page_prot = vm_get_page_prot(area->vm_flags);
890 return dma_mmap_pages(dmab->dev.dev, area,
891 area->vm_end - area->vm_start,
892 virt_to_page(dmab->area));
893 }
894
snd_dma_noncoherent_sync(struct snd_dma_buffer * dmab,enum snd_dma_sync_mode mode)895 static void snd_dma_noncoherent_sync(struct snd_dma_buffer *dmab,
896 enum snd_dma_sync_mode mode)
897 {
898 if (mode == SNDRV_DMA_SYNC_CPU) {
899 if (dmab->dev.dir != DMA_TO_DEVICE)
900 dma_sync_single_for_cpu(dmab->dev.dev, dmab->addr,
901 dmab->bytes, dmab->dev.dir);
902 } else {
903 if (dmab->dev.dir != DMA_FROM_DEVICE)
904 dma_sync_single_for_device(dmab->dev.dev, dmab->addr,
905 dmab->bytes, dmab->dev.dir);
906 }
907 }
908
909 static const struct snd_malloc_ops snd_dma_noncoherent_ops = {
910 .alloc = snd_dma_noncoherent_alloc,
911 .free = snd_dma_noncoherent_free,
912 .mmap = snd_dma_noncoherent_mmap,
913 .sync = snd_dma_noncoherent_sync,
914 };
915
916 #endif /* CONFIG_HAS_DMA */
917
918 /*
919 * Entry points
920 */
921 static const struct snd_malloc_ops *snd_dma_ops[] = {
922 [SNDRV_DMA_TYPE_CONTINUOUS] = &snd_dma_continuous_ops,
923 [SNDRV_DMA_TYPE_VMALLOC] = &snd_dma_vmalloc_ops,
924 #ifdef CONFIG_HAS_DMA
925 [SNDRV_DMA_TYPE_DEV] = &snd_dma_dev_ops,
926 [SNDRV_DMA_TYPE_DEV_WC] = &snd_dma_wc_ops,
927 [SNDRV_DMA_TYPE_NONCONTIG] = &snd_dma_noncontig_ops,
928 [SNDRV_DMA_TYPE_NONCOHERENT] = &snd_dma_noncoherent_ops,
929 #ifdef CONFIG_SND_DMA_SGBUF
930 [SNDRV_DMA_TYPE_DEV_WC_SG] = &snd_dma_sg_wc_ops,
931 #endif
932 #ifdef CONFIG_GENERIC_ALLOCATOR
933 [SNDRV_DMA_TYPE_DEV_IRAM] = &snd_dma_iram_ops,
934 #endif /* CONFIG_GENERIC_ALLOCATOR */
935 #ifdef CONFIG_SND_DMA_SGBUF
936 [SNDRV_DMA_TYPE_DEV_SG_FALLBACK] = &snd_dma_sg_fallback_ops,
937 [SNDRV_DMA_TYPE_DEV_WC_SG_FALLBACK] = &snd_dma_sg_fallback_ops,
938 #endif
939 #endif /* CONFIG_HAS_DMA */
940 };
941
snd_dma_get_ops(struct snd_dma_buffer * dmab)942 static const struct snd_malloc_ops *snd_dma_get_ops(struct snd_dma_buffer *dmab)
943 {
944 if (WARN_ON_ONCE(!dmab))
945 return NULL;
946 if (WARN_ON_ONCE(dmab->dev.type <= SNDRV_DMA_TYPE_UNKNOWN ||
947 dmab->dev.type >= ARRAY_SIZE(snd_dma_ops)))
948 return NULL;
949 return snd_dma_ops[dmab->dev.type];
950 }
951