1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * AArch64 code
4 *
5 * Copyright (C) 2018, Red Hat, Inc.
6 */
7
8 #include <linux/compiler.h>
9 #include <assert.h>
10
11 #include "guest_modes.h"
12 #include "kvm_util.h"
13 #include "processor.h"
14 #include <linux/bitfield.h>
15
16 #define DEFAULT_ARM64_GUEST_STACK_VADDR_MIN 0xac0000
17
18 static vm_vaddr_t exception_handlers;
19
page_align(struct kvm_vm * vm,uint64_t v)20 static uint64_t page_align(struct kvm_vm *vm, uint64_t v)
21 {
22 return (v + vm->page_size) & ~(vm->page_size - 1);
23 }
24
pgd_index(struct kvm_vm * vm,vm_vaddr_t gva)25 static uint64_t pgd_index(struct kvm_vm *vm, vm_vaddr_t gva)
26 {
27 unsigned int shift = (vm->pgtable_levels - 1) * (vm->page_shift - 3) + vm->page_shift;
28 uint64_t mask = (1UL << (vm->va_bits - shift)) - 1;
29
30 return (gva >> shift) & mask;
31 }
32
pud_index(struct kvm_vm * vm,vm_vaddr_t gva)33 static uint64_t pud_index(struct kvm_vm *vm, vm_vaddr_t gva)
34 {
35 unsigned int shift = 2 * (vm->page_shift - 3) + vm->page_shift;
36 uint64_t mask = (1UL << (vm->page_shift - 3)) - 1;
37
38 TEST_ASSERT(vm->pgtable_levels == 4,
39 "Mode %d does not have 4 page table levels", vm->mode);
40
41 return (gva >> shift) & mask;
42 }
43
pmd_index(struct kvm_vm * vm,vm_vaddr_t gva)44 static uint64_t pmd_index(struct kvm_vm *vm, vm_vaddr_t gva)
45 {
46 unsigned int shift = (vm->page_shift - 3) + vm->page_shift;
47 uint64_t mask = (1UL << (vm->page_shift - 3)) - 1;
48
49 TEST_ASSERT(vm->pgtable_levels >= 3,
50 "Mode %d does not have >= 3 page table levels", vm->mode);
51
52 return (gva >> shift) & mask;
53 }
54
pte_index(struct kvm_vm * vm,vm_vaddr_t gva)55 static uint64_t pte_index(struct kvm_vm *vm, vm_vaddr_t gva)
56 {
57 uint64_t mask = (1UL << (vm->page_shift - 3)) - 1;
58 return (gva >> vm->page_shift) & mask;
59 }
60
addr_pte(struct kvm_vm * vm,uint64_t pa,uint64_t attrs)61 static uint64_t addr_pte(struct kvm_vm *vm, uint64_t pa, uint64_t attrs)
62 {
63 uint64_t pte;
64
65 pte = pa & GENMASK(47, vm->page_shift);
66 if (vm->page_shift == 16)
67 pte |= FIELD_GET(GENMASK(51, 48), pa) << 12;
68 pte |= attrs;
69
70 return pte;
71 }
72
pte_addr(struct kvm_vm * vm,uint64_t pte)73 static uint64_t pte_addr(struct kvm_vm *vm, uint64_t pte)
74 {
75 uint64_t pa;
76
77 pa = pte & GENMASK(47, vm->page_shift);
78 if (vm->page_shift == 16)
79 pa |= FIELD_GET(GENMASK(15, 12), pte) << 48;
80
81 return pa;
82 }
83
ptrs_per_pgd(struct kvm_vm * vm)84 static uint64_t ptrs_per_pgd(struct kvm_vm *vm)
85 {
86 unsigned int shift = (vm->pgtable_levels - 1) * (vm->page_shift - 3) + vm->page_shift;
87 return 1 << (vm->va_bits - shift);
88 }
89
ptrs_per_pte(struct kvm_vm * vm)90 static uint64_t __maybe_unused ptrs_per_pte(struct kvm_vm *vm)
91 {
92 return 1 << (vm->page_shift - 3);
93 }
94
virt_arch_pgd_alloc(struct kvm_vm * vm)95 void virt_arch_pgd_alloc(struct kvm_vm *vm)
96 {
97 size_t nr_pages = page_align(vm, ptrs_per_pgd(vm) * 8) / vm->page_size;
98
99 if (vm->pgd_created)
100 return;
101
102 vm->pgd = vm_phy_pages_alloc(vm, nr_pages,
103 KVM_GUEST_PAGE_TABLE_MIN_PADDR,
104 vm->memslots[MEM_REGION_PT]);
105 vm->pgd_created = true;
106 }
107
_virt_pg_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr,uint64_t flags)108 static void _virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
109 uint64_t flags)
110 {
111 uint8_t attr_idx = flags & 7;
112 uint64_t *ptep;
113
114 TEST_ASSERT((vaddr % vm->page_size) == 0,
115 "Virtual address not on page boundary,\n"
116 " vaddr: 0x%lx vm->page_size: 0x%x", vaddr, vm->page_size);
117 TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
118 (vaddr >> vm->page_shift)),
119 "Invalid virtual address, vaddr: 0x%lx", vaddr);
120 TEST_ASSERT((paddr % vm->page_size) == 0,
121 "Physical address not on page boundary,\n"
122 " paddr: 0x%lx vm->page_size: 0x%x", paddr, vm->page_size);
123 TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
124 "Physical address beyond beyond maximum supported,\n"
125 " paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
126 paddr, vm->max_gfn, vm->page_size);
127
128 ptep = addr_gpa2hva(vm, vm->pgd) + pgd_index(vm, vaddr) * 8;
129 if (!*ptep)
130 *ptep = addr_pte(vm, vm_alloc_page_table(vm), 3);
131
132 switch (vm->pgtable_levels) {
133 case 4:
134 ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pud_index(vm, vaddr) * 8;
135 if (!*ptep)
136 *ptep = addr_pte(vm, vm_alloc_page_table(vm), 3);
137 /* fall through */
138 case 3:
139 ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pmd_index(vm, vaddr) * 8;
140 if (!*ptep)
141 *ptep = addr_pte(vm, vm_alloc_page_table(vm), 3);
142 /* fall through */
143 case 2:
144 ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pte_index(vm, vaddr) * 8;
145 break;
146 default:
147 TEST_FAIL("Page table levels must be 2, 3, or 4");
148 }
149
150 *ptep = addr_pte(vm, paddr, (attr_idx << 2) | (1 << 10) | 3); /* AF */
151 }
152
virt_arch_pg_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr)153 void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
154 {
155 uint64_t attr_idx = MT_NORMAL;
156
157 _virt_pg_map(vm, vaddr, paddr, attr_idx);
158 }
159
virt_get_pte_hva(struct kvm_vm * vm,vm_vaddr_t gva)160 uint64_t *virt_get_pte_hva(struct kvm_vm *vm, vm_vaddr_t gva)
161 {
162 uint64_t *ptep;
163
164 if (!vm->pgd_created)
165 goto unmapped_gva;
166
167 ptep = addr_gpa2hva(vm, vm->pgd) + pgd_index(vm, gva) * 8;
168 if (!ptep)
169 goto unmapped_gva;
170
171 switch (vm->pgtable_levels) {
172 case 4:
173 ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pud_index(vm, gva) * 8;
174 if (!ptep)
175 goto unmapped_gva;
176 /* fall through */
177 case 3:
178 ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pmd_index(vm, gva) * 8;
179 if (!ptep)
180 goto unmapped_gva;
181 /* fall through */
182 case 2:
183 ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) + pte_index(vm, gva) * 8;
184 if (!ptep)
185 goto unmapped_gva;
186 break;
187 default:
188 TEST_FAIL("Page table levels must be 2, 3, or 4");
189 }
190
191 return ptep;
192
193 unmapped_gva:
194 TEST_FAIL("No mapping for vm virtual address, gva: 0x%lx", gva);
195 exit(EXIT_FAILURE);
196 }
197
addr_arch_gva2gpa(struct kvm_vm * vm,vm_vaddr_t gva)198 vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
199 {
200 uint64_t *ptep = virt_get_pte_hva(vm, gva);
201
202 return pte_addr(vm, *ptep) + (gva & (vm->page_size - 1));
203 }
204
pte_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent,uint64_t page,int level)205 static void pte_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent, uint64_t page, int level)
206 {
207 #ifdef DEBUG
208 static const char * const type[] = { "", "pud", "pmd", "pte" };
209 uint64_t pte, *ptep;
210
211 if (level == 4)
212 return;
213
214 for (pte = page; pte < page + ptrs_per_pte(vm) * 8; pte += 8) {
215 ptep = addr_gpa2hva(vm, pte);
216 if (!*ptep)
217 continue;
218 fprintf(stream, "%*s%s: %lx: %lx at %p\n", indent, "", type[level], pte, *ptep, ptep);
219 pte_dump(stream, vm, indent + 1, pte_addr(vm, *ptep), level + 1);
220 }
221 #endif
222 }
223
virt_arch_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent)224 void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
225 {
226 int level = 4 - (vm->pgtable_levels - 1);
227 uint64_t pgd, *ptep;
228
229 if (!vm->pgd_created)
230 return;
231
232 for (pgd = vm->pgd; pgd < vm->pgd + ptrs_per_pgd(vm) * 8; pgd += 8) {
233 ptep = addr_gpa2hva(vm, pgd);
234 if (!*ptep)
235 continue;
236 fprintf(stream, "%*spgd: %lx: %lx at %p\n", indent, "", pgd, *ptep, ptep);
237 pte_dump(stream, vm, indent + 1, pte_addr(vm, *ptep), level);
238 }
239 }
240
aarch64_vcpu_setup(struct kvm_vcpu * vcpu,struct kvm_vcpu_init * init)241 void aarch64_vcpu_setup(struct kvm_vcpu *vcpu, struct kvm_vcpu_init *init)
242 {
243 struct kvm_vcpu_init default_init = { .target = -1, };
244 struct kvm_vm *vm = vcpu->vm;
245 uint64_t sctlr_el1, tcr_el1, ttbr0_el1;
246
247 if (!init)
248 init = &default_init;
249
250 if (init->target == -1) {
251 struct kvm_vcpu_init preferred;
252 vm_ioctl(vm, KVM_ARM_PREFERRED_TARGET, &preferred);
253 init->target = preferred.target;
254 }
255
256 vcpu_ioctl(vcpu, KVM_ARM_VCPU_INIT, init);
257
258 /*
259 * Enable FP/ASIMD to avoid trapping when accessing Q0-Q15
260 * registers, which the variable argument list macros do.
261 */
262 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_CPACR_EL1), 3 << 20);
263
264 vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_SCTLR_EL1), &sctlr_el1);
265 vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_TCR_EL1), &tcr_el1);
266
267 /* Configure base granule size */
268 switch (vm->mode) {
269 case VM_MODE_P52V48_4K:
270 TEST_FAIL("AArch64 does not support 4K sized pages "
271 "with 52-bit physical address ranges");
272 case VM_MODE_PXXV48_4K:
273 TEST_FAIL("AArch64 does not support 4K sized pages "
274 "with ANY-bit physical address ranges");
275 case VM_MODE_P52V48_64K:
276 case VM_MODE_P48V48_64K:
277 case VM_MODE_P40V48_64K:
278 case VM_MODE_P36V48_64K:
279 tcr_el1 |= 1ul << 14; /* TG0 = 64KB */
280 break;
281 case VM_MODE_P48V48_16K:
282 case VM_MODE_P40V48_16K:
283 case VM_MODE_P36V48_16K:
284 case VM_MODE_P36V47_16K:
285 tcr_el1 |= 2ul << 14; /* TG0 = 16KB */
286 break;
287 case VM_MODE_P48V48_4K:
288 case VM_MODE_P40V48_4K:
289 case VM_MODE_P36V48_4K:
290 tcr_el1 |= 0ul << 14; /* TG0 = 4KB */
291 break;
292 default:
293 TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
294 }
295
296 ttbr0_el1 = vm->pgd & GENMASK(47, vm->page_shift);
297
298 /* Configure output size */
299 switch (vm->mode) {
300 case VM_MODE_P52V48_64K:
301 tcr_el1 |= 6ul << 32; /* IPS = 52 bits */
302 ttbr0_el1 |= FIELD_GET(GENMASK(51, 48), vm->pgd) << 2;
303 break;
304 case VM_MODE_P48V48_4K:
305 case VM_MODE_P48V48_16K:
306 case VM_MODE_P48V48_64K:
307 tcr_el1 |= 5ul << 32; /* IPS = 48 bits */
308 break;
309 case VM_MODE_P40V48_4K:
310 case VM_MODE_P40V48_16K:
311 case VM_MODE_P40V48_64K:
312 tcr_el1 |= 2ul << 32; /* IPS = 40 bits */
313 break;
314 case VM_MODE_P36V48_4K:
315 case VM_MODE_P36V48_16K:
316 case VM_MODE_P36V48_64K:
317 case VM_MODE_P36V47_16K:
318 tcr_el1 |= 1ul << 32; /* IPS = 36 bits */
319 break;
320 default:
321 TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
322 }
323
324 sctlr_el1 |= (1 << 0) | (1 << 2) | (1 << 12) /* M | C | I */;
325 /* TCR_EL1 |= IRGN0:WBWA | ORGN0:WBWA | SH0:Inner-Shareable */;
326 tcr_el1 |= (1 << 8) | (1 << 10) | (3 << 12);
327 tcr_el1 |= (64 - vm->va_bits) /* T0SZ */;
328
329 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_SCTLR_EL1), sctlr_el1);
330 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_TCR_EL1), tcr_el1);
331 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_MAIR_EL1), DEFAULT_MAIR_EL1);
332 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_TTBR0_EL1), ttbr0_el1);
333 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_TPIDR_EL1), vcpu->id);
334 }
335
vcpu_arch_dump(FILE * stream,struct kvm_vcpu * vcpu,uint8_t indent)336 void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent)
337 {
338 uint64_t pstate, pc;
339
340 vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pstate), &pstate);
341 vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pc), &pc);
342
343 fprintf(stream, "%*spstate: 0x%.16lx pc: 0x%.16lx\n",
344 indent, "", pstate, pc);
345 }
346
aarch64_vcpu_add(struct kvm_vm * vm,uint32_t vcpu_id,struct kvm_vcpu_init * init,void * guest_code)347 struct kvm_vcpu *aarch64_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
348 struct kvm_vcpu_init *init, void *guest_code)
349 {
350 size_t stack_size;
351 uint64_t stack_vaddr;
352 struct kvm_vcpu *vcpu = __vm_vcpu_add(vm, vcpu_id);
353
354 stack_size = vm->page_size == 4096 ? DEFAULT_STACK_PGS * vm->page_size :
355 vm->page_size;
356 stack_vaddr = __vm_vaddr_alloc(vm, stack_size,
357 DEFAULT_ARM64_GUEST_STACK_VADDR_MIN,
358 MEM_REGION_DATA);
359
360 aarch64_vcpu_setup(vcpu, init);
361
362 vcpu_set_reg(vcpu, ARM64_CORE_REG(sp_el1), stack_vaddr + stack_size);
363 vcpu_set_reg(vcpu, ARM64_CORE_REG(regs.pc), (uint64_t)guest_code);
364
365 return vcpu;
366 }
367
vm_arch_vcpu_add(struct kvm_vm * vm,uint32_t vcpu_id,void * guest_code)368 struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
369 void *guest_code)
370 {
371 return aarch64_vcpu_add(vm, vcpu_id, NULL, guest_code);
372 }
373
vcpu_args_set(struct kvm_vcpu * vcpu,unsigned int num,...)374 void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...)
375 {
376 va_list ap;
377 int i;
378
379 TEST_ASSERT(num >= 1 && num <= 8, "Unsupported number of args,\n"
380 " num: %u\n", num);
381
382 va_start(ap, num);
383
384 for (i = 0; i < num; i++) {
385 vcpu_set_reg(vcpu, ARM64_CORE_REG(regs.regs[i]),
386 va_arg(ap, uint64_t));
387 }
388
389 va_end(ap);
390 }
391
kvm_exit_unexpected_exception(int vector,uint64_t ec,bool valid_ec)392 void kvm_exit_unexpected_exception(int vector, uint64_t ec, bool valid_ec)
393 {
394 ucall(UCALL_UNHANDLED, 3, vector, ec, valid_ec);
395 while (1)
396 ;
397 }
398
assert_on_unhandled_exception(struct kvm_vcpu * vcpu)399 void assert_on_unhandled_exception(struct kvm_vcpu *vcpu)
400 {
401 struct ucall uc;
402
403 if (get_ucall(vcpu, &uc) != UCALL_UNHANDLED)
404 return;
405
406 if (uc.args[2]) /* valid_ec */ {
407 assert(VECTOR_IS_SYNC(uc.args[0]));
408 TEST_FAIL("Unexpected exception (vector:0x%lx, ec:0x%lx)",
409 uc.args[0], uc.args[1]);
410 } else {
411 assert(!VECTOR_IS_SYNC(uc.args[0]));
412 TEST_FAIL("Unexpected exception (vector:0x%lx)",
413 uc.args[0]);
414 }
415 }
416
417 struct handlers {
418 handler_fn exception_handlers[VECTOR_NUM][ESR_EC_NUM];
419 };
420
vcpu_init_descriptor_tables(struct kvm_vcpu * vcpu)421 void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu)
422 {
423 extern char vectors;
424
425 vcpu_set_reg(vcpu, KVM_ARM64_SYS_REG(SYS_VBAR_EL1), (uint64_t)&vectors);
426 }
427
route_exception(struct ex_regs * regs,int vector)428 void route_exception(struct ex_regs *regs, int vector)
429 {
430 struct handlers *handlers = (struct handlers *)exception_handlers;
431 bool valid_ec;
432 int ec = 0;
433
434 switch (vector) {
435 case VECTOR_SYNC_CURRENT:
436 case VECTOR_SYNC_LOWER_64:
437 ec = (read_sysreg(esr_el1) >> ESR_EC_SHIFT) & ESR_EC_MASK;
438 valid_ec = true;
439 break;
440 case VECTOR_IRQ_CURRENT:
441 case VECTOR_IRQ_LOWER_64:
442 case VECTOR_FIQ_CURRENT:
443 case VECTOR_FIQ_LOWER_64:
444 case VECTOR_ERROR_CURRENT:
445 case VECTOR_ERROR_LOWER_64:
446 ec = 0;
447 valid_ec = false;
448 break;
449 default:
450 valid_ec = false;
451 goto unexpected_exception;
452 }
453
454 if (handlers && handlers->exception_handlers[vector][ec])
455 return handlers->exception_handlers[vector][ec](regs);
456
457 unexpected_exception:
458 kvm_exit_unexpected_exception(vector, ec, valid_ec);
459 }
460
vm_init_descriptor_tables(struct kvm_vm * vm)461 void vm_init_descriptor_tables(struct kvm_vm *vm)
462 {
463 vm->handlers = __vm_vaddr_alloc(vm, sizeof(struct handlers),
464 vm->page_size, MEM_REGION_DATA);
465
466 *(vm_vaddr_t *)addr_gva2hva(vm, (vm_vaddr_t)(&exception_handlers)) = vm->handlers;
467 }
468
vm_install_sync_handler(struct kvm_vm * vm,int vector,int ec,void (* handler)(struct ex_regs *))469 void vm_install_sync_handler(struct kvm_vm *vm, int vector, int ec,
470 void (*handler)(struct ex_regs *))
471 {
472 struct handlers *handlers = addr_gva2hva(vm, vm->handlers);
473
474 assert(VECTOR_IS_SYNC(vector));
475 assert(vector < VECTOR_NUM);
476 assert(ec < ESR_EC_NUM);
477 handlers->exception_handlers[vector][ec] = handler;
478 }
479
vm_install_exception_handler(struct kvm_vm * vm,int vector,void (* handler)(struct ex_regs *))480 void vm_install_exception_handler(struct kvm_vm *vm, int vector,
481 void (*handler)(struct ex_regs *))
482 {
483 struct handlers *handlers = addr_gva2hva(vm, vm->handlers);
484
485 assert(!VECTOR_IS_SYNC(vector));
486 assert(vector < VECTOR_NUM);
487 handlers->exception_handlers[vector][0] = handler;
488 }
489
guest_get_vcpuid(void)490 uint32_t guest_get_vcpuid(void)
491 {
492 return read_sysreg(tpidr_el1);
493 }
494
aarch64_get_supported_page_sizes(uint32_t ipa,bool * ps4k,bool * ps16k,bool * ps64k)495 void aarch64_get_supported_page_sizes(uint32_t ipa,
496 bool *ps4k, bool *ps16k, bool *ps64k)
497 {
498 struct kvm_vcpu_init preferred_init;
499 int kvm_fd, vm_fd, vcpu_fd, err;
500 uint64_t val;
501 struct kvm_one_reg reg = {
502 .id = KVM_ARM64_SYS_REG(SYS_ID_AA64MMFR0_EL1),
503 .addr = (uint64_t)&val,
504 };
505
506 kvm_fd = open_kvm_dev_path_or_exit();
507 vm_fd = __kvm_ioctl(kvm_fd, KVM_CREATE_VM, (void *)(unsigned long)ipa);
508 TEST_ASSERT(vm_fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VM, vm_fd));
509
510 vcpu_fd = ioctl(vm_fd, KVM_CREATE_VCPU, 0);
511 TEST_ASSERT(vcpu_fd >= 0, KVM_IOCTL_ERROR(KVM_CREATE_VCPU, vcpu_fd));
512
513 err = ioctl(vm_fd, KVM_ARM_PREFERRED_TARGET, &preferred_init);
514 TEST_ASSERT(err == 0, KVM_IOCTL_ERROR(KVM_ARM_PREFERRED_TARGET, err));
515 err = ioctl(vcpu_fd, KVM_ARM_VCPU_INIT, &preferred_init);
516 TEST_ASSERT(err == 0, KVM_IOCTL_ERROR(KVM_ARM_VCPU_INIT, err));
517
518 err = ioctl(vcpu_fd, KVM_GET_ONE_REG, ®);
519 TEST_ASSERT(err == 0, KVM_IOCTL_ERROR(KVM_GET_ONE_REG, vcpu_fd));
520
521 *ps4k = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR0_TGRAN4), val) != 0xf;
522 *ps64k = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR0_TGRAN64), val) == 0;
523 *ps16k = FIELD_GET(ARM64_FEATURE_MASK(ID_AA64MMFR0_TGRAN16), val) != 0;
524
525 close(vcpu_fd);
526 close(vm_fd);
527 close(kvm_fd);
528 }
529
530 #define __smccc_call(insn, function_id, arg0, arg1, arg2, arg3, arg4, arg5, \
531 arg6, res) \
532 asm volatile("mov w0, %w[function_id]\n" \
533 "mov x1, %[arg0]\n" \
534 "mov x2, %[arg1]\n" \
535 "mov x3, %[arg2]\n" \
536 "mov x4, %[arg3]\n" \
537 "mov x5, %[arg4]\n" \
538 "mov x6, %[arg5]\n" \
539 "mov x7, %[arg6]\n" \
540 #insn "#0\n" \
541 "mov %[res0], x0\n" \
542 "mov %[res1], x1\n" \
543 "mov %[res2], x2\n" \
544 "mov %[res3], x3\n" \
545 : [res0] "=r"(res->a0), [res1] "=r"(res->a1), \
546 [res2] "=r"(res->a2), [res3] "=r"(res->a3) \
547 : [function_id] "r"(function_id), [arg0] "r"(arg0), \
548 [arg1] "r"(arg1), [arg2] "r"(arg2), [arg3] "r"(arg3), \
549 [arg4] "r"(arg4), [arg5] "r"(arg5), [arg6] "r"(arg6) \
550 : "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7")
551
552
smccc_hvc(uint32_t function_id,uint64_t arg0,uint64_t arg1,uint64_t arg2,uint64_t arg3,uint64_t arg4,uint64_t arg5,uint64_t arg6,struct arm_smccc_res * res)553 void smccc_hvc(uint32_t function_id, uint64_t arg0, uint64_t arg1,
554 uint64_t arg2, uint64_t arg3, uint64_t arg4, uint64_t arg5,
555 uint64_t arg6, struct arm_smccc_res *res)
556 {
557 __smccc_call(hvc, function_id, arg0, arg1, arg2, arg3, arg4, arg5,
558 arg6, res);
559 }
560
smccc_smc(uint32_t function_id,uint64_t arg0,uint64_t arg1,uint64_t arg2,uint64_t arg3,uint64_t arg4,uint64_t arg5,uint64_t arg6,struct arm_smccc_res * res)561 void smccc_smc(uint32_t function_id, uint64_t arg0, uint64_t arg1,
562 uint64_t arg2, uint64_t arg3, uint64_t arg4, uint64_t arg5,
563 uint64_t arg6, struct arm_smccc_res *res)
564 {
565 __smccc_call(smc, function_id, arg0, arg1, arg2, arg3, arg4, arg5,
566 arg6, res);
567 }
568
kvm_selftest_arch_init(void)569 void kvm_selftest_arch_init(void)
570 {
571 /*
572 * arm64 doesn't have a true default mode, so start by computing the
573 * available IPA space and page sizes early.
574 */
575 guest_modes_append_default();
576 }
577
vm_vaddr_populate_bitmap(struct kvm_vm * vm)578 void vm_vaddr_populate_bitmap(struct kvm_vm *vm)
579 {
580 /*
581 * arm64 selftests use only TTBR0_EL1, meaning that the valid VA space
582 * is [0, 2^(64 - TCR_EL1.T0SZ)).
583 */
584 sparsebit_set_num(vm->vpages_valid, 0,
585 (1ULL << vm->va_bits) >> vm->page_shift);
586 }
587