1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2022 Intel Corporation
4 */
5
6 #include <drm/drm_blend.h>
7
8 #include "i915_drv.h"
9 #include "i915_fixed.h"
10 #include "i915_reg.h"
11 #include "i9xx_wm.h"
12 #include "intel_atomic.h"
13 #include "intel_atomic_plane.h"
14 #include "intel_bw.h"
15 #include "intel_crtc.h"
16 #include "intel_de.h"
17 #include "intel_display.h"
18 #include "intel_display_power.h"
19 #include "intel_display_types.h"
20 #include "intel_fb.h"
21 #include "intel_pcode.h"
22 #include "intel_wm.h"
23 #include "skl_watermark.h"
24 #include "skl_watermark_regs.h"
25
26 static void skl_sagv_disable(struct drm_i915_private *i915);
27
28 /* Stores plane specific WM parameters */
29 struct skl_wm_params {
30 bool x_tiled, y_tiled;
31 bool rc_surface;
32 bool is_planar;
33 u32 width;
34 u8 cpp;
35 u32 plane_pixel_rate;
36 u32 y_min_scanlines;
37 u32 plane_bytes_per_line;
38 uint_fixed_16_16_t plane_blocks_per_line;
39 uint_fixed_16_16_t y_tile_minimum;
40 u32 linetime_us;
41 u32 dbuf_block_size;
42 };
43
intel_enabled_dbuf_slices_mask(struct drm_i915_private * i915)44 u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *i915)
45 {
46 u8 enabled_slices = 0;
47 enum dbuf_slice slice;
48
49 for_each_dbuf_slice(i915, slice) {
50 if (intel_de_read(i915, DBUF_CTL_S(slice)) & DBUF_POWER_STATE)
51 enabled_slices |= BIT(slice);
52 }
53
54 return enabled_slices;
55 }
56
57 /*
58 * FIXME: We still don't have the proper code detect if we need to apply the WA,
59 * so assume we'll always need it in order to avoid underruns.
60 */
skl_needs_memory_bw_wa(struct drm_i915_private * i915)61 static bool skl_needs_memory_bw_wa(struct drm_i915_private *i915)
62 {
63 return DISPLAY_VER(i915) == 9;
64 }
65
66 static bool
intel_has_sagv(struct drm_i915_private * i915)67 intel_has_sagv(struct drm_i915_private *i915)
68 {
69 return HAS_SAGV(i915) &&
70 i915->display.sagv.status != I915_SAGV_NOT_CONTROLLED;
71 }
72
73 static u32
intel_sagv_block_time(struct drm_i915_private * i915)74 intel_sagv_block_time(struct drm_i915_private *i915)
75 {
76 if (DISPLAY_VER(i915) >= 14) {
77 u32 val;
78
79 val = intel_de_read(i915, MTL_LATENCY_SAGV);
80
81 return REG_FIELD_GET(MTL_LATENCY_QCLK_SAGV, val);
82 } else if (DISPLAY_VER(i915) >= 12) {
83 u32 val = 0;
84 int ret;
85
86 ret = snb_pcode_read(&i915->uncore,
87 GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
88 &val, NULL);
89 if (ret) {
90 drm_dbg_kms(&i915->drm, "Couldn't read SAGV block time!\n");
91 return 0;
92 }
93
94 return val;
95 } else if (DISPLAY_VER(i915) == 11) {
96 return 10;
97 } else if (HAS_SAGV(i915)) {
98 return 30;
99 } else {
100 return 0;
101 }
102 }
103
intel_sagv_init(struct drm_i915_private * i915)104 static void intel_sagv_init(struct drm_i915_private *i915)
105 {
106 if (!HAS_SAGV(i915))
107 i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
108
109 /*
110 * Probe to see if we have working SAGV control.
111 * For icl+ this was already determined by intel_bw_init_hw().
112 */
113 if (DISPLAY_VER(i915) < 11)
114 skl_sagv_disable(i915);
115
116 drm_WARN_ON(&i915->drm, i915->display.sagv.status == I915_SAGV_UNKNOWN);
117
118 i915->display.sagv.block_time_us = intel_sagv_block_time(i915);
119
120 drm_dbg_kms(&i915->drm, "SAGV supported: %s, original SAGV block time: %u us\n",
121 str_yes_no(intel_has_sagv(i915)), i915->display.sagv.block_time_us);
122
123 /* avoid overflow when adding with wm0 latency/etc. */
124 if (drm_WARN(&i915->drm, i915->display.sagv.block_time_us > U16_MAX,
125 "Excessive SAGV block time %u, ignoring\n",
126 i915->display.sagv.block_time_us))
127 i915->display.sagv.block_time_us = 0;
128
129 if (!intel_has_sagv(i915))
130 i915->display.sagv.block_time_us = 0;
131 }
132
133 /*
134 * SAGV dynamically adjusts the system agent voltage and clock frequencies
135 * depending on power and performance requirements. The display engine access
136 * to system memory is blocked during the adjustment time. Because of the
137 * blocking time, having this enabled can cause full system hangs and/or pipe
138 * underruns if we don't meet all of the following requirements:
139 *
140 * - <= 1 pipe enabled
141 * - All planes can enable watermarks for latencies >= SAGV engine block time
142 * - We're not using an interlaced display configuration
143 */
skl_sagv_enable(struct drm_i915_private * i915)144 static void skl_sagv_enable(struct drm_i915_private *i915)
145 {
146 int ret;
147
148 if (!intel_has_sagv(i915))
149 return;
150
151 if (i915->display.sagv.status == I915_SAGV_ENABLED)
152 return;
153
154 drm_dbg_kms(&i915->drm, "Enabling SAGV\n");
155 ret = snb_pcode_write(&i915->uncore, GEN9_PCODE_SAGV_CONTROL,
156 GEN9_SAGV_ENABLE);
157
158 /* We don't need to wait for SAGV when enabling */
159
160 /*
161 * Some skl systems, pre-release machines in particular,
162 * don't actually have SAGV.
163 */
164 if (IS_SKYLAKE(i915) && ret == -ENXIO) {
165 drm_dbg(&i915->drm, "No SAGV found on system, ignoring\n");
166 i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
167 return;
168 } else if (ret < 0) {
169 drm_err(&i915->drm, "Failed to enable SAGV\n");
170 return;
171 }
172
173 i915->display.sagv.status = I915_SAGV_ENABLED;
174 }
175
skl_sagv_disable(struct drm_i915_private * i915)176 static void skl_sagv_disable(struct drm_i915_private *i915)
177 {
178 int ret;
179
180 if (!intel_has_sagv(i915))
181 return;
182
183 if (i915->display.sagv.status == I915_SAGV_DISABLED)
184 return;
185
186 drm_dbg_kms(&i915->drm, "Disabling SAGV\n");
187 /* bspec says to keep retrying for at least 1 ms */
188 ret = skl_pcode_request(&i915->uncore, GEN9_PCODE_SAGV_CONTROL,
189 GEN9_SAGV_DISABLE,
190 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
191 1);
192 /*
193 * Some skl systems, pre-release machines in particular,
194 * don't actually have SAGV.
195 */
196 if (IS_SKYLAKE(i915) && ret == -ENXIO) {
197 drm_dbg(&i915->drm, "No SAGV found on system, ignoring\n");
198 i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
199 return;
200 } else if (ret < 0) {
201 drm_err(&i915->drm, "Failed to disable SAGV (%d)\n", ret);
202 return;
203 }
204
205 i915->display.sagv.status = I915_SAGV_DISABLED;
206 }
207
skl_sagv_pre_plane_update(struct intel_atomic_state * state)208 static void skl_sagv_pre_plane_update(struct intel_atomic_state *state)
209 {
210 struct drm_i915_private *i915 = to_i915(state->base.dev);
211 const struct intel_bw_state *new_bw_state =
212 intel_atomic_get_new_bw_state(state);
213
214 if (!new_bw_state)
215 return;
216
217 if (!intel_can_enable_sagv(i915, new_bw_state))
218 skl_sagv_disable(i915);
219 }
220
skl_sagv_post_plane_update(struct intel_atomic_state * state)221 static void skl_sagv_post_plane_update(struct intel_atomic_state *state)
222 {
223 struct drm_i915_private *i915 = to_i915(state->base.dev);
224 const struct intel_bw_state *new_bw_state =
225 intel_atomic_get_new_bw_state(state);
226
227 if (!new_bw_state)
228 return;
229
230 if (intel_can_enable_sagv(i915, new_bw_state))
231 skl_sagv_enable(i915);
232 }
233
icl_sagv_pre_plane_update(struct intel_atomic_state * state)234 static void icl_sagv_pre_plane_update(struct intel_atomic_state *state)
235 {
236 struct drm_i915_private *i915 = to_i915(state->base.dev);
237 const struct intel_bw_state *old_bw_state =
238 intel_atomic_get_old_bw_state(state);
239 const struct intel_bw_state *new_bw_state =
240 intel_atomic_get_new_bw_state(state);
241 u16 old_mask, new_mask;
242
243 if (!new_bw_state)
244 return;
245
246 old_mask = old_bw_state->qgv_points_mask;
247 new_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;
248
249 if (old_mask == new_mask)
250 return;
251
252 WARN_ON(!new_bw_state->base.changed);
253
254 drm_dbg_kms(&i915->drm, "Restricting QGV points: 0x%x -> 0x%x\n",
255 old_mask, new_mask);
256
257 /*
258 * Restrict required qgv points before updating the configuration.
259 * According to BSpec we can't mask and unmask qgv points at the same
260 * time. Also masking should be done before updating the configuration
261 * and unmasking afterwards.
262 */
263 icl_pcode_restrict_qgv_points(i915, new_mask);
264 }
265
icl_sagv_post_plane_update(struct intel_atomic_state * state)266 static void icl_sagv_post_plane_update(struct intel_atomic_state *state)
267 {
268 struct drm_i915_private *i915 = to_i915(state->base.dev);
269 const struct intel_bw_state *old_bw_state =
270 intel_atomic_get_old_bw_state(state);
271 const struct intel_bw_state *new_bw_state =
272 intel_atomic_get_new_bw_state(state);
273 u16 old_mask, new_mask;
274
275 if (!new_bw_state)
276 return;
277
278 old_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;
279 new_mask = new_bw_state->qgv_points_mask;
280
281 if (old_mask == new_mask)
282 return;
283
284 WARN_ON(!new_bw_state->base.changed);
285
286 drm_dbg_kms(&i915->drm, "Relaxing QGV points: 0x%x -> 0x%x\n",
287 old_mask, new_mask);
288
289 /*
290 * Allow required qgv points after updating the configuration.
291 * According to BSpec we can't mask and unmask qgv points at the same
292 * time. Also masking should be done before updating the configuration
293 * and unmasking afterwards.
294 */
295 icl_pcode_restrict_qgv_points(i915, new_mask);
296 }
297
intel_sagv_pre_plane_update(struct intel_atomic_state * state)298 void intel_sagv_pre_plane_update(struct intel_atomic_state *state)
299 {
300 struct drm_i915_private *i915 = to_i915(state->base.dev);
301
302 /*
303 * Just return if we can't control SAGV or don't have it.
304 * This is different from situation when we have SAGV but just can't
305 * afford it due to DBuf limitation - in case if SAGV is completely
306 * disabled in a BIOS, we are not even allowed to send a PCode request,
307 * as it will throw an error. So have to check it here.
308 */
309 if (!intel_has_sagv(i915))
310 return;
311
312 if (DISPLAY_VER(i915) >= 11)
313 icl_sagv_pre_plane_update(state);
314 else
315 skl_sagv_pre_plane_update(state);
316 }
317
intel_sagv_post_plane_update(struct intel_atomic_state * state)318 void intel_sagv_post_plane_update(struct intel_atomic_state *state)
319 {
320 struct drm_i915_private *i915 = to_i915(state->base.dev);
321
322 /*
323 * Just return if we can't control SAGV or don't have it.
324 * This is different from situation when we have SAGV but just can't
325 * afford it due to DBuf limitation - in case if SAGV is completely
326 * disabled in a BIOS, we are not even allowed to send a PCode request,
327 * as it will throw an error. So have to check it here.
328 */
329 if (!intel_has_sagv(i915))
330 return;
331
332 if (DISPLAY_VER(i915) >= 11)
333 icl_sagv_post_plane_update(state);
334 else
335 skl_sagv_post_plane_update(state);
336 }
337
skl_crtc_can_enable_sagv(const struct intel_crtc_state * crtc_state)338 static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
339 {
340 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
341 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
342 enum plane_id plane_id;
343 int max_level = INT_MAX;
344
345 if (!intel_has_sagv(i915))
346 return false;
347
348 if (!crtc_state->hw.active)
349 return true;
350
351 if (crtc_state->hw.pipe_mode.flags & DRM_MODE_FLAG_INTERLACE)
352 return false;
353
354 for_each_plane_id_on_crtc(crtc, plane_id) {
355 const struct skl_plane_wm *wm =
356 &crtc_state->wm.skl.optimal.planes[plane_id];
357 int level;
358
359 /* Skip this plane if it's not enabled */
360 if (!wm->wm[0].enable)
361 continue;
362
363 /* Find the highest enabled wm level for this plane */
364 for (level = i915->display.wm.num_levels - 1;
365 !wm->wm[level].enable; --level)
366 { }
367
368 /* Highest common enabled wm level for all planes */
369 max_level = min(level, max_level);
370 }
371
372 /* No enabled planes? */
373 if (max_level == INT_MAX)
374 return true;
375
376 for_each_plane_id_on_crtc(crtc, plane_id) {
377 const struct skl_plane_wm *wm =
378 &crtc_state->wm.skl.optimal.planes[plane_id];
379
380 /*
381 * All enabled planes must have enabled a common wm level that
382 * can tolerate memory latencies higher than sagv_block_time_us
383 */
384 if (wm->wm[0].enable && !wm->wm[max_level].can_sagv)
385 return false;
386 }
387
388 return true;
389 }
390
tgl_crtc_can_enable_sagv(const struct intel_crtc_state * crtc_state)391 static bool tgl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
392 {
393 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
394 enum plane_id plane_id;
395
396 if (!crtc_state->hw.active)
397 return true;
398
399 for_each_plane_id_on_crtc(crtc, plane_id) {
400 const struct skl_plane_wm *wm =
401 &crtc_state->wm.skl.optimal.planes[plane_id];
402
403 if (wm->wm[0].enable && !wm->sagv.wm0.enable)
404 return false;
405 }
406
407 return true;
408 }
409
intel_crtc_can_enable_sagv(const struct intel_crtc_state * crtc_state)410 static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
411 {
412 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
413 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
414
415 if (!i915->params.enable_sagv)
416 return false;
417
418 if (DISPLAY_VER(i915) >= 12)
419 return tgl_crtc_can_enable_sagv(crtc_state);
420 else
421 return skl_crtc_can_enable_sagv(crtc_state);
422 }
423
intel_can_enable_sagv(struct drm_i915_private * i915,const struct intel_bw_state * bw_state)424 bool intel_can_enable_sagv(struct drm_i915_private *i915,
425 const struct intel_bw_state *bw_state)
426 {
427 if (DISPLAY_VER(i915) < 11 &&
428 bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes))
429 return false;
430
431 return bw_state->pipe_sagv_reject == 0;
432 }
433
intel_compute_sagv_mask(struct intel_atomic_state * state)434 static int intel_compute_sagv_mask(struct intel_atomic_state *state)
435 {
436 struct drm_i915_private *i915 = to_i915(state->base.dev);
437 int ret;
438 struct intel_crtc *crtc;
439 struct intel_crtc_state *new_crtc_state;
440 struct intel_bw_state *new_bw_state = NULL;
441 const struct intel_bw_state *old_bw_state = NULL;
442 int i;
443
444 for_each_new_intel_crtc_in_state(state, crtc,
445 new_crtc_state, i) {
446 new_bw_state = intel_atomic_get_bw_state(state);
447 if (IS_ERR(new_bw_state))
448 return PTR_ERR(new_bw_state);
449
450 old_bw_state = intel_atomic_get_old_bw_state(state);
451
452 if (intel_crtc_can_enable_sagv(new_crtc_state))
453 new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe);
454 else
455 new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe);
456 }
457
458 if (!new_bw_state)
459 return 0;
460
461 new_bw_state->active_pipes =
462 intel_calc_active_pipes(state, old_bw_state->active_pipes);
463
464 if (new_bw_state->active_pipes != old_bw_state->active_pipes) {
465 ret = intel_atomic_lock_global_state(&new_bw_state->base);
466 if (ret)
467 return ret;
468 }
469
470 if (intel_can_enable_sagv(i915, new_bw_state) !=
471 intel_can_enable_sagv(i915, old_bw_state)) {
472 ret = intel_atomic_serialize_global_state(&new_bw_state->base);
473 if (ret)
474 return ret;
475 } else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) {
476 ret = intel_atomic_lock_global_state(&new_bw_state->base);
477 if (ret)
478 return ret;
479 }
480
481 for_each_new_intel_crtc_in_state(state, crtc,
482 new_crtc_state, i) {
483 struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal;
484
485 /*
486 * We store use_sagv_wm in the crtc state rather than relying on
487 * that bw state since we have no convenient way to get at the
488 * latter from the plane commit hooks (especially in the legacy
489 * cursor case)
490 */
491 pipe_wm->use_sagv_wm = !HAS_HW_SAGV_WM(i915) &&
492 DISPLAY_VER(i915) >= 12 &&
493 intel_can_enable_sagv(i915, new_bw_state);
494 }
495
496 return 0;
497 }
498
skl_ddb_entry_init(struct skl_ddb_entry * entry,u16 start,u16 end)499 static u16 skl_ddb_entry_init(struct skl_ddb_entry *entry,
500 u16 start, u16 end)
501 {
502 entry->start = start;
503 entry->end = end;
504
505 return end;
506 }
507
intel_dbuf_slice_size(struct drm_i915_private * i915)508 static int intel_dbuf_slice_size(struct drm_i915_private *i915)
509 {
510 return DISPLAY_INFO(i915)->dbuf.size /
511 hweight8(DISPLAY_INFO(i915)->dbuf.slice_mask);
512 }
513
514 static void
skl_ddb_entry_for_slices(struct drm_i915_private * i915,u8 slice_mask,struct skl_ddb_entry * ddb)515 skl_ddb_entry_for_slices(struct drm_i915_private *i915, u8 slice_mask,
516 struct skl_ddb_entry *ddb)
517 {
518 int slice_size = intel_dbuf_slice_size(i915);
519
520 if (!slice_mask) {
521 ddb->start = 0;
522 ddb->end = 0;
523 return;
524 }
525
526 ddb->start = (ffs(slice_mask) - 1) * slice_size;
527 ddb->end = fls(slice_mask) * slice_size;
528
529 WARN_ON(ddb->start >= ddb->end);
530 WARN_ON(ddb->end > DISPLAY_INFO(i915)->dbuf.size);
531 }
532
mbus_ddb_offset(struct drm_i915_private * i915,u8 slice_mask)533 static unsigned int mbus_ddb_offset(struct drm_i915_private *i915, u8 slice_mask)
534 {
535 struct skl_ddb_entry ddb;
536
537 if (slice_mask & (BIT(DBUF_S1) | BIT(DBUF_S2)))
538 slice_mask = BIT(DBUF_S1);
539 else if (slice_mask & (BIT(DBUF_S3) | BIT(DBUF_S4)))
540 slice_mask = BIT(DBUF_S3);
541
542 skl_ddb_entry_for_slices(i915, slice_mask, &ddb);
543
544 return ddb.start;
545 }
546
skl_ddb_dbuf_slice_mask(struct drm_i915_private * i915,const struct skl_ddb_entry * entry)547 u32 skl_ddb_dbuf_slice_mask(struct drm_i915_private *i915,
548 const struct skl_ddb_entry *entry)
549 {
550 int slice_size = intel_dbuf_slice_size(i915);
551 enum dbuf_slice start_slice, end_slice;
552 u8 slice_mask = 0;
553
554 if (!skl_ddb_entry_size(entry))
555 return 0;
556
557 start_slice = entry->start / slice_size;
558 end_slice = (entry->end - 1) / slice_size;
559
560 /*
561 * Per plane DDB entry can in a really worst case be on multiple slices
562 * but single entry is anyway contigious.
563 */
564 while (start_slice <= end_slice) {
565 slice_mask |= BIT(start_slice);
566 start_slice++;
567 }
568
569 return slice_mask;
570 }
571
intel_crtc_ddb_weight(const struct intel_crtc_state * crtc_state)572 static unsigned int intel_crtc_ddb_weight(const struct intel_crtc_state *crtc_state)
573 {
574 const struct drm_display_mode *pipe_mode = &crtc_state->hw.pipe_mode;
575 int hdisplay, vdisplay;
576
577 if (!crtc_state->hw.active)
578 return 0;
579
580 /*
581 * Watermark/ddb requirement highly depends upon width of the
582 * framebuffer, So instead of allocating DDB equally among pipes
583 * distribute DDB based on resolution/width of the display.
584 */
585 drm_mode_get_hv_timing(pipe_mode, &hdisplay, &vdisplay);
586
587 return hdisplay;
588 }
589
intel_crtc_dbuf_weights(const struct intel_dbuf_state * dbuf_state,enum pipe for_pipe,unsigned int * weight_start,unsigned int * weight_end,unsigned int * weight_total)590 static void intel_crtc_dbuf_weights(const struct intel_dbuf_state *dbuf_state,
591 enum pipe for_pipe,
592 unsigned int *weight_start,
593 unsigned int *weight_end,
594 unsigned int *weight_total)
595 {
596 struct drm_i915_private *i915 =
597 to_i915(dbuf_state->base.state->base.dev);
598 enum pipe pipe;
599
600 *weight_start = 0;
601 *weight_end = 0;
602 *weight_total = 0;
603
604 for_each_pipe(i915, pipe) {
605 int weight = dbuf_state->weight[pipe];
606
607 /*
608 * Do not account pipes using other slice sets
609 * luckily as of current BSpec slice sets do not partially
610 * intersect(pipes share either same one slice or same slice set
611 * i.e no partial intersection), so it is enough to check for
612 * equality for now.
613 */
614 if (dbuf_state->slices[pipe] != dbuf_state->slices[for_pipe])
615 continue;
616
617 *weight_total += weight;
618 if (pipe < for_pipe) {
619 *weight_start += weight;
620 *weight_end += weight;
621 } else if (pipe == for_pipe) {
622 *weight_end += weight;
623 }
624 }
625 }
626
627 static int
skl_crtc_allocate_ddb(struct intel_atomic_state * state,struct intel_crtc * crtc)628 skl_crtc_allocate_ddb(struct intel_atomic_state *state, struct intel_crtc *crtc)
629 {
630 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
631 unsigned int weight_total, weight_start, weight_end;
632 const struct intel_dbuf_state *old_dbuf_state =
633 intel_atomic_get_old_dbuf_state(state);
634 struct intel_dbuf_state *new_dbuf_state =
635 intel_atomic_get_new_dbuf_state(state);
636 struct intel_crtc_state *crtc_state;
637 struct skl_ddb_entry ddb_slices;
638 enum pipe pipe = crtc->pipe;
639 unsigned int mbus_offset = 0;
640 u32 ddb_range_size;
641 u32 dbuf_slice_mask;
642 u32 start, end;
643 int ret;
644
645 if (new_dbuf_state->weight[pipe] == 0) {
646 skl_ddb_entry_init(&new_dbuf_state->ddb[pipe], 0, 0);
647 goto out;
648 }
649
650 dbuf_slice_mask = new_dbuf_state->slices[pipe];
651
652 skl_ddb_entry_for_slices(i915, dbuf_slice_mask, &ddb_slices);
653 mbus_offset = mbus_ddb_offset(i915, dbuf_slice_mask);
654 ddb_range_size = skl_ddb_entry_size(&ddb_slices);
655
656 intel_crtc_dbuf_weights(new_dbuf_state, pipe,
657 &weight_start, &weight_end, &weight_total);
658
659 start = ddb_range_size * weight_start / weight_total;
660 end = ddb_range_size * weight_end / weight_total;
661
662 skl_ddb_entry_init(&new_dbuf_state->ddb[pipe],
663 ddb_slices.start - mbus_offset + start,
664 ddb_slices.start - mbus_offset + end);
665
666 out:
667 if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe] &&
668 skl_ddb_entry_equal(&old_dbuf_state->ddb[pipe],
669 &new_dbuf_state->ddb[pipe]))
670 return 0;
671
672 ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
673 if (ret)
674 return ret;
675
676 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
677 if (IS_ERR(crtc_state))
678 return PTR_ERR(crtc_state);
679
680 /*
681 * Used for checking overlaps, so we need absolute
682 * offsets instead of MBUS relative offsets.
683 */
684 crtc_state->wm.skl.ddb.start = mbus_offset + new_dbuf_state->ddb[pipe].start;
685 crtc_state->wm.skl.ddb.end = mbus_offset + new_dbuf_state->ddb[pipe].end;
686
687 drm_dbg_kms(&i915->drm,
688 "[CRTC:%d:%s] dbuf slices 0x%x -> 0x%x, ddb (%d - %d) -> (%d - %d), active pipes 0x%x -> 0x%x\n",
689 crtc->base.base.id, crtc->base.name,
690 old_dbuf_state->slices[pipe], new_dbuf_state->slices[pipe],
691 old_dbuf_state->ddb[pipe].start, old_dbuf_state->ddb[pipe].end,
692 new_dbuf_state->ddb[pipe].start, new_dbuf_state->ddb[pipe].end,
693 old_dbuf_state->active_pipes, new_dbuf_state->active_pipes);
694
695 return 0;
696 }
697
698 static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
699 int width, const struct drm_format_info *format,
700 u64 modifier, unsigned int rotation,
701 u32 plane_pixel_rate, struct skl_wm_params *wp,
702 int color_plane);
703
704 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
705 struct intel_plane *plane,
706 int level,
707 unsigned int latency,
708 const struct skl_wm_params *wp,
709 const struct skl_wm_level *result_prev,
710 struct skl_wm_level *result /* out */);
711
skl_wm_latency(struct drm_i915_private * i915,int level,const struct skl_wm_params * wp)712 static unsigned int skl_wm_latency(struct drm_i915_private *i915, int level,
713 const struct skl_wm_params *wp)
714 {
715 unsigned int latency = i915->display.wm.skl_latency[level];
716
717 if (latency == 0)
718 return 0;
719
720 /*
721 * WaIncreaseLatencyIPCEnabled: kbl,cfl
722 * Display WA #1141: kbl,cfl
723 */
724 if ((IS_KABYLAKE(i915) || IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) &&
725 skl_watermark_ipc_enabled(i915))
726 latency += 4;
727
728 if (skl_needs_memory_bw_wa(i915) && wp && wp->x_tiled)
729 latency += 15;
730
731 return latency;
732 }
733
734 static unsigned int
skl_cursor_allocation(const struct intel_crtc_state * crtc_state,int num_active)735 skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
736 int num_active)
737 {
738 struct intel_plane *plane = to_intel_plane(crtc_state->uapi.crtc->cursor);
739 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
740 struct skl_wm_level wm = {};
741 int ret, min_ddb_alloc = 0;
742 struct skl_wm_params wp;
743 int level;
744
745 ret = skl_compute_wm_params(crtc_state, 256,
746 drm_format_info(DRM_FORMAT_ARGB8888),
747 DRM_FORMAT_MOD_LINEAR,
748 DRM_MODE_ROTATE_0,
749 crtc_state->pixel_rate, &wp, 0);
750 drm_WARN_ON(&i915->drm, ret);
751
752 for (level = 0; level < i915->display.wm.num_levels; level++) {
753 unsigned int latency = skl_wm_latency(i915, level, &wp);
754
755 skl_compute_plane_wm(crtc_state, plane, level, latency, &wp, &wm, &wm);
756 if (wm.min_ddb_alloc == U16_MAX)
757 break;
758
759 min_ddb_alloc = wm.min_ddb_alloc;
760 }
761
762 return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
763 }
764
skl_ddb_entry_init_from_hw(struct skl_ddb_entry * entry,u32 reg)765 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
766 {
767 skl_ddb_entry_init(entry,
768 REG_FIELD_GET(PLANE_BUF_START_MASK, reg),
769 REG_FIELD_GET(PLANE_BUF_END_MASK, reg));
770 if (entry->end)
771 entry->end++;
772 }
773
774 static void
skl_ddb_get_hw_plane_state(struct drm_i915_private * i915,const enum pipe pipe,const enum plane_id plane_id,struct skl_ddb_entry * ddb,struct skl_ddb_entry * ddb_y)775 skl_ddb_get_hw_plane_state(struct drm_i915_private *i915,
776 const enum pipe pipe,
777 const enum plane_id plane_id,
778 struct skl_ddb_entry *ddb,
779 struct skl_ddb_entry *ddb_y)
780 {
781 u32 val;
782
783 /* Cursor doesn't support NV12/planar, so no extra calculation needed */
784 if (plane_id == PLANE_CURSOR) {
785 val = intel_de_read(i915, CUR_BUF_CFG(pipe));
786 skl_ddb_entry_init_from_hw(ddb, val);
787 return;
788 }
789
790 val = intel_de_read(i915, PLANE_BUF_CFG(pipe, plane_id));
791 skl_ddb_entry_init_from_hw(ddb, val);
792
793 if (DISPLAY_VER(i915) >= 11)
794 return;
795
796 val = intel_de_read(i915, PLANE_NV12_BUF_CFG(pipe, plane_id));
797 skl_ddb_entry_init_from_hw(ddb_y, val);
798 }
799
skl_pipe_ddb_get_hw_state(struct intel_crtc * crtc,struct skl_ddb_entry * ddb,struct skl_ddb_entry * ddb_y)800 static void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
801 struct skl_ddb_entry *ddb,
802 struct skl_ddb_entry *ddb_y)
803 {
804 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
805 enum intel_display_power_domain power_domain;
806 enum pipe pipe = crtc->pipe;
807 intel_wakeref_t wakeref;
808 enum plane_id plane_id;
809
810 power_domain = POWER_DOMAIN_PIPE(pipe);
811 wakeref = intel_display_power_get_if_enabled(i915, power_domain);
812 if (!wakeref)
813 return;
814
815 for_each_plane_id_on_crtc(crtc, plane_id)
816 skl_ddb_get_hw_plane_state(i915, pipe,
817 plane_id,
818 &ddb[plane_id],
819 &ddb_y[plane_id]);
820
821 intel_display_power_put(i915, power_domain, wakeref);
822 }
823
824 struct dbuf_slice_conf_entry {
825 u8 active_pipes;
826 u8 dbuf_mask[I915_MAX_PIPES];
827 bool join_mbus;
828 };
829
830 /*
831 * Table taken from Bspec 12716
832 * Pipes do have some preferred DBuf slice affinity,
833 * plus there are some hardcoded requirements on how
834 * those should be distributed for multipipe scenarios.
835 * For more DBuf slices algorithm can get even more messy
836 * and less readable, so decided to use a table almost
837 * as is from BSpec itself - that way it is at least easier
838 * to compare, change and check.
839 */
840 static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
841 /* Autogenerated with igt/tools/intel_dbuf_map tool: */
842 {
843 {
844 .active_pipes = BIT(PIPE_A),
845 .dbuf_mask = {
846 [PIPE_A] = BIT(DBUF_S1),
847 },
848 },
849 {
850 .active_pipes = BIT(PIPE_B),
851 .dbuf_mask = {
852 [PIPE_B] = BIT(DBUF_S1),
853 },
854 },
855 {
856 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
857 .dbuf_mask = {
858 [PIPE_A] = BIT(DBUF_S1),
859 [PIPE_B] = BIT(DBUF_S2),
860 },
861 },
862 {
863 .active_pipes = BIT(PIPE_C),
864 .dbuf_mask = {
865 [PIPE_C] = BIT(DBUF_S2),
866 },
867 },
868 {
869 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
870 .dbuf_mask = {
871 [PIPE_A] = BIT(DBUF_S1),
872 [PIPE_C] = BIT(DBUF_S2),
873 },
874 },
875 {
876 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
877 .dbuf_mask = {
878 [PIPE_B] = BIT(DBUF_S1),
879 [PIPE_C] = BIT(DBUF_S2),
880 },
881 },
882 {
883 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
884 .dbuf_mask = {
885 [PIPE_A] = BIT(DBUF_S1),
886 [PIPE_B] = BIT(DBUF_S1),
887 [PIPE_C] = BIT(DBUF_S2),
888 },
889 },
890 {}
891 };
892
893 /*
894 * Table taken from Bspec 49255
895 * Pipes do have some preferred DBuf slice affinity,
896 * plus there are some hardcoded requirements on how
897 * those should be distributed for multipipe scenarios.
898 * For more DBuf slices algorithm can get even more messy
899 * and less readable, so decided to use a table almost
900 * as is from BSpec itself - that way it is at least easier
901 * to compare, change and check.
902 */
903 static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
904 /* Autogenerated with igt/tools/intel_dbuf_map tool: */
905 {
906 {
907 .active_pipes = BIT(PIPE_A),
908 .dbuf_mask = {
909 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
910 },
911 },
912 {
913 .active_pipes = BIT(PIPE_B),
914 .dbuf_mask = {
915 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
916 },
917 },
918 {
919 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
920 .dbuf_mask = {
921 [PIPE_A] = BIT(DBUF_S2),
922 [PIPE_B] = BIT(DBUF_S1),
923 },
924 },
925 {
926 .active_pipes = BIT(PIPE_C),
927 .dbuf_mask = {
928 [PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
929 },
930 },
931 {
932 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
933 .dbuf_mask = {
934 [PIPE_A] = BIT(DBUF_S1),
935 [PIPE_C] = BIT(DBUF_S2),
936 },
937 },
938 {
939 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
940 .dbuf_mask = {
941 [PIPE_B] = BIT(DBUF_S1),
942 [PIPE_C] = BIT(DBUF_S2),
943 },
944 },
945 {
946 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
947 .dbuf_mask = {
948 [PIPE_A] = BIT(DBUF_S1),
949 [PIPE_B] = BIT(DBUF_S1),
950 [PIPE_C] = BIT(DBUF_S2),
951 },
952 },
953 {
954 .active_pipes = BIT(PIPE_D),
955 .dbuf_mask = {
956 [PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
957 },
958 },
959 {
960 .active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
961 .dbuf_mask = {
962 [PIPE_A] = BIT(DBUF_S1),
963 [PIPE_D] = BIT(DBUF_S2),
964 },
965 },
966 {
967 .active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
968 .dbuf_mask = {
969 [PIPE_B] = BIT(DBUF_S1),
970 [PIPE_D] = BIT(DBUF_S2),
971 },
972 },
973 {
974 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
975 .dbuf_mask = {
976 [PIPE_A] = BIT(DBUF_S1),
977 [PIPE_B] = BIT(DBUF_S1),
978 [PIPE_D] = BIT(DBUF_S2),
979 },
980 },
981 {
982 .active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
983 .dbuf_mask = {
984 [PIPE_C] = BIT(DBUF_S1),
985 [PIPE_D] = BIT(DBUF_S2),
986 },
987 },
988 {
989 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
990 .dbuf_mask = {
991 [PIPE_A] = BIT(DBUF_S1),
992 [PIPE_C] = BIT(DBUF_S2),
993 [PIPE_D] = BIT(DBUF_S2),
994 },
995 },
996 {
997 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
998 .dbuf_mask = {
999 [PIPE_B] = BIT(DBUF_S1),
1000 [PIPE_C] = BIT(DBUF_S2),
1001 [PIPE_D] = BIT(DBUF_S2),
1002 },
1003 },
1004 {
1005 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1006 .dbuf_mask = {
1007 [PIPE_A] = BIT(DBUF_S1),
1008 [PIPE_B] = BIT(DBUF_S1),
1009 [PIPE_C] = BIT(DBUF_S2),
1010 [PIPE_D] = BIT(DBUF_S2),
1011 },
1012 },
1013 {}
1014 };
1015
1016 static const struct dbuf_slice_conf_entry dg2_allowed_dbufs[] = {
1017 {
1018 .active_pipes = BIT(PIPE_A),
1019 .dbuf_mask = {
1020 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1021 },
1022 },
1023 {
1024 .active_pipes = BIT(PIPE_B),
1025 .dbuf_mask = {
1026 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
1027 },
1028 },
1029 {
1030 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
1031 .dbuf_mask = {
1032 [PIPE_A] = BIT(DBUF_S1),
1033 [PIPE_B] = BIT(DBUF_S2),
1034 },
1035 },
1036 {
1037 .active_pipes = BIT(PIPE_C),
1038 .dbuf_mask = {
1039 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1040 },
1041 },
1042 {
1043 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
1044 .dbuf_mask = {
1045 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1046 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1047 },
1048 },
1049 {
1050 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
1051 .dbuf_mask = {
1052 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
1053 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1054 },
1055 },
1056 {
1057 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
1058 .dbuf_mask = {
1059 [PIPE_A] = BIT(DBUF_S1),
1060 [PIPE_B] = BIT(DBUF_S2),
1061 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1062 },
1063 },
1064 {
1065 .active_pipes = BIT(PIPE_D),
1066 .dbuf_mask = {
1067 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
1068 },
1069 },
1070 {
1071 .active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
1072 .dbuf_mask = {
1073 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1074 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
1075 },
1076 },
1077 {
1078 .active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
1079 .dbuf_mask = {
1080 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
1081 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
1082 },
1083 },
1084 {
1085 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
1086 .dbuf_mask = {
1087 [PIPE_A] = BIT(DBUF_S1),
1088 [PIPE_B] = BIT(DBUF_S2),
1089 [PIPE_D] = BIT(DBUF_S3) | BIT(DBUF_S4),
1090 },
1091 },
1092 {
1093 .active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
1094 .dbuf_mask = {
1095 [PIPE_C] = BIT(DBUF_S3),
1096 [PIPE_D] = BIT(DBUF_S4),
1097 },
1098 },
1099 {
1100 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
1101 .dbuf_mask = {
1102 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1103 [PIPE_C] = BIT(DBUF_S3),
1104 [PIPE_D] = BIT(DBUF_S4),
1105 },
1106 },
1107 {
1108 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1109 .dbuf_mask = {
1110 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
1111 [PIPE_C] = BIT(DBUF_S3),
1112 [PIPE_D] = BIT(DBUF_S4),
1113 },
1114 },
1115 {
1116 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1117 .dbuf_mask = {
1118 [PIPE_A] = BIT(DBUF_S1),
1119 [PIPE_B] = BIT(DBUF_S2),
1120 [PIPE_C] = BIT(DBUF_S3),
1121 [PIPE_D] = BIT(DBUF_S4),
1122 },
1123 },
1124 {}
1125 };
1126
1127 static const struct dbuf_slice_conf_entry adlp_allowed_dbufs[] = {
1128 /*
1129 * Keep the join_mbus cases first so check_mbus_joined()
1130 * will prefer them over the !join_mbus cases.
1131 */
1132 {
1133 .active_pipes = BIT(PIPE_A),
1134 .dbuf_mask = {
1135 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4),
1136 },
1137 .join_mbus = true,
1138 },
1139 {
1140 .active_pipes = BIT(PIPE_B),
1141 .dbuf_mask = {
1142 [PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2) | BIT(DBUF_S3) | BIT(DBUF_S4),
1143 },
1144 .join_mbus = true,
1145 },
1146 {
1147 .active_pipes = BIT(PIPE_A),
1148 .dbuf_mask = {
1149 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1150 },
1151 .join_mbus = false,
1152 },
1153 {
1154 .active_pipes = BIT(PIPE_B),
1155 .dbuf_mask = {
1156 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1157 },
1158 .join_mbus = false,
1159 },
1160 {
1161 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
1162 .dbuf_mask = {
1163 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1164 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1165 },
1166 },
1167 {
1168 .active_pipes = BIT(PIPE_C),
1169 .dbuf_mask = {
1170 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1171 },
1172 },
1173 {
1174 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
1175 .dbuf_mask = {
1176 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1177 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1178 },
1179 },
1180 {
1181 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
1182 .dbuf_mask = {
1183 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1184 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1185 },
1186 },
1187 {
1188 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
1189 .dbuf_mask = {
1190 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1191 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1192 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1193 },
1194 },
1195 {
1196 .active_pipes = BIT(PIPE_D),
1197 .dbuf_mask = {
1198 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1199 },
1200 },
1201 {
1202 .active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
1203 .dbuf_mask = {
1204 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1205 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1206 },
1207 },
1208 {
1209 .active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
1210 .dbuf_mask = {
1211 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1212 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1213 },
1214 },
1215 {
1216 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
1217 .dbuf_mask = {
1218 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1219 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1220 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1221 },
1222 },
1223 {
1224 .active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
1225 .dbuf_mask = {
1226 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1227 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1228 },
1229 },
1230 {
1231 .active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
1232 .dbuf_mask = {
1233 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1234 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1235 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1236 },
1237 },
1238 {
1239 .active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1240 .dbuf_mask = {
1241 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1242 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1243 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1244 },
1245 },
1246 {
1247 .active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
1248 .dbuf_mask = {
1249 [PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
1250 [PIPE_B] = BIT(DBUF_S3) | BIT(DBUF_S4),
1251 [PIPE_C] = BIT(DBUF_S3) | BIT(DBUF_S4),
1252 [PIPE_D] = BIT(DBUF_S1) | BIT(DBUF_S2),
1253 },
1254 },
1255 {}
1256
1257 };
1258
check_mbus_joined(u8 active_pipes,const struct dbuf_slice_conf_entry * dbuf_slices)1259 static bool check_mbus_joined(u8 active_pipes,
1260 const struct dbuf_slice_conf_entry *dbuf_slices)
1261 {
1262 int i;
1263
1264 for (i = 0; dbuf_slices[i].active_pipes != 0; i++) {
1265 if (dbuf_slices[i].active_pipes == active_pipes)
1266 return dbuf_slices[i].join_mbus;
1267 }
1268 return false;
1269 }
1270
adlp_check_mbus_joined(u8 active_pipes)1271 static bool adlp_check_mbus_joined(u8 active_pipes)
1272 {
1273 return check_mbus_joined(active_pipes, adlp_allowed_dbufs);
1274 }
1275
compute_dbuf_slices(enum pipe pipe,u8 active_pipes,bool join_mbus,const struct dbuf_slice_conf_entry * dbuf_slices)1276 static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus,
1277 const struct dbuf_slice_conf_entry *dbuf_slices)
1278 {
1279 int i;
1280
1281 for (i = 0; dbuf_slices[i].active_pipes != 0; i++) {
1282 if (dbuf_slices[i].active_pipes == active_pipes &&
1283 dbuf_slices[i].join_mbus == join_mbus)
1284 return dbuf_slices[i].dbuf_mask[pipe];
1285 }
1286 return 0;
1287 }
1288
1289 /*
1290 * This function finds an entry with same enabled pipe configuration and
1291 * returns correspondent DBuf slice mask as stated in BSpec for particular
1292 * platform.
1293 */
icl_compute_dbuf_slices(enum pipe pipe,u8 active_pipes,bool join_mbus)1294 static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
1295 {
1296 /*
1297 * FIXME: For ICL this is still a bit unclear as prev BSpec revision
1298 * required calculating "pipe ratio" in order to determine
1299 * if one or two slices can be used for single pipe configurations
1300 * as additional constraint to the existing table.
1301 * However based on recent info, it should be not "pipe ratio"
1302 * but rather ratio between pixel_rate and cdclk with additional
1303 * constants, so for now we are using only table until this is
1304 * clarified. Also this is the reason why crtc_state param is
1305 * still here - we will need it once those additional constraints
1306 * pop up.
1307 */
1308 return compute_dbuf_slices(pipe, active_pipes, join_mbus,
1309 icl_allowed_dbufs);
1310 }
1311
tgl_compute_dbuf_slices(enum pipe pipe,u8 active_pipes,bool join_mbus)1312 static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
1313 {
1314 return compute_dbuf_slices(pipe, active_pipes, join_mbus,
1315 tgl_allowed_dbufs);
1316 }
1317
adlp_compute_dbuf_slices(enum pipe pipe,u8 active_pipes,bool join_mbus)1318 static u8 adlp_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
1319 {
1320 return compute_dbuf_slices(pipe, active_pipes, join_mbus,
1321 adlp_allowed_dbufs);
1322 }
1323
dg2_compute_dbuf_slices(enum pipe pipe,u8 active_pipes,bool join_mbus)1324 static u8 dg2_compute_dbuf_slices(enum pipe pipe, u8 active_pipes, bool join_mbus)
1325 {
1326 return compute_dbuf_slices(pipe, active_pipes, join_mbus,
1327 dg2_allowed_dbufs);
1328 }
1329
skl_compute_dbuf_slices(struct intel_crtc * crtc,u8 active_pipes,bool join_mbus)1330 static u8 skl_compute_dbuf_slices(struct intel_crtc *crtc, u8 active_pipes, bool join_mbus)
1331 {
1332 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1333 enum pipe pipe = crtc->pipe;
1334
1335 if (IS_DG2(i915))
1336 return dg2_compute_dbuf_slices(pipe, active_pipes, join_mbus);
1337 else if (DISPLAY_VER(i915) >= 13)
1338 return adlp_compute_dbuf_slices(pipe, active_pipes, join_mbus);
1339 else if (DISPLAY_VER(i915) == 12)
1340 return tgl_compute_dbuf_slices(pipe, active_pipes, join_mbus);
1341 else if (DISPLAY_VER(i915) == 11)
1342 return icl_compute_dbuf_slices(pipe, active_pipes, join_mbus);
1343 /*
1344 * For anything else just return one slice yet.
1345 * Should be extended for other platforms.
1346 */
1347 return active_pipes & BIT(pipe) ? BIT(DBUF_S1) : 0;
1348 }
1349
1350 static bool
use_minimal_wm0_only(const struct intel_crtc_state * crtc_state,struct intel_plane * plane)1351 use_minimal_wm0_only(const struct intel_crtc_state *crtc_state,
1352 struct intel_plane *plane)
1353 {
1354 struct drm_i915_private *i915 = to_i915(plane->base.dev);
1355
1356 return DISPLAY_VER(i915) >= 13 &&
1357 crtc_state->uapi.async_flip &&
1358 plane->async_flip;
1359 }
1360
1361 static u64
skl_total_relative_data_rate(const struct intel_crtc_state * crtc_state)1362 skl_total_relative_data_rate(const struct intel_crtc_state *crtc_state)
1363 {
1364 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1365 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1366 enum plane_id plane_id;
1367 u64 data_rate = 0;
1368
1369 for_each_plane_id_on_crtc(crtc, plane_id) {
1370 if (plane_id == PLANE_CURSOR)
1371 continue;
1372
1373 data_rate += crtc_state->rel_data_rate[plane_id];
1374
1375 if (DISPLAY_VER(i915) < 11)
1376 data_rate += crtc_state->rel_data_rate_y[plane_id];
1377 }
1378
1379 return data_rate;
1380 }
1381
1382 static const struct skl_wm_level *
skl_plane_wm_level(const struct skl_pipe_wm * pipe_wm,enum plane_id plane_id,int level)1383 skl_plane_wm_level(const struct skl_pipe_wm *pipe_wm,
1384 enum plane_id plane_id,
1385 int level)
1386 {
1387 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
1388
1389 if (level == 0 && pipe_wm->use_sagv_wm)
1390 return &wm->sagv.wm0;
1391
1392 return &wm->wm[level];
1393 }
1394
1395 static const struct skl_wm_level *
skl_plane_trans_wm(const struct skl_pipe_wm * pipe_wm,enum plane_id plane_id)1396 skl_plane_trans_wm(const struct skl_pipe_wm *pipe_wm,
1397 enum plane_id plane_id)
1398 {
1399 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
1400
1401 if (pipe_wm->use_sagv_wm)
1402 return &wm->sagv.trans_wm;
1403
1404 return &wm->trans_wm;
1405 }
1406
1407 /*
1408 * We only disable the watermarks for each plane if
1409 * they exceed the ddb allocation of said plane. This
1410 * is done so that we don't end up touching cursor
1411 * watermarks needlessly when some other plane reduces
1412 * our max possible watermark level.
1413 *
1414 * Bspec has this to say about the PLANE_WM enable bit:
1415 * "All the watermarks at this level for all enabled
1416 * planes must be enabled before the level will be used."
1417 * So this is actually safe to do.
1418 */
1419 static void
skl_check_wm_level(struct skl_wm_level * wm,const struct skl_ddb_entry * ddb)1420 skl_check_wm_level(struct skl_wm_level *wm, const struct skl_ddb_entry *ddb)
1421 {
1422 if (wm->min_ddb_alloc > skl_ddb_entry_size(ddb))
1423 memset(wm, 0, sizeof(*wm));
1424 }
1425
1426 static void
skl_check_nv12_wm_level(struct skl_wm_level * wm,struct skl_wm_level * uv_wm,const struct skl_ddb_entry * ddb_y,const struct skl_ddb_entry * ddb)1427 skl_check_nv12_wm_level(struct skl_wm_level *wm, struct skl_wm_level *uv_wm,
1428 const struct skl_ddb_entry *ddb_y, const struct skl_ddb_entry *ddb)
1429 {
1430 if (wm->min_ddb_alloc > skl_ddb_entry_size(ddb_y) ||
1431 uv_wm->min_ddb_alloc > skl_ddb_entry_size(ddb)) {
1432 memset(wm, 0, sizeof(*wm));
1433 memset(uv_wm, 0, sizeof(*uv_wm));
1434 }
1435 }
1436
skl_need_wm_copy_wa(struct drm_i915_private * i915,int level,const struct skl_plane_wm * wm)1437 static bool skl_need_wm_copy_wa(struct drm_i915_private *i915, int level,
1438 const struct skl_plane_wm *wm)
1439 {
1440 /*
1441 * Wa_1408961008:icl, ehl
1442 * Wa_14012656716:tgl, adl
1443 * Wa_14017887344:icl
1444 * Wa_14017868169:adl, tgl
1445 * Due to some power saving optimizations, different subsystems
1446 * like PSR, might still use even disabled wm level registers,
1447 * for "reference", so lets keep at least the values sane.
1448 * Considering amount of WA requiring us to do similar things, was
1449 * decided to simply do it for all of the platforms, as those wm
1450 * levels are disabled, this isn't going to do harm anyway.
1451 */
1452 return level > 0 && !wm->wm[level].enable;
1453 }
1454
1455 struct skl_plane_ddb_iter {
1456 u64 data_rate;
1457 u16 start, size;
1458 };
1459
1460 static void
skl_allocate_plane_ddb(struct skl_plane_ddb_iter * iter,struct skl_ddb_entry * ddb,const struct skl_wm_level * wm,u64 data_rate)1461 skl_allocate_plane_ddb(struct skl_plane_ddb_iter *iter,
1462 struct skl_ddb_entry *ddb,
1463 const struct skl_wm_level *wm,
1464 u64 data_rate)
1465 {
1466 u16 size, extra = 0;
1467
1468 if (data_rate) {
1469 extra = min_t(u16, iter->size,
1470 DIV64_U64_ROUND_UP(iter->size * data_rate,
1471 iter->data_rate));
1472 iter->size -= extra;
1473 iter->data_rate -= data_rate;
1474 }
1475
1476 /*
1477 * Keep ddb entry of all disabled planes explicitly zeroed
1478 * to avoid skl_ddb_add_affected_planes() adding them to
1479 * the state when other planes change their allocations.
1480 */
1481 size = wm->min_ddb_alloc + extra;
1482 if (size)
1483 iter->start = skl_ddb_entry_init(ddb, iter->start,
1484 iter->start + size);
1485 }
1486
1487 static int
skl_crtc_allocate_plane_ddb(struct intel_atomic_state * state,struct intel_crtc * crtc)1488 skl_crtc_allocate_plane_ddb(struct intel_atomic_state *state,
1489 struct intel_crtc *crtc)
1490 {
1491 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1492 struct intel_crtc_state *crtc_state =
1493 intel_atomic_get_new_crtc_state(state, crtc);
1494 const struct intel_dbuf_state *dbuf_state =
1495 intel_atomic_get_new_dbuf_state(state);
1496 const struct skl_ddb_entry *alloc = &dbuf_state->ddb[crtc->pipe];
1497 int num_active = hweight8(dbuf_state->active_pipes);
1498 struct skl_plane_ddb_iter iter;
1499 enum plane_id plane_id;
1500 u16 cursor_size;
1501 u32 blocks;
1502 int level;
1503
1504 /* Clear the partitioning for disabled planes. */
1505 memset(crtc_state->wm.skl.plane_ddb, 0, sizeof(crtc_state->wm.skl.plane_ddb));
1506 memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
1507
1508 if (!crtc_state->hw.active)
1509 return 0;
1510
1511 iter.start = alloc->start;
1512 iter.size = skl_ddb_entry_size(alloc);
1513 if (iter.size == 0)
1514 return 0;
1515
1516 /* Allocate fixed number of blocks for cursor. */
1517 cursor_size = skl_cursor_allocation(crtc_state, num_active);
1518 iter.size -= cursor_size;
1519 skl_ddb_entry_init(&crtc_state->wm.skl.plane_ddb[PLANE_CURSOR],
1520 alloc->end - cursor_size, alloc->end);
1521
1522 iter.data_rate = skl_total_relative_data_rate(crtc_state);
1523
1524 /*
1525 * Find the highest watermark level for which we can satisfy the block
1526 * requirement of active planes.
1527 */
1528 for (level = i915->display.wm.num_levels - 1; level >= 0; level--) {
1529 blocks = 0;
1530 for_each_plane_id_on_crtc(crtc, plane_id) {
1531 const struct skl_plane_wm *wm =
1532 &crtc_state->wm.skl.optimal.planes[plane_id];
1533
1534 if (plane_id == PLANE_CURSOR) {
1535 const struct skl_ddb_entry *ddb =
1536 &crtc_state->wm.skl.plane_ddb[plane_id];
1537
1538 if (wm->wm[level].min_ddb_alloc > skl_ddb_entry_size(ddb)) {
1539 drm_WARN_ON(&i915->drm,
1540 wm->wm[level].min_ddb_alloc != U16_MAX);
1541 blocks = U32_MAX;
1542 break;
1543 }
1544 continue;
1545 }
1546
1547 blocks += wm->wm[level].min_ddb_alloc;
1548 blocks += wm->uv_wm[level].min_ddb_alloc;
1549 }
1550
1551 if (blocks <= iter.size) {
1552 iter.size -= blocks;
1553 break;
1554 }
1555 }
1556
1557 if (level < 0) {
1558 drm_dbg_kms(&i915->drm,
1559 "Requested display configuration exceeds system DDB limitations");
1560 drm_dbg_kms(&i915->drm, "minimum required %d/%d\n",
1561 blocks, iter.size);
1562 return -EINVAL;
1563 }
1564
1565 /* avoid the WARN later when we don't allocate any extra DDB */
1566 if (iter.data_rate == 0)
1567 iter.size = 0;
1568
1569 /*
1570 * Grant each plane the blocks it requires at the highest achievable
1571 * watermark level, plus an extra share of the leftover blocks
1572 * proportional to its relative data rate.
1573 */
1574 for_each_plane_id_on_crtc(crtc, plane_id) {
1575 struct skl_ddb_entry *ddb =
1576 &crtc_state->wm.skl.plane_ddb[plane_id];
1577 struct skl_ddb_entry *ddb_y =
1578 &crtc_state->wm.skl.plane_ddb_y[plane_id];
1579 const struct skl_plane_wm *wm =
1580 &crtc_state->wm.skl.optimal.planes[plane_id];
1581
1582 if (plane_id == PLANE_CURSOR)
1583 continue;
1584
1585 if (DISPLAY_VER(i915) < 11 &&
1586 crtc_state->nv12_planes & BIT(plane_id)) {
1587 skl_allocate_plane_ddb(&iter, ddb_y, &wm->wm[level],
1588 crtc_state->rel_data_rate_y[plane_id]);
1589 skl_allocate_plane_ddb(&iter, ddb, &wm->uv_wm[level],
1590 crtc_state->rel_data_rate[plane_id]);
1591 } else {
1592 skl_allocate_plane_ddb(&iter, ddb, &wm->wm[level],
1593 crtc_state->rel_data_rate[plane_id]);
1594 }
1595 }
1596 drm_WARN_ON(&i915->drm, iter.size != 0 || iter.data_rate != 0);
1597
1598 /*
1599 * When we calculated watermark values we didn't know how high
1600 * of a level we'd actually be able to hit, so we just marked
1601 * all levels as "enabled." Go back now and disable the ones
1602 * that aren't actually possible.
1603 */
1604 for (level++; level < i915->display.wm.num_levels; level++) {
1605 for_each_plane_id_on_crtc(crtc, plane_id) {
1606 const struct skl_ddb_entry *ddb =
1607 &crtc_state->wm.skl.plane_ddb[plane_id];
1608 const struct skl_ddb_entry *ddb_y =
1609 &crtc_state->wm.skl.plane_ddb_y[plane_id];
1610 struct skl_plane_wm *wm =
1611 &crtc_state->wm.skl.optimal.planes[plane_id];
1612
1613 if (DISPLAY_VER(i915) < 11 &&
1614 crtc_state->nv12_planes & BIT(plane_id))
1615 skl_check_nv12_wm_level(&wm->wm[level],
1616 &wm->uv_wm[level],
1617 ddb_y, ddb);
1618 else
1619 skl_check_wm_level(&wm->wm[level], ddb);
1620
1621 if (skl_need_wm_copy_wa(i915, level, wm)) {
1622 wm->wm[level].blocks = wm->wm[level - 1].blocks;
1623 wm->wm[level].lines = wm->wm[level - 1].lines;
1624 wm->wm[level].ignore_lines = wm->wm[level - 1].ignore_lines;
1625 }
1626 }
1627 }
1628
1629 /*
1630 * Go back and disable the transition and SAGV watermarks
1631 * if it turns out we don't have enough DDB blocks for them.
1632 */
1633 for_each_plane_id_on_crtc(crtc, plane_id) {
1634 const struct skl_ddb_entry *ddb =
1635 &crtc_state->wm.skl.plane_ddb[plane_id];
1636 const struct skl_ddb_entry *ddb_y =
1637 &crtc_state->wm.skl.plane_ddb_y[plane_id];
1638 struct skl_plane_wm *wm =
1639 &crtc_state->wm.skl.optimal.planes[plane_id];
1640
1641 if (DISPLAY_VER(i915) < 11 &&
1642 crtc_state->nv12_planes & BIT(plane_id)) {
1643 skl_check_wm_level(&wm->trans_wm, ddb_y);
1644 } else {
1645 WARN_ON(skl_ddb_entry_size(ddb_y));
1646
1647 skl_check_wm_level(&wm->trans_wm, ddb);
1648 }
1649
1650 skl_check_wm_level(&wm->sagv.wm0, ddb);
1651 skl_check_wm_level(&wm->sagv.trans_wm, ddb);
1652 }
1653
1654 return 0;
1655 }
1656
1657 /*
1658 * The max latency should be 257 (max the punit can code is 255 and we add 2us
1659 * for the read latency) and cpp should always be <= 8, so that
1660 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
1661 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
1662 */
1663 static uint_fixed_16_16_t
skl_wm_method1(const struct drm_i915_private * i915,u32 pixel_rate,u8 cpp,u32 latency,u32 dbuf_block_size)1664 skl_wm_method1(const struct drm_i915_private *i915, u32 pixel_rate,
1665 u8 cpp, u32 latency, u32 dbuf_block_size)
1666 {
1667 u32 wm_intermediate_val;
1668 uint_fixed_16_16_t ret;
1669
1670 if (latency == 0)
1671 return FP_16_16_MAX;
1672
1673 wm_intermediate_val = latency * pixel_rate * cpp;
1674 ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
1675
1676 if (DISPLAY_VER(i915) >= 10)
1677 ret = add_fixed16_u32(ret, 1);
1678
1679 return ret;
1680 }
1681
1682 static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate,u32 pipe_htotal,u32 latency,uint_fixed_16_16_t plane_blocks_per_line)1683 skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
1684 uint_fixed_16_16_t plane_blocks_per_line)
1685 {
1686 u32 wm_intermediate_val;
1687 uint_fixed_16_16_t ret;
1688
1689 if (latency == 0)
1690 return FP_16_16_MAX;
1691
1692 wm_intermediate_val = latency * pixel_rate;
1693 wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
1694 pipe_htotal * 1000);
1695 ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
1696 return ret;
1697 }
1698
1699 static uint_fixed_16_16_t
intel_get_linetime_us(const struct intel_crtc_state * crtc_state)1700 intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
1701 {
1702 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
1703 u32 pixel_rate;
1704 u32 crtc_htotal;
1705 uint_fixed_16_16_t linetime_us;
1706
1707 if (!crtc_state->hw.active)
1708 return u32_to_fixed16(0);
1709
1710 pixel_rate = crtc_state->pixel_rate;
1711
1712 if (drm_WARN_ON(&i915->drm, pixel_rate == 0))
1713 return u32_to_fixed16(0);
1714
1715 crtc_htotal = crtc_state->hw.pipe_mode.crtc_htotal;
1716 linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
1717
1718 return linetime_us;
1719 }
1720
1721 static int
skl_compute_wm_params(const struct intel_crtc_state * crtc_state,int width,const struct drm_format_info * format,u64 modifier,unsigned int rotation,u32 plane_pixel_rate,struct skl_wm_params * wp,int color_plane)1722 skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
1723 int width, const struct drm_format_info *format,
1724 u64 modifier, unsigned int rotation,
1725 u32 plane_pixel_rate, struct skl_wm_params *wp,
1726 int color_plane)
1727 {
1728 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1729 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
1730 u32 interm_pbpl;
1731
1732 /* only planar format has two planes */
1733 if (color_plane == 1 &&
1734 !intel_format_info_is_yuv_semiplanar(format, modifier)) {
1735 drm_dbg_kms(&i915->drm,
1736 "Non planar format have single plane\n");
1737 return -EINVAL;
1738 }
1739
1740 wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
1741 wp->y_tiled = modifier != I915_FORMAT_MOD_X_TILED &&
1742 intel_fb_is_tiled_modifier(modifier);
1743 wp->rc_surface = intel_fb_is_ccs_modifier(modifier);
1744 wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
1745
1746 wp->width = width;
1747 if (color_plane == 1 && wp->is_planar)
1748 wp->width /= 2;
1749
1750 wp->cpp = format->cpp[color_plane];
1751 wp->plane_pixel_rate = plane_pixel_rate;
1752
1753 if (DISPLAY_VER(i915) >= 11 &&
1754 modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 1)
1755 wp->dbuf_block_size = 256;
1756 else
1757 wp->dbuf_block_size = 512;
1758
1759 if (drm_rotation_90_or_270(rotation)) {
1760 switch (wp->cpp) {
1761 case 1:
1762 wp->y_min_scanlines = 16;
1763 break;
1764 case 2:
1765 wp->y_min_scanlines = 8;
1766 break;
1767 case 4:
1768 wp->y_min_scanlines = 4;
1769 break;
1770 default:
1771 MISSING_CASE(wp->cpp);
1772 return -EINVAL;
1773 }
1774 } else {
1775 wp->y_min_scanlines = 4;
1776 }
1777
1778 if (skl_needs_memory_bw_wa(i915))
1779 wp->y_min_scanlines *= 2;
1780
1781 wp->plane_bytes_per_line = wp->width * wp->cpp;
1782 if (wp->y_tiled) {
1783 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
1784 wp->y_min_scanlines,
1785 wp->dbuf_block_size);
1786
1787 if (DISPLAY_VER(i915) >= 10)
1788 interm_pbpl++;
1789
1790 wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
1791 wp->y_min_scanlines);
1792 } else {
1793 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
1794 wp->dbuf_block_size);
1795
1796 if (!wp->x_tiled || DISPLAY_VER(i915) >= 10)
1797 interm_pbpl++;
1798
1799 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
1800 }
1801
1802 wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
1803 wp->plane_blocks_per_line);
1804
1805 wp->linetime_us = fixed16_to_u32_round_up(intel_get_linetime_us(crtc_state));
1806
1807 return 0;
1808 }
1809
1810 static int
skl_compute_plane_wm_params(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,struct skl_wm_params * wp,int color_plane)1811 skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
1812 const struct intel_plane_state *plane_state,
1813 struct skl_wm_params *wp, int color_plane)
1814 {
1815 const struct drm_framebuffer *fb = plane_state->hw.fb;
1816 int width;
1817
1818 /*
1819 * Src coordinates are already rotated by 270 degrees for
1820 * the 90/270 degree plane rotation cases (to match the
1821 * GTT mapping), hence no need to account for rotation here.
1822 */
1823 width = drm_rect_width(&plane_state->uapi.src) >> 16;
1824
1825 return skl_compute_wm_params(crtc_state, width,
1826 fb->format, fb->modifier,
1827 plane_state->hw.rotation,
1828 intel_plane_pixel_rate(crtc_state, plane_state),
1829 wp, color_plane);
1830 }
1831
skl_wm_has_lines(struct drm_i915_private * i915,int level)1832 static bool skl_wm_has_lines(struct drm_i915_private *i915, int level)
1833 {
1834 if (DISPLAY_VER(i915) >= 10)
1835 return true;
1836
1837 /* The number of lines are ignored for the level 0 watermark. */
1838 return level > 0;
1839 }
1840
skl_wm_max_lines(struct drm_i915_private * i915)1841 static int skl_wm_max_lines(struct drm_i915_private *i915)
1842 {
1843 if (DISPLAY_VER(i915) >= 13)
1844 return 255;
1845 else
1846 return 31;
1847 }
1848
skl_compute_plane_wm(const struct intel_crtc_state * crtc_state,struct intel_plane * plane,int level,unsigned int latency,const struct skl_wm_params * wp,const struct skl_wm_level * result_prev,struct skl_wm_level * result)1849 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
1850 struct intel_plane *plane,
1851 int level,
1852 unsigned int latency,
1853 const struct skl_wm_params *wp,
1854 const struct skl_wm_level *result_prev,
1855 struct skl_wm_level *result /* out */)
1856 {
1857 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
1858 uint_fixed_16_16_t method1, method2;
1859 uint_fixed_16_16_t selected_result;
1860 u32 blocks, lines, min_ddb_alloc = 0;
1861
1862 if (latency == 0 ||
1863 (use_minimal_wm0_only(crtc_state, plane) && level > 0)) {
1864 /* reject it */
1865 result->min_ddb_alloc = U16_MAX;
1866 return;
1867 }
1868
1869 method1 = skl_wm_method1(i915, wp->plane_pixel_rate,
1870 wp->cpp, latency, wp->dbuf_block_size);
1871 method2 = skl_wm_method2(wp->plane_pixel_rate,
1872 crtc_state->hw.pipe_mode.crtc_htotal,
1873 latency,
1874 wp->plane_blocks_per_line);
1875
1876 if (wp->y_tiled) {
1877 selected_result = max_fixed16(method2, wp->y_tile_minimum);
1878 } else {
1879 if ((wp->cpp * crtc_state->hw.pipe_mode.crtc_htotal /
1880 wp->dbuf_block_size < 1) &&
1881 (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
1882 selected_result = method2;
1883 } else if (latency >= wp->linetime_us) {
1884 if (DISPLAY_VER(i915) == 9)
1885 selected_result = min_fixed16(method1, method2);
1886 else
1887 selected_result = method2;
1888 } else {
1889 selected_result = method1;
1890 }
1891 }
1892
1893 blocks = fixed16_to_u32_round_up(selected_result) + 1;
1894 /*
1895 * Lets have blocks at minimum equivalent to plane_blocks_per_line
1896 * as there will be at minimum one line for lines configuration. This
1897 * is a work around for FIFO underruns observed with resolutions like
1898 * 4k 60 Hz in single channel DRAM configurations.
1899 *
1900 * As per the Bspec 49325, if the ddb allocation can hold at least
1901 * one plane_blocks_per_line, we should have selected method2 in
1902 * the above logic. Assuming that modern versions have enough dbuf
1903 * and method2 guarantees blocks equivalent to at least 1 line,
1904 * select the blocks as plane_blocks_per_line.
1905 *
1906 * TODO: Revisit the logic when we have better understanding on DRAM
1907 * channels' impact on the level 0 memory latency and the relevant
1908 * wm calculations.
1909 */
1910 if (skl_wm_has_lines(i915, level))
1911 blocks = max(blocks,
1912 fixed16_to_u32_round_up(wp->plane_blocks_per_line));
1913 lines = div_round_up_fixed16(selected_result,
1914 wp->plane_blocks_per_line);
1915
1916 if (DISPLAY_VER(i915) == 9) {
1917 /* Display WA #1125: skl,bxt,kbl */
1918 if (level == 0 && wp->rc_surface)
1919 blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
1920
1921 /* Display WA #1126: skl,bxt,kbl */
1922 if (level >= 1 && level <= 7) {
1923 if (wp->y_tiled) {
1924 blocks += fixed16_to_u32_round_up(wp->y_tile_minimum);
1925 lines += wp->y_min_scanlines;
1926 } else {
1927 blocks++;
1928 }
1929
1930 /*
1931 * Make sure result blocks for higher latency levels are
1932 * at least as high as level below the current level.
1933 * Assumption in DDB algorithm optimization for special
1934 * cases. Also covers Display WA #1125 for RC.
1935 */
1936 if (result_prev->blocks > blocks)
1937 blocks = result_prev->blocks;
1938 }
1939 }
1940
1941 if (DISPLAY_VER(i915) >= 11) {
1942 if (wp->y_tiled) {
1943 int extra_lines;
1944
1945 if (lines % wp->y_min_scanlines == 0)
1946 extra_lines = wp->y_min_scanlines;
1947 else
1948 extra_lines = wp->y_min_scanlines * 2 -
1949 lines % wp->y_min_scanlines;
1950
1951 min_ddb_alloc = mul_round_up_u32_fixed16(lines + extra_lines,
1952 wp->plane_blocks_per_line);
1953 } else {
1954 min_ddb_alloc = blocks + DIV_ROUND_UP(blocks, 10);
1955 }
1956 }
1957
1958 if (!skl_wm_has_lines(i915, level))
1959 lines = 0;
1960
1961 if (lines > skl_wm_max_lines(i915)) {
1962 /* reject it */
1963 result->min_ddb_alloc = U16_MAX;
1964 return;
1965 }
1966
1967 /*
1968 * If lines is valid, assume we can use this watermark level
1969 * for now. We'll come back and disable it after we calculate the
1970 * DDB allocation if it turns out we don't actually have enough
1971 * blocks to satisfy it.
1972 */
1973 result->blocks = blocks;
1974 result->lines = lines;
1975 /* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
1976 result->min_ddb_alloc = max(min_ddb_alloc, blocks) + 1;
1977 result->enable = true;
1978
1979 if (DISPLAY_VER(i915) < 12 && i915->display.sagv.block_time_us)
1980 result->can_sagv = latency >= i915->display.sagv.block_time_us;
1981 }
1982
1983 static void
skl_compute_wm_levels(const struct intel_crtc_state * crtc_state,struct intel_plane * plane,const struct skl_wm_params * wm_params,struct skl_wm_level * levels)1984 skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
1985 struct intel_plane *plane,
1986 const struct skl_wm_params *wm_params,
1987 struct skl_wm_level *levels)
1988 {
1989 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
1990 struct skl_wm_level *result_prev = &levels[0];
1991 int level;
1992
1993 for (level = 0; level < i915->display.wm.num_levels; level++) {
1994 struct skl_wm_level *result = &levels[level];
1995 unsigned int latency = skl_wm_latency(i915, level, wm_params);
1996
1997 skl_compute_plane_wm(crtc_state, plane, level, latency,
1998 wm_params, result_prev, result);
1999
2000 result_prev = result;
2001 }
2002 }
2003
tgl_compute_sagv_wm(const struct intel_crtc_state * crtc_state,struct intel_plane * plane,const struct skl_wm_params * wm_params,struct skl_plane_wm * plane_wm)2004 static void tgl_compute_sagv_wm(const struct intel_crtc_state *crtc_state,
2005 struct intel_plane *plane,
2006 const struct skl_wm_params *wm_params,
2007 struct skl_plane_wm *plane_wm)
2008 {
2009 struct drm_i915_private *i915 = to_i915(crtc_state->uapi.crtc->dev);
2010 struct skl_wm_level *sagv_wm = &plane_wm->sagv.wm0;
2011 struct skl_wm_level *levels = plane_wm->wm;
2012 unsigned int latency = 0;
2013
2014 if (i915->display.sagv.block_time_us)
2015 latency = i915->display.sagv.block_time_us +
2016 skl_wm_latency(i915, 0, wm_params);
2017
2018 skl_compute_plane_wm(crtc_state, plane, 0, latency,
2019 wm_params, &levels[0],
2020 sagv_wm);
2021 }
2022
skl_compute_transition_wm(struct drm_i915_private * i915,struct skl_wm_level * trans_wm,const struct skl_wm_level * wm0,const struct skl_wm_params * wp)2023 static void skl_compute_transition_wm(struct drm_i915_private *i915,
2024 struct skl_wm_level *trans_wm,
2025 const struct skl_wm_level *wm0,
2026 const struct skl_wm_params *wp)
2027 {
2028 u16 trans_min, trans_amount, trans_y_tile_min;
2029 u16 wm0_blocks, trans_offset, blocks;
2030
2031 /* Transition WM don't make any sense if ipc is disabled */
2032 if (!skl_watermark_ipc_enabled(i915))
2033 return;
2034
2035 /*
2036 * WaDisableTWM:skl,kbl,cfl,bxt
2037 * Transition WM are not recommended by HW team for GEN9
2038 */
2039 if (DISPLAY_VER(i915) == 9)
2040 return;
2041
2042 if (DISPLAY_VER(i915) >= 11)
2043 trans_min = 4;
2044 else
2045 trans_min = 14;
2046
2047 /* Display WA #1140: glk,cnl */
2048 if (DISPLAY_VER(i915) == 10)
2049 trans_amount = 0;
2050 else
2051 trans_amount = 10; /* This is configurable amount */
2052
2053 trans_offset = trans_min + trans_amount;
2054
2055 /*
2056 * The spec asks for Selected Result Blocks for wm0 (the real value),
2057 * not Result Blocks (the integer value). Pay attention to the capital
2058 * letters. The value wm_l0->blocks is actually Result Blocks, but
2059 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
2060 * and since we later will have to get the ceiling of the sum in the
2061 * transition watermarks calculation, we can just pretend Selected
2062 * Result Blocks is Result Blocks minus 1 and it should work for the
2063 * current platforms.
2064 */
2065 wm0_blocks = wm0->blocks - 1;
2066
2067 if (wp->y_tiled) {
2068 trans_y_tile_min =
2069 (u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
2070 blocks = max(wm0_blocks, trans_y_tile_min) + trans_offset;
2071 } else {
2072 blocks = wm0_blocks + trans_offset;
2073 }
2074 blocks++;
2075
2076 /*
2077 * Just assume we can enable the transition watermark. After
2078 * computing the DDB we'll come back and disable it if that
2079 * assumption turns out to be false.
2080 */
2081 trans_wm->blocks = blocks;
2082 trans_wm->min_ddb_alloc = max_t(u16, wm0->min_ddb_alloc, blocks + 1);
2083 trans_wm->enable = true;
2084 }
2085
skl_build_plane_wm_single(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,struct intel_plane * plane,int color_plane)2086 static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
2087 const struct intel_plane_state *plane_state,
2088 struct intel_plane *plane, int color_plane)
2089 {
2090 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2091 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2092 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane->id];
2093 struct skl_wm_params wm_params;
2094 int ret;
2095
2096 ret = skl_compute_plane_wm_params(crtc_state, plane_state,
2097 &wm_params, color_plane);
2098 if (ret)
2099 return ret;
2100
2101 skl_compute_wm_levels(crtc_state, plane, &wm_params, wm->wm);
2102
2103 skl_compute_transition_wm(i915, &wm->trans_wm,
2104 &wm->wm[0], &wm_params);
2105
2106 if (DISPLAY_VER(i915) >= 12) {
2107 tgl_compute_sagv_wm(crtc_state, plane, &wm_params, wm);
2108
2109 skl_compute_transition_wm(i915, &wm->sagv.trans_wm,
2110 &wm->sagv.wm0, &wm_params);
2111 }
2112
2113 return 0;
2114 }
2115
skl_build_plane_wm_uv(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,struct intel_plane * plane)2116 static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
2117 const struct intel_plane_state *plane_state,
2118 struct intel_plane *plane)
2119 {
2120 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane->id];
2121 struct skl_wm_params wm_params;
2122 int ret;
2123
2124 wm->is_planar = true;
2125
2126 /* uv plane watermarks must also be validated for NV12/Planar */
2127 ret = skl_compute_plane_wm_params(crtc_state, plane_state,
2128 &wm_params, 1);
2129 if (ret)
2130 return ret;
2131
2132 skl_compute_wm_levels(crtc_state, plane, &wm_params, wm->uv_wm);
2133
2134 return 0;
2135 }
2136
skl_build_plane_wm(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)2137 static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
2138 const struct intel_plane_state *plane_state)
2139 {
2140 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2141 enum plane_id plane_id = plane->id;
2142 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
2143 const struct drm_framebuffer *fb = plane_state->hw.fb;
2144 int ret;
2145
2146 memset(wm, 0, sizeof(*wm));
2147
2148 if (!intel_wm_plane_visible(crtc_state, plane_state))
2149 return 0;
2150
2151 ret = skl_build_plane_wm_single(crtc_state, plane_state,
2152 plane, 0);
2153 if (ret)
2154 return ret;
2155
2156 if (fb->format->is_yuv && fb->format->num_planes > 1) {
2157 ret = skl_build_plane_wm_uv(crtc_state, plane_state,
2158 plane);
2159 if (ret)
2160 return ret;
2161 }
2162
2163 return 0;
2164 }
2165
icl_build_plane_wm(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)2166 static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
2167 const struct intel_plane_state *plane_state)
2168 {
2169 struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
2170 struct drm_i915_private *i915 = to_i915(plane->base.dev);
2171 enum plane_id plane_id = plane->id;
2172 struct skl_plane_wm *wm = &crtc_state->wm.skl.raw.planes[plane_id];
2173 int ret;
2174
2175 /* Watermarks calculated in master */
2176 if (plane_state->planar_slave)
2177 return 0;
2178
2179 memset(wm, 0, sizeof(*wm));
2180
2181 if (plane_state->planar_linked_plane) {
2182 const struct drm_framebuffer *fb = plane_state->hw.fb;
2183
2184 drm_WARN_ON(&i915->drm,
2185 !intel_wm_plane_visible(crtc_state, plane_state));
2186 drm_WARN_ON(&i915->drm, !fb->format->is_yuv ||
2187 fb->format->num_planes == 1);
2188
2189 ret = skl_build_plane_wm_single(crtc_state, plane_state,
2190 plane_state->planar_linked_plane, 0);
2191 if (ret)
2192 return ret;
2193
2194 ret = skl_build_plane_wm_single(crtc_state, plane_state,
2195 plane, 1);
2196 if (ret)
2197 return ret;
2198 } else if (intel_wm_plane_visible(crtc_state, plane_state)) {
2199 ret = skl_build_plane_wm_single(crtc_state, plane_state,
2200 plane, 0);
2201 if (ret)
2202 return ret;
2203 }
2204
2205 return 0;
2206 }
2207
2208 static bool
skl_is_vblank_too_short(const struct intel_crtc_state * crtc_state,int wm0_lines,int latency)2209 skl_is_vblank_too_short(const struct intel_crtc_state *crtc_state,
2210 int wm0_lines, int latency)
2211 {
2212 const struct drm_display_mode *adjusted_mode =
2213 &crtc_state->hw.adjusted_mode;
2214
2215 /* FIXME missing scaler and DSC pre-fill time */
2216 return crtc_state->framestart_delay +
2217 intel_usecs_to_scanlines(adjusted_mode, latency) +
2218 wm0_lines >
2219 adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vblank_start;
2220 }
2221
skl_max_wm0_lines(const struct intel_crtc_state * crtc_state)2222 static int skl_max_wm0_lines(const struct intel_crtc_state *crtc_state)
2223 {
2224 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2225 enum plane_id plane_id;
2226 int wm0_lines = 0;
2227
2228 for_each_plane_id_on_crtc(crtc, plane_id) {
2229 const struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
2230
2231 /* FIXME what about !skl_wm_has_lines() platforms? */
2232 wm0_lines = max_t(int, wm0_lines, wm->wm[0].lines);
2233 }
2234
2235 return wm0_lines;
2236 }
2237
skl_max_wm_level_for_vblank(struct intel_crtc_state * crtc_state,int wm0_lines)2238 static int skl_max_wm_level_for_vblank(struct intel_crtc_state *crtc_state,
2239 int wm0_lines)
2240 {
2241 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2242 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2243 int level;
2244
2245 for (level = i915->display.wm.num_levels - 1; level >= 0; level--) {
2246 int latency;
2247
2248 /* FIXME should we care about the latency w/a's? */
2249 latency = skl_wm_latency(i915, level, NULL);
2250 if (latency == 0)
2251 continue;
2252
2253 /* FIXME is it correct to use 0 latency for wm0 here? */
2254 if (level == 0)
2255 latency = 0;
2256
2257 if (!skl_is_vblank_too_short(crtc_state, wm0_lines, latency))
2258 return level;
2259 }
2260
2261 return -EINVAL;
2262 }
2263
skl_wm_check_vblank(struct intel_crtc_state * crtc_state)2264 static int skl_wm_check_vblank(struct intel_crtc_state *crtc_state)
2265 {
2266 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2267 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2268 int wm0_lines, level;
2269
2270 if (!crtc_state->hw.active)
2271 return 0;
2272
2273 wm0_lines = skl_max_wm0_lines(crtc_state);
2274
2275 level = skl_max_wm_level_for_vblank(crtc_state, wm0_lines);
2276 if (level < 0)
2277 return level;
2278
2279 /*
2280 * PSR needs to toggle LATENCY_REPORTING_REMOVED_PIPE_*
2281 * based on whether we're limited by the vblank duration.
2282 */
2283 crtc_state->wm_level_disabled = level < i915->display.wm.num_levels - 1;
2284
2285 for (level++; level < i915->display.wm.num_levels; level++) {
2286 enum plane_id plane_id;
2287
2288 for_each_plane_id_on_crtc(crtc, plane_id) {
2289 struct skl_plane_wm *wm =
2290 &crtc_state->wm.skl.optimal.planes[plane_id];
2291
2292 /*
2293 * FIXME just clear enable or flag the entire
2294 * thing as bad via min_ddb_alloc=U16_MAX?
2295 */
2296 wm->wm[level].enable = false;
2297 wm->uv_wm[level].enable = false;
2298 }
2299 }
2300
2301 if (DISPLAY_VER(i915) >= 12 &&
2302 i915->display.sagv.block_time_us &&
2303 skl_is_vblank_too_short(crtc_state, wm0_lines,
2304 i915->display.sagv.block_time_us)) {
2305 enum plane_id plane_id;
2306
2307 for_each_plane_id_on_crtc(crtc, plane_id) {
2308 struct skl_plane_wm *wm =
2309 &crtc_state->wm.skl.optimal.planes[plane_id];
2310
2311 wm->sagv.wm0.enable = false;
2312 wm->sagv.trans_wm.enable = false;
2313 }
2314 }
2315
2316 return 0;
2317 }
2318
skl_build_pipe_wm(struct intel_atomic_state * state,struct intel_crtc * crtc)2319 static int skl_build_pipe_wm(struct intel_atomic_state *state,
2320 struct intel_crtc *crtc)
2321 {
2322 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2323 struct intel_crtc_state *crtc_state =
2324 intel_atomic_get_new_crtc_state(state, crtc);
2325 const struct intel_plane_state *plane_state;
2326 struct intel_plane *plane;
2327 int ret, i;
2328
2329 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
2330 /*
2331 * FIXME should perhaps check {old,new}_plane_crtc->hw.crtc
2332 * instead but we don't populate that correctly for NV12 Y
2333 * planes so for now hack this.
2334 */
2335 if (plane->pipe != crtc->pipe)
2336 continue;
2337
2338 if (DISPLAY_VER(i915) >= 11)
2339 ret = icl_build_plane_wm(crtc_state, plane_state);
2340 else
2341 ret = skl_build_plane_wm(crtc_state, plane_state);
2342 if (ret)
2343 return ret;
2344 }
2345
2346 crtc_state->wm.skl.optimal = crtc_state->wm.skl.raw;
2347
2348 return skl_wm_check_vblank(crtc_state);
2349 }
2350
skl_ddb_entry_write(struct drm_i915_private * i915,i915_reg_t reg,const struct skl_ddb_entry * entry)2351 static void skl_ddb_entry_write(struct drm_i915_private *i915,
2352 i915_reg_t reg,
2353 const struct skl_ddb_entry *entry)
2354 {
2355 if (entry->end)
2356 intel_de_write_fw(i915, reg,
2357 PLANE_BUF_END(entry->end - 1) |
2358 PLANE_BUF_START(entry->start));
2359 else
2360 intel_de_write_fw(i915, reg, 0);
2361 }
2362
skl_write_wm_level(struct drm_i915_private * i915,i915_reg_t reg,const struct skl_wm_level * level)2363 static void skl_write_wm_level(struct drm_i915_private *i915,
2364 i915_reg_t reg,
2365 const struct skl_wm_level *level)
2366 {
2367 u32 val = 0;
2368
2369 if (level->enable)
2370 val |= PLANE_WM_EN;
2371 if (level->ignore_lines)
2372 val |= PLANE_WM_IGNORE_LINES;
2373 val |= REG_FIELD_PREP(PLANE_WM_BLOCKS_MASK, level->blocks);
2374 val |= REG_FIELD_PREP(PLANE_WM_LINES_MASK, level->lines);
2375
2376 intel_de_write_fw(i915, reg, val);
2377 }
2378
skl_write_plane_wm(struct intel_plane * plane,const struct intel_crtc_state * crtc_state)2379 void skl_write_plane_wm(struct intel_plane *plane,
2380 const struct intel_crtc_state *crtc_state)
2381 {
2382 struct drm_i915_private *i915 = to_i915(plane->base.dev);
2383 enum plane_id plane_id = plane->id;
2384 enum pipe pipe = plane->pipe;
2385 const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
2386 const struct skl_ddb_entry *ddb =
2387 &crtc_state->wm.skl.plane_ddb[plane_id];
2388 const struct skl_ddb_entry *ddb_y =
2389 &crtc_state->wm.skl.plane_ddb_y[plane_id];
2390 int level;
2391
2392 for (level = 0; level < i915->display.wm.num_levels; level++)
2393 skl_write_wm_level(i915, PLANE_WM(pipe, plane_id, level),
2394 skl_plane_wm_level(pipe_wm, plane_id, level));
2395
2396 skl_write_wm_level(i915, PLANE_WM_TRANS(pipe, plane_id),
2397 skl_plane_trans_wm(pipe_wm, plane_id));
2398
2399 if (HAS_HW_SAGV_WM(i915)) {
2400 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
2401
2402 skl_write_wm_level(i915, PLANE_WM_SAGV(pipe, plane_id),
2403 &wm->sagv.wm0);
2404 skl_write_wm_level(i915, PLANE_WM_SAGV_TRANS(pipe, plane_id),
2405 &wm->sagv.trans_wm);
2406 }
2407
2408 skl_ddb_entry_write(i915,
2409 PLANE_BUF_CFG(pipe, plane_id), ddb);
2410
2411 if (DISPLAY_VER(i915) < 11)
2412 skl_ddb_entry_write(i915,
2413 PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_y);
2414 }
2415
skl_write_cursor_wm(struct intel_plane * plane,const struct intel_crtc_state * crtc_state)2416 void skl_write_cursor_wm(struct intel_plane *plane,
2417 const struct intel_crtc_state *crtc_state)
2418 {
2419 struct drm_i915_private *i915 = to_i915(plane->base.dev);
2420 enum plane_id plane_id = plane->id;
2421 enum pipe pipe = plane->pipe;
2422 const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
2423 const struct skl_ddb_entry *ddb =
2424 &crtc_state->wm.skl.plane_ddb[plane_id];
2425 int level;
2426
2427 for (level = 0; level < i915->display.wm.num_levels; level++)
2428 skl_write_wm_level(i915, CUR_WM(pipe, level),
2429 skl_plane_wm_level(pipe_wm, plane_id, level));
2430
2431 skl_write_wm_level(i915, CUR_WM_TRANS(pipe),
2432 skl_plane_trans_wm(pipe_wm, plane_id));
2433
2434 if (HAS_HW_SAGV_WM(i915)) {
2435 const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
2436
2437 skl_write_wm_level(i915, CUR_WM_SAGV(pipe),
2438 &wm->sagv.wm0);
2439 skl_write_wm_level(i915, CUR_WM_SAGV_TRANS(pipe),
2440 &wm->sagv.trans_wm);
2441 }
2442
2443 skl_ddb_entry_write(i915, CUR_BUF_CFG(pipe), ddb);
2444 }
2445
skl_wm_level_equals(const struct skl_wm_level * l1,const struct skl_wm_level * l2)2446 static bool skl_wm_level_equals(const struct skl_wm_level *l1,
2447 const struct skl_wm_level *l2)
2448 {
2449 return l1->enable == l2->enable &&
2450 l1->ignore_lines == l2->ignore_lines &&
2451 l1->lines == l2->lines &&
2452 l1->blocks == l2->blocks;
2453 }
2454
skl_plane_wm_equals(struct drm_i915_private * i915,const struct skl_plane_wm * wm1,const struct skl_plane_wm * wm2)2455 static bool skl_plane_wm_equals(struct drm_i915_private *i915,
2456 const struct skl_plane_wm *wm1,
2457 const struct skl_plane_wm *wm2)
2458 {
2459 int level;
2460
2461 for (level = 0; level < i915->display.wm.num_levels; level++) {
2462 /*
2463 * We don't check uv_wm as the hardware doesn't actually
2464 * use it. It only gets used for calculating the required
2465 * ddb allocation.
2466 */
2467 if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]))
2468 return false;
2469 }
2470
2471 return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm) &&
2472 skl_wm_level_equals(&wm1->sagv.wm0, &wm2->sagv.wm0) &&
2473 skl_wm_level_equals(&wm1->sagv.trans_wm, &wm2->sagv.trans_wm);
2474 }
2475
skl_ddb_entries_overlap(const struct skl_ddb_entry * a,const struct skl_ddb_entry * b)2476 static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
2477 const struct skl_ddb_entry *b)
2478 {
2479 return a->start < b->end && b->start < a->end;
2480 }
2481
skl_ddb_entry_union(struct skl_ddb_entry * a,const struct skl_ddb_entry * b)2482 static void skl_ddb_entry_union(struct skl_ddb_entry *a,
2483 const struct skl_ddb_entry *b)
2484 {
2485 if (a->end && b->end) {
2486 a->start = min(a->start, b->start);
2487 a->end = max(a->end, b->end);
2488 } else if (b->end) {
2489 a->start = b->start;
2490 a->end = b->end;
2491 }
2492 }
2493
skl_ddb_allocation_overlaps(const struct skl_ddb_entry * ddb,const struct skl_ddb_entry * entries,int num_entries,int ignore_idx)2494 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
2495 const struct skl_ddb_entry *entries,
2496 int num_entries, int ignore_idx)
2497 {
2498 int i;
2499
2500 for (i = 0; i < num_entries; i++) {
2501 if (i != ignore_idx &&
2502 skl_ddb_entries_overlap(ddb, &entries[i]))
2503 return true;
2504 }
2505
2506 return false;
2507 }
2508
2509 static int
skl_ddb_add_affected_planes(const struct intel_crtc_state * old_crtc_state,struct intel_crtc_state * new_crtc_state)2510 skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
2511 struct intel_crtc_state *new_crtc_state)
2512 {
2513 struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
2514 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
2515 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2516 struct intel_plane *plane;
2517
2518 for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
2519 struct intel_plane_state *plane_state;
2520 enum plane_id plane_id = plane->id;
2521
2522 if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb[plane_id],
2523 &new_crtc_state->wm.skl.plane_ddb[plane_id]) &&
2524 skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
2525 &new_crtc_state->wm.skl.plane_ddb_y[plane_id]))
2526 continue;
2527
2528 plane_state = intel_atomic_get_plane_state(state, plane);
2529 if (IS_ERR(plane_state))
2530 return PTR_ERR(plane_state);
2531
2532 new_crtc_state->update_planes |= BIT(plane_id);
2533 new_crtc_state->async_flip_planes = 0;
2534 new_crtc_state->do_async_flip = false;
2535 }
2536
2537 return 0;
2538 }
2539
intel_dbuf_enabled_slices(const struct intel_dbuf_state * dbuf_state)2540 static u8 intel_dbuf_enabled_slices(const struct intel_dbuf_state *dbuf_state)
2541 {
2542 struct drm_i915_private *i915 = to_i915(dbuf_state->base.state->base.dev);
2543 u8 enabled_slices;
2544 enum pipe pipe;
2545
2546 /*
2547 * FIXME: For now we always enable slice S1 as per
2548 * the Bspec display initialization sequence.
2549 */
2550 enabled_slices = BIT(DBUF_S1);
2551
2552 for_each_pipe(i915, pipe)
2553 enabled_slices |= dbuf_state->slices[pipe];
2554
2555 return enabled_slices;
2556 }
2557
2558 static int
skl_compute_ddb(struct intel_atomic_state * state)2559 skl_compute_ddb(struct intel_atomic_state *state)
2560 {
2561 struct drm_i915_private *i915 = to_i915(state->base.dev);
2562 const struct intel_dbuf_state *old_dbuf_state;
2563 struct intel_dbuf_state *new_dbuf_state = NULL;
2564 const struct intel_crtc_state *old_crtc_state;
2565 struct intel_crtc_state *new_crtc_state;
2566 struct intel_crtc *crtc;
2567 int ret, i;
2568
2569 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
2570 new_dbuf_state = intel_atomic_get_dbuf_state(state);
2571 if (IS_ERR(new_dbuf_state))
2572 return PTR_ERR(new_dbuf_state);
2573
2574 old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
2575 break;
2576 }
2577
2578 if (!new_dbuf_state)
2579 return 0;
2580
2581 new_dbuf_state->active_pipes =
2582 intel_calc_active_pipes(state, old_dbuf_state->active_pipes);
2583
2584 if (old_dbuf_state->active_pipes != new_dbuf_state->active_pipes) {
2585 ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
2586 if (ret)
2587 return ret;
2588 }
2589
2590 if (HAS_MBUS_JOINING(i915))
2591 new_dbuf_state->joined_mbus =
2592 adlp_check_mbus_joined(new_dbuf_state->active_pipes);
2593
2594 for_each_intel_crtc(&i915->drm, crtc) {
2595 enum pipe pipe = crtc->pipe;
2596
2597 new_dbuf_state->slices[pipe] =
2598 skl_compute_dbuf_slices(crtc, new_dbuf_state->active_pipes,
2599 new_dbuf_state->joined_mbus);
2600
2601 if (old_dbuf_state->slices[pipe] == new_dbuf_state->slices[pipe])
2602 continue;
2603
2604 ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
2605 if (ret)
2606 return ret;
2607 }
2608
2609 new_dbuf_state->enabled_slices = intel_dbuf_enabled_slices(new_dbuf_state);
2610
2611 if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices ||
2612 old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) {
2613 ret = intel_atomic_serialize_global_state(&new_dbuf_state->base);
2614 if (ret)
2615 return ret;
2616
2617 if (old_dbuf_state->joined_mbus != new_dbuf_state->joined_mbus) {
2618 /* TODO: Implement vblank synchronized MBUS joining changes */
2619 ret = intel_modeset_all_pipes(state, "MBUS joining change");
2620 if (ret)
2621 return ret;
2622 }
2623
2624 drm_dbg_kms(&i915->drm,
2625 "Enabled dbuf slices 0x%x -> 0x%x (total dbuf slices 0x%x), mbus joined? %s->%s\n",
2626 old_dbuf_state->enabled_slices,
2627 new_dbuf_state->enabled_slices,
2628 DISPLAY_INFO(i915)->dbuf.slice_mask,
2629 str_yes_no(old_dbuf_state->joined_mbus),
2630 str_yes_no(new_dbuf_state->joined_mbus));
2631 }
2632
2633 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
2634 enum pipe pipe = crtc->pipe;
2635
2636 new_dbuf_state->weight[pipe] = intel_crtc_ddb_weight(new_crtc_state);
2637
2638 if (old_dbuf_state->weight[pipe] == new_dbuf_state->weight[pipe])
2639 continue;
2640
2641 ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
2642 if (ret)
2643 return ret;
2644 }
2645
2646 for_each_intel_crtc(&i915->drm, crtc) {
2647 ret = skl_crtc_allocate_ddb(state, crtc);
2648 if (ret)
2649 return ret;
2650 }
2651
2652 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
2653 new_crtc_state, i) {
2654 ret = skl_crtc_allocate_plane_ddb(state, crtc);
2655 if (ret)
2656 return ret;
2657
2658 ret = skl_ddb_add_affected_planes(old_crtc_state,
2659 new_crtc_state);
2660 if (ret)
2661 return ret;
2662 }
2663
2664 return 0;
2665 }
2666
enast(bool enable)2667 static char enast(bool enable)
2668 {
2669 return enable ? '*' : ' ';
2670 }
2671
2672 static void
skl_print_wm_changes(struct intel_atomic_state * state)2673 skl_print_wm_changes(struct intel_atomic_state *state)
2674 {
2675 struct drm_i915_private *i915 = to_i915(state->base.dev);
2676 const struct intel_crtc_state *old_crtc_state;
2677 const struct intel_crtc_state *new_crtc_state;
2678 struct intel_plane *plane;
2679 struct intel_crtc *crtc;
2680 int i;
2681
2682 if (!drm_debug_enabled(DRM_UT_KMS))
2683 return;
2684
2685 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
2686 new_crtc_state, i) {
2687 const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;
2688
2689 old_pipe_wm = &old_crtc_state->wm.skl.optimal;
2690 new_pipe_wm = &new_crtc_state->wm.skl.optimal;
2691
2692 for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
2693 enum plane_id plane_id = plane->id;
2694 const struct skl_ddb_entry *old, *new;
2695
2696 old = &old_crtc_state->wm.skl.plane_ddb[plane_id];
2697 new = &new_crtc_state->wm.skl.plane_ddb[plane_id];
2698
2699 if (skl_ddb_entry_equal(old, new))
2700 continue;
2701
2702 drm_dbg_kms(&i915->drm,
2703 "[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
2704 plane->base.base.id, plane->base.name,
2705 old->start, old->end, new->start, new->end,
2706 skl_ddb_entry_size(old), skl_ddb_entry_size(new));
2707 }
2708
2709 for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
2710 enum plane_id plane_id = plane->id;
2711 const struct skl_plane_wm *old_wm, *new_wm;
2712
2713 old_wm = &old_pipe_wm->planes[plane_id];
2714 new_wm = &new_pipe_wm->planes[plane_id];
2715
2716 if (skl_plane_wm_equals(i915, old_wm, new_wm))
2717 continue;
2718
2719 drm_dbg_kms(&i915->drm,
2720 "[PLANE:%d:%s] level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm"
2721 " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm,%cstwm\n",
2722 plane->base.base.id, plane->base.name,
2723 enast(old_wm->wm[0].enable), enast(old_wm->wm[1].enable),
2724 enast(old_wm->wm[2].enable), enast(old_wm->wm[3].enable),
2725 enast(old_wm->wm[4].enable), enast(old_wm->wm[5].enable),
2726 enast(old_wm->wm[6].enable), enast(old_wm->wm[7].enable),
2727 enast(old_wm->trans_wm.enable),
2728 enast(old_wm->sagv.wm0.enable),
2729 enast(old_wm->sagv.trans_wm.enable),
2730 enast(new_wm->wm[0].enable), enast(new_wm->wm[1].enable),
2731 enast(new_wm->wm[2].enable), enast(new_wm->wm[3].enable),
2732 enast(new_wm->wm[4].enable), enast(new_wm->wm[5].enable),
2733 enast(new_wm->wm[6].enable), enast(new_wm->wm[7].enable),
2734 enast(new_wm->trans_wm.enable),
2735 enast(new_wm->sagv.wm0.enable),
2736 enast(new_wm->sagv.trans_wm.enable));
2737
2738 drm_dbg_kms(&i915->drm,
2739 "[PLANE:%d:%s] lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d"
2740 " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%4d\n",
2741 plane->base.base.id, plane->base.name,
2742 enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].lines,
2743 enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].lines,
2744 enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].lines,
2745 enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].lines,
2746 enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].lines,
2747 enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].lines,
2748 enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].lines,
2749 enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].lines,
2750 enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.lines,
2751 enast(old_wm->sagv.wm0.ignore_lines), old_wm->sagv.wm0.lines,
2752 enast(old_wm->sagv.trans_wm.ignore_lines), old_wm->sagv.trans_wm.lines,
2753 enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].lines,
2754 enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].lines,
2755 enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].lines,
2756 enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].lines,
2757 enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].lines,
2758 enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].lines,
2759 enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].lines,
2760 enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].lines,
2761 enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.lines,
2762 enast(new_wm->sagv.wm0.ignore_lines), new_wm->sagv.wm0.lines,
2763 enast(new_wm->sagv.trans_wm.ignore_lines), new_wm->sagv.trans_wm.lines);
2764
2765 drm_dbg_kms(&i915->drm,
2766 "[PLANE:%d:%s] blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
2767 " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
2768 plane->base.base.id, plane->base.name,
2769 old_wm->wm[0].blocks, old_wm->wm[1].blocks,
2770 old_wm->wm[2].blocks, old_wm->wm[3].blocks,
2771 old_wm->wm[4].blocks, old_wm->wm[5].blocks,
2772 old_wm->wm[6].blocks, old_wm->wm[7].blocks,
2773 old_wm->trans_wm.blocks,
2774 old_wm->sagv.wm0.blocks,
2775 old_wm->sagv.trans_wm.blocks,
2776 new_wm->wm[0].blocks, new_wm->wm[1].blocks,
2777 new_wm->wm[2].blocks, new_wm->wm[3].blocks,
2778 new_wm->wm[4].blocks, new_wm->wm[5].blocks,
2779 new_wm->wm[6].blocks, new_wm->wm[7].blocks,
2780 new_wm->trans_wm.blocks,
2781 new_wm->sagv.wm0.blocks,
2782 new_wm->sagv.trans_wm.blocks);
2783
2784 drm_dbg_kms(&i915->drm,
2785 "[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d"
2786 " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%5d\n",
2787 plane->base.base.id, plane->base.name,
2788 old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
2789 old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
2790 old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
2791 old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
2792 old_wm->trans_wm.min_ddb_alloc,
2793 old_wm->sagv.wm0.min_ddb_alloc,
2794 old_wm->sagv.trans_wm.min_ddb_alloc,
2795 new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
2796 new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
2797 new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
2798 new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
2799 new_wm->trans_wm.min_ddb_alloc,
2800 new_wm->sagv.wm0.min_ddb_alloc,
2801 new_wm->sagv.trans_wm.min_ddb_alloc);
2802 }
2803 }
2804 }
2805
skl_plane_selected_wm_equals(struct intel_plane * plane,const struct skl_pipe_wm * old_pipe_wm,const struct skl_pipe_wm * new_pipe_wm)2806 static bool skl_plane_selected_wm_equals(struct intel_plane *plane,
2807 const struct skl_pipe_wm *old_pipe_wm,
2808 const struct skl_pipe_wm *new_pipe_wm)
2809 {
2810 struct drm_i915_private *i915 = to_i915(plane->base.dev);
2811 int level;
2812
2813 for (level = 0; level < i915->display.wm.num_levels; level++) {
2814 /*
2815 * We don't check uv_wm as the hardware doesn't actually
2816 * use it. It only gets used for calculating the required
2817 * ddb allocation.
2818 */
2819 if (!skl_wm_level_equals(skl_plane_wm_level(old_pipe_wm, plane->id, level),
2820 skl_plane_wm_level(new_pipe_wm, plane->id, level)))
2821 return false;
2822 }
2823
2824 if (HAS_HW_SAGV_WM(i915)) {
2825 const struct skl_plane_wm *old_wm = &old_pipe_wm->planes[plane->id];
2826 const struct skl_plane_wm *new_wm = &new_pipe_wm->planes[plane->id];
2827
2828 if (!skl_wm_level_equals(&old_wm->sagv.wm0, &new_wm->sagv.wm0) ||
2829 !skl_wm_level_equals(&old_wm->sagv.trans_wm, &new_wm->sagv.trans_wm))
2830 return false;
2831 }
2832
2833 return skl_wm_level_equals(skl_plane_trans_wm(old_pipe_wm, plane->id),
2834 skl_plane_trans_wm(new_pipe_wm, plane->id));
2835 }
2836
2837 /*
2838 * To make sure the cursor watermark registers are always consistent
2839 * with our computed state the following scenario needs special
2840 * treatment:
2841 *
2842 * 1. enable cursor
2843 * 2. move cursor entirely offscreen
2844 * 3. disable cursor
2845 *
2846 * Step 2. does call .disable_plane() but does not zero the watermarks
2847 * (since we consider an offscreen cursor still active for the purposes
2848 * of watermarks). Step 3. would not normally call .disable_plane()
2849 * because the actual plane visibility isn't changing, and we don't
2850 * deallocate the cursor ddb until the pipe gets disabled. So we must
2851 * force step 3. to call .disable_plane() to update the watermark
2852 * registers properly.
2853 *
2854 * Other planes do not suffer from this issues as their watermarks are
2855 * calculated based on the actual plane visibility. The only time this
2856 * can trigger for the other planes is during the initial readout as the
2857 * default value of the watermarks registers is not zero.
2858 */
skl_wm_add_affected_planes(struct intel_atomic_state * state,struct intel_crtc * crtc)2859 static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
2860 struct intel_crtc *crtc)
2861 {
2862 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2863 const struct intel_crtc_state *old_crtc_state =
2864 intel_atomic_get_old_crtc_state(state, crtc);
2865 struct intel_crtc_state *new_crtc_state =
2866 intel_atomic_get_new_crtc_state(state, crtc);
2867 struct intel_plane *plane;
2868
2869 for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
2870 struct intel_plane_state *plane_state;
2871 enum plane_id plane_id = plane->id;
2872
2873 /*
2874 * Force a full wm update for every plane on modeset.
2875 * Required because the reset value of the wm registers
2876 * is non-zero, whereas we want all disabled planes to
2877 * have zero watermarks. So if we turn off the relevant
2878 * power well the hardware state will go out of sync
2879 * with the software state.
2880 */
2881 if (!intel_crtc_needs_modeset(new_crtc_state) &&
2882 skl_plane_selected_wm_equals(plane,
2883 &old_crtc_state->wm.skl.optimal,
2884 &new_crtc_state->wm.skl.optimal))
2885 continue;
2886
2887 plane_state = intel_atomic_get_plane_state(state, plane);
2888 if (IS_ERR(plane_state))
2889 return PTR_ERR(plane_state);
2890
2891 new_crtc_state->update_planes |= BIT(plane_id);
2892 new_crtc_state->async_flip_planes = 0;
2893 new_crtc_state->do_async_flip = false;
2894 }
2895
2896 return 0;
2897 }
2898
2899 static int
skl_compute_wm(struct intel_atomic_state * state)2900 skl_compute_wm(struct intel_atomic_state *state)
2901 {
2902 struct intel_crtc *crtc;
2903 struct intel_crtc_state __maybe_unused *new_crtc_state;
2904 int ret, i;
2905
2906 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
2907 ret = skl_build_pipe_wm(state, crtc);
2908 if (ret)
2909 return ret;
2910 }
2911
2912 ret = skl_compute_ddb(state);
2913 if (ret)
2914 return ret;
2915
2916 ret = intel_compute_sagv_mask(state);
2917 if (ret)
2918 return ret;
2919
2920 /*
2921 * skl_compute_ddb() will have adjusted the final watermarks
2922 * based on how much ddb is available. Now we can actually
2923 * check if the final watermarks changed.
2924 */
2925 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
2926 ret = skl_wm_add_affected_planes(state, crtc);
2927 if (ret)
2928 return ret;
2929 }
2930
2931 skl_print_wm_changes(state);
2932
2933 return 0;
2934 }
2935
skl_wm_level_from_reg_val(u32 val,struct skl_wm_level * level)2936 static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level)
2937 {
2938 level->enable = val & PLANE_WM_EN;
2939 level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
2940 level->blocks = REG_FIELD_GET(PLANE_WM_BLOCKS_MASK, val);
2941 level->lines = REG_FIELD_GET(PLANE_WM_LINES_MASK, val);
2942 }
2943
skl_pipe_wm_get_hw_state(struct intel_crtc * crtc,struct skl_pipe_wm * out)2944 static void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
2945 struct skl_pipe_wm *out)
2946 {
2947 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
2948 enum pipe pipe = crtc->pipe;
2949 enum plane_id plane_id;
2950 int level;
2951 u32 val;
2952
2953 for_each_plane_id_on_crtc(crtc, plane_id) {
2954 struct skl_plane_wm *wm = &out->planes[plane_id];
2955
2956 for (level = 0; level < i915->display.wm.num_levels; level++) {
2957 if (plane_id != PLANE_CURSOR)
2958 val = intel_de_read(i915, PLANE_WM(pipe, plane_id, level));
2959 else
2960 val = intel_de_read(i915, CUR_WM(pipe, level));
2961
2962 skl_wm_level_from_reg_val(val, &wm->wm[level]);
2963 }
2964
2965 if (plane_id != PLANE_CURSOR)
2966 val = intel_de_read(i915, PLANE_WM_TRANS(pipe, plane_id));
2967 else
2968 val = intel_de_read(i915, CUR_WM_TRANS(pipe));
2969
2970 skl_wm_level_from_reg_val(val, &wm->trans_wm);
2971
2972 if (HAS_HW_SAGV_WM(i915)) {
2973 if (plane_id != PLANE_CURSOR)
2974 val = intel_de_read(i915, PLANE_WM_SAGV(pipe, plane_id));
2975 else
2976 val = intel_de_read(i915, CUR_WM_SAGV(pipe));
2977
2978 skl_wm_level_from_reg_val(val, &wm->sagv.wm0);
2979
2980 if (plane_id != PLANE_CURSOR)
2981 val = intel_de_read(i915, PLANE_WM_SAGV_TRANS(pipe, plane_id));
2982 else
2983 val = intel_de_read(i915, CUR_WM_SAGV_TRANS(pipe));
2984
2985 skl_wm_level_from_reg_val(val, &wm->sagv.trans_wm);
2986 } else if (DISPLAY_VER(i915) >= 12) {
2987 wm->sagv.wm0 = wm->wm[0];
2988 wm->sagv.trans_wm = wm->trans_wm;
2989 }
2990 }
2991 }
2992
skl_wm_get_hw_state(struct drm_i915_private * i915)2993 static void skl_wm_get_hw_state(struct drm_i915_private *i915)
2994 {
2995 struct intel_dbuf_state *dbuf_state =
2996 to_intel_dbuf_state(i915->display.dbuf.obj.state);
2997 struct intel_crtc *crtc;
2998
2999 if (HAS_MBUS_JOINING(i915))
3000 dbuf_state->joined_mbus = intel_de_read(i915, MBUS_CTL) & MBUS_JOIN;
3001
3002 for_each_intel_crtc(&i915->drm, crtc) {
3003 struct intel_crtc_state *crtc_state =
3004 to_intel_crtc_state(crtc->base.state);
3005 enum pipe pipe = crtc->pipe;
3006 unsigned int mbus_offset;
3007 enum plane_id plane_id;
3008 u8 slices;
3009
3010 memset(&crtc_state->wm.skl.optimal, 0,
3011 sizeof(crtc_state->wm.skl.optimal));
3012 if (crtc_state->hw.active)
3013 skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
3014 crtc_state->wm.skl.raw = crtc_state->wm.skl.optimal;
3015
3016 memset(&dbuf_state->ddb[pipe], 0, sizeof(dbuf_state->ddb[pipe]));
3017
3018 for_each_plane_id_on_crtc(crtc, plane_id) {
3019 struct skl_ddb_entry *ddb =
3020 &crtc_state->wm.skl.plane_ddb[plane_id];
3021 struct skl_ddb_entry *ddb_y =
3022 &crtc_state->wm.skl.plane_ddb_y[plane_id];
3023
3024 if (!crtc_state->hw.active)
3025 continue;
3026
3027 skl_ddb_get_hw_plane_state(i915, crtc->pipe,
3028 plane_id, ddb, ddb_y);
3029
3030 skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb);
3031 skl_ddb_entry_union(&dbuf_state->ddb[pipe], ddb_y);
3032 }
3033
3034 dbuf_state->weight[pipe] = intel_crtc_ddb_weight(crtc_state);
3035
3036 /*
3037 * Used for checking overlaps, so we need absolute
3038 * offsets instead of MBUS relative offsets.
3039 */
3040 slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes,
3041 dbuf_state->joined_mbus);
3042 mbus_offset = mbus_ddb_offset(i915, slices);
3043 crtc_state->wm.skl.ddb.start = mbus_offset + dbuf_state->ddb[pipe].start;
3044 crtc_state->wm.skl.ddb.end = mbus_offset + dbuf_state->ddb[pipe].end;
3045
3046 /* The slices actually used by the planes on the pipe */
3047 dbuf_state->slices[pipe] =
3048 skl_ddb_dbuf_slice_mask(i915, &crtc_state->wm.skl.ddb);
3049
3050 drm_dbg_kms(&i915->drm,
3051 "[CRTC:%d:%s] dbuf slices 0x%x, ddb (%d - %d), active pipes 0x%x, mbus joined: %s\n",
3052 crtc->base.base.id, crtc->base.name,
3053 dbuf_state->slices[pipe], dbuf_state->ddb[pipe].start,
3054 dbuf_state->ddb[pipe].end, dbuf_state->active_pipes,
3055 str_yes_no(dbuf_state->joined_mbus));
3056 }
3057
3058 dbuf_state->enabled_slices = i915->display.dbuf.enabled_slices;
3059 }
3060
skl_dbuf_is_misconfigured(struct drm_i915_private * i915)3061 static bool skl_dbuf_is_misconfigured(struct drm_i915_private *i915)
3062 {
3063 const struct intel_dbuf_state *dbuf_state =
3064 to_intel_dbuf_state(i915->display.dbuf.obj.state);
3065 struct skl_ddb_entry entries[I915_MAX_PIPES] = {};
3066 struct intel_crtc *crtc;
3067
3068 for_each_intel_crtc(&i915->drm, crtc) {
3069 const struct intel_crtc_state *crtc_state =
3070 to_intel_crtc_state(crtc->base.state);
3071
3072 entries[crtc->pipe] = crtc_state->wm.skl.ddb;
3073 }
3074
3075 for_each_intel_crtc(&i915->drm, crtc) {
3076 const struct intel_crtc_state *crtc_state =
3077 to_intel_crtc_state(crtc->base.state);
3078 u8 slices;
3079
3080 slices = skl_compute_dbuf_slices(crtc, dbuf_state->active_pipes,
3081 dbuf_state->joined_mbus);
3082 if (dbuf_state->slices[crtc->pipe] & ~slices)
3083 return true;
3084
3085 if (skl_ddb_allocation_overlaps(&crtc_state->wm.skl.ddb, entries,
3086 I915_MAX_PIPES, crtc->pipe))
3087 return true;
3088 }
3089
3090 return false;
3091 }
3092
skl_wm_sanitize(struct drm_i915_private * i915)3093 static void skl_wm_sanitize(struct drm_i915_private *i915)
3094 {
3095 struct intel_crtc *crtc;
3096
3097 /*
3098 * On TGL/RKL (at least) the BIOS likes to assign the planes
3099 * to the wrong DBUF slices. This will cause an infinite loop
3100 * in skl_commit_modeset_enables() as it can't find a way to
3101 * transition between the old bogus DBUF layout to the new
3102 * proper DBUF layout without DBUF allocation overlaps between
3103 * the planes (which cannot be allowed or else the hardware
3104 * may hang). If we detect a bogus DBUF layout just turn off
3105 * all the planes so that skl_commit_modeset_enables() can
3106 * simply ignore them.
3107 */
3108 if (!skl_dbuf_is_misconfigured(i915))
3109 return;
3110
3111 drm_dbg_kms(&i915->drm, "BIOS has misprogrammed the DBUF, disabling all planes\n");
3112
3113 for_each_intel_crtc(&i915->drm, crtc) {
3114 struct intel_plane *plane = to_intel_plane(crtc->base.primary);
3115 const struct intel_plane_state *plane_state =
3116 to_intel_plane_state(plane->base.state);
3117 struct intel_crtc_state *crtc_state =
3118 to_intel_crtc_state(crtc->base.state);
3119
3120 if (plane_state->uapi.visible)
3121 intel_plane_disable_noatomic(crtc, plane);
3122
3123 drm_WARN_ON(&i915->drm, crtc_state->active_planes != 0);
3124
3125 memset(&crtc_state->wm.skl.ddb, 0, sizeof(crtc_state->wm.skl.ddb));
3126 }
3127 }
3128
skl_wm_get_hw_state_and_sanitize(struct drm_i915_private * i915)3129 static void skl_wm_get_hw_state_and_sanitize(struct drm_i915_private *i915)
3130 {
3131 skl_wm_get_hw_state(i915);
3132 skl_wm_sanitize(i915);
3133 }
3134
intel_wm_state_verify(struct intel_crtc * crtc,struct intel_crtc_state * new_crtc_state)3135 void intel_wm_state_verify(struct intel_crtc *crtc,
3136 struct intel_crtc_state *new_crtc_state)
3137 {
3138 struct drm_i915_private *i915 = to_i915(crtc->base.dev);
3139 struct skl_hw_state {
3140 struct skl_ddb_entry ddb[I915_MAX_PLANES];
3141 struct skl_ddb_entry ddb_y[I915_MAX_PLANES];
3142 struct skl_pipe_wm wm;
3143 } *hw;
3144 const struct skl_pipe_wm *sw_wm = &new_crtc_state->wm.skl.optimal;
3145 struct intel_plane *plane;
3146 u8 hw_enabled_slices;
3147 int level;
3148
3149 if (DISPLAY_VER(i915) < 9 || !new_crtc_state->hw.active)
3150 return;
3151
3152 hw = kzalloc(sizeof(*hw), GFP_KERNEL);
3153 if (!hw)
3154 return;
3155
3156 skl_pipe_wm_get_hw_state(crtc, &hw->wm);
3157
3158 skl_pipe_ddb_get_hw_state(crtc, hw->ddb, hw->ddb_y);
3159
3160 hw_enabled_slices = intel_enabled_dbuf_slices_mask(i915);
3161
3162 if (DISPLAY_VER(i915) >= 11 &&
3163 hw_enabled_slices != i915->display.dbuf.enabled_slices)
3164 drm_err(&i915->drm,
3165 "mismatch in DBUF Slices (expected 0x%x, got 0x%x)\n",
3166 i915->display.dbuf.enabled_slices,
3167 hw_enabled_slices);
3168
3169 for_each_intel_plane_on_crtc(&i915->drm, crtc, plane) {
3170 const struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
3171 const struct skl_wm_level *hw_wm_level, *sw_wm_level;
3172
3173 /* Watermarks */
3174 for (level = 0; level < i915->display.wm.num_levels; level++) {
3175 hw_wm_level = &hw->wm.planes[plane->id].wm[level];
3176 sw_wm_level = skl_plane_wm_level(sw_wm, plane->id, level);
3177
3178 if (skl_wm_level_equals(hw_wm_level, sw_wm_level))
3179 continue;
3180
3181 drm_err(&i915->drm,
3182 "[PLANE:%d:%s] mismatch in WM%d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
3183 plane->base.base.id, plane->base.name, level,
3184 sw_wm_level->enable,
3185 sw_wm_level->blocks,
3186 sw_wm_level->lines,
3187 hw_wm_level->enable,
3188 hw_wm_level->blocks,
3189 hw_wm_level->lines);
3190 }
3191
3192 hw_wm_level = &hw->wm.planes[plane->id].trans_wm;
3193 sw_wm_level = skl_plane_trans_wm(sw_wm, plane->id);
3194
3195 if (!skl_wm_level_equals(hw_wm_level, sw_wm_level)) {
3196 drm_err(&i915->drm,
3197 "[PLANE:%d:%s] mismatch in trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
3198 plane->base.base.id, plane->base.name,
3199 sw_wm_level->enable,
3200 sw_wm_level->blocks,
3201 sw_wm_level->lines,
3202 hw_wm_level->enable,
3203 hw_wm_level->blocks,
3204 hw_wm_level->lines);
3205 }
3206
3207 hw_wm_level = &hw->wm.planes[plane->id].sagv.wm0;
3208 sw_wm_level = &sw_wm->planes[plane->id].sagv.wm0;
3209
3210 if (HAS_HW_SAGV_WM(i915) &&
3211 !skl_wm_level_equals(hw_wm_level, sw_wm_level)) {
3212 drm_err(&i915->drm,
3213 "[PLANE:%d:%s] mismatch in SAGV WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
3214 plane->base.base.id, plane->base.name,
3215 sw_wm_level->enable,
3216 sw_wm_level->blocks,
3217 sw_wm_level->lines,
3218 hw_wm_level->enable,
3219 hw_wm_level->blocks,
3220 hw_wm_level->lines);
3221 }
3222
3223 hw_wm_level = &hw->wm.planes[plane->id].sagv.trans_wm;
3224 sw_wm_level = &sw_wm->planes[plane->id].sagv.trans_wm;
3225
3226 if (HAS_HW_SAGV_WM(i915) &&
3227 !skl_wm_level_equals(hw_wm_level, sw_wm_level)) {
3228 drm_err(&i915->drm,
3229 "[PLANE:%d:%s] mismatch in SAGV trans WM (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
3230 plane->base.base.id, plane->base.name,
3231 sw_wm_level->enable,
3232 sw_wm_level->blocks,
3233 sw_wm_level->lines,
3234 hw_wm_level->enable,
3235 hw_wm_level->blocks,
3236 hw_wm_level->lines);
3237 }
3238
3239 /* DDB */
3240 hw_ddb_entry = &hw->ddb[PLANE_CURSOR];
3241 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb[PLANE_CURSOR];
3242
3243 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
3244 drm_err(&i915->drm,
3245 "[PLANE:%d:%s] mismatch in DDB (expected (%u,%u), found (%u,%u))\n",
3246 plane->base.base.id, plane->base.name,
3247 sw_ddb_entry->start, sw_ddb_entry->end,
3248 hw_ddb_entry->start, hw_ddb_entry->end);
3249 }
3250 }
3251
3252 kfree(hw);
3253 }
3254
skl_watermark_ipc_enabled(struct drm_i915_private * i915)3255 bool skl_watermark_ipc_enabled(struct drm_i915_private *i915)
3256 {
3257 return i915->display.wm.ipc_enabled;
3258 }
3259
skl_watermark_ipc_update(struct drm_i915_private * i915)3260 void skl_watermark_ipc_update(struct drm_i915_private *i915)
3261 {
3262 if (!HAS_IPC(i915))
3263 return;
3264
3265 intel_de_rmw(i915, DISP_ARB_CTL2, DISP_IPC_ENABLE,
3266 skl_watermark_ipc_enabled(i915) ? DISP_IPC_ENABLE : 0);
3267 }
3268
skl_watermark_ipc_can_enable(struct drm_i915_private * i915)3269 static bool skl_watermark_ipc_can_enable(struct drm_i915_private *i915)
3270 {
3271 /* Display WA #0477 WaDisableIPC: skl */
3272 if (IS_SKYLAKE(i915))
3273 return false;
3274
3275 /* Display WA #1141: SKL:all KBL:all CFL */
3276 if (IS_KABYLAKE(i915) ||
3277 IS_COFFEELAKE(i915) ||
3278 IS_COMETLAKE(i915))
3279 return i915->dram_info.symmetric_memory;
3280
3281 return true;
3282 }
3283
skl_watermark_ipc_init(struct drm_i915_private * i915)3284 void skl_watermark_ipc_init(struct drm_i915_private *i915)
3285 {
3286 if (!HAS_IPC(i915))
3287 return;
3288
3289 i915->display.wm.ipc_enabled = skl_watermark_ipc_can_enable(i915);
3290
3291 skl_watermark_ipc_update(i915);
3292 }
3293
3294 static void
adjust_wm_latency(struct drm_i915_private * i915,u16 wm[],int num_levels,int read_latency)3295 adjust_wm_latency(struct drm_i915_private *i915,
3296 u16 wm[], int num_levels, int read_latency)
3297 {
3298 bool wm_lv_0_adjust_needed = i915->dram_info.wm_lv_0_adjust_needed;
3299 int i, level;
3300
3301 /*
3302 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
3303 * need to be disabled. We make sure to sanitize the values out
3304 * of the punit to satisfy this requirement.
3305 */
3306 for (level = 1; level < num_levels; level++) {
3307 if (wm[level] == 0) {
3308 for (i = level + 1; i < num_levels; i++)
3309 wm[i] = 0;
3310
3311 num_levels = level;
3312 break;
3313 }
3314 }
3315
3316 /*
3317 * WaWmMemoryReadLatency
3318 *
3319 * punit doesn't take into account the read latency so we need
3320 * to add proper adjustement to each valid level we retrieve
3321 * from the punit when level 0 response data is 0us.
3322 */
3323 if (wm[0] == 0) {
3324 for (level = 0; level < num_levels; level++)
3325 wm[level] += read_latency;
3326 }
3327
3328 /*
3329 * WA Level-0 adjustment for 16GB DIMMs: SKL+
3330 * If we could not get dimm info enable this WA to prevent from
3331 * any underrun. If not able to get Dimm info assume 16GB dimm
3332 * to avoid any underrun.
3333 */
3334 if (wm_lv_0_adjust_needed)
3335 wm[0] += 1;
3336 }
3337
mtl_read_wm_latency(struct drm_i915_private * i915,u16 wm[])3338 static void mtl_read_wm_latency(struct drm_i915_private *i915, u16 wm[])
3339 {
3340 int num_levels = i915->display.wm.num_levels;
3341 u32 val;
3342
3343 val = intel_de_read(i915, MTL_LATENCY_LP0_LP1);
3344 wm[0] = REG_FIELD_GET(MTL_LATENCY_LEVEL_EVEN_MASK, val);
3345 wm[1] = REG_FIELD_GET(MTL_LATENCY_LEVEL_ODD_MASK, val);
3346
3347 val = intel_de_read(i915, MTL_LATENCY_LP2_LP3);
3348 wm[2] = REG_FIELD_GET(MTL_LATENCY_LEVEL_EVEN_MASK, val);
3349 wm[3] = REG_FIELD_GET(MTL_LATENCY_LEVEL_ODD_MASK, val);
3350
3351 val = intel_de_read(i915, MTL_LATENCY_LP4_LP5);
3352 wm[4] = REG_FIELD_GET(MTL_LATENCY_LEVEL_EVEN_MASK, val);
3353 wm[5] = REG_FIELD_GET(MTL_LATENCY_LEVEL_ODD_MASK, val);
3354
3355 adjust_wm_latency(i915, wm, num_levels, 6);
3356 }
3357
skl_read_wm_latency(struct drm_i915_private * i915,u16 wm[])3358 static void skl_read_wm_latency(struct drm_i915_private *i915, u16 wm[])
3359 {
3360 int num_levels = i915->display.wm.num_levels;
3361 int read_latency = DISPLAY_VER(i915) >= 12 ? 3 : 2;
3362 int mult = IS_DG2(i915) ? 2 : 1;
3363 u32 val;
3364 int ret;
3365
3366 /* read the first set of memory latencies[0:3] */
3367 val = 0; /* data0 to be programmed to 0 for first set */
3368 ret = snb_pcode_read(&i915->uncore, GEN9_PCODE_READ_MEM_LATENCY, &val, NULL);
3369 if (ret) {
3370 drm_err(&i915->drm, "SKL Mailbox read error = %d\n", ret);
3371 return;
3372 }
3373
3374 wm[0] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_0_4_MASK, val) * mult;
3375 wm[1] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_1_5_MASK, val) * mult;
3376 wm[2] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_2_6_MASK, val) * mult;
3377 wm[3] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_3_7_MASK, val) * mult;
3378
3379 /* read the second set of memory latencies[4:7] */
3380 val = 1; /* data0 to be programmed to 1 for second set */
3381 ret = snb_pcode_read(&i915->uncore, GEN9_PCODE_READ_MEM_LATENCY, &val, NULL);
3382 if (ret) {
3383 drm_err(&i915->drm, "SKL Mailbox read error = %d\n", ret);
3384 return;
3385 }
3386
3387 wm[4] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_0_4_MASK, val) * mult;
3388 wm[5] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_1_5_MASK, val) * mult;
3389 wm[6] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_2_6_MASK, val) * mult;
3390 wm[7] = REG_FIELD_GET(GEN9_MEM_LATENCY_LEVEL_3_7_MASK, val) * mult;
3391
3392 adjust_wm_latency(i915, wm, num_levels, read_latency);
3393 }
3394
skl_setup_wm_latency(struct drm_i915_private * i915)3395 static void skl_setup_wm_latency(struct drm_i915_private *i915)
3396 {
3397 if (HAS_HW_SAGV_WM(i915))
3398 i915->display.wm.num_levels = 6;
3399 else
3400 i915->display.wm.num_levels = 8;
3401
3402 if (DISPLAY_VER(i915) >= 14)
3403 mtl_read_wm_latency(i915, i915->display.wm.skl_latency);
3404 else
3405 skl_read_wm_latency(i915, i915->display.wm.skl_latency);
3406
3407 intel_print_wm_latency(i915, "Gen9 Plane", i915->display.wm.skl_latency);
3408 }
3409
3410 static const struct intel_wm_funcs skl_wm_funcs = {
3411 .compute_global_watermarks = skl_compute_wm,
3412 .get_hw_state = skl_wm_get_hw_state_and_sanitize,
3413 };
3414
skl_wm_init(struct drm_i915_private * i915)3415 void skl_wm_init(struct drm_i915_private *i915)
3416 {
3417 intel_sagv_init(i915);
3418
3419 skl_setup_wm_latency(i915);
3420
3421 i915->display.funcs.wm = &skl_wm_funcs;
3422 }
3423
intel_dbuf_duplicate_state(struct intel_global_obj * obj)3424 static struct intel_global_state *intel_dbuf_duplicate_state(struct intel_global_obj *obj)
3425 {
3426 struct intel_dbuf_state *dbuf_state;
3427
3428 dbuf_state = kmemdup(obj->state, sizeof(*dbuf_state), GFP_KERNEL);
3429 if (!dbuf_state)
3430 return NULL;
3431
3432 return &dbuf_state->base;
3433 }
3434
intel_dbuf_destroy_state(struct intel_global_obj * obj,struct intel_global_state * state)3435 static void intel_dbuf_destroy_state(struct intel_global_obj *obj,
3436 struct intel_global_state *state)
3437 {
3438 kfree(state);
3439 }
3440
3441 static const struct intel_global_state_funcs intel_dbuf_funcs = {
3442 .atomic_duplicate_state = intel_dbuf_duplicate_state,
3443 .atomic_destroy_state = intel_dbuf_destroy_state,
3444 };
3445
3446 struct intel_dbuf_state *
intel_atomic_get_dbuf_state(struct intel_atomic_state * state)3447 intel_atomic_get_dbuf_state(struct intel_atomic_state *state)
3448 {
3449 struct drm_i915_private *i915 = to_i915(state->base.dev);
3450 struct intel_global_state *dbuf_state;
3451
3452 dbuf_state = intel_atomic_get_global_obj_state(state, &i915->display.dbuf.obj);
3453 if (IS_ERR(dbuf_state))
3454 return ERR_CAST(dbuf_state);
3455
3456 return to_intel_dbuf_state(dbuf_state);
3457 }
3458
intel_dbuf_init(struct drm_i915_private * i915)3459 int intel_dbuf_init(struct drm_i915_private *i915)
3460 {
3461 struct intel_dbuf_state *dbuf_state;
3462
3463 dbuf_state = kzalloc(sizeof(*dbuf_state), GFP_KERNEL);
3464 if (!dbuf_state)
3465 return -ENOMEM;
3466
3467 intel_atomic_global_obj_init(i915, &i915->display.dbuf.obj,
3468 &dbuf_state->base, &intel_dbuf_funcs);
3469
3470 return 0;
3471 }
3472
3473 /*
3474 * Configure MBUS_CTL and all DBUF_CTL_S of each slice to join_mbus state before
3475 * update the request state of all DBUS slices.
3476 */
update_mbus_pre_enable(struct intel_atomic_state * state)3477 static void update_mbus_pre_enable(struct intel_atomic_state *state)
3478 {
3479 struct drm_i915_private *i915 = to_i915(state->base.dev);
3480 u32 mbus_ctl, dbuf_min_tracker_val;
3481 enum dbuf_slice slice;
3482 const struct intel_dbuf_state *dbuf_state =
3483 intel_atomic_get_new_dbuf_state(state);
3484
3485 if (!HAS_MBUS_JOINING(i915))
3486 return;
3487
3488 /*
3489 * TODO: Implement vblank synchronized MBUS joining changes.
3490 * Must be properly coordinated with dbuf reprogramming.
3491 */
3492 if (dbuf_state->joined_mbus) {
3493 mbus_ctl = MBUS_HASHING_MODE_1x4 | MBUS_JOIN |
3494 MBUS_JOIN_PIPE_SELECT_NONE;
3495 dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(3);
3496 } else {
3497 mbus_ctl = MBUS_HASHING_MODE_2x2 |
3498 MBUS_JOIN_PIPE_SELECT_NONE;
3499 dbuf_min_tracker_val = DBUF_MIN_TRACKER_STATE_SERVICE(1);
3500 }
3501
3502 intel_de_rmw(i915, MBUS_CTL,
3503 MBUS_HASHING_MODE_MASK | MBUS_JOIN |
3504 MBUS_JOIN_PIPE_SELECT_MASK, mbus_ctl);
3505
3506 for_each_dbuf_slice(i915, slice)
3507 intel_de_rmw(i915, DBUF_CTL_S(slice),
3508 DBUF_MIN_TRACKER_STATE_SERVICE_MASK,
3509 dbuf_min_tracker_val);
3510 }
3511
intel_dbuf_pre_plane_update(struct intel_atomic_state * state)3512 void intel_dbuf_pre_plane_update(struct intel_atomic_state *state)
3513 {
3514 struct drm_i915_private *i915 = to_i915(state->base.dev);
3515 const struct intel_dbuf_state *new_dbuf_state =
3516 intel_atomic_get_new_dbuf_state(state);
3517 const struct intel_dbuf_state *old_dbuf_state =
3518 intel_atomic_get_old_dbuf_state(state);
3519
3520 if (!new_dbuf_state ||
3521 (new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices &&
3522 new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus))
3523 return;
3524
3525 WARN_ON(!new_dbuf_state->base.changed);
3526
3527 update_mbus_pre_enable(state);
3528 gen9_dbuf_slices_update(i915,
3529 old_dbuf_state->enabled_slices |
3530 new_dbuf_state->enabled_slices);
3531 }
3532
intel_dbuf_post_plane_update(struct intel_atomic_state * state)3533 void intel_dbuf_post_plane_update(struct intel_atomic_state *state)
3534 {
3535 struct drm_i915_private *i915 = to_i915(state->base.dev);
3536 const struct intel_dbuf_state *new_dbuf_state =
3537 intel_atomic_get_new_dbuf_state(state);
3538 const struct intel_dbuf_state *old_dbuf_state =
3539 intel_atomic_get_old_dbuf_state(state);
3540
3541 if (!new_dbuf_state ||
3542 (new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices &&
3543 new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus))
3544 return;
3545
3546 WARN_ON(!new_dbuf_state->base.changed);
3547
3548 gen9_dbuf_slices_update(i915,
3549 new_dbuf_state->enabled_slices);
3550 }
3551
xelpdp_is_only_pipe_per_dbuf_bank(enum pipe pipe,u8 active_pipes)3552 static bool xelpdp_is_only_pipe_per_dbuf_bank(enum pipe pipe, u8 active_pipes)
3553 {
3554 switch (pipe) {
3555 case PIPE_A:
3556 return !(active_pipes & BIT(PIPE_D));
3557 case PIPE_D:
3558 return !(active_pipes & BIT(PIPE_A));
3559 case PIPE_B:
3560 return !(active_pipes & BIT(PIPE_C));
3561 case PIPE_C:
3562 return !(active_pipes & BIT(PIPE_B));
3563 default: /* to suppress compiler warning */
3564 MISSING_CASE(pipe);
3565 break;
3566 }
3567
3568 return false;
3569 }
3570
intel_mbus_dbox_update(struct intel_atomic_state * state)3571 void intel_mbus_dbox_update(struct intel_atomic_state *state)
3572 {
3573 struct drm_i915_private *i915 = to_i915(state->base.dev);
3574 const struct intel_dbuf_state *new_dbuf_state, *old_dbuf_state;
3575 const struct intel_crtc_state *new_crtc_state;
3576 const struct intel_crtc *crtc;
3577 u32 val = 0;
3578 int i;
3579
3580 if (DISPLAY_VER(i915) < 11)
3581 return;
3582
3583 new_dbuf_state = intel_atomic_get_new_dbuf_state(state);
3584 old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
3585 if (!new_dbuf_state ||
3586 (new_dbuf_state->joined_mbus == old_dbuf_state->joined_mbus &&
3587 new_dbuf_state->active_pipes == old_dbuf_state->active_pipes))
3588 return;
3589
3590 if (DISPLAY_VER(i915) >= 14)
3591 val |= MBUS_DBOX_I_CREDIT(2);
3592
3593 if (DISPLAY_VER(i915) >= 12) {
3594 val |= MBUS_DBOX_B2B_TRANSACTIONS_MAX(16);
3595 val |= MBUS_DBOX_B2B_TRANSACTIONS_DELAY(1);
3596 val |= MBUS_DBOX_REGULATE_B2B_TRANSACTIONS_EN;
3597 }
3598
3599 if (DISPLAY_VER(i915) >= 14)
3600 val |= new_dbuf_state->joined_mbus ? MBUS_DBOX_A_CREDIT(12) :
3601 MBUS_DBOX_A_CREDIT(8);
3602 else if (IS_ALDERLAKE_P(i915))
3603 /* Wa_22010947358:adl-p */
3604 val |= new_dbuf_state->joined_mbus ? MBUS_DBOX_A_CREDIT(6) :
3605 MBUS_DBOX_A_CREDIT(4);
3606 else
3607 val |= MBUS_DBOX_A_CREDIT(2);
3608
3609 if (DISPLAY_VER(i915) >= 14) {
3610 val |= MBUS_DBOX_B_CREDIT(0xA);
3611 } else if (IS_ALDERLAKE_P(i915)) {
3612 val |= MBUS_DBOX_BW_CREDIT(2);
3613 val |= MBUS_DBOX_B_CREDIT(8);
3614 } else if (DISPLAY_VER(i915) >= 12) {
3615 val |= MBUS_DBOX_BW_CREDIT(2);
3616 val |= MBUS_DBOX_B_CREDIT(12);
3617 } else {
3618 val |= MBUS_DBOX_BW_CREDIT(1);
3619 val |= MBUS_DBOX_B_CREDIT(8);
3620 }
3621
3622 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
3623 u32 pipe_val = val;
3624
3625 if (!new_crtc_state->hw.active)
3626 continue;
3627
3628 if (DISPLAY_VER(i915) >= 14) {
3629 if (xelpdp_is_only_pipe_per_dbuf_bank(crtc->pipe,
3630 new_dbuf_state->active_pipes))
3631 pipe_val |= MBUS_DBOX_BW_8CREDITS_MTL;
3632 else
3633 pipe_val |= MBUS_DBOX_BW_4CREDITS_MTL;
3634 }
3635
3636 intel_de_write(i915, PIPE_MBUS_DBOX_CTL(crtc->pipe), pipe_val);
3637 }
3638 }
3639
skl_watermark_ipc_status_show(struct seq_file * m,void * data)3640 static int skl_watermark_ipc_status_show(struct seq_file *m, void *data)
3641 {
3642 struct drm_i915_private *i915 = m->private;
3643
3644 seq_printf(m, "Isochronous Priority Control: %s\n",
3645 str_yes_no(skl_watermark_ipc_enabled(i915)));
3646 return 0;
3647 }
3648
skl_watermark_ipc_status_open(struct inode * inode,struct file * file)3649 static int skl_watermark_ipc_status_open(struct inode *inode, struct file *file)
3650 {
3651 struct drm_i915_private *i915 = inode->i_private;
3652
3653 return single_open(file, skl_watermark_ipc_status_show, i915);
3654 }
3655
skl_watermark_ipc_status_write(struct file * file,const char __user * ubuf,size_t len,loff_t * offp)3656 static ssize_t skl_watermark_ipc_status_write(struct file *file,
3657 const char __user *ubuf,
3658 size_t len, loff_t *offp)
3659 {
3660 struct seq_file *m = file->private_data;
3661 struct drm_i915_private *i915 = m->private;
3662 intel_wakeref_t wakeref;
3663 bool enable;
3664 int ret;
3665
3666 ret = kstrtobool_from_user(ubuf, len, &enable);
3667 if (ret < 0)
3668 return ret;
3669
3670 with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
3671 if (!skl_watermark_ipc_enabled(i915) && enable)
3672 drm_info(&i915->drm,
3673 "Enabling IPC: WM will be proper only after next commit\n");
3674 i915->display.wm.ipc_enabled = enable;
3675 skl_watermark_ipc_update(i915);
3676 }
3677
3678 return len;
3679 }
3680
3681 static const struct file_operations skl_watermark_ipc_status_fops = {
3682 .owner = THIS_MODULE,
3683 .open = skl_watermark_ipc_status_open,
3684 .read = seq_read,
3685 .llseek = seq_lseek,
3686 .release = single_release,
3687 .write = skl_watermark_ipc_status_write
3688 };
3689
intel_sagv_status_show(struct seq_file * m,void * unused)3690 static int intel_sagv_status_show(struct seq_file *m, void *unused)
3691 {
3692 struct drm_i915_private *i915 = m->private;
3693 static const char * const sagv_status[] = {
3694 [I915_SAGV_UNKNOWN] = "unknown",
3695 [I915_SAGV_DISABLED] = "disabled",
3696 [I915_SAGV_ENABLED] = "enabled",
3697 [I915_SAGV_NOT_CONTROLLED] = "not controlled",
3698 };
3699
3700 seq_printf(m, "SAGV available: %s\n", str_yes_no(intel_has_sagv(i915)));
3701 seq_printf(m, "SAGV modparam: %s\n", str_enabled_disabled(i915->params.enable_sagv));
3702 seq_printf(m, "SAGV status: %s\n", sagv_status[i915->display.sagv.status]);
3703 seq_printf(m, "SAGV block time: %d usec\n", i915->display.sagv.block_time_us);
3704
3705 return 0;
3706 }
3707
3708 DEFINE_SHOW_ATTRIBUTE(intel_sagv_status);
3709
skl_watermark_debugfs_register(struct drm_i915_private * i915)3710 void skl_watermark_debugfs_register(struct drm_i915_private *i915)
3711 {
3712 struct drm_minor *minor = i915->drm.primary;
3713
3714 if (HAS_IPC(i915))
3715 debugfs_create_file("i915_ipc_status", 0644, minor->debugfs_root, i915,
3716 &skl_watermark_ipc_status_fops);
3717
3718 if (HAS_SAGV(i915))
3719 debugfs_create_file("i915_sagv_status", 0444, minor->debugfs_root, i915,
3720 &intel_sagv_status_fops);
3721 }
3722