xref: /openbmc/linux/drivers/net/ethernet/marvell/octeontx2/nic/otx2_txrx.c (revision d6b6592ac6d11eab91e6758d224eac35f4122aca)
1  // SPDX-License-Identifier: GPL-2.0
2  /* Marvell RVU Ethernet driver
3   *
4   * Copyright (C) 2020 Marvell.
5   *
6   */
7  
8  #include <linux/etherdevice.h>
9  #include <net/ip.h>
10  #include <net/tso.h>
11  #include <linux/bpf.h>
12  #include <linux/bpf_trace.h>
13  #include <net/ip6_checksum.h>
14  
15  #include "otx2_reg.h"
16  #include "otx2_common.h"
17  #include "otx2_struct.h"
18  #include "otx2_txrx.h"
19  #include "otx2_ptp.h"
20  #include "cn10k.h"
21  
22  #define CQE_ADDR(CQ, idx) ((CQ)->cqe_base + ((CQ)->cqe_size * (idx)))
23  #define PTP_PORT	        0x13F
24  /* PTPv2 header Original Timestamp starts at byte offset 34 and
25   * contains 6 byte seconds field and 4 byte nano seconds field.
26   */
27  #define PTP_SYNC_SEC_OFFSET	34
28  
29  static bool otx2_xdp_rcv_pkt_handler(struct otx2_nic *pfvf,
30  				     struct bpf_prog *prog,
31  				     struct nix_cqe_rx_s *cqe,
32  				     struct otx2_cq_queue *cq,
33  				     bool *need_xdp_flush);
34  
otx2_nix_cq_op_status(struct otx2_nic * pfvf,struct otx2_cq_queue * cq)35  static int otx2_nix_cq_op_status(struct otx2_nic *pfvf,
36  				 struct otx2_cq_queue *cq)
37  {
38  	u64 incr = (u64)(cq->cq_idx) << 32;
39  	u64 status;
40  
41  	status = otx2_atomic64_fetch_add(incr, pfvf->cq_op_addr);
42  
43  	if (unlikely(status & BIT_ULL(CQ_OP_STAT_OP_ERR) ||
44  		     status & BIT_ULL(CQ_OP_STAT_CQ_ERR))) {
45  		dev_err(pfvf->dev, "CQ stopped due to error");
46  		return -EINVAL;
47  	}
48  
49  	cq->cq_tail = status & 0xFFFFF;
50  	cq->cq_head = (status >> 20) & 0xFFFFF;
51  	if (cq->cq_tail < cq->cq_head)
52  		cq->pend_cqe = (cq->cqe_cnt - cq->cq_head) +
53  				cq->cq_tail;
54  	else
55  		cq->pend_cqe = cq->cq_tail - cq->cq_head;
56  
57  	return 0;
58  }
59  
otx2_get_next_cqe(struct otx2_cq_queue * cq)60  static struct nix_cqe_hdr_s *otx2_get_next_cqe(struct otx2_cq_queue *cq)
61  {
62  	struct nix_cqe_hdr_s *cqe_hdr;
63  
64  	cqe_hdr = (struct nix_cqe_hdr_s *)CQE_ADDR(cq, cq->cq_head);
65  	if (cqe_hdr->cqe_type == NIX_XQE_TYPE_INVALID)
66  		return NULL;
67  
68  	cq->cq_head++;
69  	cq->cq_head &= (cq->cqe_cnt - 1);
70  
71  	return cqe_hdr;
72  }
73  
frag_num(unsigned int i)74  static unsigned int frag_num(unsigned int i)
75  {
76  #ifdef __BIG_ENDIAN
77  	return (i & ~3) + 3 - (i & 3);
78  #else
79  	return i;
80  #endif
81  }
82  
otx2_dma_map_skb_frag(struct otx2_nic * pfvf,struct sk_buff * skb,int seg,int * len)83  static dma_addr_t otx2_dma_map_skb_frag(struct otx2_nic *pfvf,
84  					struct sk_buff *skb, int seg, int *len)
85  {
86  	const skb_frag_t *frag;
87  	struct page *page;
88  	int offset;
89  
90  	/* First segment is always skb->data */
91  	if (!seg) {
92  		page = virt_to_page(skb->data);
93  		offset = offset_in_page(skb->data);
94  		*len = skb_headlen(skb);
95  	} else {
96  		frag = &skb_shinfo(skb)->frags[seg - 1];
97  		page = skb_frag_page(frag);
98  		offset = skb_frag_off(frag);
99  		*len = skb_frag_size(frag);
100  	}
101  	return otx2_dma_map_page(pfvf, page, offset, *len, DMA_TO_DEVICE);
102  }
103  
otx2_dma_unmap_skb_frags(struct otx2_nic * pfvf,struct sg_list * sg)104  static void otx2_dma_unmap_skb_frags(struct otx2_nic *pfvf, struct sg_list *sg)
105  {
106  	int seg;
107  
108  	for (seg = 0; seg < sg->num_segs; seg++) {
109  		otx2_dma_unmap_page(pfvf, sg->dma_addr[seg],
110  				    sg->size[seg], DMA_TO_DEVICE);
111  	}
112  	sg->num_segs = 0;
113  }
114  
otx2_xdp_snd_pkt_handler(struct otx2_nic * pfvf,struct otx2_snd_queue * sq,struct nix_cqe_tx_s * cqe)115  static void otx2_xdp_snd_pkt_handler(struct otx2_nic *pfvf,
116  				     struct otx2_snd_queue *sq,
117  				 struct nix_cqe_tx_s *cqe)
118  {
119  	struct nix_send_comp_s *snd_comp = &cqe->comp;
120  	struct sg_list *sg;
121  	struct page *page;
122  	u64 pa;
123  
124  	sg = &sq->sg[snd_comp->sqe_id];
125  
126  	pa = otx2_iova_to_phys(pfvf->iommu_domain, sg->dma_addr[0]);
127  	otx2_dma_unmap_page(pfvf, sg->dma_addr[0],
128  			    sg->size[0], DMA_TO_DEVICE);
129  	page = virt_to_page(phys_to_virt(pa));
130  	put_page(page);
131  }
132  
otx2_snd_pkt_handler(struct otx2_nic * pfvf,struct otx2_cq_queue * cq,struct otx2_snd_queue * sq,struct nix_cqe_tx_s * cqe,int budget,int * tx_pkts,int * tx_bytes)133  static void otx2_snd_pkt_handler(struct otx2_nic *pfvf,
134  				 struct otx2_cq_queue *cq,
135  				 struct otx2_snd_queue *sq,
136  				 struct nix_cqe_tx_s *cqe,
137  				 int budget, int *tx_pkts, int *tx_bytes)
138  {
139  	struct nix_send_comp_s *snd_comp = &cqe->comp;
140  	struct skb_shared_hwtstamps ts;
141  	struct sk_buff *skb = NULL;
142  	u64 timestamp, tsns;
143  	struct sg_list *sg;
144  	int err;
145  
146  	if (unlikely(snd_comp->status) && netif_msg_tx_err(pfvf))
147  		net_err_ratelimited("%s: TX%d: Error in send CQ status:%x\n",
148  				    pfvf->netdev->name, cq->cint_idx,
149  				    snd_comp->status);
150  
151  	sg = &sq->sg[snd_comp->sqe_id];
152  	skb = (struct sk_buff *)sg->skb;
153  	if (unlikely(!skb))
154  		return;
155  
156  	if (skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) {
157  		timestamp = ((u64 *)sq->timestamps->base)[snd_comp->sqe_id];
158  		if (timestamp != 1) {
159  			timestamp = pfvf->ptp->convert_tx_ptp_tstmp(timestamp);
160  			err = otx2_ptp_tstamp2time(pfvf, timestamp, &tsns);
161  			if (!err) {
162  				memset(&ts, 0, sizeof(ts));
163  				ts.hwtstamp = ns_to_ktime(tsns);
164  				skb_tstamp_tx(skb, &ts);
165  			}
166  		}
167  	}
168  
169  	*tx_bytes += skb->len;
170  	(*tx_pkts)++;
171  	otx2_dma_unmap_skb_frags(pfvf, sg);
172  	napi_consume_skb(skb, budget);
173  	sg->skb = (u64)NULL;
174  }
175  
otx2_set_rxtstamp(struct otx2_nic * pfvf,struct sk_buff * skb,void * data)176  static void otx2_set_rxtstamp(struct otx2_nic *pfvf,
177  			      struct sk_buff *skb, void *data)
178  {
179  	u64 timestamp, tsns;
180  	int err;
181  
182  	if (!(pfvf->flags & OTX2_FLAG_RX_TSTAMP_ENABLED))
183  		return;
184  
185  	timestamp = pfvf->ptp->convert_rx_ptp_tstmp(*(u64 *)data);
186  	/* The first 8 bytes is the timestamp */
187  	err = otx2_ptp_tstamp2time(pfvf, timestamp, &tsns);
188  	if (err)
189  		return;
190  
191  	skb_hwtstamps(skb)->hwtstamp = ns_to_ktime(tsns);
192  }
193  
otx2_skb_add_frag(struct otx2_nic * pfvf,struct sk_buff * skb,u64 iova,int len,struct nix_rx_parse_s * parse,int qidx)194  static bool otx2_skb_add_frag(struct otx2_nic *pfvf, struct sk_buff *skb,
195  			      u64 iova, int len, struct nix_rx_parse_s *parse,
196  			      int qidx)
197  {
198  	struct page *page;
199  	int off = 0;
200  	void *va;
201  
202  	va = phys_to_virt(otx2_iova_to_phys(pfvf->iommu_domain, iova));
203  
204  	if (likely(!skb_shinfo(skb)->nr_frags)) {
205  		/* Check if data starts at some nonzero offset
206  		 * from the start of the buffer.  For now the
207  		 * only possible offset is 8 bytes in the case
208  		 * where packet is prepended by a timestamp.
209  		 */
210  		if (parse->laptr) {
211  			otx2_set_rxtstamp(pfvf, skb, va);
212  			off = OTX2_HW_TIMESTAMP_LEN;
213  		}
214  	}
215  
216  	page = virt_to_page(va);
217  	if (likely(skb_shinfo(skb)->nr_frags < MAX_SKB_FRAGS)) {
218  		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
219  				va - page_address(page) + off,
220  				len - off, pfvf->rbsize);
221  		return true;
222  	}
223  
224  	/* If more than MAX_SKB_FRAGS fragments are received then
225  	 * give back those buffer pointers to hardware for reuse.
226  	 */
227  	pfvf->hw_ops->aura_freeptr(pfvf, qidx, iova & ~0x07ULL);
228  
229  	return false;
230  }
231  
otx2_set_rxhash(struct otx2_nic * pfvf,struct nix_cqe_rx_s * cqe,struct sk_buff * skb)232  static void otx2_set_rxhash(struct otx2_nic *pfvf,
233  			    struct nix_cqe_rx_s *cqe, struct sk_buff *skb)
234  {
235  	enum pkt_hash_types hash_type = PKT_HASH_TYPE_NONE;
236  	struct otx2_rss_info *rss;
237  	u32 hash = 0;
238  
239  	if (!(pfvf->netdev->features & NETIF_F_RXHASH))
240  		return;
241  
242  	rss = &pfvf->hw.rss_info;
243  	if (rss->flowkey_cfg) {
244  		if (rss->flowkey_cfg &
245  		    ~(NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6))
246  			hash_type = PKT_HASH_TYPE_L4;
247  		else
248  			hash_type = PKT_HASH_TYPE_L3;
249  		hash = cqe->hdr.flow_tag;
250  	}
251  	skb_set_hash(skb, hash, hash_type);
252  }
253  
otx2_free_rcv_seg(struct otx2_nic * pfvf,struct nix_cqe_rx_s * cqe,int qidx)254  static void otx2_free_rcv_seg(struct otx2_nic *pfvf, struct nix_cqe_rx_s *cqe,
255  			      int qidx)
256  {
257  	struct nix_rx_sg_s *sg = &cqe->sg;
258  	void *end, *start;
259  	u64 *seg_addr;
260  	int seg;
261  
262  	start = (void *)sg;
263  	end = start + ((cqe->parse.desc_sizem1 + 1) * 16);
264  	while (start < end) {
265  		sg = (struct nix_rx_sg_s *)start;
266  		seg_addr = &sg->seg_addr;
267  		for (seg = 0; seg < sg->segs; seg++, seg_addr++)
268  			pfvf->hw_ops->aura_freeptr(pfvf, qidx,
269  						   *seg_addr & ~0x07ULL);
270  		start += sizeof(*sg);
271  	}
272  }
273  
otx2_check_rcv_errors(struct otx2_nic * pfvf,struct nix_cqe_rx_s * cqe,int qidx)274  static bool otx2_check_rcv_errors(struct otx2_nic *pfvf,
275  				  struct nix_cqe_rx_s *cqe, int qidx)
276  {
277  	struct otx2_drv_stats *stats = &pfvf->hw.drv_stats;
278  	struct nix_rx_parse_s *parse = &cqe->parse;
279  
280  	if (netif_msg_rx_err(pfvf))
281  		netdev_err(pfvf->netdev,
282  			   "RQ%d: Error pkt with errlev:0x%x errcode:0x%x\n",
283  			   qidx, parse->errlev, parse->errcode);
284  
285  	if (parse->errlev == NPC_ERRLVL_RE) {
286  		switch (parse->errcode) {
287  		case ERRCODE_FCS:
288  		case ERRCODE_FCS_RCV:
289  			atomic_inc(&stats->rx_fcs_errs);
290  			break;
291  		case ERRCODE_UNDERSIZE:
292  			atomic_inc(&stats->rx_undersize_errs);
293  			break;
294  		case ERRCODE_OVERSIZE:
295  			atomic_inc(&stats->rx_oversize_errs);
296  			break;
297  		case ERRCODE_OL2_LEN_MISMATCH:
298  			atomic_inc(&stats->rx_len_errs);
299  			break;
300  		default:
301  			atomic_inc(&stats->rx_other_errs);
302  			break;
303  		}
304  	} else if (parse->errlev == NPC_ERRLVL_NIX) {
305  		switch (parse->errcode) {
306  		case ERRCODE_OL3_LEN:
307  		case ERRCODE_OL4_LEN:
308  		case ERRCODE_IL3_LEN:
309  		case ERRCODE_IL4_LEN:
310  			atomic_inc(&stats->rx_len_errs);
311  			break;
312  		case ERRCODE_OL4_CSUM:
313  		case ERRCODE_IL4_CSUM:
314  			atomic_inc(&stats->rx_csum_errs);
315  			break;
316  		default:
317  			atomic_inc(&stats->rx_other_errs);
318  			break;
319  		}
320  	} else {
321  		atomic_inc(&stats->rx_other_errs);
322  		/* For now ignore all the NPC parser errors and
323  		 * pass the packets to stack.
324  		 */
325  		return false;
326  	}
327  
328  	/* If RXALL is enabled pass on packets to stack. */
329  	if (pfvf->netdev->features & NETIF_F_RXALL)
330  		return false;
331  
332  	/* Free buffer back to pool */
333  	if (cqe->sg.segs)
334  		otx2_free_rcv_seg(pfvf, cqe, qidx);
335  	return true;
336  }
337  
otx2_rcv_pkt_handler(struct otx2_nic * pfvf,struct napi_struct * napi,struct otx2_cq_queue * cq,struct nix_cqe_rx_s * cqe,bool * need_xdp_flush)338  static void otx2_rcv_pkt_handler(struct otx2_nic *pfvf,
339  				 struct napi_struct *napi,
340  				 struct otx2_cq_queue *cq,
341  				 struct nix_cqe_rx_s *cqe, bool *need_xdp_flush)
342  {
343  	struct nix_rx_parse_s *parse = &cqe->parse;
344  	struct nix_rx_sg_s *sg = &cqe->sg;
345  	struct sk_buff *skb = NULL;
346  	void *end, *start;
347  	u64 *seg_addr;
348  	u16 *seg_size;
349  	int seg;
350  
351  	if (unlikely(parse->errlev || parse->errcode)) {
352  		if (otx2_check_rcv_errors(pfvf, cqe, cq->cq_idx))
353  			return;
354  	}
355  
356  	if (pfvf->xdp_prog)
357  		if (otx2_xdp_rcv_pkt_handler(pfvf, pfvf->xdp_prog, cqe, cq, need_xdp_flush))
358  			return;
359  
360  	skb = napi_get_frags(napi);
361  	if (unlikely(!skb))
362  		return;
363  
364  	start = (void *)sg;
365  	end = start + ((cqe->parse.desc_sizem1 + 1) * 16);
366  	while (start < end) {
367  		sg = (struct nix_rx_sg_s *)start;
368  		seg_addr = &sg->seg_addr;
369  		seg_size = (void *)sg;
370  		for (seg = 0; seg < sg->segs; seg++, seg_addr++) {
371  			if (otx2_skb_add_frag(pfvf, skb, *seg_addr,
372  					      seg_size[seg], parse, cq->cq_idx))
373  				cq->pool_ptrs++;
374  		}
375  		start += sizeof(*sg);
376  	}
377  	otx2_set_rxhash(pfvf, cqe, skb);
378  
379  	skb_record_rx_queue(skb, cq->cq_idx);
380  	if (pfvf->netdev->features & NETIF_F_RXCSUM)
381  		skb->ip_summed = CHECKSUM_UNNECESSARY;
382  
383  	skb_mark_for_recycle(skb);
384  
385  	napi_gro_frags(napi);
386  }
387  
otx2_rx_napi_handler(struct otx2_nic * pfvf,struct napi_struct * napi,struct otx2_cq_queue * cq,int budget)388  static int otx2_rx_napi_handler(struct otx2_nic *pfvf,
389  				struct napi_struct *napi,
390  				struct otx2_cq_queue *cq, int budget)
391  {
392  	bool need_xdp_flush = false;
393  	struct nix_cqe_rx_s *cqe;
394  	int processed_cqe = 0;
395  
396  	if (cq->pend_cqe >= budget)
397  		goto process_cqe;
398  
399  	if (otx2_nix_cq_op_status(pfvf, cq) || !cq->pend_cqe)
400  		return 0;
401  
402  process_cqe:
403  	while (likely(processed_cqe < budget) && cq->pend_cqe) {
404  		cqe = (struct nix_cqe_rx_s *)CQE_ADDR(cq, cq->cq_head);
405  		if (cqe->hdr.cqe_type == NIX_XQE_TYPE_INVALID ||
406  		    !cqe->sg.seg_addr) {
407  			if (!processed_cqe)
408  				return 0;
409  			break;
410  		}
411  		cq->cq_head++;
412  		cq->cq_head &= (cq->cqe_cnt - 1);
413  
414  		otx2_rcv_pkt_handler(pfvf, napi, cq, cqe, &need_xdp_flush);
415  
416  		cqe->hdr.cqe_type = NIX_XQE_TYPE_INVALID;
417  		cqe->sg.seg_addr = 0x00;
418  		processed_cqe++;
419  		cq->pend_cqe--;
420  	}
421  	if (need_xdp_flush)
422  		xdp_do_flush();
423  
424  	/* Free CQEs to HW */
425  	otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR,
426  		     ((u64)cq->cq_idx << 32) | processed_cqe);
427  
428  	return processed_cqe;
429  }
430  
otx2_refill_pool_ptrs(void * dev,struct otx2_cq_queue * cq)431  int otx2_refill_pool_ptrs(void *dev, struct otx2_cq_queue *cq)
432  {
433  	struct otx2_nic *pfvf = dev;
434  	int cnt = cq->pool_ptrs;
435  	dma_addr_t bufptr;
436  
437  	while (cq->pool_ptrs) {
438  		if (otx2_alloc_buffer(pfvf, cq, &bufptr))
439  			break;
440  		otx2_aura_freeptr(pfvf, cq->cq_idx, bufptr + OTX2_HEAD_ROOM);
441  		cq->pool_ptrs--;
442  	}
443  
444  	return cnt - cq->pool_ptrs;
445  }
446  
otx2_tx_napi_handler(struct otx2_nic * pfvf,struct otx2_cq_queue * cq,int budget)447  static int otx2_tx_napi_handler(struct otx2_nic *pfvf,
448  				struct otx2_cq_queue *cq, int budget)
449  {
450  	int tx_pkts = 0, tx_bytes = 0, qidx;
451  	struct otx2_snd_queue *sq;
452  	struct nix_cqe_tx_s *cqe;
453  	int processed_cqe = 0;
454  
455  	if (cq->pend_cqe >= budget)
456  		goto process_cqe;
457  
458  	if (otx2_nix_cq_op_status(pfvf, cq) || !cq->pend_cqe)
459  		return 0;
460  
461  process_cqe:
462  	qidx = cq->cq_idx - pfvf->hw.rx_queues;
463  	sq = &pfvf->qset.sq[qidx];
464  
465  	while (likely(processed_cqe < budget) && cq->pend_cqe) {
466  		cqe = (struct nix_cqe_tx_s *)otx2_get_next_cqe(cq);
467  		if (unlikely(!cqe)) {
468  			if (!processed_cqe)
469  				return 0;
470  			break;
471  		}
472  
473  		qidx = cq->cq_idx - pfvf->hw.rx_queues;
474  
475  		if (cq->cq_type == CQ_XDP)
476  			otx2_xdp_snd_pkt_handler(pfvf, sq, cqe);
477  		else
478  			otx2_snd_pkt_handler(pfvf, cq, &pfvf->qset.sq[qidx],
479  					     cqe, budget, &tx_pkts, &tx_bytes);
480  
481  		cqe->hdr.cqe_type = NIX_XQE_TYPE_INVALID;
482  		processed_cqe++;
483  		cq->pend_cqe--;
484  
485  		sq->cons_head++;
486  		sq->cons_head &= (sq->sqe_cnt - 1);
487  	}
488  
489  	/* Free CQEs to HW */
490  	otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR,
491  		     ((u64)cq->cq_idx << 32) | processed_cqe);
492  
493  	if (likely(tx_pkts)) {
494  		struct netdev_queue *txq;
495  
496  		qidx = cq->cq_idx - pfvf->hw.rx_queues;
497  
498  		if (qidx >= pfvf->hw.tx_queues)
499  			qidx -= pfvf->hw.xdp_queues;
500  		txq = netdev_get_tx_queue(pfvf->netdev, qidx);
501  		netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
502  		/* Check if queue was stopped earlier due to ring full */
503  		smp_mb();
504  		if (netif_tx_queue_stopped(txq) &&
505  		    netif_carrier_ok(pfvf->netdev))
506  			netif_tx_wake_queue(txq);
507  	}
508  	return 0;
509  }
510  
otx2_adjust_adaptive_coalese(struct otx2_nic * pfvf,struct otx2_cq_poll * cq_poll)511  static void otx2_adjust_adaptive_coalese(struct otx2_nic *pfvf, struct otx2_cq_poll *cq_poll)
512  {
513  	struct dim_sample dim_sample = { 0 };
514  	u64 rx_frames, rx_bytes;
515  	u64 tx_frames, tx_bytes;
516  
517  	rx_frames = OTX2_GET_RX_STATS(RX_BCAST) + OTX2_GET_RX_STATS(RX_MCAST) +
518  		OTX2_GET_RX_STATS(RX_UCAST);
519  	rx_bytes = OTX2_GET_RX_STATS(RX_OCTS);
520  	tx_bytes = OTX2_GET_TX_STATS(TX_OCTS);
521  	tx_frames = OTX2_GET_TX_STATS(TX_UCAST);
522  
523  	dim_update_sample(pfvf->napi_events,
524  			  rx_frames + tx_frames,
525  			  rx_bytes + tx_bytes,
526  			  &dim_sample);
527  	net_dim(&cq_poll->dim, dim_sample);
528  }
529  
otx2_napi_handler(struct napi_struct * napi,int budget)530  int otx2_napi_handler(struct napi_struct *napi, int budget)
531  {
532  	struct otx2_cq_queue *rx_cq = NULL;
533  	struct otx2_cq_poll *cq_poll;
534  	int workdone = 0, cq_idx, i;
535  	struct otx2_cq_queue *cq;
536  	struct otx2_qset *qset;
537  	struct otx2_nic *pfvf;
538  	int filled_cnt = -1;
539  
540  	cq_poll = container_of(napi, struct otx2_cq_poll, napi);
541  	pfvf = (struct otx2_nic *)cq_poll->dev;
542  	qset = &pfvf->qset;
543  
544  	for (i = 0; i < CQS_PER_CINT; i++) {
545  		cq_idx = cq_poll->cq_ids[i];
546  		if (unlikely(cq_idx == CINT_INVALID_CQ))
547  			continue;
548  		cq = &qset->cq[cq_idx];
549  		if (cq->cq_type == CQ_RX) {
550  			rx_cq = cq;
551  			workdone += otx2_rx_napi_handler(pfvf, napi,
552  							 cq, budget);
553  		} else {
554  			workdone += otx2_tx_napi_handler(pfvf, cq, budget);
555  		}
556  	}
557  
558  	if (rx_cq && rx_cq->pool_ptrs)
559  		filled_cnt = pfvf->hw_ops->refill_pool_ptrs(pfvf, rx_cq);
560  	/* Clear the IRQ */
561  	otx2_write64(pfvf, NIX_LF_CINTX_INT(cq_poll->cint_idx), BIT_ULL(0));
562  
563  	if (workdone < budget && napi_complete_done(napi, workdone)) {
564  		/* If interface is going down, don't re-enable IRQ */
565  		if (pfvf->flags & OTX2_FLAG_INTF_DOWN)
566  			return workdone;
567  
568  		/* Adjust irq coalese using net_dim */
569  		if (pfvf->flags & OTX2_FLAG_ADPTV_INT_COAL_ENABLED)
570  			otx2_adjust_adaptive_coalese(pfvf, cq_poll);
571  
572  		if (unlikely(!filled_cnt)) {
573  			struct refill_work *work;
574  			struct delayed_work *dwork;
575  
576  			work = &pfvf->refill_wrk[cq->cq_idx];
577  			dwork = &work->pool_refill_work;
578  			/* Schedule a task if no other task is running */
579  			if (!cq->refill_task_sched) {
580  				work->napi = napi;
581  				cq->refill_task_sched = true;
582  				schedule_delayed_work(dwork,
583  						      msecs_to_jiffies(100));
584  			}
585  		} else {
586  			/* Re-enable interrupts */
587  			otx2_write64(pfvf,
588  				     NIX_LF_CINTX_ENA_W1S(cq_poll->cint_idx),
589  				     BIT_ULL(0));
590  		}
591  	}
592  	return workdone;
593  }
594  
otx2_sqe_flush(void * dev,struct otx2_snd_queue * sq,int size,int qidx)595  void otx2_sqe_flush(void *dev, struct otx2_snd_queue *sq,
596  		    int size, int qidx)
597  {
598  	u64 status;
599  
600  	/* Packet data stores should finish before SQE is flushed to HW */
601  	dma_wmb();
602  
603  	do {
604  		memcpy(sq->lmt_addr, sq->sqe_base, size);
605  		status = otx2_lmt_flush(sq->io_addr);
606  	} while (status == 0);
607  
608  	sq->head++;
609  	sq->head &= (sq->sqe_cnt - 1);
610  }
611  
612  #define MAX_SEGS_PER_SG	3
613  /* Add SQE scatter/gather subdescriptor structure */
otx2_sqe_add_sg(struct otx2_nic * pfvf,struct otx2_snd_queue * sq,struct sk_buff * skb,int num_segs,int * offset)614  static bool otx2_sqe_add_sg(struct otx2_nic *pfvf, struct otx2_snd_queue *sq,
615  			    struct sk_buff *skb, int num_segs, int *offset)
616  {
617  	struct nix_sqe_sg_s *sg = NULL;
618  	u64 dma_addr, *iova = NULL;
619  	u16 *sg_lens = NULL;
620  	int seg, len;
621  
622  	sq->sg[sq->head].num_segs = 0;
623  
624  	for (seg = 0; seg < num_segs; seg++) {
625  		if ((seg % MAX_SEGS_PER_SG) == 0) {
626  			sg = (struct nix_sqe_sg_s *)(sq->sqe_base + *offset);
627  			sg->ld_type = NIX_SEND_LDTYPE_LDD;
628  			sg->subdc = NIX_SUBDC_SG;
629  			sg->segs = 0;
630  			sg_lens = (void *)sg;
631  			iova = (void *)sg + sizeof(*sg);
632  			/* Next subdc always starts at a 16byte boundary.
633  			 * So if sg->segs is whether 2 or 3, offset += 16bytes.
634  			 */
635  			if ((num_segs - seg) >= (MAX_SEGS_PER_SG - 1))
636  				*offset += sizeof(*sg) + (3 * sizeof(u64));
637  			else
638  				*offset += sizeof(*sg) + sizeof(u64);
639  		}
640  		dma_addr = otx2_dma_map_skb_frag(pfvf, skb, seg, &len);
641  		if (dma_mapping_error(pfvf->dev, dma_addr))
642  			return false;
643  
644  		sg_lens[frag_num(seg % MAX_SEGS_PER_SG)] = len;
645  		sg->segs++;
646  		*iova++ = dma_addr;
647  
648  		/* Save DMA mapping info for later unmapping */
649  		sq->sg[sq->head].dma_addr[seg] = dma_addr;
650  		sq->sg[sq->head].size[seg] = len;
651  		sq->sg[sq->head].num_segs++;
652  	}
653  
654  	sq->sg[sq->head].skb = (u64)skb;
655  	return true;
656  }
657  
658  /* Add SQE extended header subdescriptor */
otx2_sqe_add_ext(struct otx2_nic * pfvf,struct otx2_snd_queue * sq,struct sk_buff * skb,int * offset)659  static void otx2_sqe_add_ext(struct otx2_nic *pfvf, struct otx2_snd_queue *sq,
660  			     struct sk_buff *skb, int *offset)
661  {
662  	struct nix_sqe_ext_s *ext;
663  
664  	ext = (struct nix_sqe_ext_s *)(sq->sqe_base + *offset);
665  	ext->subdc = NIX_SUBDC_EXT;
666  	if (skb_shinfo(skb)->gso_size) {
667  		ext->lso = 1;
668  		ext->lso_sb = skb_tcp_all_headers(skb);
669  		ext->lso_mps = skb_shinfo(skb)->gso_size;
670  
671  		/* Only TSOv4 and TSOv6 GSO offloads are supported */
672  		if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
673  			ext->lso_format = pfvf->hw.lso_tsov4_idx;
674  
675  			/* HW adds payload size to 'ip_hdr->tot_len' while
676  			 * sending TSO segment, hence set payload length
677  			 * in IP header of the packet to just header length.
678  			 */
679  			ip_hdr(skb)->tot_len =
680  				htons(ext->lso_sb - skb_network_offset(skb));
681  		} else if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
682  			ext->lso_format = pfvf->hw.lso_tsov6_idx;
683  			ipv6_hdr(skb)->payload_len = htons(tcp_hdrlen(skb));
684  		} else if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
685  			__be16 l3_proto = vlan_get_protocol(skb);
686  			struct udphdr *udph = udp_hdr(skb);
687  			u16 iplen;
688  
689  			ext->lso_sb = skb_transport_offset(skb) +
690  					sizeof(struct udphdr);
691  
692  			/* HW adds payload size to length fields in IP and
693  			 * UDP headers while segmentation, hence adjust the
694  			 * lengths to just header sizes.
695  			 */
696  			iplen = htons(ext->lso_sb - skb_network_offset(skb));
697  			if (l3_proto == htons(ETH_P_IP)) {
698  				ip_hdr(skb)->tot_len = iplen;
699  				ext->lso_format = pfvf->hw.lso_udpv4_idx;
700  			} else {
701  				ipv6_hdr(skb)->payload_len = iplen;
702  				ext->lso_format = pfvf->hw.lso_udpv6_idx;
703  			}
704  
705  			udph->len = htons(sizeof(struct udphdr));
706  		}
707  	} else if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
708  		ext->tstmp = 1;
709  	}
710  
711  #define OTX2_VLAN_PTR_OFFSET     (ETH_HLEN - ETH_TLEN)
712  	if (skb_vlan_tag_present(skb)) {
713  		if (skb->vlan_proto == htons(ETH_P_8021Q)) {
714  			ext->vlan1_ins_ena = 1;
715  			ext->vlan1_ins_ptr = OTX2_VLAN_PTR_OFFSET;
716  			ext->vlan1_ins_tci = skb_vlan_tag_get(skb);
717  		} else if (skb->vlan_proto == htons(ETH_P_8021AD)) {
718  			ext->vlan0_ins_ena = 1;
719  			ext->vlan0_ins_ptr = OTX2_VLAN_PTR_OFFSET;
720  			ext->vlan0_ins_tci = skb_vlan_tag_get(skb);
721  		}
722  	}
723  
724  	*offset += sizeof(*ext);
725  }
726  
otx2_sqe_add_mem(struct otx2_snd_queue * sq,int * offset,int alg,u64 iova,int ptp_offset,u64 base_ns,bool udp_csum_crt)727  static void otx2_sqe_add_mem(struct otx2_snd_queue *sq, int *offset,
728  			     int alg, u64 iova, int ptp_offset,
729  			     u64 base_ns, bool udp_csum_crt)
730  {
731  	struct nix_sqe_mem_s *mem;
732  
733  	mem = (struct nix_sqe_mem_s *)(sq->sqe_base + *offset);
734  	mem->subdc = NIX_SUBDC_MEM;
735  	mem->alg = alg;
736  	mem->wmem = 1; /* wait for the memory operation */
737  	mem->addr = iova;
738  
739  	if (ptp_offset) {
740  		mem->start_offset = ptp_offset;
741  		mem->udp_csum_crt = !!udp_csum_crt;
742  		mem->base_ns = base_ns;
743  		mem->step_type = 1;
744  	}
745  
746  	*offset += sizeof(*mem);
747  }
748  
749  /* Add SQE header subdescriptor structure */
otx2_sqe_add_hdr(struct otx2_nic * pfvf,struct otx2_snd_queue * sq,struct nix_sqe_hdr_s * sqe_hdr,struct sk_buff * skb,u16 qidx)750  static void otx2_sqe_add_hdr(struct otx2_nic *pfvf, struct otx2_snd_queue *sq,
751  			     struct nix_sqe_hdr_s *sqe_hdr,
752  			     struct sk_buff *skb, u16 qidx)
753  {
754  	int proto = 0;
755  
756  	/* Check if SQE was framed before, if yes then no need to
757  	 * set these constants again and again.
758  	 */
759  	if (!sqe_hdr->total) {
760  		/* Don't free Tx buffers to Aura */
761  		sqe_hdr->df = 1;
762  		sqe_hdr->aura = sq->aura_id;
763  		/* Post a CQE Tx after pkt transmission */
764  		sqe_hdr->pnc = 1;
765  		sqe_hdr->sq = (qidx >=  pfvf->hw.tx_queues) ?
766  			       qidx + pfvf->hw.xdp_queues : qidx;
767  	}
768  	sqe_hdr->total = skb->len;
769  	/* Set SQE identifier which will be used later for freeing SKB */
770  	sqe_hdr->sqe_id = sq->head;
771  
772  	/* Offload TCP/UDP checksum to HW */
773  	if (skb->ip_summed == CHECKSUM_PARTIAL) {
774  		sqe_hdr->ol3ptr = skb_network_offset(skb);
775  		sqe_hdr->ol4ptr = skb_transport_offset(skb);
776  		/* get vlan protocol Ethertype */
777  		if (eth_type_vlan(skb->protocol))
778  			skb->protocol = vlan_get_protocol(skb);
779  
780  		if (skb->protocol == htons(ETH_P_IP)) {
781  			proto = ip_hdr(skb)->protocol;
782  			/* In case of TSO, HW needs this to be explicitly set.
783  			 * So set this always, instead of adding a check.
784  			 */
785  			sqe_hdr->ol3type = NIX_SENDL3TYPE_IP4_CKSUM;
786  		} else if (skb->protocol == htons(ETH_P_IPV6)) {
787  			proto = ipv6_hdr(skb)->nexthdr;
788  			sqe_hdr->ol3type = NIX_SENDL3TYPE_IP6;
789  		}
790  
791  		if (proto == IPPROTO_TCP)
792  			sqe_hdr->ol4type = NIX_SENDL4TYPE_TCP_CKSUM;
793  		else if (proto == IPPROTO_UDP)
794  			sqe_hdr->ol4type = NIX_SENDL4TYPE_UDP_CKSUM;
795  	}
796  }
797  
otx2_dma_map_tso_skb(struct otx2_nic * pfvf,struct otx2_snd_queue * sq,struct sk_buff * skb,int sqe,int hdr_len)798  static int otx2_dma_map_tso_skb(struct otx2_nic *pfvf,
799  				struct otx2_snd_queue *sq,
800  				struct sk_buff *skb, int sqe, int hdr_len)
801  {
802  	int num_segs = skb_shinfo(skb)->nr_frags + 1;
803  	struct sg_list *sg = &sq->sg[sqe];
804  	u64 dma_addr;
805  	int seg, len;
806  
807  	sg->num_segs = 0;
808  
809  	/* Get payload length at skb->data */
810  	len = skb_headlen(skb) - hdr_len;
811  
812  	for (seg = 0; seg < num_segs; seg++) {
813  		/* Skip skb->data, if there is no payload */
814  		if (!seg && !len)
815  			continue;
816  		dma_addr = otx2_dma_map_skb_frag(pfvf, skb, seg, &len);
817  		if (dma_mapping_error(pfvf->dev, dma_addr))
818  			goto unmap;
819  
820  		/* Save DMA mapping info for later unmapping */
821  		sg->dma_addr[sg->num_segs] = dma_addr;
822  		sg->size[sg->num_segs] = len;
823  		sg->num_segs++;
824  	}
825  	return 0;
826  unmap:
827  	otx2_dma_unmap_skb_frags(pfvf, sg);
828  	return -EINVAL;
829  }
830  
otx2_tso_frag_dma_addr(struct otx2_snd_queue * sq,struct sk_buff * skb,int seg,u64 seg_addr,int hdr_len,int sqe)831  static u64 otx2_tso_frag_dma_addr(struct otx2_snd_queue *sq,
832  				  struct sk_buff *skb, int seg,
833  				  u64 seg_addr, int hdr_len, int sqe)
834  {
835  	struct sg_list *sg = &sq->sg[sqe];
836  	const skb_frag_t *frag;
837  	int offset;
838  
839  	if (seg < 0)
840  		return sg->dma_addr[0] + (seg_addr - (u64)skb->data);
841  
842  	frag = &skb_shinfo(skb)->frags[seg];
843  	offset = seg_addr - (u64)skb_frag_address(frag);
844  	if (skb_headlen(skb) - hdr_len)
845  		seg++;
846  	return sg->dma_addr[seg] + offset;
847  }
848  
otx2_sqe_tso_add_sg(struct otx2_snd_queue * sq,struct sg_list * list,int * offset)849  static void otx2_sqe_tso_add_sg(struct otx2_snd_queue *sq,
850  				struct sg_list *list, int *offset)
851  {
852  	struct nix_sqe_sg_s *sg = NULL;
853  	u16 *sg_lens = NULL;
854  	u64 *iova = NULL;
855  	int seg;
856  
857  	/* Add SG descriptors with buffer addresses */
858  	for (seg = 0; seg < list->num_segs; seg++) {
859  		if ((seg % MAX_SEGS_PER_SG) == 0) {
860  			sg = (struct nix_sqe_sg_s *)(sq->sqe_base + *offset);
861  			sg->ld_type = NIX_SEND_LDTYPE_LDD;
862  			sg->subdc = NIX_SUBDC_SG;
863  			sg->segs = 0;
864  			sg_lens = (void *)sg;
865  			iova = (void *)sg + sizeof(*sg);
866  			/* Next subdc always starts at a 16byte boundary.
867  			 * So if sg->segs is whether 2 or 3, offset += 16bytes.
868  			 */
869  			if ((list->num_segs - seg) >= (MAX_SEGS_PER_SG - 1))
870  				*offset += sizeof(*sg) + (3 * sizeof(u64));
871  			else
872  				*offset += sizeof(*sg) + sizeof(u64);
873  		}
874  		sg_lens[frag_num(seg % MAX_SEGS_PER_SG)] = list->size[seg];
875  		*iova++ = list->dma_addr[seg];
876  		sg->segs++;
877  	}
878  }
879  
otx2_sq_append_tso(struct otx2_nic * pfvf,struct otx2_snd_queue * sq,struct sk_buff * skb,u16 qidx)880  static void otx2_sq_append_tso(struct otx2_nic *pfvf, struct otx2_snd_queue *sq,
881  			       struct sk_buff *skb, u16 qidx)
882  {
883  	struct netdev_queue *txq = netdev_get_tx_queue(pfvf->netdev, qidx);
884  	int hdr_len, tcp_data, seg_len, pkt_len, offset;
885  	struct nix_sqe_hdr_s *sqe_hdr;
886  	int first_sqe = sq->head;
887  	struct sg_list list;
888  	struct tso_t tso;
889  
890  	hdr_len = tso_start(skb, &tso);
891  
892  	/* Map SKB's fragments to DMA.
893  	 * It's done here to avoid mapping for every TSO segment's packet.
894  	 */
895  	if (otx2_dma_map_tso_skb(pfvf, sq, skb, first_sqe, hdr_len)) {
896  		dev_kfree_skb_any(skb);
897  		return;
898  	}
899  
900  	netdev_tx_sent_queue(txq, skb->len);
901  
902  	tcp_data = skb->len - hdr_len;
903  	while (tcp_data > 0) {
904  		char *hdr;
905  
906  		seg_len = min_t(int, skb_shinfo(skb)->gso_size, tcp_data);
907  		tcp_data -= seg_len;
908  
909  		/* Set SQE's SEND_HDR */
910  		memset(sq->sqe_base, 0, sq->sqe_size);
911  		sqe_hdr = (struct nix_sqe_hdr_s *)(sq->sqe_base);
912  		otx2_sqe_add_hdr(pfvf, sq, sqe_hdr, skb, qidx);
913  		offset = sizeof(*sqe_hdr);
914  
915  		/* Add TSO segment's pkt header */
916  		hdr = sq->tso_hdrs->base + (sq->head * TSO_HEADER_SIZE);
917  		tso_build_hdr(skb, hdr, &tso, seg_len, tcp_data == 0);
918  		list.dma_addr[0] =
919  			sq->tso_hdrs->iova + (sq->head * TSO_HEADER_SIZE);
920  		list.size[0] = hdr_len;
921  		list.num_segs = 1;
922  
923  		/* Add TSO segment's payload data fragments */
924  		pkt_len = hdr_len;
925  		while (seg_len > 0) {
926  			int size;
927  
928  			size = min_t(int, tso.size, seg_len);
929  
930  			list.size[list.num_segs] = size;
931  			list.dma_addr[list.num_segs] =
932  				otx2_tso_frag_dma_addr(sq, skb,
933  						       tso.next_frag_idx - 1,
934  						       (u64)tso.data, hdr_len,
935  						       first_sqe);
936  			list.num_segs++;
937  			pkt_len += size;
938  			seg_len -= size;
939  			tso_build_data(skb, &tso, size);
940  		}
941  		sqe_hdr->total = pkt_len;
942  		otx2_sqe_tso_add_sg(sq, &list, &offset);
943  
944  		/* DMA mappings and skb needs to be freed only after last
945  		 * TSO segment is transmitted out. So set 'PNC' only for
946  		 * last segment. Also point last segment's sqe_id to first
947  		 * segment's SQE index where skb address and DMA mappings
948  		 * are saved.
949  		 */
950  		if (!tcp_data) {
951  			sqe_hdr->pnc = 1;
952  			sqe_hdr->sqe_id = first_sqe;
953  			sq->sg[first_sqe].skb = (u64)skb;
954  		} else {
955  			sqe_hdr->pnc = 0;
956  		}
957  
958  		sqe_hdr->sizem1 = (offset / 16) - 1;
959  
960  		/* Flush SQE to HW */
961  		pfvf->hw_ops->sqe_flush(pfvf, sq, offset, qidx);
962  	}
963  }
964  
is_hw_tso_supported(struct otx2_nic * pfvf,struct sk_buff * skb)965  static bool is_hw_tso_supported(struct otx2_nic *pfvf,
966  				struct sk_buff *skb)
967  {
968  	int payload_len, last_seg_size;
969  
970  	if (test_bit(HW_TSO, &pfvf->hw.cap_flag))
971  		return true;
972  
973  	/* On 96xx A0, HW TSO not supported */
974  	if (!is_96xx_B0(pfvf->pdev))
975  		return false;
976  
977  	/* HW has an issue due to which when the payload of the last LSO
978  	 * segment is shorter than 16 bytes, some header fields may not
979  	 * be correctly modified, hence don't offload such TSO segments.
980  	 */
981  
982  	payload_len = skb->len - skb_tcp_all_headers(skb);
983  	last_seg_size = payload_len % skb_shinfo(skb)->gso_size;
984  	if (last_seg_size && last_seg_size < 16)
985  		return false;
986  
987  	return true;
988  }
989  
otx2_get_sqe_count(struct otx2_nic * pfvf,struct sk_buff * skb)990  static int otx2_get_sqe_count(struct otx2_nic *pfvf, struct sk_buff *skb)
991  {
992  	if (!skb_shinfo(skb)->gso_size)
993  		return 1;
994  
995  	/* HW TSO */
996  	if (is_hw_tso_supported(pfvf, skb))
997  		return 1;
998  
999  	/* SW TSO */
1000  	return skb_shinfo(skb)->gso_segs;
1001  }
1002  
otx2_validate_network_transport(struct sk_buff * skb)1003  static bool otx2_validate_network_transport(struct sk_buff *skb)
1004  {
1005  	if ((ip_hdr(skb)->protocol == IPPROTO_UDP) ||
1006  	    (ipv6_hdr(skb)->nexthdr == IPPROTO_UDP)) {
1007  		struct udphdr *udph = udp_hdr(skb);
1008  
1009  		if (udph->source == htons(PTP_PORT) &&
1010  		    udph->dest == htons(PTP_PORT))
1011  			return true;
1012  	}
1013  
1014  	return false;
1015  }
1016  
otx2_ptp_is_sync(struct sk_buff * skb,int * offset,bool * udp_csum_crt)1017  static bool otx2_ptp_is_sync(struct sk_buff *skb, int *offset, bool *udp_csum_crt)
1018  {
1019  	struct ethhdr *eth = (struct ethhdr *)(skb->data);
1020  	u16 nix_offload_hlen = 0, inner_vhlen = 0;
1021  	bool udp_hdr_present = false, is_sync;
1022  	u8 *data = skb->data, *msgtype;
1023  	__be16 proto = eth->h_proto;
1024  	int network_depth = 0;
1025  
1026  	/* NIX is programmed to offload outer  VLAN header
1027  	 * in case of single vlan protocol field holds Network header ETH_IP/V6
1028  	 * in case of stacked vlan protocol field holds Inner vlan (8100)
1029  	 */
1030  	if (skb->dev->features & NETIF_F_HW_VLAN_CTAG_TX &&
1031  	    skb->dev->features & NETIF_F_HW_VLAN_STAG_TX) {
1032  		if (skb->vlan_proto == htons(ETH_P_8021AD)) {
1033  			/* Get vlan protocol */
1034  			proto = __vlan_get_protocol(skb, eth->h_proto, NULL);
1035  			/* SKB APIs like skb_transport_offset does not include
1036  			 * offloaded vlan header length. Need to explicitly add
1037  			 * the length
1038  			 */
1039  			nix_offload_hlen = VLAN_HLEN;
1040  			inner_vhlen = VLAN_HLEN;
1041  		} else if (skb->vlan_proto == htons(ETH_P_8021Q)) {
1042  			nix_offload_hlen = VLAN_HLEN;
1043  		}
1044  	} else if (eth_type_vlan(eth->h_proto)) {
1045  		proto = __vlan_get_protocol(skb, eth->h_proto, &network_depth);
1046  	}
1047  
1048  	switch (ntohs(proto)) {
1049  	case ETH_P_1588:
1050  		if (network_depth)
1051  			*offset = network_depth;
1052  		else
1053  			*offset = ETH_HLEN + nix_offload_hlen +
1054  				  inner_vhlen;
1055  		break;
1056  	case ETH_P_IP:
1057  	case ETH_P_IPV6:
1058  		if (!otx2_validate_network_transport(skb))
1059  			return false;
1060  
1061  		*offset = nix_offload_hlen + skb_transport_offset(skb) +
1062  			  sizeof(struct udphdr);
1063  		udp_hdr_present = true;
1064  
1065  	}
1066  
1067  	msgtype = data + *offset;
1068  	/* Check PTP messageId is SYNC or not */
1069  	is_sync = !(*msgtype & 0xf);
1070  	if (is_sync)
1071  		*udp_csum_crt = udp_hdr_present;
1072  	else
1073  		*offset = 0;
1074  
1075  	return is_sync;
1076  }
1077  
otx2_set_txtstamp(struct otx2_nic * pfvf,struct sk_buff * skb,struct otx2_snd_queue * sq,int * offset)1078  static void otx2_set_txtstamp(struct otx2_nic *pfvf, struct sk_buff *skb,
1079  			      struct otx2_snd_queue *sq, int *offset)
1080  {
1081  	struct ethhdr	*eth = (struct ethhdr *)(skb->data);
1082  	struct ptpv2_tstamp *origin_tstamp;
1083  	bool udp_csum_crt = false;
1084  	unsigned int udphoff;
1085  	struct timespec64 ts;
1086  	int ptp_offset = 0;
1087  	__wsum skb_csum;
1088  	u64 iova;
1089  
1090  	if (unlikely(!skb_shinfo(skb)->gso_size &&
1091  		     (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))) {
1092  		if (unlikely(pfvf->flags & OTX2_FLAG_PTP_ONESTEP_SYNC &&
1093  			     otx2_ptp_is_sync(skb, &ptp_offset, &udp_csum_crt))) {
1094  			origin_tstamp = (struct ptpv2_tstamp *)
1095  					((u8 *)skb->data + ptp_offset +
1096  					 PTP_SYNC_SEC_OFFSET);
1097  			ts = ns_to_timespec64(pfvf->ptp->tstamp);
1098  			origin_tstamp->seconds_msb = htons((ts.tv_sec >> 32) & 0xffff);
1099  			origin_tstamp->seconds_lsb = htonl(ts.tv_sec & 0xffffffff);
1100  			origin_tstamp->nanoseconds = htonl(ts.tv_nsec);
1101  			/* Point to correction field in PTP packet */
1102  			ptp_offset += 8;
1103  
1104  			/* When user disables hw checksum, stack calculates the csum,
1105  			 * but it does not cover ptp timestamp which is added later.
1106  			 * Recalculate the checksum manually considering the timestamp.
1107  			 */
1108  			if (udp_csum_crt) {
1109  				struct udphdr *uh = udp_hdr(skb);
1110  
1111  				if (skb->ip_summed != CHECKSUM_PARTIAL && uh->check != 0) {
1112  					udphoff = skb_transport_offset(skb);
1113  					uh->check = 0;
1114  					skb_csum = skb_checksum(skb, udphoff, skb->len - udphoff,
1115  								0);
1116  					if (ntohs(eth->h_proto) == ETH_P_IPV6)
1117  						uh->check = csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1118  									    &ipv6_hdr(skb)->daddr,
1119  									    skb->len - udphoff,
1120  									    ipv6_hdr(skb)->nexthdr,
1121  									    skb_csum);
1122  					else
1123  						uh->check = csum_tcpudp_magic(ip_hdr(skb)->saddr,
1124  									      ip_hdr(skb)->daddr,
1125  									      skb->len - udphoff,
1126  									      IPPROTO_UDP,
1127  									      skb_csum);
1128  				}
1129  			}
1130  		} else {
1131  			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1132  		}
1133  		iova = sq->timestamps->iova + (sq->head * sizeof(u64));
1134  		otx2_sqe_add_mem(sq, offset, NIX_SENDMEMALG_E_SETTSTMP, iova,
1135  				 ptp_offset, pfvf->ptp->base_ns, udp_csum_crt);
1136  	} else {
1137  		skb_tx_timestamp(skb);
1138  	}
1139  }
1140  
otx2_sq_append_skb(struct net_device * netdev,struct otx2_snd_queue * sq,struct sk_buff * skb,u16 qidx)1141  bool otx2_sq_append_skb(struct net_device *netdev, struct otx2_snd_queue *sq,
1142  			struct sk_buff *skb, u16 qidx)
1143  {
1144  	struct netdev_queue *txq = netdev_get_tx_queue(netdev, qidx);
1145  	struct otx2_nic *pfvf = netdev_priv(netdev);
1146  	int offset, num_segs, free_desc;
1147  	struct nix_sqe_hdr_s *sqe_hdr;
1148  
1149  	/* Check if there is enough room between producer
1150  	 * and consumer index.
1151  	 */
1152  	free_desc = (sq->cons_head - sq->head - 1 + sq->sqe_cnt) & (sq->sqe_cnt - 1);
1153  	if (free_desc < sq->sqe_thresh)
1154  		return false;
1155  
1156  	if (free_desc < otx2_get_sqe_count(pfvf, skb))
1157  		return false;
1158  
1159  	num_segs = skb_shinfo(skb)->nr_frags + 1;
1160  
1161  	/* If SKB doesn't fit in a single SQE, linearize it.
1162  	 * TODO: Consider adding JUMP descriptor instead.
1163  	 */
1164  	if (unlikely(num_segs > OTX2_MAX_FRAGS_IN_SQE)) {
1165  		if (__skb_linearize(skb)) {
1166  			dev_kfree_skb_any(skb);
1167  			return true;
1168  		}
1169  		num_segs = skb_shinfo(skb)->nr_frags + 1;
1170  	}
1171  
1172  	if (skb_shinfo(skb)->gso_size && !is_hw_tso_supported(pfvf, skb)) {
1173  		/* Insert vlan tag before giving pkt to tso */
1174  		if (skb_vlan_tag_present(skb)) {
1175  			skb = __vlan_hwaccel_push_inside(skb);
1176  			if (!skb)
1177  				return true;
1178  		}
1179  		otx2_sq_append_tso(pfvf, sq, skb, qidx);
1180  		return true;
1181  	}
1182  
1183  	/* Set SQE's SEND_HDR.
1184  	 * Do not clear the first 64bit as it contains constant info.
1185  	 */
1186  	memset(sq->sqe_base + 8, 0, sq->sqe_size - 8);
1187  	sqe_hdr = (struct nix_sqe_hdr_s *)(sq->sqe_base);
1188  	otx2_sqe_add_hdr(pfvf, sq, sqe_hdr, skb, qidx);
1189  	offset = sizeof(*sqe_hdr);
1190  
1191  	/* Add extended header if needed */
1192  	otx2_sqe_add_ext(pfvf, sq, skb, &offset);
1193  
1194  	/* Add SG subdesc with data frags */
1195  	if (!otx2_sqe_add_sg(pfvf, sq, skb, num_segs, &offset)) {
1196  		otx2_dma_unmap_skb_frags(pfvf, &sq->sg[sq->head]);
1197  		return false;
1198  	}
1199  
1200  	otx2_set_txtstamp(pfvf, skb, sq, &offset);
1201  
1202  	sqe_hdr->sizem1 = (offset / 16) - 1;
1203  
1204  	netdev_tx_sent_queue(txq, skb->len);
1205  
1206  	/* Flush SQE to HW */
1207  	pfvf->hw_ops->sqe_flush(pfvf, sq, offset, qidx);
1208  
1209  	return true;
1210  }
1211  EXPORT_SYMBOL(otx2_sq_append_skb);
1212  
otx2_cleanup_rx_cqes(struct otx2_nic * pfvf,struct otx2_cq_queue * cq,int qidx)1213  void otx2_cleanup_rx_cqes(struct otx2_nic *pfvf, struct otx2_cq_queue *cq, int qidx)
1214  {
1215  	struct nix_cqe_rx_s *cqe;
1216  	struct otx2_pool *pool;
1217  	int processed_cqe = 0;
1218  	u16 pool_id;
1219  	u64 iova;
1220  
1221  	if (pfvf->xdp_prog)
1222  		xdp_rxq_info_unreg(&cq->xdp_rxq);
1223  
1224  	if (otx2_nix_cq_op_status(pfvf, cq) || !cq->pend_cqe)
1225  		return;
1226  
1227  	pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, qidx);
1228  	pool = &pfvf->qset.pool[pool_id];
1229  
1230  	while (cq->pend_cqe) {
1231  		cqe = (struct nix_cqe_rx_s *)otx2_get_next_cqe(cq);
1232  		processed_cqe++;
1233  		cq->pend_cqe--;
1234  
1235  		if (!cqe)
1236  			continue;
1237  		if (cqe->sg.segs > 1) {
1238  			otx2_free_rcv_seg(pfvf, cqe, cq->cq_idx);
1239  			continue;
1240  		}
1241  		iova = cqe->sg.seg_addr - OTX2_HEAD_ROOM;
1242  
1243  		otx2_free_bufs(pfvf, pool, iova, pfvf->rbsize);
1244  	}
1245  
1246  	/* Free CQEs to HW */
1247  	otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR,
1248  		     ((u64)cq->cq_idx << 32) | processed_cqe);
1249  }
1250  
otx2_cleanup_tx_cqes(struct otx2_nic * pfvf,struct otx2_cq_queue * cq)1251  void otx2_cleanup_tx_cqes(struct otx2_nic *pfvf, struct otx2_cq_queue *cq)
1252  {
1253  	int tx_pkts = 0, tx_bytes = 0;
1254  	struct sk_buff *skb = NULL;
1255  	struct otx2_snd_queue *sq;
1256  	struct nix_cqe_tx_s *cqe;
1257  	struct netdev_queue *txq;
1258  	int processed_cqe = 0;
1259  	struct sg_list *sg;
1260  	int qidx;
1261  
1262  	qidx = cq->cq_idx - pfvf->hw.rx_queues;
1263  	sq = &pfvf->qset.sq[qidx];
1264  
1265  	if (otx2_nix_cq_op_status(pfvf, cq) || !cq->pend_cqe)
1266  		return;
1267  
1268  	while (cq->pend_cqe) {
1269  		cqe = (struct nix_cqe_tx_s *)otx2_get_next_cqe(cq);
1270  		processed_cqe++;
1271  		cq->pend_cqe--;
1272  
1273  		if (!cqe)
1274  			continue;
1275  		sg = &sq->sg[cqe->comp.sqe_id];
1276  		skb = (struct sk_buff *)sg->skb;
1277  		if (skb) {
1278  			tx_bytes += skb->len;
1279  			tx_pkts++;
1280  			otx2_dma_unmap_skb_frags(pfvf, sg);
1281  			dev_kfree_skb_any(skb);
1282  			sg->skb = (u64)NULL;
1283  		}
1284  	}
1285  
1286  	if (likely(tx_pkts)) {
1287  		if (qidx >= pfvf->hw.tx_queues)
1288  			qidx -= pfvf->hw.xdp_queues;
1289  		txq = netdev_get_tx_queue(pfvf->netdev, qidx);
1290  		netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
1291  	}
1292  	/* Free CQEs to HW */
1293  	otx2_write64(pfvf, NIX_LF_CQ_OP_DOOR,
1294  		     ((u64)cq->cq_idx << 32) | processed_cqe);
1295  }
1296  
otx2_rxtx_enable(struct otx2_nic * pfvf,bool enable)1297  int otx2_rxtx_enable(struct otx2_nic *pfvf, bool enable)
1298  {
1299  	struct msg_req *msg;
1300  	int err;
1301  
1302  	mutex_lock(&pfvf->mbox.lock);
1303  	if (enable)
1304  		msg = otx2_mbox_alloc_msg_nix_lf_start_rx(&pfvf->mbox);
1305  	else
1306  		msg = otx2_mbox_alloc_msg_nix_lf_stop_rx(&pfvf->mbox);
1307  
1308  	if (!msg) {
1309  		mutex_unlock(&pfvf->mbox.lock);
1310  		return -ENOMEM;
1311  	}
1312  
1313  	err = otx2_sync_mbox_msg(&pfvf->mbox);
1314  	mutex_unlock(&pfvf->mbox.lock);
1315  	return err;
1316  }
1317  
otx2_free_pending_sqe(struct otx2_nic * pfvf)1318  void otx2_free_pending_sqe(struct otx2_nic *pfvf)
1319  {
1320  	int tx_pkts = 0, tx_bytes = 0;
1321  	struct sk_buff *skb = NULL;
1322  	struct otx2_snd_queue *sq;
1323  	struct netdev_queue *txq;
1324  	struct sg_list *sg;
1325  	int sq_idx, sqe;
1326  
1327  	for (sq_idx = 0; sq_idx < pfvf->hw.tx_queues; sq_idx++) {
1328  		sq = &pfvf->qset.sq[sq_idx];
1329  		for (sqe = 0; sqe < sq->sqe_cnt; sqe++) {
1330  			sg = &sq->sg[sqe];
1331  			skb = (struct sk_buff *)sg->skb;
1332  			if (skb) {
1333  				tx_bytes += skb->len;
1334  				tx_pkts++;
1335  				otx2_dma_unmap_skb_frags(pfvf, sg);
1336  				dev_kfree_skb_any(skb);
1337  				sg->skb = (u64)NULL;
1338  			}
1339  		}
1340  
1341  		if (!tx_pkts)
1342  			continue;
1343  		txq = netdev_get_tx_queue(pfvf->netdev, sq_idx);
1344  		netdev_tx_completed_queue(txq, tx_pkts, tx_bytes);
1345  		tx_pkts = 0;
1346  		tx_bytes = 0;
1347  	}
1348  }
1349  
otx2_xdp_sqe_add_sg(struct otx2_snd_queue * sq,u64 dma_addr,int len,int * offset)1350  static void otx2_xdp_sqe_add_sg(struct otx2_snd_queue *sq, u64 dma_addr,
1351  				int len, int *offset)
1352  {
1353  	struct nix_sqe_sg_s *sg = NULL;
1354  	u64 *iova = NULL;
1355  
1356  	sg = (struct nix_sqe_sg_s *)(sq->sqe_base + *offset);
1357  	sg->ld_type = NIX_SEND_LDTYPE_LDD;
1358  	sg->subdc = NIX_SUBDC_SG;
1359  	sg->segs = 1;
1360  	sg->seg1_size = len;
1361  	iova = (void *)sg + sizeof(*sg);
1362  	*iova = dma_addr;
1363  	*offset += sizeof(*sg) + sizeof(u64);
1364  
1365  	sq->sg[sq->head].dma_addr[0] = dma_addr;
1366  	sq->sg[sq->head].size[0] = len;
1367  	sq->sg[sq->head].num_segs = 1;
1368  }
1369  
otx2_xdp_sq_append_pkt(struct otx2_nic * pfvf,u64 iova,int len,u16 qidx)1370  bool otx2_xdp_sq_append_pkt(struct otx2_nic *pfvf, u64 iova, int len, u16 qidx)
1371  {
1372  	struct nix_sqe_hdr_s *sqe_hdr;
1373  	struct otx2_snd_queue *sq;
1374  	int offset, free_sqe;
1375  
1376  	sq = &pfvf->qset.sq[qidx];
1377  	free_sqe = (sq->num_sqbs - *sq->aura_fc_addr) * sq->sqe_per_sqb;
1378  	if (free_sqe < sq->sqe_thresh)
1379  		return false;
1380  
1381  	memset(sq->sqe_base + 8, 0, sq->sqe_size - 8);
1382  
1383  	sqe_hdr = (struct nix_sqe_hdr_s *)(sq->sqe_base);
1384  
1385  	if (!sqe_hdr->total) {
1386  		sqe_hdr->aura = sq->aura_id;
1387  		sqe_hdr->df = 1;
1388  		sqe_hdr->sq = qidx;
1389  		sqe_hdr->pnc = 1;
1390  	}
1391  	sqe_hdr->total = len;
1392  	sqe_hdr->sqe_id = sq->head;
1393  
1394  	offset = sizeof(*sqe_hdr);
1395  
1396  	otx2_xdp_sqe_add_sg(sq, iova, len, &offset);
1397  	sqe_hdr->sizem1 = (offset / 16) - 1;
1398  	pfvf->hw_ops->sqe_flush(pfvf, sq, offset, qidx);
1399  
1400  	return true;
1401  }
1402  
otx2_xdp_rcv_pkt_handler(struct otx2_nic * pfvf,struct bpf_prog * prog,struct nix_cqe_rx_s * cqe,struct otx2_cq_queue * cq,bool * need_xdp_flush)1403  static bool otx2_xdp_rcv_pkt_handler(struct otx2_nic *pfvf,
1404  				     struct bpf_prog *prog,
1405  				     struct nix_cqe_rx_s *cqe,
1406  				     struct otx2_cq_queue *cq,
1407  				     bool *need_xdp_flush)
1408  {
1409  	unsigned char *hard_start;
1410  	int qidx = cq->cq_idx;
1411  	struct xdp_buff xdp;
1412  	struct page *page;
1413  	u64 iova, pa;
1414  	u32 act;
1415  	int err;
1416  
1417  	iova = cqe->sg.seg_addr - OTX2_HEAD_ROOM;
1418  	pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1419  	page = virt_to_page(phys_to_virt(pa));
1420  
1421  	xdp_init_buff(&xdp, pfvf->rbsize, &cq->xdp_rxq);
1422  
1423  	hard_start = (unsigned char *)phys_to_virt(pa);
1424  	xdp_prepare_buff(&xdp, hard_start, OTX2_HEAD_ROOM,
1425  			 cqe->sg.seg_size, false);
1426  
1427  	act = bpf_prog_run_xdp(prog, &xdp);
1428  
1429  	switch (act) {
1430  	case XDP_PASS:
1431  		break;
1432  	case XDP_TX:
1433  		qidx += pfvf->hw.tx_queues;
1434  		cq->pool_ptrs++;
1435  		return otx2_xdp_sq_append_pkt(pfvf, iova,
1436  					      cqe->sg.seg_size, qidx);
1437  	case XDP_REDIRECT:
1438  		cq->pool_ptrs++;
1439  		err = xdp_do_redirect(pfvf->netdev, &xdp, prog);
1440  
1441  		otx2_dma_unmap_page(pfvf, iova, pfvf->rbsize,
1442  				    DMA_FROM_DEVICE);
1443  		if (!err) {
1444  			*need_xdp_flush = true;
1445  			return true;
1446  		}
1447  		put_page(page);
1448  		break;
1449  	default:
1450  		bpf_warn_invalid_xdp_action(pfvf->netdev, prog, act);
1451  		break;
1452  	case XDP_ABORTED:
1453  		trace_xdp_exception(pfvf->netdev, prog, act);
1454  		break;
1455  	case XDP_DROP:
1456  		otx2_dma_unmap_page(pfvf, iova, pfvf->rbsize,
1457  				    DMA_FROM_DEVICE);
1458  		put_page(page);
1459  		cq->pool_ptrs++;
1460  		return true;
1461  	}
1462  	return false;
1463  }
1464