xref: /openbmc/linux/fs/libfs.c (revision 4baf4a2919b2a13a7f67d63f34b03f823ea7c0e8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	fs/libfs.c
4  *	Library for filesystems writers.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/iversion.h>
19 #include <linux/writeback.h>
20 #include <linux/buffer_head.h> /* sync_mapping_buffers */
21 #include <linux/fs_context.h>
22 #include <linux/pseudo_fs.h>
23 #include <linux/fsnotify.h>
24 #include <linux/unicode.h>
25 #include <linux/fscrypt.h>
26 
27 #include <linux/uaccess.h>
28 
29 #include "internal.h"
30 
simple_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)31 int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
32 		   struct kstat *stat, u32 request_mask,
33 		   unsigned int query_flags)
34 {
35 	struct inode *inode = d_inode(path->dentry);
36 	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
37 	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
38 	return 0;
39 }
40 EXPORT_SYMBOL(simple_getattr);
41 
simple_statfs(struct dentry * dentry,struct kstatfs * buf)42 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
43 {
44 	buf->f_type = dentry->d_sb->s_magic;
45 	buf->f_bsize = PAGE_SIZE;
46 	buf->f_namelen = NAME_MAX;
47 	return 0;
48 }
49 EXPORT_SYMBOL(simple_statfs);
50 
51 /*
52  * Retaining negative dentries for an in-memory filesystem just wastes
53  * memory and lookup time: arrange for them to be deleted immediately.
54  */
always_delete_dentry(const struct dentry * dentry)55 int always_delete_dentry(const struct dentry *dentry)
56 {
57 	return 1;
58 }
59 EXPORT_SYMBOL(always_delete_dentry);
60 
61 const struct dentry_operations simple_dentry_operations = {
62 	.d_delete = always_delete_dentry,
63 };
64 EXPORT_SYMBOL(simple_dentry_operations);
65 
66 /*
67  * Lookup the data. This is trivial - if the dentry didn't already
68  * exist, we know it is negative.  Set d_op to delete negative dentries.
69  */
simple_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)70 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
71 {
72 	if (dentry->d_name.len > NAME_MAX)
73 		return ERR_PTR(-ENAMETOOLONG);
74 	if (!dentry->d_sb->s_d_op)
75 		d_set_d_op(dentry, &simple_dentry_operations);
76 	d_add(dentry, NULL);
77 	return NULL;
78 }
79 EXPORT_SYMBOL(simple_lookup);
80 
dcache_dir_open(struct inode * inode,struct file * file)81 int dcache_dir_open(struct inode *inode, struct file *file)
82 {
83 	file->private_data = d_alloc_cursor(file->f_path.dentry);
84 
85 	return file->private_data ? 0 : -ENOMEM;
86 }
87 EXPORT_SYMBOL(dcache_dir_open);
88 
dcache_dir_close(struct inode * inode,struct file * file)89 int dcache_dir_close(struct inode *inode, struct file *file)
90 {
91 	dput(file->private_data);
92 	return 0;
93 }
94 EXPORT_SYMBOL(dcache_dir_close);
95 
96 /* parent is locked at least shared */
97 /*
98  * Returns an element of siblings' list.
99  * We are looking for <count>th positive after <p>; if
100  * found, dentry is grabbed and returned to caller.
101  * If no such element exists, NULL is returned.
102  */
scan_positives(struct dentry * cursor,struct list_head * p,loff_t count,struct dentry * last)103 static struct dentry *scan_positives(struct dentry *cursor,
104 					struct list_head *p,
105 					loff_t count,
106 					struct dentry *last)
107 {
108 	struct dentry *dentry = cursor->d_parent, *found = NULL;
109 
110 	spin_lock(&dentry->d_lock);
111 	while ((p = p->next) != &dentry->d_subdirs) {
112 		struct dentry *d = list_entry(p, struct dentry, d_child);
113 		// we must at least skip cursors, to avoid livelocks
114 		if (d->d_flags & DCACHE_DENTRY_CURSOR)
115 			continue;
116 		if (simple_positive(d) && !--count) {
117 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
118 			if (simple_positive(d))
119 				found = dget_dlock(d);
120 			spin_unlock(&d->d_lock);
121 			if (likely(found))
122 				break;
123 			count = 1;
124 		}
125 		if (need_resched()) {
126 			list_move(&cursor->d_child, p);
127 			p = &cursor->d_child;
128 			spin_unlock(&dentry->d_lock);
129 			cond_resched();
130 			spin_lock(&dentry->d_lock);
131 		}
132 	}
133 	spin_unlock(&dentry->d_lock);
134 	dput(last);
135 	return found;
136 }
137 
dcache_dir_lseek(struct file * file,loff_t offset,int whence)138 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
139 {
140 	struct dentry *dentry = file->f_path.dentry;
141 	switch (whence) {
142 		case 1:
143 			offset += file->f_pos;
144 			fallthrough;
145 		case 0:
146 			if (offset >= 0)
147 				break;
148 			fallthrough;
149 		default:
150 			return -EINVAL;
151 	}
152 	if (offset != file->f_pos) {
153 		struct dentry *cursor = file->private_data;
154 		struct dentry *to = NULL;
155 
156 		inode_lock_shared(dentry->d_inode);
157 
158 		if (offset > 2)
159 			to = scan_positives(cursor, &dentry->d_subdirs,
160 					    offset - 2, NULL);
161 		spin_lock(&dentry->d_lock);
162 		if (to)
163 			list_move(&cursor->d_child, &to->d_child);
164 		else
165 			list_del_init(&cursor->d_child);
166 		spin_unlock(&dentry->d_lock);
167 		dput(to);
168 
169 		file->f_pos = offset;
170 
171 		inode_unlock_shared(dentry->d_inode);
172 	}
173 	return offset;
174 }
175 EXPORT_SYMBOL(dcache_dir_lseek);
176 
177 /*
178  * Directory is locked and all positive dentries in it are safe, since
179  * for ramfs-type trees they can't go away without unlink() or rmdir(),
180  * both impossible due to the lock on directory.
181  */
182 
dcache_readdir(struct file * file,struct dir_context * ctx)183 int dcache_readdir(struct file *file, struct dir_context *ctx)
184 {
185 	struct dentry *dentry = file->f_path.dentry;
186 	struct dentry *cursor = file->private_data;
187 	struct list_head *anchor = &dentry->d_subdirs;
188 	struct dentry *next = NULL;
189 	struct list_head *p;
190 
191 	if (!dir_emit_dots(file, ctx))
192 		return 0;
193 
194 	if (ctx->pos == 2)
195 		p = anchor;
196 	else if (!list_empty(&cursor->d_child))
197 		p = &cursor->d_child;
198 	else
199 		return 0;
200 
201 	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
202 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
203 			      d_inode(next)->i_ino,
204 			      fs_umode_to_dtype(d_inode(next)->i_mode)))
205 			break;
206 		ctx->pos++;
207 		p = &next->d_child;
208 	}
209 	spin_lock(&dentry->d_lock);
210 	if (next)
211 		list_move_tail(&cursor->d_child, &next->d_child);
212 	else
213 		list_del_init(&cursor->d_child);
214 	spin_unlock(&dentry->d_lock);
215 	dput(next);
216 
217 	return 0;
218 }
219 EXPORT_SYMBOL(dcache_readdir);
220 
generic_read_dir(struct file * filp,char __user * buf,size_t siz,loff_t * ppos)221 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
222 {
223 	return -EISDIR;
224 }
225 EXPORT_SYMBOL(generic_read_dir);
226 
227 const struct file_operations simple_dir_operations = {
228 	.open		= dcache_dir_open,
229 	.release	= dcache_dir_close,
230 	.llseek		= dcache_dir_lseek,
231 	.read		= generic_read_dir,
232 	.iterate_shared	= dcache_readdir,
233 	.fsync		= noop_fsync,
234 };
235 EXPORT_SYMBOL(simple_dir_operations);
236 
237 const struct inode_operations simple_dir_inode_operations = {
238 	.lookup		= simple_lookup,
239 };
240 EXPORT_SYMBOL(simple_dir_inode_operations);
241 
242 /* simple_offset_add() never assigns these to a dentry */
243 enum {
244 	DIR_OFFSET_FIRST	= 2,		/* Find first real entry */
245 	DIR_OFFSET_EOD		= S32_MAX,
246 };
247 
248 /* simple_offset_add() allocation range */
249 enum {
250 	DIR_OFFSET_MIN		= DIR_OFFSET_FIRST + 1,
251 	DIR_OFFSET_MAX		= DIR_OFFSET_EOD - 1,
252 };
253 
offset_set(struct dentry * dentry,u32 offset)254 static void offset_set(struct dentry *dentry, u32 offset)
255 {
256 	dentry->d_fsdata = (void *)((uintptr_t)(offset));
257 }
258 
dentry2offset(struct dentry * dentry)259 static u32 dentry2offset(struct dentry *dentry)
260 {
261 	return (u32)((uintptr_t)(dentry->d_fsdata));
262 }
263 
264 static struct lock_class_key simple_offset_xa_lock;
265 
266 /**
267  * simple_offset_init - initialize an offset_ctx
268  * @octx: directory offset map to be initialized
269  *
270  */
simple_offset_init(struct offset_ctx * octx)271 void simple_offset_init(struct offset_ctx *octx)
272 {
273 	xa_init_flags(&octx->xa, XA_FLAGS_ALLOC1);
274 	lockdep_set_class(&octx->xa.xa_lock, &simple_offset_xa_lock);
275 	octx->next_offset = DIR_OFFSET_MIN;
276 }
277 
278 /**
279  * simple_offset_add - Add an entry to a directory's offset map
280  * @octx: directory offset ctx to be updated
281  * @dentry: new dentry being added
282  *
283  * Returns zero on success. @so_ctx and the dentry offset are updated.
284  * Otherwise, a negative errno value is returned.
285  */
simple_offset_add(struct offset_ctx * octx,struct dentry * dentry)286 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
287 {
288 	static const struct xa_limit limit = XA_LIMIT(DIR_OFFSET_MIN,
289 						      DIR_OFFSET_MAX);
290 	u32 offset;
291 	int ret;
292 
293 	if (dentry2offset(dentry) != 0)
294 		return -EBUSY;
295 
296 	ret = xa_alloc_cyclic(&octx->xa, &offset, dentry, limit,
297 			      &octx->next_offset, GFP_KERNEL);
298 	if (unlikely(ret < 0))
299 		return ret == -EBUSY ? -ENOSPC : ret;
300 
301 	offset_set(dentry, offset);
302 	return 0;
303 }
304 
simple_offset_replace(struct offset_ctx * octx,struct dentry * dentry,long offset)305 static int simple_offset_replace(struct offset_ctx *octx, struct dentry *dentry,
306 				 long offset)
307 {
308 	void *ret;
309 
310 	ret = xa_store(&octx->xa, offset, dentry, GFP_KERNEL);
311 	if (xa_is_err(ret))
312 		return xa_err(ret);
313 	offset_set(dentry, offset);
314 	return 0;
315 }
316 
317 /**
318  * simple_offset_remove - Remove an entry to a directory's offset map
319  * @octx: directory offset ctx to be updated
320  * @dentry: dentry being removed
321  *
322  */
simple_offset_remove(struct offset_ctx * octx,struct dentry * dentry)323 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
324 {
325 	u32 offset;
326 
327 	offset = dentry2offset(dentry);
328 	if (offset == 0)
329 		return;
330 
331 	xa_erase(&octx->xa, offset);
332 	offset_set(dentry, 0);
333 }
334 
335 /**
336  * simple_offset_rename - handle directory offsets for rename
337  * @old_dir: parent directory of source entry
338  * @old_dentry: dentry of source entry
339  * @new_dir: parent_directory of destination entry
340  * @new_dentry: dentry of destination
341  *
342  * Caller provides appropriate serialization.
343  *
344  * User space expects the directory offset value of the replaced
345  * (new) directory entry to be unchanged after a rename.
346  *
347  * Returns zero on success, a negative errno value on failure.
348  */
simple_offset_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)349 int simple_offset_rename(struct inode *old_dir, struct dentry *old_dentry,
350 			 struct inode *new_dir, struct dentry *new_dentry)
351 {
352 	struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
353 	struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
354 	long new_offset = dentry2offset(new_dentry);
355 
356 	simple_offset_remove(old_ctx, old_dentry);
357 
358 	if (new_offset) {
359 		offset_set(new_dentry, 0);
360 		return simple_offset_replace(new_ctx, old_dentry, new_offset);
361 	}
362 	return simple_offset_add(new_ctx, old_dentry);
363 }
364 
365 /**
366  * simple_offset_rename_exchange - exchange rename with directory offsets
367  * @old_dir: parent of dentry being moved
368  * @old_dentry: dentry being moved
369  * @new_dir: destination parent
370  * @new_dentry: destination dentry
371  *
372  * This API preserves the directory offset values. Caller provides
373  * appropriate serialization.
374  *
375  * Returns zero on success. Otherwise a negative errno is returned and the
376  * rename is rolled back.
377  */
simple_offset_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)378 int simple_offset_rename_exchange(struct inode *old_dir,
379 				  struct dentry *old_dentry,
380 				  struct inode *new_dir,
381 				  struct dentry *new_dentry)
382 {
383 	struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
384 	struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
385 	u32 old_index = dentry2offset(old_dentry);
386 	u32 new_index = dentry2offset(new_dentry);
387 	int ret;
388 
389 	simple_offset_remove(old_ctx, old_dentry);
390 	simple_offset_remove(new_ctx, new_dentry);
391 
392 	ret = simple_offset_replace(new_ctx, old_dentry, new_index);
393 	if (ret)
394 		goto out_restore;
395 
396 	ret = simple_offset_replace(old_ctx, new_dentry, old_index);
397 	if (ret) {
398 		simple_offset_remove(new_ctx, old_dentry);
399 		goto out_restore;
400 	}
401 
402 	ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
403 	if (ret) {
404 		simple_offset_remove(new_ctx, old_dentry);
405 		simple_offset_remove(old_ctx, new_dentry);
406 		goto out_restore;
407 	}
408 	return 0;
409 
410 out_restore:
411 	(void)simple_offset_replace(old_ctx, old_dentry, old_index);
412 	(void)simple_offset_replace(new_ctx, new_dentry, new_index);
413 	return ret;
414 }
415 
416 /**
417  * simple_offset_destroy - Release offset map
418  * @octx: directory offset ctx that is about to be destroyed
419  *
420  * During fs teardown (eg. umount), a directory's offset map might still
421  * contain entries. xa_destroy() cleans out anything that remains.
422  */
simple_offset_destroy(struct offset_ctx * octx)423 void simple_offset_destroy(struct offset_ctx *octx)
424 {
425 	xa_destroy(&octx->xa);
426 }
427 
428 /**
429  * offset_dir_llseek - Advance the read position of a directory descriptor
430  * @file: an open directory whose position is to be updated
431  * @offset: a byte offset
432  * @whence: enumerator describing the starting position for this update
433  *
434  * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
435  *
436  * Returns the updated read position if successful; otherwise a
437  * negative errno is returned and the read position remains unchanged.
438  */
offset_dir_llseek(struct file * file,loff_t offset,int whence)439 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
440 {
441 	switch (whence) {
442 	case SEEK_CUR:
443 		offset += file->f_pos;
444 		fallthrough;
445 	case SEEK_SET:
446 		if (offset >= 0)
447 			break;
448 		fallthrough;
449 	default:
450 		return -EINVAL;
451 	}
452 
453 	return vfs_setpos(file, offset, U32_MAX);
454 }
455 
find_positive_dentry(struct dentry * parent,struct dentry * dentry,bool next)456 static struct dentry *find_positive_dentry(struct dentry *parent,
457 					   struct dentry *dentry,
458 					   bool next)
459 {
460 	struct dentry *found = NULL;
461 
462 	spin_lock(&parent->d_lock);
463 	if (next)
464 		dentry = list_next_entry(dentry, d_child);
465 	else if (!dentry)
466 		dentry = list_first_entry_or_null(&parent->d_subdirs,
467 						  struct dentry, d_child);
468 	for (; dentry && !list_entry_is_head(dentry, &parent->d_subdirs, d_child);
469 	     dentry = list_next_entry(dentry, d_child)) {
470 		if (!simple_positive(dentry))
471 			continue;
472 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
473 		if (simple_positive(dentry))
474 			found = dget_dlock(dentry);
475 		spin_unlock(&dentry->d_lock);
476 		if (likely(found))
477 			break;
478 	}
479 	spin_unlock(&parent->d_lock);
480 	return found;
481 }
482 
483 static noinline_for_stack struct dentry *
offset_dir_lookup(struct dentry * parent,loff_t offset)484 offset_dir_lookup(struct dentry *parent, loff_t offset)
485 {
486 	struct inode *inode = d_inode(parent);
487 	struct offset_ctx *octx = inode->i_op->get_offset_ctx(inode);
488 	struct dentry *child, *found = NULL;
489 
490 	XA_STATE(xas, &octx->xa, offset);
491 
492 	if (offset == DIR_OFFSET_FIRST)
493 		found = find_positive_dentry(parent, NULL, false);
494 	else {
495 		rcu_read_lock();
496 		child = xas_next_entry(&xas, DIR_OFFSET_MAX);
497 		found = find_positive_dentry(parent, child, false);
498 		rcu_read_unlock();
499 	}
500 	return found;
501 }
502 
offset_dir_emit(struct dir_context * ctx,struct dentry * dentry)503 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
504 {
505 	struct inode *inode = d_inode(dentry);
506 
507 	return dir_emit(ctx, dentry->d_name.name, dentry->d_name.len,
508 			inode->i_ino, fs_umode_to_dtype(inode->i_mode));
509 }
510 
offset_iterate_dir(struct file * file,struct dir_context * ctx)511 static void offset_iterate_dir(struct file *file, struct dir_context *ctx)
512 {
513 	struct dentry *dir = file->f_path.dentry;
514 	struct dentry *dentry;
515 
516 	dentry = offset_dir_lookup(dir, ctx->pos);
517 	if (!dentry)
518 		goto out_eod;
519 	while (true) {
520 		struct dentry *next;
521 
522 		ctx->pos = dentry2offset(dentry);
523 		if (!offset_dir_emit(ctx, dentry))
524 			break;
525 
526 		next = find_positive_dentry(dir, dentry, true);
527 		dput(dentry);
528 
529 		if (!next)
530 			goto out_eod;
531 		dentry = next;
532 	}
533 	dput(dentry);
534 	return;
535 
536 out_eod:
537 	ctx->pos = DIR_OFFSET_EOD;
538 }
539 
540 /**
541  * offset_readdir - Emit entries starting at offset @ctx->pos
542  * @file: an open directory to iterate over
543  * @ctx: directory iteration context
544  *
545  * Caller must hold @file's i_rwsem to prevent insertion or removal of
546  * entries during this call.
547  *
548  * On entry, @ctx->pos contains an offset that represents the first entry
549  * to be read from the directory.
550  *
551  * The operation continues until there are no more entries to read, or
552  * until the ctx->actor indicates there is no more space in the caller's
553  * output buffer.
554  *
555  * On return, @ctx->pos contains an offset that will read the next entry
556  * in this directory when offset_readdir() is called again with @ctx.
557  * Caller places this value in the d_off field of the last entry in the
558  * user's buffer.
559  *
560  * Return values:
561  *   %0 - Complete
562  */
offset_readdir(struct file * file,struct dir_context * ctx)563 static int offset_readdir(struct file *file, struct dir_context *ctx)
564 {
565 	struct dentry *dir = file->f_path.dentry;
566 
567 	lockdep_assert_held(&d_inode(dir)->i_rwsem);
568 
569 	if (!dir_emit_dots(file, ctx))
570 		return 0;
571 	if (ctx->pos != DIR_OFFSET_EOD)
572 		offset_iterate_dir(file, ctx);
573 	return 0;
574 }
575 
576 const struct file_operations simple_offset_dir_operations = {
577 	.llseek		= offset_dir_llseek,
578 	.iterate_shared	= offset_readdir,
579 	.read		= generic_read_dir,
580 	.fsync		= noop_fsync,
581 };
582 
find_next_child(struct dentry * parent,struct dentry * prev)583 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
584 {
585 	struct dentry *child = NULL;
586 	struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
587 
588 	spin_lock(&parent->d_lock);
589 	while ((p = p->next) != &parent->d_subdirs) {
590 		struct dentry *d = container_of(p, struct dentry, d_child);
591 		if (simple_positive(d)) {
592 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
593 			if (simple_positive(d))
594 				child = dget_dlock(d);
595 			spin_unlock(&d->d_lock);
596 			if (likely(child))
597 				break;
598 		}
599 	}
600 	spin_unlock(&parent->d_lock);
601 	dput(prev);
602 	return child;
603 }
604 
simple_recursive_removal(struct dentry * dentry,void (* callback)(struct dentry *))605 void simple_recursive_removal(struct dentry *dentry,
606                               void (*callback)(struct dentry *))
607 {
608 	struct dentry *this = dget(dentry);
609 	while (true) {
610 		struct dentry *victim = NULL, *child;
611 		struct inode *inode = this->d_inode;
612 
613 		inode_lock(inode);
614 		if (d_is_dir(this))
615 			inode->i_flags |= S_DEAD;
616 		while ((child = find_next_child(this, victim)) == NULL) {
617 			// kill and ascend
618 			// update metadata while it's still locked
619 			inode_set_ctime_current(inode);
620 			clear_nlink(inode);
621 			inode_unlock(inode);
622 			victim = this;
623 			this = this->d_parent;
624 			inode = this->d_inode;
625 			inode_lock(inode);
626 			if (simple_positive(victim)) {
627 				d_invalidate(victim);	// avoid lost mounts
628 				if (d_is_dir(victim))
629 					fsnotify_rmdir(inode, victim);
630 				else
631 					fsnotify_unlink(inode, victim);
632 				if (callback)
633 					callback(victim);
634 				dput(victim);		// unpin it
635 			}
636 			if (victim == dentry) {
637 				inode_set_mtime_to_ts(inode,
638 						      inode_set_ctime_current(inode));
639 				if (d_is_dir(dentry))
640 					drop_nlink(inode);
641 				inode_unlock(inode);
642 				dput(dentry);
643 				return;
644 			}
645 		}
646 		inode_unlock(inode);
647 		this = child;
648 	}
649 }
650 EXPORT_SYMBOL(simple_recursive_removal);
651 
652 static const struct super_operations simple_super_operations = {
653 	.statfs		= simple_statfs,
654 };
655 
pseudo_fs_fill_super(struct super_block * s,struct fs_context * fc)656 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
657 {
658 	struct pseudo_fs_context *ctx = fc->fs_private;
659 	struct inode *root;
660 
661 	s->s_maxbytes = MAX_LFS_FILESIZE;
662 	s->s_blocksize = PAGE_SIZE;
663 	s->s_blocksize_bits = PAGE_SHIFT;
664 	s->s_magic = ctx->magic;
665 	s->s_op = ctx->ops ?: &simple_super_operations;
666 	s->s_xattr = ctx->xattr;
667 	s->s_time_gran = 1;
668 	root = new_inode(s);
669 	if (!root)
670 		return -ENOMEM;
671 
672 	/*
673 	 * since this is the first inode, make it number 1. New inodes created
674 	 * after this must take care not to collide with it (by passing
675 	 * max_reserved of 1 to iunique).
676 	 */
677 	root->i_ino = 1;
678 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
679 	simple_inode_init_ts(root);
680 	s->s_root = d_make_root(root);
681 	if (!s->s_root)
682 		return -ENOMEM;
683 	s->s_d_op = ctx->dops;
684 	return 0;
685 }
686 
pseudo_fs_get_tree(struct fs_context * fc)687 static int pseudo_fs_get_tree(struct fs_context *fc)
688 {
689 	return get_tree_nodev(fc, pseudo_fs_fill_super);
690 }
691 
pseudo_fs_free(struct fs_context * fc)692 static void pseudo_fs_free(struct fs_context *fc)
693 {
694 	kfree(fc->fs_private);
695 }
696 
697 static const struct fs_context_operations pseudo_fs_context_ops = {
698 	.free		= pseudo_fs_free,
699 	.get_tree	= pseudo_fs_get_tree,
700 };
701 
702 /*
703  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
704  * will never be mountable)
705  */
init_pseudo(struct fs_context * fc,unsigned long magic)706 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
707 					unsigned long magic)
708 {
709 	struct pseudo_fs_context *ctx;
710 
711 	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
712 	if (likely(ctx)) {
713 		ctx->magic = magic;
714 		fc->fs_private = ctx;
715 		fc->ops = &pseudo_fs_context_ops;
716 		fc->sb_flags |= SB_NOUSER;
717 		fc->global = true;
718 	}
719 	return ctx;
720 }
721 EXPORT_SYMBOL(init_pseudo);
722 
simple_open(struct inode * inode,struct file * file)723 int simple_open(struct inode *inode, struct file *file)
724 {
725 	if (inode->i_private)
726 		file->private_data = inode->i_private;
727 	return 0;
728 }
729 EXPORT_SYMBOL(simple_open);
730 
simple_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)731 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
732 {
733 	struct inode *inode = d_inode(old_dentry);
734 
735 	inode_set_mtime_to_ts(dir,
736 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
737 	inc_nlink(inode);
738 	ihold(inode);
739 	dget(dentry);
740 	d_instantiate(dentry, inode);
741 	return 0;
742 }
743 EXPORT_SYMBOL(simple_link);
744 
simple_empty(struct dentry * dentry)745 int simple_empty(struct dentry *dentry)
746 {
747 	struct dentry *child;
748 	int ret = 0;
749 
750 	spin_lock(&dentry->d_lock);
751 	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
752 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
753 		if (simple_positive(child)) {
754 			spin_unlock(&child->d_lock);
755 			goto out;
756 		}
757 		spin_unlock(&child->d_lock);
758 	}
759 	ret = 1;
760 out:
761 	spin_unlock(&dentry->d_lock);
762 	return ret;
763 }
764 EXPORT_SYMBOL(simple_empty);
765 
simple_unlink(struct inode * dir,struct dentry * dentry)766 int simple_unlink(struct inode *dir, struct dentry *dentry)
767 {
768 	struct inode *inode = d_inode(dentry);
769 
770 	inode_set_mtime_to_ts(dir,
771 			      inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode)));
772 	drop_nlink(inode);
773 	dput(dentry);
774 	return 0;
775 }
776 EXPORT_SYMBOL(simple_unlink);
777 
simple_rmdir(struct inode * dir,struct dentry * dentry)778 int simple_rmdir(struct inode *dir, struct dentry *dentry)
779 {
780 	if (!simple_empty(dentry))
781 		return -ENOTEMPTY;
782 
783 	drop_nlink(d_inode(dentry));
784 	simple_unlink(dir, dentry);
785 	drop_nlink(dir);
786 	return 0;
787 }
788 EXPORT_SYMBOL(simple_rmdir);
789 
790 /**
791  * simple_rename_timestamp - update the various inode timestamps for rename
792  * @old_dir: old parent directory
793  * @old_dentry: dentry that is being renamed
794  * @new_dir: new parent directory
795  * @new_dentry: target for rename
796  *
797  * POSIX mandates that the old and new parent directories have their ctime and
798  * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
799  * their ctime updated.
800  */
simple_rename_timestamp(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)801 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
802 			     struct inode *new_dir, struct dentry *new_dentry)
803 {
804 	struct inode *newino = d_inode(new_dentry);
805 
806 	inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir));
807 	if (new_dir != old_dir)
808 		inode_set_mtime_to_ts(new_dir,
809 				      inode_set_ctime_current(new_dir));
810 	inode_set_ctime_current(d_inode(old_dentry));
811 	if (newino)
812 		inode_set_ctime_current(newino);
813 }
814 EXPORT_SYMBOL_GPL(simple_rename_timestamp);
815 
simple_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)816 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
817 			   struct inode *new_dir, struct dentry *new_dentry)
818 {
819 	bool old_is_dir = d_is_dir(old_dentry);
820 	bool new_is_dir = d_is_dir(new_dentry);
821 
822 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
823 		if (old_is_dir) {
824 			drop_nlink(old_dir);
825 			inc_nlink(new_dir);
826 		} else {
827 			drop_nlink(new_dir);
828 			inc_nlink(old_dir);
829 		}
830 	}
831 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
832 	return 0;
833 }
834 EXPORT_SYMBOL_GPL(simple_rename_exchange);
835 
simple_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)836 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
837 		  struct dentry *old_dentry, struct inode *new_dir,
838 		  struct dentry *new_dentry, unsigned int flags)
839 {
840 	int they_are_dirs = d_is_dir(old_dentry);
841 
842 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
843 		return -EINVAL;
844 
845 	if (flags & RENAME_EXCHANGE)
846 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
847 
848 	if (!simple_empty(new_dentry))
849 		return -ENOTEMPTY;
850 
851 	if (d_really_is_positive(new_dentry)) {
852 		simple_unlink(new_dir, new_dentry);
853 		if (they_are_dirs) {
854 			drop_nlink(d_inode(new_dentry));
855 			drop_nlink(old_dir);
856 		}
857 	} else if (they_are_dirs) {
858 		drop_nlink(old_dir);
859 		inc_nlink(new_dir);
860 	}
861 
862 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
863 	return 0;
864 }
865 EXPORT_SYMBOL(simple_rename);
866 
867 /**
868  * simple_setattr - setattr for simple filesystem
869  * @idmap: idmap of the target mount
870  * @dentry: dentry
871  * @iattr: iattr structure
872  *
873  * Returns 0 on success, -error on failure.
874  *
875  * simple_setattr is a simple ->setattr implementation without a proper
876  * implementation of size changes.
877  *
878  * It can either be used for in-memory filesystems or special files
879  * on simple regular filesystems.  Anything that needs to change on-disk
880  * or wire state on size changes needs its own setattr method.
881  */
simple_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)882 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
883 		   struct iattr *iattr)
884 {
885 	struct inode *inode = d_inode(dentry);
886 	int error;
887 
888 	error = setattr_prepare(idmap, dentry, iattr);
889 	if (error)
890 		return error;
891 
892 	if (iattr->ia_valid & ATTR_SIZE)
893 		truncate_setsize(inode, iattr->ia_size);
894 	setattr_copy(idmap, inode, iattr);
895 	mark_inode_dirty(inode);
896 	return 0;
897 }
898 EXPORT_SYMBOL(simple_setattr);
899 
simple_read_folio(struct file * file,struct folio * folio)900 static int simple_read_folio(struct file *file, struct folio *folio)
901 {
902 	folio_zero_range(folio, 0, folio_size(folio));
903 	flush_dcache_folio(folio);
904 	folio_mark_uptodate(folio);
905 	folio_unlock(folio);
906 	return 0;
907 }
908 
simple_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)909 int simple_write_begin(struct file *file, struct address_space *mapping,
910 			loff_t pos, unsigned len,
911 			struct page **pagep, void **fsdata)
912 {
913 	struct folio *folio;
914 
915 	folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
916 			mapping_gfp_mask(mapping));
917 	if (IS_ERR(folio))
918 		return PTR_ERR(folio);
919 
920 	*pagep = &folio->page;
921 
922 	if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
923 		size_t from = offset_in_folio(folio, pos);
924 
925 		folio_zero_segments(folio, 0, from,
926 				from + len, folio_size(folio));
927 	}
928 	return 0;
929 }
930 EXPORT_SYMBOL(simple_write_begin);
931 
932 /**
933  * simple_write_end - .write_end helper for non-block-device FSes
934  * @file: See .write_end of address_space_operations
935  * @mapping: 		"
936  * @pos: 		"
937  * @len: 		"
938  * @copied: 		"
939  * @page: 		"
940  * @fsdata: 		"
941  *
942  * simple_write_end does the minimum needed for updating a page after writing is
943  * done. It has the same API signature as the .write_end of
944  * address_space_operations vector. So it can just be set onto .write_end for
945  * FSes that don't need any other processing. i_mutex is assumed to be held.
946  * Block based filesystems should use generic_write_end().
947  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
948  * is not called, so a filesystem that actually does store data in .write_inode
949  * should extend on what's done here with a call to mark_inode_dirty() in the
950  * case that i_size has changed.
951  *
952  * Use *ONLY* with simple_read_folio()
953  */
simple_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)954 static int simple_write_end(struct file *file, struct address_space *mapping,
955 			loff_t pos, unsigned len, unsigned copied,
956 			struct page *page, void *fsdata)
957 {
958 	struct folio *folio = page_folio(page);
959 	struct inode *inode = folio->mapping->host;
960 	loff_t last_pos = pos + copied;
961 
962 	/* zero the stale part of the folio if we did a short copy */
963 	if (!folio_test_uptodate(folio)) {
964 		if (copied < len) {
965 			size_t from = offset_in_folio(folio, pos);
966 
967 			folio_zero_range(folio, from + copied, len - copied);
968 		}
969 		folio_mark_uptodate(folio);
970 	}
971 	/*
972 	 * No need to use i_size_read() here, the i_size
973 	 * cannot change under us because we hold the i_mutex.
974 	 */
975 	if (last_pos > inode->i_size)
976 		i_size_write(inode, last_pos);
977 
978 	folio_mark_dirty(folio);
979 	folio_unlock(folio);
980 	folio_put(folio);
981 
982 	return copied;
983 }
984 
985 /*
986  * Provides ramfs-style behavior: data in the pagecache, but no writeback.
987  */
988 const struct address_space_operations ram_aops = {
989 	.read_folio	= simple_read_folio,
990 	.write_begin	= simple_write_begin,
991 	.write_end	= simple_write_end,
992 	.dirty_folio	= noop_dirty_folio,
993 };
994 EXPORT_SYMBOL(ram_aops);
995 
996 /*
997  * the inodes created here are not hashed. If you use iunique to generate
998  * unique inode values later for this filesystem, then you must take care
999  * to pass it an appropriate max_reserved value to avoid collisions.
1000  */
simple_fill_super(struct super_block * s,unsigned long magic,const struct tree_descr * files)1001 int simple_fill_super(struct super_block *s, unsigned long magic,
1002 		      const struct tree_descr *files)
1003 {
1004 	struct inode *inode;
1005 	struct dentry *root;
1006 	struct dentry *dentry;
1007 	int i;
1008 
1009 	s->s_blocksize = PAGE_SIZE;
1010 	s->s_blocksize_bits = PAGE_SHIFT;
1011 	s->s_magic = magic;
1012 	s->s_op = &simple_super_operations;
1013 	s->s_time_gran = 1;
1014 
1015 	inode = new_inode(s);
1016 	if (!inode)
1017 		return -ENOMEM;
1018 	/*
1019 	 * because the root inode is 1, the files array must not contain an
1020 	 * entry at index 1
1021 	 */
1022 	inode->i_ino = 1;
1023 	inode->i_mode = S_IFDIR | 0755;
1024 	simple_inode_init_ts(inode);
1025 	inode->i_op = &simple_dir_inode_operations;
1026 	inode->i_fop = &simple_dir_operations;
1027 	set_nlink(inode, 2);
1028 	root = d_make_root(inode);
1029 	if (!root)
1030 		return -ENOMEM;
1031 	for (i = 0; !files->name || files->name[0]; i++, files++) {
1032 		if (!files->name)
1033 			continue;
1034 
1035 		/* warn if it tries to conflict with the root inode */
1036 		if (unlikely(i == 1))
1037 			printk(KERN_WARNING "%s: %s passed in a files array"
1038 				"with an index of 1!\n", __func__,
1039 				s->s_type->name);
1040 
1041 		dentry = d_alloc_name(root, files->name);
1042 		if (!dentry)
1043 			goto out;
1044 		inode = new_inode(s);
1045 		if (!inode) {
1046 			dput(dentry);
1047 			goto out;
1048 		}
1049 		inode->i_mode = S_IFREG | files->mode;
1050 		simple_inode_init_ts(inode);
1051 		inode->i_fop = files->ops;
1052 		inode->i_ino = i;
1053 		d_add(dentry, inode);
1054 	}
1055 	s->s_root = root;
1056 	return 0;
1057 out:
1058 	d_genocide(root);
1059 	shrink_dcache_parent(root);
1060 	dput(root);
1061 	return -ENOMEM;
1062 }
1063 EXPORT_SYMBOL(simple_fill_super);
1064 
1065 static DEFINE_SPINLOCK(pin_fs_lock);
1066 
simple_pin_fs(struct file_system_type * type,struct vfsmount ** mount,int * count)1067 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
1068 {
1069 	struct vfsmount *mnt = NULL;
1070 	spin_lock(&pin_fs_lock);
1071 	if (unlikely(!*mount)) {
1072 		spin_unlock(&pin_fs_lock);
1073 		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
1074 		if (IS_ERR(mnt))
1075 			return PTR_ERR(mnt);
1076 		spin_lock(&pin_fs_lock);
1077 		if (!*mount)
1078 			*mount = mnt;
1079 	}
1080 	mntget(*mount);
1081 	++*count;
1082 	spin_unlock(&pin_fs_lock);
1083 	mntput(mnt);
1084 	return 0;
1085 }
1086 EXPORT_SYMBOL(simple_pin_fs);
1087 
simple_release_fs(struct vfsmount ** mount,int * count)1088 void simple_release_fs(struct vfsmount **mount, int *count)
1089 {
1090 	struct vfsmount *mnt;
1091 	spin_lock(&pin_fs_lock);
1092 	mnt = *mount;
1093 	if (!--*count)
1094 		*mount = NULL;
1095 	spin_unlock(&pin_fs_lock);
1096 	mntput(mnt);
1097 }
1098 EXPORT_SYMBOL(simple_release_fs);
1099 
1100 /**
1101  * simple_read_from_buffer - copy data from the buffer to user space
1102  * @to: the user space buffer to read to
1103  * @count: the maximum number of bytes to read
1104  * @ppos: the current position in the buffer
1105  * @from: the buffer to read from
1106  * @available: the size of the buffer
1107  *
1108  * The simple_read_from_buffer() function reads up to @count bytes from the
1109  * buffer @from at offset @ppos into the user space address starting at @to.
1110  *
1111  * On success, the number of bytes read is returned and the offset @ppos is
1112  * advanced by this number, or negative value is returned on error.
1113  **/
simple_read_from_buffer(void __user * to,size_t count,loff_t * ppos,const void * from,size_t available)1114 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1115 				const void *from, size_t available)
1116 {
1117 	loff_t pos = *ppos;
1118 	size_t ret;
1119 
1120 	if (pos < 0)
1121 		return -EINVAL;
1122 	if (pos >= available || !count)
1123 		return 0;
1124 	if (count > available - pos)
1125 		count = available - pos;
1126 	ret = copy_to_user(to, from + pos, count);
1127 	if (ret == count)
1128 		return -EFAULT;
1129 	count -= ret;
1130 	*ppos = pos + count;
1131 	return count;
1132 }
1133 EXPORT_SYMBOL(simple_read_from_buffer);
1134 
1135 /**
1136  * simple_write_to_buffer - copy data from user space to the buffer
1137  * @to: the buffer to write to
1138  * @available: the size of the buffer
1139  * @ppos: the current position in the buffer
1140  * @from: the user space buffer to read from
1141  * @count: the maximum number of bytes to read
1142  *
1143  * The simple_write_to_buffer() function reads up to @count bytes from the user
1144  * space address starting at @from into the buffer @to at offset @ppos.
1145  *
1146  * On success, the number of bytes written is returned and the offset @ppos is
1147  * advanced by this number, or negative value is returned on error.
1148  **/
simple_write_to_buffer(void * to,size_t available,loff_t * ppos,const void __user * from,size_t count)1149 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1150 		const void __user *from, size_t count)
1151 {
1152 	loff_t pos = *ppos;
1153 	size_t res;
1154 
1155 	if (pos < 0)
1156 		return -EINVAL;
1157 	if (pos >= available || !count)
1158 		return 0;
1159 	if (count > available - pos)
1160 		count = available - pos;
1161 	res = copy_from_user(to + pos, from, count);
1162 	if (res == count)
1163 		return -EFAULT;
1164 	count -= res;
1165 	*ppos = pos + count;
1166 	return count;
1167 }
1168 EXPORT_SYMBOL(simple_write_to_buffer);
1169 
1170 /**
1171  * memory_read_from_buffer - copy data from the buffer
1172  * @to: the kernel space buffer to read to
1173  * @count: the maximum number of bytes to read
1174  * @ppos: the current position in the buffer
1175  * @from: the buffer to read from
1176  * @available: the size of the buffer
1177  *
1178  * The memory_read_from_buffer() function reads up to @count bytes from the
1179  * buffer @from at offset @ppos into the kernel space address starting at @to.
1180  *
1181  * On success, the number of bytes read is returned and the offset @ppos is
1182  * advanced by this number, or negative value is returned on error.
1183  **/
memory_read_from_buffer(void * to,size_t count,loff_t * ppos,const void * from,size_t available)1184 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1185 				const void *from, size_t available)
1186 {
1187 	loff_t pos = *ppos;
1188 
1189 	if (pos < 0)
1190 		return -EINVAL;
1191 	if (pos >= available)
1192 		return 0;
1193 	if (count > available - pos)
1194 		count = available - pos;
1195 	memcpy(to, from + pos, count);
1196 	*ppos = pos + count;
1197 
1198 	return count;
1199 }
1200 EXPORT_SYMBOL(memory_read_from_buffer);
1201 
1202 /*
1203  * Transaction based IO.
1204  * The file expects a single write which triggers the transaction, and then
1205  * possibly a read which collects the result - which is stored in a
1206  * file-local buffer.
1207  */
1208 
simple_transaction_set(struct file * file,size_t n)1209 void simple_transaction_set(struct file *file, size_t n)
1210 {
1211 	struct simple_transaction_argresp *ar = file->private_data;
1212 
1213 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1214 
1215 	/*
1216 	 * The barrier ensures that ar->size will really remain zero until
1217 	 * ar->data is ready for reading.
1218 	 */
1219 	smp_mb();
1220 	ar->size = n;
1221 }
1222 EXPORT_SYMBOL(simple_transaction_set);
1223 
simple_transaction_get(struct file * file,const char __user * buf,size_t size)1224 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1225 {
1226 	struct simple_transaction_argresp *ar;
1227 	static DEFINE_SPINLOCK(simple_transaction_lock);
1228 
1229 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1230 		return ERR_PTR(-EFBIG);
1231 
1232 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1233 	if (!ar)
1234 		return ERR_PTR(-ENOMEM);
1235 
1236 	spin_lock(&simple_transaction_lock);
1237 
1238 	/* only one write allowed per open */
1239 	if (file->private_data) {
1240 		spin_unlock(&simple_transaction_lock);
1241 		free_page((unsigned long)ar);
1242 		return ERR_PTR(-EBUSY);
1243 	}
1244 
1245 	file->private_data = ar;
1246 
1247 	spin_unlock(&simple_transaction_lock);
1248 
1249 	if (copy_from_user(ar->data, buf, size))
1250 		return ERR_PTR(-EFAULT);
1251 
1252 	return ar->data;
1253 }
1254 EXPORT_SYMBOL(simple_transaction_get);
1255 
simple_transaction_read(struct file * file,char __user * buf,size_t size,loff_t * pos)1256 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1257 {
1258 	struct simple_transaction_argresp *ar = file->private_data;
1259 
1260 	if (!ar)
1261 		return 0;
1262 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1263 }
1264 EXPORT_SYMBOL(simple_transaction_read);
1265 
simple_transaction_release(struct inode * inode,struct file * file)1266 int simple_transaction_release(struct inode *inode, struct file *file)
1267 {
1268 	free_page((unsigned long)file->private_data);
1269 	return 0;
1270 }
1271 EXPORT_SYMBOL(simple_transaction_release);
1272 
1273 /* Simple attribute files */
1274 
1275 struct simple_attr {
1276 	int (*get)(void *, u64 *);
1277 	int (*set)(void *, u64);
1278 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
1279 	char set_buf[24];
1280 	void *data;
1281 	const char *fmt;	/* format for read operation */
1282 	struct mutex mutex;	/* protects access to these buffers */
1283 };
1284 
1285 /* simple_attr_open is called by an actual attribute open file operation
1286  * to set the attribute specific access operations. */
simple_attr_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)1287 int simple_attr_open(struct inode *inode, struct file *file,
1288 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
1289 		     const char *fmt)
1290 {
1291 	struct simple_attr *attr;
1292 
1293 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1294 	if (!attr)
1295 		return -ENOMEM;
1296 
1297 	attr->get = get;
1298 	attr->set = set;
1299 	attr->data = inode->i_private;
1300 	attr->fmt = fmt;
1301 	mutex_init(&attr->mutex);
1302 
1303 	file->private_data = attr;
1304 
1305 	return nonseekable_open(inode, file);
1306 }
1307 EXPORT_SYMBOL_GPL(simple_attr_open);
1308 
simple_attr_release(struct inode * inode,struct file * file)1309 int simple_attr_release(struct inode *inode, struct file *file)
1310 {
1311 	kfree(file->private_data);
1312 	return 0;
1313 }
1314 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
1315 
1316 /* read from the buffer that is filled with the get function */
simple_attr_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)1317 ssize_t simple_attr_read(struct file *file, char __user *buf,
1318 			 size_t len, loff_t *ppos)
1319 {
1320 	struct simple_attr *attr;
1321 	size_t size;
1322 	ssize_t ret;
1323 
1324 	attr = file->private_data;
1325 
1326 	if (!attr->get)
1327 		return -EACCES;
1328 
1329 	ret = mutex_lock_interruptible(&attr->mutex);
1330 	if (ret)
1331 		return ret;
1332 
1333 	if (*ppos && attr->get_buf[0]) {
1334 		/* continued read */
1335 		size = strlen(attr->get_buf);
1336 	} else {
1337 		/* first read */
1338 		u64 val;
1339 		ret = attr->get(attr->data, &val);
1340 		if (ret)
1341 			goto out;
1342 
1343 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1344 				 attr->fmt, (unsigned long long)val);
1345 	}
1346 
1347 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1348 out:
1349 	mutex_unlock(&attr->mutex);
1350 	return ret;
1351 }
1352 EXPORT_SYMBOL_GPL(simple_attr_read);
1353 
1354 /* interpret the buffer as a number to call the set function with */
simple_attr_write_xsigned(struct file * file,const char __user * buf,size_t len,loff_t * ppos,bool is_signed)1355 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1356 			  size_t len, loff_t *ppos, bool is_signed)
1357 {
1358 	struct simple_attr *attr;
1359 	unsigned long long val;
1360 	size_t size;
1361 	ssize_t ret;
1362 
1363 	attr = file->private_data;
1364 	if (!attr->set)
1365 		return -EACCES;
1366 
1367 	ret = mutex_lock_interruptible(&attr->mutex);
1368 	if (ret)
1369 		return ret;
1370 
1371 	ret = -EFAULT;
1372 	size = min(sizeof(attr->set_buf) - 1, len);
1373 	if (copy_from_user(attr->set_buf, buf, size))
1374 		goto out;
1375 
1376 	attr->set_buf[size] = '\0';
1377 	if (is_signed)
1378 		ret = kstrtoll(attr->set_buf, 0, &val);
1379 	else
1380 		ret = kstrtoull(attr->set_buf, 0, &val);
1381 	if (ret)
1382 		goto out;
1383 	ret = attr->set(attr->data, val);
1384 	if (ret == 0)
1385 		ret = len; /* on success, claim we got the whole input */
1386 out:
1387 	mutex_unlock(&attr->mutex);
1388 	return ret;
1389 }
1390 
simple_attr_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)1391 ssize_t simple_attr_write(struct file *file, const char __user *buf,
1392 			  size_t len, loff_t *ppos)
1393 {
1394 	return simple_attr_write_xsigned(file, buf, len, ppos, false);
1395 }
1396 EXPORT_SYMBOL_GPL(simple_attr_write);
1397 
simple_attr_write_signed(struct file * file,const char __user * buf,size_t len,loff_t * ppos)1398 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1399 			  size_t len, loff_t *ppos)
1400 {
1401 	return simple_attr_write_xsigned(file, buf, len, ppos, true);
1402 }
1403 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1404 
1405 /**
1406  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1407  * @sb:		filesystem to do the file handle conversion on
1408  * @fid:	file handle to convert
1409  * @fh_len:	length of the file handle in bytes
1410  * @fh_type:	type of file handle
1411  * @get_inode:	filesystem callback to retrieve inode
1412  *
1413  * This function decodes @fid as long as it has one of the well-known
1414  * Linux filehandle types and calls @get_inode on it to retrieve the
1415  * inode for the object specified in the file handle.
1416  */
generic_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))1417 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1418 		int fh_len, int fh_type, struct inode *(*get_inode)
1419 			(struct super_block *sb, u64 ino, u32 gen))
1420 {
1421 	struct inode *inode = NULL;
1422 
1423 	if (fh_len < 2)
1424 		return NULL;
1425 
1426 	switch (fh_type) {
1427 	case FILEID_INO32_GEN:
1428 	case FILEID_INO32_GEN_PARENT:
1429 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1430 		break;
1431 	}
1432 
1433 	return d_obtain_alias(inode);
1434 }
1435 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1436 
1437 /**
1438  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1439  * @sb:		filesystem to do the file handle conversion on
1440  * @fid:	file handle to convert
1441  * @fh_len:	length of the file handle in bytes
1442  * @fh_type:	type of file handle
1443  * @get_inode:	filesystem callback to retrieve inode
1444  *
1445  * This function decodes @fid as long as it has one of the well-known
1446  * Linux filehandle types and calls @get_inode on it to retrieve the
1447  * inode for the _parent_ object specified in the file handle if it
1448  * is specified in the file handle, or NULL otherwise.
1449  */
generic_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))1450 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1451 		int fh_len, int fh_type, struct inode *(*get_inode)
1452 			(struct super_block *sb, u64 ino, u32 gen))
1453 {
1454 	struct inode *inode = NULL;
1455 
1456 	if (fh_len <= 2)
1457 		return NULL;
1458 
1459 	switch (fh_type) {
1460 	case FILEID_INO32_GEN_PARENT:
1461 		inode = get_inode(sb, fid->i32.parent_ino,
1462 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
1463 		break;
1464 	}
1465 
1466 	return d_obtain_alias(inode);
1467 }
1468 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1469 
1470 /**
1471  * __generic_file_fsync - generic fsync implementation for simple filesystems
1472  *
1473  * @file:	file to synchronize
1474  * @start:	start offset in bytes
1475  * @end:	end offset in bytes (inclusive)
1476  * @datasync:	only synchronize essential metadata if true
1477  *
1478  * This is a generic implementation of the fsync method for simple
1479  * filesystems which track all non-inode metadata in the buffers list
1480  * hanging off the address_space structure.
1481  */
__generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1482 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1483 				 int datasync)
1484 {
1485 	struct inode *inode = file->f_mapping->host;
1486 	int err;
1487 	int ret;
1488 
1489 	err = file_write_and_wait_range(file, start, end);
1490 	if (err)
1491 		return err;
1492 
1493 	inode_lock(inode);
1494 	ret = sync_mapping_buffers(inode->i_mapping);
1495 	if (!(inode->i_state & I_DIRTY_ALL))
1496 		goto out;
1497 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1498 		goto out;
1499 
1500 	err = sync_inode_metadata(inode, 1);
1501 	if (ret == 0)
1502 		ret = err;
1503 
1504 out:
1505 	inode_unlock(inode);
1506 	/* check and advance again to catch errors after syncing out buffers */
1507 	err = file_check_and_advance_wb_err(file);
1508 	if (ret == 0)
1509 		ret = err;
1510 	return ret;
1511 }
1512 EXPORT_SYMBOL(__generic_file_fsync);
1513 
1514 /**
1515  * generic_file_fsync - generic fsync implementation for simple filesystems
1516  *			with flush
1517  * @file:	file to synchronize
1518  * @start:	start offset in bytes
1519  * @end:	end offset in bytes (inclusive)
1520  * @datasync:	only synchronize essential metadata if true
1521  *
1522  */
1523 
generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1524 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1525 		       int datasync)
1526 {
1527 	struct inode *inode = file->f_mapping->host;
1528 	int err;
1529 
1530 	err = __generic_file_fsync(file, start, end, datasync);
1531 	if (err)
1532 		return err;
1533 	return blkdev_issue_flush(inode->i_sb->s_bdev);
1534 }
1535 EXPORT_SYMBOL(generic_file_fsync);
1536 
1537 /**
1538  * generic_check_addressable - Check addressability of file system
1539  * @blocksize_bits:	log of file system block size
1540  * @num_blocks:		number of blocks in file system
1541  *
1542  * Determine whether a file system with @num_blocks blocks (and a
1543  * block size of 2**@blocksize_bits) is addressable by the sector_t
1544  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1545  */
generic_check_addressable(unsigned blocksize_bits,u64 num_blocks)1546 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1547 {
1548 	u64 last_fs_block = num_blocks - 1;
1549 	u64 last_fs_page =
1550 		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1551 
1552 	if (unlikely(num_blocks == 0))
1553 		return 0;
1554 
1555 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1556 		return -EINVAL;
1557 
1558 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1559 	    (last_fs_page > (pgoff_t)(~0ULL))) {
1560 		return -EFBIG;
1561 	}
1562 	return 0;
1563 }
1564 EXPORT_SYMBOL(generic_check_addressable);
1565 
1566 /*
1567  * No-op implementation of ->fsync for in-memory filesystems.
1568  */
noop_fsync(struct file * file,loff_t start,loff_t end,int datasync)1569 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1570 {
1571 	return 0;
1572 }
1573 EXPORT_SYMBOL(noop_fsync);
1574 
noop_direct_IO(struct kiocb * iocb,struct iov_iter * iter)1575 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1576 {
1577 	/*
1578 	 * iomap based filesystems support direct I/O without need for
1579 	 * this callback. However, it still needs to be set in
1580 	 * inode->a_ops so that open/fcntl know that direct I/O is
1581 	 * generally supported.
1582 	 */
1583 	return -EINVAL;
1584 }
1585 EXPORT_SYMBOL_GPL(noop_direct_IO);
1586 
1587 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
kfree_link(void * p)1588 void kfree_link(void *p)
1589 {
1590 	kfree(p);
1591 }
1592 EXPORT_SYMBOL(kfree_link);
1593 
alloc_anon_inode(struct super_block * s)1594 struct inode *alloc_anon_inode(struct super_block *s)
1595 {
1596 	static const struct address_space_operations anon_aops = {
1597 		.dirty_folio	= noop_dirty_folio,
1598 	};
1599 	struct inode *inode = new_inode_pseudo(s);
1600 
1601 	if (!inode)
1602 		return ERR_PTR(-ENOMEM);
1603 
1604 	inode->i_ino = get_next_ino();
1605 	inode->i_mapping->a_ops = &anon_aops;
1606 
1607 	/*
1608 	 * Mark the inode dirty from the very beginning,
1609 	 * that way it will never be moved to the dirty
1610 	 * list because mark_inode_dirty() will think
1611 	 * that it already _is_ on the dirty list.
1612 	 */
1613 	inode->i_state = I_DIRTY;
1614 	inode->i_mode = S_IRUSR | S_IWUSR;
1615 	inode->i_uid = current_fsuid();
1616 	inode->i_gid = current_fsgid();
1617 	inode->i_flags |= S_PRIVATE;
1618 	simple_inode_init_ts(inode);
1619 	return inode;
1620 }
1621 EXPORT_SYMBOL(alloc_anon_inode);
1622 
1623 /**
1624  * simple_nosetlease - generic helper for prohibiting leases
1625  * @filp: file pointer
1626  * @arg: type of lease to obtain
1627  * @flp: new lease supplied for insertion
1628  * @priv: private data for lm_setup operation
1629  *
1630  * Generic helper for filesystems that do not wish to allow leases to be set.
1631  * All arguments are ignored and it just returns -EINVAL.
1632  */
1633 int
simple_nosetlease(struct file * filp,int arg,struct file_lock ** flp,void ** priv)1634 simple_nosetlease(struct file *filp, int arg, struct file_lock **flp,
1635 		  void **priv)
1636 {
1637 	return -EINVAL;
1638 }
1639 EXPORT_SYMBOL(simple_nosetlease);
1640 
1641 /**
1642  * simple_get_link - generic helper to get the target of "fast" symlinks
1643  * @dentry: not used here
1644  * @inode: the symlink inode
1645  * @done: not used here
1646  *
1647  * Generic helper for filesystems to use for symlink inodes where a pointer to
1648  * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1649  * since as an optimization the path lookup code uses any non-NULL ->i_link
1650  * directly, without calling ->get_link().  But ->get_link() still must be set,
1651  * to mark the inode_operations as being for a symlink.
1652  *
1653  * Return: the symlink target
1654  */
simple_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1655 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1656 			    struct delayed_call *done)
1657 {
1658 	return inode->i_link;
1659 }
1660 EXPORT_SYMBOL(simple_get_link);
1661 
1662 const struct inode_operations simple_symlink_inode_operations = {
1663 	.get_link = simple_get_link,
1664 };
1665 EXPORT_SYMBOL(simple_symlink_inode_operations);
1666 
1667 /*
1668  * Operations for a permanently empty directory.
1669  */
empty_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1670 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1671 {
1672 	return ERR_PTR(-ENOENT);
1673 }
1674 
empty_dir_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1675 static int empty_dir_getattr(struct mnt_idmap *idmap,
1676 			     const struct path *path, struct kstat *stat,
1677 			     u32 request_mask, unsigned int query_flags)
1678 {
1679 	struct inode *inode = d_inode(path->dentry);
1680 	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
1681 	return 0;
1682 }
1683 
empty_dir_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1684 static int empty_dir_setattr(struct mnt_idmap *idmap,
1685 			     struct dentry *dentry, struct iattr *attr)
1686 {
1687 	return -EPERM;
1688 }
1689 
empty_dir_listxattr(struct dentry * dentry,char * list,size_t size)1690 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1691 {
1692 	return -EOPNOTSUPP;
1693 }
1694 
1695 static const struct inode_operations empty_dir_inode_operations = {
1696 	.lookup		= empty_dir_lookup,
1697 	.permission	= generic_permission,
1698 	.setattr	= empty_dir_setattr,
1699 	.getattr	= empty_dir_getattr,
1700 	.listxattr	= empty_dir_listxattr,
1701 };
1702 
empty_dir_llseek(struct file * file,loff_t offset,int whence)1703 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1704 {
1705 	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1706 	return generic_file_llseek_size(file, offset, whence, 2, 2);
1707 }
1708 
empty_dir_readdir(struct file * file,struct dir_context * ctx)1709 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1710 {
1711 	dir_emit_dots(file, ctx);
1712 	return 0;
1713 }
1714 
1715 static const struct file_operations empty_dir_operations = {
1716 	.llseek		= empty_dir_llseek,
1717 	.read		= generic_read_dir,
1718 	.iterate_shared	= empty_dir_readdir,
1719 	.fsync		= noop_fsync,
1720 };
1721 
1722 
make_empty_dir_inode(struct inode * inode)1723 void make_empty_dir_inode(struct inode *inode)
1724 {
1725 	set_nlink(inode, 2);
1726 	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1727 	inode->i_uid = GLOBAL_ROOT_UID;
1728 	inode->i_gid = GLOBAL_ROOT_GID;
1729 	inode->i_rdev = 0;
1730 	inode->i_size = 0;
1731 	inode->i_blkbits = PAGE_SHIFT;
1732 	inode->i_blocks = 0;
1733 
1734 	inode->i_op = &empty_dir_inode_operations;
1735 	inode->i_opflags &= ~IOP_XATTR;
1736 	inode->i_fop = &empty_dir_operations;
1737 }
1738 
is_empty_dir_inode(struct inode * inode)1739 bool is_empty_dir_inode(struct inode *inode)
1740 {
1741 	return (inode->i_fop == &empty_dir_operations) &&
1742 		(inode->i_op == &empty_dir_inode_operations);
1743 }
1744 
1745 #if IS_ENABLED(CONFIG_UNICODE)
1746 /**
1747  * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1748  * @dentry:	dentry whose name we are checking against
1749  * @len:	len of name of dentry
1750  * @str:	str pointer to name of dentry
1751  * @name:	Name to compare against
1752  *
1753  * Return: 0 if names match, 1 if mismatch, or -ERRNO
1754  */
generic_ci_d_compare(const struct dentry * dentry,unsigned int len,const char * str,const struct qstr * name)1755 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1756 				const char *str, const struct qstr *name)
1757 {
1758 	const struct dentry *parent = READ_ONCE(dentry->d_parent);
1759 	const struct inode *dir = READ_ONCE(parent->d_inode);
1760 	const struct super_block *sb = dentry->d_sb;
1761 	const struct unicode_map *um = sb->s_encoding;
1762 	struct qstr qstr = QSTR_INIT(str, len);
1763 	char strbuf[DNAME_INLINE_LEN];
1764 	int ret;
1765 
1766 	if (!dir || !IS_CASEFOLDED(dir))
1767 		goto fallback;
1768 	/*
1769 	 * If the dentry name is stored in-line, then it may be concurrently
1770 	 * modified by a rename.  If this happens, the VFS will eventually retry
1771 	 * the lookup, so it doesn't matter what ->d_compare() returns.
1772 	 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1773 	 * string.  Therefore, we have to copy the name into a temporary buffer.
1774 	 */
1775 	if (len <= DNAME_INLINE_LEN - 1) {
1776 		memcpy(strbuf, str, len);
1777 		strbuf[len] = 0;
1778 		qstr.name = strbuf;
1779 		/* prevent compiler from optimizing out the temporary buffer */
1780 		barrier();
1781 	}
1782 	ret = utf8_strncasecmp(um, name, &qstr);
1783 	if (ret >= 0)
1784 		return ret;
1785 
1786 	if (sb_has_strict_encoding(sb))
1787 		return -EINVAL;
1788 fallback:
1789 	if (len != name->len)
1790 		return 1;
1791 	return !!memcmp(str, name->name, len);
1792 }
1793 
1794 /**
1795  * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1796  * @dentry:	dentry of the parent directory
1797  * @str:	qstr of name whose hash we should fill in
1798  *
1799  * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1800  */
generic_ci_d_hash(const struct dentry * dentry,struct qstr * str)1801 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1802 {
1803 	const struct inode *dir = READ_ONCE(dentry->d_inode);
1804 	struct super_block *sb = dentry->d_sb;
1805 	const struct unicode_map *um = sb->s_encoding;
1806 	int ret = 0;
1807 
1808 	if (!dir || !IS_CASEFOLDED(dir))
1809 		return 0;
1810 
1811 	ret = utf8_casefold_hash(um, dentry, str);
1812 	if (ret < 0 && sb_has_strict_encoding(sb))
1813 		return -EINVAL;
1814 	return 0;
1815 }
1816 
1817 static const struct dentry_operations generic_ci_dentry_ops = {
1818 	.d_hash = generic_ci_d_hash,
1819 	.d_compare = generic_ci_d_compare,
1820 };
1821 #endif
1822 
1823 #ifdef CONFIG_FS_ENCRYPTION
1824 static const struct dentry_operations generic_encrypted_dentry_ops = {
1825 	.d_revalidate = fscrypt_d_revalidate,
1826 };
1827 #endif
1828 
1829 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1830 static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
1831 	.d_hash = generic_ci_d_hash,
1832 	.d_compare = generic_ci_d_compare,
1833 	.d_revalidate = fscrypt_d_revalidate,
1834 };
1835 #endif
1836 
1837 /**
1838  * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
1839  * @dentry:	dentry to set ops on
1840  *
1841  * Casefolded directories need d_hash and d_compare set, so that the dentries
1842  * contained in them are handled case-insensitively.  Note that these operations
1843  * are needed on the parent directory rather than on the dentries in it, and
1844  * while the casefolding flag can be toggled on and off on an empty directory,
1845  * dentry_operations can't be changed later.  As a result, if the filesystem has
1846  * casefolding support enabled at all, we have to give all dentries the
1847  * casefolding operations even if their inode doesn't have the casefolding flag
1848  * currently (and thus the casefolding ops would be no-ops for now).
1849  *
1850  * Encryption works differently in that the only dentry operation it needs is
1851  * d_revalidate, which it only needs on dentries that have the no-key name flag.
1852  * The no-key flag can't be set "later", so we don't have to worry about that.
1853  *
1854  * Finally, to maximize compatibility with overlayfs (which isn't compatible
1855  * with certain dentry operations) and to avoid taking an unnecessary
1856  * performance hit, we use custom dentry_operations for each possible
1857  * combination rather than always installing all operations.
1858  */
generic_set_encrypted_ci_d_ops(struct dentry * dentry)1859 void generic_set_encrypted_ci_d_ops(struct dentry *dentry)
1860 {
1861 #ifdef CONFIG_FS_ENCRYPTION
1862 	bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME;
1863 #endif
1864 #if IS_ENABLED(CONFIG_UNICODE)
1865 	bool needs_ci_ops = dentry->d_sb->s_encoding;
1866 #endif
1867 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1868 	if (needs_encrypt_ops && needs_ci_ops) {
1869 		d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops);
1870 		return;
1871 	}
1872 #endif
1873 #ifdef CONFIG_FS_ENCRYPTION
1874 	if (needs_encrypt_ops) {
1875 		d_set_d_op(dentry, &generic_encrypted_dentry_ops);
1876 		return;
1877 	}
1878 #endif
1879 #if IS_ENABLED(CONFIG_UNICODE)
1880 	if (needs_ci_ops) {
1881 		d_set_d_op(dentry, &generic_ci_dentry_ops);
1882 		return;
1883 	}
1884 #endif
1885 }
1886 EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);
1887 
1888 /**
1889  * inode_maybe_inc_iversion - increments i_version
1890  * @inode: inode with the i_version that should be updated
1891  * @force: increment the counter even if it's not necessary?
1892  *
1893  * Every time the inode is modified, the i_version field must be seen to have
1894  * changed by any observer.
1895  *
1896  * If "force" is set or the QUERIED flag is set, then ensure that we increment
1897  * the value, and clear the queried flag.
1898  *
1899  * In the common case where neither is set, then we can return "false" without
1900  * updating i_version.
1901  *
1902  * If this function returns false, and no other metadata has changed, then we
1903  * can avoid logging the metadata.
1904  */
inode_maybe_inc_iversion(struct inode * inode,bool force)1905 bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1906 {
1907 	u64 cur, new;
1908 
1909 	/*
1910 	 * The i_version field is not strictly ordered with any other inode
1911 	 * information, but the legacy inode_inc_iversion code used a spinlock
1912 	 * to serialize increments.
1913 	 *
1914 	 * Here, we add full memory barriers to ensure that any de-facto
1915 	 * ordering with other info is preserved.
1916 	 *
1917 	 * This barrier pairs with the barrier in inode_query_iversion()
1918 	 */
1919 	smp_mb();
1920 	cur = inode_peek_iversion_raw(inode);
1921 	do {
1922 		/* If flag is clear then we needn't do anything */
1923 		if (!force && !(cur & I_VERSION_QUERIED))
1924 			return false;
1925 
1926 		/* Since lowest bit is flag, add 2 to avoid it */
1927 		new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
1928 	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1929 	return true;
1930 }
1931 EXPORT_SYMBOL(inode_maybe_inc_iversion);
1932 
1933 /**
1934  * inode_query_iversion - read i_version for later use
1935  * @inode: inode from which i_version should be read
1936  *
1937  * Read the inode i_version counter. This should be used by callers that wish
1938  * to store the returned i_version for later comparison. This will guarantee
1939  * that a later query of the i_version will result in a different value if
1940  * anything has changed.
1941  *
1942  * In this implementation, we fetch the current value, set the QUERIED flag and
1943  * then try to swap it into place with a cmpxchg, if it wasn't already set. If
1944  * that fails, we try again with the newly fetched value from the cmpxchg.
1945  */
inode_query_iversion(struct inode * inode)1946 u64 inode_query_iversion(struct inode *inode)
1947 {
1948 	u64 cur, new;
1949 
1950 	cur = inode_peek_iversion_raw(inode);
1951 	do {
1952 		/* If flag is already set, then no need to swap */
1953 		if (cur & I_VERSION_QUERIED) {
1954 			/*
1955 			 * This barrier (and the implicit barrier in the
1956 			 * cmpxchg below) pairs with the barrier in
1957 			 * inode_maybe_inc_iversion().
1958 			 */
1959 			smp_mb();
1960 			break;
1961 		}
1962 
1963 		new = cur | I_VERSION_QUERIED;
1964 	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1965 	return cur >> I_VERSION_QUERIED_SHIFT;
1966 }
1967 EXPORT_SYMBOL(inode_query_iversion);
1968 
direct_write_fallback(struct kiocb * iocb,struct iov_iter * iter,ssize_t direct_written,ssize_t buffered_written)1969 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
1970 		ssize_t direct_written, ssize_t buffered_written)
1971 {
1972 	struct address_space *mapping = iocb->ki_filp->f_mapping;
1973 	loff_t pos = iocb->ki_pos - buffered_written;
1974 	loff_t end = iocb->ki_pos - 1;
1975 	int err;
1976 
1977 	/*
1978 	 * If the buffered write fallback returned an error, we want to return
1979 	 * the number of bytes which were written by direct I/O, or the error
1980 	 * code if that was zero.
1981 	 *
1982 	 * Note that this differs from normal direct-io semantics, which will
1983 	 * return -EFOO even if some bytes were written.
1984 	 */
1985 	if (unlikely(buffered_written < 0)) {
1986 		if (direct_written)
1987 			return direct_written;
1988 		return buffered_written;
1989 	}
1990 
1991 	/*
1992 	 * We need to ensure that the page cache pages are written to disk and
1993 	 * invalidated to preserve the expected O_DIRECT semantics.
1994 	 */
1995 	err = filemap_write_and_wait_range(mapping, pos, end);
1996 	if (err < 0) {
1997 		/*
1998 		 * We don't know how much we wrote, so just return the number of
1999 		 * bytes which were direct-written
2000 		 */
2001 		iocb->ki_pos -= buffered_written;
2002 		if (direct_written)
2003 			return direct_written;
2004 		return err;
2005 	}
2006 	invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
2007 	return direct_written + buffered_written;
2008 }
2009 EXPORT_SYMBOL_GPL(direct_write_fallback);
2010 
2011 /**
2012  * simple_inode_init_ts - initialize the timestamps for a new inode
2013  * @inode: inode to be initialized
2014  *
2015  * When a new inode is created, most filesystems set the timestamps to the
2016  * current time. Add a helper to do this.
2017  */
simple_inode_init_ts(struct inode * inode)2018 struct timespec64 simple_inode_init_ts(struct inode *inode)
2019 {
2020 	struct timespec64 ts = inode_set_ctime_current(inode);
2021 
2022 	inode_set_atime_to_ts(inode, ts);
2023 	inode_set_mtime_to_ts(inode, ts);
2024 	return ts;
2025 }
2026 EXPORT_SYMBOL(simple_inode_init_ts);
2027