1 /*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/fileattr.h>
32 #include <linux/mm.h>
33 #include <linux/random.h>
34 #include <linux/sched/signal.h>
35 #include <linux/export.h>
36 #include <linux/shmem_fs.h>
37 #include <linux/swap.h>
38 #include <linux/uio.h>
39 #include <linux/hugetlb.h>
40 #include <linux/fs_parser.h>
41 #include <linux/swapfile.h>
42 #include <linux/iversion.h>
43 #include "swap.h"
44
45 static struct vfsmount *shm_mnt;
46
47 #ifdef CONFIG_SHMEM
48 /*
49 * This virtual memory filesystem is heavily based on the ramfs. It
50 * extends ramfs by the ability to use swap and honor resource limits
51 * which makes it a completely usable filesystem.
52 */
53
54 #include <linux/xattr.h>
55 #include <linux/exportfs.h>
56 #include <linux/posix_acl.h>
57 #include <linux/posix_acl_xattr.h>
58 #include <linux/mman.h>
59 #include <linux/string.h>
60 #include <linux/slab.h>
61 #include <linux/backing-dev.h>
62 #include <linux/writeback.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/rmap.h>
80 #include <linux/uuid.h>
81 #include <linux/quotaops.h>
82
83 #include <linux/uaccess.h>
84
85 #include "internal.h"
86
87 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
88 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
89
90 /* Pretend that each entry is of this size in directory's i_size */
91 #define BOGO_DIRENT_SIZE 20
92
93 /* Pretend that one inode + its dentry occupy this much memory */
94 #define BOGO_INODE_SIZE 1024
95
96 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
97 #define SHORT_SYMLINK_LEN 128
98
99 /*
100 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
101 * inode->i_private (with i_rwsem making sure that it has only one user at
102 * a time): we would prefer not to enlarge the shmem inode just for that.
103 */
104 struct shmem_falloc {
105 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
106 pgoff_t start; /* start of range currently being fallocated */
107 pgoff_t next; /* the next page offset to be fallocated */
108 pgoff_t nr_falloced; /* how many new pages have been fallocated */
109 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
110 };
111
112 struct shmem_options {
113 unsigned long long blocks;
114 unsigned long long inodes;
115 struct mempolicy *mpol;
116 kuid_t uid;
117 kgid_t gid;
118 umode_t mode;
119 bool full_inums;
120 int huge;
121 int seen;
122 bool noswap;
123 unsigned short quota_types;
124 struct shmem_quota_limits qlimits;
125 #define SHMEM_SEEN_BLOCKS 1
126 #define SHMEM_SEEN_INODES 2
127 #define SHMEM_SEEN_HUGE 4
128 #define SHMEM_SEEN_INUMS 8
129 #define SHMEM_SEEN_NOSWAP 16
130 #define SHMEM_SEEN_QUOTA 32
131 };
132
133 #ifdef CONFIG_TMPFS
shmem_default_max_blocks(void)134 static unsigned long shmem_default_max_blocks(void)
135 {
136 return totalram_pages() / 2;
137 }
138
shmem_default_max_inodes(void)139 static unsigned long shmem_default_max_inodes(void)
140 {
141 unsigned long nr_pages = totalram_pages();
142
143 return min3(nr_pages - totalhigh_pages(), nr_pages / 2,
144 ULONG_MAX / BOGO_INODE_SIZE);
145 }
146 #endif
147
148 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
149 struct folio **foliop, enum sgp_type sgp,
150 gfp_t gfp, struct vm_area_struct *vma,
151 vm_fault_t *fault_type);
152
SHMEM_SB(struct super_block * sb)153 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
154 {
155 return sb->s_fs_info;
156 }
157
158 /*
159 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
160 * for shared memory and for shared anonymous (/dev/zero) mappings
161 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
162 * consistent with the pre-accounting of private mappings ...
163 */
shmem_acct_size(unsigned long flags,loff_t size)164 static inline int shmem_acct_size(unsigned long flags, loff_t size)
165 {
166 return (flags & VM_NORESERVE) ?
167 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
168 }
169
shmem_unacct_size(unsigned long flags,loff_t size)170 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
171 {
172 if (!(flags & VM_NORESERVE))
173 vm_unacct_memory(VM_ACCT(size));
174 }
175
shmem_reacct_size(unsigned long flags,loff_t oldsize,loff_t newsize)176 static inline int shmem_reacct_size(unsigned long flags,
177 loff_t oldsize, loff_t newsize)
178 {
179 if (!(flags & VM_NORESERVE)) {
180 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
181 return security_vm_enough_memory_mm(current->mm,
182 VM_ACCT(newsize) - VM_ACCT(oldsize));
183 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
184 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
185 }
186 return 0;
187 }
188
189 /*
190 * ... whereas tmpfs objects are accounted incrementally as
191 * pages are allocated, in order to allow large sparse files.
192 * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
193 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
194 */
shmem_acct_block(unsigned long flags,long pages)195 static inline int shmem_acct_block(unsigned long flags, long pages)
196 {
197 if (!(flags & VM_NORESERVE))
198 return 0;
199
200 return security_vm_enough_memory_mm(current->mm,
201 pages * VM_ACCT(PAGE_SIZE));
202 }
203
shmem_unacct_blocks(unsigned long flags,long pages)204 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
205 {
206 if (flags & VM_NORESERVE)
207 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
208 }
209
shmem_inode_acct_block(struct inode * inode,long pages)210 static int shmem_inode_acct_block(struct inode *inode, long pages)
211 {
212 struct shmem_inode_info *info = SHMEM_I(inode);
213 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
214 int err = -ENOSPC;
215
216 if (shmem_acct_block(info->flags, pages))
217 return err;
218
219 might_sleep(); /* when quotas */
220 if (sbinfo->max_blocks) {
221 if (percpu_counter_compare(&sbinfo->used_blocks,
222 sbinfo->max_blocks - pages) > 0)
223 goto unacct;
224
225 err = dquot_alloc_block_nodirty(inode, pages);
226 if (err)
227 goto unacct;
228
229 percpu_counter_add(&sbinfo->used_blocks, pages);
230 } else {
231 err = dquot_alloc_block_nodirty(inode, pages);
232 if (err)
233 goto unacct;
234 }
235
236 return 0;
237
238 unacct:
239 shmem_unacct_blocks(info->flags, pages);
240 return err;
241 }
242
shmem_inode_unacct_blocks(struct inode * inode,long pages)243 static void shmem_inode_unacct_blocks(struct inode *inode, long pages)
244 {
245 struct shmem_inode_info *info = SHMEM_I(inode);
246 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
247
248 might_sleep(); /* when quotas */
249 dquot_free_block_nodirty(inode, pages);
250
251 if (sbinfo->max_blocks)
252 percpu_counter_sub(&sbinfo->used_blocks, pages);
253 shmem_unacct_blocks(info->flags, pages);
254 }
255
256 static const struct super_operations shmem_ops;
257 const struct address_space_operations shmem_aops;
258 static const struct file_operations shmem_file_operations;
259 static const struct inode_operations shmem_inode_operations;
260 static const struct inode_operations shmem_dir_inode_operations;
261 static const struct inode_operations shmem_special_inode_operations;
262 static const struct vm_operations_struct shmem_vm_ops;
263 static const struct vm_operations_struct shmem_anon_vm_ops;
264 static struct file_system_type shmem_fs_type;
265
vma_is_anon_shmem(struct vm_area_struct * vma)266 bool vma_is_anon_shmem(struct vm_area_struct *vma)
267 {
268 return vma->vm_ops == &shmem_anon_vm_ops;
269 }
270
vma_is_shmem(struct vm_area_struct * vma)271 bool vma_is_shmem(struct vm_area_struct *vma)
272 {
273 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
274 }
275
276 static LIST_HEAD(shmem_swaplist);
277 static DEFINE_MUTEX(shmem_swaplist_mutex);
278
279 #ifdef CONFIG_TMPFS_QUOTA
280
shmem_enable_quotas(struct super_block * sb,unsigned short quota_types)281 static int shmem_enable_quotas(struct super_block *sb,
282 unsigned short quota_types)
283 {
284 int type, err = 0;
285
286 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
287 for (type = 0; type < SHMEM_MAXQUOTAS; type++) {
288 if (!(quota_types & (1 << type)))
289 continue;
290 err = dquot_load_quota_sb(sb, type, QFMT_SHMEM,
291 DQUOT_USAGE_ENABLED |
292 DQUOT_LIMITS_ENABLED);
293 if (err)
294 goto out_err;
295 }
296 return 0;
297
298 out_err:
299 pr_warn("tmpfs: failed to enable quota tracking (type=%d, err=%d)\n",
300 type, err);
301 for (type--; type >= 0; type--)
302 dquot_quota_off(sb, type);
303 return err;
304 }
305
shmem_disable_quotas(struct super_block * sb)306 static void shmem_disable_quotas(struct super_block *sb)
307 {
308 int type;
309
310 for (type = 0; type < SHMEM_MAXQUOTAS; type++)
311 dquot_quota_off(sb, type);
312 }
313
shmem_get_dquots(struct inode * inode)314 static struct dquot __rcu **shmem_get_dquots(struct inode *inode)
315 {
316 return SHMEM_I(inode)->i_dquot;
317 }
318 #endif /* CONFIG_TMPFS_QUOTA */
319
320 /*
321 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
322 * produces a novel ino for the newly allocated inode.
323 *
324 * It may also be called when making a hard link to permit the space needed by
325 * each dentry. However, in that case, no new inode number is needed since that
326 * internally draws from another pool of inode numbers (currently global
327 * get_next_ino()). This case is indicated by passing NULL as inop.
328 */
329 #define SHMEM_INO_BATCH 1024
shmem_reserve_inode(struct super_block * sb,ino_t * inop)330 static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
331 {
332 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
333 ino_t ino;
334
335 if (!(sb->s_flags & SB_KERNMOUNT)) {
336 raw_spin_lock(&sbinfo->stat_lock);
337 if (sbinfo->max_inodes) {
338 if (sbinfo->free_ispace < BOGO_INODE_SIZE) {
339 raw_spin_unlock(&sbinfo->stat_lock);
340 return -ENOSPC;
341 }
342 sbinfo->free_ispace -= BOGO_INODE_SIZE;
343 }
344 if (inop) {
345 ino = sbinfo->next_ino++;
346 if (unlikely(is_zero_ino(ino)))
347 ino = sbinfo->next_ino++;
348 if (unlikely(!sbinfo->full_inums &&
349 ino > UINT_MAX)) {
350 /*
351 * Emulate get_next_ino uint wraparound for
352 * compatibility
353 */
354 if (IS_ENABLED(CONFIG_64BIT))
355 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
356 __func__, MINOR(sb->s_dev));
357 sbinfo->next_ino = 1;
358 ino = sbinfo->next_ino++;
359 }
360 *inop = ino;
361 }
362 raw_spin_unlock(&sbinfo->stat_lock);
363 } else if (inop) {
364 /*
365 * __shmem_file_setup, one of our callers, is lock-free: it
366 * doesn't hold stat_lock in shmem_reserve_inode since
367 * max_inodes is always 0, and is called from potentially
368 * unknown contexts. As such, use a per-cpu batched allocator
369 * which doesn't require the per-sb stat_lock unless we are at
370 * the batch boundary.
371 *
372 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
373 * shmem mounts are not exposed to userspace, so we don't need
374 * to worry about things like glibc compatibility.
375 */
376 ino_t *next_ino;
377
378 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
379 ino = *next_ino;
380 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
381 raw_spin_lock(&sbinfo->stat_lock);
382 ino = sbinfo->next_ino;
383 sbinfo->next_ino += SHMEM_INO_BATCH;
384 raw_spin_unlock(&sbinfo->stat_lock);
385 if (unlikely(is_zero_ino(ino)))
386 ino++;
387 }
388 *inop = ino;
389 *next_ino = ++ino;
390 put_cpu();
391 }
392
393 return 0;
394 }
395
shmem_free_inode(struct super_block * sb,size_t freed_ispace)396 static void shmem_free_inode(struct super_block *sb, size_t freed_ispace)
397 {
398 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
399 if (sbinfo->max_inodes) {
400 raw_spin_lock(&sbinfo->stat_lock);
401 sbinfo->free_ispace += BOGO_INODE_SIZE + freed_ispace;
402 raw_spin_unlock(&sbinfo->stat_lock);
403 }
404 }
405
406 /**
407 * shmem_recalc_inode - recalculate the block usage of an inode
408 * @inode: inode to recalc
409 * @alloced: the change in number of pages allocated to inode
410 * @swapped: the change in number of pages swapped from inode
411 *
412 * We have to calculate the free blocks since the mm can drop
413 * undirtied hole pages behind our back.
414 *
415 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
416 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
417 */
shmem_recalc_inode(struct inode * inode,long alloced,long swapped)418 static void shmem_recalc_inode(struct inode *inode, long alloced, long swapped)
419 {
420 struct shmem_inode_info *info = SHMEM_I(inode);
421 long freed;
422
423 spin_lock(&info->lock);
424 info->alloced += alloced;
425 info->swapped += swapped;
426 freed = info->alloced - info->swapped -
427 READ_ONCE(inode->i_mapping->nrpages);
428 /*
429 * Special case: whereas normally shmem_recalc_inode() is called
430 * after i_mapping->nrpages has already been adjusted (up or down),
431 * shmem_writepage() has to raise swapped before nrpages is lowered -
432 * to stop a racing shmem_recalc_inode() from thinking that a page has
433 * been freed. Compensate here, to avoid the need for a followup call.
434 */
435 if (swapped > 0)
436 freed += swapped;
437 if (freed > 0)
438 info->alloced -= freed;
439 spin_unlock(&info->lock);
440
441 /* The quota case may block */
442 if (freed > 0)
443 shmem_inode_unacct_blocks(inode, freed);
444 }
445
shmem_charge(struct inode * inode,long pages)446 bool shmem_charge(struct inode *inode, long pages)
447 {
448 struct address_space *mapping = inode->i_mapping;
449
450 if (shmem_inode_acct_block(inode, pages))
451 return false;
452
453 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
454 xa_lock_irq(&mapping->i_pages);
455 mapping->nrpages += pages;
456 xa_unlock_irq(&mapping->i_pages);
457
458 shmem_recalc_inode(inode, pages, 0);
459 return true;
460 }
461
shmem_uncharge(struct inode * inode,long pages)462 void shmem_uncharge(struct inode *inode, long pages)
463 {
464 /* pages argument is currently unused: keep it to help debugging */
465 /* nrpages adjustment done by __filemap_remove_folio() or caller */
466
467 shmem_recalc_inode(inode, 0, 0);
468 }
469
470 /*
471 * Replace item expected in xarray by a new item, while holding xa_lock.
472 */
shmem_replace_entry(struct address_space * mapping,pgoff_t index,void * expected,void * replacement)473 static int shmem_replace_entry(struct address_space *mapping,
474 pgoff_t index, void *expected, void *replacement)
475 {
476 XA_STATE(xas, &mapping->i_pages, index);
477 void *item;
478
479 VM_BUG_ON(!expected);
480 VM_BUG_ON(!replacement);
481 item = xas_load(&xas);
482 if (item != expected)
483 return -ENOENT;
484 xas_store(&xas, replacement);
485 return 0;
486 }
487
488 /*
489 * Sometimes, before we decide whether to proceed or to fail, we must check
490 * that an entry was not already brought back from swap by a racing thread.
491 *
492 * Checking page is not enough: by the time a SwapCache page is locked, it
493 * might be reused, and again be SwapCache, using the same swap as before.
494 */
shmem_confirm_swap(struct address_space * mapping,pgoff_t index,swp_entry_t swap)495 static bool shmem_confirm_swap(struct address_space *mapping,
496 pgoff_t index, swp_entry_t swap)
497 {
498 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
499 }
500
501 /*
502 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
503 *
504 * SHMEM_HUGE_NEVER:
505 * disables huge pages for the mount;
506 * SHMEM_HUGE_ALWAYS:
507 * enables huge pages for the mount;
508 * SHMEM_HUGE_WITHIN_SIZE:
509 * only allocate huge pages if the page will be fully within i_size,
510 * also respect fadvise()/madvise() hints;
511 * SHMEM_HUGE_ADVISE:
512 * only allocate huge pages if requested with fadvise()/madvise();
513 */
514
515 #define SHMEM_HUGE_NEVER 0
516 #define SHMEM_HUGE_ALWAYS 1
517 #define SHMEM_HUGE_WITHIN_SIZE 2
518 #define SHMEM_HUGE_ADVISE 3
519
520 /*
521 * Special values.
522 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
523 *
524 * SHMEM_HUGE_DENY:
525 * disables huge on shm_mnt and all mounts, for emergency use;
526 * SHMEM_HUGE_FORCE:
527 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
528 *
529 */
530 #define SHMEM_HUGE_DENY (-1)
531 #define SHMEM_HUGE_FORCE (-2)
532
533 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
534 /* ifdef here to avoid bloating shmem.o when not necessary */
535
536 static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
537
__shmem_is_huge(struct inode * inode,pgoff_t index,bool shmem_huge_force,struct mm_struct * mm,unsigned long vm_flags)538 static bool __shmem_is_huge(struct inode *inode, pgoff_t index,
539 bool shmem_huge_force, struct mm_struct *mm,
540 unsigned long vm_flags)
541 {
542 loff_t i_size;
543
544 if (!S_ISREG(inode->i_mode))
545 return false;
546 if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
547 return false;
548 if (shmem_huge == SHMEM_HUGE_DENY)
549 return false;
550 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
551 return true;
552
553 switch (SHMEM_SB(inode->i_sb)->huge) {
554 case SHMEM_HUGE_ALWAYS:
555 return true;
556 case SHMEM_HUGE_WITHIN_SIZE:
557 index = round_up(index + 1, HPAGE_PMD_NR);
558 i_size = round_up(i_size_read(inode), PAGE_SIZE);
559 if (i_size >> PAGE_SHIFT >= index)
560 return true;
561 fallthrough;
562 case SHMEM_HUGE_ADVISE:
563 if (mm && (vm_flags & VM_HUGEPAGE))
564 return true;
565 fallthrough;
566 default:
567 return false;
568 }
569 }
570
shmem_is_huge(struct inode * inode,pgoff_t index,bool shmem_huge_force,struct mm_struct * mm,unsigned long vm_flags)571 bool shmem_is_huge(struct inode *inode, pgoff_t index,
572 bool shmem_huge_force, struct mm_struct *mm,
573 unsigned long vm_flags)
574 {
575 if (HPAGE_PMD_ORDER > MAX_PAGECACHE_ORDER)
576 return false;
577
578 return __shmem_is_huge(inode, index, shmem_huge_force, mm, vm_flags);
579 }
580
581 #if defined(CONFIG_SYSFS)
shmem_parse_huge(const char * str)582 static int shmem_parse_huge(const char *str)
583 {
584 if (!strcmp(str, "never"))
585 return SHMEM_HUGE_NEVER;
586 if (!strcmp(str, "always"))
587 return SHMEM_HUGE_ALWAYS;
588 if (!strcmp(str, "within_size"))
589 return SHMEM_HUGE_WITHIN_SIZE;
590 if (!strcmp(str, "advise"))
591 return SHMEM_HUGE_ADVISE;
592 if (!strcmp(str, "deny"))
593 return SHMEM_HUGE_DENY;
594 if (!strcmp(str, "force"))
595 return SHMEM_HUGE_FORCE;
596 return -EINVAL;
597 }
598 #endif
599
600 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
shmem_format_huge(int huge)601 static const char *shmem_format_huge(int huge)
602 {
603 switch (huge) {
604 case SHMEM_HUGE_NEVER:
605 return "never";
606 case SHMEM_HUGE_ALWAYS:
607 return "always";
608 case SHMEM_HUGE_WITHIN_SIZE:
609 return "within_size";
610 case SHMEM_HUGE_ADVISE:
611 return "advise";
612 case SHMEM_HUGE_DENY:
613 return "deny";
614 case SHMEM_HUGE_FORCE:
615 return "force";
616 default:
617 VM_BUG_ON(1);
618 return "bad_val";
619 }
620 }
621 #endif
622
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)623 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
624 struct shrink_control *sc, unsigned long nr_to_split)
625 {
626 LIST_HEAD(list), *pos, *next;
627 LIST_HEAD(to_remove);
628 struct inode *inode;
629 struct shmem_inode_info *info;
630 struct folio *folio;
631 unsigned long batch = sc ? sc->nr_to_scan : 128;
632 int split = 0;
633
634 if (list_empty(&sbinfo->shrinklist))
635 return SHRINK_STOP;
636
637 spin_lock(&sbinfo->shrinklist_lock);
638 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
639 info = list_entry(pos, struct shmem_inode_info, shrinklist);
640
641 /* pin the inode */
642 inode = igrab(&info->vfs_inode);
643
644 /* inode is about to be evicted */
645 if (!inode) {
646 list_del_init(&info->shrinklist);
647 goto next;
648 }
649
650 /* Check if there's anything to gain */
651 if (round_up(inode->i_size, PAGE_SIZE) ==
652 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
653 list_move(&info->shrinklist, &to_remove);
654 goto next;
655 }
656
657 list_move(&info->shrinklist, &list);
658 next:
659 sbinfo->shrinklist_len--;
660 if (!--batch)
661 break;
662 }
663 spin_unlock(&sbinfo->shrinklist_lock);
664
665 list_for_each_safe(pos, next, &to_remove) {
666 info = list_entry(pos, struct shmem_inode_info, shrinklist);
667 inode = &info->vfs_inode;
668 list_del_init(&info->shrinklist);
669 iput(inode);
670 }
671
672 list_for_each_safe(pos, next, &list) {
673 int ret;
674 pgoff_t index;
675
676 info = list_entry(pos, struct shmem_inode_info, shrinklist);
677 inode = &info->vfs_inode;
678
679 if (nr_to_split && split >= nr_to_split)
680 goto move_back;
681
682 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
683 folio = filemap_get_folio(inode->i_mapping, index);
684 if (IS_ERR(folio))
685 goto drop;
686
687 /* No huge page at the end of the file: nothing to split */
688 if (!folio_test_large(folio)) {
689 folio_put(folio);
690 goto drop;
691 }
692
693 /*
694 * Move the inode on the list back to shrinklist if we failed
695 * to lock the page at this time.
696 *
697 * Waiting for the lock may lead to deadlock in the
698 * reclaim path.
699 */
700 if (!folio_trylock(folio)) {
701 folio_put(folio);
702 goto move_back;
703 }
704
705 ret = split_folio(folio);
706 folio_unlock(folio);
707 folio_put(folio);
708
709 /* If split failed move the inode on the list back to shrinklist */
710 if (ret)
711 goto move_back;
712
713 split++;
714 drop:
715 list_del_init(&info->shrinklist);
716 goto put;
717 move_back:
718 /*
719 * Make sure the inode is either on the global list or deleted
720 * from any local list before iput() since it could be deleted
721 * in another thread once we put the inode (then the local list
722 * is corrupted).
723 */
724 spin_lock(&sbinfo->shrinklist_lock);
725 list_move(&info->shrinklist, &sbinfo->shrinklist);
726 sbinfo->shrinklist_len++;
727 spin_unlock(&sbinfo->shrinklist_lock);
728 put:
729 iput(inode);
730 }
731
732 return split;
733 }
734
shmem_unused_huge_scan(struct super_block * sb,struct shrink_control * sc)735 static long shmem_unused_huge_scan(struct super_block *sb,
736 struct shrink_control *sc)
737 {
738 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
739
740 if (!READ_ONCE(sbinfo->shrinklist_len))
741 return SHRINK_STOP;
742
743 return shmem_unused_huge_shrink(sbinfo, sc, 0);
744 }
745
shmem_unused_huge_count(struct super_block * sb,struct shrink_control * sc)746 static long shmem_unused_huge_count(struct super_block *sb,
747 struct shrink_control *sc)
748 {
749 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
750 return READ_ONCE(sbinfo->shrinklist_len);
751 }
752 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
753
754 #define shmem_huge SHMEM_HUGE_DENY
755
shmem_unused_huge_shrink(struct shmem_sb_info * sbinfo,struct shrink_control * sc,unsigned long nr_to_split)756 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
757 struct shrink_control *sc, unsigned long nr_to_split)
758 {
759 return 0;
760 }
761 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
762
763 /*
764 * Like filemap_add_folio, but error if expected item has gone.
765 */
shmem_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t index,void * expected,gfp_t gfp,struct mm_struct * charge_mm)766 static int shmem_add_to_page_cache(struct folio *folio,
767 struct address_space *mapping,
768 pgoff_t index, void *expected, gfp_t gfp,
769 struct mm_struct *charge_mm)
770 {
771 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
772 long nr = folio_nr_pages(folio);
773 int error;
774
775 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
776 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
777 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
778 VM_BUG_ON(expected && folio_test_large(folio));
779
780 folio_ref_add(folio, nr);
781 folio->mapping = mapping;
782 folio->index = index;
783
784 if (!folio_test_swapcache(folio)) {
785 error = mem_cgroup_charge(folio, charge_mm, gfp);
786 if (error) {
787 if (folio_test_pmd_mappable(folio)) {
788 count_vm_event(THP_FILE_FALLBACK);
789 count_vm_event(THP_FILE_FALLBACK_CHARGE);
790 }
791 goto error;
792 }
793 }
794 folio_throttle_swaprate(folio, gfp);
795
796 do {
797 xas_lock_irq(&xas);
798 if (expected != xas_find_conflict(&xas)) {
799 xas_set_err(&xas, -EEXIST);
800 goto unlock;
801 }
802 if (expected && xas_find_conflict(&xas)) {
803 xas_set_err(&xas, -EEXIST);
804 goto unlock;
805 }
806 xas_store(&xas, folio);
807 if (xas_error(&xas))
808 goto unlock;
809 if (folio_test_pmd_mappable(folio)) {
810 count_vm_event(THP_FILE_ALLOC);
811 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
812 }
813 mapping->nrpages += nr;
814 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
815 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
816 unlock:
817 xas_unlock_irq(&xas);
818 } while (xas_nomem(&xas, gfp));
819
820 if (xas_error(&xas)) {
821 error = xas_error(&xas);
822 goto error;
823 }
824
825 return 0;
826 error:
827 folio->mapping = NULL;
828 folio_ref_sub(folio, nr);
829 return error;
830 }
831
832 /*
833 * Like delete_from_page_cache, but substitutes swap for @folio.
834 */
shmem_delete_from_page_cache(struct folio * folio,void * radswap)835 static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
836 {
837 struct address_space *mapping = folio->mapping;
838 long nr = folio_nr_pages(folio);
839 int error;
840
841 xa_lock_irq(&mapping->i_pages);
842 error = shmem_replace_entry(mapping, folio->index, folio, radswap);
843 folio->mapping = NULL;
844 mapping->nrpages -= nr;
845 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
846 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
847 xa_unlock_irq(&mapping->i_pages);
848 folio_put(folio);
849 BUG_ON(error);
850 }
851
852 /*
853 * Remove swap entry from page cache, free the swap and its page cache.
854 */
shmem_free_swap(struct address_space * mapping,pgoff_t index,void * radswap)855 static int shmem_free_swap(struct address_space *mapping,
856 pgoff_t index, void *radswap)
857 {
858 void *old;
859
860 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
861 if (old != radswap)
862 return -ENOENT;
863 free_swap_and_cache(radix_to_swp_entry(radswap));
864 return 0;
865 }
866
867 /*
868 * Determine (in bytes) how many of the shmem object's pages mapped by the
869 * given offsets are swapped out.
870 *
871 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
872 * as long as the inode doesn't go away and racy results are not a problem.
873 */
shmem_partial_swap_usage(struct address_space * mapping,pgoff_t start,pgoff_t end)874 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
875 pgoff_t start, pgoff_t end)
876 {
877 XA_STATE(xas, &mapping->i_pages, start);
878 struct page *page;
879 unsigned long swapped = 0;
880 unsigned long max = end - 1;
881
882 rcu_read_lock();
883 xas_for_each(&xas, page, max) {
884 if (xas_retry(&xas, page))
885 continue;
886 if (xa_is_value(page))
887 swapped++;
888 if (xas.xa_index == max)
889 break;
890 if (need_resched()) {
891 xas_pause(&xas);
892 cond_resched_rcu();
893 }
894 }
895
896 rcu_read_unlock();
897
898 return swapped << PAGE_SHIFT;
899 }
900
901 /*
902 * Determine (in bytes) how many of the shmem object's pages mapped by the
903 * given vma is swapped out.
904 *
905 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
906 * as long as the inode doesn't go away and racy results are not a problem.
907 */
shmem_swap_usage(struct vm_area_struct * vma)908 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
909 {
910 struct inode *inode = file_inode(vma->vm_file);
911 struct shmem_inode_info *info = SHMEM_I(inode);
912 struct address_space *mapping = inode->i_mapping;
913 unsigned long swapped;
914
915 /* Be careful as we don't hold info->lock */
916 swapped = READ_ONCE(info->swapped);
917
918 /*
919 * The easier cases are when the shmem object has nothing in swap, or
920 * the vma maps it whole. Then we can simply use the stats that we
921 * already track.
922 */
923 if (!swapped)
924 return 0;
925
926 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
927 return swapped << PAGE_SHIFT;
928
929 /* Here comes the more involved part */
930 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
931 vma->vm_pgoff + vma_pages(vma));
932 }
933
934 /*
935 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
936 */
shmem_unlock_mapping(struct address_space * mapping)937 void shmem_unlock_mapping(struct address_space *mapping)
938 {
939 struct folio_batch fbatch;
940 pgoff_t index = 0;
941
942 folio_batch_init(&fbatch);
943 /*
944 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
945 */
946 while (!mapping_unevictable(mapping) &&
947 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
948 check_move_unevictable_folios(&fbatch);
949 folio_batch_release(&fbatch);
950 cond_resched();
951 }
952 }
953
shmem_get_partial_folio(struct inode * inode,pgoff_t index)954 static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
955 {
956 struct folio *folio;
957
958 /*
959 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
960 * beyond i_size, and reports fallocated folios as holes.
961 */
962 folio = filemap_get_entry(inode->i_mapping, index);
963 if (!folio)
964 return folio;
965 if (!xa_is_value(folio)) {
966 folio_lock(folio);
967 if (folio->mapping == inode->i_mapping)
968 return folio;
969 /* The folio has been swapped out */
970 folio_unlock(folio);
971 folio_put(folio);
972 }
973 /*
974 * But read a folio back from swap if any of it is within i_size
975 * (although in some cases this is just a waste of time).
976 */
977 folio = NULL;
978 shmem_get_folio(inode, index, &folio, SGP_READ);
979 return folio;
980 }
981
982 /*
983 * Remove range of pages and swap entries from page cache, and free them.
984 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
985 */
shmem_undo_range(struct inode * inode,loff_t lstart,loff_t lend,bool unfalloc)986 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
987 bool unfalloc)
988 {
989 struct address_space *mapping = inode->i_mapping;
990 struct shmem_inode_info *info = SHMEM_I(inode);
991 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
992 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
993 struct folio_batch fbatch;
994 pgoff_t indices[PAGEVEC_SIZE];
995 struct folio *folio;
996 bool same_folio;
997 long nr_swaps_freed = 0;
998 pgoff_t index;
999 int i;
1000
1001 if (lend == -1)
1002 end = -1; /* unsigned, so actually very big */
1003
1004 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
1005 info->fallocend = start;
1006
1007 folio_batch_init(&fbatch);
1008 index = start;
1009 while (index < end && find_lock_entries(mapping, &index, end - 1,
1010 &fbatch, indices)) {
1011 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1012 folio = fbatch.folios[i];
1013
1014 if (xa_is_value(folio)) {
1015 if (unfalloc)
1016 continue;
1017 nr_swaps_freed += !shmem_free_swap(mapping,
1018 indices[i], folio);
1019 continue;
1020 }
1021
1022 if (!unfalloc || !folio_test_uptodate(folio))
1023 truncate_inode_folio(mapping, folio);
1024 folio_unlock(folio);
1025 }
1026 folio_batch_remove_exceptionals(&fbatch);
1027 folio_batch_release(&fbatch);
1028 cond_resched();
1029 }
1030
1031 /*
1032 * When undoing a failed fallocate, we want none of the partial folio
1033 * zeroing and splitting below, but shall want to truncate the whole
1034 * folio when !uptodate indicates that it was added by this fallocate,
1035 * even when [lstart, lend] covers only a part of the folio.
1036 */
1037 if (unfalloc)
1038 goto whole_folios;
1039
1040 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
1041 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
1042 if (folio) {
1043 same_folio = lend < folio_pos(folio) + folio_size(folio);
1044 folio_mark_dirty(folio);
1045 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
1046 start = folio_next_index(folio);
1047 if (same_folio)
1048 end = folio->index;
1049 }
1050 folio_unlock(folio);
1051 folio_put(folio);
1052 folio = NULL;
1053 }
1054
1055 if (!same_folio)
1056 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
1057 if (folio) {
1058 folio_mark_dirty(folio);
1059 if (!truncate_inode_partial_folio(folio, lstart, lend))
1060 end = folio->index;
1061 folio_unlock(folio);
1062 folio_put(folio);
1063 }
1064
1065 whole_folios:
1066
1067 index = start;
1068 while (index < end) {
1069 cond_resched();
1070
1071 if (!find_get_entries(mapping, &index, end - 1, &fbatch,
1072 indices)) {
1073 /* If all gone or hole-punch or unfalloc, we're done */
1074 if (index == start || end != -1)
1075 break;
1076 /* But if truncating, restart to make sure all gone */
1077 index = start;
1078 continue;
1079 }
1080 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1081 folio = fbatch.folios[i];
1082
1083 if (xa_is_value(folio)) {
1084 if (unfalloc)
1085 continue;
1086 if (shmem_free_swap(mapping, indices[i], folio)) {
1087 /* Swap was replaced by page: retry */
1088 index = indices[i];
1089 break;
1090 }
1091 nr_swaps_freed++;
1092 continue;
1093 }
1094
1095 folio_lock(folio);
1096
1097 if (!unfalloc || !folio_test_uptodate(folio)) {
1098 if (folio_mapping(folio) != mapping) {
1099 /* Page was replaced by swap: retry */
1100 folio_unlock(folio);
1101 index = indices[i];
1102 break;
1103 }
1104 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1105 folio);
1106
1107 if (!folio_test_large(folio)) {
1108 truncate_inode_folio(mapping, folio);
1109 } else if (truncate_inode_partial_folio(folio, lstart, lend)) {
1110 /*
1111 * If we split a page, reset the loop so
1112 * that we pick up the new sub pages.
1113 * Otherwise the THP was entirely
1114 * dropped or the target range was
1115 * zeroed, so just continue the loop as
1116 * is.
1117 */
1118 if (!folio_test_large(folio)) {
1119 folio_unlock(folio);
1120 index = start;
1121 break;
1122 }
1123 }
1124 }
1125 folio_unlock(folio);
1126 }
1127 folio_batch_remove_exceptionals(&fbatch);
1128 folio_batch_release(&fbatch);
1129 }
1130
1131 shmem_recalc_inode(inode, 0, -nr_swaps_freed);
1132 }
1133
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)1134 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1135 {
1136 shmem_undo_range(inode, lstart, lend, false);
1137 inode->i_mtime = inode_set_ctime_current(inode);
1138 inode_inc_iversion(inode);
1139 }
1140 EXPORT_SYMBOL_GPL(shmem_truncate_range);
1141
shmem_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1142 static int shmem_getattr(struct mnt_idmap *idmap,
1143 const struct path *path, struct kstat *stat,
1144 u32 request_mask, unsigned int query_flags)
1145 {
1146 struct inode *inode = path->dentry->d_inode;
1147 struct shmem_inode_info *info = SHMEM_I(inode);
1148
1149 if (info->alloced - info->swapped != inode->i_mapping->nrpages)
1150 shmem_recalc_inode(inode, 0, 0);
1151
1152 if (info->fsflags & FS_APPEND_FL)
1153 stat->attributes |= STATX_ATTR_APPEND;
1154 if (info->fsflags & FS_IMMUTABLE_FL)
1155 stat->attributes |= STATX_ATTR_IMMUTABLE;
1156 if (info->fsflags & FS_NODUMP_FL)
1157 stat->attributes |= STATX_ATTR_NODUMP;
1158 stat->attributes_mask |= (STATX_ATTR_APPEND |
1159 STATX_ATTR_IMMUTABLE |
1160 STATX_ATTR_NODUMP);
1161 inode_lock_shared(inode);
1162 generic_fillattr(idmap, request_mask, inode, stat);
1163 inode_unlock_shared(inode);
1164
1165 if (shmem_is_huge(inode, 0, false, NULL, 0))
1166 stat->blksize = HPAGE_PMD_SIZE;
1167
1168 if (request_mask & STATX_BTIME) {
1169 stat->result_mask |= STATX_BTIME;
1170 stat->btime.tv_sec = info->i_crtime.tv_sec;
1171 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1172 }
1173
1174 return 0;
1175 }
1176
shmem_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1177 static int shmem_setattr(struct mnt_idmap *idmap,
1178 struct dentry *dentry, struct iattr *attr)
1179 {
1180 struct inode *inode = d_inode(dentry);
1181 struct shmem_inode_info *info = SHMEM_I(inode);
1182 int error;
1183 bool update_mtime = false;
1184 bool update_ctime = true;
1185
1186 error = setattr_prepare(idmap, dentry, attr);
1187 if (error)
1188 return error;
1189
1190 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1191 if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1192 return -EPERM;
1193 }
1194 }
1195
1196 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1197 loff_t oldsize = inode->i_size;
1198 loff_t newsize = attr->ia_size;
1199
1200 /* protected by i_rwsem */
1201 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1202 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1203 return -EPERM;
1204
1205 if (newsize != oldsize) {
1206 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1207 oldsize, newsize);
1208 if (error)
1209 return error;
1210 i_size_write(inode, newsize);
1211 update_mtime = true;
1212 } else {
1213 update_ctime = false;
1214 }
1215 if (newsize <= oldsize) {
1216 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1217 if (oldsize > holebegin)
1218 unmap_mapping_range(inode->i_mapping,
1219 holebegin, 0, 1);
1220 if (info->alloced)
1221 shmem_truncate_range(inode,
1222 newsize, (loff_t)-1);
1223 /* unmap again to remove racily COWed private pages */
1224 if (oldsize > holebegin)
1225 unmap_mapping_range(inode->i_mapping,
1226 holebegin, 0, 1);
1227 }
1228 }
1229
1230 if (is_quota_modification(idmap, inode, attr)) {
1231 error = dquot_initialize(inode);
1232 if (error)
1233 return error;
1234 }
1235
1236 /* Transfer quota accounting */
1237 if (i_uid_needs_update(idmap, attr, inode) ||
1238 i_gid_needs_update(idmap, attr, inode)) {
1239 error = dquot_transfer(idmap, inode, attr);
1240
1241 if (error)
1242 return error;
1243 }
1244
1245 setattr_copy(idmap, inode, attr);
1246 if (attr->ia_valid & ATTR_MODE)
1247 error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1248 if (!error && update_ctime) {
1249 inode_set_ctime_current(inode);
1250 if (update_mtime)
1251 inode->i_mtime = inode_get_ctime(inode);
1252 inode_inc_iversion(inode);
1253 }
1254 return error;
1255 }
1256
shmem_evict_inode(struct inode * inode)1257 static void shmem_evict_inode(struct inode *inode)
1258 {
1259 struct shmem_inode_info *info = SHMEM_I(inode);
1260 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1261 size_t freed = 0;
1262
1263 if (shmem_mapping(inode->i_mapping)) {
1264 shmem_unacct_size(info->flags, inode->i_size);
1265 inode->i_size = 0;
1266 mapping_set_exiting(inode->i_mapping);
1267 shmem_truncate_range(inode, 0, (loff_t)-1);
1268 if (!list_empty(&info->shrinklist)) {
1269 spin_lock(&sbinfo->shrinklist_lock);
1270 if (!list_empty(&info->shrinklist)) {
1271 list_del_init(&info->shrinklist);
1272 sbinfo->shrinklist_len--;
1273 }
1274 spin_unlock(&sbinfo->shrinklist_lock);
1275 }
1276 while (!list_empty(&info->swaplist)) {
1277 /* Wait while shmem_unuse() is scanning this inode... */
1278 wait_var_event(&info->stop_eviction,
1279 !atomic_read(&info->stop_eviction));
1280 mutex_lock(&shmem_swaplist_mutex);
1281 /* ...but beware of the race if we peeked too early */
1282 if (!atomic_read(&info->stop_eviction))
1283 list_del_init(&info->swaplist);
1284 mutex_unlock(&shmem_swaplist_mutex);
1285 }
1286 }
1287
1288 simple_xattrs_free(&info->xattrs, sbinfo->max_inodes ? &freed : NULL);
1289 shmem_free_inode(inode->i_sb, freed);
1290 WARN_ON(inode->i_blocks);
1291 clear_inode(inode);
1292 #ifdef CONFIG_TMPFS_QUOTA
1293 dquot_free_inode(inode);
1294 dquot_drop(inode);
1295 #endif
1296 }
1297
shmem_find_swap_entries(struct address_space * mapping,pgoff_t start,struct folio_batch * fbatch,pgoff_t * indices,unsigned int type)1298 static int shmem_find_swap_entries(struct address_space *mapping,
1299 pgoff_t start, struct folio_batch *fbatch,
1300 pgoff_t *indices, unsigned int type)
1301 {
1302 XA_STATE(xas, &mapping->i_pages, start);
1303 struct folio *folio;
1304 swp_entry_t entry;
1305
1306 rcu_read_lock();
1307 xas_for_each(&xas, folio, ULONG_MAX) {
1308 if (xas_retry(&xas, folio))
1309 continue;
1310
1311 if (!xa_is_value(folio))
1312 continue;
1313
1314 entry = radix_to_swp_entry(folio);
1315 /*
1316 * swapin error entries can be found in the mapping. But they're
1317 * deliberately ignored here as we've done everything we can do.
1318 */
1319 if (swp_type(entry) != type)
1320 continue;
1321
1322 indices[folio_batch_count(fbatch)] = xas.xa_index;
1323 if (!folio_batch_add(fbatch, folio))
1324 break;
1325
1326 if (need_resched()) {
1327 xas_pause(&xas);
1328 cond_resched_rcu();
1329 }
1330 }
1331 rcu_read_unlock();
1332
1333 return xas.xa_index;
1334 }
1335
1336 /*
1337 * Move the swapped pages for an inode to page cache. Returns the count
1338 * of pages swapped in, or the error in case of failure.
1339 */
shmem_unuse_swap_entries(struct inode * inode,struct folio_batch * fbatch,pgoff_t * indices)1340 static int shmem_unuse_swap_entries(struct inode *inode,
1341 struct folio_batch *fbatch, pgoff_t *indices)
1342 {
1343 int i = 0;
1344 int ret = 0;
1345 int error = 0;
1346 struct address_space *mapping = inode->i_mapping;
1347
1348 for (i = 0; i < folio_batch_count(fbatch); i++) {
1349 struct folio *folio = fbatch->folios[i];
1350
1351 if (!xa_is_value(folio))
1352 continue;
1353 error = shmem_swapin_folio(inode, indices[i],
1354 &folio, SGP_CACHE,
1355 mapping_gfp_mask(mapping),
1356 NULL, NULL);
1357 if (error == 0) {
1358 folio_unlock(folio);
1359 folio_put(folio);
1360 ret++;
1361 }
1362 if (error == -ENOMEM)
1363 break;
1364 error = 0;
1365 }
1366 return error ? error : ret;
1367 }
1368
1369 /*
1370 * If swap found in inode, free it and move page from swapcache to filecache.
1371 */
shmem_unuse_inode(struct inode * inode,unsigned int type)1372 static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1373 {
1374 struct address_space *mapping = inode->i_mapping;
1375 pgoff_t start = 0;
1376 struct folio_batch fbatch;
1377 pgoff_t indices[PAGEVEC_SIZE];
1378 int ret = 0;
1379
1380 do {
1381 folio_batch_init(&fbatch);
1382 shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1383 if (folio_batch_count(&fbatch) == 0) {
1384 ret = 0;
1385 break;
1386 }
1387
1388 ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1389 if (ret < 0)
1390 break;
1391
1392 start = indices[folio_batch_count(&fbatch) - 1];
1393 } while (true);
1394
1395 return ret;
1396 }
1397
1398 /*
1399 * Read all the shared memory data that resides in the swap
1400 * device 'type' back into memory, so the swap device can be
1401 * unused.
1402 */
shmem_unuse(unsigned int type)1403 int shmem_unuse(unsigned int type)
1404 {
1405 struct shmem_inode_info *info, *next;
1406 int error = 0;
1407
1408 if (list_empty(&shmem_swaplist))
1409 return 0;
1410
1411 mutex_lock(&shmem_swaplist_mutex);
1412 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1413 if (!info->swapped) {
1414 list_del_init(&info->swaplist);
1415 continue;
1416 }
1417 /*
1418 * Drop the swaplist mutex while searching the inode for swap;
1419 * but before doing so, make sure shmem_evict_inode() will not
1420 * remove placeholder inode from swaplist, nor let it be freed
1421 * (igrab() would protect from unlink, but not from unmount).
1422 */
1423 atomic_inc(&info->stop_eviction);
1424 mutex_unlock(&shmem_swaplist_mutex);
1425
1426 error = shmem_unuse_inode(&info->vfs_inode, type);
1427 cond_resched();
1428
1429 mutex_lock(&shmem_swaplist_mutex);
1430 next = list_next_entry(info, swaplist);
1431 if (!info->swapped)
1432 list_del_init(&info->swaplist);
1433 if (atomic_dec_and_test(&info->stop_eviction))
1434 wake_up_var(&info->stop_eviction);
1435 if (error)
1436 break;
1437 }
1438 mutex_unlock(&shmem_swaplist_mutex);
1439
1440 return error;
1441 }
1442
1443 /*
1444 * Move the page from the page cache to the swap cache.
1445 */
shmem_writepage(struct page * page,struct writeback_control * wbc)1446 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1447 {
1448 struct folio *folio = page_folio(page);
1449 struct address_space *mapping = folio->mapping;
1450 struct inode *inode = mapping->host;
1451 struct shmem_inode_info *info = SHMEM_I(inode);
1452 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1453 swp_entry_t swap;
1454 pgoff_t index;
1455
1456 /*
1457 * Our capabilities prevent regular writeback or sync from ever calling
1458 * shmem_writepage; but a stacking filesystem might use ->writepage of
1459 * its underlying filesystem, in which case tmpfs should write out to
1460 * swap only in response to memory pressure, and not for the writeback
1461 * threads or sync.
1462 */
1463 if (WARN_ON_ONCE(!wbc->for_reclaim))
1464 goto redirty;
1465
1466 if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1467 goto redirty;
1468
1469 if (!total_swap_pages)
1470 goto redirty;
1471
1472 /*
1473 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1474 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1475 * and its shmem_writeback() needs them to be split when swapping.
1476 */
1477 if (folio_test_large(folio)) {
1478 /* Ensure the subpages are still dirty */
1479 folio_test_set_dirty(folio);
1480 if (split_huge_page(page) < 0)
1481 goto redirty;
1482 folio = page_folio(page);
1483 folio_clear_dirty(folio);
1484 }
1485
1486 index = folio->index;
1487
1488 /*
1489 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1490 * value into swapfile.c, the only way we can correctly account for a
1491 * fallocated folio arriving here is now to initialize it and write it.
1492 *
1493 * That's okay for a folio already fallocated earlier, but if we have
1494 * not yet completed the fallocation, then (a) we want to keep track
1495 * of this folio in case we have to undo it, and (b) it may not be a
1496 * good idea to continue anyway, once we're pushing into swap. So
1497 * reactivate the folio, and let shmem_fallocate() quit when too many.
1498 */
1499 if (!folio_test_uptodate(folio)) {
1500 if (inode->i_private) {
1501 struct shmem_falloc *shmem_falloc;
1502 spin_lock(&inode->i_lock);
1503 shmem_falloc = inode->i_private;
1504 if (shmem_falloc &&
1505 !shmem_falloc->waitq &&
1506 index >= shmem_falloc->start &&
1507 index < shmem_falloc->next)
1508 shmem_falloc->nr_unswapped++;
1509 else
1510 shmem_falloc = NULL;
1511 spin_unlock(&inode->i_lock);
1512 if (shmem_falloc)
1513 goto redirty;
1514 }
1515 folio_zero_range(folio, 0, folio_size(folio));
1516 flush_dcache_folio(folio);
1517 folio_mark_uptodate(folio);
1518 }
1519
1520 swap = folio_alloc_swap(folio);
1521 if (!swap.val)
1522 goto redirty;
1523
1524 /*
1525 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1526 * if it's not already there. Do it now before the folio is
1527 * moved to swap cache, when its pagelock no longer protects
1528 * the inode from eviction. But don't unlock the mutex until
1529 * we've incremented swapped, because shmem_unuse_inode() will
1530 * prune a !swapped inode from the swaplist under this mutex.
1531 */
1532 mutex_lock(&shmem_swaplist_mutex);
1533 if (list_empty(&info->swaplist))
1534 list_add(&info->swaplist, &shmem_swaplist);
1535
1536 if (add_to_swap_cache(folio, swap,
1537 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1538 NULL) == 0) {
1539 shmem_recalc_inode(inode, 0, 1);
1540 swap_shmem_alloc(swap);
1541 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1542
1543 mutex_unlock(&shmem_swaplist_mutex);
1544 BUG_ON(folio_mapped(folio));
1545 swap_writepage(&folio->page, wbc);
1546 return 0;
1547 }
1548
1549 mutex_unlock(&shmem_swaplist_mutex);
1550 put_swap_folio(folio, swap);
1551 redirty:
1552 folio_mark_dirty(folio);
1553 if (wbc->for_reclaim)
1554 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */
1555 folio_unlock(folio);
1556 return 0;
1557 }
1558
1559 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1560 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1561 {
1562 char buffer[64];
1563
1564 if (!mpol || mpol->mode == MPOL_DEFAULT)
1565 return; /* show nothing */
1566
1567 mpol_to_str(buffer, sizeof(buffer), mpol);
1568
1569 seq_printf(seq, ",mpol=%s", buffer);
1570 }
1571
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1572 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1573 {
1574 struct mempolicy *mpol = NULL;
1575 if (sbinfo->mpol) {
1576 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1577 mpol = sbinfo->mpol;
1578 mpol_get(mpol);
1579 raw_spin_unlock(&sbinfo->stat_lock);
1580 }
1581 return mpol;
1582 }
1583 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
shmem_show_mpol(struct seq_file * seq,struct mempolicy * mpol)1584 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1585 {
1586 }
shmem_get_sbmpol(struct shmem_sb_info * sbinfo)1587 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1588 {
1589 return NULL;
1590 }
1591 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1592 #ifndef CONFIG_NUMA
1593 #define vm_policy vm_private_data
1594 #endif
1595
shmem_pseudo_vma_init(struct vm_area_struct * vma,struct shmem_inode_info * info,pgoff_t index)1596 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1597 struct shmem_inode_info *info, pgoff_t index)
1598 {
1599 /* Create a pseudo vma that just contains the policy */
1600 vma_init(vma, NULL);
1601 /* Bias interleave by inode number to distribute better across nodes */
1602 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1603 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1604 }
1605
shmem_pseudo_vma_destroy(struct vm_area_struct * vma)1606 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1607 {
1608 /* Drop reference taken by mpol_shared_policy_lookup() */
1609 mpol_cond_put(vma->vm_policy);
1610 }
1611
shmem_swapin(swp_entry_t swap,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1612 static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1613 struct shmem_inode_info *info, pgoff_t index)
1614 {
1615 struct vm_area_struct pvma;
1616 struct page *page;
1617 struct vm_fault vmf = {
1618 .vma = &pvma,
1619 };
1620
1621 shmem_pseudo_vma_init(&pvma, info, index);
1622 page = swap_cluster_readahead(swap, gfp, &vmf);
1623 shmem_pseudo_vma_destroy(&pvma);
1624
1625 if (!page)
1626 return NULL;
1627 return page_folio(page);
1628 }
1629
1630 /*
1631 * Make sure huge_gfp is always more limited than limit_gfp.
1632 * Some of the flags set permissions, while others set limitations.
1633 */
limit_gfp_mask(gfp_t huge_gfp,gfp_t limit_gfp)1634 static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1635 {
1636 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1637 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1638 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1639 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1640
1641 /* Allow allocations only from the originally specified zones. */
1642 result |= zoneflags;
1643
1644 /*
1645 * Minimize the result gfp by taking the union with the deny flags,
1646 * and the intersection of the allow flags.
1647 */
1648 result |= (limit_gfp & denyflags);
1649 result |= (huge_gfp & limit_gfp) & allowflags;
1650
1651 return result;
1652 }
1653
shmem_alloc_hugefolio(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1654 static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1655 struct shmem_inode_info *info, pgoff_t index)
1656 {
1657 struct vm_area_struct pvma;
1658 struct address_space *mapping = info->vfs_inode.i_mapping;
1659 pgoff_t hindex;
1660 struct folio *folio;
1661
1662 hindex = round_down(index, HPAGE_PMD_NR);
1663 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1664 XA_PRESENT))
1665 return NULL;
1666
1667 shmem_pseudo_vma_init(&pvma, info, hindex);
1668 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1669 shmem_pseudo_vma_destroy(&pvma);
1670 if (!folio)
1671 count_vm_event(THP_FILE_FALLBACK);
1672 return folio;
1673 }
1674
shmem_alloc_folio(gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1675 static struct folio *shmem_alloc_folio(gfp_t gfp,
1676 struct shmem_inode_info *info, pgoff_t index)
1677 {
1678 struct vm_area_struct pvma;
1679 struct folio *folio;
1680
1681 shmem_pseudo_vma_init(&pvma, info, index);
1682 folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1683 shmem_pseudo_vma_destroy(&pvma);
1684
1685 return folio;
1686 }
1687
shmem_alloc_and_acct_folio(gfp_t gfp,struct inode * inode,pgoff_t index,bool huge)1688 static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1689 pgoff_t index, bool huge)
1690 {
1691 struct shmem_inode_info *info = SHMEM_I(inode);
1692 struct folio *folio;
1693 int nr;
1694 int err;
1695
1696 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1697 huge = false;
1698 nr = huge ? HPAGE_PMD_NR : 1;
1699
1700 err = shmem_inode_acct_block(inode, nr);
1701 if (err)
1702 goto failed;
1703
1704 if (huge)
1705 folio = shmem_alloc_hugefolio(gfp, info, index);
1706 else
1707 folio = shmem_alloc_folio(gfp, info, index);
1708 if (folio) {
1709 __folio_set_locked(folio);
1710 __folio_set_swapbacked(folio);
1711 return folio;
1712 }
1713
1714 err = -ENOMEM;
1715 shmem_inode_unacct_blocks(inode, nr);
1716 failed:
1717 return ERR_PTR(err);
1718 }
1719
1720 /*
1721 * When a page is moved from swapcache to shmem filecache (either by the
1722 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1723 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1724 * ignorance of the mapping it belongs to. If that mapping has special
1725 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1726 * we may need to copy to a suitable page before moving to filecache.
1727 *
1728 * In a future release, this may well be extended to respect cpuset and
1729 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1730 * but for now it is a simple matter of zone.
1731 */
shmem_should_replace_folio(struct folio * folio,gfp_t gfp)1732 static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1733 {
1734 return folio_zonenum(folio) > gfp_zone(gfp);
1735 }
1736
shmem_replace_folio(struct folio ** foliop,gfp_t gfp,struct shmem_inode_info * info,pgoff_t index)1737 static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1738 struct shmem_inode_info *info, pgoff_t index)
1739 {
1740 struct folio *old, *new;
1741 struct address_space *swap_mapping;
1742 swp_entry_t entry;
1743 pgoff_t swap_index;
1744 int error;
1745
1746 old = *foliop;
1747 entry = old->swap;
1748 swap_index = swp_offset(entry);
1749 swap_mapping = swap_address_space(entry);
1750
1751 /*
1752 * We have arrived here because our zones are constrained, so don't
1753 * limit chance of success by further cpuset and node constraints.
1754 */
1755 gfp &= ~GFP_CONSTRAINT_MASK;
1756 VM_BUG_ON_FOLIO(folio_test_large(old), old);
1757 new = shmem_alloc_folio(gfp, info, index);
1758 if (!new)
1759 return -ENOMEM;
1760
1761 folio_get(new);
1762 folio_copy(new, old);
1763 flush_dcache_folio(new);
1764
1765 __folio_set_locked(new);
1766 __folio_set_swapbacked(new);
1767 folio_mark_uptodate(new);
1768 new->swap = entry;
1769 folio_set_swapcache(new);
1770
1771 /*
1772 * Our caller will very soon move newpage out of swapcache, but it's
1773 * a nice clean interface for us to replace oldpage by newpage there.
1774 */
1775 xa_lock_irq(&swap_mapping->i_pages);
1776 error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1777 if (!error) {
1778 mem_cgroup_migrate(old, new);
1779 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1780 __lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1781 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1782 __lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1783 }
1784 xa_unlock_irq(&swap_mapping->i_pages);
1785
1786 if (unlikely(error)) {
1787 /*
1788 * Is this possible? I think not, now that our callers check
1789 * both PageSwapCache and page_private after getting page lock;
1790 * but be defensive. Reverse old to newpage for clear and free.
1791 */
1792 old = new;
1793 } else {
1794 folio_add_lru(new);
1795 *foliop = new;
1796 }
1797
1798 folio_clear_swapcache(old);
1799 old->private = NULL;
1800
1801 folio_unlock(old);
1802 folio_put_refs(old, 2);
1803 return error;
1804 }
1805
shmem_set_folio_swapin_error(struct inode * inode,pgoff_t index,struct folio * folio,swp_entry_t swap)1806 static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1807 struct folio *folio, swp_entry_t swap)
1808 {
1809 struct address_space *mapping = inode->i_mapping;
1810 swp_entry_t swapin_error;
1811 void *old;
1812
1813 swapin_error = make_poisoned_swp_entry();
1814 old = xa_cmpxchg_irq(&mapping->i_pages, index,
1815 swp_to_radix_entry(swap),
1816 swp_to_radix_entry(swapin_error), 0);
1817 if (old != swp_to_radix_entry(swap))
1818 return;
1819
1820 folio_wait_writeback(folio);
1821 delete_from_swap_cache(folio);
1822 /*
1823 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks
1824 * won't be 0 when inode is released and thus trigger WARN_ON(i_blocks)
1825 * in shmem_evict_inode().
1826 */
1827 shmem_recalc_inode(inode, -1, -1);
1828 swap_free(swap);
1829 }
1830
1831 /*
1832 * Swap in the folio pointed to by *foliop.
1833 * Caller has to make sure that *foliop contains a valid swapped folio.
1834 * Returns 0 and the folio in foliop if success. On failure, returns the
1835 * error code and NULL in *foliop.
1836 */
shmem_swapin_folio(struct inode * inode,pgoff_t index,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,vm_fault_t * fault_type)1837 static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1838 struct folio **foliop, enum sgp_type sgp,
1839 gfp_t gfp, struct vm_area_struct *vma,
1840 vm_fault_t *fault_type)
1841 {
1842 struct address_space *mapping = inode->i_mapping;
1843 struct shmem_inode_info *info = SHMEM_I(inode);
1844 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1845 struct swap_info_struct *si;
1846 struct folio *folio = NULL;
1847 swp_entry_t swap;
1848 int error;
1849
1850 VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1851 swap = radix_to_swp_entry(*foliop);
1852 *foliop = NULL;
1853
1854 if (is_poisoned_swp_entry(swap))
1855 return -EIO;
1856
1857 si = get_swap_device(swap);
1858 if (!si) {
1859 if (!shmem_confirm_swap(mapping, index, swap))
1860 return -EEXIST;
1861 else
1862 return -EINVAL;
1863 }
1864
1865 /* Look it up and read it in.. */
1866 folio = swap_cache_get_folio(swap, NULL, 0);
1867 if (!folio) {
1868 /* Or update major stats only when swapin succeeds?? */
1869 if (fault_type) {
1870 *fault_type |= VM_FAULT_MAJOR;
1871 count_vm_event(PGMAJFAULT);
1872 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1873 }
1874 /* Here we actually start the io */
1875 folio = shmem_swapin(swap, gfp, info, index);
1876 if (!folio) {
1877 error = -ENOMEM;
1878 goto failed;
1879 }
1880 }
1881
1882 /* We have to do this with folio locked to prevent races */
1883 folio_lock(folio);
1884 if (!folio_test_swapcache(folio) ||
1885 folio->swap.val != swap.val ||
1886 !shmem_confirm_swap(mapping, index, swap)) {
1887 error = -EEXIST;
1888 goto unlock;
1889 }
1890 if (!folio_test_uptodate(folio)) {
1891 error = -EIO;
1892 goto failed;
1893 }
1894 folio_wait_writeback(folio);
1895
1896 /*
1897 * Some architectures may have to restore extra metadata to the
1898 * folio after reading from swap.
1899 */
1900 arch_swap_restore(swap, folio);
1901
1902 if (shmem_should_replace_folio(folio, gfp)) {
1903 error = shmem_replace_folio(&folio, gfp, info, index);
1904 if (error)
1905 goto failed;
1906 }
1907
1908 error = shmem_add_to_page_cache(folio, mapping, index,
1909 swp_to_radix_entry(swap), gfp,
1910 charge_mm);
1911 if (error)
1912 goto failed;
1913
1914 shmem_recalc_inode(inode, 0, -1);
1915
1916 if (sgp == SGP_WRITE)
1917 folio_mark_accessed(folio);
1918
1919 delete_from_swap_cache(folio);
1920 folio_mark_dirty(folio);
1921 swap_free(swap);
1922 put_swap_device(si);
1923
1924 *foliop = folio;
1925 return 0;
1926 failed:
1927 if (!shmem_confirm_swap(mapping, index, swap))
1928 error = -EEXIST;
1929 if (error == -EIO)
1930 shmem_set_folio_swapin_error(inode, index, folio, swap);
1931 unlock:
1932 if (folio) {
1933 folio_unlock(folio);
1934 folio_put(folio);
1935 }
1936 put_swap_device(si);
1937
1938 return error;
1939 }
1940
1941 /*
1942 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1943 *
1944 * If we allocate a new one we do not mark it dirty. That's up to the
1945 * vm. If we swap it in we mark it dirty since we also free the swap
1946 * entry since a page cannot live in both the swap and page cache.
1947 *
1948 * vma, vmf, and fault_type are only supplied by shmem_fault:
1949 * otherwise they are NULL.
1950 */
shmem_get_folio_gfp(struct inode * inode,pgoff_t index,struct folio ** foliop,enum sgp_type sgp,gfp_t gfp,struct vm_area_struct * vma,struct vm_fault * vmf,vm_fault_t * fault_type)1951 static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1952 struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1953 struct vm_area_struct *vma, struct vm_fault *vmf,
1954 vm_fault_t *fault_type)
1955 {
1956 struct address_space *mapping = inode->i_mapping;
1957 struct shmem_inode_info *info = SHMEM_I(inode);
1958 struct shmem_sb_info *sbinfo;
1959 struct mm_struct *charge_mm;
1960 struct folio *folio;
1961 pgoff_t hindex;
1962 gfp_t huge_gfp;
1963 int error;
1964 int once = 0;
1965 int alloced = 0;
1966
1967 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1968 return -EFBIG;
1969 repeat:
1970 if (sgp <= SGP_CACHE &&
1971 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1972 return -EINVAL;
1973 }
1974
1975 sbinfo = SHMEM_SB(inode->i_sb);
1976 charge_mm = vma ? vma->vm_mm : NULL;
1977
1978 folio = filemap_get_entry(mapping, index);
1979 if (folio && vma && userfaultfd_minor(vma)) {
1980 if (!xa_is_value(folio))
1981 folio_put(folio);
1982 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1983 return 0;
1984 }
1985
1986 if (xa_is_value(folio)) {
1987 error = shmem_swapin_folio(inode, index, &folio,
1988 sgp, gfp, vma, fault_type);
1989 if (error == -EEXIST)
1990 goto repeat;
1991
1992 *foliop = folio;
1993 return error;
1994 }
1995
1996 if (folio) {
1997 folio_lock(folio);
1998
1999 /* Has the folio been truncated or swapped out? */
2000 if (unlikely(folio->mapping != mapping)) {
2001 folio_unlock(folio);
2002 folio_put(folio);
2003 goto repeat;
2004 }
2005 if (sgp == SGP_WRITE)
2006 folio_mark_accessed(folio);
2007 if (folio_test_uptodate(folio))
2008 goto out;
2009 /* fallocated folio */
2010 if (sgp != SGP_READ)
2011 goto clear;
2012 folio_unlock(folio);
2013 folio_put(folio);
2014 }
2015
2016 /*
2017 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
2018 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
2019 */
2020 *foliop = NULL;
2021 if (sgp == SGP_READ)
2022 return 0;
2023 if (sgp == SGP_NOALLOC)
2024 return -ENOENT;
2025
2026 /*
2027 * Fast cache lookup and swap lookup did not find it: allocate.
2028 */
2029
2030 if (vma && userfaultfd_missing(vma)) {
2031 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
2032 return 0;
2033 }
2034
2035 if (!shmem_is_huge(inode, index, false,
2036 vma ? vma->vm_mm : NULL, vma ? vma->vm_flags : 0))
2037 goto alloc_nohuge;
2038
2039 huge_gfp = vma_thp_gfp_mask(vma);
2040 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
2041 folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
2042 if (IS_ERR(folio)) {
2043 alloc_nohuge:
2044 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
2045 }
2046 if (IS_ERR(folio)) {
2047 int retry = 5;
2048
2049 error = PTR_ERR(folio);
2050 folio = NULL;
2051 if (error != -ENOSPC)
2052 goto unlock;
2053 /*
2054 * Try to reclaim some space by splitting a large folio
2055 * beyond i_size on the filesystem.
2056 */
2057 while (retry--) {
2058 int ret;
2059
2060 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
2061 if (ret == SHRINK_STOP)
2062 break;
2063 if (ret)
2064 goto alloc_nohuge;
2065 }
2066 goto unlock;
2067 }
2068
2069 hindex = round_down(index, folio_nr_pages(folio));
2070
2071 if (sgp == SGP_WRITE)
2072 __folio_set_referenced(folio);
2073
2074 error = shmem_add_to_page_cache(folio, mapping, hindex,
2075 NULL, gfp & GFP_RECLAIM_MASK,
2076 charge_mm);
2077 if (error)
2078 goto unacct;
2079
2080 folio_add_lru(folio);
2081 shmem_recalc_inode(inode, folio_nr_pages(folio), 0);
2082 alloced = true;
2083
2084 if (folio_test_pmd_mappable(folio) &&
2085 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
2086 folio_next_index(folio) - 1) {
2087 /*
2088 * Part of the large folio is beyond i_size: subject
2089 * to shrink under memory pressure.
2090 */
2091 spin_lock(&sbinfo->shrinklist_lock);
2092 /*
2093 * _careful to defend against unlocked access to
2094 * ->shrink_list in shmem_unused_huge_shrink()
2095 */
2096 if (list_empty_careful(&info->shrinklist)) {
2097 list_add_tail(&info->shrinklist,
2098 &sbinfo->shrinklist);
2099 sbinfo->shrinklist_len++;
2100 }
2101 spin_unlock(&sbinfo->shrinklist_lock);
2102 }
2103
2104 /*
2105 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2106 */
2107 if (sgp == SGP_FALLOC)
2108 sgp = SGP_WRITE;
2109 clear:
2110 /*
2111 * Let SGP_WRITE caller clear ends if write does not fill folio;
2112 * but SGP_FALLOC on a folio fallocated earlier must initialize
2113 * it now, lest undo on failure cancel our earlier guarantee.
2114 */
2115 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2116 long i, n = folio_nr_pages(folio);
2117
2118 for (i = 0; i < n; i++)
2119 clear_highpage(folio_page(folio, i));
2120 flush_dcache_folio(folio);
2121 folio_mark_uptodate(folio);
2122 }
2123
2124 /* Perhaps the file has been truncated since we checked */
2125 if (sgp <= SGP_CACHE &&
2126 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2127 if (alloced) {
2128 folio_clear_dirty(folio);
2129 filemap_remove_folio(folio);
2130 shmem_recalc_inode(inode, 0, 0);
2131 }
2132 error = -EINVAL;
2133 goto unlock;
2134 }
2135 out:
2136 *foliop = folio;
2137 return 0;
2138
2139 /*
2140 * Error recovery.
2141 */
2142 unacct:
2143 shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2144
2145 if (folio_test_large(folio)) {
2146 folio_unlock(folio);
2147 folio_put(folio);
2148 goto alloc_nohuge;
2149 }
2150 unlock:
2151 if (folio) {
2152 folio_unlock(folio);
2153 folio_put(folio);
2154 }
2155 if (error == -ENOSPC && !once++) {
2156 shmem_recalc_inode(inode, 0, 0);
2157 goto repeat;
2158 }
2159 if (error == -EEXIST)
2160 goto repeat;
2161 return error;
2162 }
2163
shmem_get_folio(struct inode * inode,pgoff_t index,struct folio ** foliop,enum sgp_type sgp)2164 int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2165 enum sgp_type sgp)
2166 {
2167 return shmem_get_folio_gfp(inode, index, foliop, sgp,
2168 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
2169 }
2170
2171 /*
2172 * This is like autoremove_wake_function, but it removes the wait queue
2173 * entry unconditionally - even if something else had already woken the
2174 * target.
2175 */
synchronous_wake_function(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)2176 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2177 {
2178 int ret = default_wake_function(wait, mode, sync, key);
2179 list_del_init(&wait->entry);
2180 return ret;
2181 }
2182
shmem_fault(struct vm_fault * vmf)2183 static vm_fault_t shmem_fault(struct vm_fault *vmf)
2184 {
2185 struct vm_area_struct *vma = vmf->vma;
2186 struct inode *inode = file_inode(vma->vm_file);
2187 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2188 struct folio *folio = NULL;
2189 int err;
2190 vm_fault_t ret = VM_FAULT_LOCKED;
2191
2192 /*
2193 * Trinity finds that probing a hole which tmpfs is punching can
2194 * prevent the hole-punch from ever completing: which in turn
2195 * locks writers out with its hold on i_rwsem. So refrain from
2196 * faulting pages into the hole while it's being punched. Although
2197 * shmem_undo_range() does remove the additions, it may be unable to
2198 * keep up, as each new page needs its own unmap_mapping_range() call,
2199 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2200 *
2201 * It does not matter if we sometimes reach this check just before the
2202 * hole-punch begins, so that one fault then races with the punch:
2203 * we just need to make racing faults a rare case.
2204 *
2205 * The implementation below would be much simpler if we just used a
2206 * standard mutex or completion: but we cannot take i_rwsem in fault,
2207 * and bloating every shmem inode for this unlikely case would be sad.
2208 */
2209 if (unlikely(inode->i_private)) {
2210 struct shmem_falloc *shmem_falloc;
2211
2212 spin_lock(&inode->i_lock);
2213 shmem_falloc = inode->i_private;
2214 if (shmem_falloc &&
2215 shmem_falloc->waitq &&
2216 vmf->pgoff >= shmem_falloc->start &&
2217 vmf->pgoff < shmem_falloc->next) {
2218 struct file *fpin;
2219 wait_queue_head_t *shmem_falloc_waitq;
2220 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2221
2222 ret = VM_FAULT_NOPAGE;
2223 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2224 if (fpin)
2225 ret = VM_FAULT_RETRY;
2226
2227 shmem_falloc_waitq = shmem_falloc->waitq;
2228 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2229 TASK_UNINTERRUPTIBLE);
2230 spin_unlock(&inode->i_lock);
2231 schedule();
2232
2233 /*
2234 * shmem_falloc_waitq points into the shmem_fallocate()
2235 * stack of the hole-punching task: shmem_falloc_waitq
2236 * is usually invalid by the time we reach here, but
2237 * finish_wait() does not dereference it in that case;
2238 * though i_lock needed lest racing with wake_up_all().
2239 */
2240 spin_lock(&inode->i_lock);
2241 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2242 spin_unlock(&inode->i_lock);
2243
2244 if (fpin)
2245 fput(fpin);
2246 return ret;
2247 }
2248 spin_unlock(&inode->i_lock);
2249 }
2250
2251 err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2252 gfp, vma, vmf, &ret);
2253 if (err)
2254 return vmf_error(err);
2255 if (folio)
2256 vmf->page = folio_file_page(folio, vmf->pgoff);
2257 return ret;
2258 }
2259
shmem_get_unmapped_area(struct file * file,unsigned long uaddr,unsigned long len,unsigned long pgoff,unsigned long flags)2260 unsigned long shmem_get_unmapped_area(struct file *file,
2261 unsigned long uaddr, unsigned long len,
2262 unsigned long pgoff, unsigned long flags)
2263 {
2264 unsigned long (*get_area)(struct file *,
2265 unsigned long, unsigned long, unsigned long, unsigned long);
2266 unsigned long addr;
2267 unsigned long offset;
2268 unsigned long inflated_len;
2269 unsigned long inflated_addr;
2270 unsigned long inflated_offset;
2271
2272 if (len > TASK_SIZE)
2273 return -ENOMEM;
2274
2275 get_area = current->mm->get_unmapped_area;
2276 addr = get_area(file, uaddr, len, pgoff, flags);
2277
2278 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2279 return addr;
2280 if (IS_ERR_VALUE(addr))
2281 return addr;
2282 if (addr & ~PAGE_MASK)
2283 return addr;
2284 if (addr > TASK_SIZE - len)
2285 return addr;
2286
2287 if (shmem_huge == SHMEM_HUGE_DENY)
2288 return addr;
2289 if (len < HPAGE_PMD_SIZE)
2290 return addr;
2291 if (flags & MAP_FIXED)
2292 return addr;
2293 /*
2294 * Our priority is to support MAP_SHARED mapped hugely;
2295 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2296 * But if caller specified an address hint and we allocated area there
2297 * successfully, respect that as before.
2298 */
2299 if (uaddr == addr)
2300 return addr;
2301
2302 if (shmem_huge != SHMEM_HUGE_FORCE) {
2303 struct super_block *sb;
2304
2305 if (file) {
2306 VM_BUG_ON(file->f_op != &shmem_file_operations);
2307 sb = file_inode(file)->i_sb;
2308 } else {
2309 /*
2310 * Called directly from mm/mmap.c, or drivers/char/mem.c
2311 * for "/dev/zero", to create a shared anonymous object.
2312 */
2313 if (IS_ERR(shm_mnt))
2314 return addr;
2315 sb = shm_mnt->mnt_sb;
2316 }
2317 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2318 return addr;
2319 }
2320
2321 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2322 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2323 return addr;
2324 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2325 return addr;
2326
2327 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2328 if (inflated_len > TASK_SIZE)
2329 return addr;
2330 if (inflated_len < len)
2331 return addr;
2332
2333 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2334 if (IS_ERR_VALUE(inflated_addr))
2335 return addr;
2336 if (inflated_addr & ~PAGE_MASK)
2337 return addr;
2338
2339 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2340 inflated_addr += offset - inflated_offset;
2341 if (inflated_offset > offset)
2342 inflated_addr += HPAGE_PMD_SIZE;
2343
2344 if (inflated_addr > TASK_SIZE - len)
2345 return addr;
2346 return inflated_addr;
2347 }
2348
2349 #ifdef CONFIG_NUMA
shmem_set_policy(struct vm_area_struct * vma,struct mempolicy * mpol)2350 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2351 {
2352 struct inode *inode = file_inode(vma->vm_file);
2353 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2354 }
2355
shmem_get_policy(struct vm_area_struct * vma,unsigned long addr)2356 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2357 unsigned long addr)
2358 {
2359 struct inode *inode = file_inode(vma->vm_file);
2360 pgoff_t index;
2361
2362 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2363 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2364 }
2365 #endif
2366
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)2367 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2368 {
2369 struct inode *inode = file_inode(file);
2370 struct shmem_inode_info *info = SHMEM_I(inode);
2371 int retval = -ENOMEM;
2372
2373 /*
2374 * What serializes the accesses to info->flags?
2375 * ipc_lock_object() when called from shmctl_do_lock(),
2376 * no serialization needed when called from shm_destroy().
2377 */
2378 if (lock && !(info->flags & VM_LOCKED)) {
2379 if (!user_shm_lock(inode->i_size, ucounts))
2380 goto out_nomem;
2381 info->flags |= VM_LOCKED;
2382 mapping_set_unevictable(file->f_mapping);
2383 }
2384 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2385 user_shm_unlock(inode->i_size, ucounts);
2386 info->flags &= ~VM_LOCKED;
2387 mapping_clear_unevictable(file->f_mapping);
2388 }
2389 retval = 0;
2390
2391 out_nomem:
2392 return retval;
2393 }
2394
shmem_mmap(struct file * file,struct vm_area_struct * vma)2395 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2396 {
2397 struct inode *inode = file_inode(file);
2398 struct shmem_inode_info *info = SHMEM_I(inode);
2399 int ret;
2400
2401 ret = seal_check_future_write(info->seals, vma);
2402 if (ret)
2403 return ret;
2404
2405 /* arm64 - allow memory tagging on RAM-based files */
2406 vm_flags_set(vma, VM_MTE_ALLOWED);
2407
2408 file_accessed(file);
2409 /* This is anonymous shared memory if it is unlinked at the time of mmap */
2410 if (inode->i_nlink)
2411 vma->vm_ops = &shmem_vm_ops;
2412 else
2413 vma->vm_ops = &shmem_anon_vm_ops;
2414 return 0;
2415 }
2416
shmem_file_open(struct inode * inode,struct file * file)2417 static int shmem_file_open(struct inode *inode, struct file *file)
2418 {
2419 file->f_mode |= FMODE_CAN_ODIRECT;
2420 return generic_file_open(inode, file);
2421 }
2422
2423 #ifdef CONFIG_TMPFS_XATTR
2424 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2425
2426 /*
2427 * chattr's fsflags are unrelated to extended attributes,
2428 * but tmpfs has chosen to enable them under the same config option.
2429 */
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags)2430 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2431 {
2432 unsigned int i_flags = 0;
2433
2434 if (fsflags & FS_NOATIME_FL)
2435 i_flags |= S_NOATIME;
2436 if (fsflags & FS_APPEND_FL)
2437 i_flags |= S_APPEND;
2438 if (fsflags & FS_IMMUTABLE_FL)
2439 i_flags |= S_IMMUTABLE;
2440 /*
2441 * But FS_NODUMP_FL does not require any action in i_flags.
2442 */
2443 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2444 }
2445 #else
shmem_set_inode_flags(struct inode * inode,unsigned int fsflags)2446 static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2447 {
2448 }
2449 #define shmem_initxattrs NULL
2450 #endif
2451
shmem_get_offset_ctx(struct inode * inode)2452 static struct offset_ctx *shmem_get_offset_ctx(struct inode *inode)
2453 {
2454 return &SHMEM_I(inode)->dir_offsets;
2455 }
2456
__shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2457 static struct inode *__shmem_get_inode(struct mnt_idmap *idmap,
2458 struct super_block *sb,
2459 struct inode *dir, umode_t mode,
2460 dev_t dev, unsigned long flags)
2461 {
2462 struct inode *inode;
2463 struct shmem_inode_info *info;
2464 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2465 ino_t ino;
2466 int err;
2467
2468 err = shmem_reserve_inode(sb, &ino);
2469 if (err)
2470 return ERR_PTR(err);
2471
2472
2473 inode = new_inode(sb);
2474 if (!inode) {
2475 shmem_free_inode(sb, 0);
2476 return ERR_PTR(-ENOSPC);
2477 }
2478
2479 inode->i_ino = ino;
2480 inode_init_owner(idmap, inode, dir, mode);
2481 inode->i_blocks = 0;
2482 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
2483 inode->i_generation = get_random_u32();
2484 info = SHMEM_I(inode);
2485 memset(info, 0, (char *)inode - (char *)info);
2486 spin_lock_init(&info->lock);
2487 atomic_set(&info->stop_eviction, 0);
2488 info->seals = F_SEAL_SEAL;
2489 info->flags = flags & VM_NORESERVE;
2490 info->i_crtime = inode->i_mtime;
2491 info->fsflags = (dir == NULL) ? 0 :
2492 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2493 if (info->fsflags)
2494 shmem_set_inode_flags(inode, info->fsflags);
2495 INIT_LIST_HEAD(&info->shrinklist);
2496 INIT_LIST_HEAD(&info->swaplist);
2497 INIT_LIST_HEAD(&info->swaplist);
2498 if (sbinfo->noswap)
2499 mapping_set_unevictable(inode->i_mapping);
2500 simple_xattrs_init(&info->xattrs);
2501 cache_no_acl(inode);
2502 mapping_set_large_folios(inode->i_mapping);
2503
2504 switch (mode & S_IFMT) {
2505 default:
2506 inode->i_op = &shmem_special_inode_operations;
2507 init_special_inode(inode, mode, dev);
2508 break;
2509 case S_IFREG:
2510 inode->i_mapping->a_ops = &shmem_aops;
2511 inode->i_op = &shmem_inode_operations;
2512 inode->i_fop = &shmem_file_operations;
2513 mpol_shared_policy_init(&info->policy,
2514 shmem_get_sbmpol(sbinfo));
2515 break;
2516 case S_IFDIR:
2517 inc_nlink(inode);
2518 /* Some things misbehave if size == 0 on a directory */
2519 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2520 inode->i_op = &shmem_dir_inode_operations;
2521 inode->i_fop = &simple_offset_dir_operations;
2522 simple_offset_init(shmem_get_offset_ctx(inode));
2523 break;
2524 case S_IFLNK:
2525 /*
2526 * Must not load anything in the rbtree,
2527 * mpol_free_shared_policy will not be called.
2528 */
2529 mpol_shared_policy_init(&info->policy, NULL);
2530 break;
2531 }
2532
2533 lockdep_annotate_inode_mutex_key(inode);
2534 return inode;
2535 }
2536
2537 #ifdef CONFIG_TMPFS_QUOTA
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2538 static struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2539 struct super_block *sb, struct inode *dir,
2540 umode_t mode, dev_t dev, unsigned long flags)
2541 {
2542 int err;
2543 struct inode *inode;
2544
2545 inode = __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2546 if (IS_ERR(inode))
2547 return inode;
2548
2549 err = dquot_initialize(inode);
2550 if (err)
2551 goto errout;
2552
2553 err = dquot_alloc_inode(inode);
2554 if (err) {
2555 dquot_drop(inode);
2556 goto errout;
2557 }
2558 return inode;
2559
2560 errout:
2561 inode->i_flags |= S_NOQUOTA;
2562 iput(inode);
2563 return ERR_PTR(err);
2564 }
2565 #else
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)2566 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap,
2567 struct super_block *sb, struct inode *dir,
2568 umode_t mode, dev_t dev, unsigned long flags)
2569 {
2570 return __shmem_get_inode(idmap, sb, dir, mode, dev, flags);
2571 }
2572 #endif /* CONFIG_TMPFS_QUOTA */
2573
2574 #ifdef CONFIG_USERFAULTFD
shmem_mfill_atomic_pte(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)2575 int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2576 struct vm_area_struct *dst_vma,
2577 unsigned long dst_addr,
2578 unsigned long src_addr,
2579 uffd_flags_t flags,
2580 struct folio **foliop)
2581 {
2582 struct inode *inode = file_inode(dst_vma->vm_file);
2583 struct shmem_inode_info *info = SHMEM_I(inode);
2584 struct address_space *mapping = inode->i_mapping;
2585 gfp_t gfp = mapping_gfp_mask(mapping);
2586 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2587 void *page_kaddr;
2588 struct folio *folio;
2589 int ret;
2590 pgoff_t max_off;
2591
2592 if (shmem_inode_acct_block(inode, 1)) {
2593 /*
2594 * We may have got a page, returned -ENOENT triggering a retry,
2595 * and now we find ourselves with -ENOMEM. Release the page, to
2596 * avoid a BUG_ON in our caller.
2597 */
2598 if (unlikely(*foliop)) {
2599 folio_put(*foliop);
2600 *foliop = NULL;
2601 }
2602 return -ENOMEM;
2603 }
2604
2605 if (!*foliop) {
2606 ret = -ENOMEM;
2607 folio = shmem_alloc_folio(gfp, info, pgoff);
2608 if (!folio)
2609 goto out_unacct_blocks;
2610
2611 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
2612 page_kaddr = kmap_local_folio(folio, 0);
2613 /*
2614 * The read mmap_lock is held here. Despite the
2615 * mmap_lock being read recursive a deadlock is still
2616 * possible if a writer has taken a lock. For example:
2617 *
2618 * process A thread 1 takes read lock on own mmap_lock
2619 * process A thread 2 calls mmap, blocks taking write lock
2620 * process B thread 1 takes page fault, read lock on own mmap lock
2621 * process B thread 2 calls mmap, blocks taking write lock
2622 * process A thread 1 blocks taking read lock on process B
2623 * process B thread 1 blocks taking read lock on process A
2624 *
2625 * Disable page faults to prevent potential deadlock
2626 * and retry the copy outside the mmap_lock.
2627 */
2628 pagefault_disable();
2629 ret = copy_from_user(page_kaddr,
2630 (const void __user *)src_addr,
2631 PAGE_SIZE);
2632 pagefault_enable();
2633 kunmap_local(page_kaddr);
2634
2635 /* fallback to copy_from_user outside mmap_lock */
2636 if (unlikely(ret)) {
2637 *foliop = folio;
2638 ret = -ENOENT;
2639 /* don't free the page */
2640 goto out_unacct_blocks;
2641 }
2642
2643 flush_dcache_folio(folio);
2644 } else { /* ZEROPAGE */
2645 clear_user_highpage(&folio->page, dst_addr);
2646 }
2647 } else {
2648 folio = *foliop;
2649 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2650 *foliop = NULL;
2651 }
2652
2653 VM_BUG_ON(folio_test_locked(folio));
2654 VM_BUG_ON(folio_test_swapbacked(folio));
2655 __folio_set_locked(folio);
2656 __folio_set_swapbacked(folio);
2657 __folio_mark_uptodate(folio);
2658
2659 ret = -EFAULT;
2660 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2661 if (unlikely(pgoff >= max_off))
2662 goto out_release;
2663
2664 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2665 gfp & GFP_RECLAIM_MASK, dst_vma->vm_mm);
2666 if (ret)
2667 goto out_release;
2668
2669 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
2670 &folio->page, true, flags);
2671 if (ret)
2672 goto out_delete_from_cache;
2673
2674 shmem_recalc_inode(inode, 1, 0);
2675 folio_unlock(folio);
2676 return 0;
2677 out_delete_from_cache:
2678 filemap_remove_folio(folio);
2679 out_release:
2680 folio_unlock(folio);
2681 folio_put(folio);
2682 out_unacct_blocks:
2683 shmem_inode_unacct_blocks(inode, 1);
2684 return ret;
2685 }
2686 #endif /* CONFIG_USERFAULTFD */
2687
2688 #ifdef CONFIG_TMPFS
2689 static const struct inode_operations shmem_symlink_inode_operations;
2690 static const struct inode_operations shmem_short_symlink_operations;
2691
2692 static int
shmem_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)2693 shmem_write_begin(struct file *file, struct address_space *mapping,
2694 loff_t pos, unsigned len,
2695 struct page **pagep, void **fsdata)
2696 {
2697 struct inode *inode = mapping->host;
2698 struct shmem_inode_info *info = SHMEM_I(inode);
2699 pgoff_t index = pos >> PAGE_SHIFT;
2700 struct folio *folio;
2701 int ret = 0;
2702
2703 /* i_rwsem is held by caller */
2704 if (unlikely(info->seals & (F_SEAL_GROW |
2705 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2706 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2707 return -EPERM;
2708 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2709 return -EPERM;
2710 }
2711
2712 ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2713
2714 if (ret)
2715 return ret;
2716
2717 *pagep = folio_file_page(folio, index);
2718 if (PageHWPoison(*pagep)) {
2719 folio_unlock(folio);
2720 folio_put(folio);
2721 *pagep = NULL;
2722 return -EIO;
2723 }
2724
2725 return 0;
2726 }
2727
2728 static int
shmem_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)2729 shmem_write_end(struct file *file, struct address_space *mapping,
2730 loff_t pos, unsigned len, unsigned copied,
2731 struct page *page, void *fsdata)
2732 {
2733 struct folio *folio = page_folio(page);
2734 struct inode *inode = mapping->host;
2735
2736 if (pos + copied > inode->i_size)
2737 i_size_write(inode, pos + copied);
2738
2739 if (!folio_test_uptodate(folio)) {
2740 if (copied < folio_size(folio)) {
2741 size_t from = offset_in_folio(folio, pos);
2742 folio_zero_segments(folio, 0, from,
2743 from + copied, folio_size(folio));
2744 }
2745 folio_mark_uptodate(folio);
2746 }
2747 folio_mark_dirty(folio);
2748 folio_unlock(folio);
2749 folio_put(folio);
2750
2751 return copied;
2752 }
2753
shmem_file_read_iter(struct kiocb * iocb,struct iov_iter * to)2754 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2755 {
2756 struct file *file = iocb->ki_filp;
2757 struct inode *inode = file_inode(file);
2758 struct address_space *mapping = inode->i_mapping;
2759 pgoff_t index;
2760 unsigned long offset;
2761 int error = 0;
2762 ssize_t retval = 0;
2763 loff_t *ppos = &iocb->ki_pos;
2764
2765 index = *ppos >> PAGE_SHIFT;
2766 offset = *ppos & ~PAGE_MASK;
2767
2768 for (;;) {
2769 struct folio *folio = NULL;
2770 struct page *page = NULL;
2771 pgoff_t end_index;
2772 unsigned long nr, ret;
2773 loff_t i_size = i_size_read(inode);
2774
2775 end_index = i_size >> PAGE_SHIFT;
2776 if (index > end_index)
2777 break;
2778 if (index == end_index) {
2779 nr = i_size & ~PAGE_MASK;
2780 if (nr <= offset)
2781 break;
2782 }
2783
2784 error = shmem_get_folio(inode, index, &folio, SGP_READ);
2785 if (error) {
2786 if (error == -EINVAL)
2787 error = 0;
2788 break;
2789 }
2790 if (folio) {
2791 folio_unlock(folio);
2792
2793 page = folio_file_page(folio, index);
2794 if (PageHWPoison(page)) {
2795 folio_put(folio);
2796 error = -EIO;
2797 break;
2798 }
2799 }
2800
2801 /*
2802 * We must evaluate after, since reads (unlike writes)
2803 * are called without i_rwsem protection against truncate
2804 */
2805 nr = PAGE_SIZE;
2806 i_size = i_size_read(inode);
2807 end_index = i_size >> PAGE_SHIFT;
2808 if (index == end_index) {
2809 nr = i_size & ~PAGE_MASK;
2810 if (nr <= offset) {
2811 if (folio)
2812 folio_put(folio);
2813 break;
2814 }
2815 }
2816 nr -= offset;
2817
2818 if (folio) {
2819 /*
2820 * If users can be writing to this page using arbitrary
2821 * virtual addresses, take care about potential aliasing
2822 * before reading the page on the kernel side.
2823 */
2824 if (mapping_writably_mapped(mapping))
2825 flush_dcache_page(page);
2826 /*
2827 * Mark the page accessed if we read the beginning.
2828 */
2829 if (!offset)
2830 folio_mark_accessed(folio);
2831 /*
2832 * Ok, we have the page, and it's up-to-date, so
2833 * now we can copy it to user space...
2834 */
2835 ret = copy_page_to_iter(page, offset, nr, to);
2836 folio_put(folio);
2837
2838 } else if (user_backed_iter(to)) {
2839 /*
2840 * Copy to user tends to be so well optimized, but
2841 * clear_user() not so much, that it is noticeably
2842 * faster to copy the zero page instead of clearing.
2843 */
2844 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2845 } else {
2846 /*
2847 * But submitting the same page twice in a row to
2848 * splice() - or others? - can result in confusion:
2849 * so don't attempt that optimization on pipes etc.
2850 */
2851 ret = iov_iter_zero(nr, to);
2852 }
2853
2854 retval += ret;
2855 offset += ret;
2856 index += offset >> PAGE_SHIFT;
2857 offset &= ~PAGE_MASK;
2858
2859 if (!iov_iter_count(to))
2860 break;
2861 if (ret < nr) {
2862 error = -EFAULT;
2863 break;
2864 }
2865 cond_resched();
2866 }
2867
2868 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2869 file_accessed(file);
2870 return retval ? retval : error;
2871 }
2872
shmem_file_write_iter(struct kiocb * iocb,struct iov_iter * from)2873 static ssize_t shmem_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2874 {
2875 struct file *file = iocb->ki_filp;
2876 struct inode *inode = file->f_mapping->host;
2877 ssize_t ret;
2878
2879 inode_lock(inode);
2880 ret = generic_write_checks(iocb, from);
2881 if (ret <= 0)
2882 goto unlock;
2883 ret = file_remove_privs(file);
2884 if (ret)
2885 goto unlock;
2886 ret = file_update_time(file);
2887 if (ret)
2888 goto unlock;
2889 ret = generic_perform_write(iocb, from);
2890 unlock:
2891 inode_unlock(inode);
2892 return ret;
2893 }
2894
zero_pipe_buf_get(struct pipe_inode_info * pipe,struct pipe_buffer * buf)2895 static bool zero_pipe_buf_get(struct pipe_inode_info *pipe,
2896 struct pipe_buffer *buf)
2897 {
2898 return true;
2899 }
2900
zero_pipe_buf_release(struct pipe_inode_info * pipe,struct pipe_buffer * buf)2901 static void zero_pipe_buf_release(struct pipe_inode_info *pipe,
2902 struct pipe_buffer *buf)
2903 {
2904 }
2905
zero_pipe_buf_try_steal(struct pipe_inode_info * pipe,struct pipe_buffer * buf)2906 static bool zero_pipe_buf_try_steal(struct pipe_inode_info *pipe,
2907 struct pipe_buffer *buf)
2908 {
2909 return false;
2910 }
2911
2912 static const struct pipe_buf_operations zero_pipe_buf_ops = {
2913 .release = zero_pipe_buf_release,
2914 .try_steal = zero_pipe_buf_try_steal,
2915 .get = zero_pipe_buf_get,
2916 };
2917
splice_zeropage_into_pipe(struct pipe_inode_info * pipe,loff_t fpos,size_t size)2918 static size_t splice_zeropage_into_pipe(struct pipe_inode_info *pipe,
2919 loff_t fpos, size_t size)
2920 {
2921 size_t offset = fpos & ~PAGE_MASK;
2922
2923 size = min_t(size_t, size, PAGE_SIZE - offset);
2924
2925 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2926 struct pipe_buffer *buf = pipe_head_buf(pipe);
2927
2928 *buf = (struct pipe_buffer) {
2929 .ops = &zero_pipe_buf_ops,
2930 .page = ZERO_PAGE(0),
2931 .offset = offset,
2932 .len = size,
2933 };
2934 pipe->head++;
2935 }
2936
2937 return size;
2938 }
2939
shmem_file_splice_read(struct file * in,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)2940 static ssize_t shmem_file_splice_read(struct file *in, loff_t *ppos,
2941 struct pipe_inode_info *pipe,
2942 size_t len, unsigned int flags)
2943 {
2944 struct inode *inode = file_inode(in);
2945 struct address_space *mapping = inode->i_mapping;
2946 struct folio *folio = NULL;
2947 size_t total_spliced = 0, used, npages, n, part;
2948 loff_t isize;
2949 int error = 0;
2950
2951 /* Work out how much data we can actually add into the pipe */
2952 used = pipe_occupancy(pipe->head, pipe->tail);
2953 npages = max_t(ssize_t, pipe->max_usage - used, 0);
2954 len = min_t(size_t, len, npages * PAGE_SIZE);
2955
2956 do {
2957 if (*ppos >= i_size_read(inode))
2958 break;
2959
2960 error = shmem_get_folio(inode, *ppos / PAGE_SIZE, &folio,
2961 SGP_READ);
2962 if (error) {
2963 if (error == -EINVAL)
2964 error = 0;
2965 break;
2966 }
2967 if (folio) {
2968 folio_unlock(folio);
2969
2970 if (folio_test_hwpoison(folio) ||
2971 (folio_test_large(folio) &&
2972 folio_test_has_hwpoisoned(folio))) {
2973 error = -EIO;
2974 break;
2975 }
2976 }
2977
2978 /*
2979 * i_size must be checked after we know the pages are Uptodate.
2980 *
2981 * Checking i_size after the check allows us to calculate
2982 * the correct value for "nr", which means the zero-filled
2983 * part of the page is not copied back to userspace (unless
2984 * another truncate extends the file - this is desired though).
2985 */
2986 isize = i_size_read(inode);
2987 if (unlikely(*ppos >= isize))
2988 break;
2989 part = min_t(loff_t, isize - *ppos, len);
2990
2991 if (folio) {
2992 /*
2993 * If users can be writing to this page using arbitrary
2994 * virtual addresses, take care about potential aliasing
2995 * before reading the page on the kernel side.
2996 */
2997 if (mapping_writably_mapped(mapping))
2998 flush_dcache_folio(folio);
2999 folio_mark_accessed(folio);
3000 /*
3001 * Ok, we have the page, and it's up-to-date, so we can
3002 * now splice it into the pipe.
3003 */
3004 n = splice_folio_into_pipe(pipe, folio, *ppos, part);
3005 folio_put(folio);
3006 folio = NULL;
3007 } else {
3008 n = splice_zeropage_into_pipe(pipe, *ppos, part);
3009 }
3010
3011 if (!n)
3012 break;
3013 len -= n;
3014 total_spliced += n;
3015 *ppos += n;
3016 in->f_ra.prev_pos = *ppos;
3017 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
3018 break;
3019
3020 cond_resched();
3021 } while (len);
3022
3023 if (folio)
3024 folio_put(folio);
3025
3026 file_accessed(in);
3027 return total_spliced ? total_spliced : error;
3028 }
3029
shmem_file_llseek(struct file * file,loff_t offset,int whence)3030 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
3031 {
3032 struct address_space *mapping = file->f_mapping;
3033 struct inode *inode = mapping->host;
3034
3035 if (whence != SEEK_DATA && whence != SEEK_HOLE)
3036 return generic_file_llseek_size(file, offset, whence,
3037 MAX_LFS_FILESIZE, i_size_read(inode));
3038 if (offset < 0)
3039 return -ENXIO;
3040
3041 inode_lock(inode);
3042 /* We're holding i_rwsem so we can access i_size directly */
3043 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
3044 if (offset >= 0)
3045 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
3046 inode_unlock(inode);
3047 return offset;
3048 }
3049
shmem_fallocate(struct file * file,int mode,loff_t offset,loff_t len)3050 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
3051 loff_t len)
3052 {
3053 struct inode *inode = file_inode(file);
3054 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3055 struct shmem_inode_info *info = SHMEM_I(inode);
3056 struct shmem_falloc shmem_falloc;
3057 pgoff_t start, index, end, undo_fallocend;
3058 int error;
3059
3060 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3061 return -EOPNOTSUPP;
3062
3063 inode_lock(inode);
3064
3065 if (mode & FALLOC_FL_PUNCH_HOLE) {
3066 struct address_space *mapping = file->f_mapping;
3067 loff_t unmap_start = round_up(offset, PAGE_SIZE);
3068 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
3069 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
3070
3071 /* protected by i_rwsem */
3072 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
3073 error = -EPERM;
3074 goto out;
3075 }
3076
3077 shmem_falloc.waitq = &shmem_falloc_waitq;
3078 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
3079 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
3080 spin_lock(&inode->i_lock);
3081 inode->i_private = &shmem_falloc;
3082 spin_unlock(&inode->i_lock);
3083
3084 if ((u64)unmap_end > (u64)unmap_start)
3085 unmap_mapping_range(mapping, unmap_start,
3086 1 + unmap_end - unmap_start, 0);
3087 shmem_truncate_range(inode, offset, offset + len - 1);
3088 /* No need to unmap again: hole-punching leaves COWed pages */
3089
3090 spin_lock(&inode->i_lock);
3091 inode->i_private = NULL;
3092 wake_up_all(&shmem_falloc_waitq);
3093 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
3094 spin_unlock(&inode->i_lock);
3095 error = 0;
3096 goto out;
3097 }
3098
3099 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
3100 error = inode_newsize_ok(inode, offset + len);
3101 if (error)
3102 goto out;
3103
3104 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
3105 error = -EPERM;
3106 goto out;
3107 }
3108
3109 start = offset >> PAGE_SHIFT;
3110 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3111 /* Try to avoid a swapstorm if len is impossible to satisfy */
3112 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
3113 error = -ENOSPC;
3114 goto out;
3115 }
3116
3117 shmem_falloc.waitq = NULL;
3118 shmem_falloc.start = start;
3119 shmem_falloc.next = start;
3120 shmem_falloc.nr_falloced = 0;
3121 shmem_falloc.nr_unswapped = 0;
3122 spin_lock(&inode->i_lock);
3123 inode->i_private = &shmem_falloc;
3124 spin_unlock(&inode->i_lock);
3125
3126 /*
3127 * info->fallocend is only relevant when huge pages might be
3128 * involved: to prevent split_huge_page() freeing fallocated
3129 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
3130 */
3131 undo_fallocend = info->fallocend;
3132 if (info->fallocend < end)
3133 info->fallocend = end;
3134
3135 for (index = start; index < end; ) {
3136 struct folio *folio;
3137
3138 /*
3139 * Good, the fallocate(2) manpage permits EINTR: we may have
3140 * been interrupted because we are using up too much memory.
3141 */
3142 if (signal_pending(current))
3143 error = -EINTR;
3144 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
3145 error = -ENOMEM;
3146 else
3147 error = shmem_get_folio(inode, index, &folio,
3148 SGP_FALLOC);
3149 if (error) {
3150 info->fallocend = undo_fallocend;
3151 /* Remove the !uptodate folios we added */
3152 if (index > start) {
3153 shmem_undo_range(inode,
3154 (loff_t)start << PAGE_SHIFT,
3155 ((loff_t)index << PAGE_SHIFT) - 1, true);
3156 }
3157 goto undone;
3158 }
3159
3160 /*
3161 * Here is a more important optimization than it appears:
3162 * a second SGP_FALLOC on the same large folio will clear it,
3163 * making it uptodate and un-undoable if we fail later.
3164 */
3165 index = folio_next_index(folio);
3166 /* Beware 32-bit wraparound */
3167 if (!index)
3168 index--;
3169
3170 /*
3171 * Inform shmem_writepage() how far we have reached.
3172 * No need for lock or barrier: we have the page lock.
3173 */
3174 if (!folio_test_uptodate(folio))
3175 shmem_falloc.nr_falloced += index - shmem_falloc.next;
3176 shmem_falloc.next = index;
3177
3178 /*
3179 * If !uptodate, leave it that way so that freeable folios
3180 * can be recognized if we need to rollback on error later.
3181 * But mark it dirty so that memory pressure will swap rather
3182 * than free the folios we are allocating (and SGP_CACHE folios
3183 * might still be clean: we now need to mark those dirty too).
3184 */
3185 folio_mark_dirty(folio);
3186 folio_unlock(folio);
3187 folio_put(folio);
3188 cond_resched();
3189 }
3190
3191 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
3192 i_size_write(inode, offset + len);
3193 undone:
3194 spin_lock(&inode->i_lock);
3195 inode->i_private = NULL;
3196 spin_unlock(&inode->i_lock);
3197 out:
3198 if (!error)
3199 file_modified(file);
3200 inode_unlock(inode);
3201 return error;
3202 }
3203
shmem_statfs(struct dentry * dentry,struct kstatfs * buf)3204 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
3205 {
3206 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
3207
3208 buf->f_type = TMPFS_MAGIC;
3209 buf->f_bsize = PAGE_SIZE;
3210 buf->f_namelen = NAME_MAX;
3211 if (sbinfo->max_blocks) {
3212 buf->f_blocks = sbinfo->max_blocks;
3213 buf->f_bavail =
3214 buf->f_bfree = sbinfo->max_blocks -
3215 percpu_counter_sum(&sbinfo->used_blocks);
3216 }
3217 if (sbinfo->max_inodes) {
3218 buf->f_files = sbinfo->max_inodes;
3219 buf->f_ffree = sbinfo->free_ispace / BOGO_INODE_SIZE;
3220 }
3221 /* else leave those fields 0 like simple_statfs */
3222
3223 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
3224
3225 return 0;
3226 }
3227
3228 /*
3229 * File creation. Allocate an inode, and we're done..
3230 */
3231 static int
shmem_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3232 shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
3233 struct dentry *dentry, umode_t mode, dev_t dev)
3234 {
3235 struct inode *inode;
3236 int error;
3237
3238 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
3239 if (IS_ERR(inode))
3240 return PTR_ERR(inode);
3241
3242 error = simple_acl_create(dir, inode);
3243 if (error)
3244 goto out_iput;
3245 error = security_inode_init_security(inode, dir,
3246 &dentry->d_name,
3247 shmem_initxattrs, NULL);
3248 if (error && error != -EOPNOTSUPP)
3249 goto out_iput;
3250
3251 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3252 if (error)
3253 goto out_iput;
3254
3255 dir->i_size += BOGO_DIRENT_SIZE;
3256 dir->i_mtime = inode_set_ctime_current(dir);
3257 inode_inc_iversion(dir);
3258 d_instantiate(dentry, inode);
3259 dget(dentry); /* Extra count - pin the dentry in core */
3260 return error;
3261
3262 out_iput:
3263 iput(inode);
3264 return error;
3265 }
3266
3267 static int
shmem_tmpfile(struct mnt_idmap * idmap,struct inode * dir,struct file * file,umode_t mode)3268 shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3269 struct file *file, umode_t mode)
3270 {
3271 struct inode *inode;
3272 int error;
3273
3274 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
3275
3276 if (IS_ERR(inode)) {
3277 error = PTR_ERR(inode);
3278 goto err_out;
3279 }
3280
3281 error = security_inode_init_security(inode, dir,
3282 NULL,
3283 shmem_initxattrs, NULL);
3284 if (error && error != -EOPNOTSUPP)
3285 goto out_iput;
3286 error = simple_acl_create(dir, inode);
3287 if (error)
3288 goto out_iput;
3289 d_tmpfile(file, inode);
3290
3291 err_out:
3292 return finish_open_simple(file, error);
3293 out_iput:
3294 iput(inode);
3295 return error;
3296 }
3297
shmem_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)3298 static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
3299 struct dentry *dentry, umode_t mode)
3300 {
3301 int error;
3302
3303 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
3304 if (error)
3305 return error;
3306 inc_nlink(dir);
3307 return 0;
3308 }
3309
shmem_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)3310 static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3311 struct dentry *dentry, umode_t mode, bool excl)
3312 {
3313 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3314 }
3315
3316 /*
3317 * Link a file..
3318 */
shmem_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)3319 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3320 {
3321 struct inode *inode = d_inode(old_dentry);
3322 int ret = 0;
3323
3324 /*
3325 * No ordinary (disk based) filesystem counts links as inodes;
3326 * but each new link needs a new dentry, pinning lowmem, and
3327 * tmpfs dentries cannot be pruned until they are unlinked.
3328 * But if an O_TMPFILE file is linked into the tmpfs, the
3329 * first link must skip that, to get the accounting right.
3330 */
3331 if (inode->i_nlink) {
3332 ret = shmem_reserve_inode(inode->i_sb, NULL);
3333 if (ret)
3334 goto out;
3335 }
3336
3337 ret = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3338 if (ret) {
3339 if (inode->i_nlink)
3340 shmem_free_inode(inode->i_sb, 0);
3341 goto out;
3342 }
3343
3344 dir->i_size += BOGO_DIRENT_SIZE;
3345 dir->i_mtime = inode_set_ctime_to_ts(dir,
3346 inode_set_ctime_current(inode));
3347 inode_inc_iversion(dir);
3348 inc_nlink(inode);
3349 ihold(inode); /* New dentry reference */
3350 dget(dentry); /* Extra pinning count for the created dentry */
3351 d_instantiate(dentry, inode);
3352 out:
3353 return ret;
3354 }
3355
shmem_unlink(struct inode * dir,struct dentry * dentry)3356 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3357 {
3358 struct inode *inode = d_inode(dentry);
3359
3360 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3361 shmem_free_inode(inode->i_sb, 0);
3362
3363 simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3364
3365 dir->i_size -= BOGO_DIRENT_SIZE;
3366 dir->i_mtime = inode_set_ctime_to_ts(dir,
3367 inode_set_ctime_current(inode));
3368 inode_inc_iversion(dir);
3369 drop_nlink(inode);
3370 dput(dentry); /* Undo the count from "create" - this does all the work */
3371 return 0;
3372 }
3373
shmem_rmdir(struct inode * dir,struct dentry * dentry)3374 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3375 {
3376 if (!simple_empty(dentry))
3377 return -ENOTEMPTY;
3378
3379 drop_nlink(d_inode(dentry));
3380 drop_nlink(dir);
3381 return shmem_unlink(dir, dentry);
3382 }
3383
shmem_whiteout(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry)3384 static int shmem_whiteout(struct mnt_idmap *idmap,
3385 struct inode *old_dir, struct dentry *old_dentry)
3386 {
3387 struct dentry *whiteout;
3388 int error;
3389
3390 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3391 if (!whiteout)
3392 return -ENOMEM;
3393
3394 error = shmem_mknod(idmap, old_dir, whiteout,
3395 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3396 dput(whiteout);
3397 if (error)
3398 return error;
3399
3400 /*
3401 * Cheat and hash the whiteout while the old dentry is still in
3402 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3403 *
3404 * d_lookup() will consistently find one of them at this point,
3405 * not sure which one, but that isn't even important.
3406 */
3407 d_rehash(whiteout);
3408 return 0;
3409 }
3410
3411 /*
3412 * The VFS layer already does all the dentry stuff for rename,
3413 * we just have to decrement the usage count for the target if
3414 * it exists so that the VFS layer correctly free's it when it
3415 * gets overwritten.
3416 */
shmem_rename2(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)3417 static int shmem_rename2(struct mnt_idmap *idmap,
3418 struct inode *old_dir, struct dentry *old_dentry,
3419 struct inode *new_dir, struct dentry *new_dentry,
3420 unsigned int flags)
3421 {
3422 struct inode *inode = d_inode(old_dentry);
3423 int they_are_dirs = S_ISDIR(inode->i_mode);
3424 int error;
3425
3426 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3427 return -EINVAL;
3428
3429 if (flags & RENAME_EXCHANGE)
3430 return simple_offset_rename_exchange(old_dir, old_dentry,
3431 new_dir, new_dentry);
3432
3433 if (!simple_empty(new_dentry))
3434 return -ENOTEMPTY;
3435
3436 if (flags & RENAME_WHITEOUT) {
3437 error = shmem_whiteout(idmap, old_dir, old_dentry);
3438 if (error)
3439 return error;
3440 }
3441
3442 simple_offset_remove(shmem_get_offset_ctx(old_dir), old_dentry);
3443 error = simple_offset_add(shmem_get_offset_ctx(new_dir), old_dentry);
3444 if (error)
3445 return error;
3446
3447 if (d_really_is_positive(new_dentry)) {
3448 (void) shmem_unlink(new_dir, new_dentry);
3449 if (they_are_dirs) {
3450 drop_nlink(d_inode(new_dentry));
3451 drop_nlink(old_dir);
3452 }
3453 } else if (they_are_dirs) {
3454 drop_nlink(old_dir);
3455 inc_nlink(new_dir);
3456 }
3457
3458 old_dir->i_size -= BOGO_DIRENT_SIZE;
3459 new_dir->i_size += BOGO_DIRENT_SIZE;
3460 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
3461 inode_inc_iversion(old_dir);
3462 inode_inc_iversion(new_dir);
3463 return 0;
3464 }
3465
shmem_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)3466 static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3467 struct dentry *dentry, const char *symname)
3468 {
3469 int error;
3470 int len;
3471 struct inode *inode;
3472 struct folio *folio;
3473
3474 len = strlen(symname) + 1;
3475 if (len > PAGE_SIZE)
3476 return -ENAMETOOLONG;
3477
3478 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3479 VM_NORESERVE);
3480
3481 if (IS_ERR(inode))
3482 return PTR_ERR(inode);
3483
3484 error = security_inode_init_security(inode, dir, &dentry->d_name,
3485 shmem_initxattrs, NULL);
3486 if (error && error != -EOPNOTSUPP)
3487 goto out_iput;
3488
3489 error = simple_offset_add(shmem_get_offset_ctx(dir), dentry);
3490 if (error)
3491 goto out_iput;
3492
3493 inode->i_size = len-1;
3494 if (len <= SHORT_SYMLINK_LEN) {
3495 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3496 if (!inode->i_link) {
3497 error = -ENOMEM;
3498 goto out_remove_offset;
3499 }
3500 inode->i_op = &shmem_short_symlink_operations;
3501 } else {
3502 inode_nohighmem(inode);
3503 error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3504 if (error)
3505 goto out_remove_offset;
3506 inode->i_mapping->a_ops = &shmem_aops;
3507 inode->i_op = &shmem_symlink_inode_operations;
3508 memcpy(folio_address(folio), symname, len);
3509 folio_mark_uptodate(folio);
3510 folio_mark_dirty(folio);
3511 folio_unlock(folio);
3512 folio_put(folio);
3513 }
3514 dir->i_size += BOGO_DIRENT_SIZE;
3515 dir->i_mtime = inode_set_ctime_current(dir);
3516 inode_inc_iversion(dir);
3517 d_instantiate(dentry, inode);
3518 dget(dentry);
3519 return 0;
3520
3521 out_remove_offset:
3522 simple_offset_remove(shmem_get_offset_ctx(dir), dentry);
3523 out_iput:
3524 iput(inode);
3525 return error;
3526 }
3527
shmem_put_link(void * arg)3528 static void shmem_put_link(void *arg)
3529 {
3530 folio_mark_accessed(arg);
3531 folio_put(arg);
3532 }
3533
shmem_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)3534 static const char *shmem_get_link(struct dentry *dentry,
3535 struct inode *inode,
3536 struct delayed_call *done)
3537 {
3538 struct folio *folio = NULL;
3539 int error;
3540
3541 if (!dentry) {
3542 folio = filemap_get_folio(inode->i_mapping, 0);
3543 if (IS_ERR(folio))
3544 return ERR_PTR(-ECHILD);
3545 if (PageHWPoison(folio_page(folio, 0)) ||
3546 !folio_test_uptodate(folio)) {
3547 folio_put(folio);
3548 return ERR_PTR(-ECHILD);
3549 }
3550 } else {
3551 error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3552 if (error)
3553 return ERR_PTR(error);
3554 if (!folio)
3555 return ERR_PTR(-ECHILD);
3556 if (PageHWPoison(folio_page(folio, 0))) {
3557 folio_unlock(folio);
3558 folio_put(folio);
3559 return ERR_PTR(-ECHILD);
3560 }
3561 folio_unlock(folio);
3562 }
3563 set_delayed_call(done, shmem_put_link, folio);
3564 return folio_address(folio);
3565 }
3566
3567 #ifdef CONFIG_TMPFS_XATTR
3568
shmem_fileattr_get(struct dentry * dentry,struct fileattr * fa)3569 static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3570 {
3571 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3572
3573 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3574
3575 return 0;
3576 }
3577
shmem_fileattr_set(struct mnt_idmap * idmap,struct dentry * dentry,struct fileattr * fa)3578 static int shmem_fileattr_set(struct mnt_idmap *idmap,
3579 struct dentry *dentry, struct fileattr *fa)
3580 {
3581 struct inode *inode = d_inode(dentry);
3582 struct shmem_inode_info *info = SHMEM_I(inode);
3583
3584 if (fileattr_has_fsx(fa))
3585 return -EOPNOTSUPP;
3586 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3587 return -EOPNOTSUPP;
3588
3589 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3590 (fa->flags & SHMEM_FL_USER_MODIFIABLE);
3591
3592 shmem_set_inode_flags(inode, info->fsflags);
3593 inode_set_ctime_current(inode);
3594 inode_inc_iversion(inode);
3595 return 0;
3596 }
3597
3598 /*
3599 * Superblocks without xattr inode operations may get some security.* xattr
3600 * support from the LSM "for free". As soon as we have any other xattrs
3601 * like ACLs, we also need to implement the security.* handlers at
3602 * filesystem level, though.
3603 */
3604
3605 /*
3606 * Callback for security_inode_init_security() for acquiring xattrs.
3607 */
shmem_initxattrs(struct inode * inode,const struct xattr * xattr_array,void * fs_info)3608 static int shmem_initxattrs(struct inode *inode,
3609 const struct xattr *xattr_array,
3610 void *fs_info)
3611 {
3612 struct shmem_inode_info *info = SHMEM_I(inode);
3613 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3614 const struct xattr *xattr;
3615 struct simple_xattr *new_xattr;
3616 size_t ispace = 0;
3617 size_t len;
3618
3619 if (sbinfo->max_inodes) {
3620 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3621 ispace += simple_xattr_space(xattr->name,
3622 xattr->value_len + XATTR_SECURITY_PREFIX_LEN);
3623 }
3624 if (ispace) {
3625 raw_spin_lock(&sbinfo->stat_lock);
3626 if (sbinfo->free_ispace < ispace)
3627 ispace = 0;
3628 else
3629 sbinfo->free_ispace -= ispace;
3630 raw_spin_unlock(&sbinfo->stat_lock);
3631 if (!ispace)
3632 return -ENOSPC;
3633 }
3634 }
3635
3636 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3637 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3638 if (!new_xattr)
3639 break;
3640
3641 len = strlen(xattr->name) + 1;
3642 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3643 GFP_KERNEL_ACCOUNT);
3644 if (!new_xattr->name) {
3645 kvfree(new_xattr);
3646 break;
3647 }
3648
3649 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3650 XATTR_SECURITY_PREFIX_LEN);
3651 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3652 xattr->name, len);
3653
3654 simple_xattr_add(&info->xattrs, new_xattr);
3655 }
3656
3657 if (xattr->name != NULL) {
3658 if (ispace) {
3659 raw_spin_lock(&sbinfo->stat_lock);
3660 sbinfo->free_ispace += ispace;
3661 raw_spin_unlock(&sbinfo->stat_lock);
3662 }
3663 simple_xattrs_free(&info->xattrs, NULL);
3664 return -ENOMEM;
3665 }
3666
3667 return 0;
3668 }
3669
shmem_xattr_handler_get(const struct xattr_handler * handler,struct dentry * unused,struct inode * inode,const char * name,void * buffer,size_t size)3670 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3671 struct dentry *unused, struct inode *inode,
3672 const char *name, void *buffer, size_t size)
3673 {
3674 struct shmem_inode_info *info = SHMEM_I(inode);
3675
3676 name = xattr_full_name(handler, name);
3677 return simple_xattr_get(&info->xattrs, name, buffer, size);
3678 }
3679
shmem_xattr_handler_set(const struct xattr_handler * handler,struct mnt_idmap * idmap,struct dentry * unused,struct inode * inode,const char * name,const void * value,size_t size,int flags)3680 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3681 struct mnt_idmap *idmap,
3682 struct dentry *unused, struct inode *inode,
3683 const char *name, const void *value,
3684 size_t size, int flags)
3685 {
3686 struct shmem_inode_info *info = SHMEM_I(inode);
3687 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3688 struct simple_xattr *old_xattr;
3689 size_t ispace = 0;
3690
3691 name = xattr_full_name(handler, name);
3692 if (value && sbinfo->max_inodes) {
3693 ispace = simple_xattr_space(name, size);
3694 raw_spin_lock(&sbinfo->stat_lock);
3695 if (sbinfo->free_ispace < ispace)
3696 ispace = 0;
3697 else
3698 sbinfo->free_ispace -= ispace;
3699 raw_spin_unlock(&sbinfo->stat_lock);
3700 if (!ispace)
3701 return -ENOSPC;
3702 }
3703
3704 old_xattr = simple_xattr_set(&info->xattrs, name, value, size, flags);
3705 if (!IS_ERR(old_xattr)) {
3706 ispace = 0;
3707 if (old_xattr && sbinfo->max_inodes)
3708 ispace = simple_xattr_space(old_xattr->name,
3709 old_xattr->size);
3710 simple_xattr_free(old_xattr);
3711 old_xattr = NULL;
3712 inode_set_ctime_current(inode);
3713 inode_inc_iversion(inode);
3714 }
3715 if (ispace) {
3716 raw_spin_lock(&sbinfo->stat_lock);
3717 sbinfo->free_ispace += ispace;
3718 raw_spin_unlock(&sbinfo->stat_lock);
3719 }
3720 return PTR_ERR(old_xattr);
3721 }
3722
3723 static const struct xattr_handler shmem_security_xattr_handler = {
3724 .prefix = XATTR_SECURITY_PREFIX,
3725 .get = shmem_xattr_handler_get,
3726 .set = shmem_xattr_handler_set,
3727 };
3728
3729 static const struct xattr_handler shmem_trusted_xattr_handler = {
3730 .prefix = XATTR_TRUSTED_PREFIX,
3731 .get = shmem_xattr_handler_get,
3732 .set = shmem_xattr_handler_set,
3733 };
3734
3735 static const struct xattr_handler shmem_user_xattr_handler = {
3736 .prefix = XATTR_USER_PREFIX,
3737 .get = shmem_xattr_handler_get,
3738 .set = shmem_xattr_handler_set,
3739 };
3740
3741 static const struct xattr_handler *shmem_xattr_handlers[] = {
3742 &shmem_security_xattr_handler,
3743 &shmem_trusted_xattr_handler,
3744 &shmem_user_xattr_handler,
3745 NULL
3746 };
3747
shmem_listxattr(struct dentry * dentry,char * buffer,size_t size)3748 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3749 {
3750 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3751 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3752 }
3753 #endif /* CONFIG_TMPFS_XATTR */
3754
3755 static const struct inode_operations shmem_short_symlink_operations = {
3756 .getattr = shmem_getattr,
3757 .setattr = shmem_setattr,
3758 .get_link = simple_get_link,
3759 #ifdef CONFIG_TMPFS_XATTR
3760 .listxattr = shmem_listxattr,
3761 #endif
3762 };
3763
3764 static const struct inode_operations shmem_symlink_inode_operations = {
3765 .getattr = shmem_getattr,
3766 .setattr = shmem_setattr,
3767 .get_link = shmem_get_link,
3768 #ifdef CONFIG_TMPFS_XATTR
3769 .listxattr = shmem_listxattr,
3770 #endif
3771 };
3772
shmem_get_parent(struct dentry * child)3773 static struct dentry *shmem_get_parent(struct dentry *child)
3774 {
3775 return ERR_PTR(-ESTALE);
3776 }
3777
shmem_match(struct inode * ino,void * vfh)3778 static int shmem_match(struct inode *ino, void *vfh)
3779 {
3780 __u32 *fh = vfh;
3781 __u64 inum = fh[2];
3782 inum = (inum << 32) | fh[1];
3783 return ino->i_ino == inum && fh[0] == ino->i_generation;
3784 }
3785
3786 /* Find any alias of inode, but prefer a hashed alias */
shmem_find_alias(struct inode * inode)3787 static struct dentry *shmem_find_alias(struct inode *inode)
3788 {
3789 struct dentry *alias = d_find_alias(inode);
3790
3791 return alias ?: d_find_any_alias(inode);
3792 }
3793
3794
shmem_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)3795 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3796 struct fid *fid, int fh_len, int fh_type)
3797 {
3798 struct inode *inode;
3799 struct dentry *dentry = NULL;
3800 u64 inum;
3801
3802 if (fh_len < 3)
3803 return NULL;
3804
3805 inum = fid->raw[2];
3806 inum = (inum << 32) | fid->raw[1];
3807
3808 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3809 shmem_match, fid->raw);
3810 if (inode) {
3811 dentry = shmem_find_alias(inode);
3812 iput(inode);
3813 }
3814
3815 return dentry;
3816 }
3817
shmem_encode_fh(struct inode * inode,__u32 * fh,int * len,struct inode * parent)3818 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3819 struct inode *parent)
3820 {
3821 if (*len < 3) {
3822 *len = 3;
3823 return FILEID_INVALID;
3824 }
3825
3826 if (inode_unhashed(inode)) {
3827 /* Unfortunately insert_inode_hash is not idempotent,
3828 * so as we hash inodes here rather than at creation
3829 * time, we need a lock to ensure we only try
3830 * to do it once
3831 */
3832 static DEFINE_SPINLOCK(lock);
3833 spin_lock(&lock);
3834 if (inode_unhashed(inode))
3835 __insert_inode_hash(inode,
3836 inode->i_ino + inode->i_generation);
3837 spin_unlock(&lock);
3838 }
3839
3840 fh[0] = inode->i_generation;
3841 fh[1] = inode->i_ino;
3842 fh[2] = ((__u64)inode->i_ino) >> 32;
3843
3844 *len = 3;
3845 return 1;
3846 }
3847
3848 static const struct export_operations shmem_export_ops = {
3849 .get_parent = shmem_get_parent,
3850 .encode_fh = shmem_encode_fh,
3851 .fh_to_dentry = shmem_fh_to_dentry,
3852 };
3853
3854 enum shmem_param {
3855 Opt_gid,
3856 Opt_huge,
3857 Opt_mode,
3858 Opt_mpol,
3859 Opt_nr_blocks,
3860 Opt_nr_inodes,
3861 Opt_size,
3862 Opt_uid,
3863 Opt_inode32,
3864 Opt_inode64,
3865 Opt_noswap,
3866 Opt_quota,
3867 Opt_usrquota,
3868 Opt_grpquota,
3869 Opt_usrquota_block_hardlimit,
3870 Opt_usrquota_inode_hardlimit,
3871 Opt_grpquota_block_hardlimit,
3872 Opt_grpquota_inode_hardlimit,
3873 };
3874
3875 static const struct constant_table shmem_param_enums_huge[] = {
3876 {"never", SHMEM_HUGE_NEVER },
3877 {"always", SHMEM_HUGE_ALWAYS },
3878 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3879 {"advise", SHMEM_HUGE_ADVISE },
3880 {}
3881 };
3882
3883 const struct fs_parameter_spec shmem_fs_parameters[] = {
3884 fsparam_u32 ("gid", Opt_gid),
3885 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3886 fsparam_u32oct("mode", Opt_mode),
3887 fsparam_string("mpol", Opt_mpol),
3888 fsparam_string("nr_blocks", Opt_nr_blocks),
3889 fsparam_string("nr_inodes", Opt_nr_inodes),
3890 fsparam_string("size", Opt_size),
3891 fsparam_u32 ("uid", Opt_uid),
3892 fsparam_flag ("inode32", Opt_inode32),
3893 fsparam_flag ("inode64", Opt_inode64),
3894 fsparam_flag ("noswap", Opt_noswap),
3895 #ifdef CONFIG_TMPFS_QUOTA
3896 fsparam_flag ("quota", Opt_quota),
3897 fsparam_flag ("usrquota", Opt_usrquota),
3898 fsparam_flag ("grpquota", Opt_grpquota),
3899 fsparam_string("usrquota_block_hardlimit", Opt_usrquota_block_hardlimit),
3900 fsparam_string("usrquota_inode_hardlimit", Opt_usrquota_inode_hardlimit),
3901 fsparam_string("grpquota_block_hardlimit", Opt_grpquota_block_hardlimit),
3902 fsparam_string("grpquota_inode_hardlimit", Opt_grpquota_inode_hardlimit),
3903 #endif
3904 {}
3905 };
3906
shmem_parse_one(struct fs_context * fc,struct fs_parameter * param)3907 static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3908 {
3909 struct shmem_options *ctx = fc->fs_private;
3910 struct fs_parse_result result;
3911 unsigned long long size;
3912 char *rest;
3913 int opt;
3914 kuid_t kuid;
3915 kgid_t kgid;
3916
3917 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3918 if (opt < 0)
3919 return opt;
3920
3921 switch (opt) {
3922 case Opt_size:
3923 size = memparse(param->string, &rest);
3924 if (*rest == '%') {
3925 size <<= PAGE_SHIFT;
3926 size *= totalram_pages();
3927 do_div(size, 100);
3928 rest++;
3929 }
3930 if (*rest)
3931 goto bad_value;
3932 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3933 ctx->seen |= SHMEM_SEEN_BLOCKS;
3934 break;
3935 case Opt_nr_blocks:
3936 ctx->blocks = memparse(param->string, &rest);
3937 if (*rest || ctx->blocks > LONG_MAX)
3938 goto bad_value;
3939 ctx->seen |= SHMEM_SEEN_BLOCKS;
3940 break;
3941 case Opt_nr_inodes:
3942 ctx->inodes = memparse(param->string, &rest);
3943 if (*rest || ctx->inodes > ULONG_MAX / BOGO_INODE_SIZE)
3944 goto bad_value;
3945 ctx->seen |= SHMEM_SEEN_INODES;
3946 break;
3947 case Opt_mode:
3948 ctx->mode = result.uint_32 & 07777;
3949 break;
3950 case Opt_uid:
3951 kuid = make_kuid(current_user_ns(), result.uint_32);
3952 if (!uid_valid(kuid))
3953 goto bad_value;
3954
3955 /*
3956 * The requested uid must be representable in the
3957 * filesystem's idmapping.
3958 */
3959 if (!kuid_has_mapping(fc->user_ns, kuid))
3960 goto bad_value;
3961
3962 ctx->uid = kuid;
3963 break;
3964 case Opt_gid:
3965 kgid = make_kgid(current_user_ns(), result.uint_32);
3966 if (!gid_valid(kgid))
3967 goto bad_value;
3968
3969 /*
3970 * The requested gid must be representable in the
3971 * filesystem's idmapping.
3972 */
3973 if (!kgid_has_mapping(fc->user_ns, kgid))
3974 goto bad_value;
3975
3976 ctx->gid = kgid;
3977 break;
3978 case Opt_huge:
3979 ctx->huge = result.uint_32;
3980 if (ctx->huge != SHMEM_HUGE_NEVER &&
3981 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3982 has_transparent_hugepage()))
3983 goto unsupported_parameter;
3984 ctx->seen |= SHMEM_SEEN_HUGE;
3985 break;
3986 case Opt_mpol:
3987 if (IS_ENABLED(CONFIG_NUMA)) {
3988 mpol_put(ctx->mpol);
3989 ctx->mpol = NULL;
3990 if (mpol_parse_str(param->string, &ctx->mpol))
3991 goto bad_value;
3992 break;
3993 }
3994 goto unsupported_parameter;
3995 case Opt_inode32:
3996 ctx->full_inums = false;
3997 ctx->seen |= SHMEM_SEEN_INUMS;
3998 break;
3999 case Opt_inode64:
4000 if (sizeof(ino_t) < 8) {
4001 return invalfc(fc,
4002 "Cannot use inode64 with <64bit inums in kernel\n");
4003 }
4004 ctx->full_inums = true;
4005 ctx->seen |= SHMEM_SEEN_INUMS;
4006 break;
4007 case Opt_noswap:
4008 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
4009 return invalfc(fc,
4010 "Turning off swap in unprivileged tmpfs mounts unsupported");
4011 }
4012 ctx->noswap = true;
4013 ctx->seen |= SHMEM_SEEN_NOSWAP;
4014 break;
4015 case Opt_quota:
4016 if (fc->user_ns != &init_user_ns)
4017 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4018 ctx->seen |= SHMEM_SEEN_QUOTA;
4019 ctx->quota_types |= (QTYPE_MASK_USR | QTYPE_MASK_GRP);
4020 break;
4021 case Opt_usrquota:
4022 if (fc->user_ns != &init_user_ns)
4023 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4024 ctx->seen |= SHMEM_SEEN_QUOTA;
4025 ctx->quota_types |= QTYPE_MASK_USR;
4026 break;
4027 case Opt_grpquota:
4028 if (fc->user_ns != &init_user_ns)
4029 return invalfc(fc, "Quotas in unprivileged tmpfs mounts are unsupported");
4030 ctx->seen |= SHMEM_SEEN_QUOTA;
4031 ctx->quota_types |= QTYPE_MASK_GRP;
4032 break;
4033 case Opt_usrquota_block_hardlimit:
4034 size = memparse(param->string, &rest);
4035 if (*rest || !size)
4036 goto bad_value;
4037 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4038 return invalfc(fc,
4039 "User quota block hardlimit too large.");
4040 ctx->qlimits.usrquota_bhardlimit = size;
4041 break;
4042 case Opt_grpquota_block_hardlimit:
4043 size = memparse(param->string, &rest);
4044 if (*rest || !size)
4045 goto bad_value;
4046 if (size > SHMEM_QUOTA_MAX_SPC_LIMIT)
4047 return invalfc(fc,
4048 "Group quota block hardlimit too large.");
4049 ctx->qlimits.grpquota_bhardlimit = size;
4050 break;
4051 case Opt_usrquota_inode_hardlimit:
4052 size = memparse(param->string, &rest);
4053 if (*rest || !size)
4054 goto bad_value;
4055 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4056 return invalfc(fc,
4057 "User quota inode hardlimit too large.");
4058 ctx->qlimits.usrquota_ihardlimit = size;
4059 break;
4060 case Opt_grpquota_inode_hardlimit:
4061 size = memparse(param->string, &rest);
4062 if (*rest || !size)
4063 goto bad_value;
4064 if (size > SHMEM_QUOTA_MAX_INO_LIMIT)
4065 return invalfc(fc,
4066 "Group quota inode hardlimit too large.");
4067 ctx->qlimits.grpquota_ihardlimit = size;
4068 break;
4069 }
4070 return 0;
4071
4072 unsupported_parameter:
4073 return invalfc(fc, "Unsupported parameter '%s'", param->key);
4074 bad_value:
4075 return invalfc(fc, "Bad value for '%s'", param->key);
4076 }
4077
shmem_parse_options(struct fs_context * fc,void * data)4078 static int shmem_parse_options(struct fs_context *fc, void *data)
4079 {
4080 char *options = data;
4081
4082 if (options) {
4083 int err = security_sb_eat_lsm_opts(options, &fc->security);
4084 if (err)
4085 return err;
4086 }
4087
4088 while (options != NULL) {
4089 char *this_char = options;
4090 for (;;) {
4091 /*
4092 * NUL-terminate this option: unfortunately,
4093 * mount options form a comma-separated list,
4094 * but mpol's nodelist may also contain commas.
4095 */
4096 options = strchr(options, ',');
4097 if (options == NULL)
4098 break;
4099 options++;
4100 if (!isdigit(*options)) {
4101 options[-1] = '\0';
4102 break;
4103 }
4104 }
4105 if (*this_char) {
4106 char *value = strchr(this_char, '=');
4107 size_t len = 0;
4108 int err;
4109
4110 if (value) {
4111 *value++ = '\0';
4112 len = strlen(value);
4113 }
4114 err = vfs_parse_fs_string(fc, this_char, value, len);
4115 if (err < 0)
4116 return err;
4117 }
4118 }
4119 return 0;
4120 }
4121
4122 /*
4123 * Reconfigure a shmem filesystem.
4124 */
shmem_reconfigure(struct fs_context * fc)4125 static int shmem_reconfigure(struct fs_context *fc)
4126 {
4127 struct shmem_options *ctx = fc->fs_private;
4128 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
4129 unsigned long used_isp;
4130 struct mempolicy *mpol = NULL;
4131 const char *err;
4132
4133 raw_spin_lock(&sbinfo->stat_lock);
4134 used_isp = sbinfo->max_inodes * BOGO_INODE_SIZE - sbinfo->free_ispace;
4135
4136 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
4137 if (!sbinfo->max_blocks) {
4138 err = "Cannot retroactively limit size";
4139 goto out;
4140 }
4141 if (percpu_counter_compare(&sbinfo->used_blocks,
4142 ctx->blocks) > 0) {
4143 err = "Too small a size for current use";
4144 goto out;
4145 }
4146 }
4147 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
4148 if (!sbinfo->max_inodes) {
4149 err = "Cannot retroactively limit inodes";
4150 goto out;
4151 }
4152 if (ctx->inodes * BOGO_INODE_SIZE < used_isp) {
4153 err = "Too few inodes for current use";
4154 goto out;
4155 }
4156 }
4157
4158 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
4159 sbinfo->next_ino > UINT_MAX) {
4160 err = "Current inum too high to switch to 32-bit inums";
4161 goto out;
4162 }
4163 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
4164 err = "Cannot disable swap on remount";
4165 goto out;
4166 }
4167 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
4168 err = "Cannot enable swap on remount if it was disabled on first mount";
4169 goto out;
4170 }
4171
4172 if (ctx->seen & SHMEM_SEEN_QUOTA &&
4173 !sb_any_quota_loaded(fc->root->d_sb)) {
4174 err = "Cannot enable quota on remount";
4175 goto out;
4176 }
4177
4178 #ifdef CONFIG_TMPFS_QUOTA
4179 #define CHANGED_LIMIT(name) \
4180 (ctx->qlimits.name## hardlimit && \
4181 (ctx->qlimits.name## hardlimit != sbinfo->qlimits.name## hardlimit))
4182
4183 if (CHANGED_LIMIT(usrquota_b) || CHANGED_LIMIT(usrquota_i) ||
4184 CHANGED_LIMIT(grpquota_b) || CHANGED_LIMIT(grpquota_i)) {
4185 err = "Cannot change global quota limit on remount";
4186 goto out;
4187 }
4188 #endif /* CONFIG_TMPFS_QUOTA */
4189
4190 if (ctx->seen & SHMEM_SEEN_HUGE)
4191 sbinfo->huge = ctx->huge;
4192 if (ctx->seen & SHMEM_SEEN_INUMS)
4193 sbinfo->full_inums = ctx->full_inums;
4194 if (ctx->seen & SHMEM_SEEN_BLOCKS)
4195 sbinfo->max_blocks = ctx->blocks;
4196 if (ctx->seen & SHMEM_SEEN_INODES) {
4197 sbinfo->max_inodes = ctx->inodes;
4198 sbinfo->free_ispace = ctx->inodes * BOGO_INODE_SIZE - used_isp;
4199 }
4200
4201 /*
4202 * Preserve previous mempolicy unless mpol remount option was specified.
4203 */
4204 if (ctx->mpol) {
4205 mpol = sbinfo->mpol;
4206 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
4207 ctx->mpol = NULL;
4208 }
4209
4210 if (ctx->noswap)
4211 sbinfo->noswap = true;
4212
4213 raw_spin_unlock(&sbinfo->stat_lock);
4214 mpol_put(mpol);
4215 return 0;
4216 out:
4217 raw_spin_unlock(&sbinfo->stat_lock);
4218 return invalfc(fc, "%s", err);
4219 }
4220
shmem_show_options(struct seq_file * seq,struct dentry * root)4221 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
4222 {
4223 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
4224 struct mempolicy *mpol;
4225
4226 if (sbinfo->max_blocks != shmem_default_max_blocks())
4227 seq_printf(seq, ",size=%luk", K(sbinfo->max_blocks));
4228 if (sbinfo->max_inodes != shmem_default_max_inodes())
4229 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
4230 if (sbinfo->mode != (0777 | S_ISVTX))
4231 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
4232 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
4233 seq_printf(seq, ",uid=%u",
4234 from_kuid_munged(&init_user_ns, sbinfo->uid));
4235 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
4236 seq_printf(seq, ",gid=%u",
4237 from_kgid_munged(&init_user_ns, sbinfo->gid));
4238
4239 /*
4240 * Showing inode{64,32} might be useful even if it's the system default,
4241 * since then people don't have to resort to checking both here and
4242 * /proc/config.gz to confirm 64-bit inums were successfully applied
4243 * (which may not even exist if IKCONFIG_PROC isn't enabled).
4244 *
4245 * We hide it when inode64 isn't the default and we are using 32-bit
4246 * inodes, since that probably just means the feature isn't even under
4247 * consideration.
4248 *
4249 * As such:
4250 *
4251 * +-----------------+-----------------+
4252 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
4253 * +------------------+-----------------+-----------------+
4254 * | full_inums=true | show | show |
4255 * | full_inums=false | show | hide |
4256 * +------------------+-----------------+-----------------+
4257 *
4258 */
4259 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
4260 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
4261 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4262 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
4263 if (sbinfo->huge)
4264 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
4265 #endif
4266 mpol = shmem_get_sbmpol(sbinfo);
4267 shmem_show_mpol(seq, mpol);
4268 mpol_put(mpol);
4269 if (sbinfo->noswap)
4270 seq_printf(seq, ",noswap");
4271 return 0;
4272 }
4273
4274 #endif /* CONFIG_TMPFS */
4275
shmem_put_super(struct super_block * sb)4276 static void shmem_put_super(struct super_block *sb)
4277 {
4278 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
4279
4280 #ifdef CONFIG_TMPFS_QUOTA
4281 shmem_disable_quotas(sb);
4282 #endif
4283 free_percpu(sbinfo->ino_batch);
4284 percpu_counter_destroy(&sbinfo->used_blocks);
4285 mpol_put(sbinfo->mpol);
4286 kfree(sbinfo);
4287 sb->s_fs_info = NULL;
4288 }
4289
shmem_fill_super(struct super_block * sb,struct fs_context * fc)4290 static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
4291 {
4292 struct shmem_options *ctx = fc->fs_private;
4293 struct inode *inode;
4294 struct shmem_sb_info *sbinfo;
4295 int error = -ENOMEM;
4296
4297 /* Round up to L1_CACHE_BYTES to resist false sharing */
4298 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
4299 L1_CACHE_BYTES), GFP_KERNEL);
4300 if (!sbinfo)
4301 return error;
4302
4303 sb->s_fs_info = sbinfo;
4304
4305 #ifdef CONFIG_TMPFS
4306 /*
4307 * Per default we only allow half of the physical ram per
4308 * tmpfs instance, limiting inodes to one per page of lowmem;
4309 * but the internal instance is left unlimited.
4310 */
4311 if (!(sb->s_flags & SB_KERNMOUNT)) {
4312 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
4313 ctx->blocks = shmem_default_max_blocks();
4314 if (!(ctx->seen & SHMEM_SEEN_INODES))
4315 ctx->inodes = shmem_default_max_inodes();
4316 if (!(ctx->seen & SHMEM_SEEN_INUMS))
4317 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
4318 sbinfo->noswap = ctx->noswap;
4319 } else {
4320 sb->s_flags |= SB_NOUSER;
4321 }
4322 sb->s_export_op = &shmem_export_ops;
4323 sb->s_flags |= SB_NOSEC | SB_I_VERSION;
4324 #else
4325 sb->s_flags |= SB_NOUSER;
4326 #endif
4327 sbinfo->max_blocks = ctx->blocks;
4328 sbinfo->max_inodes = ctx->inodes;
4329 sbinfo->free_ispace = sbinfo->max_inodes * BOGO_INODE_SIZE;
4330 if (sb->s_flags & SB_KERNMOUNT) {
4331 sbinfo->ino_batch = alloc_percpu(ino_t);
4332 if (!sbinfo->ino_batch)
4333 goto failed;
4334 }
4335 sbinfo->uid = ctx->uid;
4336 sbinfo->gid = ctx->gid;
4337 sbinfo->full_inums = ctx->full_inums;
4338 sbinfo->mode = ctx->mode;
4339 sbinfo->huge = ctx->huge;
4340 sbinfo->mpol = ctx->mpol;
4341 ctx->mpol = NULL;
4342
4343 raw_spin_lock_init(&sbinfo->stat_lock);
4344 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
4345 goto failed;
4346 spin_lock_init(&sbinfo->shrinklist_lock);
4347 INIT_LIST_HEAD(&sbinfo->shrinklist);
4348
4349 sb->s_maxbytes = MAX_LFS_FILESIZE;
4350 sb->s_blocksize = PAGE_SIZE;
4351 sb->s_blocksize_bits = PAGE_SHIFT;
4352 sb->s_magic = TMPFS_MAGIC;
4353 sb->s_op = &shmem_ops;
4354 sb->s_time_gran = 1;
4355 #ifdef CONFIG_TMPFS_XATTR
4356 sb->s_xattr = shmem_xattr_handlers;
4357 #endif
4358 #ifdef CONFIG_TMPFS_POSIX_ACL
4359 sb->s_flags |= SB_POSIXACL;
4360 #endif
4361 uuid_gen(&sb->s_uuid);
4362
4363 #ifdef CONFIG_TMPFS_QUOTA
4364 if (ctx->seen & SHMEM_SEEN_QUOTA) {
4365 sb->dq_op = &shmem_quota_operations;
4366 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4367 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP;
4368
4369 /* Copy the default limits from ctx into sbinfo */
4370 memcpy(&sbinfo->qlimits, &ctx->qlimits,
4371 sizeof(struct shmem_quota_limits));
4372
4373 if (shmem_enable_quotas(sb, ctx->quota_types))
4374 goto failed;
4375 }
4376 #endif /* CONFIG_TMPFS_QUOTA */
4377
4378 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, S_IFDIR | sbinfo->mode, 0,
4379 VM_NORESERVE);
4380 if (IS_ERR(inode)) {
4381 error = PTR_ERR(inode);
4382 goto failed;
4383 }
4384 inode->i_uid = sbinfo->uid;
4385 inode->i_gid = sbinfo->gid;
4386 sb->s_root = d_make_root(inode);
4387 if (!sb->s_root)
4388 goto failed;
4389 return 0;
4390
4391 failed:
4392 shmem_put_super(sb);
4393 return error;
4394 }
4395
shmem_get_tree(struct fs_context * fc)4396 static int shmem_get_tree(struct fs_context *fc)
4397 {
4398 return get_tree_nodev(fc, shmem_fill_super);
4399 }
4400
shmem_free_fc(struct fs_context * fc)4401 static void shmem_free_fc(struct fs_context *fc)
4402 {
4403 struct shmem_options *ctx = fc->fs_private;
4404
4405 if (ctx) {
4406 mpol_put(ctx->mpol);
4407 kfree(ctx);
4408 }
4409 }
4410
4411 static const struct fs_context_operations shmem_fs_context_ops = {
4412 .free = shmem_free_fc,
4413 .get_tree = shmem_get_tree,
4414 #ifdef CONFIG_TMPFS
4415 .parse_monolithic = shmem_parse_options,
4416 .parse_param = shmem_parse_one,
4417 .reconfigure = shmem_reconfigure,
4418 #endif
4419 };
4420
4421 static struct kmem_cache *shmem_inode_cachep;
4422
shmem_alloc_inode(struct super_block * sb)4423 static struct inode *shmem_alloc_inode(struct super_block *sb)
4424 {
4425 struct shmem_inode_info *info;
4426 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
4427 if (!info)
4428 return NULL;
4429 return &info->vfs_inode;
4430 }
4431
shmem_free_in_core_inode(struct inode * inode)4432 static void shmem_free_in_core_inode(struct inode *inode)
4433 {
4434 if (S_ISLNK(inode->i_mode))
4435 kfree(inode->i_link);
4436 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
4437 }
4438
shmem_destroy_inode(struct inode * inode)4439 static void shmem_destroy_inode(struct inode *inode)
4440 {
4441 if (S_ISREG(inode->i_mode))
4442 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
4443 if (S_ISDIR(inode->i_mode))
4444 simple_offset_destroy(shmem_get_offset_ctx(inode));
4445 }
4446
shmem_init_inode(void * foo)4447 static void shmem_init_inode(void *foo)
4448 {
4449 struct shmem_inode_info *info = foo;
4450 inode_init_once(&info->vfs_inode);
4451 }
4452
shmem_init_inodecache(void)4453 static void shmem_init_inodecache(void)
4454 {
4455 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
4456 sizeof(struct shmem_inode_info),
4457 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
4458 }
4459
shmem_destroy_inodecache(void)4460 static void shmem_destroy_inodecache(void)
4461 {
4462 kmem_cache_destroy(shmem_inode_cachep);
4463 }
4464
4465 /* Keep the page in page cache instead of truncating it */
shmem_error_remove_page(struct address_space * mapping,struct page * page)4466 static int shmem_error_remove_page(struct address_space *mapping,
4467 struct page *page)
4468 {
4469 return 0;
4470 }
4471
4472 const struct address_space_operations shmem_aops = {
4473 .writepage = shmem_writepage,
4474 .dirty_folio = noop_dirty_folio,
4475 #ifdef CONFIG_TMPFS
4476 .write_begin = shmem_write_begin,
4477 .write_end = shmem_write_end,
4478 #endif
4479 #ifdef CONFIG_MIGRATION
4480 .migrate_folio = migrate_folio,
4481 #endif
4482 .error_remove_page = shmem_error_remove_page,
4483 };
4484 EXPORT_SYMBOL(shmem_aops);
4485
4486 static const struct file_operations shmem_file_operations = {
4487 .mmap = shmem_mmap,
4488 .open = shmem_file_open,
4489 .get_unmapped_area = shmem_get_unmapped_area,
4490 #ifdef CONFIG_TMPFS
4491 .llseek = shmem_file_llseek,
4492 .read_iter = shmem_file_read_iter,
4493 .write_iter = shmem_file_write_iter,
4494 .fsync = noop_fsync,
4495 .splice_read = shmem_file_splice_read,
4496 .splice_write = iter_file_splice_write,
4497 .fallocate = shmem_fallocate,
4498 #endif
4499 };
4500
4501 static const struct inode_operations shmem_inode_operations = {
4502 .getattr = shmem_getattr,
4503 .setattr = shmem_setattr,
4504 #ifdef CONFIG_TMPFS_XATTR
4505 .listxattr = shmem_listxattr,
4506 .set_acl = simple_set_acl,
4507 .fileattr_get = shmem_fileattr_get,
4508 .fileattr_set = shmem_fileattr_set,
4509 #endif
4510 };
4511
4512 static const struct inode_operations shmem_dir_inode_operations = {
4513 #ifdef CONFIG_TMPFS
4514 .getattr = shmem_getattr,
4515 .create = shmem_create,
4516 .lookup = simple_lookup,
4517 .link = shmem_link,
4518 .unlink = shmem_unlink,
4519 .symlink = shmem_symlink,
4520 .mkdir = shmem_mkdir,
4521 .rmdir = shmem_rmdir,
4522 .mknod = shmem_mknod,
4523 .rename = shmem_rename2,
4524 .tmpfile = shmem_tmpfile,
4525 .get_offset_ctx = shmem_get_offset_ctx,
4526 #endif
4527 #ifdef CONFIG_TMPFS_XATTR
4528 .listxattr = shmem_listxattr,
4529 .fileattr_get = shmem_fileattr_get,
4530 .fileattr_set = shmem_fileattr_set,
4531 #endif
4532 #ifdef CONFIG_TMPFS_POSIX_ACL
4533 .setattr = shmem_setattr,
4534 .set_acl = simple_set_acl,
4535 #endif
4536 };
4537
4538 static const struct inode_operations shmem_special_inode_operations = {
4539 .getattr = shmem_getattr,
4540 #ifdef CONFIG_TMPFS_XATTR
4541 .listxattr = shmem_listxattr,
4542 #endif
4543 #ifdef CONFIG_TMPFS_POSIX_ACL
4544 .setattr = shmem_setattr,
4545 .set_acl = simple_set_acl,
4546 #endif
4547 };
4548
4549 static const struct super_operations shmem_ops = {
4550 .alloc_inode = shmem_alloc_inode,
4551 .free_inode = shmem_free_in_core_inode,
4552 .destroy_inode = shmem_destroy_inode,
4553 #ifdef CONFIG_TMPFS
4554 .statfs = shmem_statfs,
4555 .show_options = shmem_show_options,
4556 #endif
4557 #ifdef CONFIG_TMPFS_QUOTA
4558 .get_dquots = shmem_get_dquots,
4559 #endif
4560 .evict_inode = shmem_evict_inode,
4561 .drop_inode = generic_delete_inode,
4562 .put_super = shmem_put_super,
4563 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4564 .nr_cached_objects = shmem_unused_huge_count,
4565 .free_cached_objects = shmem_unused_huge_scan,
4566 #endif
4567 };
4568
4569 static const struct vm_operations_struct shmem_vm_ops = {
4570 .fault = shmem_fault,
4571 .map_pages = filemap_map_pages,
4572 #ifdef CONFIG_NUMA
4573 .set_policy = shmem_set_policy,
4574 .get_policy = shmem_get_policy,
4575 #endif
4576 };
4577
4578 static const struct vm_operations_struct shmem_anon_vm_ops = {
4579 .fault = shmem_fault,
4580 .map_pages = filemap_map_pages,
4581 #ifdef CONFIG_NUMA
4582 .set_policy = shmem_set_policy,
4583 .get_policy = shmem_get_policy,
4584 #endif
4585 };
4586
shmem_init_fs_context(struct fs_context * fc)4587 int shmem_init_fs_context(struct fs_context *fc)
4588 {
4589 struct shmem_options *ctx;
4590
4591 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4592 if (!ctx)
4593 return -ENOMEM;
4594
4595 ctx->mode = 0777 | S_ISVTX;
4596 ctx->uid = current_fsuid();
4597 ctx->gid = current_fsgid();
4598
4599 fc->fs_private = ctx;
4600 fc->ops = &shmem_fs_context_ops;
4601 return 0;
4602 }
4603
4604 static struct file_system_type shmem_fs_type = {
4605 .owner = THIS_MODULE,
4606 .name = "tmpfs",
4607 .init_fs_context = shmem_init_fs_context,
4608 #ifdef CONFIG_TMPFS
4609 .parameters = shmem_fs_parameters,
4610 #endif
4611 .kill_sb = kill_litter_super,
4612 #ifdef CONFIG_SHMEM
4613 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4614 #else
4615 .fs_flags = FS_USERNS_MOUNT,
4616 #endif
4617 };
4618
shmem_init(void)4619 void __init shmem_init(void)
4620 {
4621 int error;
4622
4623 shmem_init_inodecache();
4624
4625 #ifdef CONFIG_TMPFS_QUOTA
4626 error = register_quota_format(&shmem_quota_format);
4627 if (error < 0) {
4628 pr_err("Could not register quota format\n");
4629 goto out3;
4630 }
4631 #endif
4632
4633 error = register_filesystem(&shmem_fs_type);
4634 if (error) {
4635 pr_err("Could not register tmpfs\n");
4636 goto out2;
4637 }
4638
4639 shm_mnt = kern_mount(&shmem_fs_type);
4640 if (IS_ERR(shm_mnt)) {
4641 error = PTR_ERR(shm_mnt);
4642 pr_err("Could not kern_mount tmpfs\n");
4643 goto out1;
4644 }
4645
4646 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4647 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4648 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4649 else
4650 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4651 #endif
4652 return;
4653
4654 out1:
4655 unregister_filesystem(&shmem_fs_type);
4656 out2:
4657 #ifdef CONFIG_TMPFS_QUOTA
4658 unregister_quota_format(&shmem_quota_format);
4659 out3:
4660 #endif
4661 shmem_destroy_inodecache();
4662 shm_mnt = ERR_PTR(error);
4663 }
4664
4665 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
shmem_enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4666 static ssize_t shmem_enabled_show(struct kobject *kobj,
4667 struct kobj_attribute *attr, char *buf)
4668 {
4669 static const int values[] = {
4670 SHMEM_HUGE_ALWAYS,
4671 SHMEM_HUGE_WITHIN_SIZE,
4672 SHMEM_HUGE_ADVISE,
4673 SHMEM_HUGE_NEVER,
4674 SHMEM_HUGE_DENY,
4675 SHMEM_HUGE_FORCE,
4676 };
4677 int len = 0;
4678 int i;
4679
4680 for (i = 0; i < ARRAY_SIZE(values); i++) {
4681 len += sysfs_emit_at(buf, len,
4682 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4683 i ? " " : "",
4684 shmem_format_huge(values[i]));
4685 }
4686
4687 len += sysfs_emit_at(buf, len, "\n");
4688
4689 return len;
4690 }
4691
shmem_enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)4692 static ssize_t shmem_enabled_store(struct kobject *kobj,
4693 struct kobj_attribute *attr, const char *buf, size_t count)
4694 {
4695 char tmp[16];
4696 int huge;
4697
4698 if (count + 1 > sizeof(tmp))
4699 return -EINVAL;
4700 memcpy(tmp, buf, count);
4701 tmp[count] = '\0';
4702 if (count && tmp[count - 1] == '\n')
4703 tmp[count - 1] = '\0';
4704
4705 huge = shmem_parse_huge(tmp);
4706 if (huge == -EINVAL)
4707 return -EINVAL;
4708 if (!has_transparent_hugepage() &&
4709 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4710 return -EINVAL;
4711
4712 shmem_huge = huge;
4713 if (shmem_huge > SHMEM_HUGE_DENY)
4714 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4715 return count;
4716 }
4717
4718 struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4719 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4720
4721 #else /* !CONFIG_SHMEM */
4722
4723 /*
4724 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4725 *
4726 * This is intended for small system where the benefits of the full
4727 * shmem code (swap-backed and resource-limited) are outweighed by
4728 * their complexity. On systems without swap this code should be
4729 * effectively equivalent, but much lighter weight.
4730 */
4731
4732 static struct file_system_type shmem_fs_type = {
4733 .name = "tmpfs",
4734 .init_fs_context = ramfs_init_fs_context,
4735 .parameters = ramfs_fs_parameters,
4736 .kill_sb = ramfs_kill_sb,
4737 .fs_flags = FS_USERNS_MOUNT,
4738 };
4739
shmem_init(void)4740 void __init shmem_init(void)
4741 {
4742 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4743
4744 shm_mnt = kern_mount(&shmem_fs_type);
4745 BUG_ON(IS_ERR(shm_mnt));
4746 }
4747
shmem_unuse(unsigned int type)4748 int shmem_unuse(unsigned int type)
4749 {
4750 return 0;
4751 }
4752
shmem_lock(struct file * file,int lock,struct ucounts * ucounts)4753 int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4754 {
4755 return 0;
4756 }
4757
shmem_unlock_mapping(struct address_space * mapping)4758 void shmem_unlock_mapping(struct address_space *mapping)
4759 {
4760 }
4761
4762 #ifdef CONFIG_MMU
shmem_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)4763 unsigned long shmem_get_unmapped_area(struct file *file,
4764 unsigned long addr, unsigned long len,
4765 unsigned long pgoff, unsigned long flags)
4766 {
4767 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4768 }
4769 #endif
4770
shmem_truncate_range(struct inode * inode,loff_t lstart,loff_t lend)4771 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4772 {
4773 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4774 }
4775 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4776
4777 #define shmem_vm_ops generic_file_vm_ops
4778 #define shmem_anon_vm_ops generic_file_vm_ops
4779 #define shmem_file_operations ramfs_file_operations
4780 #define shmem_acct_size(flags, size) 0
4781 #define shmem_unacct_size(flags, size) do {} while (0)
4782
shmem_get_inode(struct mnt_idmap * idmap,struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev,unsigned long flags)4783 static inline struct inode *shmem_get_inode(struct mnt_idmap *idmap, struct super_block *sb, struct inode *dir,
4784 umode_t mode, dev_t dev, unsigned long flags)
4785 {
4786 struct inode *inode = ramfs_get_inode(sb, dir, mode, dev);
4787 return inode ? inode : ERR_PTR(-ENOSPC);
4788 }
4789
4790 #endif /* CONFIG_SHMEM */
4791
4792 /* common code */
4793
__shmem_file_setup(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags,unsigned int i_flags)4794 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4795 unsigned long flags, unsigned int i_flags)
4796 {
4797 struct inode *inode;
4798 struct file *res;
4799
4800 if (IS_ERR(mnt))
4801 return ERR_CAST(mnt);
4802
4803 if (size < 0 || size > MAX_LFS_FILESIZE)
4804 return ERR_PTR(-EINVAL);
4805
4806 if (shmem_acct_size(flags, size))
4807 return ERR_PTR(-ENOMEM);
4808
4809 if (is_idmapped_mnt(mnt))
4810 return ERR_PTR(-EINVAL);
4811
4812 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
4813 S_IFREG | S_IRWXUGO, 0, flags);
4814
4815 if (IS_ERR(inode)) {
4816 shmem_unacct_size(flags, size);
4817 return ERR_CAST(inode);
4818 }
4819 inode->i_flags |= i_flags;
4820 inode->i_size = size;
4821 clear_nlink(inode); /* It is unlinked */
4822 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4823 if (!IS_ERR(res))
4824 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4825 &shmem_file_operations);
4826 if (IS_ERR(res))
4827 iput(inode);
4828 return res;
4829 }
4830
4831 /**
4832 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4833 * kernel internal. There will be NO LSM permission checks against the
4834 * underlying inode. So users of this interface must do LSM checks at a
4835 * higher layer. The users are the big_key and shm implementations. LSM
4836 * checks are provided at the key or shm level rather than the inode.
4837 * @name: name for dentry (to be seen in /proc/<pid>/maps
4838 * @size: size to be set for the file
4839 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4840 */
shmem_kernel_file_setup(const char * name,loff_t size,unsigned long flags)4841 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4842 {
4843 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4844 }
4845
4846 /**
4847 * shmem_file_setup - get an unlinked file living in tmpfs
4848 * @name: name for dentry (to be seen in /proc/<pid>/maps
4849 * @size: size to be set for the file
4850 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4851 */
shmem_file_setup(const char * name,loff_t size,unsigned long flags)4852 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4853 {
4854 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4855 }
4856 EXPORT_SYMBOL_GPL(shmem_file_setup);
4857
4858 /**
4859 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4860 * @mnt: the tmpfs mount where the file will be created
4861 * @name: name for dentry (to be seen in /proc/<pid>/maps
4862 * @size: size to be set for the file
4863 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4864 */
shmem_file_setup_with_mnt(struct vfsmount * mnt,const char * name,loff_t size,unsigned long flags)4865 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4866 loff_t size, unsigned long flags)
4867 {
4868 return __shmem_file_setup(mnt, name, size, flags, 0);
4869 }
4870 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4871
4872 /**
4873 * shmem_zero_setup - setup a shared anonymous mapping
4874 * @vma: the vma to be mmapped is prepared by do_mmap
4875 */
shmem_zero_setup(struct vm_area_struct * vma)4876 int shmem_zero_setup(struct vm_area_struct *vma)
4877 {
4878 struct file *file;
4879 loff_t size = vma->vm_end - vma->vm_start;
4880
4881 /*
4882 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4883 * between XFS directory reading and selinux: since this file is only
4884 * accessible to the user through its mapping, use S_PRIVATE flag to
4885 * bypass file security, in the same way as shmem_kernel_file_setup().
4886 */
4887 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4888 if (IS_ERR(file))
4889 return PTR_ERR(file);
4890
4891 if (vma->vm_file)
4892 fput(vma->vm_file);
4893 vma->vm_file = file;
4894 vma->vm_ops = &shmem_anon_vm_ops;
4895
4896 return 0;
4897 }
4898
4899 /**
4900 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
4901 * @mapping: the folio's address_space
4902 * @index: the folio index
4903 * @gfp: the page allocator flags to use if allocating
4904 *
4905 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4906 * with any new page allocations done using the specified allocation flags.
4907 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4908 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4909 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4910 *
4911 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4912 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4913 */
shmem_read_folio_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4914 struct folio *shmem_read_folio_gfp(struct address_space *mapping,
4915 pgoff_t index, gfp_t gfp)
4916 {
4917 #ifdef CONFIG_SHMEM
4918 struct inode *inode = mapping->host;
4919 struct folio *folio;
4920 int error;
4921
4922 BUG_ON(!shmem_mapping(mapping));
4923 error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4924 gfp, NULL, NULL, NULL);
4925 if (error)
4926 return ERR_PTR(error);
4927
4928 folio_unlock(folio);
4929 return folio;
4930 #else
4931 /*
4932 * The tiny !SHMEM case uses ramfs without swap
4933 */
4934 return mapping_read_folio_gfp(mapping, index, gfp);
4935 #endif
4936 }
4937 EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
4938
shmem_read_mapping_page_gfp(struct address_space * mapping,pgoff_t index,gfp_t gfp)4939 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4940 pgoff_t index, gfp_t gfp)
4941 {
4942 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
4943 struct page *page;
4944
4945 if (IS_ERR(folio))
4946 return &folio->page;
4947
4948 page = folio_file_page(folio, index);
4949 if (PageHWPoison(page)) {
4950 folio_put(folio);
4951 return ERR_PTR(-EIO);
4952 }
4953
4954 return page;
4955 }
4956 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4957