1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * FIPS-180-2 compliant SHA-512 and SHA-384 implementation
4 *
5 * SHA-512 code by Jean-Luc Cooke <jlcooke@certainkey.com>
6 *
7 * Copyright (c) Jean-Luc Cooke <jlcooke@certainkey.com>
8 * Copyright (c) Andrew McDonald <andrew@mcdonald.org.uk>
9 * Copyright (c) 2003 Kyle McMartin <kyle@debian.org>
10 * Copyright (c) 2020 Reuben Dowle <reuben.dowle@4rf.com>
11 */
12
13 #ifndef USE_HOSTCC
14 #include <common.h>
15 #include <linux/string.h>
16 #else
17 #include <string.h>
18 #endif /* USE_HOSTCC */
19 #include <watchdog.h>
20 #include <u-boot/sha512.h>
21
22 const uint8_t sha384_der_prefix[SHA384_DER_LEN] = {
23 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
24 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02, 0x05,
25 0x00, 0x04, 0x30
26 };
27
28 const uint8_t sha512_der_prefix[SHA512_DER_LEN] = {
29 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86,
30 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03, 0x05,
31 0x00, 0x04, 0x40
32 };
33
34 #define SHA384_H0 0xcbbb9d5dc1059ed8ULL
35 #define SHA384_H1 0x629a292a367cd507ULL
36 #define SHA384_H2 0x9159015a3070dd17ULL
37 #define SHA384_H3 0x152fecd8f70e5939ULL
38 #define SHA384_H4 0x67332667ffc00b31ULL
39 #define SHA384_H5 0x8eb44a8768581511ULL
40 #define SHA384_H6 0xdb0c2e0d64f98fa7ULL
41 #define SHA384_H7 0x47b5481dbefa4fa4ULL
42
43 #define SHA512_H0 0x6a09e667f3bcc908ULL
44 #define SHA512_H1 0xbb67ae8584caa73bULL
45 #define SHA512_H2 0x3c6ef372fe94f82bULL
46 #define SHA512_H3 0xa54ff53a5f1d36f1ULL
47 #define SHA512_H4 0x510e527fade682d1ULL
48 #define SHA512_H5 0x9b05688c2b3e6c1fULL
49 #define SHA512_H6 0x1f83d9abfb41bd6bULL
50 #define SHA512_H7 0x5be0cd19137e2179ULL
51
Ch(uint64_t x,uint64_t y,uint64_t z)52 static inline uint64_t Ch(uint64_t x, uint64_t y, uint64_t z)
53 {
54 return z ^ (x & (y ^ z));
55 }
56
Maj(uint64_t x,uint64_t y,uint64_t z)57 static inline uint64_t Maj(uint64_t x, uint64_t y, uint64_t z)
58 {
59 return (x & y) | (z & (x | y));
60 }
61
62 static const uint64_t sha512_K[80] = {
63 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL,
64 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL,
65 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL,
66 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL,
67 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL,
68 0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL,
69 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL,
70 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL,
71 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL,
72 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL,
73 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL,
74 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL,
75 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL,
76 0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL,
77 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL,
78 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL,
79 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL,
80 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL,
81 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL,
82 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL,
83 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL,
84 0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL,
85 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL,
86 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL,
87 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL,
88 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL,
89 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL,
90 };
91
ror64(uint64_t word,unsigned int shift)92 static inline uint64_t ror64(uint64_t word, unsigned int shift)
93 {
94 return (word >> (shift & 63)) | (word << ((-shift) & 63));
95 }
96
97 #define e0(x) (ror64(x,28) ^ ror64(x,34) ^ ror64(x,39))
98 #define e1(x) (ror64(x,14) ^ ror64(x,18) ^ ror64(x,41))
99 #define s0(x) (ror64(x, 1) ^ ror64(x, 8) ^ (x >> 7))
100 #define s1(x) (ror64(x,19) ^ ror64(x,61) ^ (x >> 6))
101
102 /*
103 * 64-bit integer manipulation macros (big endian)
104 */
105 #ifndef GET_UINT64_BE
106 #define GET_UINT64_BE(n,b,i) { \
107 (n) = ( (unsigned long long) (b)[(i) ] << 56 ) \
108 | ( (unsigned long long) (b)[(i) + 1] << 48 ) \
109 | ( (unsigned long long) (b)[(i) + 2] << 40 ) \
110 | ( (unsigned long long) (b)[(i) + 3] << 32 ) \
111 | ( (unsigned long long) (b)[(i) + 4] << 24 ) \
112 | ( (unsigned long long) (b)[(i) + 5] << 16 ) \
113 | ( (unsigned long long) (b)[(i) + 6] << 8 ) \
114 | ( (unsigned long long) (b)[(i) + 7] ); \
115 }
116 #endif
117 #ifndef PUT_UINT64_BE
118 #define PUT_UINT64_BE(n,b,i) { \
119 (b)[(i) ] = (unsigned char) ( (n) >> 56 ); \
120 (b)[(i) + 1] = (unsigned char) ( (n) >> 48 ); \
121 (b)[(i) + 2] = (unsigned char) ( (n) >> 40 ); \
122 (b)[(i) + 3] = (unsigned char) ( (n) >> 32 ); \
123 (b)[(i) + 4] = (unsigned char) ( (n) >> 24 ); \
124 (b)[(i) + 5] = (unsigned char) ( (n) >> 16 ); \
125 (b)[(i) + 6] = (unsigned char) ( (n) >> 8 ); \
126 (b)[(i) + 7] = (unsigned char) ( (n) ); \
127 }
128 #endif
129
LOAD_OP(int I,uint64_t * W,const uint8_t * input)130 static inline void LOAD_OP(int I, uint64_t *W, const uint8_t *input)
131 {
132 GET_UINT64_BE(W[I], input, I*8);
133 }
134
BLEND_OP(int I,uint64_t * W)135 static inline void BLEND_OP(int I, uint64_t *W)
136 {
137 W[I & 15] += s1(W[(I-2) & 15]) + W[(I-7) & 15] + s0(W[(I-15) & 15]);
138 }
139
140 static void
sha512_transform(uint64_t * state,const uint8_t * input)141 sha512_transform(uint64_t *state, const uint8_t *input)
142 {
143 uint64_t a, b, c, d, e, f, g, h, t1, t2;
144
145 int i;
146 uint64_t W[16];
147
148 /* load the state into our registers */
149 a=state[0]; b=state[1]; c=state[2]; d=state[3];
150 e=state[4]; f=state[5]; g=state[6]; h=state[7];
151
152 /* now iterate */
153 for (i=0; i<80; i+=8) {
154 if (!(i & 8)) {
155 int j;
156
157 if (i < 16) {
158 /* load the input */
159 for (j = 0; j < 16; j++)
160 LOAD_OP(i + j, W, input);
161 } else {
162 for (j = 0; j < 16; j++) {
163 BLEND_OP(i + j, W);
164 }
165 }
166 }
167
168 t1 = h + e1(e) + Ch(e,f,g) + sha512_K[i ] + W[(i & 15)];
169 t2 = e0(a) + Maj(a,b,c); d+=t1; h=t1+t2;
170 t1 = g + e1(d) + Ch(d,e,f) + sha512_K[i+1] + W[(i & 15) + 1];
171 t2 = e0(h) + Maj(h,a,b); c+=t1; g=t1+t2;
172 t1 = f + e1(c) + Ch(c,d,e) + sha512_K[i+2] + W[(i & 15) + 2];
173 t2 = e0(g) + Maj(g,h,a); b+=t1; f=t1+t2;
174 t1 = e + e1(b) + Ch(b,c,d) + sha512_K[i+3] + W[(i & 15) + 3];
175 t2 = e0(f) + Maj(f,g,h); a+=t1; e=t1+t2;
176 t1 = d + e1(a) + Ch(a,b,c) + sha512_K[i+4] + W[(i & 15) + 4];
177 t2 = e0(e) + Maj(e,f,g); h+=t1; d=t1+t2;
178 t1 = c + e1(h) + Ch(h,a,b) + sha512_K[i+5] + W[(i & 15) + 5];
179 t2 = e0(d) + Maj(d,e,f); g+=t1; c=t1+t2;
180 t1 = b + e1(g) + Ch(g,h,a) + sha512_K[i+6] + W[(i & 15) + 6];
181 t2 = e0(c) + Maj(c,d,e); f+=t1; b=t1+t2;
182 t1 = a + e1(f) + Ch(f,g,h) + sha512_K[i+7] + W[(i & 15) + 7];
183 t2 = e0(b) + Maj(b,c,d); e+=t1; a=t1+t2;
184 }
185
186 state[0] += a; state[1] += b; state[2] += c; state[3] += d;
187 state[4] += e; state[5] += f; state[6] += g; state[7] += h;
188
189 /* erase our data */
190 a = b = c = d = e = f = g = h = t1 = t2 = 0;
191 }
192
sha512_block_fn(sha512_context * sst,const uint8_t * src,int blocks)193 static void sha512_block_fn(sha512_context *sst, const uint8_t *src,
194 int blocks)
195 {
196 while (blocks--) {
197 sha512_transform(sst->state, src);
198 src += SHA512_BLOCK_SIZE;
199 }
200 }
201
sha512_base_do_update(sha512_context * sctx,const uint8_t * data,unsigned int len)202 static void sha512_base_do_update(sha512_context *sctx,
203 const uint8_t *data,
204 unsigned int len)
205 {
206 unsigned int partial = sctx->count[0] % SHA512_BLOCK_SIZE;
207
208 sctx->count[0] += len;
209 if (sctx->count[0] < len)
210 sctx->count[1]++;
211
212 if (unlikely((partial + len) >= SHA512_BLOCK_SIZE)) {
213 int blocks;
214
215 if (partial) {
216 int p = SHA512_BLOCK_SIZE - partial;
217
218 memcpy(sctx->buf + partial, data, p);
219 data += p;
220 len -= p;
221
222 sha512_block_fn(sctx, sctx->buf, 1);
223 }
224
225 blocks = len / SHA512_BLOCK_SIZE;
226 len %= SHA512_BLOCK_SIZE;
227
228 if (blocks) {
229 sha512_block_fn(sctx, data, blocks);
230 data += blocks * SHA512_BLOCK_SIZE;
231 }
232 partial = 0;
233 }
234 if (len)
235 memcpy(sctx->buf + partial, data, len);
236 }
237
sha512_base_do_finalize(sha512_context * sctx)238 static void sha512_base_do_finalize(sha512_context *sctx)
239 {
240 const int bit_offset = SHA512_BLOCK_SIZE - sizeof(uint64_t[2]);
241 uint64_t *bits = (uint64_t *)(sctx->buf + bit_offset);
242 unsigned int partial = sctx->count[0] % SHA512_BLOCK_SIZE;
243
244 sctx->buf[partial++] = 0x80;
245 if (partial > bit_offset) {
246 memset(sctx->buf + partial, 0x0, SHA512_BLOCK_SIZE - partial);
247 partial = 0;
248
249 sha512_block_fn(sctx, sctx->buf, 1);
250 }
251
252 memset(sctx->buf + partial, 0x0, bit_offset - partial);
253 bits[0] = cpu_to_be64(sctx->count[1] << 3 | sctx->count[0] >> 61);
254 bits[1] = cpu_to_be64(sctx->count[0] << 3);
255 sha512_block_fn(sctx, sctx->buf, 1);
256 }
257
258 #if defined(CONFIG_SHA384)
sha384_starts(sha512_context * ctx)259 void sha384_starts(sha512_context * ctx)
260 {
261 ctx->state[0] = SHA384_H0;
262 ctx->state[1] = SHA384_H1;
263 ctx->state[2] = SHA384_H2;
264 ctx->state[3] = SHA384_H3;
265 ctx->state[4] = SHA384_H4;
266 ctx->state[5] = SHA384_H5;
267 ctx->state[6] = SHA384_H6;
268 ctx->state[7] = SHA384_H7;
269 ctx->count[0] = ctx->count[1] = 0;
270 }
271
sha384_update(sha512_context * ctx,const uint8_t * input,uint32_t length)272 void sha384_update(sha512_context *ctx, const uint8_t *input, uint32_t length)
273 {
274 sha512_base_do_update(ctx, input, length);
275 }
276
sha384_finish(sha512_context * ctx,uint8_t digest[SHA384_SUM_LEN])277 void sha384_finish(sha512_context * ctx, uint8_t digest[SHA384_SUM_LEN])
278 {
279 int i;
280
281 sha512_base_do_finalize(ctx);
282 for(i=0; i<SHA384_SUM_LEN / sizeof(uint64_t); i++)
283 PUT_UINT64_BE(ctx->state[i], digest, i * 8);
284 }
285
286 /*
287 * Output = SHA-512( input buffer ). Trigger the watchdog every 'chunk_sz'
288 * bytes of input processed.
289 */
sha384_csum_wd(const unsigned char * input,unsigned int ilen,unsigned char * output,unsigned int chunk_sz)290 void sha384_csum_wd(const unsigned char *input, unsigned int ilen,
291 unsigned char *output, unsigned int chunk_sz)
292 {
293 sha512_context ctx;
294 #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG)
295 const unsigned char *end;
296 unsigned char *curr;
297 int chunk;
298 #endif
299
300 sha384_starts(&ctx);
301
302 #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG)
303 curr = (unsigned char *)input;
304 end = input + ilen;
305 while (curr < end) {
306 chunk = end - curr;
307 if (chunk > chunk_sz)
308 chunk = chunk_sz;
309 sha384_update(&ctx, curr, chunk);
310 curr += chunk;
311 WATCHDOG_RESET();
312 }
313 #else
314 sha384_update(&ctx, input, ilen);
315 #endif
316
317 sha384_finish(&ctx, output);
318 }
319
320 #endif
321
322 #if defined(CONFIG_SHA512)
sha512_starts(sha512_context * ctx)323 void sha512_starts(sha512_context * ctx)
324 {
325 ctx->state[0] = SHA512_H0;
326 ctx->state[1] = SHA512_H1;
327 ctx->state[2] = SHA512_H2;
328 ctx->state[3] = SHA512_H3;
329 ctx->state[4] = SHA512_H4;
330 ctx->state[5] = SHA512_H5;
331 ctx->state[6] = SHA512_H6;
332 ctx->state[7] = SHA512_H7;
333 ctx->count[0] = ctx->count[1] = 0;
334 }
335
sha512_update(sha512_context * ctx,const uint8_t * input,uint32_t length)336 void sha512_update(sha512_context *ctx, const uint8_t *input, uint32_t length)
337 {
338 sha512_base_do_update(ctx, input, length);
339 }
340
sha512_finish(sha512_context * ctx,uint8_t digest[SHA512_SUM_LEN])341 void sha512_finish(sha512_context * ctx, uint8_t digest[SHA512_SUM_LEN])
342 {
343 int i;
344
345 sha512_base_do_finalize(ctx);
346 for(i=0; i<SHA512_SUM_LEN / sizeof(uint64_t); i++)
347 PUT_UINT64_BE(ctx->state[i], digest, i * 8);
348 }
349
350 /*
351 * Output = SHA-512( input buffer ). Trigger the watchdog every 'chunk_sz'
352 * bytes of input processed.
353 */
sha512_csum_wd(const unsigned char * input,unsigned int ilen,unsigned char * output,unsigned int chunk_sz)354 void sha512_csum_wd(const unsigned char *input, unsigned int ilen,
355 unsigned char *output, unsigned int chunk_sz)
356 {
357 sha512_context ctx;
358 #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG)
359 const unsigned char *end;
360 unsigned char *curr;
361 int chunk;
362 #endif
363
364 sha512_starts(&ctx);
365
366 #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG)
367 curr = (unsigned char *)input;
368 end = input + ilen;
369 while (curr < end) {
370 chunk = end - curr;
371 if (chunk > chunk_sz)
372 chunk = chunk_sz;
373 sha512_update(&ctx, curr, chunk);
374 curr += chunk;
375 WATCHDOG_RESET();
376 }
377 #else
378 sha512_update(&ctx, input, ilen);
379 #endif
380
381 sha512_finish(&ctx, output);
382 }
383 #endif
384