xref: /openbmc/linux/drivers/ufs/core/ufshcd.c (revision 0f9b4c3ca5fdf3e177266ef994071b1a03f07318)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Universal Flash Storage Host controller driver Core
4  * Copyright (C) 2011-2013 Samsung India Software Operations
5  * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6  *
7  * Authors:
8  *	Santosh Yaraganavi <santosh.sy@samsung.com>
9  *	Vinayak Holikatti <h.vinayak@samsung.com>
10  */
11 
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <linux/clk.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/regulator/consumer.h>
24 #include <linux/sched/clock.h>
25 #include <linux/iopoll.h>
26 #include <scsi/scsi_cmnd.h>
27 #include <scsi/scsi_dbg.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include "ufshcd-priv.h"
31 #include <ufs/ufs_quirks.h>
32 #include <ufs/unipro.h>
33 #include "ufs-sysfs.h"
34 #include "ufs-debugfs.h"
35 #include "ufs-fault-injection.h"
36 #include "ufs_bsg.h"
37 #include "ufshcd-crypto.h"
38 #include <asm/unaligned.h>
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/ufs.h>
42 
43 #define UFSHCD_ENABLE_INTRS	(UTP_TRANSFER_REQ_COMPL |\
44 				 UTP_TASK_REQ_COMPL |\
45 				 UFSHCD_ERROR_MASK)
46 
47 #define UFSHCD_ENABLE_MCQ_INTRS	(UTP_TASK_REQ_COMPL |\
48 				 UFSHCD_ERROR_MASK |\
49 				 MCQ_CQ_EVENT_STATUS)
50 
51 
52 /* UIC command timeout, unit: ms */
53 #define UIC_CMD_TIMEOUT	500
54 
55 /* NOP OUT retries waiting for NOP IN response */
56 #define NOP_OUT_RETRIES    10
57 /* Timeout after 50 msecs if NOP OUT hangs without response */
58 #define NOP_OUT_TIMEOUT    50 /* msecs */
59 
60 /* Query request retries */
61 #define QUERY_REQ_RETRIES 3
62 /* Query request timeout */
63 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
64 
65 /* Advanced RPMB request timeout */
66 #define ADVANCED_RPMB_REQ_TIMEOUT  3000 /* 3 seconds */
67 
68 /* Task management command timeout */
69 #define TM_CMD_TIMEOUT	100 /* msecs */
70 
71 /* maximum number of retries for a general UIC command  */
72 #define UFS_UIC_COMMAND_RETRIES 3
73 
74 /* maximum number of link-startup retries */
75 #define DME_LINKSTARTUP_RETRIES 3
76 
77 /* maximum number of reset retries before giving up */
78 #define MAX_HOST_RESET_RETRIES 5
79 
80 /* Maximum number of error handler retries before giving up */
81 #define MAX_ERR_HANDLER_RETRIES 5
82 
83 /* Expose the flag value from utp_upiu_query.value */
84 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
85 
86 /* Interrupt aggregation default timeout, unit: 40us */
87 #define INT_AGGR_DEF_TO	0x02
88 
89 /* default delay of autosuspend: 2000 ms */
90 #define RPM_AUTOSUSPEND_DELAY_MS 2000
91 
92 /* Default delay of RPM device flush delayed work */
93 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
94 
95 /* Default value of wait time before gating device ref clock */
96 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
97 
98 /* Polling time to wait for fDeviceInit */
99 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
100 
101 /* Default RTC update every 10 seconds */
102 #define UFS_RTC_UPDATE_INTERVAL_MS (10 * MSEC_PER_SEC)
103 
104 /* UFSHC 4.0 compliant HC support this mode. */
105 static bool use_mcq_mode = true;
106 
is_mcq_supported(struct ufs_hba * hba)107 static bool is_mcq_supported(struct ufs_hba *hba)
108 {
109 	return hba->mcq_sup && use_mcq_mode;
110 }
111 
112 module_param(use_mcq_mode, bool, 0644);
113 MODULE_PARM_DESC(use_mcq_mode, "Control MCQ mode for controllers starting from UFSHCI 4.0. 1 - enable MCQ, 0 - disable MCQ. MCQ is enabled by default");
114 
115 #define ufshcd_toggle_vreg(_dev, _vreg, _on)				\
116 	({                                                              \
117 		int _ret;                                               \
118 		if (_on)                                                \
119 			_ret = ufshcd_enable_vreg(_dev, _vreg);         \
120 		else                                                    \
121 			_ret = ufshcd_disable_vreg(_dev, _vreg);        \
122 		_ret;                                                   \
123 	})
124 
125 #define ufshcd_hex_dump(prefix_str, buf, len) do {                       \
126 	size_t __len = (len);                                            \
127 	print_hex_dump(KERN_ERR, prefix_str,                             \
128 		       __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
129 		       16, 4, buf, __len, false);                        \
130 } while (0)
131 
ufshcd_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix)132 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
133 		     const char *prefix)
134 {
135 	u32 *regs;
136 	size_t pos;
137 
138 	if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
139 		return -EINVAL;
140 
141 	regs = kzalloc(len, GFP_ATOMIC);
142 	if (!regs)
143 		return -ENOMEM;
144 
145 	for (pos = 0; pos < len; pos += 4) {
146 		if (offset == 0 &&
147 		    pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
148 		    pos <= REG_UIC_ERROR_CODE_DME)
149 			continue;
150 		regs[pos / 4] = ufshcd_readl(hba, offset + pos);
151 	}
152 
153 	ufshcd_hex_dump(prefix, regs, len);
154 	kfree(regs);
155 
156 	return 0;
157 }
158 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
159 
160 enum {
161 	UFSHCD_MAX_CHANNEL	= 0,
162 	UFSHCD_MAX_ID		= 1,
163 	UFSHCD_CMD_PER_LUN	= 32 - UFSHCD_NUM_RESERVED,
164 	UFSHCD_CAN_QUEUE	= 32 - UFSHCD_NUM_RESERVED,
165 };
166 
167 static const char *const ufshcd_state_name[] = {
168 	[UFSHCD_STATE_RESET]			= "reset",
169 	[UFSHCD_STATE_OPERATIONAL]		= "operational",
170 	[UFSHCD_STATE_ERROR]			= "error",
171 	[UFSHCD_STATE_EH_SCHEDULED_FATAL]	= "eh_fatal",
172 	[UFSHCD_STATE_EH_SCHEDULED_NON_FATAL]	= "eh_non_fatal",
173 };
174 
175 /* UFSHCD error handling flags */
176 enum {
177 	UFSHCD_EH_IN_PROGRESS = (1 << 0),
178 };
179 
180 /* UFSHCD UIC layer error flags */
181 enum {
182 	UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
183 	UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
184 	UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
185 	UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
186 	UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
187 	UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
188 	UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
189 };
190 
191 #define ufshcd_set_eh_in_progress(h) \
192 	((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
193 #define ufshcd_eh_in_progress(h) \
194 	((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
195 #define ufshcd_clear_eh_in_progress(h) \
196 	((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
197 
198 const struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
199 	[UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
200 	[UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
201 	[UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
202 	[UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
203 	[UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
204 	[UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
205 	/*
206 	 * For DeepSleep, the link is first put in hibern8 and then off.
207 	 * Leaving the link in hibern8 is not supported.
208 	 */
209 	[UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
210 };
211 
212 static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)213 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
214 {
215 	return ufs_pm_lvl_states[lvl].dev_state;
216 }
217 
218 static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)219 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
220 {
221 	return ufs_pm_lvl_states[lvl].link_state;
222 }
223 
224 static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,enum uic_link_state link_state)225 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
226 					enum uic_link_state link_state)
227 {
228 	enum ufs_pm_level lvl;
229 
230 	for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
231 		if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
232 			(ufs_pm_lvl_states[lvl].link_state == link_state))
233 			return lvl;
234 	}
235 
236 	/* if no match found, return the level 0 */
237 	return UFS_PM_LVL_0;
238 }
239 
ufshcd_has_pending_tasks(struct ufs_hba * hba)240 static bool ufshcd_has_pending_tasks(struct ufs_hba *hba)
241 {
242 	return hba->outstanding_tasks || hba->active_uic_cmd ||
243 	       hba->uic_async_done;
244 }
245 
ufshcd_is_ufs_dev_busy(struct ufs_hba * hba)246 static bool ufshcd_is_ufs_dev_busy(struct ufs_hba *hba)
247 {
248 	return scsi_host_busy(hba->host) || ufshcd_has_pending_tasks(hba);
249 }
250 
251 static const struct ufs_dev_quirk ufs_fixups[] = {
252 	/* UFS cards deviations table */
253 	{ .wmanufacturerid = UFS_VENDOR_MICRON,
254 	  .model = UFS_ANY_MODEL,
255 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
256 	{ .wmanufacturerid = UFS_VENDOR_SAMSUNG,
257 	  .model = UFS_ANY_MODEL,
258 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
259 		   UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
260 		   UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS },
261 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
262 	  .model = UFS_ANY_MODEL,
263 	  .quirk = UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME },
264 	{ .wmanufacturerid = UFS_VENDOR_SKHYNIX,
265 	  .model = "hB8aL1" /*H28U62301AMR*/,
266 	  .quirk = UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME },
267 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
268 	  .model = UFS_ANY_MODEL,
269 	  .quirk = UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM },
270 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
271 	  .model = "THGLF2G9C8KBADG",
272 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
273 	{ .wmanufacturerid = UFS_VENDOR_TOSHIBA,
274 	  .model = "THGLF2G9D8KBADG",
275 	  .quirk = UFS_DEVICE_QUIRK_PA_TACTIVATE },
276 	{}
277 };
278 
279 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
280 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
281 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
282 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
283 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
284 static void ufshcd_hba_exit(struct ufs_hba *hba);
285 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
286 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
287 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
288 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
289 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
290 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
291 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
292 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
293 static irqreturn_t ufshcd_intr(int irq, void *__hba);
294 static int ufshcd_change_power_mode(struct ufs_hba *hba,
295 			     struct ufs_pa_layer_attr *pwr_mode);
296 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
297 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
298 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
299 					 struct ufs_vreg *vreg);
300 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
301 						 bool enable);
302 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
303 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
304 
ufshcd_enable_irq(struct ufs_hba * hba)305 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
306 {
307 	if (!hba->is_irq_enabled) {
308 		enable_irq(hba->irq);
309 		hba->is_irq_enabled = true;
310 	}
311 }
312 
ufshcd_disable_irq(struct ufs_hba * hba)313 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
314 {
315 	if (hba->is_irq_enabled) {
316 		disable_irq(hba->irq);
317 		hba->is_irq_enabled = false;
318 	}
319 }
320 
ufshcd_configure_wb(struct ufs_hba * hba)321 static void ufshcd_configure_wb(struct ufs_hba *hba)
322 {
323 	if (!ufshcd_is_wb_allowed(hba))
324 		return;
325 
326 	ufshcd_wb_toggle(hba, true);
327 
328 	ufshcd_wb_toggle_buf_flush_during_h8(hba, true);
329 
330 	if (ufshcd_is_wb_buf_flush_allowed(hba))
331 		ufshcd_wb_toggle_buf_flush(hba, true);
332 }
333 
ufshcd_scsi_unblock_requests(struct ufs_hba * hba)334 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
335 {
336 	if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
337 		scsi_unblock_requests(hba->host);
338 }
339 
ufshcd_scsi_block_requests(struct ufs_hba * hba)340 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
341 {
342 	if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
343 		scsi_block_requests(hba->host);
344 }
345 
ufshcd_add_cmd_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)346 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
347 				      enum ufs_trace_str_t str_t)
348 {
349 	struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
350 	struct utp_upiu_header *header;
351 
352 	if (!trace_ufshcd_upiu_enabled())
353 		return;
354 
355 	if (str_t == UFS_CMD_SEND)
356 		header = &rq->header;
357 	else
358 		header = &hba->lrb[tag].ucd_rsp_ptr->header;
359 
360 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
361 			  UFS_TSF_CDB);
362 }
363 
ufshcd_add_query_upiu_trace(struct ufs_hba * hba,enum ufs_trace_str_t str_t,struct utp_upiu_req * rq_rsp)364 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
365 					enum ufs_trace_str_t str_t,
366 					struct utp_upiu_req *rq_rsp)
367 {
368 	if (!trace_ufshcd_upiu_enabled())
369 		return;
370 
371 	trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
372 			  &rq_rsp->qr, UFS_TSF_OSF);
373 }
374 
ufshcd_add_tm_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)375 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
376 				     enum ufs_trace_str_t str_t)
377 {
378 	struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
379 
380 	if (!trace_ufshcd_upiu_enabled())
381 		return;
382 
383 	if (str_t == UFS_TM_SEND)
384 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
385 				  &descp->upiu_req.req_header,
386 				  &descp->upiu_req.input_param1,
387 				  UFS_TSF_TM_INPUT);
388 	else
389 		trace_ufshcd_upiu(dev_name(hba->dev), str_t,
390 				  &descp->upiu_rsp.rsp_header,
391 				  &descp->upiu_rsp.output_param1,
392 				  UFS_TSF_TM_OUTPUT);
393 }
394 
ufshcd_add_uic_command_trace(struct ufs_hba * hba,const struct uic_command * ucmd,enum ufs_trace_str_t str_t)395 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
396 					 const struct uic_command *ucmd,
397 					 enum ufs_trace_str_t str_t)
398 {
399 	u32 cmd;
400 
401 	if (!trace_ufshcd_uic_command_enabled())
402 		return;
403 
404 	if (str_t == UFS_CMD_SEND)
405 		cmd = ucmd->command;
406 	else
407 		cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
408 
409 	trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
410 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
411 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
412 				 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
413 }
414 
ufshcd_add_command_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)415 static void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
416 				     enum ufs_trace_str_t str_t)
417 {
418 	u64 lba = 0;
419 	u8 opcode = 0, group_id = 0;
420 	u32 doorbell = 0;
421 	u32 intr;
422 	int hwq_id = -1;
423 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
424 	struct scsi_cmnd *cmd = lrbp->cmd;
425 	struct request *rq = scsi_cmd_to_rq(cmd);
426 	int transfer_len = -1;
427 
428 	if (!cmd)
429 		return;
430 
431 	/* trace UPIU also */
432 	ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
433 	if (!trace_ufshcd_command_enabled())
434 		return;
435 
436 	opcode = cmd->cmnd[0];
437 
438 	if (opcode == READ_10 || opcode == WRITE_10) {
439 		/*
440 		 * Currently we only fully trace read(10) and write(10) commands
441 		 */
442 		transfer_len =
443 		       be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
444 		lba = scsi_get_lba(cmd);
445 		if (opcode == WRITE_10)
446 			group_id = lrbp->cmd->cmnd[6];
447 	} else if (opcode == UNMAP) {
448 		/*
449 		 * The number of Bytes to be unmapped beginning with the lba.
450 		 */
451 		transfer_len = blk_rq_bytes(rq);
452 		lba = scsi_get_lba(cmd);
453 	}
454 
455 	intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
456 
457 	if (is_mcq_enabled(hba)) {
458 		struct ufs_hw_queue *hwq = ufshcd_mcq_req_to_hwq(hba, rq);
459 
460 		hwq_id = hwq->id;
461 	} else {
462 		doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
463 	}
464 	trace_ufshcd_command(dev_name(hba->dev), str_t, tag,
465 			doorbell, hwq_id, transfer_len, intr, lba, opcode, group_id);
466 }
467 
ufshcd_print_clk_freqs(struct ufs_hba * hba)468 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
469 {
470 	struct ufs_clk_info *clki;
471 	struct list_head *head = &hba->clk_list_head;
472 
473 	if (list_empty(head))
474 		return;
475 
476 	list_for_each_entry(clki, head, list) {
477 		if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
478 				clki->max_freq)
479 			dev_err(hba->dev, "clk: %s, rate: %u\n",
480 					clki->name, clki->curr_freq);
481 	}
482 }
483 
ufshcd_print_evt(struct ufs_hba * hba,u32 id,const char * err_name)484 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
485 			     const char *err_name)
486 {
487 	int i;
488 	bool found = false;
489 	const struct ufs_event_hist *e;
490 
491 	if (id >= UFS_EVT_CNT)
492 		return;
493 
494 	e = &hba->ufs_stats.event[id];
495 
496 	for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
497 		int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
498 
499 		if (e->tstamp[p] == 0)
500 			continue;
501 		dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
502 			e->val[p], div_u64(e->tstamp[p], 1000));
503 		found = true;
504 	}
505 
506 	if (!found)
507 		dev_err(hba->dev, "No record of %s\n", err_name);
508 	else
509 		dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
510 }
511 
ufshcd_print_evt_hist(struct ufs_hba * hba)512 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
513 {
514 	ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
515 
516 	ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
517 	ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
518 	ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
519 	ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
520 	ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
521 	ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
522 			 "auto_hibern8_err");
523 	ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
524 	ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
525 			 "link_startup_fail");
526 	ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
527 	ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
528 			 "suspend_fail");
529 	ufshcd_print_evt(hba, UFS_EVT_WL_RES_ERR, "wlun resume_fail");
530 	ufshcd_print_evt(hba, UFS_EVT_WL_SUSP_ERR,
531 			 "wlun suspend_fail");
532 	ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
533 	ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
534 	ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
535 
536 	ufshcd_vops_dbg_register_dump(hba);
537 }
538 
539 static
ufshcd_print_tr(struct ufs_hba * hba,int tag,bool pr_prdt)540 void ufshcd_print_tr(struct ufs_hba *hba, int tag, bool pr_prdt)
541 {
542 	const struct ufshcd_lrb *lrbp;
543 	int prdt_length;
544 
545 	lrbp = &hba->lrb[tag];
546 
547 	dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
548 			tag, div_u64(lrbp->issue_time_stamp_local_clock, 1000));
549 	dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
550 			tag, div_u64(lrbp->compl_time_stamp_local_clock, 1000));
551 	dev_err(hba->dev,
552 		"UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
553 		tag, (u64)lrbp->utrd_dma_addr);
554 
555 	ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
556 			sizeof(struct utp_transfer_req_desc));
557 	dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
558 		(u64)lrbp->ucd_req_dma_addr);
559 	ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
560 			sizeof(struct utp_upiu_req));
561 	dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
562 		(u64)lrbp->ucd_rsp_dma_addr);
563 	ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
564 			sizeof(struct utp_upiu_rsp));
565 
566 	prdt_length = le16_to_cpu(
567 		lrbp->utr_descriptor_ptr->prd_table_length);
568 	if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
569 		prdt_length /= ufshcd_sg_entry_size(hba);
570 
571 	dev_err(hba->dev,
572 		"UPIU[%d] - PRDT - %d entries  phys@0x%llx\n",
573 		tag, prdt_length,
574 		(u64)lrbp->ucd_prdt_dma_addr);
575 
576 	if (pr_prdt)
577 		ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
578 			ufshcd_sg_entry_size(hba) * prdt_length);
579 }
580 
ufshcd_print_tr_iter(struct request * req,void * priv)581 static bool ufshcd_print_tr_iter(struct request *req, void *priv)
582 {
583 	struct scsi_device *sdev = req->q->queuedata;
584 	struct Scsi_Host *shost = sdev->host;
585 	struct ufs_hba *hba = shost_priv(shost);
586 
587 	ufshcd_print_tr(hba, req->tag, *(bool *)priv);
588 
589 	return true;
590 }
591 
592 /**
593  * ufshcd_print_trs_all - print trs for all started requests.
594  * @hba: per-adapter instance.
595  * @pr_prdt: need to print prdt or not.
596  */
ufshcd_print_trs_all(struct ufs_hba * hba,bool pr_prdt)597 static void ufshcd_print_trs_all(struct ufs_hba *hba, bool pr_prdt)
598 {
599 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_print_tr_iter, &pr_prdt);
600 }
601 
ufshcd_print_tmrs(struct ufs_hba * hba,unsigned long bitmap)602 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
603 {
604 	int tag;
605 
606 	for_each_set_bit(tag, &bitmap, hba->nutmrs) {
607 		struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
608 
609 		dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
610 		ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
611 	}
612 }
613 
ufshcd_print_host_state(struct ufs_hba * hba)614 static void ufshcd_print_host_state(struct ufs_hba *hba)
615 {
616 	const struct scsi_device *sdev_ufs = hba->ufs_device_wlun;
617 
618 	dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
619 	dev_err(hba->dev, "%d outstanding reqs, tasks=0x%lx\n",
620 		scsi_host_busy(hba->host), hba->outstanding_tasks);
621 	dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
622 		hba->saved_err, hba->saved_uic_err);
623 	dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
624 		hba->curr_dev_pwr_mode, hba->uic_link_state);
625 	dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
626 		hba->pm_op_in_progress, hba->is_sys_suspended);
627 	dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
628 		hba->auto_bkops_enabled, hba->host->host_self_blocked);
629 	dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
630 	dev_err(hba->dev,
631 		"last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
632 		div_u64(hba->ufs_stats.last_hibern8_exit_tstamp, 1000),
633 		hba->ufs_stats.hibern8_exit_cnt);
634 	dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
635 		div_u64(hba->ufs_stats.last_intr_ts, 1000),
636 		hba->ufs_stats.last_intr_status);
637 	dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
638 		hba->eh_flags, hba->req_abort_count);
639 	dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
640 		hba->ufs_version, hba->capabilities, hba->caps);
641 	dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
642 		hba->dev_quirks);
643 	if (sdev_ufs)
644 		dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
645 			sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
646 
647 	ufshcd_print_clk_freqs(hba);
648 }
649 
650 /**
651  * ufshcd_print_pwr_info - print power params as saved in hba
652  * power info
653  * @hba: per-adapter instance
654  */
ufshcd_print_pwr_info(struct ufs_hba * hba)655 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
656 {
657 	static const char * const names[] = {
658 		"INVALID MODE",
659 		"FAST MODE",
660 		"SLOW_MODE",
661 		"INVALID MODE",
662 		"FASTAUTO_MODE",
663 		"SLOWAUTO_MODE",
664 		"INVALID MODE",
665 	};
666 
667 	/*
668 	 * Using dev_dbg to avoid messages during runtime PM to avoid
669 	 * never-ending cycles of messages written back to storage by user space
670 	 * causing runtime resume, causing more messages and so on.
671 	 */
672 	dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
673 		 __func__,
674 		 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
675 		 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
676 		 names[hba->pwr_info.pwr_rx],
677 		 names[hba->pwr_info.pwr_tx],
678 		 hba->pwr_info.hs_rate);
679 }
680 
ufshcd_device_reset(struct ufs_hba * hba)681 static void ufshcd_device_reset(struct ufs_hba *hba)
682 {
683 	int err;
684 
685 	err = ufshcd_vops_device_reset(hba);
686 
687 	if (!err) {
688 		ufshcd_set_ufs_dev_active(hba);
689 		if (ufshcd_is_wb_allowed(hba)) {
690 			hba->dev_info.wb_enabled = false;
691 			hba->dev_info.wb_buf_flush_enabled = false;
692 		}
693 		if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
694 			hba->dev_info.rtc_time_baseline = 0;
695 	}
696 	if (err != -EOPNOTSUPP)
697 		ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
698 }
699 
ufshcd_delay_us(unsigned long us,unsigned long tolerance)700 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
701 {
702 	if (!us)
703 		return;
704 
705 	if (us < 10)
706 		udelay(us);
707 	else
708 		usleep_range(us, us + tolerance);
709 }
710 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
711 
712 /**
713  * ufshcd_wait_for_register - wait for register value to change
714  * @hba: per-adapter interface
715  * @reg: mmio register offset
716  * @mask: mask to apply to the read register value
717  * @val: value to wait for
718  * @interval_us: polling interval in microseconds
719  * @timeout_ms: timeout in milliseconds
720  *
721  * Return: -ETIMEDOUT on error, zero on success.
722  */
ufshcd_wait_for_register(struct ufs_hba * hba,u32 reg,u32 mask,u32 val,unsigned long interval_us,unsigned long timeout_ms)723 static int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
724 				u32 val, unsigned long interval_us,
725 				unsigned long timeout_ms)
726 {
727 	int err = 0;
728 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
729 
730 	/* ignore bits that we don't intend to wait on */
731 	val = val & mask;
732 
733 	while ((ufshcd_readl(hba, reg) & mask) != val) {
734 		usleep_range(interval_us, interval_us + 50);
735 		if (time_after(jiffies, timeout)) {
736 			if ((ufshcd_readl(hba, reg) & mask) != val)
737 				err = -ETIMEDOUT;
738 			break;
739 		}
740 	}
741 
742 	return err;
743 }
744 
745 /**
746  * ufshcd_get_intr_mask - Get the interrupt bit mask
747  * @hba: Pointer to adapter instance
748  *
749  * Return: interrupt bit mask per version
750  */
ufshcd_get_intr_mask(struct ufs_hba * hba)751 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
752 {
753 	if (hba->ufs_version == ufshci_version(1, 0))
754 		return INTERRUPT_MASK_ALL_VER_10;
755 	if (hba->ufs_version <= ufshci_version(2, 0))
756 		return INTERRUPT_MASK_ALL_VER_11;
757 
758 	return INTERRUPT_MASK_ALL_VER_21;
759 }
760 
761 /**
762  * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
763  * @hba: Pointer to adapter instance
764  *
765  * Return: UFSHCI version supported by the controller
766  */
ufshcd_get_ufs_version(struct ufs_hba * hba)767 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
768 {
769 	u32 ufshci_ver;
770 
771 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
772 		ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
773 	else
774 		ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
775 
776 	/*
777 	 * UFSHCI v1.x uses a different version scheme, in order
778 	 * to allow the use of comparisons with the ufshci_version
779 	 * function, we convert it to the same scheme as ufs 2.0+.
780 	 */
781 	if (ufshci_ver & 0x00010000)
782 		return ufshci_version(1, ufshci_ver & 0x00000100);
783 
784 	return ufshci_ver;
785 }
786 
787 /**
788  * ufshcd_is_device_present - Check if any device connected to
789  *			      the host controller
790  * @hba: pointer to adapter instance
791  *
792  * Return: true if device present, false if no device detected
793  */
ufshcd_is_device_present(struct ufs_hba * hba)794 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
795 {
796 	return ufshcd_readl(hba, REG_CONTROLLER_STATUS) & DEVICE_PRESENT;
797 }
798 
799 /**
800  * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
801  * @lrbp: pointer to local command reference block
802  * @cqe: pointer to the completion queue entry
803  *
804  * This function is used to get the OCS field from UTRD
805  *
806  * Return: the OCS field in the UTRD.
807  */
ufshcd_get_tr_ocs(struct ufshcd_lrb * lrbp,struct cq_entry * cqe)808 static enum utp_ocs ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp,
809 				      struct cq_entry *cqe)
810 {
811 	if (cqe)
812 		return le32_to_cpu(cqe->status) & MASK_OCS;
813 
814 	return lrbp->utr_descriptor_ptr->header.ocs & MASK_OCS;
815 }
816 
817 /**
818  * ufshcd_utrl_clear() - Clear requests from the controller request list.
819  * @hba: per adapter instance
820  * @mask: mask with one bit set for each request to be cleared
821  */
ufshcd_utrl_clear(struct ufs_hba * hba,u32 mask)822 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 mask)
823 {
824 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
825 		mask = ~mask;
826 	/*
827 	 * From the UFSHCI specification: "UTP Transfer Request List CLear
828 	 * Register (UTRLCLR): This field is bit significant. Each bit
829 	 * corresponds to a slot in the UTP Transfer Request List, where bit 0
830 	 * corresponds to request slot 0. A bit in this field is set to ‘0’
831 	 * by host software to indicate to the host controller that a transfer
832 	 * request slot is cleared. The host controller
833 	 * shall free up any resources associated to the request slot
834 	 * immediately, and shall set the associated bit in UTRLDBR to ‘0’. The
835 	 * host software indicates no change to request slots by setting the
836 	 * associated bits in this field to ‘1’. Bits in this field shall only
837 	 * be set ‘1’ or ‘0’ by host software when UTRLRSR is set to ‘1’."
838 	 */
839 	ufshcd_writel(hba, ~mask, REG_UTP_TRANSFER_REQ_LIST_CLEAR);
840 }
841 
842 /**
843  * ufshcd_utmrl_clear - Clear a bit in UTMRLCLR register
844  * @hba: per adapter instance
845  * @pos: position of the bit to be cleared
846  */
ufshcd_utmrl_clear(struct ufs_hba * hba,u32 pos)847 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
848 {
849 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
850 		ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
851 	else
852 		ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
853 }
854 
855 /**
856  * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
857  * @reg: Register value of host controller status
858  *
859  * Return: 0 on success; a positive value if failed.
860  */
ufshcd_get_lists_status(u32 reg)861 static inline int ufshcd_get_lists_status(u32 reg)
862 {
863 	return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
864 }
865 
866 /**
867  * ufshcd_get_uic_cmd_result - Get the UIC command result
868  * @hba: Pointer to adapter instance
869  *
870  * This function gets the result of UIC command completion
871  *
872  * Return: 0 on success; non-zero value on error.
873  */
ufshcd_get_uic_cmd_result(struct ufs_hba * hba)874 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
875 {
876 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
877 	       MASK_UIC_COMMAND_RESULT;
878 }
879 
880 /**
881  * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
882  * @hba: Pointer to adapter instance
883  *
884  * This function gets UIC command argument3
885  *
886  * Return: 0 on success; non-zero value on error.
887  */
ufshcd_get_dme_attr_val(struct ufs_hba * hba)888 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
889 {
890 	return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
891 }
892 
893 /**
894  * ufshcd_get_req_rsp - returns the TR response transaction type
895  * @ucd_rsp_ptr: pointer to response UPIU
896  *
897  * Return: UPIU type.
898  */
899 static inline enum upiu_response_transaction
ufshcd_get_req_rsp(struct utp_upiu_rsp * ucd_rsp_ptr)900 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
901 {
902 	return ucd_rsp_ptr->header.transaction_code;
903 }
904 
905 /**
906  * ufshcd_is_exception_event - Check if the device raised an exception event
907  * @ucd_rsp_ptr: pointer to response UPIU
908  *
909  * The function checks if the device raised an exception event indicated in
910  * the Device Information field of response UPIU.
911  *
912  * Return: true if exception is raised, false otherwise.
913  */
ufshcd_is_exception_event(struct utp_upiu_rsp * ucd_rsp_ptr)914 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
915 {
916 	return ucd_rsp_ptr->header.device_information & 1;
917 }
918 
919 /**
920  * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
921  * @hba: per adapter instance
922  */
923 static inline void
ufshcd_reset_intr_aggr(struct ufs_hba * hba)924 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
925 {
926 	ufshcd_writel(hba, INT_AGGR_ENABLE |
927 		      INT_AGGR_COUNTER_AND_TIMER_RESET,
928 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
929 }
930 
931 /**
932  * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
933  * @hba: per adapter instance
934  * @cnt: Interrupt aggregation counter threshold
935  * @tmout: Interrupt aggregation timeout value
936  */
937 static inline void
ufshcd_config_intr_aggr(struct ufs_hba * hba,u8 cnt,u8 tmout)938 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
939 {
940 	ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
941 		      INT_AGGR_COUNTER_THLD_VAL(cnt) |
942 		      INT_AGGR_TIMEOUT_VAL(tmout),
943 		      REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
944 }
945 
946 /**
947  * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
948  * @hba: per adapter instance
949  */
ufshcd_disable_intr_aggr(struct ufs_hba * hba)950 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
951 {
952 	ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
953 }
954 
955 /**
956  * ufshcd_enable_run_stop_reg - Enable run-stop registers,
957  *			When run-stop registers are set to 1, it indicates the
958  *			host controller that it can process the requests
959  * @hba: per adapter instance
960  */
ufshcd_enable_run_stop_reg(struct ufs_hba * hba)961 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
962 {
963 	ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
964 		      REG_UTP_TASK_REQ_LIST_RUN_STOP);
965 	ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
966 		      REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
967 }
968 
969 /**
970  * ufshcd_hba_start - Start controller initialization sequence
971  * @hba: per adapter instance
972  */
ufshcd_hba_start(struct ufs_hba * hba)973 static inline void ufshcd_hba_start(struct ufs_hba *hba)
974 {
975 	u32 val = CONTROLLER_ENABLE;
976 
977 	if (ufshcd_crypto_enable(hba))
978 		val |= CRYPTO_GENERAL_ENABLE;
979 
980 	ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
981 }
982 
983 /**
984  * ufshcd_is_hba_active - Get controller state
985  * @hba: per adapter instance
986  *
987  * Return: true if and only if the controller is active.
988  */
ufshcd_is_hba_active(struct ufs_hba * hba)989 bool ufshcd_is_hba_active(struct ufs_hba *hba)
990 {
991 	return ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE;
992 }
993 EXPORT_SYMBOL_GPL(ufshcd_is_hba_active);
994 
ufshcd_get_local_unipro_ver(struct ufs_hba * hba)995 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
996 {
997 	/* HCI version 1.0 and 1.1 supports UniPro 1.41 */
998 	if (hba->ufs_version <= ufshci_version(1, 1))
999 		return UFS_UNIPRO_VER_1_41;
1000 	else
1001 		return UFS_UNIPRO_VER_1_6;
1002 }
1003 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
1004 
ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba * hba)1005 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
1006 {
1007 	/*
1008 	 * If both host and device support UniPro ver1.6 or later, PA layer
1009 	 * parameters tuning happens during link startup itself.
1010 	 *
1011 	 * We can manually tune PA layer parameters if either host or device
1012 	 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
1013 	 * logic simple, we will only do manual tuning if local unipro version
1014 	 * doesn't support ver1.6 or later.
1015 	 */
1016 	return ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6;
1017 }
1018 
1019 /**
1020  * ufshcd_set_clk_freq - set UFS controller clock frequencies
1021  * @hba: per adapter instance
1022  * @scale_up: If True, set max possible frequency othewise set low frequency
1023  *
1024  * Return: 0 if successful; < 0 upon failure.
1025  */
ufshcd_set_clk_freq(struct ufs_hba * hba,bool scale_up)1026 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
1027 {
1028 	int ret = 0;
1029 	struct ufs_clk_info *clki;
1030 	struct list_head *head = &hba->clk_list_head;
1031 
1032 	if (list_empty(head))
1033 		goto out;
1034 
1035 	list_for_each_entry(clki, head, list) {
1036 		if (!IS_ERR_OR_NULL(clki->clk)) {
1037 			if (scale_up && clki->max_freq) {
1038 				if (clki->curr_freq == clki->max_freq)
1039 					continue;
1040 
1041 				ret = clk_set_rate(clki->clk, clki->max_freq);
1042 				if (ret) {
1043 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1044 						__func__, clki->name,
1045 						clki->max_freq, ret);
1046 					break;
1047 				}
1048 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1049 						"scaled up", clki->name,
1050 						clki->curr_freq,
1051 						clki->max_freq);
1052 
1053 				clki->curr_freq = clki->max_freq;
1054 
1055 			} else if (!scale_up && clki->min_freq) {
1056 				if (clki->curr_freq == clki->min_freq)
1057 					continue;
1058 
1059 				ret = clk_set_rate(clki->clk, clki->min_freq);
1060 				if (ret) {
1061 					dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1062 						__func__, clki->name,
1063 						clki->min_freq, ret);
1064 					break;
1065 				}
1066 				trace_ufshcd_clk_scaling(dev_name(hba->dev),
1067 						"scaled down", clki->name,
1068 						clki->curr_freq,
1069 						clki->min_freq);
1070 				clki->curr_freq = clki->min_freq;
1071 			}
1072 		}
1073 		dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1074 				clki->name, clk_get_rate(clki->clk));
1075 	}
1076 
1077 out:
1078 	return ret;
1079 }
1080 
1081 /**
1082  * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1083  * @hba: per adapter instance
1084  * @scale_up: True if scaling up and false if scaling down
1085  *
1086  * Return: 0 if successful; < 0 upon failure.
1087  */
ufshcd_scale_clks(struct ufs_hba * hba,bool scale_up)1088 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
1089 {
1090 	int ret = 0;
1091 	ktime_t start = ktime_get();
1092 
1093 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1094 	if (ret)
1095 		goto out;
1096 
1097 	ret = ufshcd_set_clk_freq(hba, scale_up);
1098 	if (ret)
1099 		goto out;
1100 
1101 	ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1102 	if (ret)
1103 		ufshcd_set_clk_freq(hba, !scale_up);
1104 
1105 out:
1106 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1107 			(scale_up ? "up" : "down"),
1108 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1109 	return ret;
1110 }
1111 
1112 /**
1113  * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1114  * @hba: per adapter instance
1115  * @scale_up: True if scaling up and false if scaling down
1116  *
1117  * Return: true if scaling is required, false otherwise.
1118  */
ufshcd_is_devfreq_scaling_required(struct ufs_hba * hba,bool scale_up)1119 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1120 					       bool scale_up)
1121 {
1122 	struct ufs_clk_info *clki;
1123 	struct list_head *head = &hba->clk_list_head;
1124 
1125 	if (list_empty(head))
1126 		return false;
1127 
1128 	list_for_each_entry(clki, head, list) {
1129 		if (!IS_ERR_OR_NULL(clki->clk)) {
1130 			if (scale_up && clki->max_freq) {
1131 				if (clki->curr_freq == clki->max_freq)
1132 					continue;
1133 				return true;
1134 			} else if (!scale_up && clki->min_freq) {
1135 				if (clki->curr_freq == clki->min_freq)
1136 					continue;
1137 				return true;
1138 			}
1139 		}
1140 	}
1141 
1142 	return false;
1143 }
1144 
1145 /*
1146  * Determine the number of pending commands by counting the bits in the SCSI
1147  * device budget maps. This approach has been selected because a bit is set in
1148  * the budget map before scsi_host_queue_ready() checks the host_self_blocked
1149  * flag. The host_self_blocked flag can be modified by calling
1150  * scsi_block_requests() or scsi_unblock_requests().
1151  */
ufshcd_pending_cmds(struct ufs_hba * hba)1152 static u32 ufshcd_pending_cmds(struct ufs_hba *hba)
1153 {
1154 	const struct scsi_device *sdev;
1155 	u32 pending = 0;
1156 
1157 	lockdep_assert_held(hba->host->host_lock);
1158 	__shost_for_each_device(sdev, hba->host)
1159 		pending += sbitmap_weight(&sdev->budget_map);
1160 
1161 	return pending;
1162 }
1163 
1164 /*
1165  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1166  * has expired.
1167  *
1168  * Return: 0 upon success; -EBUSY upon timeout.
1169  */
ufshcd_wait_for_doorbell_clr(struct ufs_hba * hba,u64 wait_timeout_us)1170 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1171 					u64 wait_timeout_us)
1172 {
1173 	unsigned long flags;
1174 	int ret = 0;
1175 	u32 tm_doorbell;
1176 	u32 tr_pending;
1177 	bool timeout = false, do_last_check = false;
1178 	ktime_t start;
1179 
1180 	ufshcd_hold(hba);
1181 	spin_lock_irqsave(hba->host->host_lock, flags);
1182 	/*
1183 	 * Wait for all the outstanding tasks/transfer requests.
1184 	 * Verify by checking the doorbell registers are clear.
1185 	 */
1186 	start = ktime_get();
1187 	do {
1188 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1189 			ret = -EBUSY;
1190 			goto out;
1191 		}
1192 
1193 		tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1194 		tr_pending = ufshcd_pending_cmds(hba);
1195 		if (!tm_doorbell && !tr_pending) {
1196 			timeout = false;
1197 			break;
1198 		} else if (do_last_check) {
1199 			break;
1200 		}
1201 
1202 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1203 		io_schedule_timeout(msecs_to_jiffies(20));
1204 		if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1205 		    wait_timeout_us) {
1206 			timeout = true;
1207 			/*
1208 			 * We might have scheduled out for long time so make
1209 			 * sure to check if doorbells are cleared by this time
1210 			 * or not.
1211 			 */
1212 			do_last_check = true;
1213 		}
1214 		spin_lock_irqsave(hba->host->host_lock, flags);
1215 	} while (tm_doorbell || tr_pending);
1216 
1217 	if (timeout) {
1218 		dev_err(hba->dev,
1219 			"%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1220 			__func__, tm_doorbell, tr_pending);
1221 		ret = -EBUSY;
1222 	}
1223 out:
1224 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1225 	ufshcd_release(hba);
1226 	return ret;
1227 }
1228 
1229 /**
1230  * ufshcd_scale_gear - scale up/down UFS gear
1231  * @hba: per adapter instance
1232  * @scale_up: True for scaling up gear and false for scaling down
1233  *
1234  * Return: 0 for success; -EBUSY if scaling can't happen at this time;
1235  * non-zero for any other errors.
1236  */
ufshcd_scale_gear(struct ufs_hba * hba,bool scale_up)1237 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1238 {
1239 	int ret = 0;
1240 	struct ufs_pa_layer_attr new_pwr_info;
1241 
1242 	if (scale_up) {
1243 		memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info,
1244 		       sizeof(struct ufs_pa_layer_attr));
1245 	} else {
1246 		memcpy(&new_pwr_info, &hba->pwr_info,
1247 		       sizeof(struct ufs_pa_layer_attr));
1248 
1249 		if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1250 		    hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1251 			/* save the current power mode */
1252 			memcpy(&hba->clk_scaling.saved_pwr_info,
1253 				&hba->pwr_info,
1254 				sizeof(struct ufs_pa_layer_attr));
1255 
1256 			/* scale down gear */
1257 			new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1258 			new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1259 		}
1260 	}
1261 
1262 	/* check if the power mode needs to be changed or not? */
1263 	ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1264 	if (ret)
1265 		dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1266 			__func__, ret,
1267 			hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1268 			new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1269 
1270 	return ret;
1271 }
1272 
1273 /*
1274  * Wait until all pending SCSI commands and TMFs have finished or the timeout
1275  * has expired.
1276  *
1277  * Return: 0 upon success; -EBUSY upon timeout.
1278  */
ufshcd_clock_scaling_prepare(struct ufs_hba * hba,u64 timeout_us)1279 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba, u64 timeout_us)
1280 {
1281 	int ret = 0;
1282 	/*
1283 	 * make sure that there are no outstanding requests when
1284 	 * clock scaling is in progress
1285 	 */
1286 	blk_mq_quiesce_tagset(&hba->host->tag_set);
1287 	mutex_lock(&hba->wb_mutex);
1288 	down_write(&hba->clk_scaling_lock);
1289 
1290 	if (!hba->clk_scaling.is_allowed ||
1291 	    ufshcd_wait_for_doorbell_clr(hba, timeout_us)) {
1292 		ret = -EBUSY;
1293 		up_write(&hba->clk_scaling_lock);
1294 		mutex_unlock(&hba->wb_mutex);
1295 		blk_mq_unquiesce_tagset(&hba->host->tag_set);
1296 		goto out;
1297 	}
1298 
1299 	/* let's not get into low power until clock scaling is completed */
1300 	ufshcd_hold(hba);
1301 
1302 out:
1303 	return ret;
1304 }
1305 
ufshcd_clock_scaling_unprepare(struct ufs_hba * hba,int err,bool scale_up)1306 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1307 {
1308 	up_write(&hba->clk_scaling_lock);
1309 
1310 	/* Enable Write Booster if we have scaled up else disable it */
1311 	if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1312 		ufshcd_wb_toggle(hba, scale_up);
1313 
1314 	mutex_unlock(&hba->wb_mutex);
1315 
1316 	blk_mq_unquiesce_tagset(&hba->host->tag_set);
1317 	ufshcd_release(hba);
1318 }
1319 
1320 /**
1321  * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1322  * @hba: per adapter instance
1323  * @scale_up: True for scaling up and false for scalin down
1324  *
1325  * Return: 0 for success; -EBUSY if scaling can't happen at this time; non-zero
1326  * for any other errors.
1327  */
ufshcd_devfreq_scale(struct ufs_hba * hba,bool scale_up)1328 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1329 {
1330 	int ret = 0;
1331 
1332 	ret = ufshcd_clock_scaling_prepare(hba, 1 * USEC_PER_SEC);
1333 	if (ret)
1334 		return ret;
1335 
1336 	/* scale down the gear before scaling down clocks */
1337 	if (!scale_up) {
1338 		ret = ufshcd_scale_gear(hba, false);
1339 		if (ret)
1340 			goto out_unprepare;
1341 	}
1342 
1343 	ret = ufshcd_scale_clks(hba, scale_up);
1344 	if (ret) {
1345 		if (!scale_up)
1346 			ufshcd_scale_gear(hba, true);
1347 		goto out_unprepare;
1348 	}
1349 
1350 	/* scale up the gear after scaling up clocks */
1351 	if (scale_up) {
1352 		ret = ufshcd_scale_gear(hba, true);
1353 		if (ret) {
1354 			ufshcd_scale_clks(hba, false);
1355 			goto out_unprepare;
1356 		}
1357 	}
1358 
1359 out_unprepare:
1360 	ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1361 	return ret;
1362 }
1363 
ufshcd_clk_scaling_suspend_work(struct work_struct * work)1364 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1365 {
1366 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1367 					   clk_scaling.suspend_work);
1368 	unsigned long irq_flags;
1369 
1370 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1371 	if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1372 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1373 		return;
1374 	}
1375 	hba->clk_scaling.is_suspended = true;
1376 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1377 
1378 	__ufshcd_suspend_clkscaling(hba);
1379 }
1380 
ufshcd_clk_scaling_resume_work(struct work_struct * work)1381 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1382 {
1383 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1384 					   clk_scaling.resume_work);
1385 	unsigned long irq_flags;
1386 
1387 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1388 	if (!hba->clk_scaling.is_suspended) {
1389 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1390 		return;
1391 	}
1392 	hba->clk_scaling.is_suspended = false;
1393 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1394 
1395 	devfreq_resume_device(hba->devfreq);
1396 }
1397 
ufshcd_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1398 static int ufshcd_devfreq_target(struct device *dev,
1399 				unsigned long *freq, u32 flags)
1400 {
1401 	int ret = 0;
1402 	struct ufs_hba *hba = dev_get_drvdata(dev);
1403 	ktime_t start;
1404 	bool scale_up, sched_clk_scaling_suspend_work = false;
1405 	struct list_head *clk_list = &hba->clk_list_head;
1406 	struct ufs_clk_info *clki;
1407 	unsigned long irq_flags;
1408 
1409 	if (!ufshcd_is_clkscaling_supported(hba))
1410 		return -EINVAL;
1411 
1412 	clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1413 	/* Override with the closest supported frequency */
1414 	*freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1415 	spin_lock_irqsave(hba->host->host_lock, irq_flags);
1416 	if (ufshcd_eh_in_progress(hba)) {
1417 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1418 		return 0;
1419 	}
1420 
1421 	if (!hba->clk_scaling.active_reqs)
1422 		sched_clk_scaling_suspend_work = true;
1423 
1424 	if (list_empty(clk_list)) {
1425 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1426 		goto out;
1427 	}
1428 
1429 	/* Decide based on the rounded-off frequency and update */
1430 	scale_up = *freq == clki->max_freq;
1431 	if (!scale_up)
1432 		*freq = clki->min_freq;
1433 	/* Update the frequency */
1434 	if (!ufshcd_is_devfreq_scaling_required(hba, scale_up)) {
1435 		spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1436 		ret = 0;
1437 		goto out; /* no state change required */
1438 	}
1439 	spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1440 
1441 	start = ktime_get();
1442 	ret = ufshcd_devfreq_scale(hba, scale_up);
1443 
1444 	trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1445 		(scale_up ? "up" : "down"),
1446 		ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1447 
1448 out:
1449 	if (sched_clk_scaling_suspend_work)
1450 		queue_work(hba->clk_scaling.workq,
1451 			   &hba->clk_scaling.suspend_work);
1452 
1453 	return ret;
1454 }
1455 
ufshcd_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1456 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1457 		struct devfreq_dev_status *stat)
1458 {
1459 	struct ufs_hba *hba = dev_get_drvdata(dev);
1460 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1461 	unsigned long flags;
1462 	struct list_head *clk_list = &hba->clk_list_head;
1463 	struct ufs_clk_info *clki;
1464 	ktime_t curr_t;
1465 
1466 	if (!ufshcd_is_clkscaling_supported(hba))
1467 		return -EINVAL;
1468 
1469 	memset(stat, 0, sizeof(*stat));
1470 
1471 	spin_lock_irqsave(hba->host->host_lock, flags);
1472 	curr_t = ktime_get();
1473 	if (!scaling->window_start_t)
1474 		goto start_window;
1475 
1476 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1477 	/*
1478 	 * If current frequency is 0, then the ondemand governor considers
1479 	 * there's no initial frequency set. And it always requests to set
1480 	 * to max. frequency.
1481 	 */
1482 	stat->current_frequency = clki->curr_freq;
1483 	if (scaling->is_busy_started)
1484 		scaling->tot_busy_t += ktime_us_delta(curr_t,
1485 				scaling->busy_start_t);
1486 
1487 	stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1488 	stat->busy_time = scaling->tot_busy_t;
1489 start_window:
1490 	scaling->window_start_t = curr_t;
1491 	scaling->tot_busy_t = 0;
1492 
1493 	if (scaling->active_reqs) {
1494 		scaling->busy_start_t = curr_t;
1495 		scaling->is_busy_started = true;
1496 	} else {
1497 		scaling->busy_start_t = 0;
1498 		scaling->is_busy_started = false;
1499 	}
1500 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1501 	return 0;
1502 }
1503 
ufshcd_devfreq_init(struct ufs_hba * hba)1504 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1505 {
1506 	struct list_head *clk_list = &hba->clk_list_head;
1507 	struct ufs_clk_info *clki;
1508 	struct devfreq *devfreq;
1509 	int ret;
1510 
1511 	/* Skip devfreq if we don't have any clocks in the list */
1512 	if (list_empty(clk_list))
1513 		return 0;
1514 
1515 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1516 	dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1517 	dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1518 
1519 	ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1520 					 &hba->vps->ondemand_data);
1521 	devfreq = devfreq_add_device(hba->dev,
1522 			&hba->vps->devfreq_profile,
1523 			DEVFREQ_GOV_SIMPLE_ONDEMAND,
1524 			&hba->vps->ondemand_data);
1525 	if (IS_ERR(devfreq)) {
1526 		ret = PTR_ERR(devfreq);
1527 		dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1528 
1529 		dev_pm_opp_remove(hba->dev, clki->min_freq);
1530 		dev_pm_opp_remove(hba->dev, clki->max_freq);
1531 		return ret;
1532 	}
1533 
1534 	hba->devfreq = devfreq;
1535 
1536 	return 0;
1537 }
1538 
ufshcd_devfreq_remove(struct ufs_hba * hba)1539 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1540 {
1541 	struct list_head *clk_list = &hba->clk_list_head;
1542 	struct ufs_clk_info *clki;
1543 
1544 	if (!hba->devfreq)
1545 		return;
1546 
1547 	devfreq_remove_device(hba->devfreq);
1548 	hba->devfreq = NULL;
1549 
1550 	clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1551 	dev_pm_opp_remove(hba->dev, clki->min_freq);
1552 	dev_pm_opp_remove(hba->dev, clki->max_freq);
1553 }
1554 
__ufshcd_suspend_clkscaling(struct ufs_hba * hba)1555 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1556 {
1557 	unsigned long flags;
1558 
1559 	devfreq_suspend_device(hba->devfreq);
1560 	spin_lock_irqsave(hba->host->host_lock, flags);
1561 	hba->clk_scaling.window_start_t = 0;
1562 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1563 }
1564 
ufshcd_suspend_clkscaling(struct ufs_hba * hba)1565 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1566 {
1567 	unsigned long flags;
1568 	bool suspend = false;
1569 
1570 	cancel_work_sync(&hba->clk_scaling.suspend_work);
1571 	cancel_work_sync(&hba->clk_scaling.resume_work);
1572 
1573 	spin_lock_irqsave(hba->host->host_lock, flags);
1574 	if (!hba->clk_scaling.is_suspended) {
1575 		suspend = true;
1576 		hba->clk_scaling.is_suspended = true;
1577 	}
1578 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1579 
1580 	if (suspend)
1581 		__ufshcd_suspend_clkscaling(hba);
1582 }
1583 
ufshcd_resume_clkscaling(struct ufs_hba * hba)1584 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1585 {
1586 	unsigned long flags;
1587 	bool resume = false;
1588 
1589 	spin_lock_irqsave(hba->host->host_lock, flags);
1590 	if (hba->clk_scaling.is_suspended) {
1591 		resume = true;
1592 		hba->clk_scaling.is_suspended = false;
1593 	}
1594 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1595 
1596 	if (resume)
1597 		devfreq_resume_device(hba->devfreq);
1598 }
1599 
ufshcd_clkscale_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1600 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1601 		struct device_attribute *attr, char *buf)
1602 {
1603 	struct ufs_hba *hba = dev_get_drvdata(dev);
1604 
1605 	return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1606 }
1607 
ufshcd_clkscale_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1608 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1609 		struct device_attribute *attr, const char *buf, size_t count)
1610 {
1611 	struct ufs_hba *hba = dev_get_drvdata(dev);
1612 	u32 value;
1613 	int err = 0;
1614 
1615 	if (kstrtou32(buf, 0, &value))
1616 		return -EINVAL;
1617 
1618 	down(&hba->host_sem);
1619 	if (!ufshcd_is_user_access_allowed(hba)) {
1620 		err = -EBUSY;
1621 		goto out;
1622 	}
1623 
1624 	value = !!value;
1625 	if (value == hba->clk_scaling.is_enabled)
1626 		goto out;
1627 
1628 	ufshcd_rpm_get_sync(hba);
1629 	ufshcd_hold(hba);
1630 
1631 	hba->clk_scaling.is_enabled = value;
1632 
1633 	if (value) {
1634 		ufshcd_resume_clkscaling(hba);
1635 	} else {
1636 		ufshcd_suspend_clkscaling(hba);
1637 		err = ufshcd_devfreq_scale(hba, true);
1638 		if (err)
1639 			dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1640 					__func__, err);
1641 	}
1642 
1643 	ufshcd_release(hba);
1644 	ufshcd_rpm_put_sync(hba);
1645 out:
1646 	up(&hba->host_sem);
1647 	return err ? err : count;
1648 }
1649 
ufshcd_init_clk_scaling_sysfs(struct ufs_hba * hba)1650 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1651 {
1652 	hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1653 	hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1654 	sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1655 	hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1656 	hba->clk_scaling.enable_attr.attr.mode = 0644;
1657 	if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1658 		dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1659 }
1660 
ufshcd_remove_clk_scaling_sysfs(struct ufs_hba * hba)1661 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1662 {
1663 	if (hba->clk_scaling.enable_attr.attr.name)
1664 		device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1665 }
1666 
ufshcd_init_clk_scaling(struct ufs_hba * hba)1667 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1668 {
1669 	char wq_name[sizeof("ufs_clkscaling_00")];
1670 
1671 	if (!ufshcd_is_clkscaling_supported(hba))
1672 		return;
1673 
1674 	if (!hba->clk_scaling.min_gear)
1675 		hba->clk_scaling.min_gear = UFS_HS_G1;
1676 
1677 	INIT_WORK(&hba->clk_scaling.suspend_work,
1678 		  ufshcd_clk_scaling_suspend_work);
1679 	INIT_WORK(&hba->clk_scaling.resume_work,
1680 		  ufshcd_clk_scaling_resume_work);
1681 
1682 	snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1683 		 hba->host->host_no);
1684 	hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1685 
1686 	hba->clk_scaling.is_initialized = true;
1687 }
1688 
ufshcd_exit_clk_scaling(struct ufs_hba * hba)1689 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1690 {
1691 	if (!hba->clk_scaling.is_initialized)
1692 		return;
1693 
1694 	ufshcd_remove_clk_scaling_sysfs(hba);
1695 	destroy_workqueue(hba->clk_scaling.workq);
1696 	ufshcd_devfreq_remove(hba);
1697 	hba->clk_scaling.is_initialized = false;
1698 }
1699 
ufshcd_ungate_work(struct work_struct * work)1700 static void ufshcd_ungate_work(struct work_struct *work)
1701 {
1702 	int ret;
1703 	unsigned long flags;
1704 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1705 			clk_gating.ungate_work);
1706 
1707 	cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1708 
1709 	spin_lock_irqsave(hba->host->host_lock, flags);
1710 	if (hba->clk_gating.state == CLKS_ON) {
1711 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1712 		return;
1713 	}
1714 
1715 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1716 	ufshcd_hba_vreg_set_hpm(hba);
1717 	ufshcd_setup_clocks(hba, true);
1718 
1719 	ufshcd_enable_irq(hba);
1720 
1721 	/* Exit from hibern8 */
1722 	if (ufshcd_can_hibern8_during_gating(hba)) {
1723 		/* Prevent gating in this path */
1724 		hba->clk_gating.is_suspended = true;
1725 		if (ufshcd_is_link_hibern8(hba)) {
1726 			ret = ufshcd_uic_hibern8_exit(hba);
1727 			if (ret)
1728 				dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1729 					__func__, ret);
1730 			else
1731 				ufshcd_set_link_active(hba);
1732 		}
1733 		hba->clk_gating.is_suspended = false;
1734 	}
1735 }
1736 
1737 /**
1738  * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1739  * Also, exit from hibern8 mode and set the link as active.
1740  * @hba: per adapter instance
1741  */
ufshcd_hold(struct ufs_hba * hba)1742 void ufshcd_hold(struct ufs_hba *hba)
1743 {
1744 	bool flush_result;
1745 	unsigned long flags;
1746 
1747 	if (!ufshcd_is_clkgating_allowed(hba) ||
1748 	    !hba->clk_gating.is_initialized)
1749 		return;
1750 	spin_lock_irqsave(hba->host->host_lock, flags);
1751 	hba->clk_gating.active_reqs++;
1752 
1753 start:
1754 	switch (hba->clk_gating.state) {
1755 	case CLKS_ON:
1756 		/*
1757 		 * Wait for the ungate work to complete if in progress.
1758 		 * Though the clocks may be in ON state, the link could
1759 		 * still be in hibner8 state if hibern8 is allowed
1760 		 * during clock gating.
1761 		 * Make sure we exit hibern8 state also in addition to
1762 		 * clocks being ON.
1763 		 */
1764 		if (ufshcd_can_hibern8_during_gating(hba) &&
1765 		    ufshcd_is_link_hibern8(hba)) {
1766 			spin_unlock_irqrestore(hba->host->host_lock, flags);
1767 			flush_result = flush_work(&hba->clk_gating.ungate_work);
1768 			if (hba->clk_gating.is_suspended && !flush_result)
1769 				return;
1770 			spin_lock_irqsave(hba->host->host_lock, flags);
1771 			goto start;
1772 		}
1773 		break;
1774 	case REQ_CLKS_OFF:
1775 		if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1776 			hba->clk_gating.state = CLKS_ON;
1777 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1778 						hba->clk_gating.state);
1779 			break;
1780 		}
1781 		/*
1782 		 * If we are here, it means gating work is either done or
1783 		 * currently running. Hence, fall through to cancel gating
1784 		 * work and to enable clocks.
1785 		 */
1786 		fallthrough;
1787 	case CLKS_OFF:
1788 		hba->clk_gating.state = REQ_CLKS_ON;
1789 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1790 					hba->clk_gating.state);
1791 		queue_work(hba->clk_gating.clk_gating_workq,
1792 			   &hba->clk_gating.ungate_work);
1793 		/*
1794 		 * fall through to check if we should wait for this
1795 		 * work to be done or not.
1796 		 */
1797 		fallthrough;
1798 	case REQ_CLKS_ON:
1799 		spin_unlock_irqrestore(hba->host->host_lock, flags);
1800 		flush_work(&hba->clk_gating.ungate_work);
1801 		/* Make sure state is CLKS_ON before returning */
1802 		spin_lock_irqsave(hba->host->host_lock, flags);
1803 		goto start;
1804 	default:
1805 		dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1806 				__func__, hba->clk_gating.state);
1807 		break;
1808 	}
1809 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1810 }
1811 EXPORT_SYMBOL_GPL(ufshcd_hold);
1812 
ufshcd_gate_work(struct work_struct * work)1813 static void ufshcd_gate_work(struct work_struct *work)
1814 {
1815 	struct ufs_hba *hba = container_of(work, struct ufs_hba,
1816 			clk_gating.gate_work.work);
1817 	unsigned long flags;
1818 	int ret;
1819 
1820 	spin_lock_irqsave(hba->host->host_lock, flags);
1821 	/*
1822 	 * In case you are here to cancel this work the gating state
1823 	 * would be marked as REQ_CLKS_ON. In this case save time by
1824 	 * skipping the gating work and exit after changing the clock
1825 	 * state to CLKS_ON.
1826 	 */
1827 	if (hba->clk_gating.is_suspended ||
1828 		(hba->clk_gating.state != REQ_CLKS_OFF)) {
1829 		hba->clk_gating.state = CLKS_ON;
1830 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1831 					hba->clk_gating.state);
1832 		goto rel_lock;
1833 	}
1834 
1835 	if (ufshcd_is_ufs_dev_busy(hba) ||
1836 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1837 	    hba->clk_gating.active_reqs)
1838 		goto rel_lock;
1839 
1840 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1841 
1842 	/* put the link into hibern8 mode before turning off clocks */
1843 	if (ufshcd_can_hibern8_during_gating(hba)) {
1844 		ret = ufshcd_uic_hibern8_enter(hba);
1845 		if (ret) {
1846 			hba->clk_gating.state = CLKS_ON;
1847 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1848 					__func__, ret);
1849 			trace_ufshcd_clk_gating(dev_name(hba->dev),
1850 						hba->clk_gating.state);
1851 			goto out;
1852 		}
1853 		ufshcd_set_link_hibern8(hba);
1854 	}
1855 
1856 	ufshcd_disable_irq(hba);
1857 
1858 	ufshcd_setup_clocks(hba, false);
1859 
1860 	/* Put the host controller in low power mode if possible */
1861 	ufshcd_hba_vreg_set_lpm(hba);
1862 	/*
1863 	 * In case you are here to cancel this work the gating state
1864 	 * would be marked as REQ_CLKS_ON. In this case keep the state
1865 	 * as REQ_CLKS_ON which would anyway imply that clocks are off
1866 	 * and a request to turn them on is pending. By doing this way,
1867 	 * we keep the state machine in tact and this would ultimately
1868 	 * prevent from doing cancel work multiple times when there are
1869 	 * new requests arriving before the current cancel work is done.
1870 	 */
1871 	spin_lock_irqsave(hba->host->host_lock, flags);
1872 	if (hba->clk_gating.state == REQ_CLKS_OFF) {
1873 		hba->clk_gating.state = CLKS_OFF;
1874 		trace_ufshcd_clk_gating(dev_name(hba->dev),
1875 					hba->clk_gating.state);
1876 	}
1877 rel_lock:
1878 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1879 out:
1880 	return;
1881 }
1882 
1883 /* host lock must be held before calling this variant */
__ufshcd_release(struct ufs_hba * hba)1884 static void __ufshcd_release(struct ufs_hba *hba)
1885 {
1886 	if (!ufshcd_is_clkgating_allowed(hba))
1887 		return;
1888 
1889 	hba->clk_gating.active_reqs--;
1890 
1891 	if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1892 	    hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1893 	    ufshcd_has_pending_tasks(hba) || !hba->clk_gating.is_initialized ||
1894 	    hba->clk_gating.state == CLKS_OFF)
1895 		return;
1896 
1897 	hba->clk_gating.state = REQ_CLKS_OFF;
1898 	trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1899 	queue_delayed_work(hba->clk_gating.clk_gating_workq,
1900 			   &hba->clk_gating.gate_work,
1901 			   msecs_to_jiffies(hba->clk_gating.delay_ms));
1902 }
1903 
ufshcd_release(struct ufs_hba * hba)1904 void ufshcd_release(struct ufs_hba *hba)
1905 {
1906 	unsigned long flags;
1907 
1908 	spin_lock_irqsave(hba->host->host_lock, flags);
1909 	__ufshcd_release(hba);
1910 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1911 }
1912 EXPORT_SYMBOL_GPL(ufshcd_release);
1913 
ufshcd_clkgate_delay_show(struct device * dev,struct device_attribute * attr,char * buf)1914 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1915 		struct device_attribute *attr, char *buf)
1916 {
1917 	struct ufs_hba *hba = dev_get_drvdata(dev);
1918 
1919 	return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
1920 }
1921 
ufshcd_clkgate_delay_set(struct device * dev,unsigned long value)1922 void ufshcd_clkgate_delay_set(struct device *dev, unsigned long value)
1923 {
1924 	struct ufs_hba *hba = dev_get_drvdata(dev);
1925 	unsigned long flags;
1926 
1927 	spin_lock_irqsave(hba->host->host_lock, flags);
1928 	hba->clk_gating.delay_ms = value;
1929 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1930 }
1931 EXPORT_SYMBOL_GPL(ufshcd_clkgate_delay_set);
1932 
ufshcd_clkgate_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1933 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1934 		struct device_attribute *attr, const char *buf, size_t count)
1935 {
1936 	unsigned long value;
1937 
1938 	if (kstrtoul(buf, 0, &value))
1939 		return -EINVAL;
1940 
1941 	ufshcd_clkgate_delay_set(dev, value);
1942 	return count;
1943 }
1944 
ufshcd_clkgate_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1945 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1946 		struct device_attribute *attr, char *buf)
1947 {
1948 	struct ufs_hba *hba = dev_get_drvdata(dev);
1949 
1950 	return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
1951 }
1952 
ufshcd_clkgate_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1953 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1954 		struct device_attribute *attr, const char *buf, size_t count)
1955 {
1956 	struct ufs_hba *hba = dev_get_drvdata(dev);
1957 	unsigned long flags;
1958 	u32 value;
1959 
1960 	if (kstrtou32(buf, 0, &value))
1961 		return -EINVAL;
1962 
1963 	value = !!value;
1964 
1965 	spin_lock_irqsave(hba->host->host_lock, flags);
1966 	if (value == hba->clk_gating.is_enabled)
1967 		goto out;
1968 
1969 	if (value)
1970 		__ufshcd_release(hba);
1971 	else
1972 		hba->clk_gating.active_reqs++;
1973 
1974 	hba->clk_gating.is_enabled = value;
1975 out:
1976 	spin_unlock_irqrestore(hba->host->host_lock, flags);
1977 	return count;
1978 }
1979 
ufshcd_init_clk_gating_sysfs(struct ufs_hba * hba)1980 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
1981 {
1982 	hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
1983 	hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
1984 	sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
1985 	hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
1986 	hba->clk_gating.delay_attr.attr.mode = 0644;
1987 	if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
1988 		dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
1989 
1990 	hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
1991 	hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
1992 	sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
1993 	hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
1994 	hba->clk_gating.enable_attr.attr.mode = 0644;
1995 	if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
1996 		dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
1997 }
1998 
ufshcd_remove_clk_gating_sysfs(struct ufs_hba * hba)1999 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
2000 {
2001 	if (hba->clk_gating.delay_attr.attr.name)
2002 		device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
2003 	if (hba->clk_gating.enable_attr.attr.name)
2004 		device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
2005 }
2006 
ufshcd_init_clk_gating(struct ufs_hba * hba)2007 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
2008 {
2009 	char wq_name[sizeof("ufs_clk_gating_00")];
2010 
2011 	if (!ufshcd_is_clkgating_allowed(hba))
2012 		return;
2013 
2014 	hba->clk_gating.state = CLKS_ON;
2015 
2016 	hba->clk_gating.delay_ms = 150;
2017 	INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
2018 	INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
2019 
2020 	snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
2021 		 hba->host->host_no);
2022 	hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
2023 					WQ_MEM_RECLAIM | WQ_HIGHPRI);
2024 
2025 	ufshcd_init_clk_gating_sysfs(hba);
2026 
2027 	hba->clk_gating.is_enabled = true;
2028 	hba->clk_gating.is_initialized = true;
2029 }
2030 
ufshcd_exit_clk_gating(struct ufs_hba * hba)2031 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2032 {
2033 	if (!hba->clk_gating.is_initialized)
2034 		return;
2035 
2036 	ufshcd_remove_clk_gating_sysfs(hba);
2037 
2038 	/* Ungate the clock if necessary. */
2039 	ufshcd_hold(hba);
2040 	hba->clk_gating.is_initialized = false;
2041 	ufshcd_release(hba);
2042 
2043 	destroy_workqueue(hba->clk_gating.clk_gating_workq);
2044 }
2045 
ufshcd_clk_scaling_start_busy(struct ufs_hba * hba)2046 static void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2047 {
2048 	bool queue_resume_work = false;
2049 	ktime_t curr_t = ktime_get();
2050 	unsigned long flags;
2051 
2052 	if (!ufshcd_is_clkscaling_supported(hba))
2053 		return;
2054 
2055 	spin_lock_irqsave(hba->host->host_lock, flags);
2056 	if (!hba->clk_scaling.active_reqs++)
2057 		queue_resume_work = true;
2058 
2059 	if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2060 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2061 		return;
2062 	}
2063 
2064 	if (queue_resume_work)
2065 		queue_work(hba->clk_scaling.workq,
2066 			   &hba->clk_scaling.resume_work);
2067 
2068 	if (!hba->clk_scaling.window_start_t) {
2069 		hba->clk_scaling.window_start_t = curr_t;
2070 		hba->clk_scaling.tot_busy_t = 0;
2071 		hba->clk_scaling.is_busy_started = false;
2072 	}
2073 
2074 	if (!hba->clk_scaling.is_busy_started) {
2075 		hba->clk_scaling.busy_start_t = curr_t;
2076 		hba->clk_scaling.is_busy_started = true;
2077 	}
2078 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2079 }
2080 
ufshcd_clk_scaling_update_busy(struct ufs_hba * hba)2081 static void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2082 {
2083 	struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2084 	unsigned long flags;
2085 
2086 	if (!ufshcd_is_clkscaling_supported(hba))
2087 		return;
2088 
2089 	spin_lock_irqsave(hba->host->host_lock, flags);
2090 	hba->clk_scaling.active_reqs--;
2091 	if (!scaling->active_reqs && scaling->is_busy_started) {
2092 		scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2093 					scaling->busy_start_t));
2094 		scaling->busy_start_t = 0;
2095 		scaling->is_busy_started = false;
2096 	}
2097 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2098 }
2099 
ufshcd_monitor_opcode2dir(u8 opcode)2100 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2101 {
2102 	if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2103 		return READ;
2104 	else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2105 		return WRITE;
2106 	else
2107 		return -EINVAL;
2108 }
2109 
ufshcd_should_inform_monitor(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2110 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2111 						struct ufshcd_lrb *lrbp)
2112 {
2113 	const struct ufs_hba_monitor *m = &hba->monitor;
2114 
2115 	return (m->enabled && lrbp && lrbp->cmd &&
2116 		(!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2117 		ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2118 }
2119 
ufshcd_start_monitor(struct ufs_hba * hba,const struct ufshcd_lrb * lrbp)2120 static void ufshcd_start_monitor(struct ufs_hba *hba,
2121 				 const struct ufshcd_lrb *lrbp)
2122 {
2123 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2124 	unsigned long flags;
2125 
2126 	spin_lock_irqsave(hba->host->host_lock, flags);
2127 	if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2128 		hba->monitor.busy_start_ts[dir] = ktime_get();
2129 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2130 }
2131 
ufshcd_update_monitor(struct ufs_hba * hba,const struct ufshcd_lrb * lrbp)2132 static void ufshcd_update_monitor(struct ufs_hba *hba, const struct ufshcd_lrb *lrbp)
2133 {
2134 	int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2135 	unsigned long flags;
2136 
2137 	spin_lock_irqsave(hba->host->host_lock, flags);
2138 	if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2139 		const struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2140 		struct ufs_hba_monitor *m = &hba->monitor;
2141 		ktime_t now, inc, lat;
2142 
2143 		now = lrbp->compl_time_stamp;
2144 		inc = ktime_sub(now, m->busy_start_ts[dir]);
2145 		m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2146 		m->nr_sec_rw[dir] += blk_rq_sectors(req);
2147 
2148 		/* Update latencies */
2149 		m->nr_req[dir]++;
2150 		lat = ktime_sub(now, lrbp->issue_time_stamp);
2151 		m->lat_sum[dir] += lat;
2152 		if (m->lat_max[dir] < lat || !m->lat_max[dir])
2153 			m->lat_max[dir] = lat;
2154 		if (m->lat_min[dir] > lat || !m->lat_min[dir])
2155 			m->lat_min[dir] = lat;
2156 
2157 		m->nr_queued[dir]--;
2158 		/* Push forward the busy start of monitor */
2159 		m->busy_start_ts[dir] = now;
2160 	}
2161 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2162 }
2163 
2164 /**
2165  * ufshcd_send_command - Send SCSI or device management commands
2166  * @hba: per adapter instance
2167  * @task_tag: Task tag of the command
2168  * @hwq: pointer to hardware queue instance
2169  */
2170 static inline
ufshcd_send_command(struct ufs_hba * hba,unsigned int task_tag,struct ufs_hw_queue * hwq)2171 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag,
2172 			 struct ufs_hw_queue *hwq)
2173 {
2174 	struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2175 	unsigned long flags;
2176 
2177 	lrbp->issue_time_stamp = ktime_get();
2178 	lrbp->issue_time_stamp_local_clock = local_clock();
2179 	lrbp->compl_time_stamp = ktime_set(0, 0);
2180 	lrbp->compl_time_stamp_local_clock = 0;
2181 	ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2182 	ufshcd_clk_scaling_start_busy(hba);
2183 	if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2184 		ufshcd_start_monitor(hba, lrbp);
2185 
2186 	if (is_mcq_enabled(hba)) {
2187 		int utrd_size = sizeof(struct utp_transfer_req_desc);
2188 		struct utp_transfer_req_desc *src = lrbp->utr_descriptor_ptr;
2189 		struct utp_transfer_req_desc *dest;
2190 
2191 		spin_lock(&hwq->sq_lock);
2192 		dest = hwq->sqe_base_addr + hwq->sq_tail_slot;
2193 		memcpy(dest, src, utrd_size);
2194 		ufshcd_inc_sq_tail(hwq);
2195 		spin_unlock(&hwq->sq_lock);
2196 	} else {
2197 		spin_lock_irqsave(&hba->outstanding_lock, flags);
2198 		if (hba->vops && hba->vops->setup_xfer_req)
2199 			hba->vops->setup_xfer_req(hba, lrbp->task_tag,
2200 						  !!lrbp->cmd);
2201 		__set_bit(lrbp->task_tag, &hba->outstanding_reqs);
2202 		ufshcd_writel(hba, 1 << lrbp->task_tag,
2203 			      REG_UTP_TRANSFER_REQ_DOOR_BELL);
2204 		spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2205 	}
2206 }
2207 
2208 /**
2209  * ufshcd_copy_sense_data - Copy sense data in case of check condition
2210  * @lrbp: pointer to local reference block
2211  */
ufshcd_copy_sense_data(struct ufshcd_lrb * lrbp)2212 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2213 {
2214 	u8 *const sense_buffer = lrbp->cmd->sense_buffer;
2215 	u16 resp_len;
2216 	int len;
2217 
2218 	resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header.data_segment_length);
2219 	if (sense_buffer && resp_len) {
2220 		int len_to_copy;
2221 
2222 		len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2223 		len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2224 
2225 		memcpy(sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2226 		       len_to_copy);
2227 	}
2228 }
2229 
2230 /**
2231  * ufshcd_copy_query_response() - Copy the Query Response and the data
2232  * descriptor
2233  * @hba: per adapter instance
2234  * @lrbp: pointer to local reference block
2235  *
2236  * Return: 0 upon success; < 0 upon failure.
2237  */
2238 static
ufshcd_copy_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2239 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2240 {
2241 	struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2242 
2243 	memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2244 
2245 	/* Get the descriptor */
2246 	if (hba->dev_cmd.query.descriptor &&
2247 	    lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2248 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2249 				GENERAL_UPIU_REQUEST_SIZE;
2250 		u16 resp_len;
2251 		u16 buf_len;
2252 
2253 		/* data segment length */
2254 		resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
2255 				       .data_segment_length);
2256 		buf_len = be16_to_cpu(
2257 				hba->dev_cmd.query.request.upiu_req.length);
2258 		if (likely(buf_len >= resp_len)) {
2259 			memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2260 		} else {
2261 			dev_warn(hba->dev,
2262 				 "%s: rsp size %d is bigger than buffer size %d",
2263 				 __func__, resp_len, buf_len);
2264 			return -EINVAL;
2265 		}
2266 	}
2267 
2268 	return 0;
2269 }
2270 
2271 /**
2272  * ufshcd_hba_capabilities - Read controller capabilities
2273  * @hba: per adapter instance
2274  *
2275  * Return: 0 on success, negative on error.
2276  */
ufshcd_hba_capabilities(struct ufs_hba * hba)2277 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2278 {
2279 	int err;
2280 
2281 	hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2282 
2283 	/* nutrs and nutmrs are 0 based values */
2284 	hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2285 	hba->nutmrs =
2286 	((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2287 	hba->reserved_slot = hba->nutrs - 1;
2288 
2289 	/* Read crypto capabilities */
2290 	err = ufshcd_hba_init_crypto_capabilities(hba);
2291 	if (err) {
2292 		dev_err(hba->dev, "crypto setup failed\n");
2293 		return err;
2294 	}
2295 
2296 	/*
2297 	 * The UFSHCI 3.0 specification does not define MCQ_SUPPORT and
2298 	 * LSDB_SUPPORT, but [31:29] as reserved bits with reset value 0s, which
2299 	 * means we can simply read values regardless of version.
2300 	 */
2301 	hba->mcq_sup = FIELD_GET(MASK_MCQ_SUPPORT, hba->capabilities);
2302 	/*
2303 	 * 0h: legacy single doorbell support is available
2304 	 * 1h: indicate that legacy single doorbell support has been removed
2305 	 */
2306 	hba->lsdb_sup = !FIELD_GET(MASK_LSDB_SUPPORT, hba->capabilities);
2307 	if (!hba->mcq_sup)
2308 		return 0;
2309 
2310 	hba->mcq_capabilities = ufshcd_readl(hba, REG_MCQCAP);
2311 	hba->ext_iid_sup = FIELD_GET(MASK_EXT_IID_SUPPORT,
2312 				     hba->mcq_capabilities);
2313 
2314 	return 0;
2315 }
2316 
2317 /**
2318  * ufshcd_ready_for_uic_cmd - Check if controller is ready
2319  *                            to accept UIC commands
2320  * @hba: per adapter instance
2321  *
2322  * Return: true on success, else false.
2323  */
ufshcd_ready_for_uic_cmd(struct ufs_hba * hba)2324 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2325 {
2326 	u32 val;
2327 	int ret = read_poll_timeout(ufshcd_readl, val, val & UIC_COMMAND_READY,
2328 				    500, UIC_CMD_TIMEOUT * 1000, false, hba,
2329 				    REG_CONTROLLER_STATUS);
2330 	return ret == 0 ? true : false;
2331 }
2332 
2333 /**
2334  * ufshcd_get_upmcrs - Get the power mode change request status
2335  * @hba: Pointer to adapter instance
2336  *
2337  * This function gets the UPMCRS field of HCS register
2338  *
2339  * Return: value of UPMCRS field.
2340  */
ufshcd_get_upmcrs(struct ufs_hba * hba)2341 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2342 {
2343 	return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2344 }
2345 
2346 /**
2347  * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2348  * @hba: per adapter instance
2349  * @uic_cmd: UIC command
2350  */
2351 static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2352 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2353 {
2354 	lockdep_assert_held(&hba->uic_cmd_mutex);
2355 
2356 	WARN_ON(hba->active_uic_cmd);
2357 
2358 	hba->active_uic_cmd = uic_cmd;
2359 
2360 	/* Write Args */
2361 	ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2362 	ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2363 	ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2364 
2365 	ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2366 
2367 	/* Write UIC Cmd */
2368 	ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2369 		      REG_UIC_COMMAND);
2370 }
2371 
2372 /**
2373  * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2374  * @hba: per adapter instance
2375  * @uic_cmd: UIC command
2376  *
2377  * Return: 0 only if success.
2378  */
2379 static int
ufshcd_wait_for_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2380 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2381 {
2382 	int ret;
2383 	unsigned long flags;
2384 
2385 	lockdep_assert_held(&hba->uic_cmd_mutex);
2386 
2387 	if (wait_for_completion_timeout(&uic_cmd->done,
2388 					msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2389 		ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2390 	} else {
2391 		ret = -ETIMEDOUT;
2392 		dev_err(hba->dev,
2393 			"uic cmd 0x%x with arg3 0x%x completion timeout\n",
2394 			uic_cmd->command, uic_cmd->argument3);
2395 
2396 		if (!uic_cmd->cmd_active) {
2397 			dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2398 				__func__);
2399 			ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2400 		}
2401 	}
2402 
2403 	spin_lock_irqsave(hba->host->host_lock, flags);
2404 	hba->active_uic_cmd = NULL;
2405 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2406 
2407 	return ret;
2408 }
2409 
2410 /**
2411  * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2412  * @hba: per adapter instance
2413  * @uic_cmd: UIC command
2414  *
2415  * Return: 0 only if success.
2416  */
2417 static int
__ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2418 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2419 {
2420 	lockdep_assert_held(&hba->uic_cmd_mutex);
2421 
2422 	if (!ufshcd_ready_for_uic_cmd(hba)) {
2423 		dev_err(hba->dev,
2424 			"Controller not ready to accept UIC commands\n");
2425 		return -EIO;
2426 	}
2427 
2428 	init_completion(&uic_cmd->done);
2429 
2430 	uic_cmd->cmd_active = 1;
2431 	ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2432 
2433 	return 0;
2434 }
2435 
2436 /**
2437  * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2438  * @hba: per adapter instance
2439  * @uic_cmd: UIC command
2440  *
2441  * Return: 0 only if success.
2442  */
ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2443 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2444 {
2445 	int ret;
2446 
2447 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2448 		return 0;
2449 
2450 	ufshcd_hold(hba);
2451 	mutex_lock(&hba->uic_cmd_mutex);
2452 	ufshcd_add_delay_before_dme_cmd(hba);
2453 
2454 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
2455 	if (!ret)
2456 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2457 
2458 	mutex_unlock(&hba->uic_cmd_mutex);
2459 
2460 	ufshcd_release(hba);
2461 	return ret;
2462 }
2463 
2464 /**
2465  * ufshcd_sgl_to_prdt - SG list to PRTD (Physical Region Description Table, 4DW format)
2466  * @hba:	per-adapter instance
2467  * @lrbp:	pointer to local reference block
2468  * @sg_entries:	The number of sg lists actually used
2469  * @sg_list:	Pointer to SG list
2470  */
ufshcd_sgl_to_prdt(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int sg_entries,struct scatterlist * sg_list)2471 static void ufshcd_sgl_to_prdt(struct ufs_hba *hba, struct ufshcd_lrb *lrbp, int sg_entries,
2472 			       struct scatterlist *sg_list)
2473 {
2474 	struct ufshcd_sg_entry *prd;
2475 	struct scatterlist *sg;
2476 	int i;
2477 
2478 	if (sg_entries) {
2479 
2480 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2481 			lrbp->utr_descriptor_ptr->prd_table_length =
2482 				cpu_to_le16(sg_entries * ufshcd_sg_entry_size(hba));
2483 		else
2484 			lrbp->utr_descriptor_ptr->prd_table_length = cpu_to_le16(sg_entries);
2485 
2486 		prd = lrbp->ucd_prdt_ptr;
2487 
2488 		for_each_sg(sg_list, sg, sg_entries, i) {
2489 			const unsigned int len = sg_dma_len(sg);
2490 
2491 			/*
2492 			 * From the UFSHCI spec: "Data Byte Count (DBC): A '0'
2493 			 * based value that indicates the length, in bytes, of
2494 			 * the data block. A maximum of length of 256KB may
2495 			 * exist for any entry. Bits 1:0 of this field shall be
2496 			 * 11b to indicate Dword granularity. A value of '3'
2497 			 * indicates 4 bytes, '7' indicates 8 bytes, etc."
2498 			 */
2499 			WARN_ONCE(len > SZ_256K, "len = %#x\n", len);
2500 			prd->size = cpu_to_le32(len - 1);
2501 			prd->addr = cpu_to_le64(sg->dma_address);
2502 			prd->reserved = 0;
2503 			prd = (void *)prd + ufshcd_sg_entry_size(hba);
2504 		}
2505 	} else {
2506 		lrbp->utr_descriptor_ptr->prd_table_length = 0;
2507 	}
2508 }
2509 
2510 /**
2511  * ufshcd_map_sg - Map scatter-gather list to prdt
2512  * @hba: per adapter instance
2513  * @lrbp: pointer to local reference block
2514  *
2515  * Return: 0 in case of success, non-zero value in case of failure.
2516  */
ufshcd_map_sg(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2517 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2518 {
2519 	struct scsi_cmnd *cmd = lrbp->cmd;
2520 	int sg_segments = scsi_dma_map(cmd);
2521 
2522 	if (sg_segments < 0)
2523 		return sg_segments;
2524 
2525 	ufshcd_sgl_to_prdt(hba, lrbp, sg_segments, scsi_sglist(cmd));
2526 
2527 	return 0;
2528 }
2529 
2530 /**
2531  * ufshcd_enable_intr - enable interrupts
2532  * @hba: per adapter instance
2533  * @intrs: interrupt bits
2534  */
ufshcd_enable_intr(struct ufs_hba * hba,u32 intrs)2535 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2536 {
2537 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2538 
2539 	if (hba->ufs_version == ufshci_version(1, 0)) {
2540 		u32 rw;
2541 		rw = set & INTERRUPT_MASK_RW_VER_10;
2542 		set = rw | ((set ^ intrs) & intrs);
2543 	} else {
2544 		set |= intrs;
2545 	}
2546 
2547 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2548 }
2549 
2550 /**
2551  * ufshcd_disable_intr - disable interrupts
2552  * @hba: per adapter instance
2553  * @intrs: interrupt bits
2554  */
ufshcd_disable_intr(struct ufs_hba * hba,u32 intrs)2555 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2556 {
2557 	u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2558 
2559 	if (hba->ufs_version == ufshci_version(1, 0)) {
2560 		u32 rw;
2561 		rw = (set & INTERRUPT_MASK_RW_VER_10) &
2562 			~(intrs & INTERRUPT_MASK_RW_VER_10);
2563 		set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2564 
2565 	} else {
2566 		set &= ~intrs;
2567 	}
2568 
2569 	ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2570 }
2571 
2572 /**
2573  * ufshcd_prepare_req_desc_hdr - Fill UTP Transfer request descriptor header according to request
2574  * descriptor according to request
2575  * @lrbp: pointer to local reference block
2576  * @upiu_flags: flags required in the header
2577  * @cmd_dir: requests data direction
2578  * @ehs_length: Total EHS Length (in 32‐bytes units of all Extra Header Segments)
2579  */
ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb * lrbp,u8 * upiu_flags,enum dma_data_direction cmd_dir,int ehs_length)2580 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp, u8 *upiu_flags,
2581 					enum dma_data_direction cmd_dir, int ehs_length)
2582 {
2583 	struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2584 	struct request_desc_header *h = &req_desc->header;
2585 	enum utp_data_direction data_direction;
2586 
2587 	*h = (typeof(*h)){ };
2588 
2589 	if (cmd_dir == DMA_FROM_DEVICE) {
2590 		data_direction = UTP_DEVICE_TO_HOST;
2591 		*upiu_flags = UPIU_CMD_FLAGS_READ;
2592 	} else if (cmd_dir == DMA_TO_DEVICE) {
2593 		data_direction = UTP_HOST_TO_DEVICE;
2594 		*upiu_flags = UPIU_CMD_FLAGS_WRITE;
2595 	} else {
2596 		data_direction = UTP_NO_DATA_TRANSFER;
2597 		*upiu_flags = UPIU_CMD_FLAGS_NONE;
2598 	}
2599 
2600 	h->command_type = lrbp->command_type;
2601 	h->data_direction = data_direction;
2602 	h->ehs_length = ehs_length;
2603 
2604 	if (lrbp->intr_cmd)
2605 		h->interrupt = 1;
2606 
2607 	/* Prepare crypto related dwords */
2608 	ufshcd_prepare_req_desc_hdr_crypto(lrbp, h);
2609 
2610 	/*
2611 	 * assigning invalid value for command status. Controller
2612 	 * updates OCS on command completion, with the command
2613 	 * status
2614 	 */
2615 	h->ocs = OCS_INVALID_COMMAND_STATUS;
2616 
2617 	req_desc->prd_table_length = 0;
2618 }
2619 
2620 /**
2621  * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2622  * for scsi commands
2623  * @lrbp: local reference block pointer
2624  * @upiu_flags: flags
2625  */
2626 static
ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb * lrbp,u8 upiu_flags)2627 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2628 {
2629 	struct scsi_cmnd *cmd = lrbp->cmd;
2630 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2631 	unsigned short cdb_len;
2632 
2633 	ucd_req_ptr->header = (struct utp_upiu_header){
2634 		.transaction_code = UPIU_TRANSACTION_COMMAND,
2635 		.flags = upiu_flags,
2636 		.lun = lrbp->lun,
2637 		.task_tag = lrbp->task_tag,
2638 		.command_set_type = UPIU_COMMAND_SET_TYPE_SCSI,
2639 	};
2640 
2641 	ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2642 
2643 	cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2644 	memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2645 	memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2646 
2647 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2648 }
2649 
2650 /**
2651  * ufshcd_prepare_utp_query_req_upiu() - fill the utp_transfer_req_desc for query request
2652  * @hba: UFS hba
2653  * @lrbp: local reference block pointer
2654  * @upiu_flags: flags
2655  */
ufshcd_prepare_utp_query_req_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 upiu_flags)2656 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2657 				struct ufshcd_lrb *lrbp, u8 upiu_flags)
2658 {
2659 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2660 	struct ufs_query *query = &hba->dev_cmd.query;
2661 	u16 len = be16_to_cpu(query->request.upiu_req.length);
2662 
2663 	/* Query request header */
2664 	ucd_req_ptr->header = (struct utp_upiu_header){
2665 		.transaction_code = UPIU_TRANSACTION_QUERY_REQ,
2666 		.flags = upiu_flags,
2667 		.lun = lrbp->lun,
2668 		.task_tag = lrbp->task_tag,
2669 		.query_function = query->request.query_func,
2670 		/* Data segment length only need for WRITE_DESC */
2671 		.data_segment_length =
2672 			query->request.upiu_req.opcode ==
2673 					UPIU_QUERY_OPCODE_WRITE_DESC ?
2674 				cpu_to_be16(len) :
2675 				0,
2676 	};
2677 
2678 	/* Copy the Query Request buffer as is */
2679 	memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2680 			QUERY_OSF_SIZE);
2681 
2682 	/* Copy the Descriptor */
2683 	if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2684 		memcpy(ucd_req_ptr + 1, query->descriptor, len);
2685 
2686 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2687 }
2688 
ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb * lrbp)2689 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2690 {
2691 	struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2692 
2693 	memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2694 
2695 	ucd_req_ptr->header = (struct utp_upiu_header){
2696 		.transaction_code = UPIU_TRANSACTION_NOP_OUT,
2697 		.task_tag = lrbp->task_tag,
2698 	};
2699 
2700 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2701 }
2702 
2703 /**
2704  * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2705  *			     for Device Management Purposes
2706  * @hba: per adapter instance
2707  * @lrbp: pointer to local reference block
2708  *
2709  * Return: 0 upon success; < 0 upon failure.
2710  */
ufshcd_compose_devman_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2711 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2712 				      struct ufshcd_lrb *lrbp)
2713 {
2714 	u8 upiu_flags;
2715 	int ret = 0;
2716 
2717 	if (hba->ufs_version <= ufshci_version(1, 1))
2718 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2719 	else
2720 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2721 
2722 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
2723 	if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2724 		ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2725 	else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2726 		ufshcd_prepare_utp_nop_upiu(lrbp);
2727 	else
2728 		ret = -EINVAL;
2729 
2730 	return ret;
2731 }
2732 
2733 /**
2734  * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2735  *			   for SCSI Purposes
2736  * @hba: per adapter instance
2737  * @lrbp: pointer to local reference block
2738  *
2739  * Return: 0 upon success; < 0 upon failure.
2740  */
ufshcd_comp_scsi_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2741 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2742 {
2743 	u8 upiu_flags;
2744 	int ret = 0;
2745 
2746 	if (hba->ufs_version <= ufshci_version(1, 1))
2747 		lrbp->command_type = UTP_CMD_TYPE_SCSI;
2748 	else
2749 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2750 
2751 	if (likely(lrbp->cmd)) {
2752 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, lrbp->cmd->sc_data_direction, 0);
2753 		ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2754 	} else {
2755 		ret = -EINVAL;
2756 	}
2757 
2758 	return ret;
2759 }
2760 
2761 /**
2762  * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2763  * @upiu_wlun_id: UPIU W-LUN id
2764  *
2765  * Return: SCSI W-LUN id.
2766  */
ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)2767 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2768 {
2769 	return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2770 }
2771 
is_device_wlun(struct scsi_device * sdev)2772 static inline bool is_device_wlun(struct scsi_device *sdev)
2773 {
2774 	return sdev->lun ==
2775 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2776 }
2777 
2778 /*
2779  * Associate the UFS controller queue with the default and poll HCTX types.
2780  * Initialize the mq_map[] arrays.
2781  */
ufshcd_map_queues(struct Scsi_Host * shost)2782 static void ufshcd_map_queues(struct Scsi_Host *shost)
2783 {
2784 	struct ufs_hba *hba = shost_priv(shost);
2785 	int i, queue_offset = 0;
2786 
2787 	if (!is_mcq_supported(hba)) {
2788 		hba->nr_queues[HCTX_TYPE_DEFAULT] = 1;
2789 		hba->nr_queues[HCTX_TYPE_READ] = 0;
2790 		hba->nr_queues[HCTX_TYPE_POLL] = 1;
2791 		hba->nr_hw_queues = 1;
2792 	}
2793 
2794 	for (i = 0; i < shost->nr_maps; i++) {
2795 		struct blk_mq_queue_map *map = &shost->tag_set.map[i];
2796 
2797 		map->nr_queues = hba->nr_queues[i];
2798 		if (!map->nr_queues)
2799 			continue;
2800 		map->queue_offset = queue_offset;
2801 		if (i == HCTX_TYPE_POLL && !is_mcq_supported(hba))
2802 			map->queue_offset = 0;
2803 
2804 		blk_mq_map_queues(map);
2805 		queue_offset += map->nr_queues;
2806 	}
2807 }
2808 
ufshcd_init_lrb(struct ufs_hba * hba,struct ufshcd_lrb * lrb,int i)2809 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2810 {
2811 	struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2812 		i * ufshcd_get_ucd_size(hba);
2813 	struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2814 	dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2815 		i * ufshcd_get_ucd_size(hba);
2816 	u16 response_offset = le16_to_cpu(utrdlp[i].response_upiu_offset);
2817 	u16 prdt_offset = le16_to_cpu(utrdlp[i].prd_table_offset);
2818 
2819 	lrb->utr_descriptor_ptr = utrdlp + i;
2820 	lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2821 		i * sizeof(struct utp_transfer_req_desc);
2822 	lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp->command_upiu;
2823 	lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2824 	lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2825 	lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2826 	lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2827 	lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2828 }
2829 
2830 /**
2831  * ufshcd_queuecommand - main entry point for SCSI requests
2832  * @host: SCSI host pointer
2833  * @cmd: command from SCSI Midlayer
2834  *
2835  * Return: 0 for success, non-zero in case of failure.
2836  */
ufshcd_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmd)2837 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2838 {
2839 	struct ufs_hba *hba = shost_priv(host);
2840 	int tag = scsi_cmd_to_rq(cmd)->tag;
2841 	struct ufshcd_lrb *lrbp;
2842 	int err = 0;
2843 	struct ufs_hw_queue *hwq = NULL;
2844 
2845 	WARN_ONCE(tag < 0 || tag >= hba->nutrs, "Invalid tag %d\n", tag);
2846 
2847 	switch (hba->ufshcd_state) {
2848 	case UFSHCD_STATE_OPERATIONAL:
2849 		break;
2850 	case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2851 		/*
2852 		 * SCSI error handler can call ->queuecommand() while UFS error
2853 		 * handler is in progress. Error interrupts could change the
2854 		 * state from UFSHCD_STATE_RESET to
2855 		 * UFSHCD_STATE_EH_SCHEDULED_NON_FATAL. Prevent requests
2856 		 * being issued in that case.
2857 		 */
2858 		if (ufshcd_eh_in_progress(hba)) {
2859 			err = SCSI_MLQUEUE_HOST_BUSY;
2860 			goto out;
2861 		}
2862 		break;
2863 	case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2864 		/*
2865 		 * pm_runtime_get_sync() is used at error handling preparation
2866 		 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2867 		 * PM ops, it can never be finished if we let SCSI layer keep
2868 		 * retrying it, which gets err handler stuck forever. Neither
2869 		 * can we let the scsi cmd pass through, because UFS is in bad
2870 		 * state, the scsi cmd may eventually time out, which will get
2871 		 * err handler blocked for too long. So, just fail the scsi cmd
2872 		 * sent from PM ops, err handler can recover PM error anyways.
2873 		 */
2874 		if (hba->pm_op_in_progress) {
2875 			hba->force_reset = true;
2876 			set_host_byte(cmd, DID_BAD_TARGET);
2877 			scsi_done(cmd);
2878 			goto out;
2879 		}
2880 		fallthrough;
2881 	case UFSHCD_STATE_RESET:
2882 		err = SCSI_MLQUEUE_HOST_BUSY;
2883 		goto out;
2884 	case UFSHCD_STATE_ERROR:
2885 		set_host_byte(cmd, DID_ERROR);
2886 		scsi_done(cmd);
2887 		goto out;
2888 	}
2889 
2890 	hba->req_abort_count = 0;
2891 
2892 	ufshcd_hold(hba);
2893 
2894 	lrbp = &hba->lrb[tag];
2895 	lrbp->cmd = cmd;
2896 	lrbp->task_tag = tag;
2897 	lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2898 	lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba);
2899 
2900 	ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2901 
2902 	lrbp->req_abort_skip = false;
2903 
2904 	ufshcd_comp_scsi_upiu(hba, lrbp);
2905 
2906 	err = ufshcd_map_sg(hba, lrbp);
2907 	if (err) {
2908 		ufshcd_release(hba);
2909 		goto out;
2910 	}
2911 
2912 	if (is_mcq_enabled(hba))
2913 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(cmd));
2914 
2915 	ufshcd_send_command(hba, tag, hwq);
2916 
2917 out:
2918 	if (ufs_trigger_eh()) {
2919 		unsigned long flags;
2920 
2921 		spin_lock_irqsave(hba->host->host_lock, flags);
2922 		ufshcd_schedule_eh_work(hba);
2923 		spin_unlock_irqrestore(hba->host->host_lock, flags);
2924 	}
2925 
2926 	return err;
2927 }
2928 
ufshcd_compose_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,int tag)2929 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2930 		struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2931 {
2932 	lrbp->cmd = NULL;
2933 	lrbp->task_tag = tag;
2934 	lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2935 	lrbp->intr_cmd = true; /* No interrupt aggregation */
2936 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2937 	hba->dev_cmd.type = cmd_type;
2938 
2939 	return ufshcd_compose_devman_upiu(hba, lrbp);
2940 }
2941 
2942 /*
2943  * Check with the block layer if the command is inflight
2944  * @cmd: command to check.
2945  *
2946  * Return: true if command is inflight; false if not.
2947  */
ufshcd_cmd_inflight(struct scsi_cmnd * cmd)2948 bool ufshcd_cmd_inflight(struct scsi_cmnd *cmd)
2949 {
2950 	struct request *rq;
2951 
2952 	if (!cmd)
2953 		return false;
2954 
2955 	rq = scsi_cmd_to_rq(cmd);
2956 	if (!blk_mq_request_started(rq))
2957 		return false;
2958 
2959 	return true;
2960 }
2961 
2962 /*
2963  * Clear the pending command in the controller and wait until
2964  * the controller confirms that the command has been cleared.
2965  * @hba: per adapter instance
2966  * @task_tag: The tag number of the command to be cleared.
2967  */
ufshcd_clear_cmd(struct ufs_hba * hba,u32 task_tag)2968 static int ufshcd_clear_cmd(struct ufs_hba *hba, u32 task_tag)
2969 {
2970 	u32 mask;
2971 	unsigned long flags;
2972 	int err;
2973 
2974 	if (is_mcq_enabled(hba)) {
2975 		/*
2976 		 * MCQ mode. Clean up the MCQ resources similar to
2977 		 * what the ufshcd_utrl_clear() does for SDB mode.
2978 		 */
2979 		err = ufshcd_mcq_sq_cleanup(hba, task_tag);
2980 		if (err) {
2981 			dev_err(hba->dev, "%s: failed tag=%d. err=%d\n",
2982 				__func__, task_tag, err);
2983 			return err;
2984 		}
2985 		return 0;
2986 	}
2987 
2988 	mask = 1U << task_tag;
2989 
2990 	/* clear outstanding transaction before retry */
2991 	spin_lock_irqsave(hba->host->host_lock, flags);
2992 	ufshcd_utrl_clear(hba, mask);
2993 	spin_unlock_irqrestore(hba->host->host_lock, flags);
2994 
2995 	/*
2996 	 * wait for h/w to clear corresponding bit in door-bell.
2997 	 * max. wait is 1 sec.
2998 	 */
2999 	return ufshcd_wait_for_register(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL,
3000 					mask, ~mask, 1000, 1000);
3001 }
3002 
3003 /**
3004  * ufshcd_dev_cmd_completion() - handles device management command responses
3005  * @hba: per adapter instance
3006  * @lrbp: pointer to local reference block
3007  *
3008  * Return: 0 upon success; < 0 upon failure.
3009  */
3010 static int
ufshcd_dev_cmd_completion(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)3011 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
3012 {
3013 	enum upiu_response_transaction resp;
3014 	int err = 0;
3015 
3016 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
3017 	resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
3018 
3019 	switch (resp) {
3020 	case UPIU_TRANSACTION_NOP_IN:
3021 		if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
3022 			err = -EINVAL;
3023 			dev_err(hba->dev, "%s: unexpected response %x\n",
3024 					__func__, resp);
3025 		}
3026 		break;
3027 	case UPIU_TRANSACTION_QUERY_RSP: {
3028 		u8 response = lrbp->ucd_rsp_ptr->header.response;
3029 
3030 		if (response == 0)
3031 			err = ufshcd_copy_query_response(hba, lrbp);
3032 		break;
3033 	}
3034 	case UPIU_TRANSACTION_REJECT_UPIU:
3035 		/* TODO: handle Reject UPIU Response */
3036 		err = -EPERM;
3037 		dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
3038 				__func__);
3039 		break;
3040 	case UPIU_TRANSACTION_RESPONSE:
3041 		if (hba->dev_cmd.type != DEV_CMD_TYPE_RPMB) {
3042 			err = -EINVAL;
3043 			dev_err(hba->dev, "%s: unexpected response %x\n", __func__, resp);
3044 		}
3045 		break;
3046 	default:
3047 		err = -EINVAL;
3048 		dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
3049 				__func__, resp);
3050 		break;
3051 	}
3052 
3053 	return err;
3054 }
3055 
ufshcd_wait_for_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int max_timeout)3056 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
3057 		struct ufshcd_lrb *lrbp, int max_timeout)
3058 {
3059 	unsigned long time_left = msecs_to_jiffies(max_timeout);
3060 	unsigned long flags;
3061 	bool pending;
3062 	int err;
3063 
3064 retry:
3065 	time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
3066 						time_left);
3067 
3068 	if (likely(time_left)) {
3069 		/*
3070 		 * The completion handler called complete() and the caller of
3071 		 * this function still owns the @lrbp tag so the code below does
3072 		 * not trigger any race conditions.
3073 		 */
3074 		hba->dev_cmd.complete = NULL;
3075 		err = ufshcd_get_tr_ocs(lrbp, NULL);
3076 		if (!err)
3077 			err = ufshcd_dev_cmd_completion(hba, lrbp);
3078 	} else {
3079 		err = -ETIMEDOUT;
3080 		dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
3081 			__func__, lrbp->task_tag);
3082 
3083 		/* MCQ mode */
3084 		if (is_mcq_enabled(hba)) {
3085 			/* successfully cleared the command, retry if needed */
3086 			if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0)
3087 				err = -EAGAIN;
3088 			hba->dev_cmd.complete = NULL;
3089 			return err;
3090 		}
3091 
3092 		/* SDB mode */
3093 		if (ufshcd_clear_cmd(hba, lrbp->task_tag) == 0) {
3094 			/* successfully cleared the command, retry if needed */
3095 			err = -EAGAIN;
3096 			/*
3097 			 * Since clearing the command succeeded we also need to
3098 			 * clear the task tag bit from the outstanding_reqs
3099 			 * variable.
3100 			 */
3101 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3102 			pending = test_bit(lrbp->task_tag,
3103 					   &hba->outstanding_reqs);
3104 			if (pending) {
3105 				hba->dev_cmd.complete = NULL;
3106 				__clear_bit(lrbp->task_tag,
3107 					    &hba->outstanding_reqs);
3108 			}
3109 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3110 
3111 			if (!pending) {
3112 				/*
3113 				 * The completion handler ran while we tried to
3114 				 * clear the command.
3115 				 */
3116 				time_left = 1;
3117 				goto retry;
3118 			}
3119 		} else {
3120 			dev_err(hba->dev, "%s: failed to clear tag %d\n",
3121 				__func__, lrbp->task_tag);
3122 
3123 			spin_lock_irqsave(&hba->outstanding_lock, flags);
3124 			pending = test_bit(lrbp->task_tag,
3125 					   &hba->outstanding_reqs);
3126 			if (pending)
3127 				hba->dev_cmd.complete = NULL;
3128 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
3129 
3130 			if (!pending) {
3131 				/*
3132 				 * The completion handler ran while we tried to
3133 				 * clear the command.
3134 				 */
3135 				time_left = 1;
3136 				goto retry;
3137 			}
3138 		}
3139 	}
3140 
3141 	return err;
3142 }
3143 
3144 /**
3145  * ufshcd_exec_dev_cmd - API for sending device management requests
3146  * @hba: UFS hba
3147  * @cmd_type: specifies the type (NOP, Query...)
3148  * @timeout: timeout in milliseconds
3149  *
3150  * Return: 0 upon success; < 0 upon failure.
3151  *
3152  * NOTE: Since there is only one available tag for device management commands,
3153  * it is expected you hold the hba->dev_cmd.lock mutex.
3154  */
ufshcd_exec_dev_cmd(struct ufs_hba * hba,enum dev_cmd_type cmd_type,int timeout)3155 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3156 		enum dev_cmd_type cmd_type, int timeout)
3157 {
3158 	DECLARE_COMPLETION_ONSTACK(wait);
3159 	const u32 tag = hba->reserved_slot;
3160 	struct ufshcd_lrb *lrbp;
3161 	int err;
3162 
3163 	/* Protects use of hba->reserved_slot. */
3164 	lockdep_assert_held(&hba->dev_cmd.lock);
3165 
3166 	down_read(&hba->clk_scaling_lock);
3167 
3168 	lrbp = &hba->lrb[tag];
3169 	lrbp->cmd = NULL;
3170 	err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3171 	if (unlikely(err))
3172 		goto out;
3173 
3174 	hba->dev_cmd.complete = &wait;
3175 
3176 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3177 
3178 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
3179 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3180 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3181 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3182 
3183 out:
3184 	up_read(&hba->clk_scaling_lock);
3185 	return err;
3186 }
3187 
3188 /**
3189  * ufshcd_init_query() - init the query response and request parameters
3190  * @hba: per-adapter instance
3191  * @request: address of the request pointer to be initialized
3192  * @response: address of the response pointer to be initialized
3193  * @opcode: operation to perform
3194  * @idn: flag idn to access
3195  * @index: LU number to access
3196  * @selector: query/flag/descriptor further identification
3197  */
ufshcd_init_query(struct ufs_hba * hba,struct ufs_query_req ** request,struct ufs_query_res ** response,enum query_opcode opcode,u8 idn,u8 index,u8 selector)3198 static inline void ufshcd_init_query(struct ufs_hba *hba,
3199 		struct ufs_query_req **request, struct ufs_query_res **response,
3200 		enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3201 {
3202 	*request = &hba->dev_cmd.query.request;
3203 	*response = &hba->dev_cmd.query.response;
3204 	memset(*request, 0, sizeof(struct ufs_query_req));
3205 	memset(*response, 0, sizeof(struct ufs_query_res));
3206 	(*request)->upiu_req.opcode = opcode;
3207 	(*request)->upiu_req.idn = idn;
3208 	(*request)->upiu_req.index = index;
3209 	(*request)->upiu_req.selector = selector;
3210 }
3211 
ufshcd_query_flag_retry(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3212 static int ufshcd_query_flag_retry(struct ufs_hba *hba,
3213 	enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3214 {
3215 	int ret;
3216 	int retries;
3217 
3218 	for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3219 		ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3220 		if (ret)
3221 			dev_dbg(hba->dev,
3222 				"%s: failed with error %d, retries %d\n",
3223 				__func__, ret, retries);
3224 		else
3225 			break;
3226 	}
3227 
3228 	if (ret)
3229 		dev_err(hba->dev,
3230 			"%s: query flag, opcode %d, idn %d, failed with error %d after %d retries\n",
3231 			__func__, opcode, idn, ret, retries);
3232 	return ret;
3233 }
3234 
3235 /**
3236  * ufshcd_query_flag() - API function for sending flag query requests
3237  * @hba: per-adapter instance
3238  * @opcode: flag query to perform
3239  * @idn: flag idn to access
3240  * @index: flag index to access
3241  * @flag_res: the flag value after the query request completes
3242  *
3243  * Return: 0 for success, non-zero in case of failure.
3244  */
ufshcd_query_flag(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3245 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3246 			enum flag_idn idn, u8 index, bool *flag_res)
3247 {
3248 	struct ufs_query_req *request = NULL;
3249 	struct ufs_query_res *response = NULL;
3250 	int err, selector = 0;
3251 	int timeout = QUERY_REQ_TIMEOUT;
3252 
3253 	BUG_ON(!hba);
3254 
3255 	ufshcd_hold(hba);
3256 	mutex_lock(&hba->dev_cmd.lock);
3257 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3258 			selector);
3259 
3260 	switch (opcode) {
3261 	case UPIU_QUERY_OPCODE_SET_FLAG:
3262 	case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3263 	case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3264 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3265 		break;
3266 	case UPIU_QUERY_OPCODE_READ_FLAG:
3267 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3268 		if (!flag_res) {
3269 			/* No dummy reads */
3270 			dev_err(hba->dev, "%s: Invalid argument for read request\n",
3271 					__func__);
3272 			err = -EINVAL;
3273 			goto out_unlock;
3274 		}
3275 		break;
3276 	default:
3277 		dev_err(hba->dev,
3278 			"%s: Expected query flag opcode but got = %d\n",
3279 			__func__, opcode);
3280 		err = -EINVAL;
3281 		goto out_unlock;
3282 	}
3283 
3284 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3285 
3286 	if (err) {
3287 		dev_err(hba->dev,
3288 			"%s: Sending flag query for idn %d failed, err = %d\n",
3289 			__func__, idn, err);
3290 		goto out_unlock;
3291 	}
3292 
3293 	if (flag_res)
3294 		*flag_res = (be32_to_cpu(response->upiu_res.value) &
3295 				MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3296 
3297 out_unlock:
3298 	mutex_unlock(&hba->dev_cmd.lock);
3299 	ufshcd_release(hba);
3300 	return err;
3301 }
3302 
3303 /**
3304  * ufshcd_query_attr - API function for sending attribute requests
3305  * @hba: per-adapter instance
3306  * @opcode: attribute opcode
3307  * @idn: attribute idn to access
3308  * @index: index field
3309  * @selector: selector field
3310  * @attr_val: the attribute value after the query request completes
3311  *
3312  * Return: 0 for success, non-zero in case of failure.
3313 */
ufshcd_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3314 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3315 		      enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3316 {
3317 	struct ufs_query_req *request = NULL;
3318 	struct ufs_query_res *response = NULL;
3319 	int err;
3320 
3321 	BUG_ON(!hba);
3322 
3323 	if (!attr_val) {
3324 		dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3325 				__func__, opcode);
3326 		return -EINVAL;
3327 	}
3328 
3329 	ufshcd_hold(hba);
3330 
3331 	mutex_lock(&hba->dev_cmd.lock);
3332 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3333 			selector);
3334 
3335 	switch (opcode) {
3336 	case UPIU_QUERY_OPCODE_WRITE_ATTR:
3337 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3338 		request->upiu_req.value = cpu_to_be32(*attr_val);
3339 		break;
3340 	case UPIU_QUERY_OPCODE_READ_ATTR:
3341 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3342 		break;
3343 	default:
3344 		dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3345 				__func__, opcode);
3346 		err = -EINVAL;
3347 		goto out_unlock;
3348 	}
3349 
3350 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3351 
3352 	if (err) {
3353 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3354 				__func__, opcode, idn, index, err);
3355 		goto out_unlock;
3356 	}
3357 
3358 	*attr_val = be32_to_cpu(response->upiu_res.value);
3359 
3360 out_unlock:
3361 	mutex_unlock(&hba->dev_cmd.lock);
3362 	ufshcd_release(hba);
3363 	return err;
3364 }
3365 
3366 /**
3367  * ufshcd_query_attr_retry() - API function for sending query
3368  * attribute with retries
3369  * @hba: per-adapter instance
3370  * @opcode: attribute opcode
3371  * @idn: attribute idn to access
3372  * @index: index field
3373  * @selector: selector field
3374  * @attr_val: the attribute value after the query request
3375  * completes
3376  *
3377  * Return: 0 for success, non-zero in case of failure.
3378 */
ufshcd_query_attr_retry(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3379 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3380 	enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3381 	u32 *attr_val)
3382 {
3383 	int ret = 0;
3384 	u32 retries;
3385 
3386 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3387 		ret = ufshcd_query_attr(hba, opcode, idn, index,
3388 						selector, attr_val);
3389 		if (ret)
3390 			dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3391 				__func__, ret, retries);
3392 		else
3393 			break;
3394 	}
3395 
3396 	if (ret)
3397 		dev_err(hba->dev,
3398 			"%s: query attribute, idn %d, failed with error %d after %d retries\n",
3399 			__func__, idn, ret, QUERY_REQ_RETRIES);
3400 	return ret;
3401 }
3402 
__ufshcd_query_descriptor(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3403 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3404 			enum query_opcode opcode, enum desc_idn idn, u8 index,
3405 			u8 selector, u8 *desc_buf, int *buf_len)
3406 {
3407 	struct ufs_query_req *request = NULL;
3408 	struct ufs_query_res *response = NULL;
3409 	int err;
3410 
3411 	BUG_ON(!hba);
3412 
3413 	if (!desc_buf) {
3414 		dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3415 				__func__, opcode);
3416 		return -EINVAL;
3417 	}
3418 
3419 	if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3420 		dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3421 				__func__, *buf_len);
3422 		return -EINVAL;
3423 	}
3424 
3425 	ufshcd_hold(hba);
3426 
3427 	mutex_lock(&hba->dev_cmd.lock);
3428 	ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3429 			selector);
3430 	hba->dev_cmd.query.descriptor = desc_buf;
3431 	request->upiu_req.length = cpu_to_be16(*buf_len);
3432 
3433 	switch (opcode) {
3434 	case UPIU_QUERY_OPCODE_WRITE_DESC:
3435 		request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3436 		break;
3437 	case UPIU_QUERY_OPCODE_READ_DESC:
3438 		request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3439 		break;
3440 	default:
3441 		dev_err(hba->dev,
3442 				"%s: Expected query descriptor opcode but got = 0x%.2x\n",
3443 				__func__, opcode);
3444 		err = -EINVAL;
3445 		goto out_unlock;
3446 	}
3447 
3448 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3449 
3450 	if (err) {
3451 		dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3452 				__func__, opcode, idn, index, err);
3453 		goto out_unlock;
3454 	}
3455 
3456 	*buf_len = be16_to_cpu(response->upiu_res.length);
3457 
3458 out_unlock:
3459 	hba->dev_cmd.query.descriptor = NULL;
3460 	mutex_unlock(&hba->dev_cmd.lock);
3461 	ufshcd_release(hba);
3462 	return err;
3463 }
3464 
3465 /**
3466  * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3467  * @hba: per-adapter instance
3468  * @opcode: attribute opcode
3469  * @idn: attribute idn to access
3470  * @index: index field
3471  * @selector: selector field
3472  * @desc_buf: the buffer that contains the descriptor
3473  * @buf_len: length parameter passed to the device
3474  *
3475  * The buf_len parameter will contain, on return, the length parameter
3476  * received on the response.
3477  *
3478  * Return: 0 for success, non-zero in case of failure.
3479  */
ufshcd_query_descriptor_retry(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3480 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3481 				  enum query_opcode opcode,
3482 				  enum desc_idn idn, u8 index,
3483 				  u8 selector,
3484 				  u8 *desc_buf, int *buf_len)
3485 {
3486 	int err;
3487 	int retries;
3488 
3489 	for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3490 		err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3491 						selector, desc_buf, buf_len);
3492 		if (!err || err == -EINVAL)
3493 			break;
3494 	}
3495 
3496 	return err;
3497 }
3498 
3499 /**
3500  * ufshcd_read_desc_param - read the specified descriptor parameter
3501  * @hba: Pointer to adapter instance
3502  * @desc_id: descriptor idn value
3503  * @desc_index: descriptor index
3504  * @param_offset: offset of the parameter to read
3505  * @param_read_buf: pointer to buffer where parameter would be read
3506  * @param_size: sizeof(param_read_buf)
3507  *
3508  * Return: 0 in case of success, non-zero otherwise.
3509  */
ufshcd_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,u8 param_offset,u8 * param_read_buf,u8 param_size)3510 int ufshcd_read_desc_param(struct ufs_hba *hba,
3511 			   enum desc_idn desc_id,
3512 			   int desc_index,
3513 			   u8 param_offset,
3514 			   u8 *param_read_buf,
3515 			   u8 param_size)
3516 {
3517 	int ret;
3518 	u8 *desc_buf;
3519 	int buff_len = QUERY_DESC_MAX_SIZE;
3520 	bool is_kmalloc = true;
3521 
3522 	/* Safety check */
3523 	if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3524 		return -EINVAL;
3525 
3526 	/* Check whether we need temp memory */
3527 	if (param_offset != 0 || param_size < buff_len) {
3528 		desc_buf = kzalloc(buff_len, GFP_KERNEL);
3529 		if (!desc_buf)
3530 			return -ENOMEM;
3531 	} else {
3532 		desc_buf = param_read_buf;
3533 		is_kmalloc = false;
3534 	}
3535 
3536 	/* Request for full descriptor */
3537 	ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3538 					    desc_id, desc_index, 0,
3539 					    desc_buf, &buff_len);
3540 	if (ret) {
3541 		dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3542 			__func__, desc_id, desc_index, param_offset, ret);
3543 		goto out;
3544 	}
3545 
3546 	/* Update descriptor length */
3547 	buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3548 
3549 	if (param_offset >= buff_len) {
3550 		dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3551 			__func__, param_offset, desc_id, buff_len);
3552 		ret = -EINVAL;
3553 		goto out;
3554 	}
3555 
3556 	/* Sanity check */
3557 	if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3558 		dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3559 			__func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3560 		ret = -EINVAL;
3561 		goto out;
3562 	}
3563 
3564 	if (is_kmalloc) {
3565 		/* Make sure we don't copy more data than available */
3566 		if (param_offset >= buff_len)
3567 			ret = -EINVAL;
3568 		else
3569 			memcpy(param_read_buf, &desc_buf[param_offset],
3570 			       min_t(u32, param_size, buff_len - param_offset));
3571 	}
3572 out:
3573 	if (is_kmalloc)
3574 		kfree(desc_buf);
3575 	return ret;
3576 }
3577 
3578 /**
3579  * struct uc_string_id - unicode string
3580  *
3581  * @len: size of this descriptor inclusive
3582  * @type: descriptor type
3583  * @uc: unicode string character
3584  */
3585 struct uc_string_id {
3586 	u8 len;
3587 	u8 type;
3588 	wchar_t uc[];
3589 } __packed;
3590 
3591 /* replace non-printable or non-ASCII characters with spaces */
ufshcd_remove_non_printable(u8 ch)3592 static inline char ufshcd_remove_non_printable(u8 ch)
3593 {
3594 	return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3595 }
3596 
3597 /**
3598  * ufshcd_read_string_desc - read string descriptor
3599  * @hba: pointer to adapter instance
3600  * @desc_index: descriptor index
3601  * @buf: pointer to buffer where descriptor would be read,
3602  *       the caller should free the memory.
3603  * @ascii: if true convert from unicode to ascii characters
3604  *         null terminated string.
3605  *
3606  * Return:
3607  * *      string size on success.
3608  * *      -ENOMEM: on allocation failure
3609  * *      -EINVAL: on a wrong parameter
3610  */
ufshcd_read_string_desc(struct ufs_hba * hba,u8 desc_index,u8 ** buf,bool ascii)3611 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3612 			    u8 **buf, bool ascii)
3613 {
3614 	struct uc_string_id *uc_str;
3615 	u8 *str;
3616 	int ret;
3617 
3618 	if (!buf)
3619 		return -EINVAL;
3620 
3621 	uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3622 	if (!uc_str)
3623 		return -ENOMEM;
3624 
3625 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3626 				     (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3627 	if (ret < 0) {
3628 		dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3629 			QUERY_REQ_RETRIES, ret);
3630 		str = NULL;
3631 		goto out;
3632 	}
3633 
3634 	if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3635 		dev_dbg(hba->dev, "String Desc is of zero length\n");
3636 		str = NULL;
3637 		ret = 0;
3638 		goto out;
3639 	}
3640 
3641 	if (ascii) {
3642 		ssize_t ascii_len;
3643 		int i;
3644 		/* remove header and divide by 2 to move from UTF16 to UTF8 */
3645 		ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3646 		str = kzalloc(ascii_len, GFP_KERNEL);
3647 		if (!str) {
3648 			ret = -ENOMEM;
3649 			goto out;
3650 		}
3651 
3652 		/*
3653 		 * the descriptor contains string in UTF16 format
3654 		 * we need to convert to utf-8 so it can be displayed
3655 		 */
3656 		ret = utf16s_to_utf8s(uc_str->uc,
3657 				      uc_str->len - QUERY_DESC_HDR_SIZE,
3658 				      UTF16_BIG_ENDIAN, str, ascii_len - 1);
3659 
3660 		/* replace non-printable or non-ASCII characters with spaces */
3661 		for (i = 0; i < ret; i++)
3662 			str[i] = ufshcd_remove_non_printable(str[i]);
3663 
3664 		str[ret++] = '\0';
3665 
3666 	} else {
3667 		str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3668 		if (!str) {
3669 			ret = -ENOMEM;
3670 			goto out;
3671 		}
3672 		ret = uc_str->len;
3673 	}
3674 out:
3675 	*buf = str;
3676 	kfree(uc_str);
3677 	return ret;
3678 }
3679 
3680 /**
3681  * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3682  * @hba: Pointer to adapter instance
3683  * @lun: lun id
3684  * @param_offset: offset of the parameter to read
3685  * @param_read_buf: pointer to buffer where parameter would be read
3686  * @param_size: sizeof(param_read_buf)
3687  *
3688  * Return: 0 in case of success, non-zero otherwise.
3689  */
ufshcd_read_unit_desc_param(struct ufs_hba * hba,int lun,enum unit_desc_param param_offset,u8 * param_read_buf,u32 param_size)3690 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3691 					      int lun,
3692 					      enum unit_desc_param param_offset,
3693 					      u8 *param_read_buf,
3694 					      u32 param_size)
3695 {
3696 	/*
3697 	 * Unit descriptors are only available for general purpose LUs (LUN id
3698 	 * from 0 to 7) and RPMB Well known LU.
3699 	 */
3700 	if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun))
3701 		return -EOPNOTSUPP;
3702 
3703 	return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3704 				      param_offset, param_read_buf, param_size);
3705 }
3706 
ufshcd_get_ref_clk_gating_wait(struct ufs_hba * hba)3707 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3708 {
3709 	int err = 0;
3710 	u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3711 
3712 	if (hba->dev_info.wspecversion >= 0x300) {
3713 		err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3714 				QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3715 				&gating_wait);
3716 		if (err)
3717 			dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3718 					 err, gating_wait);
3719 
3720 		if (gating_wait == 0) {
3721 			gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3722 			dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3723 					 gating_wait);
3724 		}
3725 
3726 		hba->dev_info.clk_gating_wait_us = gating_wait;
3727 	}
3728 
3729 	return err;
3730 }
3731 
3732 /**
3733  * ufshcd_memory_alloc - allocate memory for host memory space data structures
3734  * @hba: per adapter instance
3735  *
3736  * 1. Allocate DMA memory for Command Descriptor array
3737  *	Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3738  * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3739  * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3740  *	(UTMRDL)
3741  * 4. Allocate memory for local reference block(lrb).
3742  *
3743  * Return: 0 for success, non-zero in case of failure.
3744  */
ufshcd_memory_alloc(struct ufs_hba * hba)3745 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3746 {
3747 	size_t utmrdl_size, utrdl_size, ucdl_size;
3748 
3749 	/* Allocate memory for UTP command descriptors */
3750 	ucdl_size = ufshcd_get_ucd_size(hba) * hba->nutrs;
3751 	hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3752 						  ucdl_size,
3753 						  &hba->ucdl_dma_addr,
3754 						  GFP_KERNEL);
3755 
3756 	/*
3757 	 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3758 	 */
3759 	if (!hba->ucdl_base_addr ||
3760 	    WARN_ON(hba->ucdl_dma_addr & (128 - 1))) {
3761 		dev_err(hba->dev,
3762 			"Command Descriptor Memory allocation failed\n");
3763 		goto out;
3764 	}
3765 
3766 	/*
3767 	 * Allocate memory for UTP Transfer descriptors
3768 	 * UFSHCI requires 1KB alignment of UTRD
3769 	 */
3770 	utrdl_size = (sizeof(struct utp_transfer_req_desc) * hba->nutrs);
3771 	hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3772 						   utrdl_size,
3773 						   &hba->utrdl_dma_addr,
3774 						   GFP_KERNEL);
3775 	if (!hba->utrdl_base_addr ||
3776 	    WARN_ON(hba->utrdl_dma_addr & (SZ_1K - 1))) {
3777 		dev_err(hba->dev,
3778 			"Transfer Descriptor Memory allocation failed\n");
3779 		goto out;
3780 	}
3781 
3782 	/*
3783 	 * Skip utmrdl allocation; it may have been
3784 	 * allocated during first pass and not released during
3785 	 * MCQ memory allocation.
3786 	 * See ufshcd_release_sdb_queue() and ufshcd_config_mcq()
3787 	 */
3788 	if (hba->utmrdl_base_addr)
3789 		goto skip_utmrdl;
3790 	/*
3791 	 * Allocate memory for UTP Task Management descriptors
3792 	 * UFSHCI requires 1KB alignment of UTMRD
3793 	 */
3794 	utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3795 	hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3796 						    utmrdl_size,
3797 						    &hba->utmrdl_dma_addr,
3798 						    GFP_KERNEL);
3799 	if (!hba->utmrdl_base_addr ||
3800 	    WARN_ON(hba->utmrdl_dma_addr & (SZ_1K - 1))) {
3801 		dev_err(hba->dev,
3802 		"Task Management Descriptor Memory allocation failed\n");
3803 		goto out;
3804 	}
3805 
3806 skip_utmrdl:
3807 	/* Allocate memory for local reference block */
3808 	hba->lrb = devm_kcalloc(hba->dev,
3809 				hba->nutrs, sizeof(struct ufshcd_lrb),
3810 				GFP_KERNEL);
3811 	if (!hba->lrb) {
3812 		dev_err(hba->dev, "LRB Memory allocation failed\n");
3813 		goto out;
3814 	}
3815 	return 0;
3816 out:
3817 	return -ENOMEM;
3818 }
3819 
3820 /**
3821  * ufshcd_host_memory_configure - configure local reference block with
3822  *				memory offsets
3823  * @hba: per adapter instance
3824  *
3825  * Configure Host memory space
3826  * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3827  * address.
3828  * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3829  * and PRDT offset.
3830  * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3831  * into local reference block.
3832  */
ufshcd_host_memory_configure(struct ufs_hba * hba)3833 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3834 {
3835 	struct utp_transfer_req_desc *utrdlp;
3836 	dma_addr_t cmd_desc_dma_addr;
3837 	dma_addr_t cmd_desc_element_addr;
3838 	u16 response_offset;
3839 	u16 prdt_offset;
3840 	int cmd_desc_size;
3841 	int i;
3842 
3843 	utrdlp = hba->utrdl_base_addr;
3844 
3845 	response_offset =
3846 		offsetof(struct utp_transfer_cmd_desc, response_upiu);
3847 	prdt_offset =
3848 		offsetof(struct utp_transfer_cmd_desc, prd_table);
3849 
3850 	cmd_desc_size = ufshcd_get_ucd_size(hba);
3851 	cmd_desc_dma_addr = hba->ucdl_dma_addr;
3852 
3853 	for (i = 0; i < hba->nutrs; i++) {
3854 		/* Configure UTRD with command descriptor base address */
3855 		cmd_desc_element_addr =
3856 				(cmd_desc_dma_addr + (cmd_desc_size * i));
3857 		utrdlp[i].command_desc_base_addr =
3858 				cpu_to_le64(cmd_desc_element_addr);
3859 
3860 		/* Response upiu and prdt offset should be in double words */
3861 		if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3862 			utrdlp[i].response_upiu_offset =
3863 				cpu_to_le16(response_offset);
3864 			utrdlp[i].prd_table_offset =
3865 				cpu_to_le16(prdt_offset);
3866 			utrdlp[i].response_upiu_length =
3867 				cpu_to_le16(ALIGNED_UPIU_SIZE);
3868 		} else {
3869 			utrdlp[i].response_upiu_offset =
3870 				cpu_to_le16(response_offset >> 2);
3871 			utrdlp[i].prd_table_offset =
3872 				cpu_to_le16(prdt_offset >> 2);
3873 			utrdlp[i].response_upiu_length =
3874 				cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3875 		}
3876 
3877 		ufshcd_init_lrb(hba, &hba->lrb[i], i);
3878 	}
3879 }
3880 
3881 /**
3882  * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3883  * @hba: per adapter instance
3884  *
3885  * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3886  * in order to initialize the Unipro link startup procedure.
3887  * Once the Unipro links are up, the device connected to the controller
3888  * is detected.
3889  *
3890  * Return: 0 on success, non-zero value on failure.
3891  */
ufshcd_dme_link_startup(struct ufs_hba * hba)3892 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3893 {
3894 	struct uic_command uic_cmd = {0};
3895 	int ret;
3896 
3897 	uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3898 
3899 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3900 	if (ret)
3901 		dev_dbg(hba->dev,
3902 			"dme-link-startup: error code %d\n", ret);
3903 	return ret;
3904 }
3905 /**
3906  * ufshcd_dme_reset - UIC command for DME_RESET
3907  * @hba: per adapter instance
3908  *
3909  * DME_RESET command is issued in order to reset UniPro stack.
3910  * This function now deals with cold reset.
3911  *
3912  * Return: 0 on success, non-zero value on failure.
3913  */
ufshcd_dme_reset(struct ufs_hba * hba)3914 static int ufshcd_dme_reset(struct ufs_hba *hba)
3915 {
3916 	struct uic_command uic_cmd = {0};
3917 	int ret;
3918 
3919 	uic_cmd.command = UIC_CMD_DME_RESET;
3920 
3921 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3922 	if (ret)
3923 		dev_err(hba->dev,
3924 			"dme-reset: error code %d\n", ret);
3925 
3926 	return ret;
3927 }
3928 
ufshcd_dme_configure_adapt(struct ufs_hba * hba,int agreed_gear,int adapt_val)3929 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
3930 			       int agreed_gear,
3931 			       int adapt_val)
3932 {
3933 	int ret;
3934 
3935 	if (agreed_gear < UFS_HS_G4)
3936 		adapt_val = PA_NO_ADAPT;
3937 
3938 	ret = ufshcd_dme_set(hba,
3939 			     UIC_ARG_MIB(PA_TXHSADAPTTYPE),
3940 			     adapt_val);
3941 	return ret;
3942 }
3943 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
3944 
3945 /**
3946  * ufshcd_dme_enable - UIC command for DME_ENABLE
3947  * @hba: per adapter instance
3948  *
3949  * DME_ENABLE command is issued in order to enable UniPro stack.
3950  *
3951  * Return: 0 on success, non-zero value on failure.
3952  */
ufshcd_dme_enable(struct ufs_hba * hba)3953 static int ufshcd_dme_enable(struct ufs_hba *hba)
3954 {
3955 	struct uic_command uic_cmd = {0};
3956 	int ret;
3957 
3958 	uic_cmd.command = UIC_CMD_DME_ENABLE;
3959 
3960 	ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3961 	if (ret)
3962 		dev_err(hba->dev,
3963 			"dme-enable: error code %d\n", ret);
3964 
3965 	return ret;
3966 }
3967 
ufshcd_add_delay_before_dme_cmd(struct ufs_hba * hba)3968 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3969 {
3970 	#define MIN_DELAY_BEFORE_DME_CMDS_US	1000
3971 	unsigned long min_sleep_time_us;
3972 
3973 	if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3974 		return;
3975 
3976 	/*
3977 	 * last_dme_cmd_tstamp will be 0 only for 1st call to
3978 	 * this function
3979 	 */
3980 	if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3981 		min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3982 	} else {
3983 		unsigned long delta =
3984 			(unsigned long) ktime_to_us(
3985 				ktime_sub(ktime_get(),
3986 				hba->last_dme_cmd_tstamp));
3987 
3988 		if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3989 			min_sleep_time_us =
3990 				MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3991 		else
3992 			min_sleep_time_us = 0; /* no more delay required */
3993 	}
3994 
3995 	if (min_sleep_time_us > 0) {
3996 		/* allow sleep for extra 50us if needed */
3997 		usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3998 	}
3999 
4000 	/* update the last_dme_cmd_tstamp */
4001 	hba->last_dme_cmd_tstamp = ktime_get();
4002 }
4003 
4004 /**
4005  * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
4006  * @hba: per adapter instance
4007  * @attr_sel: uic command argument1
4008  * @attr_set: attribute set type as uic command argument2
4009  * @mib_val: setting value as uic command argument3
4010  * @peer: indicate whether peer or local
4011  *
4012  * Return: 0 on success, non-zero value on failure.
4013  */
ufshcd_dme_set_attr(struct ufs_hba * hba,u32 attr_sel,u8 attr_set,u32 mib_val,u8 peer)4014 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
4015 			u8 attr_set, u32 mib_val, u8 peer)
4016 {
4017 	struct uic_command uic_cmd = {0};
4018 	static const char *const action[] = {
4019 		"dme-set",
4020 		"dme-peer-set"
4021 	};
4022 	const char *set = action[!!peer];
4023 	int ret;
4024 	int retries = UFS_UIC_COMMAND_RETRIES;
4025 
4026 	uic_cmd.command = peer ?
4027 		UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
4028 	uic_cmd.argument1 = attr_sel;
4029 	uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
4030 	uic_cmd.argument3 = mib_val;
4031 
4032 	do {
4033 		/* for peer attributes we retry upon failure */
4034 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4035 		if (ret)
4036 			dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
4037 				set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
4038 	} while (ret && peer && --retries);
4039 
4040 	if (ret)
4041 		dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
4042 			set, UIC_GET_ATTR_ID(attr_sel), mib_val,
4043 			UFS_UIC_COMMAND_RETRIES - retries);
4044 
4045 	return ret;
4046 }
4047 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
4048 
4049 /**
4050  * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
4051  * @hba: per adapter instance
4052  * @attr_sel: uic command argument1
4053  * @mib_val: the value of the attribute as returned by the UIC command
4054  * @peer: indicate whether peer or local
4055  *
4056  * Return: 0 on success, non-zero value on failure.
4057  */
ufshcd_dme_get_attr(struct ufs_hba * hba,u32 attr_sel,u32 * mib_val,u8 peer)4058 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
4059 			u32 *mib_val, u8 peer)
4060 {
4061 	struct uic_command uic_cmd = {0};
4062 	static const char *const action[] = {
4063 		"dme-get",
4064 		"dme-peer-get"
4065 	};
4066 	const char *get = action[!!peer];
4067 	int ret;
4068 	int retries = UFS_UIC_COMMAND_RETRIES;
4069 	struct ufs_pa_layer_attr orig_pwr_info;
4070 	struct ufs_pa_layer_attr temp_pwr_info;
4071 	bool pwr_mode_change = false;
4072 
4073 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
4074 		orig_pwr_info = hba->pwr_info;
4075 		temp_pwr_info = orig_pwr_info;
4076 
4077 		if (orig_pwr_info.pwr_tx == FAST_MODE ||
4078 		    orig_pwr_info.pwr_rx == FAST_MODE) {
4079 			temp_pwr_info.pwr_tx = FASTAUTO_MODE;
4080 			temp_pwr_info.pwr_rx = FASTAUTO_MODE;
4081 			pwr_mode_change = true;
4082 		} else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
4083 		    orig_pwr_info.pwr_rx == SLOW_MODE) {
4084 			temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
4085 			temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
4086 			pwr_mode_change = true;
4087 		}
4088 		if (pwr_mode_change) {
4089 			ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
4090 			if (ret)
4091 				goto out;
4092 		}
4093 	}
4094 
4095 	uic_cmd.command = peer ?
4096 		UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
4097 	uic_cmd.argument1 = attr_sel;
4098 
4099 	do {
4100 		/* for peer attributes we retry upon failure */
4101 		ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4102 		if (ret)
4103 			dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4104 				get, UIC_GET_ATTR_ID(attr_sel), ret);
4105 	} while (ret && peer && --retries);
4106 
4107 	if (ret)
4108 		dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4109 			get, UIC_GET_ATTR_ID(attr_sel),
4110 			UFS_UIC_COMMAND_RETRIES - retries);
4111 
4112 	if (mib_val && !ret)
4113 		*mib_val = uic_cmd.argument3;
4114 
4115 	if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4116 	    && pwr_mode_change)
4117 		ufshcd_change_power_mode(hba, &orig_pwr_info);
4118 out:
4119 	return ret;
4120 }
4121 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4122 
4123 /**
4124  * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4125  * state) and waits for it to take effect.
4126  *
4127  * @hba: per adapter instance
4128  * @cmd: UIC command to execute
4129  *
4130  * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4131  * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4132  * and device UniPro link and hence it's final completion would be indicated by
4133  * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4134  * addition to normal UIC command completion Status (UCCS). This function only
4135  * returns after the relevant status bits indicate the completion.
4136  *
4137  * Return: 0 on success, non-zero value on failure.
4138  */
ufshcd_uic_pwr_ctrl(struct ufs_hba * hba,struct uic_command * cmd)4139 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4140 {
4141 	DECLARE_COMPLETION_ONSTACK(uic_async_done);
4142 	unsigned long flags;
4143 	u8 status;
4144 	int ret;
4145 	bool reenable_intr = false;
4146 
4147 	mutex_lock(&hba->uic_cmd_mutex);
4148 	ufshcd_add_delay_before_dme_cmd(hba);
4149 
4150 	spin_lock_irqsave(hba->host->host_lock, flags);
4151 	if (ufshcd_is_link_broken(hba)) {
4152 		ret = -ENOLINK;
4153 		goto out_unlock;
4154 	}
4155 	hba->uic_async_done = &uic_async_done;
4156 	if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4157 		ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4158 		/*
4159 		 * Make sure UIC command completion interrupt is disabled before
4160 		 * issuing UIC command.
4161 		 */
4162 		ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
4163 		reenable_intr = true;
4164 	}
4165 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4166 	ret = __ufshcd_send_uic_cmd(hba, cmd);
4167 	if (ret) {
4168 		dev_err(hba->dev,
4169 			"pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4170 			cmd->command, cmd->argument3, ret);
4171 		goto out;
4172 	}
4173 
4174 	if (!wait_for_completion_timeout(hba->uic_async_done,
4175 					 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4176 		dev_err(hba->dev,
4177 			"pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4178 			cmd->command, cmd->argument3);
4179 
4180 		if (!cmd->cmd_active) {
4181 			dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4182 				__func__);
4183 			goto check_upmcrs;
4184 		}
4185 
4186 		ret = -ETIMEDOUT;
4187 		goto out;
4188 	}
4189 
4190 check_upmcrs:
4191 	status = ufshcd_get_upmcrs(hba);
4192 	if (status != PWR_LOCAL) {
4193 		dev_err(hba->dev,
4194 			"pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4195 			cmd->command, status);
4196 		ret = (status != PWR_OK) ? status : -1;
4197 	}
4198 out:
4199 	if (ret) {
4200 		ufshcd_print_host_state(hba);
4201 		ufshcd_print_pwr_info(hba);
4202 		ufshcd_print_evt_hist(hba);
4203 	}
4204 
4205 	spin_lock_irqsave(hba->host->host_lock, flags);
4206 	hba->active_uic_cmd = NULL;
4207 	hba->uic_async_done = NULL;
4208 	if (reenable_intr)
4209 		ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4210 	if (ret) {
4211 		ufshcd_set_link_broken(hba);
4212 		ufshcd_schedule_eh_work(hba);
4213 	}
4214 out_unlock:
4215 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4216 	mutex_unlock(&hba->uic_cmd_mutex);
4217 
4218 	return ret;
4219 }
4220 
4221 /**
4222  * ufshcd_send_bsg_uic_cmd - Send UIC commands requested via BSG layer and retrieve the result
4223  * @hba: per adapter instance
4224  * @uic_cmd: UIC command
4225  *
4226  * Return: 0 only if success.
4227  */
ufshcd_send_bsg_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)4228 int ufshcd_send_bsg_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
4229 {
4230 	int ret;
4231 
4232 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
4233 		return 0;
4234 
4235 	ufshcd_hold(hba);
4236 
4237 	if (uic_cmd->argument1 == UIC_ARG_MIB(PA_PWRMODE) &&
4238 	    uic_cmd->command == UIC_CMD_DME_SET) {
4239 		ret = ufshcd_uic_pwr_ctrl(hba, uic_cmd);
4240 		goto out;
4241 	}
4242 
4243 	mutex_lock(&hba->uic_cmd_mutex);
4244 	ufshcd_add_delay_before_dme_cmd(hba);
4245 
4246 	ret = __ufshcd_send_uic_cmd(hba, uic_cmd);
4247 	if (!ret)
4248 		ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
4249 
4250 	mutex_unlock(&hba->uic_cmd_mutex);
4251 
4252 out:
4253 	ufshcd_release(hba);
4254 	return ret;
4255 }
4256 
4257 /**
4258  * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4259  *				using DME_SET primitives.
4260  * @hba: per adapter instance
4261  * @mode: powr mode value
4262  *
4263  * Return: 0 on success, non-zero value on failure.
4264  */
ufshcd_uic_change_pwr_mode(struct ufs_hba * hba,u8 mode)4265 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4266 {
4267 	struct uic_command uic_cmd = {0};
4268 	int ret;
4269 
4270 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4271 		ret = ufshcd_dme_set(hba,
4272 				UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4273 		if (ret) {
4274 			dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4275 						__func__, ret);
4276 			goto out;
4277 		}
4278 	}
4279 
4280 	uic_cmd.command = UIC_CMD_DME_SET;
4281 	uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4282 	uic_cmd.argument3 = mode;
4283 	ufshcd_hold(hba);
4284 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4285 	ufshcd_release(hba);
4286 
4287 out:
4288 	return ret;
4289 }
4290 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4291 
ufshcd_link_recovery(struct ufs_hba * hba)4292 int ufshcd_link_recovery(struct ufs_hba *hba)
4293 {
4294 	int ret;
4295 	unsigned long flags;
4296 
4297 	spin_lock_irqsave(hba->host->host_lock, flags);
4298 	hba->ufshcd_state = UFSHCD_STATE_RESET;
4299 	ufshcd_set_eh_in_progress(hba);
4300 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4301 
4302 	/* Reset the attached device */
4303 	ufshcd_device_reset(hba);
4304 
4305 	ret = ufshcd_host_reset_and_restore(hba);
4306 
4307 	spin_lock_irqsave(hba->host->host_lock, flags);
4308 	if (ret)
4309 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
4310 	ufshcd_clear_eh_in_progress(hba);
4311 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4312 
4313 	if (ret)
4314 		dev_err(hba->dev, "%s: link recovery failed, err %d",
4315 			__func__, ret);
4316 
4317 	return ret;
4318 }
4319 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4320 
ufshcd_uic_hibern8_enter(struct ufs_hba * hba)4321 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4322 {
4323 	int ret;
4324 	struct uic_command uic_cmd = {0};
4325 	ktime_t start = ktime_get();
4326 
4327 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4328 
4329 	uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4330 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4331 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4332 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4333 
4334 	if (ret)
4335 		dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4336 			__func__, ret);
4337 	else
4338 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4339 								POST_CHANGE);
4340 
4341 	return ret;
4342 }
4343 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4344 
ufshcd_uic_hibern8_exit(struct ufs_hba * hba)4345 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4346 {
4347 	struct uic_command uic_cmd = {0};
4348 	int ret;
4349 	ktime_t start = ktime_get();
4350 
4351 	ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4352 
4353 	uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4354 	ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4355 	trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4356 			     ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4357 
4358 	if (ret) {
4359 		dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4360 			__func__, ret);
4361 	} else {
4362 		ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4363 								POST_CHANGE);
4364 		hba->ufs_stats.last_hibern8_exit_tstamp = local_clock();
4365 		hba->ufs_stats.hibern8_exit_cnt++;
4366 	}
4367 
4368 	return ret;
4369 }
4370 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4371 
ufshcd_auto_hibern8_update(struct ufs_hba * hba,u32 ahit)4372 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4373 {
4374 	unsigned long flags;
4375 	bool update = false;
4376 
4377 	if (!ufshcd_is_auto_hibern8_supported(hba))
4378 		return;
4379 
4380 	spin_lock_irqsave(hba->host->host_lock, flags);
4381 	if (hba->ahit != ahit) {
4382 		hba->ahit = ahit;
4383 		update = true;
4384 	}
4385 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4386 
4387 	if (update &&
4388 	    !pm_runtime_suspended(&hba->ufs_device_wlun->sdev_gendev)) {
4389 		ufshcd_rpm_get_sync(hba);
4390 		ufshcd_hold(hba);
4391 		ufshcd_auto_hibern8_enable(hba);
4392 		ufshcd_release(hba);
4393 		ufshcd_rpm_put_sync(hba);
4394 	}
4395 }
4396 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4397 
ufshcd_auto_hibern8_enable(struct ufs_hba * hba)4398 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4399 {
4400 	if (!ufshcd_is_auto_hibern8_supported(hba))
4401 		return;
4402 
4403 	ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4404 }
4405 
4406  /**
4407  * ufshcd_init_pwr_info - setting the POR (power on reset)
4408  * values in hba power info
4409  * @hba: per-adapter instance
4410  */
ufshcd_init_pwr_info(struct ufs_hba * hba)4411 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4412 {
4413 	hba->pwr_info.gear_rx = UFS_PWM_G1;
4414 	hba->pwr_info.gear_tx = UFS_PWM_G1;
4415 	hba->pwr_info.lane_rx = UFS_LANE_1;
4416 	hba->pwr_info.lane_tx = UFS_LANE_1;
4417 	hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4418 	hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4419 	hba->pwr_info.hs_rate = 0;
4420 }
4421 
4422 /**
4423  * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4424  * @hba: per-adapter instance
4425  *
4426  * Return: 0 upon success; < 0 upon failure.
4427  */
ufshcd_get_max_pwr_mode(struct ufs_hba * hba)4428 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4429 {
4430 	struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4431 
4432 	if (hba->max_pwr_info.is_valid)
4433 		return 0;
4434 
4435 	if (hba->quirks & UFSHCD_QUIRK_HIBERN_FASTAUTO) {
4436 		pwr_info->pwr_tx = FASTAUTO_MODE;
4437 		pwr_info->pwr_rx = FASTAUTO_MODE;
4438 	} else {
4439 		pwr_info->pwr_tx = FAST_MODE;
4440 		pwr_info->pwr_rx = FAST_MODE;
4441 	}
4442 	pwr_info->hs_rate = PA_HS_MODE_B;
4443 
4444 	/* Get the connected lane count */
4445 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4446 			&pwr_info->lane_rx);
4447 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4448 			&pwr_info->lane_tx);
4449 
4450 	if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4451 		dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4452 				__func__,
4453 				pwr_info->lane_rx,
4454 				pwr_info->lane_tx);
4455 		return -EINVAL;
4456 	}
4457 
4458 	/*
4459 	 * First, get the maximum gears of HS speed.
4460 	 * If a zero value, it means there is no HSGEAR capability.
4461 	 * Then, get the maximum gears of PWM speed.
4462 	 */
4463 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4464 	if (!pwr_info->gear_rx) {
4465 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4466 				&pwr_info->gear_rx);
4467 		if (!pwr_info->gear_rx) {
4468 			dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4469 				__func__, pwr_info->gear_rx);
4470 			return -EINVAL;
4471 		}
4472 		pwr_info->pwr_rx = SLOW_MODE;
4473 	}
4474 
4475 	ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4476 			&pwr_info->gear_tx);
4477 	if (!pwr_info->gear_tx) {
4478 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4479 				&pwr_info->gear_tx);
4480 		if (!pwr_info->gear_tx) {
4481 			dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4482 				__func__, pwr_info->gear_tx);
4483 			return -EINVAL;
4484 		}
4485 		pwr_info->pwr_tx = SLOW_MODE;
4486 	}
4487 
4488 	hba->max_pwr_info.is_valid = true;
4489 	return 0;
4490 }
4491 
ufshcd_change_power_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * pwr_mode)4492 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4493 			     struct ufs_pa_layer_attr *pwr_mode)
4494 {
4495 	int ret;
4496 
4497 	/* if already configured to the requested pwr_mode */
4498 	if (!hba->force_pmc &&
4499 	    pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4500 	    pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4501 	    pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4502 	    pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4503 	    pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4504 	    pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4505 	    pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4506 		dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4507 		return 0;
4508 	}
4509 
4510 	/*
4511 	 * Configure attributes for power mode change with below.
4512 	 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4513 	 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4514 	 * - PA_HSSERIES
4515 	 */
4516 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4517 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4518 			pwr_mode->lane_rx);
4519 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4520 			pwr_mode->pwr_rx == FAST_MODE)
4521 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), true);
4522 	else
4523 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), false);
4524 
4525 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4526 	ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4527 			pwr_mode->lane_tx);
4528 	if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4529 			pwr_mode->pwr_tx == FAST_MODE)
4530 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), true);
4531 	else
4532 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), false);
4533 
4534 	if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4535 	    pwr_mode->pwr_tx == FASTAUTO_MODE ||
4536 	    pwr_mode->pwr_rx == FAST_MODE ||
4537 	    pwr_mode->pwr_tx == FAST_MODE)
4538 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4539 						pwr_mode->hs_rate);
4540 
4541 	if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4542 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4543 				DL_FC0ProtectionTimeOutVal_Default);
4544 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4545 				DL_TC0ReplayTimeOutVal_Default);
4546 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4547 				DL_AFC0ReqTimeOutVal_Default);
4548 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4549 				DL_FC1ProtectionTimeOutVal_Default);
4550 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4551 				DL_TC1ReplayTimeOutVal_Default);
4552 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4553 				DL_AFC1ReqTimeOutVal_Default);
4554 
4555 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4556 				DL_FC0ProtectionTimeOutVal_Default);
4557 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4558 				DL_TC0ReplayTimeOutVal_Default);
4559 		ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4560 				DL_AFC0ReqTimeOutVal_Default);
4561 	}
4562 
4563 	ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4564 			| pwr_mode->pwr_tx);
4565 
4566 	if (ret) {
4567 		dev_err(hba->dev,
4568 			"%s: power mode change failed %d\n", __func__, ret);
4569 	} else {
4570 		memcpy(&hba->pwr_info, pwr_mode,
4571 			sizeof(struct ufs_pa_layer_attr));
4572 	}
4573 
4574 	return ret;
4575 }
4576 
4577 /**
4578  * ufshcd_config_pwr_mode - configure a new power mode
4579  * @hba: per-adapter instance
4580  * @desired_pwr_mode: desired power configuration
4581  *
4582  * Return: 0 upon success; < 0 upon failure.
4583  */
ufshcd_config_pwr_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * desired_pwr_mode)4584 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4585 		struct ufs_pa_layer_attr *desired_pwr_mode)
4586 {
4587 	struct ufs_pa_layer_attr final_params = { 0 };
4588 	int ret;
4589 
4590 	ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4591 					desired_pwr_mode, &final_params);
4592 
4593 	if (ret)
4594 		memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4595 
4596 	ret = ufshcd_change_power_mode(hba, &final_params);
4597 
4598 	if (!ret)
4599 		ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4600 					&final_params);
4601 
4602 	return ret;
4603 }
4604 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4605 
4606 /**
4607  * ufshcd_complete_dev_init() - checks device readiness
4608  * @hba: per-adapter instance
4609  *
4610  * Set fDeviceInit flag and poll until device toggles it.
4611  *
4612  * Return: 0 upon success; < 0 upon failure.
4613  */
ufshcd_complete_dev_init(struct ufs_hba * hba)4614 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4615 {
4616 	int err;
4617 	bool flag_res = true;
4618 	ktime_t timeout;
4619 
4620 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4621 		QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4622 	if (err) {
4623 		dev_err(hba->dev,
4624 			"%s: setting fDeviceInit flag failed with error %d\n",
4625 			__func__, err);
4626 		goto out;
4627 	}
4628 
4629 	/* Poll fDeviceInit flag to be cleared */
4630 	timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4631 	do {
4632 		err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4633 					QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4634 		if (!flag_res)
4635 			break;
4636 		usleep_range(500, 1000);
4637 	} while (ktime_before(ktime_get(), timeout));
4638 
4639 	if (err) {
4640 		dev_err(hba->dev,
4641 				"%s: reading fDeviceInit flag failed with error %d\n",
4642 				__func__, err);
4643 	} else if (flag_res) {
4644 		dev_err(hba->dev,
4645 				"%s: fDeviceInit was not cleared by the device\n",
4646 				__func__);
4647 		err = -EBUSY;
4648 	}
4649 out:
4650 	return err;
4651 }
4652 
4653 /**
4654  * ufshcd_make_hba_operational - Make UFS controller operational
4655  * @hba: per adapter instance
4656  *
4657  * To bring UFS host controller to operational state,
4658  * 1. Enable required interrupts
4659  * 2. Configure interrupt aggregation
4660  * 3. Program UTRL and UTMRL base address
4661  * 4. Configure run-stop-registers
4662  *
4663  * Return: 0 on success, non-zero value on failure.
4664  */
ufshcd_make_hba_operational(struct ufs_hba * hba)4665 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4666 {
4667 	int err = 0;
4668 	u32 reg;
4669 
4670 	/* Enable required interrupts */
4671 	ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4672 
4673 	/* Configure interrupt aggregation */
4674 	if (ufshcd_is_intr_aggr_allowed(hba))
4675 		ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4676 	else
4677 		ufshcd_disable_intr_aggr(hba);
4678 
4679 	/* Configure UTRL and UTMRL base address registers */
4680 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4681 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4682 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4683 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4684 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4685 			REG_UTP_TASK_REQ_LIST_BASE_L);
4686 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4687 			REG_UTP_TASK_REQ_LIST_BASE_H);
4688 
4689 	/*
4690 	 * Make sure base address and interrupt setup are updated before
4691 	 * enabling the run/stop registers below.
4692 	 */
4693 	wmb();
4694 
4695 	/*
4696 	 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4697 	 */
4698 	reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4699 	if (!(ufshcd_get_lists_status(reg))) {
4700 		ufshcd_enable_run_stop_reg(hba);
4701 	} else {
4702 		dev_err(hba->dev,
4703 			"Host controller not ready to process requests");
4704 		err = -EIO;
4705 	}
4706 
4707 	return err;
4708 }
4709 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4710 
4711 /**
4712  * ufshcd_hba_stop - Send controller to reset state
4713  * @hba: per adapter instance
4714  */
ufshcd_hba_stop(struct ufs_hba * hba)4715 void ufshcd_hba_stop(struct ufs_hba *hba)
4716 {
4717 	unsigned long flags;
4718 	int err;
4719 
4720 	/*
4721 	 * Obtain the host lock to prevent that the controller is disabled
4722 	 * while the UFS interrupt handler is active on another CPU.
4723 	 */
4724 	spin_lock_irqsave(hba->host->host_lock, flags);
4725 	ufshcd_writel(hba, CONTROLLER_DISABLE,  REG_CONTROLLER_ENABLE);
4726 	spin_unlock_irqrestore(hba->host->host_lock, flags);
4727 
4728 	err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4729 					CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4730 					10, 1);
4731 	if (err)
4732 		dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4733 }
4734 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4735 
4736 /**
4737  * ufshcd_hba_execute_hce - initialize the controller
4738  * @hba: per adapter instance
4739  *
4740  * The controller resets itself and controller firmware initialization
4741  * sequence kicks off. When controller is ready it will set
4742  * the Host Controller Enable bit to 1.
4743  *
4744  * Return: 0 on success, non-zero value on failure.
4745  */
ufshcd_hba_execute_hce(struct ufs_hba * hba)4746 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4747 {
4748 	int retry_outer = 3;
4749 	int retry_inner;
4750 
4751 start:
4752 	if (ufshcd_is_hba_active(hba))
4753 		/* change controller state to "reset state" */
4754 		ufshcd_hba_stop(hba);
4755 
4756 	/* UniPro link is disabled at this point */
4757 	ufshcd_set_link_off(hba);
4758 
4759 	ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4760 
4761 	/* start controller initialization sequence */
4762 	ufshcd_hba_start(hba);
4763 
4764 	/*
4765 	 * To initialize a UFS host controller HCE bit must be set to 1.
4766 	 * During initialization the HCE bit value changes from 1->0->1.
4767 	 * When the host controller completes initialization sequence
4768 	 * it sets the value of HCE bit to 1. The same HCE bit is read back
4769 	 * to check if the controller has completed initialization sequence.
4770 	 * So without this delay the value HCE = 1, set in the previous
4771 	 * instruction might be read back.
4772 	 * This delay can be changed based on the controller.
4773 	 */
4774 	ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4775 
4776 	/* wait for the host controller to complete initialization */
4777 	retry_inner = 50;
4778 	while (!ufshcd_is_hba_active(hba)) {
4779 		if (retry_inner) {
4780 			retry_inner--;
4781 		} else {
4782 			dev_err(hba->dev,
4783 				"Controller enable failed\n");
4784 			if (retry_outer) {
4785 				retry_outer--;
4786 				goto start;
4787 			}
4788 			return -EIO;
4789 		}
4790 		usleep_range(1000, 1100);
4791 	}
4792 
4793 	/* enable UIC related interrupts */
4794 	ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4795 
4796 	ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4797 
4798 	return 0;
4799 }
4800 
ufshcd_hba_enable(struct ufs_hba * hba)4801 int ufshcd_hba_enable(struct ufs_hba *hba)
4802 {
4803 	int ret;
4804 
4805 	if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4806 		ufshcd_set_link_off(hba);
4807 		ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4808 
4809 		/* enable UIC related interrupts */
4810 		ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4811 		ret = ufshcd_dme_reset(hba);
4812 		if (ret) {
4813 			dev_err(hba->dev, "DME_RESET failed\n");
4814 			return ret;
4815 		}
4816 
4817 		ret = ufshcd_dme_enable(hba);
4818 		if (ret) {
4819 			dev_err(hba->dev, "Enabling DME failed\n");
4820 			return ret;
4821 		}
4822 
4823 		ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4824 	} else {
4825 		ret = ufshcd_hba_execute_hce(hba);
4826 	}
4827 
4828 	return ret;
4829 }
4830 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4831 
ufshcd_disable_tx_lcc(struct ufs_hba * hba,bool peer)4832 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4833 {
4834 	int tx_lanes = 0, i, err = 0;
4835 
4836 	if (!peer)
4837 		ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4838 			       &tx_lanes);
4839 	else
4840 		ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4841 				    &tx_lanes);
4842 	for (i = 0; i < tx_lanes; i++) {
4843 		if (!peer)
4844 			err = ufshcd_dme_set(hba,
4845 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4846 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4847 					0);
4848 		else
4849 			err = ufshcd_dme_peer_set(hba,
4850 				UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4851 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4852 					0);
4853 		if (err) {
4854 			dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4855 				__func__, peer, i, err);
4856 			break;
4857 		}
4858 	}
4859 
4860 	return err;
4861 }
4862 
ufshcd_disable_device_tx_lcc(struct ufs_hba * hba)4863 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4864 {
4865 	return ufshcd_disable_tx_lcc(hba, true);
4866 }
4867 
ufshcd_update_evt_hist(struct ufs_hba * hba,u32 id,u32 val)4868 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4869 {
4870 	struct ufs_event_hist *e;
4871 
4872 	if (id >= UFS_EVT_CNT)
4873 		return;
4874 
4875 	e = &hba->ufs_stats.event[id];
4876 	e->val[e->pos] = val;
4877 	e->tstamp[e->pos] = local_clock();
4878 	e->cnt += 1;
4879 	e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4880 
4881 	ufshcd_vops_event_notify(hba, id, &val);
4882 }
4883 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4884 
4885 /**
4886  * ufshcd_link_startup - Initialize unipro link startup
4887  * @hba: per adapter instance
4888  *
4889  * Return: 0 for success, non-zero in case of failure.
4890  */
ufshcd_link_startup(struct ufs_hba * hba)4891 static int ufshcd_link_startup(struct ufs_hba *hba)
4892 {
4893 	int ret;
4894 	int retries = DME_LINKSTARTUP_RETRIES;
4895 	bool link_startup_again = false;
4896 
4897 	/*
4898 	 * If UFS device isn't active then we will have to issue link startup
4899 	 * 2 times to make sure the device state move to active.
4900 	 */
4901 	if (!ufshcd_is_ufs_dev_active(hba))
4902 		link_startup_again = true;
4903 
4904 link_startup:
4905 	do {
4906 		ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4907 
4908 		ret = ufshcd_dme_link_startup(hba);
4909 
4910 		/* check if device is detected by inter-connect layer */
4911 		if (!ret && !ufshcd_is_device_present(hba)) {
4912 			ufshcd_update_evt_hist(hba,
4913 					       UFS_EVT_LINK_STARTUP_FAIL,
4914 					       0);
4915 			dev_err(hba->dev, "%s: Device not present\n", __func__);
4916 			ret = -ENXIO;
4917 			goto out;
4918 		}
4919 
4920 		/*
4921 		 * DME link lost indication is only received when link is up,
4922 		 * but we can't be sure if the link is up until link startup
4923 		 * succeeds. So reset the local Uni-Pro and try again.
4924 		 */
4925 		if (ret && retries && ufshcd_hba_enable(hba)) {
4926 			ufshcd_update_evt_hist(hba,
4927 					       UFS_EVT_LINK_STARTUP_FAIL,
4928 					       (u32)ret);
4929 			goto out;
4930 		}
4931 	} while (ret && retries--);
4932 
4933 	if (ret) {
4934 		/* failed to get the link up... retire */
4935 		ufshcd_update_evt_hist(hba,
4936 				       UFS_EVT_LINK_STARTUP_FAIL,
4937 				       (u32)ret);
4938 		goto out;
4939 	}
4940 
4941 	if (link_startup_again) {
4942 		link_startup_again = false;
4943 		retries = DME_LINKSTARTUP_RETRIES;
4944 		goto link_startup;
4945 	}
4946 
4947 	/* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4948 	ufshcd_init_pwr_info(hba);
4949 	ufshcd_print_pwr_info(hba);
4950 
4951 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4952 		ret = ufshcd_disable_device_tx_lcc(hba);
4953 		if (ret)
4954 			goto out;
4955 	}
4956 
4957 	/* Include any host controller configuration via UIC commands */
4958 	ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4959 	if (ret)
4960 		goto out;
4961 
4962 	/* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4963 	ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4964 	ret = ufshcd_make_hba_operational(hba);
4965 out:
4966 	if (ret) {
4967 		dev_err(hba->dev, "link startup failed %d\n", ret);
4968 		ufshcd_print_host_state(hba);
4969 		ufshcd_print_pwr_info(hba);
4970 		ufshcd_print_evt_hist(hba);
4971 	}
4972 	return ret;
4973 }
4974 
4975 /**
4976  * ufshcd_verify_dev_init() - Verify device initialization
4977  * @hba: per-adapter instance
4978  *
4979  * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4980  * device Transport Protocol (UTP) layer is ready after a reset.
4981  * If the UTP layer at the device side is not initialized, it may
4982  * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4983  * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4984  *
4985  * Return: 0 upon success; < 0 upon failure.
4986  */
ufshcd_verify_dev_init(struct ufs_hba * hba)4987 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4988 {
4989 	int err = 0;
4990 	int retries;
4991 
4992 	ufshcd_hold(hba);
4993 	mutex_lock(&hba->dev_cmd.lock);
4994 	for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4995 		err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4996 					  hba->nop_out_timeout);
4997 
4998 		if (!err || err == -ETIMEDOUT)
4999 			break;
5000 
5001 		dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
5002 	}
5003 	mutex_unlock(&hba->dev_cmd.lock);
5004 	ufshcd_release(hba);
5005 
5006 	if (err)
5007 		dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
5008 	return err;
5009 }
5010 
5011 /**
5012  * ufshcd_setup_links - associate link b/w device wlun and other luns
5013  * @sdev: pointer to SCSI device
5014  * @hba: pointer to ufs hba
5015  */
ufshcd_setup_links(struct ufs_hba * hba,struct scsi_device * sdev)5016 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
5017 {
5018 	struct device_link *link;
5019 
5020 	/*
5021 	 * Device wlun is the supplier & rest of the luns are consumers.
5022 	 * This ensures that device wlun suspends after all other luns.
5023 	 */
5024 	if (hba->ufs_device_wlun) {
5025 		link = device_link_add(&sdev->sdev_gendev,
5026 				       &hba->ufs_device_wlun->sdev_gendev,
5027 				       DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
5028 		if (!link) {
5029 			dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
5030 				dev_name(&hba->ufs_device_wlun->sdev_gendev));
5031 			return;
5032 		}
5033 		hba->luns_avail--;
5034 		/* Ignore REPORT_LUN wlun probing */
5035 		if (hba->luns_avail == 1) {
5036 			ufshcd_rpm_put(hba);
5037 			return;
5038 		}
5039 	} else {
5040 		/*
5041 		 * Device wlun is probed. The assumption is that WLUNs are
5042 		 * scanned before other LUNs.
5043 		 */
5044 		hba->luns_avail--;
5045 	}
5046 }
5047 
5048 /**
5049  * ufshcd_lu_init - Initialize the relevant parameters of the LU
5050  * @hba: per-adapter instance
5051  * @sdev: pointer to SCSI device
5052  */
ufshcd_lu_init(struct ufs_hba * hba,struct scsi_device * sdev)5053 static void ufshcd_lu_init(struct ufs_hba *hba, struct scsi_device *sdev)
5054 {
5055 	int len = QUERY_DESC_MAX_SIZE;
5056 	u8 lun = ufshcd_scsi_to_upiu_lun(sdev->lun);
5057 	u8 lun_qdepth = hba->nutrs;
5058 	u8 *desc_buf;
5059 	int ret;
5060 
5061 	desc_buf = kzalloc(len, GFP_KERNEL);
5062 	if (!desc_buf)
5063 		goto set_qdepth;
5064 
5065 	ret = ufshcd_read_unit_desc_param(hba, lun, 0, desc_buf, len);
5066 	if (ret < 0) {
5067 		if (ret == -EOPNOTSUPP)
5068 			/* If LU doesn't support unit descriptor, its queue depth is set to 1 */
5069 			lun_qdepth = 1;
5070 		kfree(desc_buf);
5071 		goto set_qdepth;
5072 	}
5073 
5074 	if (desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH]) {
5075 		/*
5076 		 * In per-LU queueing architecture, bLUQueueDepth will not be 0, then we will
5077 		 * use the smaller between UFSHCI CAP.NUTRS and UFS LU bLUQueueDepth
5078 		 */
5079 		lun_qdepth = min_t(int, desc_buf[UNIT_DESC_PARAM_LU_Q_DEPTH], hba->nutrs);
5080 	}
5081 	/*
5082 	 * According to UFS device specification, the write protection mode is only supported by
5083 	 * normal LU, not supported by WLUN.
5084 	 */
5085 	if (hba->dev_info.f_power_on_wp_en && lun < hba->dev_info.max_lu_supported &&
5086 	    !hba->dev_info.is_lu_power_on_wp &&
5087 	    desc_buf[UNIT_DESC_PARAM_LU_WR_PROTECT] == UFS_LU_POWER_ON_WP)
5088 		hba->dev_info.is_lu_power_on_wp = true;
5089 
5090 	/* In case of RPMB LU, check if advanced RPMB mode is enabled */
5091 	if (desc_buf[UNIT_DESC_PARAM_UNIT_INDEX] == UFS_UPIU_RPMB_WLUN &&
5092 	    desc_buf[RPMB_UNIT_DESC_PARAM_REGION_EN] & BIT(4))
5093 		hba->dev_info.b_advanced_rpmb_en = true;
5094 
5095 
5096 	kfree(desc_buf);
5097 set_qdepth:
5098 	/*
5099 	 * For WLUNs that don't support unit descriptor, queue depth is set to 1. For LUs whose
5100 	 * bLUQueueDepth == 0, the queue depth is set to a maximum value that host can queue.
5101 	 */
5102 	dev_dbg(hba->dev, "Set LU %x queue depth %d\n", lun, lun_qdepth);
5103 	scsi_change_queue_depth(sdev, lun_qdepth);
5104 }
5105 
5106 /**
5107  * ufshcd_slave_alloc - handle initial SCSI device configurations
5108  * @sdev: pointer to SCSI device
5109  *
5110  * Return: success.
5111  */
ufshcd_slave_alloc(struct scsi_device * sdev)5112 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5113 {
5114 	struct ufs_hba *hba;
5115 
5116 	hba = shost_priv(sdev->host);
5117 
5118 	/* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5119 	sdev->use_10_for_ms = 1;
5120 
5121 	/* DBD field should be set to 1 in mode sense(10) */
5122 	sdev->set_dbd_for_ms = 1;
5123 
5124 	/* allow SCSI layer to restart the device in case of errors */
5125 	sdev->allow_restart = 1;
5126 
5127 	/* REPORT SUPPORTED OPERATION CODES is not supported */
5128 	sdev->no_report_opcodes = 1;
5129 
5130 	/* WRITE_SAME command is not supported */
5131 	sdev->no_write_same = 1;
5132 
5133 	ufshcd_lu_init(hba, sdev);
5134 
5135 	ufshcd_setup_links(hba, sdev);
5136 
5137 	return 0;
5138 }
5139 
5140 /**
5141  * ufshcd_change_queue_depth - change queue depth
5142  * @sdev: pointer to SCSI device
5143  * @depth: required depth to set
5144  *
5145  * Change queue depth and make sure the max. limits are not crossed.
5146  *
5147  * Return: new queue depth.
5148  */
ufshcd_change_queue_depth(struct scsi_device * sdev,int depth)5149 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5150 {
5151 	return scsi_change_queue_depth(sdev, min(depth, sdev->host->can_queue));
5152 }
5153 
5154 /**
5155  * ufshcd_slave_configure - adjust SCSI device configurations
5156  * @sdev: pointer to SCSI device
5157  *
5158  * Return: 0 (success).
5159  */
ufshcd_slave_configure(struct scsi_device * sdev)5160 static int ufshcd_slave_configure(struct scsi_device *sdev)
5161 {
5162 	struct ufs_hba *hba = shost_priv(sdev->host);
5163 	struct request_queue *q = sdev->request_queue;
5164 
5165 	blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5166 	if (hba->quirks & UFSHCD_QUIRK_4KB_DMA_ALIGNMENT)
5167 		blk_queue_update_dma_alignment(q, SZ_4K - 1);
5168 	/*
5169 	 * Block runtime-pm until all consumers are added.
5170 	 * Refer ufshcd_setup_links().
5171 	 */
5172 	if (is_device_wlun(sdev))
5173 		pm_runtime_get_noresume(&sdev->sdev_gendev);
5174 	else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5175 		sdev->rpm_autosuspend = 1;
5176 	/*
5177 	 * Do not print messages during runtime PM to avoid never-ending cycles
5178 	 * of messages written back to storage by user space causing runtime
5179 	 * resume, causing more messages and so on.
5180 	 */
5181 	sdev->silence_suspend = 1;
5182 
5183 	ufshcd_crypto_register(hba, q);
5184 
5185 	return 0;
5186 }
5187 
5188 /**
5189  * ufshcd_slave_destroy - remove SCSI device configurations
5190  * @sdev: pointer to SCSI device
5191  */
ufshcd_slave_destroy(struct scsi_device * sdev)5192 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5193 {
5194 	struct ufs_hba *hba;
5195 	unsigned long flags;
5196 
5197 	hba = shost_priv(sdev->host);
5198 
5199 	/* Drop the reference as it won't be needed anymore */
5200 	if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5201 		spin_lock_irqsave(hba->host->host_lock, flags);
5202 		hba->ufs_device_wlun = NULL;
5203 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5204 	} else if (hba->ufs_device_wlun) {
5205 		struct device *supplier = NULL;
5206 
5207 		/* Ensure UFS Device WLUN exists and does not disappear */
5208 		spin_lock_irqsave(hba->host->host_lock, flags);
5209 		if (hba->ufs_device_wlun) {
5210 			supplier = &hba->ufs_device_wlun->sdev_gendev;
5211 			get_device(supplier);
5212 		}
5213 		spin_unlock_irqrestore(hba->host->host_lock, flags);
5214 
5215 		if (supplier) {
5216 			/*
5217 			 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5218 			 * device will not have been registered but can still
5219 			 * have a device link holding a reference to the device.
5220 			 */
5221 			device_link_remove(&sdev->sdev_gendev, supplier);
5222 			put_device(supplier);
5223 		}
5224 	}
5225 }
5226 
5227 /**
5228  * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5229  * @lrbp: pointer to local reference block of completed command
5230  * @scsi_status: SCSI command status
5231  *
5232  * Return: value base on SCSI command status.
5233  */
5234 static inline int
ufshcd_scsi_cmd_status(struct ufshcd_lrb * lrbp,int scsi_status)5235 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5236 {
5237 	int result = 0;
5238 
5239 	switch (scsi_status) {
5240 	case SAM_STAT_CHECK_CONDITION:
5241 		ufshcd_copy_sense_data(lrbp);
5242 		fallthrough;
5243 	case SAM_STAT_GOOD:
5244 		result |= DID_OK << 16 | scsi_status;
5245 		break;
5246 	case SAM_STAT_TASK_SET_FULL:
5247 	case SAM_STAT_BUSY:
5248 	case SAM_STAT_TASK_ABORTED:
5249 		ufshcd_copy_sense_data(lrbp);
5250 		result |= scsi_status;
5251 		break;
5252 	default:
5253 		result |= DID_ERROR << 16;
5254 		break;
5255 	} /* end of switch */
5256 
5257 	return result;
5258 }
5259 
5260 /**
5261  * ufshcd_transfer_rsp_status - Get overall status of the response
5262  * @hba: per adapter instance
5263  * @lrbp: pointer to local reference block of completed command
5264  * @cqe: pointer to the completion queue entry
5265  *
5266  * Return: result of the command to notify SCSI midlayer.
5267  */
5268 static inline int
ufshcd_transfer_rsp_status(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,struct cq_entry * cqe)5269 ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp,
5270 			   struct cq_entry *cqe)
5271 {
5272 	int result = 0;
5273 	int scsi_status;
5274 	enum utp_ocs ocs;
5275 	u8 upiu_flags;
5276 	u32 resid;
5277 
5278 	upiu_flags = lrbp->ucd_rsp_ptr->header.flags;
5279 	resid = be32_to_cpu(lrbp->ucd_rsp_ptr->sr.residual_transfer_count);
5280 	/*
5281 	 * Test !overflow instead of underflow to support UFS devices that do
5282 	 * not set either flag.
5283 	 */
5284 	if (resid && !(upiu_flags & UPIU_RSP_FLAG_OVERFLOW))
5285 		scsi_set_resid(lrbp->cmd, resid);
5286 
5287 	/* overall command status of utrd */
5288 	ocs = ufshcd_get_tr_ocs(lrbp, cqe);
5289 
5290 	if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5291 		if (lrbp->ucd_rsp_ptr->header.response ||
5292 		    lrbp->ucd_rsp_ptr->header.status)
5293 			ocs = OCS_SUCCESS;
5294 	}
5295 
5296 	switch (ocs) {
5297 	case OCS_SUCCESS:
5298 		hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5299 		switch (ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr)) {
5300 		case UPIU_TRANSACTION_RESPONSE:
5301 			/*
5302 			 * get the result based on SCSI status response
5303 			 * to notify the SCSI midlayer of the command status
5304 			 */
5305 			scsi_status = lrbp->ucd_rsp_ptr->header.status;
5306 			result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5307 
5308 			/*
5309 			 * Currently we are only supporting BKOPs exception
5310 			 * events hence we can ignore BKOPs exception event
5311 			 * during power management callbacks. BKOPs exception
5312 			 * event is not expected to be raised in runtime suspend
5313 			 * callback as it allows the urgent bkops.
5314 			 * During system suspend, we are anyway forcefully
5315 			 * disabling the bkops and if urgent bkops is needed
5316 			 * it will be enabled on system resume. Long term
5317 			 * solution could be to abort the system suspend if
5318 			 * UFS device needs urgent BKOPs.
5319 			 */
5320 			if (!hba->pm_op_in_progress &&
5321 			    !ufshcd_eh_in_progress(hba) &&
5322 			    ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5323 				/* Flushed in suspend */
5324 				schedule_work(&hba->eeh_work);
5325 			break;
5326 		case UPIU_TRANSACTION_REJECT_UPIU:
5327 			/* TODO: handle Reject UPIU Response */
5328 			result = DID_ERROR << 16;
5329 			dev_err(hba->dev,
5330 				"Reject UPIU not fully implemented\n");
5331 			break;
5332 		default:
5333 			dev_err(hba->dev,
5334 				"Unexpected request response code = %x\n",
5335 				result);
5336 			result = DID_ERROR << 16;
5337 			break;
5338 		}
5339 		break;
5340 	case OCS_ABORTED:
5341 		result |= DID_ABORT << 16;
5342 		break;
5343 	case OCS_INVALID_COMMAND_STATUS:
5344 		result |= DID_REQUEUE << 16;
5345 		break;
5346 	case OCS_INVALID_CMD_TABLE_ATTR:
5347 	case OCS_INVALID_PRDT_ATTR:
5348 	case OCS_MISMATCH_DATA_BUF_SIZE:
5349 	case OCS_MISMATCH_RESP_UPIU_SIZE:
5350 	case OCS_PEER_COMM_FAILURE:
5351 	case OCS_FATAL_ERROR:
5352 	case OCS_DEVICE_FATAL_ERROR:
5353 	case OCS_INVALID_CRYPTO_CONFIG:
5354 	case OCS_GENERAL_CRYPTO_ERROR:
5355 	default:
5356 		result |= DID_ERROR << 16;
5357 		dev_err(hba->dev,
5358 				"OCS error from controller = %x for tag %d\n",
5359 				ocs, lrbp->task_tag);
5360 		ufshcd_print_evt_hist(hba);
5361 		ufshcd_print_host_state(hba);
5362 		break;
5363 	} /* end of switch */
5364 
5365 	if ((host_byte(result) != DID_OK) &&
5366 	    (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5367 		ufshcd_print_tr(hba, lrbp->task_tag, true);
5368 	return result;
5369 }
5370 
ufshcd_is_auto_hibern8_error(struct ufs_hba * hba,u32 intr_mask)5371 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5372 					 u32 intr_mask)
5373 {
5374 	if (!ufshcd_is_auto_hibern8_supported(hba) ||
5375 	    !ufshcd_is_auto_hibern8_enabled(hba))
5376 		return false;
5377 
5378 	if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5379 		return false;
5380 
5381 	if (hba->active_uic_cmd &&
5382 	    (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5383 	    hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5384 		return false;
5385 
5386 	return true;
5387 }
5388 
5389 /**
5390  * ufshcd_uic_cmd_compl - handle completion of uic command
5391  * @hba: per adapter instance
5392  * @intr_status: interrupt status generated by the controller
5393  *
5394  * Return:
5395  *  IRQ_HANDLED - If interrupt is valid
5396  *  IRQ_NONE    - If invalid interrupt
5397  */
ufshcd_uic_cmd_compl(struct ufs_hba * hba,u32 intr_status)5398 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5399 {
5400 	irqreturn_t retval = IRQ_NONE;
5401 
5402 	spin_lock(hba->host->host_lock);
5403 	if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5404 		hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5405 
5406 	if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5407 		hba->active_uic_cmd->argument2 |=
5408 			ufshcd_get_uic_cmd_result(hba);
5409 		hba->active_uic_cmd->argument3 =
5410 			ufshcd_get_dme_attr_val(hba);
5411 		if (!hba->uic_async_done)
5412 			hba->active_uic_cmd->cmd_active = 0;
5413 		complete(&hba->active_uic_cmd->done);
5414 		retval = IRQ_HANDLED;
5415 	}
5416 
5417 	if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5418 		hba->active_uic_cmd->cmd_active = 0;
5419 		complete(hba->uic_async_done);
5420 		retval = IRQ_HANDLED;
5421 	}
5422 
5423 	if (retval == IRQ_HANDLED)
5424 		ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5425 					     UFS_CMD_COMP);
5426 	spin_unlock(hba->host->host_lock);
5427 	return retval;
5428 }
5429 
5430 /* Release the resources allocated for processing a SCSI command. */
ufshcd_release_scsi_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)5431 void ufshcd_release_scsi_cmd(struct ufs_hba *hba,
5432 			     struct ufshcd_lrb *lrbp)
5433 {
5434 	struct scsi_cmnd *cmd = lrbp->cmd;
5435 
5436 	scsi_dma_unmap(cmd);
5437 	ufshcd_release(hba);
5438 	ufshcd_clk_scaling_update_busy(hba);
5439 }
5440 
5441 /**
5442  * ufshcd_compl_one_cqe - handle a completion queue entry
5443  * @hba: per adapter instance
5444  * @task_tag: the task tag of the request to be completed
5445  * @cqe: pointer to the completion queue entry
5446  */
ufshcd_compl_one_cqe(struct ufs_hba * hba,int task_tag,struct cq_entry * cqe)5447 void ufshcd_compl_one_cqe(struct ufs_hba *hba, int task_tag,
5448 			  struct cq_entry *cqe)
5449 {
5450 	struct ufshcd_lrb *lrbp;
5451 	struct scsi_cmnd *cmd;
5452 	enum utp_ocs ocs;
5453 
5454 	lrbp = &hba->lrb[task_tag];
5455 	lrbp->compl_time_stamp = ktime_get();
5456 	lrbp->compl_time_stamp_local_clock = local_clock();
5457 	cmd = lrbp->cmd;
5458 	if (cmd) {
5459 		if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5460 			ufshcd_update_monitor(hba, lrbp);
5461 		ufshcd_add_command_trace(hba, task_tag, UFS_CMD_COMP);
5462 		cmd->result = ufshcd_transfer_rsp_status(hba, lrbp, cqe);
5463 		ufshcd_release_scsi_cmd(hba, lrbp);
5464 		/* Do not touch lrbp after scsi done */
5465 		scsi_done(cmd);
5466 	} else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5467 		   lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5468 		if (hba->dev_cmd.complete) {
5469 			if (cqe) {
5470 				ocs = le32_to_cpu(cqe->status) & MASK_OCS;
5471 				lrbp->utr_descriptor_ptr->header.ocs = ocs;
5472 			}
5473 			complete(hba->dev_cmd.complete);
5474 			ufshcd_clk_scaling_update_busy(hba);
5475 		}
5476 	}
5477 }
5478 
5479 /**
5480  * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5481  * @hba: per adapter instance
5482  * @completed_reqs: bitmask that indicates which requests to complete
5483  */
__ufshcd_transfer_req_compl(struct ufs_hba * hba,unsigned long completed_reqs)5484 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5485 					unsigned long completed_reqs)
5486 {
5487 	int tag;
5488 
5489 	for_each_set_bit(tag, &completed_reqs, hba->nutrs)
5490 		ufshcd_compl_one_cqe(hba, tag, NULL);
5491 }
5492 
5493 /* Any value that is not an existing queue number is fine for this constant. */
5494 enum {
5495 	UFSHCD_POLL_FROM_INTERRUPT_CONTEXT = -1
5496 };
5497 
ufshcd_clear_polled(struct ufs_hba * hba,unsigned long * completed_reqs)5498 static void ufshcd_clear_polled(struct ufs_hba *hba,
5499 				unsigned long *completed_reqs)
5500 {
5501 	int tag;
5502 
5503 	for_each_set_bit(tag, completed_reqs, hba->nutrs) {
5504 		struct scsi_cmnd *cmd = hba->lrb[tag].cmd;
5505 
5506 		if (!cmd)
5507 			continue;
5508 		if (scsi_cmd_to_rq(cmd)->cmd_flags & REQ_POLLED)
5509 			__clear_bit(tag, completed_reqs);
5510 	}
5511 }
5512 
5513 /*
5514  * Return: > 0 if one or more commands have been completed or 0 if no
5515  * requests have been completed.
5516  */
ufshcd_poll(struct Scsi_Host * shost,unsigned int queue_num)5517 static int ufshcd_poll(struct Scsi_Host *shost, unsigned int queue_num)
5518 {
5519 	struct ufs_hba *hba = shost_priv(shost);
5520 	unsigned long completed_reqs, flags;
5521 	u32 tr_doorbell;
5522 	struct ufs_hw_queue *hwq;
5523 
5524 	if (is_mcq_enabled(hba)) {
5525 		hwq = &hba->uhq[queue_num];
5526 
5527 		return ufshcd_mcq_poll_cqe_lock(hba, hwq);
5528 	}
5529 
5530 	spin_lock_irqsave(&hba->outstanding_lock, flags);
5531 	tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5532 	completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5533 	WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5534 		  "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5535 		  hba->outstanding_reqs);
5536 	if (queue_num == UFSHCD_POLL_FROM_INTERRUPT_CONTEXT) {
5537 		/* Do not complete polled requests from interrupt context. */
5538 		ufshcd_clear_polled(hba, &completed_reqs);
5539 	}
5540 	hba->outstanding_reqs &= ~completed_reqs;
5541 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5542 
5543 	if (completed_reqs)
5544 		__ufshcd_transfer_req_compl(hba, completed_reqs);
5545 
5546 	return completed_reqs != 0;
5547 }
5548 
5549 /**
5550  * ufshcd_mcq_compl_pending_transfer - MCQ mode function. It is
5551  * invoked from the error handler context or ufshcd_host_reset_and_restore()
5552  * to complete the pending transfers and free the resources associated with
5553  * the scsi command.
5554  *
5555  * @hba: per adapter instance
5556  * @force_compl: This flag is set to true when invoked
5557  * from ufshcd_host_reset_and_restore() in which case it requires special
5558  * handling because the host controller has been reset by ufshcd_hba_stop().
5559  */
ufshcd_mcq_compl_pending_transfer(struct ufs_hba * hba,bool force_compl)5560 static void ufshcd_mcq_compl_pending_transfer(struct ufs_hba *hba,
5561 					      bool force_compl)
5562 {
5563 	struct ufs_hw_queue *hwq;
5564 	struct ufshcd_lrb *lrbp;
5565 	struct scsi_cmnd *cmd;
5566 	unsigned long flags;
5567 	u32 hwq_num, utag;
5568 	int tag;
5569 
5570 	for (tag = 0; tag < hba->nutrs; tag++) {
5571 		lrbp = &hba->lrb[tag];
5572 		cmd = lrbp->cmd;
5573 		if (!ufshcd_cmd_inflight(cmd) ||
5574 		    test_bit(SCMD_STATE_COMPLETE, &cmd->state))
5575 			continue;
5576 
5577 		utag = blk_mq_unique_tag(scsi_cmd_to_rq(cmd));
5578 		hwq_num = blk_mq_unique_tag_to_hwq(utag);
5579 		hwq = &hba->uhq[hwq_num];
5580 
5581 		if (force_compl) {
5582 			ufshcd_mcq_compl_all_cqes_lock(hba, hwq);
5583 			/*
5584 			 * For those cmds of which the cqes are not present
5585 			 * in the cq, complete them explicitly.
5586 			 */
5587 			if (cmd && !test_bit(SCMD_STATE_COMPLETE, &cmd->state)) {
5588 				spin_lock_irqsave(&hwq->cq_lock, flags);
5589 				set_host_byte(cmd, DID_REQUEUE);
5590 				ufshcd_release_scsi_cmd(hba, lrbp);
5591 				scsi_done(cmd);
5592 				spin_unlock_irqrestore(&hwq->cq_lock, flags);
5593 			}
5594 		} else {
5595 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
5596 		}
5597 	}
5598 }
5599 
5600 /**
5601  * ufshcd_transfer_req_compl - handle SCSI and query command completion
5602  * @hba: per adapter instance
5603  *
5604  * Return:
5605  *  IRQ_HANDLED - If interrupt is valid
5606  *  IRQ_NONE    - If invalid interrupt
5607  */
ufshcd_transfer_req_compl(struct ufs_hba * hba)5608 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba)
5609 {
5610 	/* Resetting interrupt aggregation counters first and reading the
5611 	 * DOOR_BELL afterward allows us to handle all the completed requests.
5612 	 * In order to prevent other interrupts starvation the DB is read once
5613 	 * after reset. The down side of this solution is the possibility of
5614 	 * false interrupt if device completes another request after resetting
5615 	 * aggregation and before reading the DB.
5616 	 */
5617 	if (ufshcd_is_intr_aggr_allowed(hba) &&
5618 	    !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5619 		ufshcd_reset_intr_aggr(hba);
5620 
5621 	if (ufs_fail_completion())
5622 		return IRQ_HANDLED;
5623 
5624 	/*
5625 	 * Ignore the ufshcd_poll() return value and return IRQ_HANDLED since we
5626 	 * do not want polling to trigger spurious interrupt complaints.
5627 	 */
5628 	ufshcd_poll(hba->host, UFSHCD_POLL_FROM_INTERRUPT_CONTEXT);
5629 
5630 	return IRQ_HANDLED;
5631 }
5632 
__ufshcd_write_ee_control(struct ufs_hba * hba,u32 ee_ctrl_mask)5633 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5634 {
5635 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5636 				       QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5637 				       &ee_ctrl_mask);
5638 }
5639 
ufshcd_write_ee_control(struct ufs_hba * hba)5640 int ufshcd_write_ee_control(struct ufs_hba *hba)
5641 {
5642 	int err;
5643 
5644 	mutex_lock(&hba->ee_ctrl_mutex);
5645 	err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5646 	mutex_unlock(&hba->ee_ctrl_mutex);
5647 	if (err)
5648 		dev_err(hba->dev, "%s: failed to write ee control %d\n",
5649 			__func__, err);
5650 	return err;
5651 }
5652 
ufshcd_update_ee_control(struct ufs_hba * hba,u16 * mask,const u16 * other_mask,u16 set,u16 clr)5653 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask,
5654 			     const u16 *other_mask, u16 set, u16 clr)
5655 {
5656 	u16 new_mask, ee_ctrl_mask;
5657 	int err = 0;
5658 
5659 	mutex_lock(&hba->ee_ctrl_mutex);
5660 	new_mask = (*mask & ~clr) | set;
5661 	ee_ctrl_mask = new_mask | *other_mask;
5662 	if (ee_ctrl_mask != hba->ee_ctrl_mask)
5663 		err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5664 	/* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5665 	if (!err) {
5666 		hba->ee_ctrl_mask = ee_ctrl_mask;
5667 		*mask = new_mask;
5668 	}
5669 	mutex_unlock(&hba->ee_ctrl_mutex);
5670 	return err;
5671 }
5672 
5673 /**
5674  * ufshcd_disable_ee - disable exception event
5675  * @hba: per-adapter instance
5676  * @mask: exception event to disable
5677  *
5678  * Disables exception event in the device so that the EVENT_ALERT
5679  * bit is not set.
5680  *
5681  * Return: zero on success, non-zero error value on failure.
5682  */
ufshcd_disable_ee(struct ufs_hba * hba,u16 mask)5683 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5684 {
5685 	return ufshcd_update_ee_drv_mask(hba, 0, mask);
5686 }
5687 
5688 /**
5689  * ufshcd_enable_ee - enable exception event
5690  * @hba: per-adapter instance
5691  * @mask: exception event to enable
5692  *
5693  * Enable corresponding exception event in the device to allow
5694  * device to alert host in critical scenarios.
5695  *
5696  * Return: zero on success, non-zero error value on failure.
5697  */
ufshcd_enable_ee(struct ufs_hba * hba,u16 mask)5698 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5699 {
5700 	return ufshcd_update_ee_drv_mask(hba, mask, 0);
5701 }
5702 
5703 /**
5704  * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5705  * @hba: per-adapter instance
5706  *
5707  * Allow device to manage background operations on its own. Enabling
5708  * this might lead to inconsistent latencies during normal data transfers
5709  * as the device is allowed to manage its own way of handling background
5710  * operations.
5711  *
5712  * Return: zero on success, non-zero on failure.
5713  */
ufshcd_enable_auto_bkops(struct ufs_hba * hba)5714 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5715 {
5716 	int err = 0;
5717 
5718 	if (hba->auto_bkops_enabled)
5719 		goto out;
5720 
5721 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5722 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5723 	if (err) {
5724 		dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5725 				__func__, err);
5726 		goto out;
5727 	}
5728 
5729 	hba->auto_bkops_enabled = true;
5730 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5731 
5732 	/* No need of URGENT_BKOPS exception from the device */
5733 	err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5734 	if (err)
5735 		dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5736 				__func__, err);
5737 out:
5738 	return err;
5739 }
5740 
5741 /**
5742  * ufshcd_disable_auto_bkops - block device in doing background operations
5743  * @hba: per-adapter instance
5744  *
5745  * Disabling background operations improves command response latency but
5746  * has drawback of device moving into critical state where the device is
5747  * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5748  * host is idle so that BKOPS are managed effectively without any negative
5749  * impacts.
5750  *
5751  * Return: zero on success, non-zero on failure.
5752  */
ufshcd_disable_auto_bkops(struct ufs_hba * hba)5753 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5754 {
5755 	int err = 0;
5756 
5757 	if (!hba->auto_bkops_enabled)
5758 		goto out;
5759 
5760 	/*
5761 	 * If host assisted BKOPs is to be enabled, make sure
5762 	 * urgent bkops exception is allowed.
5763 	 */
5764 	err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5765 	if (err) {
5766 		dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5767 				__func__, err);
5768 		goto out;
5769 	}
5770 
5771 	err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5772 			QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5773 	if (err) {
5774 		dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5775 				__func__, err);
5776 		ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5777 		goto out;
5778 	}
5779 
5780 	hba->auto_bkops_enabled = false;
5781 	trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5782 	hba->is_urgent_bkops_lvl_checked = false;
5783 out:
5784 	return err;
5785 }
5786 
5787 /**
5788  * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5789  * @hba: per adapter instance
5790  *
5791  * After a device reset the device may toggle the BKOPS_EN flag
5792  * to default value. The s/w tracking variables should be updated
5793  * as well. This function would change the auto-bkops state based on
5794  * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5795  */
ufshcd_force_reset_auto_bkops(struct ufs_hba * hba)5796 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5797 {
5798 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5799 		hba->auto_bkops_enabled = false;
5800 		hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5801 		ufshcd_enable_auto_bkops(hba);
5802 	} else {
5803 		hba->auto_bkops_enabled = true;
5804 		hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5805 		ufshcd_disable_auto_bkops(hba);
5806 	}
5807 	hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5808 	hba->is_urgent_bkops_lvl_checked = false;
5809 }
5810 
ufshcd_get_bkops_status(struct ufs_hba * hba,u32 * status)5811 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5812 {
5813 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5814 			QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5815 }
5816 
5817 /**
5818  * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5819  * @hba: per-adapter instance
5820  * @status: bkops_status value
5821  *
5822  * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5823  * flag in the device to permit background operations if the device
5824  * bkops_status is greater than or equal to "status" argument passed to
5825  * this function, disable otherwise.
5826  *
5827  * Return: 0 for success, non-zero in case of failure.
5828  *
5829  * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5830  * to know whether auto bkops is enabled or disabled after this function
5831  * returns control to it.
5832  */
ufshcd_bkops_ctrl(struct ufs_hba * hba,enum bkops_status status)5833 static int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5834 			     enum bkops_status status)
5835 {
5836 	int err;
5837 	u32 curr_status = 0;
5838 
5839 	err = ufshcd_get_bkops_status(hba, &curr_status);
5840 	if (err) {
5841 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5842 				__func__, err);
5843 		goto out;
5844 	} else if (curr_status > BKOPS_STATUS_MAX) {
5845 		dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5846 				__func__, curr_status);
5847 		err = -EINVAL;
5848 		goto out;
5849 	}
5850 
5851 	if (curr_status >= status)
5852 		err = ufshcd_enable_auto_bkops(hba);
5853 	else
5854 		err = ufshcd_disable_auto_bkops(hba);
5855 out:
5856 	return err;
5857 }
5858 
5859 /**
5860  * ufshcd_urgent_bkops - handle urgent bkops exception event
5861  * @hba: per-adapter instance
5862  *
5863  * Enable fBackgroundOpsEn flag in the device to permit background
5864  * operations.
5865  *
5866  * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5867  * and negative error value for any other failure.
5868  *
5869  * Return: 0 upon success; < 0 upon failure.
5870  */
ufshcd_urgent_bkops(struct ufs_hba * hba)5871 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5872 {
5873 	return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5874 }
5875 
ufshcd_get_ee_status(struct ufs_hba * hba,u32 * status)5876 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5877 {
5878 	return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5879 			QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5880 }
5881 
ufshcd_bkops_exception_event_handler(struct ufs_hba * hba)5882 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5883 {
5884 	int err;
5885 	u32 curr_status = 0;
5886 
5887 	if (hba->is_urgent_bkops_lvl_checked)
5888 		goto enable_auto_bkops;
5889 
5890 	err = ufshcd_get_bkops_status(hba, &curr_status);
5891 	if (err) {
5892 		dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5893 				__func__, err);
5894 		goto out;
5895 	}
5896 
5897 	/*
5898 	 * We are seeing that some devices are raising the urgent bkops
5899 	 * exception events even when BKOPS status doesn't indicate performace
5900 	 * impacted or critical. Handle these device by determining their urgent
5901 	 * bkops status at runtime.
5902 	 */
5903 	if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5904 		dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5905 				__func__, curr_status);
5906 		/* update the current status as the urgent bkops level */
5907 		hba->urgent_bkops_lvl = curr_status;
5908 		hba->is_urgent_bkops_lvl_checked = true;
5909 	}
5910 
5911 enable_auto_bkops:
5912 	err = ufshcd_enable_auto_bkops(hba);
5913 out:
5914 	if (err < 0)
5915 		dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5916 				__func__, err);
5917 }
5918 
ufshcd_temp_exception_event_handler(struct ufs_hba * hba,u16 status)5919 static void ufshcd_temp_exception_event_handler(struct ufs_hba *hba, u16 status)
5920 {
5921 	u32 value;
5922 
5923 	if (ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5924 				QUERY_ATTR_IDN_CASE_ROUGH_TEMP, 0, 0, &value))
5925 		return;
5926 
5927 	dev_info(hba->dev, "exception Tcase %d\n", value - 80);
5928 
5929 	ufs_hwmon_notify_event(hba, status & MASK_EE_URGENT_TEMP);
5930 
5931 	/*
5932 	 * A placeholder for the platform vendors to add whatever additional
5933 	 * steps required
5934 	 */
5935 }
5936 
__ufshcd_wb_toggle(struct ufs_hba * hba,bool set,enum flag_idn idn)5937 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5938 {
5939 	u8 index;
5940 	enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5941 				   UPIU_QUERY_OPCODE_CLEAR_FLAG;
5942 
5943 	index = ufshcd_wb_get_query_index(hba);
5944 	return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5945 }
5946 
ufshcd_wb_toggle(struct ufs_hba * hba,bool enable)5947 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5948 {
5949 	int ret;
5950 
5951 	if (!ufshcd_is_wb_allowed(hba) ||
5952 	    hba->dev_info.wb_enabled == enable)
5953 		return 0;
5954 
5955 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5956 	if (ret) {
5957 		dev_err(hba->dev, "%s: Write Booster %s failed %d\n",
5958 			__func__, enable ? "enabling" : "disabling", ret);
5959 		return ret;
5960 	}
5961 
5962 	hba->dev_info.wb_enabled = enable;
5963 	dev_dbg(hba->dev, "%s: Write Booster %s\n",
5964 			__func__, enable ? "enabled" : "disabled");
5965 
5966 	return ret;
5967 }
5968 
ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba * hba,bool enable)5969 static void ufshcd_wb_toggle_buf_flush_during_h8(struct ufs_hba *hba,
5970 						 bool enable)
5971 {
5972 	int ret;
5973 
5974 	ret = __ufshcd_wb_toggle(hba, enable,
5975 			QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
5976 	if (ret) {
5977 		dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed %d\n",
5978 			__func__, enable ? "enabling" : "disabling", ret);
5979 		return;
5980 	}
5981 	dev_dbg(hba->dev, "%s: WB-Buf Flush during H8 %s\n",
5982 			__func__, enable ? "enabled" : "disabled");
5983 }
5984 
ufshcd_wb_toggle_buf_flush(struct ufs_hba * hba,bool enable)5985 int ufshcd_wb_toggle_buf_flush(struct ufs_hba *hba, bool enable)
5986 {
5987 	int ret;
5988 
5989 	if (!ufshcd_is_wb_allowed(hba) ||
5990 	    hba->dev_info.wb_buf_flush_enabled == enable)
5991 		return 0;
5992 
5993 	ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
5994 	if (ret) {
5995 		dev_err(hba->dev, "%s: WB-Buf Flush %s failed %d\n",
5996 			__func__, enable ? "enabling" : "disabling", ret);
5997 		return ret;
5998 	}
5999 
6000 	hba->dev_info.wb_buf_flush_enabled = enable;
6001 	dev_dbg(hba->dev, "%s: WB-Buf Flush %s\n",
6002 			__func__, enable ? "enabled" : "disabled");
6003 
6004 	return ret;
6005 }
6006 
ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba * hba,u32 avail_buf)6007 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
6008 						u32 avail_buf)
6009 {
6010 	u32 cur_buf;
6011 	int ret;
6012 	u8 index;
6013 
6014 	index = ufshcd_wb_get_query_index(hba);
6015 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6016 					      QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
6017 					      index, 0, &cur_buf);
6018 	if (ret) {
6019 		dev_err(hba->dev, "%s: dCurWriteBoosterBufferSize read failed %d\n",
6020 			__func__, ret);
6021 		return false;
6022 	}
6023 
6024 	if (!cur_buf) {
6025 		dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
6026 			 cur_buf);
6027 		return false;
6028 	}
6029 	/* Let it continue to flush when available buffer exceeds threshold */
6030 	return avail_buf < hba->vps->wb_flush_threshold;
6031 }
6032 
ufshcd_wb_force_disable(struct ufs_hba * hba)6033 static void ufshcd_wb_force_disable(struct ufs_hba *hba)
6034 {
6035 	if (ufshcd_is_wb_buf_flush_allowed(hba))
6036 		ufshcd_wb_toggle_buf_flush(hba, false);
6037 
6038 	ufshcd_wb_toggle_buf_flush_during_h8(hba, false);
6039 	ufshcd_wb_toggle(hba, false);
6040 	hba->caps &= ~UFSHCD_CAP_WB_EN;
6041 
6042 	dev_info(hba->dev, "%s: WB force disabled\n", __func__);
6043 }
6044 
ufshcd_is_wb_buf_lifetime_available(struct ufs_hba * hba)6045 static bool ufshcd_is_wb_buf_lifetime_available(struct ufs_hba *hba)
6046 {
6047 	u32 lifetime;
6048 	int ret;
6049 	u8 index;
6050 
6051 	index = ufshcd_wb_get_query_index(hba);
6052 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6053 				      QUERY_ATTR_IDN_WB_BUFF_LIFE_TIME_EST,
6054 				      index, 0, &lifetime);
6055 	if (ret) {
6056 		dev_err(hba->dev,
6057 			"%s: bWriteBoosterBufferLifeTimeEst read failed %d\n",
6058 			__func__, ret);
6059 		return false;
6060 	}
6061 
6062 	if (lifetime == UFS_WB_EXCEED_LIFETIME) {
6063 		dev_err(hba->dev, "%s: WB buf lifetime is exhausted 0x%02X\n",
6064 			__func__, lifetime);
6065 		return false;
6066 	}
6067 
6068 	dev_dbg(hba->dev, "%s: WB buf lifetime is 0x%02X\n",
6069 		__func__, lifetime);
6070 
6071 	return true;
6072 }
6073 
ufshcd_wb_need_flush(struct ufs_hba * hba)6074 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
6075 {
6076 	int ret;
6077 	u32 avail_buf;
6078 	u8 index;
6079 
6080 	if (!ufshcd_is_wb_allowed(hba))
6081 		return false;
6082 
6083 	if (!ufshcd_is_wb_buf_lifetime_available(hba)) {
6084 		ufshcd_wb_force_disable(hba);
6085 		return false;
6086 	}
6087 
6088 	/*
6089 	 * The ufs device needs the vcc to be ON to flush.
6090 	 * With user-space reduction enabled, it's enough to enable flush
6091 	 * by checking only the available buffer. The threshold
6092 	 * defined here is > 90% full.
6093 	 * With user-space preserved enabled, the current-buffer
6094 	 * should be checked too because the wb buffer size can reduce
6095 	 * when disk tends to be full. This info is provided by current
6096 	 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
6097 	 * keeping vcc on when current buffer is empty.
6098 	 */
6099 	index = ufshcd_wb_get_query_index(hba);
6100 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
6101 				      QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
6102 				      index, 0, &avail_buf);
6103 	if (ret) {
6104 		dev_warn(hba->dev, "%s: dAvailableWriteBoosterBufferSize read failed %d\n",
6105 			 __func__, ret);
6106 		return false;
6107 	}
6108 
6109 	if (!hba->dev_info.b_presrv_uspc_en)
6110 		return avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10);
6111 
6112 	return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
6113 }
6114 
ufshcd_rpm_dev_flush_recheck_work(struct work_struct * work)6115 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
6116 {
6117 	struct ufs_hba *hba = container_of(to_delayed_work(work),
6118 					   struct ufs_hba,
6119 					   rpm_dev_flush_recheck_work);
6120 	/*
6121 	 * To prevent unnecessary VCC power drain after device finishes
6122 	 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
6123 	 * after a certain delay to recheck the threshold by next runtime
6124 	 * suspend.
6125 	 */
6126 	ufshcd_rpm_get_sync(hba);
6127 	ufshcd_rpm_put_sync(hba);
6128 }
6129 
6130 /**
6131  * ufshcd_exception_event_handler - handle exceptions raised by device
6132  * @work: pointer to work data
6133  *
6134  * Read bExceptionEventStatus attribute from the device and handle the
6135  * exception event accordingly.
6136  */
ufshcd_exception_event_handler(struct work_struct * work)6137 static void ufshcd_exception_event_handler(struct work_struct *work)
6138 {
6139 	struct ufs_hba *hba;
6140 	int err;
6141 	u32 status = 0;
6142 	hba = container_of(work, struct ufs_hba, eeh_work);
6143 
6144 	ufshcd_scsi_block_requests(hba);
6145 	err = ufshcd_get_ee_status(hba, &status);
6146 	if (err) {
6147 		dev_err(hba->dev, "%s: failed to get exception status %d\n",
6148 				__func__, err);
6149 		goto out;
6150 	}
6151 
6152 	trace_ufshcd_exception_event(dev_name(hba->dev), status);
6153 
6154 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
6155 		ufshcd_bkops_exception_event_handler(hba);
6156 
6157 	if (status & hba->ee_drv_mask & MASK_EE_URGENT_TEMP)
6158 		ufshcd_temp_exception_event_handler(hba, status);
6159 
6160 	ufs_debugfs_exception_event(hba, status);
6161 out:
6162 	ufshcd_scsi_unblock_requests(hba);
6163 }
6164 
6165 /* Complete requests that have door-bell cleared */
ufshcd_complete_requests(struct ufs_hba * hba,bool force_compl)6166 static void ufshcd_complete_requests(struct ufs_hba *hba, bool force_compl)
6167 {
6168 	if (is_mcq_enabled(hba))
6169 		ufshcd_mcq_compl_pending_transfer(hba, force_compl);
6170 	else
6171 		ufshcd_transfer_req_compl(hba);
6172 
6173 	ufshcd_tmc_handler(hba);
6174 }
6175 
6176 /**
6177  * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
6178  *				to recover from the DL NAC errors or not.
6179  * @hba: per-adapter instance
6180  *
6181  * Return: true if error handling is required, false otherwise.
6182  */
ufshcd_quirk_dl_nac_errors(struct ufs_hba * hba)6183 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
6184 {
6185 	unsigned long flags;
6186 	bool err_handling = true;
6187 
6188 	spin_lock_irqsave(hba->host->host_lock, flags);
6189 	/*
6190 	 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
6191 	 * device fatal error and/or DL NAC & REPLAY timeout errors.
6192 	 */
6193 	if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
6194 		goto out;
6195 
6196 	if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
6197 	    ((hba->saved_err & UIC_ERROR) &&
6198 	     (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
6199 		goto out;
6200 
6201 	if ((hba->saved_err & UIC_ERROR) &&
6202 	    (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
6203 		int err;
6204 		/*
6205 		 * wait for 50ms to see if we can get any other errors or not.
6206 		 */
6207 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6208 		msleep(50);
6209 		spin_lock_irqsave(hba->host->host_lock, flags);
6210 
6211 		/*
6212 		 * now check if we have got any other severe errors other than
6213 		 * DL NAC error?
6214 		 */
6215 		if ((hba->saved_err & INT_FATAL_ERRORS) ||
6216 		    ((hba->saved_err & UIC_ERROR) &&
6217 		    (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
6218 			goto out;
6219 
6220 		/*
6221 		 * As DL NAC is the only error received so far, send out NOP
6222 		 * command to confirm if link is still active or not.
6223 		 *   - If we don't get any response then do error recovery.
6224 		 *   - If we get response then clear the DL NAC error bit.
6225 		 */
6226 
6227 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6228 		err = ufshcd_verify_dev_init(hba);
6229 		spin_lock_irqsave(hba->host->host_lock, flags);
6230 
6231 		if (err)
6232 			goto out;
6233 
6234 		/* Link seems to be alive hence ignore the DL NAC errors */
6235 		if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
6236 			hba->saved_err &= ~UIC_ERROR;
6237 		/* clear NAC error */
6238 		hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6239 		if (!hba->saved_uic_err)
6240 			err_handling = false;
6241 	}
6242 out:
6243 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6244 	return err_handling;
6245 }
6246 
6247 /* host lock must be held before calling this func */
ufshcd_is_saved_err_fatal(struct ufs_hba * hba)6248 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6249 {
6250 	return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6251 	       (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6252 }
6253 
ufshcd_schedule_eh_work(struct ufs_hba * hba)6254 void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6255 {
6256 	lockdep_assert_held(hba->host->host_lock);
6257 
6258 	/* handle fatal errors only when link is not in error state */
6259 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6260 		if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6261 		    ufshcd_is_saved_err_fatal(hba))
6262 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6263 		else
6264 			hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6265 		queue_work(hba->eh_wq, &hba->eh_work);
6266 	}
6267 }
6268 
ufshcd_force_error_recovery(struct ufs_hba * hba)6269 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6270 {
6271 	spin_lock_irq(hba->host->host_lock);
6272 	hba->force_reset = true;
6273 	ufshcd_schedule_eh_work(hba);
6274 	spin_unlock_irq(hba->host->host_lock);
6275 }
6276 
ufshcd_clk_scaling_allow(struct ufs_hba * hba,bool allow)6277 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6278 {
6279 	mutex_lock(&hba->wb_mutex);
6280 	down_write(&hba->clk_scaling_lock);
6281 	hba->clk_scaling.is_allowed = allow;
6282 	up_write(&hba->clk_scaling_lock);
6283 	mutex_unlock(&hba->wb_mutex);
6284 }
6285 
ufshcd_clk_scaling_suspend(struct ufs_hba * hba,bool suspend)6286 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6287 {
6288 	if (suspend) {
6289 		if (hba->clk_scaling.is_enabled)
6290 			ufshcd_suspend_clkscaling(hba);
6291 		ufshcd_clk_scaling_allow(hba, false);
6292 	} else {
6293 		ufshcd_clk_scaling_allow(hba, true);
6294 		if (hba->clk_scaling.is_enabled)
6295 			ufshcd_resume_clkscaling(hba);
6296 	}
6297 }
6298 
ufshcd_err_handling_prepare(struct ufs_hba * hba)6299 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6300 {
6301 	ufshcd_rpm_get_sync(hba);
6302 	if (pm_runtime_status_suspended(&hba->ufs_device_wlun->sdev_gendev) ||
6303 	    hba->is_sys_suspended) {
6304 		enum ufs_pm_op pm_op;
6305 
6306 		/*
6307 		 * Don't assume anything of resume, if
6308 		 * resume fails, irq and clocks can be OFF, and powers
6309 		 * can be OFF or in LPM.
6310 		 */
6311 		ufshcd_setup_hba_vreg(hba, true);
6312 		ufshcd_enable_irq(hba);
6313 		ufshcd_setup_vreg(hba, true);
6314 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6315 		ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6316 		ufshcd_hold(hba);
6317 		if (!ufshcd_is_clkgating_allowed(hba))
6318 			ufshcd_setup_clocks(hba, true);
6319 		pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6320 		ufshcd_vops_resume(hba, pm_op);
6321 	} else {
6322 		ufshcd_hold(hba);
6323 		if (ufshcd_is_clkscaling_supported(hba) &&
6324 		    hba->clk_scaling.is_enabled)
6325 			ufshcd_suspend_clkscaling(hba);
6326 		ufshcd_clk_scaling_allow(hba, false);
6327 	}
6328 	ufshcd_scsi_block_requests(hba);
6329 	/* Wait for ongoing ufshcd_queuecommand() calls to finish. */
6330 	blk_mq_wait_quiesce_done(&hba->host->tag_set);
6331 	cancel_work_sync(&hba->eeh_work);
6332 }
6333 
ufshcd_err_handling_unprepare(struct ufs_hba * hba)6334 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6335 {
6336 	ufshcd_scsi_unblock_requests(hba);
6337 	ufshcd_release(hba);
6338 	if (ufshcd_is_clkscaling_supported(hba))
6339 		ufshcd_clk_scaling_suspend(hba, false);
6340 	ufshcd_rpm_put(hba);
6341 }
6342 
ufshcd_err_handling_should_stop(struct ufs_hba * hba)6343 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6344 {
6345 	return (!hba->is_powered || hba->shutting_down ||
6346 		!hba->ufs_device_wlun ||
6347 		hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6348 		(!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6349 		   ufshcd_is_link_broken(hba))));
6350 }
6351 
6352 #ifdef CONFIG_PM
ufshcd_recover_pm_error(struct ufs_hba * hba)6353 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6354 {
6355 	struct Scsi_Host *shost = hba->host;
6356 	struct scsi_device *sdev;
6357 	struct request_queue *q;
6358 	int ret;
6359 
6360 	hba->is_sys_suspended = false;
6361 	/*
6362 	 * Set RPM status of wlun device to RPM_ACTIVE,
6363 	 * this also clears its runtime error.
6364 	 */
6365 	ret = pm_runtime_set_active(&hba->ufs_device_wlun->sdev_gendev);
6366 
6367 	/* hba device might have a runtime error otherwise */
6368 	if (ret)
6369 		ret = pm_runtime_set_active(hba->dev);
6370 	/*
6371 	 * If wlun device had runtime error, we also need to resume those
6372 	 * consumer scsi devices in case any of them has failed to be
6373 	 * resumed due to supplier runtime resume failure. This is to unblock
6374 	 * blk_queue_enter in case there are bios waiting inside it.
6375 	 */
6376 	if (!ret) {
6377 		shost_for_each_device(sdev, shost) {
6378 			q = sdev->request_queue;
6379 			if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6380 				       q->rpm_status == RPM_SUSPENDING))
6381 				pm_request_resume(q->dev);
6382 		}
6383 	}
6384 }
6385 #else
ufshcd_recover_pm_error(struct ufs_hba * hba)6386 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6387 {
6388 }
6389 #endif
6390 
ufshcd_is_pwr_mode_restore_needed(struct ufs_hba * hba)6391 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6392 {
6393 	struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6394 	u32 mode;
6395 
6396 	ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6397 
6398 	if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6399 		return true;
6400 
6401 	if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6402 		return true;
6403 
6404 	return false;
6405 }
6406 
ufshcd_abort_one(struct request * rq,void * priv)6407 static bool ufshcd_abort_one(struct request *rq, void *priv)
6408 {
6409 	int *ret = priv;
6410 	u32 tag = rq->tag;
6411 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
6412 	struct scsi_device *sdev = cmd->device;
6413 	struct Scsi_Host *shost = sdev->host;
6414 	struct ufs_hba *hba = shost_priv(shost);
6415 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
6416 	struct ufs_hw_queue *hwq;
6417 	unsigned long flags;
6418 
6419 	*ret = ufshcd_try_to_abort_task(hba, tag);
6420 	dev_err(hba->dev, "Aborting tag %d / CDB %#02x %s\n", tag,
6421 		hba->lrb[tag].cmd ? hba->lrb[tag].cmd->cmnd[0] : -1,
6422 		*ret ? "failed" : "succeeded");
6423 
6424 	/* Release cmd in MCQ mode if abort succeeds */
6425 	if (is_mcq_enabled(hba) && (*ret == 0)) {
6426 		hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
6427 		if (!hwq)
6428 			return 0;
6429 		spin_lock_irqsave(&hwq->cq_lock, flags);
6430 		if (ufshcd_cmd_inflight(lrbp->cmd))
6431 			ufshcd_release_scsi_cmd(hba, lrbp);
6432 		spin_unlock_irqrestore(&hwq->cq_lock, flags);
6433 	}
6434 
6435 	return *ret == 0;
6436 }
6437 
6438 /**
6439  * ufshcd_abort_all - Abort all pending commands.
6440  * @hba: Host bus adapter pointer.
6441  *
6442  * Return: true if and only if the host controller needs to be reset.
6443  */
ufshcd_abort_all(struct ufs_hba * hba)6444 static bool ufshcd_abort_all(struct ufs_hba *hba)
6445 {
6446 	int tag, ret = 0;
6447 
6448 	blk_mq_tagset_busy_iter(&hba->host->tag_set, ufshcd_abort_one, &ret);
6449 	if (ret)
6450 		goto out;
6451 
6452 	/* Clear pending task management requests */
6453 	for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6454 		ret = ufshcd_clear_tm_cmd(hba, tag);
6455 		if (ret)
6456 			goto out;
6457 	}
6458 
6459 out:
6460 	/* Complete the requests that are cleared by s/w */
6461 	ufshcd_complete_requests(hba, false);
6462 
6463 	return ret != 0;
6464 }
6465 
6466 /**
6467  * ufshcd_err_handler - handle UFS errors that require s/w attention
6468  * @work: pointer to work structure
6469  */
ufshcd_err_handler(struct work_struct * work)6470 static void ufshcd_err_handler(struct work_struct *work)
6471 {
6472 	int retries = MAX_ERR_HANDLER_RETRIES;
6473 	struct ufs_hba *hba;
6474 	unsigned long flags;
6475 	bool needs_restore;
6476 	bool needs_reset;
6477 	int pmc_err;
6478 
6479 	hba = container_of(work, struct ufs_hba, eh_work);
6480 
6481 	dev_info(hba->dev,
6482 		 "%s started; HBA state %s; powered %d; shutting down %d; saved_err = %d; saved_uic_err = %d; force_reset = %d%s\n",
6483 		 __func__, ufshcd_state_name[hba->ufshcd_state],
6484 		 hba->is_powered, hba->shutting_down, hba->saved_err,
6485 		 hba->saved_uic_err, hba->force_reset,
6486 		 ufshcd_is_link_broken(hba) ? "; link is broken" : "");
6487 
6488 	down(&hba->host_sem);
6489 	spin_lock_irqsave(hba->host->host_lock, flags);
6490 	if (ufshcd_err_handling_should_stop(hba)) {
6491 		if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6492 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6493 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6494 		up(&hba->host_sem);
6495 		return;
6496 	}
6497 	ufshcd_set_eh_in_progress(hba);
6498 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6499 	ufshcd_err_handling_prepare(hba);
6500 	/* Complete requests that have door-bell cleared by h/w */
6501 	ufshcd_complete_requests(hba, false);
6502 	spin_lock_irqsave(hba->host->host_lock, flags);
6503 again:
6504 	needs_restore = false;
6505 	needs_reset = false;
6506 
6507 	if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6508 		hba->ufshcd_state = UFSHCD_STATE_RESET;
6509 	/*
6510 	 * A full reset and restore might have happened after preparation
6511 	 * is finished, double check whether we should stop.
6512 	 */
6513 	if (ufshcd_err_handling_should_stop(hba))
6514 		goto skip_err_handling;
6515 
6516 	if ((hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) &&
6517 	    !hba->force_reset) {
6518 		bool ret;
6519 
6520 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6521 		/* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6522 		ret = ufshcd_quirk_dl_nac_errors(hba);
6523 		spin_lock_irqsave(hba->host->host_lock, flags);
6524 		if (!ret && ufshcd_err_handling_should_stop(hba))
6525 			goto skip_err_handling;
6526 	}
6527 
6528 	if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6529 	    (hba->saved_uic_err &&
6530 	     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6531 		bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6532 
6533 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6534 		ufshcd_print_host_state(hba);
6535 		ufshcd_print_pwr_info(hba);
6536 		ufshcd_print_evt_hist(hba);
6537 		ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6538 		ufshcd_print_trs_all(hba, pr_prdt);
6539 		spin_lock_irqsave(hba->host->host_lock, flags);
6540 	}
6541 
6542 	/*
6543 	 * if host reset is required then skip clearing the pending
6544 	 * transfers forcefully because they will get cleared during
6545 	 * host reset and restore
6546 	 */
6547 	if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6548 	    ufshcd_is_saved_err_fatal(hba) ||
6549 	    ((hba->saved_err & UIC_ERROR) &&
6550 	     (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6551 				    UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6552 		needs_reset = true;
6553 		goto do_reset;
6554 	}
6555 
6556 	/*
6557 	 * If LINERESET was caught, UFS might have been put to PWM mode,
6558 	 * check if power mode restore is needed.
6559 	 */
6560 	if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6561 		hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6562 		if (!hba->saved_uic_err)
6563 			hba->saved_err &= ~UIC_ERROR;
6564 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6565 		if (ufshcd_is_pwr_mode_restore_needed(hba))
6566 			needs_restore = true;
6567 		spin_lock_irqsave(hba->host->host_lock, flags);
6568 		if (!hba->saved_err && !needs_restore)
6569 			goto skip_err_handling;
6570 	}
6571 
6572 	hba->silence_err_logs = true;
6573 	/* release lock as clear command might sleep */
6574 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6575 
6576 	needs_reset = ufshcd_abort_all(hba);
6577 
6578 	spin_lock_irqsave(hba->host->host_lock, flags);
6579 	hba->silence_err_logs = false;
6580 	if (needs_reset)
6581 		goto do_reset;
6582 
6583 	/*
6584 	 * After all reqs and tasks are cleared from doorbell,
6585 	 * now it is safe to retore power mode.
6586 	 */
6587 	if (needs_restore) {
6588 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6589 		/*
6590 		 * Hold the scaling lock just in case dev cmds
6591 		 * are sent via bsg and/or sysfs.
6592 		 */
6593 		down_write(&hba->clk_scaling_lock);
6594 		hba->force_pmc = true;
6595 		pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6596 		if (pmc_err) {
6597 			needs_reset = true;
6598 			dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6599 					__func__, pmc_err);
6600 		}
6601 		hba->force_pmc = false;
6602 		ufshcd_print_pwr_info(hba);
6603 		up_write(&hba->clk_scaling_lock);
6604 		spin_lock_irqsave(hba->host->host_lock, flags);
6605 	}
6606 
6607 do_reset:
6608 	/* Fatal errors need reset */
6609 	if (needs_reset) {
6610 		int err;
6611 
6612 		hba->force_reset = false;
6613 		spin_unlock_irqrestore(hba->host->host_lock, flags);
6614 		err = ufshcd_reset_and_restore(hba);
6615 		if (err)
6616 			dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6617 					__func__, err);
6618 		else
6619 			ufshcd_recover_pm_error(hba);
6620 		spin_lock_irqsave(hba->host->host_lock, flags);
6621 	}
6622 
6623 skip_err_handling:
6624 	if (!needs_reset) {
6625 		if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6626 			hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6627 		if (hba->saved_err || hba->saved_uic_err)
6628 			dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6629 			    __func__, hba->saved_err, hba->saved_uic_err);
6630 	}
6631 	/* Exit in an operational state or dead */
6632 	if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
6633 	    hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6634 		if (--retries)
6635 			goto again;
6636 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
6637 	}
6638 	ufshcd_clear_eh_in_progress(hba);
6639 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6640 	ufshcd_err_handling_unprepare(hba);
6641 	up(&hba->host_sem);
6642 
6643 	dev_info(hba->dev, "%s finished; HBA state %s\n", __func__,
6644 		 ufshcd_state_name[hba->ufshcd_state]);
6645 }
6646 
6647 /**
6648  * ufshcd_update_uic_error - check and set fatal UIC error flags.
6649  * @hba: per-adapter instance
6650  *
6651  * Return:
6652  *  IRQ_HANDLED - If interrupt is valid
6653  *  IRQ_NONE    - If invalid interrupt
6654  */
ufshcd_update_uic_error(struct ufs_hba * hba)6655 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6656 {
6657 	u32 reg;
6658 	irqreturn_t retval = IRQ_NONE;
6659 
6660 	/* PHY layer error */
6661 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6662 	if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6663 	    (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6664 		ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6665 		/*
6666 		 * To know whether this error is fatal or not, DB timeout
6667 		 * must be checked but this error is handled separately.
6668 		 */
6669 		if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6670 			dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6671 					__func__);
6672 
6673 		/* Got a LINERESET indication. */
6674 		if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6675 			struct uic_command *cmd = NULL;
6676 
6677 			hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6678 			if (hba->uic_async_done && hba->active_uic_cmd)
6679 				cmd = hba->active_uic_cmd;
6680 			/*
6681 			 * Ignore the LINERESET during power mode change
6682 			 * operation via DME_SET command.
6683 			 */
6684 			if (cmd && (cmd->command == UIC_CMD_DME_SET))
6685 				hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6686 		}
6687 		retval |= IRQ_HANDLED;
6688 	}
6689 
6690 	/* PA_INIT_ERROR is fatal and needs UIC reset */
6691 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6692 	if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6693 	    (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6694 		ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6695 
6696 		if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6697 			hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6698 		else if (hba->dev_quirks &
6699 				UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6700 			if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6701 				hba->uic_error |=
6702 					UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6703 			else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6704 				hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6705 		}
6706 		retval |= IRQ_HANDLED;
6707 	}
6708 
6709 	/* UIC NL/TL/DME errors needs software retry */
6710 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6711 	if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6712 	    (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6713 		ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6714 		hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6715 		retval |= IRQ_HANDLED;
6716 	}
6717 
6718 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6719 	if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6720 	    (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6721 		ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6722 		hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6723 		retval |= IRQ_HANDLED;
6724 	}
6725 
6726 	reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6727 	if ((reg & UIC_DME_ERROR) &&
6728 	    (reg & UIC_DME_ERROR_CODE_MASK)) {
6729 		ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6730 		hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6731 		retval |= IRQ_HANDLED;
6732 	}
6733 
6734 	dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6735 			__func__, hba->uic_error);
6736 	return retval;
6737 }
6738 
6739 /**
6740  * ufshcd_check_errors - Check for errors that need s/w attention
6741  * @hba: per-adapter instance
6742  * @intr_status: interrupt status generated by the controller
6743  *
6744  * Return:
6745  *  IRQ_HANDLED - If interrupt is valid
6746  *  IRQ_NONE    - If invalid interrupt
6747  */
ufshcd_check_errors(struct ufs_hba * hba,u32 intr_status)6748 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6749 {
6750 	bool queue_eh_work = false;
6751 	irqreturn_t retval = IRQ_NONE;
6752 
6753 	spin_lock(hba->host->host_lock);
6754 	hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6755 
6756 	if (hba->errors & INT_FATAL_ERRORS) {
6757 		ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6758 				       hba->errors);
6759 		queue_eh_work = true;
6760 	}
6761 
6762 	if (hba->errors & UIC_ERROR) {
6763 		hba->uic_error = 0;
6764 		retval = ufshcd_update_uic_error(hba);
6765 		if (hba->uic_error)
6766 			queue_eh_work = true;
6767 	}
6768 
6769 	if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6770 		dev_err(hba->dev,
6771 			"%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6772 			__func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6773 			"Enter" : "Exit",
6774 			hba->errors, ufshcd_get_upmcrs(hba));
6775 		ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6776 				       hba->errors);
6777 		ufshcd_set_link_broken(hba);
6778 		queue_eh_work = true;
6779 	}
6780 
6781 	if (queue_eh_work) {
6782 		/*
6783 		 * update the transfer error masks to sticky bits, let's do this
6784 		 * irrespective of current ufshcd_state.
6785 		 */
6786 		hba->saved_err |= hba->errors;
6787 		hba->saved_uic_err |= hba->uic_error;
6788 
6789 		/* dump controller state before resetting */
6790 		if ((hba->saved_err &
6791 		     (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6792 		    (hba->saved_uic_err &&
6793 		     (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6794 			dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6795 					__func__, hba->saved_err,
6796 					hba->saved_uic_err);
6797 			ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6798 					 "host_regs: ");
6799 			ufshcd_print_pwr_info(hba);
6800 		}
6801 		ufshcd_schedule_eh_work(hba);
6802 		retval |= IRQ_HANDLED;
6803 	}
6804 	/*
6805 	 * if (!queue_eh_work) -
6806 	 * Other errors are either non-fatal where host recovers
6807 	 * itself without s/w intervention or errors that will be
6808 	 * handled by the SCSI core layer.
6809 	 */
6810 	hba->errors = 0;
6811 	hba->uic_error = 0;
6812 	spin_unlock(hba->host->host_lock);
6813 	return retval;
6814 }
6815 
6816 /**
6817  * ufshcd_tmc_handler - handle task management function completion
6818  * @hba: per adapter instance
6819  *
6820  * Return:
6821  *  IRQ_HANDLED - If interrupt is valid
6822  *  IRQ_NONE    - If invalid interrupt
6823  */
ufshcd_tmc_handler(struct ufs_hba * hba)6824 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6825 {
6826 	unsigned long flags, pending, issued;
6827 	irqreturn_t ret = IRQ_NONE;
6828 	int tag;
6829 
6830 	spin_lock_irqsave(hba->host->host_lock, flags);
6831 	pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6832 	issued = hba->outstanding_tasks & ~pending;
6833 	for_each_set_bit(tag, &issued, hba->nutmrs) {
6834 		struct request *req = hba->tmf_rqs[tag];
6835 		struct completion *c = req->end_io_data;
6836 
6837 		complete(c);
6838 		ret = IRQ_HANDLED;
6839 	}
6840 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6841 
6842 	return ret;
6843 }
6844 
6845 /**
6846  * ufshcd_handle_mcq_cq_events - handle MCQ completion queue events
6847  * @hba: per adapter instance
6848  *
6849  * Return: IRQ_HANDLED if interrupt is handled.
6850  */
ufshcd_handle_mcq_cq_events(struct ufs_hba * hba)6851 static irqreturn_t ufshcd_handle_mcq_cq_events(struct ufs_hba *hba)
6852 {
6853 	struct ufs_hw_queue *hwq;
6854 	unsigned long outstanding_cqs;
6855 	unsigned int nr_queues;
6856 	int i, ret;
6857 	u32 events;
6858 
6859 	ret = ufshcd_vops_get_outstanding_cqs(hba, &outstanding_cqs);
6860 	if (ret)
6861 		outstanding_cqs = (1U << hba->nr_hw_queues) - 1;
6862 
6863 	/* Exclude the poll queues */
6864 	nr_queues = hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL];
6865 	for_each_set_bit(i, &outstanding_cqs, nr_queues) {
6866 		hwq = &hba->uhq[i];
6867 
6868 		events = ufshcd_mcq_read_cqis(hba, i);
6869 		if (events)
6870 			ufshcd_mcq_write_cqis(hba, events, i);
6871 
6872 		if (events & UFSHCD_MCQ_CQIS_TAIL_ENT_PUSH_STS)
6873 			ufshcd_mcq_poll_cqe_lock(hba, hwq);
6874 	}
6875 
6876 	return IRQ_HANDLED;
6877 }
6878 
6879 /**
6880  * ufshcd_sl_intr - Interrupt service routine
6881  * @hba: per adapter instance
6882  * @intr_status: contains interrupts generated by the controller
6883  *
6884  * Return:
6885  *  IRQ_HANDLED - If interrupt is valid
6886  *  IRQ_NONE    - If invalid interrupt
6887  */
ufshcd_sl_intr(struct ufs_hba * hba,u32 intr_status)6888 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6889 {
6890 	irqreturn_t retval = IRQ_NONE;
6891 
6892 	if (intr_status & UFSHCD_UIC_MASK)
6893 		retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6894 
6895 	if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6896 		retval |= ufshcd_check_errors(hba, intr_status);
6897 
6898 	if (intr_status & UTP_TASK_REQ_COMPL)
6899 		retval |= ufshcd_tmc_handler(hba);
6900 
6901 	if (intr_status & UTP_TRANSFER_REQ_COMPL)
6902 		retval |= ufshcd_transfer_req_compl(hba);
6903 
6904 	if (intr_status & MCQ_CQ_EVENT_STATUS)
6905 		retval |= ufshcd_handle_mcq_cq_events(hba);
6906 
6907 	return retval;
6908 }
6909 
6910 /**
6911  * ufshcd_intr - Main interrupt service routine
6912  * @irq: irq number
6913  * @__hba: pointer to adapter instance
6914  *
6915  * Return:
6916  *  IRQ_HANDLED - If interrupt is valid
6917  *  IRQ_NONE    - If invalid interrupt
6918  */
ufshcd_intr(int irq,void * __hba)6919 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6920 {
6921 	u32 intr_status, enabled_intr_status = 0;
6922 	irqreturn_t retval = IRQ_NONE;
6923 	struct ufs_hba *hba = __hba;
6924 	int retries = hba->nutrs;
6925 
6926 	intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6927 	hba->ufs_stats.last_intr_status = intr_status;
6928 	hba->ufs_stats.last_intr_ts = local_clock();
6929 
6930 	/*
6931 	 * There could be max of hba->nutrs reqs in flight and in worst case
6932 	 * if the reqs get finished 1 by 1 after the interrupt status is
6933 	 * read, make sure we handle them by checking the interrupt status
6934 	 * again in a loop until we process all of the reqs before returning.
6935 	 */
6936 	while (intr_status && retries--) {
6937 		enabled_intr_status =
6938 			intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6939 		ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6940 		if (enabled_intr_status)
6941 			retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6942 
6943 		intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6944 	}
6945 
6946 	if (enabled_intr_status && retval == IRQ_NONE &&
6947 	    (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6948 	     hba->outstanding_reqs) && !ufshcd_eh_in_progress(hba)) {
6949 		dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6950 					__func__,
6951 					intr_status,
6952 					hba->ufs_stats.last_intr_status,
6953 					enabled_intr_status);
6954 		ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6955 	}
6956 
6957 	return retval;
6958 }
6959 
ufshcd_clear_tm_cmd(struct ufs_hba * hba,int tag)6960 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6961 {
6962 	int err = 0;
6963 	u32 mask = 1 << tag;
6964 	unsigned long flags;
6965 
6966 	if (!test_bit(tag, &hba->outstanding_tasks))
6967 		goto out;
6968 
6969 	spin_lock_irqsave(hba->host->host_lock, flags);
6970 	ufshcd_utmrl_clear(hba, tag);
6971 	spin_unlock_irqrestore(hba->host->host_lock, flags);
6972 
6973 	/* poll for max. 1 sec to clear door bell register by h/w */
6974 	err = ufshcd_wait_for_register(hba,
6975 			REG_UTP_TASK_REQ_DOOR_BELL,
6976 			mask, 0, 1000, 1000);
6977 
6978 	dev_err(hba->dev, "Clearing task management function with tag %d %s\n",
6979 		tag, err < 0 ? "failed" : "succeeded");
6980 
6981 out:
6982 	return err;
6983 }
6984 
__ufshcd_issue_tm_cmd(struct ufs_hba * hba,struct utp_task_req_desc * treq,u8 tm_function)6985 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6986 		struct utp_task_req_desc *treq, u8 tm_function)
6987 {
6988 	struct request_queue *q = hba->tmf_queue;
6989 	struct Scsi_Host *host = hba->host;
6990 	DECLARE_COMPLETION_ONSTACK(wait);
6991 	struct request *req;
6992 	unsigned long flags;
6993 	int task_tag, err;
6994 
6995 	/*
6996 	 * blk_mq_alloc_request() is used here only to get a free tag.
6997 	 */
6998 	req = blk_mq_alloc_request(q, REQ_OP_DRV_OUT, 0);
6999 	if (IS_ERR(req))
7000 		return PTR_ERR(req);
7001 
7002 	req->end_io_data = &wait;
7003 	ufshcd_hold(hba);
7004 
7005 	spin_lock_irqsave(host->host_lock, flags);
7006 
7007 	task_tag = req->tag;
7008 	WARN_ONCE(task_tag < 0 || task_tag >= hba->nutmrs, "Invalid tag %d\n",
7009 		  task_tag);
7010 	hba->tmf_rqs[req->tag] = req;
7011 	treq->upiu_req.req_header.task_tag = task_tag;
7012 
7013 	memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
7014 	ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
7015 
7016 	/* send command to the controller */
7017 	__set_bit(task_tag, &hba->outstanding_tasks);
7018 
7019 	ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
7020 	/* Make sure that doorbell is committed immediately */
7021 	wmb();
7022 
7023 	spin_unlock_irqrestore(host->host_lock, flags);
7024 
7025 	ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
7026 
7027 	/* wait until the task management command is completed */
7028 	err = wait_for_completion_io_timeout(&wait,
7029 			msecs_to_jiffies(TM_CMD_TIMEOUT));
7030 	if (!err) {
7031 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
7032 		dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
7033 				__func__, tm_function);
7034 		if (ufshcd_clear_tm_cmd(hba, task_tag))
7035 			dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
7036 					__func__, task_tag);
7037 		err = -ETIMEDOUT;
7038 	} else {
7039 		err = 0;
7040 		memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
7041 
7042 		ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
7043 	}
7044 
7045 	spin_lock_irqsave(hba->host->host_lock, flags);
7046 	hba->tmf_rqs[req->tag] = NULL;
7047 	__clear_bit(task_tag, &hba->outstanding_tasks);
7048 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7049 
7050 	ufshcd_release(hba);
7051 	blk_mq_free_request(req);
7052 
7053 	return err;
7054 }
7055 
7056 /**
7057  * ufshcd_issue_tm_cmd - issues task management commands to controller
7058  * @hba: per adapter instance
7059  * @lun_id: LUN ID to which TM command is sent
7060  * @task_id: task ID to which the TM command is applicable
7061  * @tm_function: task management function opcode
7062  * @tm_response: task management service response return value
7063  *
7064  * Return: non-zero value on error, zero on success.
7065  */
ufshcd_issue_tm_cmd(struct ufs_hba * hba,int lun_id,int task_id,u8 tm_function,u8 * tm_response)7066 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
7067 		u8 tm_function, u8 *tm_response)
7068 {
7069 	struct utp_task_req_desc treq = { };
7070 	enum utp_ocs ocs_value;
7071 	int err;
7072 
7073 	/* Configure task request descriptor */
7074 	treq.header.interrupt = 1;
7075 	treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7076 
7077 	/* Configure task request UPIU */
7078 	treq.upiu_req.req_header.transaction_code = UPIU_TRANSACTION_TASK_REQ;
7079 	treq.upiu_req.req_header.lun = lun_id;
7080 	treq.upiu_req.req_header.tm_function = tm_function;
7081 
7082 	/*
7083 	 * The host shall provide the same value for LUN field in the basic
7084 	 * header and for Input Parameter.
7085 	 */
7086 	treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
7087 	treq.upiu_req.input_param2 = cpu_to_be32(task_id);
7088 
7089 	err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
7090 	if (err == -ETIMEDOUT)
7091 		return err;
7092 
7093 	ocs_value = treq.header.ocs & MASK_OCS;
7094 	if (ocs_value != OCS_SUCCESS)
7095 		dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
7096 				__func__, ocs_value);
7097 	else if (tm_response)
7098 		*tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
7099 				MASK_TM_SERVICE_RESP;
7100 	return err;
7101 }
7102 
7103 /**
7104  * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
7105  * @hba:	per-adapter instance
7106  * @req_upiu:	upiu request
7107  * @rsp_upiu:	upiu reply
7108  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7109  * @buff_len:	descriptor size, 0 if NA
7110  * @cmd_type:	specifies the type (NOP, Query...)
7111  * @desc_op:	descriptor operation
7112  *
7113  * Those type of requests uses UTP Transfer Request Descriptor - utrd.
7114  * Therefore, it "rides" the device management infrastructure: uses its tag and
7115  * tasks work queues.
7116  *
7117  * Since there is only one available tag for device management commands,
7118  * the caller is expected to hold the hba->dev_cmd.lock mutex.
7119  *
7120  * Return: 0 upon success; < 0 upon failure.
7121  */
ufshcd_issue_devman_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,u8 * desc_buff,int * buff_len,enum dev_cmd_type cmd_type,enum query_opcode desc_op)7122 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
7123 					struct utp_upiu_req *req_upiu,
7124 					struct utp_upiu_req *rsp_upiu,
7125 					u8 *desc_buff, int *buff_len,
7126 					enum dev_cmd_type cmd_type,
7127 					enum query_opcode desc_op)
7128 {
7129 	DECLARE_COMPLETION_ONSTACK(wait);
7130 	const u32 tag = hba->reserved_slot;
7131 	struct ufshcd_lrb *lrbp;
7132 	int err = 0;
7133 	u8 upiu_flags;
7134 
7135 	/* Protects use of hba->reserved_slot. */
7136 	lockdep_assert_held(&hba->dev_cmd.lock);
7137 
7138 	down_read(&hba->clk_scaling_lock);
7139 
7140 	lrbp = &hba->lrb[tag];
7141 	lrbp->cmd = NULL;
7142 	lrbp->task_tag = tag;
7143 	lrbp->lun = 0;
7144 	lrbp->intr_cmd = true;
7145 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7146 	hba->dev_cmd.type = cmd_type;
7147 
7148 	if (hba->ufs_version <= ufshci_version(1, 1))
7149 		lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
7150 	else
7151 		lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7152 
7153 	/* update the task tag in the request upiu */
7154 	req_upiu->header.task_tag = tag;
7155 
7156 	ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE, 0);
7157 
7158 	/* just copy the upiu request as it is */
7159 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7160 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
7161 		/* The Data Segment Area is optional depending upon the query
7162 		 * function value. for WRITE DESCRIPTOR, the data segment
7163 		 * follows right after the tsf.
7164 		 */
7165 		memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
7166 		*buff_len = 0;
7167 	}
7168 
7169 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7170 
7171 	hba->dev_cmd.complete = &wait;
7172 
7173 	ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
7174 
7175 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7176 	/*
7177 	 * ignore the returning value here - ufshcd_check_query_response is
7178 	 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
7179 	 * read the response directly ignoring all errors.
7180 	 */
7181 	ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
7182 
7183 	/* just copy the upiu response as it is */
7184 	memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7185 	if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
7186 		u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
7187 		u16 resp_len = be16_to_cpu(lrbp->ucd_rsp_ptr->header
7188 					   .data_segment_length);
7189 
7190 		if (*buff_len >= resp_len) {
7191 			memcpy(desc_buff, descp, resp_len);
7192 			*buff_len = resp_len;
7193 		} else {
7194 			dev_warn(hba->dev,
7195 				 "%s: rsp size %d is bigger than buffer size %d",
7196 				 __func__, resp_len, *buff_len);
7197 			*buff_len = 0;
7198 			err = -EINVAL;
7199 		}
7200 	}
7201 	ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
7202 				    (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
7203 
7204 	up_read(&hba->clk_scaling_lock);
7205 	return err;
7206 }
7207 
7208 /**
7209  * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
7210  * @hba:	per-adapter instance
7211  * @req_upiu:	upiu request
7212  * @rsp_upiu:	upiu reply - only 8 DW as we do not support scsi commands
7213  * @msgcode:	message code, one of UPIU Transaction Codes Initiator to Target
7214  * @desc_buff:	pointer to descriptor buffer, NULL if NA
7215  * @buff_len:	descriptor size, 0 if NA
7216  * @desc_op:	descriptor operation
7217  *
7218  * Supports UTP Transfer requests (nop and query), and UTP Task
7219  * Management requests.
7220  * It is up to the caller to fill the upiu conent properly, as it will
7221  * be copied without any further input validations.
7222  *
7223  * Return: 0 upon success; < 0 upon failure.
7224  */
ufshcd_exec_raw_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,enum upiu_request_transaction msgcode,u8 * desc_buff,int * buff_len,enum query_opcode desc_op)7225 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
7226 			     struct utp_upiu_req *req_upiu,
7227 			     struct utp_upiu_req *rsp_upiu,
7228 			     enum upiu_request_transaction msgcode,
7229 			     u8 *desc_buff, int *buff_len,
7230 			     enum query_opcode desc_op)
7231 {
7232 	int err;
7233 	enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
7234 	struct utp_task_req_desc treq = { };
7235 	enum utp_ocs ocs_value;
7236 	u8 tm_f = req_upiu->header.tm_function;
7237 
7238 	switch (msgcode) {
7239 	case UPIU_TRANSACTION_NOP_OUT:
7240 		cmd_type = DEV_CMD_TYPE_NOP;
7241 		fallthrough;
7242 	case UPIU_TRANSACTION_QUERY_REQ:
7243 		ufshcd_hold(hba);
7244 		mutex_lock(&hba->dev_cmd.lock);
7245 		err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
7246 						   desc_buff, buff_len,
7247 						   cmd_type, desc_op);
7248 		mutex_unlock(&hba->dev_cmd.lock);
7249 		ufshcd_release(hba);
7250 
7251 		break;
7252 	case UPIU_TRANSACTION_TASK_REQ:
7253 		treq.header.interrupt = 1;
7254 		treq.header.ocs = OCS_INVALID_COMMAND_STATUS;
7255 
7256 		memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
7257 
7258 		err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
7259 		if (err == -ETIMEDOUT)
7260 			break;
7261 
7262 		ocs_value = treq.header.ocs & MASK_OCS;
7263 		if (ocs_value != OCS_SUCCESS) {
7264 			dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
7265 				ocs_value);
7266 			break;
7267 		}
7268 
7269 		memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
7270 
7271 		break;
7272 	default:
7273 		err = -EINVAL;
7274 
7275 		break;
7276 	}
7277 
7278 	return err;
7279 }
7280 
7281 /**
7282  * ufshcd_advanced_rpmb_req_handler - handle advanced RPMB request
7283  * @hba:	per adapter instance
7284  * @req_upiu:	upiu request
7285  * @rsp_upiu:	upiu reply
7286  * @req_ehs:	EHS field which contains Advanced RPMB Request Message
7287  * @rsp_ehs:	EHS field which returns Advanced RPMB Response Message
7288  * @sg_cnt:	The number of sg lists actually used
7289  * @sg_list:	Pointer to SG list when DATA IN/OUT UPIU is required in ARPMB operation
7290  * @dir:	DMA direction
7291  *
7292  * Return: zero on success, non-zero on failure.
7293  */
ufshcd_advanced_rpmb_req_handler(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,struct ufs_ehs * req_ehs,struct ufs_ehs * rsp_ehs,int sg_cnt,struct scatterlist * sg_list,enum dma_data_direction dir)7294 int ufshcd_advanced_rpmb_req_handler(struct ufs_hba *hba, struct utp_upiu_req *req_upiu,
7295 			 struct utp_upiu_req *rsp_upiu, struct ufs_ehs *req_ehs,
7296 			 struct ufs_ehs *rsp_ehs, int sg_cnt, struct scatterlist *sg_list,
7297 			 enum dma_data_direction dir)
7298 {
7299 	DECLARE_COMPLETION_ONSTACK(wait);
7300 	const u32 tag = hba->reserved_slot;
7301 	struct ufshcd_lrb *lrbp;
7302 	int err = 0;
7303 	int result;
7304 	u8 upiu_flags;
7305 	u8 *ehs_data;
7306 	u16 ehs_len;
7307 
7308 	/* Protects use of hba->reserved_slot. */
7309 	ufshcd_hold(hba);
7310 	mutex_lock(&hba->dev_cmd.lock);
7311 	down_read(&hba->clk_scaling_lock);
7312 
7313 	lrbp = &hba->lrb[tag];
7314 	lrbp->cmd = NULL;
7315 	lrbp->task_tag = tag;
7316 	lrbp->lun = UFS_UPIU_RPMB_WLUN;
7317 
7318 	lrbp->intr_cmd = true;
7319 	ufshcd_prepare_lrbp_crypto(NULL, lrbp);
7320 	hba->dev_cmd.type = DEV_CMD_TYPE_RPMB;
7321 
7322 	/* Advanced RPMB starts from UFS 4.0, so its command type is UTP_CMD_TYPE_UFS_STORAGE */
7323 	lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
7324 
7325 	/*
7326 	 * According to UFSHCI 4.0 specification page 24, if EHSLUTRDS is 0, host controller takes
7327 	 * EHS length from CMD UPIU, and SW driver use EHS Length field in CMD UPIU. if it is 1,
7328 	 * HW controller takes EHS length from UTRD.
7329 	 */
7330 	if (hba->capabilities & MASK_EHSLUTRD_SUPPORTED)
7331 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 2);
7332 	else
7333 		ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, dir, 0);
7334 
7335 	/* update the task tag */
7336 	req_upiu->header.task_tag = tag;
7337 
7338 	/* copy the UPIU(contains CDB) request as it is */
7339 	memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
7340 	/* Copy EHS, starting with byte32, immediately after the CDB package */
7341 	memcpy(lrbp->ucd_req_ptr + 1, req_ehs, sizeof(*req_ehs));
7342 
7343 	if (dir != DMA_NONE && sg_list)
7344 		ufshcd_sgl_to_prdt(hba, lrbp, sg_cnt, sg_list);
7345 
7346 	memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
7347 
7348 	hba->dev_cmd.complete = &wait;
7349 
7350 	ufshcd_send_command(hba, tag, hba->dev_cmd_queue);
7351 
7352 	err = ufshcd_wait_for_dev_cmd(hba, lrbp, ADVANCED_RPMB_REQ_TIMEOUT);
7353 
7354 	if (!err) {
7355 		/* Just copy the upiu response as it is */
7356 		memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
7357 		/* Get the response UPIU result */
7358 		result = (lrbp->ucd_rsp_ptr->header.response << 8) |
7359 			lrbp->ucd_rsp_ptr->header.status;
7360 
7361 		ehs_len = lrbp->ucd_rsp_ptr->header.ehs_length;
7362 		/*
7363 		 * Since the bLength in EHS indicates the total size of the EHS Header and EHS Data
7364 		 * in 32 Byte units, the value of the bLength Request/Response for Advanced RPMB
7365 		 * Message is 02h
7366 		 */
7367 		if (ehs_len == 2 && rsp_ehs) {
7368 			/*
7369 			 * ucd_rsp_ptr points to a buffer with a length of 512 bytes
7370 			 * (ALIGNED_UPIU_SIZE = 512), and the EHS data just starts from byte32
7371 			 */
7372 			ehs_data = (u8 *)lrbp->ucd_rsp_ptr + EHS_OFFSET_IN_RESPONSE;
7373 			memcpy(rsp_ehs, ehs_data, ehs_len * 32);
7374 		}
7375 	}
7376 
7377 	up_read(&hba->clk_scaling_lock);
7378 	mutex_unlock(&hba->dev_cmd.lock);
7379 	ufshcd_release(hba);
7380 	return err ? : result;
7381 }
7382 
7383 /**
7384  * ufshcd_eh_device_reset_handler() - Reset a single logical unit.
7385  * @cmd: SCSI command pointer
7386  *
7387  * Return: SUCCESS or FAILED.
7388  */
ufshcd_eh_device_reset_handler(struct scsi_cmnd * cmd)7389 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
7390 {
7391 	unsigned long flags, pending_reqs = 0, not_cleared = 0;
7392 	struct Scsi_Host *host;
7393 	struct ufs_hba *hba;
7394 	struct ufs_hw_queue *hwq;
7395 	struct ufshcd_lrb *lrbp;
7396 	u32 pos, not_cleared_mask = 0;
7397 	int err;
7398 	u8 resp = 0xF, lun;
7399 
7400 	host = cmd->device->host;
7401 	hba = shost_priv(host);
7402 
7403 	lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
7404 	err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
7405 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7406 		if (!err)
7407 			err = resp;
7408 		goto out;
7409 	}
7410 
7411 	if (is_mcq_enabled(hba)) {
7412 		for (pos = 0; pos < hba->nutrs; pos++) {
7413 			lrbp = &hba->lrb[pos];
7414 			if (ufshcd_cmd_inflight(lrbp->cmd) &&
7415 			    lrbp->lun == lun) {
7416 				ufshcd_clear_cmd(hba, pos);
7417 				hwq = ufshcd_mcq_req_to_hwq(hba, scsi_cmd_to_rq(lrbp->cmd));
7418 				ufshcd_mcq_poll_cqe_lock(hba, hwq);
7419 			}
7420 		}
7421 		err = 0;
7422 		goto out;
7423 	}
7424 
7425 	/* clear the commands that were pending for corresponding LUN */
7426 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7427 	for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs)
7428 		if (hba->lrb[pos].lun == lun)
7429 			__set_bit(pos, &pending_reqs);
7430 	hba->outstanding_reqs &= ~pending_reqs;
7431 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7432 
7433 	for_each_set_bit(pos, &pending_reqs, hba->nutrs) {
7434 		if (ufshcd_clear_cmd(hba, pos) < 0) {
7435 			spin_lock_irqsave(&hba->outstanding_lock, flags);
7436 			not_cleared = 1U << pos &
7437 				ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7438 			hba->outstanding_reqs |= not_cleared;
7439 			not_cleared_mask |= not_cleared;
7440 			spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7441 
7442 			dev_err(hba->dev, "%s: failed to clear request %d\n",
7443 				__func__, pos);
7444 		}
7445 	}
7446 	__ufshcd_transfer_req_compl(hba, pending_reqs & ~not_cleared_mask);
7447 
7448 out:
7449 	hba->req_abort_count = 0;
7450 	ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
7451 	if (!err) {
7452 		err = SUCCESS;
7453 	} else {
7454 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7455 		err = FAILED;
7456 	}
7457 	return err;
7458 }
7459 
ufshcd_set_req_abort_skip(struct ufs_hba * hba,unsigned long bitmap)7460 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7461 {
7462 	struct ufshcd_lrb *lrbp;
7463 	int tag;
7464 
7465 	for_each_set_bit(tag, &bitmap, hba->nutrs) {
7466 		lrbp = &hba->lrb[tag];
7467 		lrbp->req_abort_skip = true;
7468 	}
7469 }
7470 
7471 /**
7472  * ufshcd_try_to_abort_task - abort a specific task
7473  * @hba: Pointer to adapter instance
7474  * @tag: Task tag/index to be aborted
7475  *
7476  * Abort the pending command in device by sending UFS_ABORT_TASK task management
7477  * command, and in host controller by clearing the door-bell register. There can
7478  * be race between controller sending the command to the device while abort is
7479  * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7480  * really issued and then try to abort it.
7481  *
7482  * Return: zero on success, non-zero on failure.
7483  */
ufshcd_try_to_abort_task(struct ufs_hba * hba,int tag)7484 int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7485 {
7486 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7487 	int err = 0;
7488 	int poll_cnt;
7489 	u8 resp = 0xF;
7490 	u32 reg;
7491 
7492 	for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7493 		err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7494 				UFS_QUERY_TASK, &resp);
7495 		if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7496 			/* cmd pending in the device */
7497 			dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7498 				__func__, tag);
7499 			break;
7500 		} else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7501 			/*
7502 			 * cmd not pending in the device, check if it is
7503 			 * in transition.
7504 			 */
7505 			dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7506 				__func__, tag);
7507 			if (is_mcq_enabled(hba)) {
7508 				/* MCQ mode */
7509 				if (ufshcd_cmd_inflight(lrbp->cmd)) {
7510 					/* sleep for max. 200us same delay as in SDB mode */
7511 					usleep_range(100, 200);
7512 					continue;
7513 				}
7514 				/* command completed already */
7515 				dev_err(hba->dev, "%s: cmd at tag=%d is cleared.\n",
7516 					__func__, tag);
7517 				goto out;
7518 			}
7519 
7520 			/* Single Doorbell Mode */
7521 			reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7522 			if (reg & (1 << tag)) {
7523 				/* sleep for max. 200us to stabilize */
7524 				usleep_range(100, 200);
7525 				continue;
7526 			}
7527 			/* command completed already */
7528 			dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7529 				__func__, tag);
7530 			goto out;
7531 		} else {
7532 			dev_err(hba->dev,
7533 				"%s: no response from device. tag = %d, err %d\n",
7534 				__func__, tag, err);
7535 			if (!err)
7536 				err = resp; /* service response error */
7537 			goto out;
7538 		}
7539 	}
7540 
7541 	if (!poll_cnt) {
7542 		err = -EBUSY;
7543 		goto out;
7544 	}
7545 
7546 	err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7547 			UFS_ABORT_TASK, &resp);
7548 	if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7549 		if (!err) {
7550 			err = resp; /* service response error */
7551 			dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7552 				__func__, tag, err);
7553 		}
7554 		goto out;
7555 	}
7556 
7557 	err = ufshcd_clear_cmd(hba, tag);
7558 	if (err)
7559 		dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7560 			__func__, tag, err);
7561 
7562 out:
7563 	return err;
7564 }
7565 
7566 /**
7567  * ufshcd_abort - scsi host template eh_abort_handler callback
7568  * @cmd: SCSI command pointer
7569  *
7570  * Return: SUCCESS or FAILED.
7571  */
ufshcd_abort(struct scsi_cmnd * cmd)7572 static int ufshcd_abort(struct scsi_cmnd *cmd)
7573 {
7574 	struct Scsi_Host *host = cmd->device->host;
7575 	struct ufs_hba *hba = shost_priv(host);
7576 	int tag = scsi_cmd_to_rq(cmd)->tag;
7577 	struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7578 	unsigned long flags;
7579 	int err = FAILED;
7580 	bool outstanding;
7581 	u32 reg;
7582 
7583 	WARN_ONCE(tag < 0, "Invalid tag %d\n", tag);
7584 
7585 	ufshcd_hold(hba);
7586 
7587 	if (!is_mcq_enabled(hba)) {
7588 		reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7589 		if (!test_bit(tag, &hba->outstanding_reqs)) {
7590 			/* If command is already aborted/completed, return FAILED. */
7591 			dev_err(hba->dev,
7592 				"%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7593 				__func__, tag, hba->outstanding_reqs, reg);
7594 			goto release;
7595 		}
7596 	}
7597 
7598 	/* Print Transfer Request of aborted task */
7599 	dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7600 
7601 	/*
7602 	 * Print detailed info about aborted request.
7603 	 * As more than one request might get aborted at the same time,
7604 	 * print full information only for the first aborted request in order
7605 	 * to reduce repeated printouts. For other aborted requests only print
7606 	 * basic details.
7607 	 */
7608 	scsi_print_command(cmd);
7609 	if (!hba->req_abort_count) {
7610 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7611 		ufshcd_print_evt_hist(hba);
7612 		ufshcd_print_host_state(hba);
7613 		ufshcd_print_pwr_info(hba);
7614 		ufshcd_print_tr(hba, tag, true);
7615 	} else {
7616 		ufshcd_print_tr(hba, tag, false);
7617 	}
7618 	hba->req_abort_count++;
7619 
7620 	if (!is_mcq_enabled(hba) && !(reg & (1 << tag))) {
7621 		/* only execute this code in single doorbell mode */
7622 		dev_err(hba->dev,
7623 		"%s: cmd was completed, but without a notifying intr, tag = %d",
7624 		__func__, tag);
7625 		__ufshcd_transfer_req_compl(hba, 1UL << tag);
7626 		goto release;
7627 	}
7628 
7629 	/*
7630 	 * Task abort to the device W-LUN is illegal. When this command
7631 	 * will fail, due to spec violation, scsi err handling next step
7632 	 * will be to send LU reset which, again, is a spec violation.
7633 	 * To avoid these unnecessary/illegal steps, first we clean up
7634 	 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7635 	 * then queue the eh_work and bail.
7636 	 */
7637 	if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7638 		ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7639 
7640 		spin_lock_irqsave(host->host_lock, flags);
7641 		hba->force_reset = true;
7642 		ufshcd_schedule_eh_work(hba);
7643 		spin_unlock_irqrestore(host->host_lock, flags);
7644 		goto release;
7645 	}
7646 
7647 	if (is_mcq_enabled(hba)) {
7648 		/* MCQ mode. Branch off to handle abort for mcq mode */
7649 		err = ufshcd_mcq_abort(cmd);
7650 		goto release;
7651 	}
7652 
7653 	/* Skip task abort in case previous aborts failed and report failure */
7654 	if (lrbp->req_abort_skip) {
7655 		dev_err(hba->dev, "%s: skipping abort\n", __func__);
7656 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7657 		goto release;
7658 	}
7659 
7660 	err = ufshcd_try_to_abort_task(hba, tag);
7661 	if (err) {
7662 		dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7663 		ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7664 		err = FAILED;
7665 		goto release;
7666 	}
7667 
7668 	/*
7669 	 * Clear the corresponding bit from outstanding_reqs since the command
7670 	 * has been aborted successfully.
7671 	 */
7672 	spin_lock_irqsave(&hba->outstanding_lock, flags);
7673 	outstanding = __test_and_clear_bit(tag, &hba->outstanding_reqs);
7674 	spin_unlock_irqrestore(&hba->outstanding_lock, flags);
7675 
7676 	if (outstanding)
7677 		ufshcd_release_scsi_cmd(hba, lrbp);
7678 
7679 	err = SUCCESS;
7680 
7681 release:
7682 	/* Matches the ufshcd_hold() call at the start of this function. */
7683 	ufshcd_release(hba);
7684 	return err;
7685 }
7686 
7687 /**
7688  * ufshcd_host_reset_and_restore - reset and restore host controller
7689  * @hba: per-adapter instance
7690  *
7691  * Note that host controller reset may issue DME_RESET to
7692  * local and remote (device) Uni-Pro stack and the attributes
7693  * are reset to default state.
7694  *
7695  * Return: zero on success, non-zero on failure.
7696  */
ufshcd_host_reset_and_restore(struct ufs_hba * hba)7697 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7698 {
7699 	int err;
7700 
7701 	/*
7702 	 * Stop the host controller and complete the requests
7703 	 * cleared by h/w
7704 	 */
7705 	ufshcd_hba_stop(hba);
7706 	hba->silence_err_logs = true;
7707 	ufshcd_complete_requests(hba, true);
7708 	hba->silence_err_logs = false;
7709 
7710 	/* scale up clocks to max frequency before full reinitialization */
7711 	ufshcd_scale_clks(hba, true);
7712 
7713 	err = ufshcd_hba_enable(hba);
7714 
7715 	/* Establish the link again and restore the device */
7716 	if (!err)
7717 		err = ufshcd_probe_hba(hba, false);
7718 
7719 	if (err)
7720 		dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7721 	ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7722 	return err;
7723 }
7724 
7725 /**
7726  * ufshcd_reset_and_restore - reset and re-initialize host/device
7727  * @hba: per-adapter instance
7728  *
7729  * Reset and recover device, host and re-establish link. This
7730  * is helpful to recover the communication in fatal error conditions.
7731  *
7732  * Return: zero on success, non-zero on failure.
7733  */
ufshcd_reset_and_restore(struct ufs_hba * hba)7734 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7735 {
7736 	u32 saved_err = 0;
7737 	u32 saved_uic_err = 0;
7738 	int err = 0;
7739 	unsigned long flags;
7740 	int retries = MAX_HOST_RESET_RETRIES;
7741 
7742 	spin_lock_irqsave(hba->host->host_lock, flags);
7743 	do {
7744 		/*
7745 		 * This is a fresh start, cache and clear saved error first,
7746 		 * in case new error generated during reset and restore.
7747 		 */
7748 		saved_err |= hba->saved_err;
7749 		saved_uic_err |= hba->saved_uic_err;
7750 		hba->saved_err = 0;
7751 		hba->saved_uic_err = 0;
7752 		hba->force_reset = false;
7753 		hba->ufshcd_state = UFSHCD_STATE_RESET;
7754 		spin_unlock_irqrestore(hba->host->host_lock, flags);
7755 
7756 		/* Reset the attached device */
7757 		ufshcd_device_reset(hba);
7758 
7759 		err = ufshcd_host_reset_and_restore(hba);
7760 
7761 		spin_lock_irqsave(hba->host->host_lock, flags);
7762 		if (err)
7763 			continue;
7764 		/* Do not exit unless operational or dead */
7765 		if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL &&
7766 		    hba->ufshcd_state != UFSHCD_STATE_ERROR &&
7767 		    hba->ufshcd_state != UFSHCD_STATE_EH_SCHEDULED_NON_FATAL)
7768 			err = -EAGAIN;
7769 	} while (err && --retries);
7770 
7771 	/*
7772 	 * Inform scsi mid-layer that we did reset and allow to handle
7773 	 * Unit Attention properly.
7774 	 */
7775 	scsi_report_bus_reset(hba->host, 0);
7776 	if (err) {
7777 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
7778 		hba->saved_err |= saved_err;
7779 		hba->saved_uic_err |= saved_uic_err;
7780 	}
7781 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7782 
7783 	return err;
7784 }
7785 
7786 /**
7787  * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7788  * @cmd: SCSI command pointer
7789  *
7790  * Return: SUCCESS or FAILED.
7791  */
ufshcd_eh_host_reset_handler(struct scsi_cmnd * cmd)7792 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7793 {
7794 	int err = SUCCESS;
7795 	unsigned long flags;
7796 	struct ufs_hba *hba;
7797 
7798 	hba = shost_priv(cmd->device->host);
7799 
7800 	spin_lock_irqsave(hba->host->host_lock, flags);
7801 	hba->force_reset = true;
7802 	ufshcd_schedule_eh_work(hba);
7803 	dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7804 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7805 
7806 	flush_work(&hba->eh_work);
7807 
7808 	spin_lock_irqsave(hba->host->host_lock, flags);
7809 	if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7810 		err = FAILED;
7811 	spin_unlock_irqrestore(hba->host->host_lock, flags);
7812 
7813 	return err;
7814 }
7815 
7816 /**
7817  * ufshcd_get_max_icc_level - calculate the ICC level
7818  * @sup_curr_uA: max. current supported by the regulator
7819  * @start_scan: row at the desc table to start scan from
7820  * @buff: power descriptor buffer
7821  *
7822  * Return: calculated max ICC level for specific regulator.
7823  */
ufshcd_get_max_icc_level(int sup_curr_uA,u32 start_scan,const char * buff)7824 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan,
7825 				    const char *buff)
7826 {
7827 	int i;
7828 	int curr_uA;
7829 	u16 data;
7830 	u16 unit;
7831 
7832 	for (i = start_scan; i >= 0; i--) {
7833 		data = get_unaligned_be16(&buff[2 * i]);
7834 		unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7835 						ATTR_ICC_LVL_UNIT_OFFSET;
7836 		curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7837 		switch (unit) {
7838 		case UFSHCD_NANO_AMP:
7839 			curr_uA = curr_uA / 1000;
7840 			break;
7841 		case UFSHCD_MILI_AMP:
7842 			curr_uA = curr_uA * 1000;
7843 			break;
7844 		case UFSHCD_AMP:
7845 			curr_uA = curr_uA * 1000 * 1000;
7846 			break;
7847 		case UFSHCD_MICRO_AMP:
7848 		default:
7849 			break;
7850 		}
7851 		if (sup_curr_uA >= curr_uA)
7852 			break;
7853 	}
7854 	if (i < 0) {
7855 		i = 0;
7856 		pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7857 	}
7858 
7859 	return (u32)i;
7860 }
7861 
7862 /**
7863  * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7864  * In case regulators are not initialized we'll return 0
7865  * @hba: per-adapter instance
7866  * @desc_buf: power descriptor buffer to extract ICC levels from.
7867  *
7868  * Return: calculated ICC level.
7869  */
ufshcd_find_max_sup_active_icc_level(struct ufs_hba * hba,const u8 * desc_buf)7870 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7871 						const u8 *desc_buf)
7872 {
7873 	u32 icc_level = 0;
7874 
7875 	if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7876 						!hba->vreg_info.vccq2) {
7877 		/*
7878 		 * Using dev_dbg to avoid messages during runtime PM to avoid
7879 		 * never-ending cycles of messages written back to storage by
7880 		 * user space causing runtime resume, causing more messages and
7881 		 * so on.
7882 		 */
7883 		dev_dbg(hba->dev,
7884 			"%s: Regulator capability was not set, actvIccLevel=%d",
7885 							__func__, icc_level);
7886 		goto out;
7887 	}
7888 
7889 	if (hba->vreg_info.vcc->max_uA)
7890 		icc_level = ufshcd_get_max_icc_level(
7891 				hba->vreg_info.vcc->max_uA,
7892 				POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7893 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7894 
7895 	if (hba->vreg_info.vccq->max_uA)
7896 		icc_level = ufshcd_get_max_icc_level(
7897 				hba->vreg_info.vccq->max_uA,
7898 				icc_level,
7899 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7900 
7901 	if (hba->vreg_info.vccq2->max_uA)
7902 		icc_level = ufshcd_get_max_icc_level(
7903 				hba->vreg_info.vccq2->max_uA,
7904 				icc_level,
7905 				&desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7906 out:
7907 	return icc_level;
7908 }
7909 
ufshcd_set_active_icc_lvl(struct ufs_hba * hba)7910 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7911 {
7912 	int ret;
7913 	u8 *desc_buf;
7914 	u32 icc_level;
7915 
7916 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7917 	if (!desc_buf)
7918 		return;
7919 
7920 	ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7921 				     desc_buf, QUERY_DESC_MAX_SIZE);
7922 	if (ret) {
7923 		dev_err(hba->dev,
7924 			"%s: Failed reading power descriptor ret = %d",
7925 			__func__, ret);
7926 		goto out;
7927 	}
7928 
7929 	icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf);
7930 	dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7931 
7932 	ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7933 		QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7934 
7935 	if (ret)
7936 		dev_err(hba->dev,
7937 			"%s: Failed configuring bActiveICCLevel = %d ret = %d",
7938 			__func__, icc_level, ret);
7939 
7940 out:
7941 	kfree(desc_buf);
7942 }
7943 
ufshcd_blk_pm_runtime_init(struct scsi_device * sdev)7944 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7945 {
7946 	scsi_autopm_get_device(sdev);
7947 	blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7948 	if (sdev->rpm_autosuspend)
7949 		pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7950 						 RPM_AUTOSUSPEND_DELAY_MS);
7951 	scsi_autopm_put_device(sdev);
7952 }
7953 
7954 /**
7955  * ufshcd_scsi_add_wlus - Adds required W-LUs
7956  * @hba: per-adapter instance
7957  *
7958  * UFS device specification requires the UFS devices to support 4 well known
7959  * logical units:
7960  *	"REPORT_LUNS" (address: 01h)
7961  *	"UFS Device" (address: 50h)
7962  *	"RPMB" (address: 44h)
7963  *	"BOOT" (address: 30h)
7964  * UFS device's power management needs to be controlled by "POWER CONDITION"
7965  * field of SSU (START STOP UNIT) command. But this "power condition" field
7966  * will take effect only when its sent to "UFS device" well known logical unit
7967  * hence we require the scsi_device instance to represent this logical unit in
7968  * order for the UFS host driver to send the SSU command for power management.
7969  *
7970  * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7971  * Block) LU so user space process can control this LU. User space may also
7972  * want to have access to BOOT LU.
7973  *
7974  * This function adds scsi device instances for each of all well known LUs
7975  * (except "REPORT LUNS" LU).
7976  *
7977  * Return: zero on success (all required W-LUs are added successfully),
7978  * non-zero error value on failure (if failed to add any of the required W-LU).
7979  */
ufshcd_scsi_add_wlus(struct ufs_hba * hba)7980 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7981 {
7982 	int ret = 0;
7983 	struct scsi_device *sdev_boot, *sdev_rpmb;
7984 
7985 	hba->ufs_device_wlun = __scsi_add_device(hba->host, 0, 0,
7986 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7987 	if (IS_ERR(hba->ufs_device_wlun)) {
7988 		ret = PTR_ERR(hba->ufs_device_wlun);
7989 		hba->ufs_device_wlun = NULL;
7990 		goto out;
7991 	}
7992 	scsi_device_put(hba->ufs_device_wlun);
7993 
7994 	sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7995 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7996 	if (IS_ERR(sdev_rpmb)) {
7997 		ret = PTR_ERR(sdev_rpmb);
7998 		goto remove_ufs_device_wlun;
7999 	}
8000 	ufshcd_blk_pm_runtime_init(sdev_rpmb);
8001 	scsi_device_put(sdev_rpmb);
8002 
8003 	sdev_boot = __scsi_add_device(hba->host, 0, 0,
8004 		ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
8005 	if (IS_ERR(sdev_boot)) {
8006 		dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
8007 	} else {
8008 		ufshcd_blk_pm_runtime_init(sdev_boot);
8009 		scsi_device_put(sdev_boot);
8010 	}
8011 	goto out;
8012 
8013 remove_ufs_device_wlun:
8014 	scsi_remove_device(hba->ufs_device_wlun);
8015 out:
8016 	return ret;
8017 }
8018 
ufshcd_wb_probe(struct ufs_hba * hba,const u8 * desc_buf)8019 static void ufshcd_wb_probe(struct ufs_hba *hba, const u8 *desc_buf)
8020 {
8021 	struct ufs_dev_info *dev_info = &hba->dev_info;
8022 	u8 lun;
8023 	u32 d_lu_wb_buf_alloc;
8024 	u32 ext_ufs_feature;
8025 
8026 	if (!ufshcd_is_wb_allowed(hba))
8027 		return;
8028 
8029 	/*
8030 	 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
8031 	 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
8032 	 * enabled
8033 	 */
8034 	if (!(dev_info->wspecversion >= 0x310 ||
8035 	      dev_info->wspecversion == 0x220 ||
8036 	     (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
8037 		goto wb_disabled;
8038 
8039 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8040 					DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8041 
8042 	if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
8043 		goto wb_disabled;
8044 
8045 	/*
8046 	 * WB may be supported but not configured while provisioning. The spec
8047 	 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
8048 	 * buffer configured.
8049 	 */
8050 	dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
8051 
8052 	dev_info->b_presrv_uspc_en =
8053 		desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
8054 
8055 	if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
8056 		if (!get_unaligned_be32(desc_buf +
8057 				   DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
8058 			goto wb_disabled;
8059 	} else {
8060 		for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
8061 			d_lu_wb_buf_alloc = 0;
8062 			ufshcd_read_unit_desc_param(hba,
8063 					lun,
8064 					UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
8065 					(u8 *)&d_lu_wb_buf_alloc,
8066 					sizeof(d_lu_wb_buf_alloc));
8067 			if (d_lu_wb_buf_alloc) {
8068 				dev_info->wb_dedicated_lu = lun;
8069 				break;
8070 			}
8071 		}
8072 
8073 		if (!d_lu_wb_buf_alloc)
8074 			goto wb_disabled;
8075 	}
8076 
8077 	if (!ufshcd_is_wb_buf_lifetime_available(hba))
8078 		goto wb_disabled;
8079 
8080 	return;
8081 
8082 wb_disabled:
8083 	hba->caps &= ~UFSHCD_CAP_WB_EN;
8084 }
8085 
ufshcd_temp_notif_probe(struct ufs_hba * hba,const u8 * desc_buf)8086 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, const u8 *desc_buf)
8087 {
8088 	struct ufs_dev_info *dev_info = &hba->dev_info;
8089 	u32 ext_ufs_feature;
8090 	u8 mask = 0;
8091 
8092 	if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
8093 		return;
8094 
8095 	ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8096 
8097 	if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
8098 		mask |= MASK_EE_TOO_LOW_TEMP;
8099 
8100 	if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
8101 		mask |= MASK_EE_TOO_HIGH_TEMP;
8102 
8103 	if (mask) {
8104 		ufshcd_enable_ee(hba, mask);
8105 		ufs_hwmon_probe(hba, mask);
8106 	}
8107 }
8108 
ufshcd_ext_iid_probe(struct ufs_hba * hba,u8 * desc_buf)8109 static void ufshcd_ext_iid_probe(struct ufs_hba *hba, u8 *desc_buf)
8110 {
8111 	struct ufs_dev_info *dev_info = &hba->dev_info;
8112 	u32 ext_ufs_feature;
8113 	u32 ext_iid_en = 0;
8114 	int err;
8115 
8116 	/* Only UFS-4.0 and above may support EXT_IID */
8117 	if (dev_info->wspecversion < 0x400)
8118 		goto out;
8119 
8120 	ext_ufs_feature = get_unaligned_be32(desc_buf +
8121 				     DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
8122 	if (!(ext_ufs_feature & UFS_DEV_EXT_IID_SUP))
8123 		goto out;
8124 
8125 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8126 				      QUERY_ATTR_IDN_EXT_IID_EN, 0, 0, &ext_iid_en);
8127 	if (err)
8128 		dev_err(hba->dev, "failed reading bEXTIIDEn. err = %d\n", err);
8129 
8130 out:
8131 	dev_info->b_ext_iid_en = ext_iid_en;
8132 }
8133 
ufshcd_fixup_dev_quirks(struct ufs_hba * hba,const struct ufs_dev_quirk * fixups)8134 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba,
8135 			     const struct ufs_dev_quirk *fixups)
8136 {
8137 	const struct ufs_dev_quirk *f;
8138 	struct ufs_dev_info *dev_info = &hba->dev_info;
8139 
8140 	if (!fixups)
8141 		return;
8142 
8143 	for (f = fixups; f->quirk; f++) {
8144 		if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
8145 		     f->wmanufacturerid == UFS_ANY_VENDOR) &&
8146 		     ((dev_info->model &&
8147 		       STR_PRFX_EQUAL(f->model, dev_info->model)) ||
8148 		      !strcmp(f->model, UFS_ANY_MODEL)))
8149 			hba->dev_quirks |= f->quirk;
8150 	}
8151 }
8152 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
8153 
ufs_fixup_device_setup(struct ufs_hba * hba)8154 static void ufs_fixup_device_setup(struct ufs_hba *hba)
8155 {
8156 	/* fix by general quirk table */
8157 	ufshcd_fixup_dev_quirks(hba, ufs_fixups);
8158 
8159 	/* allow vendors to fix quirks */
8160 	ufshcd_vops_fixup_dev_quirks(hba);
8161 }
8162 
ufshcd_update_rtc(struct ufs_hba * hba)8163 static void ufshcd_update_rtc(struct ufs_hba *hba)
8164 {
8165 	struct timespec64 ts64;
8166 	int err;
8167 	u32 val;
8168 
8169 	ktime_get_real_ts64(&ts64);
8170 
8171 	if (ts64.tv_sec < hba->dev_info.rtc_time_baseline) {
8172 		dev_warn_once(hba->dev, "%s: Current time precedes previous setting!\n", __func__);
8173 		return;
8174 	}
8175 
8176 	/*
8177 	 * The Absolute RTC mode has a 136-year limit, spanning from 2010 to 2146. If a time beyond
8178 	 * 2146 is required, it is recommended to choose the relative RTC mode.
8179 	 */
8180 	val = ts64.tv_sec - hba->dev_info.rtc_time_baseline;
8181 
8182 	/* Skip update RTC if RPM state is not RPM_ACTIVE */
8183 	if (ufshcd_rpm_get_if_active(hba) <= 0)
8184 		return;
8185 
8186 	err = ufshcd_query_attr(hba, UPIU_QUERY_OPCODE_WRITE_ATTR, QUERY_ATTR_IDN_SECONDS_PASSED,
8187 				0, 0, &val);
8188 	ufshcd_rpm_put(hba);
8189 
8190 	if (err)
8191 		dev_err(hba->dev, "%s: Failed to update rtc %d\n", __func__, err);
8192 	else if (hba->dev_info.rtc_type == UFS_RTC_RELATIVE)
8193 		hba->dev_info.rtc_time_baseline = ts64.tv_sec;
8194 }
8195 
ufshcd_rtc_work(struct work_struct * work)8196 static void ufshcd_rtc_work(struct work_struct *work)
8197 {
8198 	struct ufs_hba *hba;
8199 
8200 	hba = container_of(to_delayed_work(work), struct ufs_hba, ufs_rtc_update_work);
8201 
8202 	 /* Update RTC only when there are no requests in progress and UFSHCI is operational */
8203 	if (!ufshcd_is_ufs_dev_busy(hba) &&
8204 	    hba->ufshcd_state == UFSHCD_STATE_OPERATIONAL &&
8205 	    !hba->clk_gating.active_reqs)
8206 		ufshcd_update_rtc(hba);
8207 
8208 	if (ufshcd_is_ufs_dev_active(hba))
8209 		schedule_delayed_work(&hba->ufs_rtc_update_work,
8210 				      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
8211 }
8212 
ufs_init_rtc(struct ufs_hba * hba,u8 * desc_buf)8213 static void ufs_init_rtc(struct ufs_hba *hba, u8 *desc_buf)
8214 {
8215 	u16 periodic_rtc_update = get_unaligned_be16(&desc_buf[DEVICE_DESC_PARAM_FRQ_RTC]);
8216 	struct ufs_dev_info *dev_info = &hba->dev_info;
8217 
8218 	if (periodic_rtc_update & UFS_RTC_TIME_BASELINE) {
8219 		dev_info->rtc_type = UFS_RTC_ABSOLUTE;
8220 
8221 		/*
8222 		 * The concept of measuring time in Linux as the number of seconds elapsed since
8223 		 * 00:00:00 UTC on January 1, 1970, and UFS ABS RTC is elapsed from January 1st
8224 		 * 2010 00:00, here we need to adjust ABS baseline.
8225 		 */
8226 		dev_info->rtc_time_baseline = mktime64(2010, 1, 1, 0, 0, 0) -
8227 							mktime64(1970, 1, 1, 0, 0, 0);
8228 	} else {
8229 		dev_info->rtc_type = UFS_RTC_RELATIVE;
8230 		dev_info->rtc_time_baseline = 0;
8231 	}
8232 }
8233 
ufs_get_device_desc(struct ufs_hba * hba)8234 static int ufs_get_device_desc(struct ufs_hba *hba)
8235 {
8236 	int err;
8237 	u8 model_index;
8238 	u8 *desc_buf;
8239 	struct ufs_dev_info *dev_info = &hba->dev_info;
8240 
8241 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8242 	if (!desc_buf) {
8243 		err = -ENOMEM;
8244 		goto out;
8245 	}
8246 
8247 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
8248 				     QUERY_DESC_MAX_SIZE);
8249 	if (err) {
8250 		dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
8251 			__func__, err);
8252 		goto out;
8253 	}
8254 
8255 	/*
8256 	 * getting vendor (manufacturerID) and Bank Index in big endian
8257 	 * format
8258 	 */
8259 	dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
8260 				     desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
8261 
8262 	/* getting Specification Version in big endian format */
8263 	dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
8264 				      desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
8265 	dev_info->bqueuedepth = desc_buf[DEVICE_DESC_PARAM_Q_DPTH];
8266 
8267 	model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
8268 
8269 	err = ufshcd_read_string_desc(hba, model_index,
8270 				      &dev_info->model, SD_ASCII_STD);
8271 	if (err < 0) {
8272 		dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
8273 			__func__, err);
8274 		goto out;
8275 	}
8276 
8277 	hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
8278 		desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
8279 
8280 	ufs_fixup_device_setup(hba);
8281 
8282 	ufshcd_wb_probe(hba, desc_buf);
8283 
8284 	ufshcd_temp_notif_probe(hba, desc_buf);
8285 
8286 	ufs_init_rtc(hba, desc_buf);
8287 
8288 	if (hba->ext_iid_sup)
8289 		ufshcd_ext_iid_probe(hba, desc_buf);
8290 
8291 	/*
8292 	 * ufshcd_read_string_desc returns size of the string
8293 	 * reset the error value
8294 	 */
8295 	err = 0;
8296 
8297 out:
8298 	kfree(desc_buf);
8299 	return err;
8300 }
8301 
ufs_put_device_desc(struct ufs_hba * hba)8302 static void ufs_put_device_desc(struct ufs_hba *hba)
8303 {
8304 	struct ufs_dev_info *dev_info = &hba->dev_info;
8305 
8306 	kfree(dev_info->model);
8307 	dev_info->model = NULL;
8308 }
8309 
8310 /**
8311  * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
8312  * @hba: per-adapter instance
8313  *
8314  * PA_TActivate parameter can be tuned manually if UniPro version is less than
8315  * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
8316  * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
8317  * the hibern8 exit latency.
8318  *
8319  * Return: zero on success, non-zero error value on failure.
8320  */
ufshcd_tune_pa_tactivate(struct ufs_hba * hba)8321 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
8322 {
8323 	int ret = 0;
8324 	u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
8325 
8326 	ret = ufshcd_dme_peer_get(hba,
8327 				  UIC_ARG_MIB_SEL(
8328 					RX_MIN_ACTIVATETIME_CAPABILITY,
8329 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8330 				  &peer_rx_min_activatetime);
8331 	if (ret)
8332 		goto out;
8333 
8334 	/* make sure proper unit conversion is applied */
8335 	tuned_pa_tactivate =
8336 		((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
8337 		 / PA_TACTIVATE_TIME_UNIT_US);
8338 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8339 			     tuned_pa_tactivate);
8340 
8341 out:
8342 	return ret;
8343 }
8344 
8345 /**
8346  * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
8347  * @hba: per-adapter instance
8348  *
8349  * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
8350  * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
8351  * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
8352  * This optimal value can help reduce the hibern8 exit latency.
8353  *
8354  * Return: zero on success, non-zero error value on failure.
8355  */
ufshcd_tune_pa_hibern8time(struct ufs_hba * hba)8356 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
8357 {
8358 	int ret = 0;
8359 	u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
8360 	u32 max_hibern8_time, tuned_pa_hibern8time;
8361 
8362 	ret = ufshcd_dme_get(hba,
8363 			     UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
8364 					UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
8365 				  &local_tx_hibern8_time_cap);
8366 	if (ret)
8367 		goto out;
8368 
8369 	ret = ufshcd_dme_peer_get(hba,
8370 				  UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
8371 					UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
8372 				  &peer_rx_hibern8_time_cap);
8373 	if (ret)
8374 		goto out;
8375 
8376 	max_hibern8_time = max(local_tx_hibern8_time_cap,
8377 			       peer_rx_hibern8_time_cap);
8378 	/* make sure proper unit conversion is applied */
8379 	tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
8380 				/ PA_HIBERN8_TIME_UNIT_US);
8381 	ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
8382 			     tuned_pa_hibern8time);
8383 out:
8384 	return ret;
8385 }
8386 
8387 /**
8388  * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
8389  * less than device PA_TACTIVATE time.
8390  * @hba: per-adapter instance
8391  *
8392  * Some UFS devices require host PA_TACTIVATE to be lower than device
8393  * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
8394  * for such devices.
8395  *
8396  * Return: zero on success, non-zero error value on failure.
8397  */
ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba * hba)8398 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
8399 {
8400 	int ret = 0;
8401 	u32 granularity, peer_granularity;
8402 	u32 pa_tactivate, peer_pa_tactivate;
8403 	u32 pa_tactivate_us, peer_pa_tactivate_us;
8404 	static const u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
8405 
8406 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8407 				  &granularity);
8408 	if (ret)
8409 		goto out;
8410 
8411 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
8412 				  &peer_granularity);
8413 	if (ret)
8414 		goto out;
8415 
8416 	if ((granularity < PA_GRANULARITY_MIN_VAL) ||
8417 	    (granularity > PA_GRANULARITY_MAX_VAL)) {
8418 		dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
8419 			__func__, granularity);
8420 		return -EINVAL;
8421 	}
8422 
8423 	if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
8424 	    (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
8425 		dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
8426 			__func__, peer_granularity);
8427 		return -EINVAL;
8428 	}
8429 
8430 	ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
8431 	if (ret)
8432 		goto out;
8433 
8434 	ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
8435 				  &peer_pa_tactivate);
8436 	if (ret)
8437 		goto out;
8438 
8439 	pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
8440 	peer_pa_tactivate_us = peer_pa_tactivate *
8441 			     gran_to_us_table[peer_granularity - 1];
8442 
8443 	if (pa_tactivate_us >= peer_pa_tactivate_us) {
8444 		u32 new_peer_pa_tactivate;
8445 
8446 		new_peer_pa_tactivate = pa_tactivate_us /
8447 				      gran_to_us_table[peer_granularity - 1];
8448 		new_peer_pa_tactivate++;
8449 		ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
8450 					  new_peer_pa_tactivate);
8451 	}
8452 
8453 out:
8454 	return ret;
8455 }
8456 
ufshcd_tune_unipro_params(struct ufs_hba * hba)8457 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
8458 {
8459 	if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
8460 		ufshcd_tune_pa_tactivate(hba);
8461 		ufshcd_tune_pa_hibern8time(hba);
8462 	}
8463 
8464 	ufshcd_vops_apply_dev_quirks(hba);
8465 
8466 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
8467 		/* set 1ms timeout for PA_TACTIVATE */
8468 		ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
8469 
8470 	if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
8471 		ufshcd_quirk_tune_host_pa_tactivate(hba);
8472 }
8473 
ufshcd_clear_dbg_ufs_stats(struct ufs_hba * hba)8474 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
8475 {
8476 	hba->ufs_stats.hibern8_exit_cnt = 0;
8477 	hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
8478 	hba->req_abort_count = 0;
8479 }
8480 
ufshcd_device_geo_params_init(struct ufs_hba * hba)8481 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
8482 {
8483 	int err;
8484 	u8 *desc_buf;
8485 
8486 	desc_buf = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
8487 	if (!desc_buf) {
8488 		err = -ENOMEM;
8489 		goto out;
8490 	}
8491 
8492 	err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
8493 				     desc_buf, QUERY_DESC_MAX_SIZE);
8494 	if (err) {
8495 		dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
8496 				__func__, err);
8497 		goto out;
8498 	}
8499 
8500 	if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
8501 		hba->dev_info.max_lu_supported = 32;
8502 	else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
8503 		hba->dev_info.max_lu_supported = 8;
8504 
8505 out:
8506 	kfree(desc_buf);
8507 	return err;
8508 }
8509 
8510 struct ufs_ref_clk {
8511 	unsigned long freq_hz;
8512 	enum ufs_ref_clk_freq val;
8513 };
8514 
8515 static const struct ufs_ref_clk ufs_ref_clk_freqs[] = {
8516 	{19200000, REF_CLK_FREQ_19_2_MHZ},
8517 	{26000000, REF_CLK_FREQ_26_MHZ},
8518 	{38400000, REF_CLK_FREQ_38_4_MHZ},
8519 	{52000000, REF_CLK_FREQ_52_MHZ},
8520 	{0, REF_CLK_FREQ_INVAL},
8521 };
8522 
8523 static enum ufs_ref_clk_freq
ufs_get_bref_clk_from_hz(unsigned long freq)8524 ufs_get_bref_clk_from_hz(unsigned long freq)
8525 {
8526 	int i;
8527 
8528 	for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
8529 		if (ufs_ref_clk_freqs[i].freq_hz == freq)
8530 			return ufs_ref_clk_freqs[i].val;
8531 
8532 	return REF_CLK_FREQ_INVAL;
8533 }
8534 
ufshcd_parse_dev_ref_clk_freq(struct ufs_hba * hba,struct clk * refclk)8535 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
8536 {
8537 	unsigned long freq;
8538 
8539 	freq = clk_get_rate(refclk);
8540 
8541 	hba->dev_ref_clk_freq =
8542 		ufs_get_bref_clk_from_hz(freq);
8543 
8544 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
8545 		dev_err(hba->dev,
8546 		"invalid ref_clk setting = %ld\n", freq);
8547 }
8548 
ufshcd_set_dev_ref_clk(struct ufs_hba * hba)8549 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
8550 {
8551 	int err;
8552 	u32 ref_clk;
8553 	u32 freq = hba->dev_ref_clk_freq;
8554 
8555 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8556 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8557 
8558 	if (err) {
8559 		dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8560 			err);
8561 		goto out;
8562 	}
8563 
8564 	if (ref_clk == freq)
8565 		goto out; /* nothing to update */
8566 
8567 	err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8568 			QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8569 
8570 	if (err) {
8571 		dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8572 			ufs_ref_clk_freqs[freq].freq_hz);
8573 		goto out;
8574 	}
8575 
8576 	dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8577 			ufs_ref_clk_freqs[freq].freq_hz);
8578 
8579 out:
8580 	return err;
8581 }
8582 
ufshcd_device_params_init(struct ufs_hba * hba)8583 static int ufshcd_device_params_init(struct ufs_hba *hba)
8584 {
8585 	bool flag;
8586 	int ret;
8587 
8588 	/* Init UFS geometry descriptor related parameters */
8589 	ret = ufshcd_device_geo_params_init(hba);
8590 	if (ret)
8591 		goto out;
8592 
8593 	/* Check and apply UFS device quirks */
8594 	ret = ufs_get_device_desc(hba);
8595 	if (ret) {
8596 		dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8597 			__func__, ret);
8598 		goto out;
8599 	}
8600 
8601 	ufshcd_get_ref_clk_gating_wait(hba);
8602 
8603 	if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8604 			QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8605 		hba->dev_info.f_power_on_wp_en = flag;
8606 
8607 	/* Probe maximum power mode co-supported by both UFS host and device */
8608 	if (ufshcd_get_max_pwr_mode(hba))
8609 		dev_err(hba->dev,
8610 			"%s: Failed getting max supported power mode\n",
8611 			__func__);
8612 out:
8613 	return ret;
8614 }
8615 
ufshcd_set_timestamp_attr(struct ufs_hba * hba)8616 static void ufshcd_set_timestamp_attr(struct ufs_hba *hba)
8617 {
8618 	int err;
8619 	struct ufs_query_req *request = NULL;
8620 	struct ufs_query_res *response = NULL;
8621 	struct ufs_dev_info *dev_info = &hba->dev_info;
8622 	struct utp_upiu_query_v4_0 *upiu_data;
8623 
8624 	if (dev_info->wspecversion < 0x400)
8625 		return;
8626 
8627 	ufshcd_hold(hba);
8628 
8629 	mutex_lock(&hba->dev_cmd.lock);
8630 
8631 	ufshcd_init_query(hba, &request, &response,
8632 			  UPIU_QUERY_OPCODE_WRITE_ATTR,
8633 			  QUERY_ATTR_IDN_TIMESTAMP, 0, 0);
8634 
8635 	request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
8636 
8637 	upiu_data = (struct utp_upiu_query_v4_0 *)&request->upiu_req;
8638 
8639 	put_unaligned_be64(ktime_get_real_ns(), &upiu_data->osf3);
8640 
8641 	err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
8642 
8643 	if (err)
8644 		dev_err(hba->dev, "%s: failed to set timestamp %d\n",
8645 			__func__, err);
8646 
8647 	mutex_unlock(&hba->dev_cmd.lock);
8648 	ufshcd_release(hba);
8649 }
8650 
8651 /**
8652  * ufshcd_add_lus - probe and add UFS logical units
8653  * @hba: per-adapter instance
8654  *
8655  * Return: 0 upon success; < 0 upon failure.
8656  */
ufshcd_add_lus(struct ufs_hba * hba)8657 static int ufshcd_add_lus(struct ufs_hba *hba)
8658 {
8659 	int ret;
8660 
8661 	/* Add required well known logical units to scsi mid layer */
8662 	ret = ufshcd_scsi_add_wlus(hba);
8663 	if (ret)
8664 		goto out;
8665 
8666 	/* Initialize devfreq after UFS device is detected */
8667 	if (ufshcd_is_clkscaling_supported(hba)) {
8668 		memcpy(&hba->clk_scaling.saved_pwr_info,
8669 			&hba->pwr_info,
8670 			sizeof(struct ufs_pa_layer_attr));
8671 		hba->clk_scaling.is_allowed = true;
8672 
8673 		ret = ufshcd_devfreq_init(hba);
8674 		if (ret)
8675 			goto out;
8676 
8677 		hba->clk_scaling.is_enabled = true;
8678 		ufshcd_init_clk_scaling_sysfs(hba);
8679 	}
8680 
8681 	/*
8682 	 * The RTC update code accesses the hba->ufs_device_wlun->sdev_gendev
8683 	 * pointer and hence must only be started after the WLUN pointer has
8684 	 * been initialized by ufshcd_scsi_add_wlus().
8685 	 */
8686 	schedule_delayed_work(&hba->ufs_rtc_update_work,
8687 			      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
8688 
8689 	ufs_bsg_probe(hba);
8690 	scsi_scan_host(hba->host);
8691 
8692 out:
8693 	return ret;
8694 }
8695 
8696 /* SDB - Single Doorbell */
ufshcd_release_sdb_queue(struct ufs_hba * hba,int nutrs)8697 static void ufshcd_release_sdb_queue(struct ufs_hba *hba, int nutrs)
8698 {
8699 	size_t ucdl_size, utrdl_size;
8700 
8701 	ucdl_size = ufshcd_get_ucd_size(hba) * nutrs;
8702 	dmam_free_coherent(hba->dev, ucdl_size, hba->ucdl_base_addr,
8703 			   hba->ucdl_dma_addr);
8704 
8705 	utrdl_size = sizeof(struct utp_transfer_req_desc) * nutrs;
8706 	dmam_free_coherent(hba->dev, utrdl_size, hba->utrdl_base_addr,
8707 			   hba->utrdl_dma_addr);
8708 
8709 	devm_kfree(hba->dev, hba->lrb);
8710 }
8711 
ufshcd_alloc_mcq(struct ufs_hba * hba)8712 static int ufshcd_alloc_mcq(struct ufs_hba *hba)
8713 {
8714 	int ret;
8715 	int old_nutrs = hba->nutrs;
8716 
8717 	ret = ufshcd_mcq_decide_queue_depth(hba);
8718 	if (ret < 0)
8719 		return ret;
8720 
8721 	hba->nutrs = ret;
8722 	ret = ufshcd_mcq_init(hba);
8723 	if (ret)
8724 		goto err;
8725 
8726 	/*
8727 	 * Previously allocated memory for nutrs may not be enough in MCQ mode.
8728 	 * Number of supported tags in MCQ mode may be larger than SDB mode.
8729 	 */
8730 	if (hba->nutrs != old_nutrs) {
8731 		ufshcd_release_sdb_queue(hba, old_nutrs);
8732 		ret = ufshcd_memory_alloc(hba);
8733 		if (ret)
8734 			goto err;
8735 		ufshcd_host_memory_configure(hba);
8736 	}
8737 
8738 	ret = ufshcd_mcq_memory_alloc(hba);
8739 	if (ret)
8740 		goto err;
8741 
8742 	return 0;
8743 err:
8744 	hba->nutrs = old_nutrs;
8745 	return ret;
8746 }
8747 
ufshcd_config_mcq(struct ufs_hba * hba)8748 static void ufshcd_config_mcq(struct ufs_hba *hba)
8749 {
8750 	int ret;
8751 	u32 intrs;
8752 
8753 	ret = ufshcd_mcq_vops_config_esi(hba);
8754 	dev_info(hba->dev, "ESI %sconfigured\n", ret ? "is not " : "");
8755 
8756 	intrs = UFSHCD_ENABLE_MCQ_INTRS;
8757 	if (hba->quirks & UFSHCD_QUIRK_MCQ_BROKEN_INTR)
8758 		intrs &= ~MCQ_CQ_EVENT_STATUS;
8759 	ufshcd_enable_intr(hba, intrs);
8760 	ufshcd_mcq_make_queues_operational(hba);
8761 	ufshcd_mcq_config_mac(hba, hba->nutrs);
8762 
8763 	hba->host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
8764 	hba->reserved_slot = hba->nutrs - UFSHCD_NUM_RESERVED;
8765 
8766 	/* Select MCQ mode */
8767 	ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x1,
8768 		      REG_UFS_MEM_CFG);
8769 	hba->mcq_enabled = true;
8770 
8771 	dev_info(hba->dev, "MCQ configured, nr_queues=%d, io_queues=%d, read_queue=%d, poll_queues=%d, queue_depth=%d\n",
8772 		 hba->nr_hw_queues, hba->nr_queues[HCTX_TYPE_DEFAULT],
8773 		 hba->nr_queues[HCTX_TYPE_READ], hba->nr_queues[HCTX_TYPE_POLL],
8774 		 hba->nutrs);
8775 }
8776 
ufshcd_device_init(struct ufs_hba * hba,bool init_dev_params)8777 static int ufshcd_device_init(struct ufs_hba *hba, bool init_dev_params)
8778 {
8779 	int ret;
8780 	struct Scsi_Host *host = hba->host;
8781 
8782 	hba->ufshcd_state = UFSHCD_STATE_RESET;
8783 
8784 	ret = ufshcd_link_startup(hba);
8785 	if (ret)
8786 		return ret;
8787 
8788 	if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8789 		return ret;
8790 
8791 	/* Debug counters initialization */
8792 	ufshcd_clear_dbg_ufs_stats(hba);
8793 
8794 	/* UniPro link is active now */
8795 	ufshcd_set_link_active(hba);
8796 
8797 	/* Reconfigure MCQ upon reset */
8798 	if (is_mcq_enabled(hba) && !init_dev_params)
8799 		ufshcd_config_mcq(hba);
8800 
8801 	/* Verify device initialization by sending NOP OUT UPIU */
8802 	ret = ufshcd_verify_dev_init(hba);
8803 	if (ret)
8804 		return ret;
8805 
8806 	/* Initiate UFS initialization, and waiting until completion */
8807 	ret = ufshcd_complete_dev_init(hba);
8808 	if (ret)
8809 		return ret;
8810 
8811 	/*
8812 	 * Initialize UFS device parameters used by driver, these
8813 	 * parameters are associated with UFS descriptors.
8814 	 */
8815 	if (init_dev_params) {
8816 		ret = ufshcd_device_params_init(hba);
8817 		if (ret)
8818 			return ret;
8819 		if (is_mcq_supported(hba) && !hba->scsi_host_added) {
8820 			ret = ufshcd_alloc_mcq(hba);
8821 			if (!ret) {
8822 				ufshcd_config_mcq(hba);
8823 			} else {
8824 				/* Continue with SDB mode */
8825 				use_mcq_mode = false;
8826 				dev_err(hba->dev, "MCQ mode is disabled, err=%d\n",
8827 					 ret);
8828 			}
8829 			ret = scsi_add_host(host, hba->dev);
8830 			if (ret) {
8831 				dev_err(hba->dev, "scsi_add_host failed\n");
8832 				return ret;
8833 			}
8834 			hba->scsi_host_added = true;
8835 		} else if (is_mcq_supported(hba)) {
8836 			/* UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH is set */
8837 			ufshcd_config_mcq(hba);
8838 		}
8839 	}
8840 
8841 	ufshcd_tune_unipro_params(hba);
8842 
8843 	/* UFS device is also active now */
8844 	ufshcd_set_ufs_dev_active(hba);
8845 	ufshcd_force_reset_auto_bkops(hba);
8846 
8847 	ufshcd_set_timestamp_attr(hba);
8848 
8849 	/* Gear up to HS gear if supported */
8850 	if (hba->max_pwr_info.is_valid) {
8851 		/*
8852 		 * Set the right value to bRefClkFreq before attempting to
8853 		 * switch to HS gears.
8854 		 */
8855 		if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8856 			ufshcd_set_dev_ref_clk(hba);
8857 		ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8858 		if (ret) {
8859 			dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8860 					__func__, ret);
8861 			return ret;
8862 		}
8863 	}
8864 
8865 	return 0;
8866 }
8867 
8868 /**
8869  * ufshcd_probe_hba - probe hba to detect device and initialize it
8870  * @hba: per-adapter instance
8871  * @init_dev_params: whether or not to call ufshcd_device_params_init().
8872  *
8873  * Execute link-startup and verify device initialization
8874  *
8875  * Return: 0 upon success; < 0 upon failure.
8876  */
ufshcd_probe_hba(struct ufs_hba * hba,bool init_dev_params)8877 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8878 {
8879 	ktime_t start = ktime_get();
8880 	unsigned long flags;
8881 	int ret;
8882 
8883 	ret = ufshcd_device_init(hba, init_dev_params);
8884 	if (ret)
8885 		goto out;
8886 
8887 	if (!hba->pm_op_in_progress &&
8888 	    (hba->quirks & UFSHCD_QUIRK_REINIT_AFTER_MAX_GEAR_SWITCH)) {
8889 		/* Reset the device and controller before doing reinit */
8890 		ufshcd_device_reset(hba);
8891 		ufs_put_device_desc(hba);
8892 		ufshcd_hba_stop(hba);
8893 		ret = ufshcd_hba_enable(hba);
8894 		if (ret) {
8895 			dev_err(hba->dev, "Host controller enable failed\n");
8896 			ufshcd_print_evt_hist(hba);
8897 			ufshcd_print_host_state(hba);
8898 			goto out;
8899 		}
8900 
8901 		/* Reinit the device */
8902 		ret = ufshcd_device_init(hba, init_dev_params);
8903 		if (ret)
8904 			goto out;
8905 	}
8906 
8907 	ufshcd_print_pwr_info(hba);
8908 
8909 	/*
8910 	 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8911 	 * and for removable UFS card as well, hence always set the parameter.
8912 	 * Note: Error handler may issue the device reset hence resetting
8913 	 * bActiveICCLevel as well so it is always safe to set this here.
8914 	 */
8915 	ufshcd_set_active_icc_lvl(hba);
8916 
8917 	/* Enable UFS Write Booster if supported */
8918 	ufshcd_configure_wb(hba);
8919 
8920 	if (hba->ee_usr_mask)
8921 		ufshcd_write_ee_control(hba);
8922 	/* Enable Auto-Hibernate if configured */
8923 	ufshcd_auto_hibern8_enable(hba);
8924 
8925 out:
8926 	spin_lock_irqsave(hba->host->host_lock, flags);
8927 	if (ret)
8928 		hba->ufshcd_state = UFSHCD_STATE_ERROR;
8929 	else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8930 		hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8931 	spin_unlock_irqrestore(hba->host->host_lock, flags);
8932 
8933 	trace_ufshcd_init(dev_name(hba->dev), ret,
8934 		ktime_to_us(ktime_sub(ktime_get(), start)),
8935 		hba->curr_dev_pwr_mode, hba->uic_link_state);
8936 	return ret;
8937 }
8938 
8939 /**
8940  * ufshcd_async_scan - asynchronous execution for probing hba
8941  * @data: data pointer to pass to this function
8942  * @cookie: cookie data
8943  */
ufshcd_async_scan(void * data,async_cookie_t cookie)8944 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8945 {
8946 	struct ufs_hba *hba = (struct ufs_hba *)data;
8947 	int ret;
8948 
8949 	down(&hba->host_sem);
8950 	/* Initialize hba, detect and initialize UFS device */
8951 	ret = ufshcd_probe_hba(hba, true);
8952 	up(&hba->host_sem);
8953 	if (ret)
8954 		goto out;
8955 
8956 	/* Probe and add UFS logical units  */
8957 	ret = ufshcd_add_lus(hba);
8958 
8959 out:
8960 	pm_runtime_put_sync(hba->dev);
8961 
8962 	if (ret)
8963 		dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
8964 }
8965 
ufshcd_eh_timed_out(struct scsi_cmnd * scmd)8966 static enum scsi_timeout_action ufshcd_eh_timed_out(struct scsi_cmnd *scmd)
8967 {
8968 	struct ufs_hba *hba = shost_priv(scmd->device->host);
8969 
8970 	if (!hba->system_suspending) {
8971 		/* Activate the error handler in the SCSI core. */
8972 		return SCSI_EH_NOT_HANDLED;
8973 	}
8974 
8975 	/*
8976 	 * If we get here we know that no TMFs are outstanding and also that
8977 	 * the only pending command is a START STOP UNIT command. Handle the
8978 	 * timeout of that command directly to prevent a deadlock between
8979 	 * ufshcd_set_dev_pwr_mode() and ufshcd_err_handler().
8980 	 */
8981 	ufshcd_link_recovery(hba);
8982 	dev_info(hba->dev, "%s() finished; outstanding_tasks = %#lx.\n",
8983 		 __func__, hba->outstanding_tasks);
8984 
8985 	return scsi_host_busy(hba->host) ? SCSI_EH_RESET_TIMER : SCSI_EH_DONE;
8986 }
8987 
8988 static const struct attribute_group *ufshcd_driver_groups[] = {
8989 	&ufs_sysfs_unit_descriptor_group,
8990 	&ufs_sysfs_lun_attributes_group,
8991 	NULL,
8992 };
8993 
8994 static struct ufs_hba_variant_params ufs_hba_vps = {
8995 	.hba_enable_delay_us		= 1000,
8996 	.wb_flush_threshold		= UFS_WB_BUF_REMAIN_PERCENT(40),
8997 	.devfreq_profile.polling_ms	= 100,
8998 	.devfreq_profile.target		= ufshcd_devfreq_target,
8999 	.devfreq_profile.get_dev_status	= ufshcd_devfreq_get_dev_status,
9000 	.ondemand_data.upthreshold	= 70,
9001 	.ondemand_data.downdifferential	= 5,
9002 };
9003 
9004 static const struct scsi_host_template ufshcd_driver_template = {
9005 	.module			= THIS_MODULE,
9006 	.name			= UFSHCD,
9007 	.proc_name		= UFSHCD,
9008 	.map_queues		= ufshcd_map_queues,
9009 	.queuecommand		= ufshcd_queuecommand,
9010 	.mq_poll		= ufshcd_poll,
9011 	.slave_alloc		= ufshcd_slave_alloc,
9012 	.slave_configure	= ufshcd_slave_configure,
9013 	.slave_destroy		= ufshcd_slave_destroy,
9014 	.change_queue_depth	= ufshcd_change_queue_depth,
9015 	.eh_abort_handler	= ufshcd_abort,
9016 	.eh_device_reset_handler = ufshcd_eh_device_reset_handler,
9017 	.eh_host_reset_handler   = ufshcd_eh_host_reset_handler,
9018 	.eh_timed_out		= ufshcd_eh_timed_out,
9019 	.this_id		= -1,
9020 	.sg_tablesize		= SG_ALL,
9021 	.cmd_per_lun		= UFSHCD_CMD_PER_LUN,
9022 	.can_queue		= UFSHCD_CAN_QUEUE,
9023 	.max_segment_size	= PRDT_DATA_BYTE_COUNT_MAX,
9024 	.max_sectors		= SZ_1M / SECTOR_SIZE,
9025 	.max_host_blocked	= 1,
9026 	.track_queue_depth	= 1,
9027 	.skip_settle_delay	= 1,
9028 	.sdev_groups		= ufshcd_driver_groups,
9029 	.rpm_autosuspend_delay	= RPM_AUTOSUSPEND_DELAY_MS,
9030 };
9031 
ufshcd_config_vreg_load(struct device * dev,struct ufs_vreg * vreg,int ua)9032 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
9033 				   int ua)
9034 {
9035 	int ret;
9036 
9037 	if (!vreg)
9038 		return 0;
9039 
9040 	/*
9041 	 * "set_load" operation shall be required on those regulators
9042 	 * which specifically configured current limitation. Otherwise
9043 	 * zero max_uA may cause unexpected behavior when regulator is
9044 	 * enabled or set as high power mode.
9045 	 */
9046 	if (!vreg->max_uA)
9047 		return 0;
9048 
9049 	ret = regulator_set_load(vreg->reg, ua);
9050 	if (ret < 0) {
9051 		dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
9052 				__func__, vreg->name, ua, ret);
9053 	}
9054 
9055 	return ret;
9056 }
9057 
ufshcd_config_vreg_lpm(struct ufs_hba * hba,struct ufs_vreg * vreg)9058 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
9059 					 struct ufs_vreg *vreg)
9060 {
9061 	return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
9062 }
9063 
ufshcd_config_vreg_hpm(struct ufs_hba * hba,struct ufs_vreg * vreg)9064 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
9065 					 struct ufs_vreg *vreg)
9066 {
9067 	if (!vreg)
9068 		return 0;
9069 
9070 	return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
9071 }
9072 
ufshcd_config_vreg(struct device * dev,struct ufs_vreg * vreg,bool on)9073 static int ufshcd_config_vreg(struct device *dev,
9074 		struct ufs_vreg *vreg, bool on)
9075 {
9076 	if (regulator_count_voltages(vreg->reg) <= 0)
9077 		return 0;
9078 
9079 	return ufshcd_config_vreg_load(dev, vreg, on ? vreg->max_uA : 0);
9080 }
9081 
ufshcd_enable_vreg(struct device * dev,struct ufs_vreg * vreg)9082 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
9083 {
9084 	int ret = 0;
9085 
9086 	if (!vreg || vreg->enabled)
9087 		goto out;
9088 
9089 	ret = ufshcd_config_vreg(dev, vreg, true);
9090 	if (!ret)
9091 		ret = regulator_enable(vreg->reg);
9092 
9093 	if (!ret)
9094 		vreg->enabled = true;
9095 	else
9096 		dev_err(dev, "%s: %s enable failed, err=%d\n",
9097 				__func__, vreg->name, ret);
9098 out:
9099 	return ret;
9100 }
9101 
ufshcd_disable_vreg(struct device * dev,struct ufs_vreg * vreg)9102 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
9103 {
9104 	int ret = 0;
9105 
9106 	if (!vreg || !vreg->enabled || vreg->always_on)
9107 		goto out;
9108 
9109 	ret = regulator_disable(vreg->reg);
9110 
9111 	if (!ret) {
9112 		/* ignore errors on applying disable config */
9113 		ufshcd_config_vreg(dev, vreg, false);
9114 		vreg->enabled = false;
9115 	} else {
9116 		dev_err(dev, "%s: %s disable failed, err=%d\n",
9117 				__func__, vreg->name, ret);
9118 	}
9119 out:
9120 	return ret;
9121 }
9122 
ufshcd_setup_vreg(struct ufs_hba * hba,bool on)9123 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
9124 {
9125 	int ret = 0;
9126 	struct device *dev = hba->dev;
9127 	struct ufs_vreg_info *info = &hba->vreg_info;
9128 
9129 	ret = ufshcd_toggle_vreg(dev, info->vcc, on);
9130 	if (ret)
9131 		goto out;
9132 
9133 	ret = ufshcd_toggle_vreg(dev, info->vccq, on);
9134 	if (ret)
9135 		goto out;
9136 
9137 	ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
9138 
9139 out:
9140 	if (ret) {
9141 		ufshcd_toggle_vreg(dev, info->vccq2, false);
9142 		ufshcd_toggle_vreg(dev, info->vccq, false);
9143 		ufshcd_toggle_vreg(dev, info->vcc, false);
9144 	}
9145 	return ret;
9146 }
9147 
ufshcd_setup_hba_vreg(struct ufs_hba * hba,bool on)9148 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
9149 {
9150 	struct ufs_vreg_info *info = &hba->vreg_info;
9151 
9152 	return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
9153 }
9154 
ufshcd_get_vreg(struct device * dev,struct ufs_vreg * vreg)9155 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
9156 {
9157 	int ret = 0;
9158 
9159 	if (!vreg)
9160 		goto out;
9161 
9162 	vreg->reg = devm_regulator_get(dev, vreg->name);
9163 	if (IS_ERR(vreg->reg)) {
9164 		ret = PTR_ERR(vreg->reg);
9165 		dev_err(dev, "%s: %s get failed, err=%d\n",
9166 				__func__, vreg->name, ret);
9167 	}
9168 out:
9169 	return ret;
9170 }
9171 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
9172 
ufshcd_init_vreg(struct ufs_hba * hba)9173 static int ufshcd_init_vreg(struct ufs_hba *hba)
9174 {
9175 	int ret = 0;
9176 	struct device *dev = hba->dev;
9177 	struct ufs_vreg_info *info = &hba->vreg_info;
9178 
9179 	ret = ufshcd_get_vreg(dev, info->vcc);
9180 	if (ret)
9181 		goto out;
9182 
9183 	ret = ufshcd_get_vreg(dev, info->vccq);
9184 	if (!ret)
9185 		ret = ufshcd_get_vreg(dev, info->vccq2);
9186 out:
9187 	return ret;
9188 }
9189 
ufshcd_init_hba_vreg(struct ufs_hba * hba)9190 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
9191 {
9192 	struct ufs_vreg_info *info = &hba->vreg_info;
9193 
9194 	return ufshcd_get_vreg(hba->dev, info->vdd_hba);
9195 }
9196 
ufshcd_setup_clocks(struct ufs_hba * hba,bool on)9197 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
9198 {
9199 	int ret = 0;
9200 	struct ufs_clk_info *clki;
9201 	struct list_head *head = &hba->clk_list_head;
9202 	unsigned long flags;
9203 	ktime_t start = ktime_get();
9204 	bool clk_state_changed = false;
9205 
9206 	if (list_empty(head))
9207 		goto out;
9208 
9209 	ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
9210 	if (ret)
9211 		return ret;
9212 
9213 	list_for_each_entry(clki, head, list) {
9214 		if (!IS_ERR_OR_NULL(clki->clk)) {
9215 			/*
9216 			 * Don't disable clocks which are needed
9217 			 * to keep the link active.
9218 			 */
9219 			if (ufshcd_is_link_active(hba) &&
9220 			    clki->keep_link_active)
9221 				continue;
9222 
9223 			clk_state_changed = on ^ clki->enabled;
9224 			if (on && !clki->enabled) {
9225 				ret = clk_prepare_enable(clki->clk);
9226 				if (ret) {
9227 					dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
9228 						__func__, clki->name, ret);
9229 					goto out;
9230 				}
9231 			} else if (!on && clki->enabled) {
9232 				clk_disable_unprepare(clki->clk);
9233 			}
9234 			clki->enabled = on;
9235 			dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
9236 					clki->name, on ? "en" : "dis");
9237 		}
9238 	}
9239 
9240 	ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
9241 	if (ret)
9242 		return ret;
9243 
9244 out:
9245 	if (ret) {
9246 		list_for_each_entry(clki, head, list) {
9247 			if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
9248 				clk_disable_unprepare(clki->clk);
9249 		}
9250 	} else if (!ret && on) {
9251 		spin_lock_irqsave(hba->host->host_lock, flags);
9252 		hba->clk_gating.state = CLKS_ON;
9253 		trace_ufshcd_clk_gating(dev_name(hba->dev),
9254 					hba->clk_gating.state);
9255 		spin_unlock_irqrestore(hba->host->host_lock, flags);
9256 	}
9257 
9258 	if (clk_state_changed)
9259 		trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
9260 			(on ? "on" : "off"),
9261 			ktime_to_us(ktime_sub(ktime_get(), start)), ret);
9262 	return ret;
9263 }
9264 
ufshcd_parse_ref_clk_property(struct ufs_hba * hba)9265 static enum ufs_ref_clk_freq ufshcd_parse_ref_clk_property(struct ufs_hba *hba)
9266 {
9267 	u32 freq;
9268 	int ret = device_property_read_u32(hba->dev, "ref-clk-freq", &freq);
9269 
9270 	if (ret) {
9271 		dev_dbg(hba->dev, "Cannot query 'ref-clk-freq' property = %d", ret);
9272 		return REF_CLK_FREQ_INVAL;
9273 	}
9274 
9275 	return ufs_get_bref_clk_from_hz(freq);
9276 }
9277 
ufshcd_init_clocks(struct ufs_hba * hba)9278 static int ufshcd_init_clocks(struct ufs_hba *hba)
9279 {
9280 	int ret = 0;
9281 	struct ufs_clk_info *clki;
9282 	struct device *dev = hba->dev;
9283 	struct list_head *head = &hba->clk_list_head;
9284 
9285 	if (list_empty(head))
9286 		goto out;
9287 
9288 	list_for_each_entry(clki, head, list) {
9289 		if (!clki->name)
9290 			continue;
9291 
9292 		clki->clk = devm_clk_get(dev, clki->name);
9293 		if (IS_ERR(clki->clk)) {
9294 			ret = PTR_ERR(clki->clk);
9295 			dev_err(dev, "%s: %s clk get failed, %d\n",
9296 					__func__, clki->name, ret);
9297 			goto out;
9298 		}
9299 
9300 		/*
9301 		 * Parse device ref clk freq as per device tree "ref_clk".
9302 		 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
9303 		 * in ufshcd_alloc_host().
9304 		 */
9305 		if (!strcmp(clki->name, "ref_clk"))
9306 			ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
9307 
9308 		if (clki->max_freq) {
9309 			ret = clk_set_rate(clki->clk, clki->max_freq);
9310 			if (ret) {
9311 				dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
9312 					__func__, clki->name,
9313 					clki->max_freq, ret);
9314 				goto out;
9315 			}
9316 			clki->curr_freq = clki->max_freq;
9317 		}
9318 		dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
9319 				clki->name, clk_get_rate(clki->clk));
9320 	}
9321 out:
9322 	return ret;
9323 }
9324 
ufshcd_variant_hba_init(struct ufs_hba * hba)9325 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
9326 {
9327 	int err = 0;
9328 
9329 	if (!hba->vops)
9330 		goto out;
9331 
9332 	err = ufshcd_vops_init(hba);
9333 	if (err)
9334 		dev_err_probe(hba->dev, err,
9335 			      "%s: variant %s init failed with err %d\n",
9336 			      __func__, ufshcd_get_var_name(hba), err);
9337 out:
9338 	return err;
9339 }
9340 
ufshcd_variant_hba_exit(struct ufs_hba * hba)9341 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
9342 {
9343 	if (!hba->vops)
9344 		return;
9345 
9346 	ufshcd_vops_exit(hba);
9347 }
9348 
ufshcd_hba_init(struct ufs_hba * hba)9349 static int ufshcd_hba_init(struct ufs_hba *hba)
9350 {
9351 	int err;
9352 
9353 	/*
9354 	 * Handle host controller power separately from the UFS device power
9355 	 * rails as it will help controlling the UFS host controller power
9356 	 * collapse easily which is different than UFS device power collapse.
9357 	 * Also, enable the host controller power before we go ahead with rest
9358 	 * of the initialization here.
9359 	 */
9360 	err = ufshcd_init_hba_vreg(hba);
9361 	if (err)
9362 		goto out;
9363 
9364 	err = ufshcd_setup_hba_vreg(hba, true);
9365 	if (err)
9366 		goto out;
9367 
9368 	err = ufshcd_init_clocks(hba);
9369 	if (err)
9370 		goto out_disable_hba_vreg;
9371 
9372 	if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
9373 		hba->dev_ref_clk_freq = ufshcd_parse_ref_clk_property(hba);
9374 
9375 	err = ufshcd_setup_clocks(hba, true);
9376 	if (err)
9377 		goto out_disable_hba_vreg;
9378 
9379 	err = ufshcd_init_vreg(hba);
9380 	if (err)
9381 		goto out_disable_clks;
9382 
9383 	err = ufshcd_setup_vreg(hba, true);
9384 	if (err)
9385 		goto out_disable_clks;
9386 
9387 	err = ufshcd_variant_hba_init(hba);
9388 	if (err)
9389 		goto out_disable_vreg;
9390 
9391 	ufs_debugfs_hba_init(hba);
9392 
9393 	hba->is_powered = true;
9394 	goto out;
9395 
9396 out_disable_vreg:
9397 	ufshcd_setup_vreg(hba, false);
9398 out_disable_clks:
9399 	ufshcd_setup_clocks(hba, false);
9400 out_disable_hba_vreg:
9401 	ufshcd_setup_hba_vreg(hba, false);
9402 out:
9403 	return err;
9404 }
9405 
ufshcd_hba_exit(struct ufs_hba * hba)9406 static void ufshcd_hba_exit(struct ufs_hba *hba)
9407 {
9408 	if (hba->is_powered) {
9409 		ufshcd_exit_clk_scaling(hba);
9410 		ufshcd_exit_clk_gating(hba);
9411 		if (hba->eh_wq)
9412 			destroy_workqueue(hba->eh_wq);
9413 		ufs_debugfs_hba_exit(hba);
9414 		ufshcd_variant_hba_exit(hba);
9415 		ufshcd_setup_vreg(hba, false);
9416 		ufshcd_setup_clocks(hba, false);
9417 		ufshcd_setup_hba_vreg(hba, false);
9418 		hba->is_powered = false;
9419 		ufs_put_device_desc(hba);
9420 	}
9421 }
9422 
ufshcd_execute_start_stop(struct scsi_device * sdev,enum ufs_dev_pwr_mode pwr_mode,struct scsi_sense_hdr * sshdr)9423 static int ufshcd_execute_start_stop(struct scsi_device *sdev,
9424 				     enum ufs_dev_pwr_mode pwr_mode,
9425 				     struct scsi_sense_hdr *sshdr)
9426 {
9427 	const unsigned char cdb[6] = { START_STOP, 0, 0, 0, pwr_mode << 4, 0 };
9428 	const struct scsi_exec_args args = {
9429 		.sshdr = sshdr,
9430 		.req_flags = BLK_MQ_REQ_PM,
9431 		.scmd_flags = SCMD_FAIL_IF_RECOVERING,
9432 	};
9433 
9434 	return scsi_execute_cmd(sdev, cdb, REQ_OP_DRV_IN, /*buffer=*/NULL,
9435 			/*bufflen=*/0, /*timeout=*/10 * HZ, /*retries=*/0,
9436 			&args);
9437 }
9438 
9439 /**
9440  * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
9441  *			     power mode
9442  * @hba: per adapter instance
9443  * @pwr_mode: device power mode to set
9444  *
9445  * Return: 0 if requested power mode is set successfully;
9446  *         < 0 if failed to set the requested power mode.
9447  */
ufshcd_set_dev_pwr_mode(struct ufs_hba * hba,enum ufs_dev_pwr_mode pwr_mode)9448 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
9449 				     enum ufs_dev_pwr_mode pwr_mode)
9450 {
9451 	struct scsi_sense_hdr sshdr;
9452 	struct scsi_device *sdp;
9453 	unsigned long flags;
9454 	int ret, retries;
9455 
9456 	spin_lock_irqsave(hba->host->host_lock, flags);
9457 	sdp = hba->ufs_device_wlun;
9458 	if (sdp && scsi_device_online(sdp))
9459 		ret = scsi_device_get(sdp);
9460 	else
9461 		ret = -ENODEV;
9462 	spin_unlock_irqrestore(hba->host->host_lock, flags);
9463 
9464 	if (ret)
9465 		return ret;
9466 
9467 	/*
9468 	 * If scsi commands fail, the scsi mid-layer schedules scsi error-
9469 	 * handling, which would wait for host to be resumed. Since we know
9470 	 * we are functional while we are here, skip host resume in error
9471 	 * handling context.
9472 	 */
9473 	hba->host->eh_noresume = 1;
9474 
9475 	/*
9476 	 * Current function would be generally called from the power management
9477 	 * callbacks hence set the RQF_PM flag so that it doesn't resume the
9478 	 * already suspended childs.
9479 	 */
9480 	for (retries = 3; retries > 0; --retries) {
9481 		ret = ufshcd_execute_start_stop(sdp, pwr_mode, &sshdr);
9482 		/*
9483 		 * scsi_execute() only returns a negative value if the request
9484 		 * queue is dying.
9485 		 */
9486 		if (ret <= 0)
9487 			break;
9488 	}
9489 	if (ret) {
9490 		sdev_printk(KERN_WARNING, sdp,
9491 			    "START_STOP failed for power mode: %d, result %x\n",
9492 			    pwr_mode, ret);
9493 		if (ret > 0) {
9494 			if (scsi_sense_valid(&sshdr))
9495 				scsi_print_sense_hdr(sdp, NULL, &sshdr);
9496 			ret = -EIO;
9497 		}
9498 	} else {
9499 		hba->curr_dev_pwr_mode = pwr_mode;
9500 	}
9501 
9502 	scsi_device_put(sdp);
9503 	hba->host->eh_noresume = 0;
9504 	return ret;
9505 }
9506 
ufshcd_link_state_transition(struct ufs_hba * hba,enum uic_link_state req_link_state,bool check_for_bkops)9507 static int ufshcd_link_state_transition(struct ufs_hba *hba,
9508 					enum uic_link_state req_link_state,
9509 					bool check_for_bkops)
9510 {
9511 	int ret = 0;
9512 
9513 	if (req_link_state == hba->uic_link_state)
9514 		return 0;
9515 
9516 	if (req_link_state == UIC_LINK_HIBERN8_STATE) {
9517 		ret = ufshcd_uic_hibern8_enter(hba);
9518 		if (!ret) {
9519 			ufshcd_set_link_hibern8(hba);
9520 		} else {
9521 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9522 					__func__, ret);
9523 			goto out;
9524 		}
9525 	}
9526 	/*
9527 	 * If autobkops is enabled, link can't be turned off because
9528 	 * turning off the link would also turn off the device, except in the
9529 	 * case of DeepSleep where the device is expected to remain powered.
9530 	 */
9531 	else if ((req_link_state == UIC_LINK_OFF_STATE) &&
9532 		 (!check_for_bkops || !hba->auto_bkops_enabled)) {
9533 		/*
9534 		 * Let's make sure that link is in low power mode, we are doing
9535 		 * this currently by putting the link in Hibern8. Otherway to
9536 		 * put the link in low power mode is to send the DME end point
9537 		 * to device and then send the DME reset command to local
9538 		 * unipro. But putting the link in hibern8 is much faster.
9539 		 *
9540 		 * Note also that putting the link in Hibern8 is a requirement
9541 		 * for entering DeepSleep.
9542 		 */
9543 		ret = ufshcd_uic_hibern8_enter(hba);
9544 		if (ret) {
9545 			dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
9546 					__func__, ret);
9547 			goto out;
9548 		}
9549 		/*
9550 		 * Change controller state to "reset state" which
9551 		 * should also put the link in off/reset state
9552 		 */
9553 		ufshcd_hba_stop(hba);
9554 		/*
9555 		 * TODO: Check if we need any delay to make sure that
9556 		 * controller is reset
9557 		 */
9558 		ufshcd_set_link_off(hba);
9559 	}
9560 
9561 out:
9562 	return ret;
9563 }
9564 
ufshcd_vreg_set_lpm(struct ufs_hba * hba)9565 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
9566 {
9567 	bool vcc_off = false;
9568 
9569 	/*
9570 	 * It seems some UFS devices may keep drawing more than sleep current
9571 	 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
9572 	 * To avoid this situation, add 2ms delay before putting these UFS
9573 	 * rails in LPM mode.
9574 	 */
9575 	if (!ufshcd_is_link_active(hba) &&
9576 	    hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
9577 		usleep_range(2000, 2100);
9578 
9579 	/*
9580 	 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
9581 	 * power.
9582 	 *
9583 	 * If UFS device and link is in OFF state, all power supplies (VCC,
9584 	 * VCCQ, VCCQ2) can be turned off if power on write protect is not
9585 	 * required. If UFS link is inactive (Hibern8 or OFF state) and device
9586 	 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
9587 	 *
9588 	 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
9589 	 * in low power state which would save some power.
9590 	 *
9591 	 * If Write Booster is enabled and the device needs to flush the WB
9592 	 * buffer OR if bkops status is urgent for WB, keep Vcc on.
9593 	 */
9594 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9595 	    !hba->dev_info.is_lu_power_on_wp) {
9596 		ufshcd_setup_vreg(hba, false);
9597 		vcc_off = true;
9598 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9599 		ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9600 		vcc_off = true;
9601 		if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
9602 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9603 			ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
9604 		}
9605 	}
9606 
9607 	/*
9608 	 * Some UFS devices require delay after VCC power rail is turned-off.
9609 	 */
9610 	if (vcc_off && hba->vreg_info.vcc &&
9611 		hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
9612 		usleep_range(5000, 5100);
9613 }
9614 
9615 #ifdef CONFIG_PM
ufshcd_vreg_set_hpm(struct ufs_hba * hba)9616 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
9617 {
9618 	int ret = 0;
9619 
9620 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
9621 	    !hba->dev_info.is_lu_power_on_wp) {
9622 		ret = ufshcd_setup_vreg(hba, true);
9623 	} else if (!ufshcd_is_ufs_dev_active(hba)) {
9624 		if (!ufshcd_is_link_active(hba)) {
9625 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
9626 			if (ret)
9627 				goto vcc_disable;
9628 			ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
9629 			if (ret)
9630 				goto vccq_lpm;
9631 		}
9632 		ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
9633 	}
9634 	goto out;
9635 
9636 vccq_lpm:
9637 	ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
9638 vcc_disable:
9639 	ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
9640 out:
9641 	return ret;
9642 }
9643 #endif /* CONFIG_PM */
9644 
ufshcd_hba_vreg_set_lpm(struct ufs_hba * hba)9645 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
9646 {
9647 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9648 		ufshcd_setup_hba_vreg(hba, false);
9649 }
9650 
ufshcd_hba_vreg_set_hpm(struct ufs_hba * hba)9651 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
9652 {
9653 	if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
9654 		ufshcd_setup_hba_vreg(hba, true);
9655 }
9656 
__ufshcd_wl_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)9657 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9658 {
9659 	int ret = 0;
9660 	bool check_for_bkops;
9661 	enum ufs_pm_level pm_lvl;
9662 	enum ufs_dev_pwr_mode req_dev_pwr_mode;
9663 	enum uic_link_state req_link_state;
9664 
9665 	hba->pm_op_in_progress = true;
9666 	if (pm_op != UFS_SHUTDOWN_PM) {
9667 		pm_lvl = pm_op == UFS_RUNTIME_PM ?
9668 			 hba->rpm_lvl : hba->spm_lvl;
9669 		req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
9670 		req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
9671 	} else {
9672 		req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
9673 		req_link_state = UIC_LINK_OFF_STATE;
9674 	}
9675 
9676 	/*
9677 	 * If we can't transition into any of the low power modes
9678 	 * just gate the clocks.
9679 	 */
9680 	ufshcd_hold(hba);
9681 	hba->clk_gating.is_suspended = true;
9682 
9683 	if (ufshcd_is_clkscaling_supported(hba))
9684 		ufshcd_clk_scaling_suspend(hba, true);
9685 
9686 	if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
9687 			req_link_state == UIC_LINK_ACTIVE_STATE) {
9688 		goto vops_suspend;
9689 	}
9690 
9691 	if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
9692 	    (req_link_state == hba->uic_link_state))
9693 		goto enable_scaling;
9694 
9695 	/* UFS device & link must be active before we enter in this function */
9696 	if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
9697 		/*  Wait err handler finish or trigger err recovery */
9698 		if (!ufshcd_eh_in_progress(hba))
9699 			ufshcd_force_error_recovery(hba);
9700 		ret = -EBUSY;
9701 		goto enable_scaling;
9702 	}
9703 
9704 	if (pm_op == UFS_RUNTIME_PM) {
9705 		if (ufshcd_can_autobkops_during_suspend(hba)) {
9706 			/*
9707 			 * The device is idle with no requests in the queue,
9708 			 * allow background operations if bkops status shows
9709 			 * that performance might be impacted.
9710 			 */
9711 			ret = ufshcd_urgent_bkops(hba);
9712 			if (ret) {
9713 				/*
9714 				 * If return err in suspend flow, IO will hang.
9715 				 * Trigger error handler and break suspend for
9716 				 * error recovery.
9717 				 */
9718 				ufshcd_force_error_recovery(hba);
9719 				ret = -EBUSY;
9720 				goto enable_scaling;
9721 			}
9722 		} else {
9723 			/* make sure that auto bkops is disabled */
9724 			ufshcd_disable_auto_bkops(hba);
9725 		}
9726 		/*
9727 		 * If device needs to do BKOP or WB buffer flush during
9728 		 * Hibern8, keep device power mode as "active power mode"
9729 		 * and VCC supply.
9730 		 */
9731 		hba->dev_info.b_rpm_dev_flush_capable =
9732 			hba->auto_bkops_enabled ||
9733 			(((req_link_state == UIC_LINK_HIBERN8_STATE) ||
9734 			((req_link_state == UIC_LINK_ACTIVE_STATE) &&
9735 			ufshcd_is_auto_hibern8_enabled(hba))) &&
9736 			ufshcd_wb_need_flush(hba));
9737 	}
9738 
9739 	flush_work(&hba->eeh_work);
9740 
9741 	ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9742 	if (ret)
9743 		goto enable_scaling;
9744 
9745 	if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
9746 		if (pm_op != UFS_RUNTIME_PM)
9747 			/* ensure that bkops is disabled */
9748 			ufshcd_disable_auto_bkops(hba);
9749 
9750 		if (!hba->dev_info.b_rpm_dev_flush_capable) {
9751 			ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9752 			if (ret && pm_op != UFS_SHUTDOWN_PM) {
9753 				/*
9754 				 * If return err in suspend flow, IO will hang.
9755 				 * Trigger error handler and break suspend for
9756 				 * error recovery.
9757 				 */
9758 				ufshcd_force_error_recovery(hba);
9759 				ret = -EBUSY;
9760 			}
9761 			if (ret)
9762 				goto enable_scaling;
9763 		}
9764 	}
9765 
9766 	/*
9767 	 * In the case of DeepSleep, the device is expected to remain powered
9768 	 * with the link off, so do not check for bkops.
9769 	 */
9770 	check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9771 	ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9772 	if (ret && pm_op != UFS_SHUTDOWN_PM) {
9773 		/*
9774 		 * If return err in suspend flow, IO will hang.
9775 		 * Trigger error handler and break suspend for
9776 		 * error recovery.
9777 		 */
9778 		ufshcd_force_error_recovery(hba);
9779 		ret = -EBUSY;
9780 	}
9781 	if (ret)
9782 		goto set_dev_active;
9783 
9784 vops_suspend:
9785 	/*
9786 	 * Call vendor specific suspend callback. As these callbacks may access
9787 	 * vendor specific host controller register space call them before the
9788 	 * host clocks are ON.
9789 	 */
9790 	ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9791 	if (ret)
9792 		goto set_link_active;
9793 
9794 	cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
9795 	goto out;
9796 
9797 set_link_active:
9798 	/*
9799 	 * Device hardware reset is required to exit DeepSleep. Also, for
9800 	 * DeepSleep, the link is off so host reset and restore will be done
9801 	 * further below.
9802 	 */
9803 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9804 		ufshcd_device_reset(hba);
9805 		WARN_ON(!ufshcd_is_link_off(hba));
9806 	}
9807 	if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9808 		ufshcd_set_link_active(hba);
9809 	else if (ufshcd_is_link_off(hba))
9810 		ufshcd_host_reset_and_restore(hba);
9811 set_dev_active:
9812 	/* Can also get here needing to exit DeepSleep */
9813 	if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9814 		ufshcd_device_reset(hba);
9815 		ufshcd_host_reset_and_restore(hba);
9816 	}
9817 	if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9818 		ufshcd_disable_auto_bkops(hba);
9819 enable_scaling:
9820 	if (ufshcd_is_clkscaling_supported(hba))
9821 		ufshcd_clk_scaling_suspend(hba, false);
9822 
9823 	hba->dev_info.b_rpm_dev_flush_capable = false;
9824 out:
9825 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9826 		schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9827 			msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9828 	}
9829 
9830 	if (ret) {
9831 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9832 		hba->clk_gating.is_suspended = false;
9833 		ufshcd_release(hba);
9834 	}
9835 	hba->pm_op_in_progress = false;
9836 	return ret;
9837 }
9838 
9839 #ifdef CONFIG_PM
__ufshcd_wl_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)9840 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9841 {
9842 	int ret;
9843 	enum uic_link_state old_link_state = hba->uic_link_state;
9844 
9845 	hba->pm_op_in_progress = true;
9846 
9847 	/*
9848 	 * Call vendor specific resume callback. As these callbacks may access
9849 	 * vendor specific host controller register space call them when the
9850 	 * host clocks are ON.
9851 	 */
9852 	ret = ufshcd_vops_resume(hba, pm_op);
9853 	if (ret)
9854 		goto out;
9855 
9856 	/* For DeepSleep, the only supported option is to have the link off */
9857 	WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9858 
9859 	if (ufshcd_is_link_hibern8(hba)) {
9860 		ret = ufshcd_uic_hibern8_exit(hba);
9861 		if (!ret) {
9862 			ufshcd_set_link_active(hba);
9863 		} else {
9864 			dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9865 					__func__, ret);
9866 			goto vendor_suspend;
9867 		}
9868 	} else if (ufshcd_is_link_off(hba)) {
9869 		/*
9870 		 * A full initialization of the host and the device is
9871 		 * required since the link was put to off during suspend.
9872 		 * Note, in the case of DeepSleep, the device will exit
9873 		 * DeepSleep due to device reset.
9874 		 */
9875 		ret = ufshcd_reset_and_restore(hba);
9876 		/*
9877 		 * ufshcd_reset_and_restore() should have already
9878 		 * set the link state as active
9879 		 */
9880 		if (ret || !ufshcd_is_link_active(hba))
9881 			goto vendor_suspend;
9882 	}
9883 
9884 	if (!ufshcd_is_ufs_dev_active(hba)) {
9885 		ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9886 		if (ret)
9887 			goto set_old_link_state;
9888 		ufshcd_set_timestamp_attr(hba);
9889 		schedule_delayed_work(&hba->ufs_rtc_update_work,
9890 				      msecs_to_jiffies(UFS_RTC_UPDATE_INTERVAL_MS));
9891 	}
9892 
9893 	if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9894 		ufshcd_enable_auto_bkops(hba);
9895 	else
9896 		/*
9897 		 * If BKOPs operations are urgently needed at this moment then
9898 		 * keep auto-bkops enabled or else disable it.
9899 		 */
9900 		ufshcd_urgent_bkops(hba);
9901 
9902 	if (hba->ee_usr_mask)
9903 		ufshcd_write_ee_control(hba);
9904 
9905 	if (ufshcd_is_clkscaling_supported(hba))
9906 		ufshcd_clk_scaling_suspend(hba, false);
9907 
9908 	if (hba->dev_info.b_rpm_dev_flush_capable) {
9909 		hba->dev_info.b_rpm_dev_flush_capable = false;
9910 		cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9911 	}
9912 
9913 	/* Enable Auto-Hibernate if configured */
9914 	ufshcd_auto_hibern8_enable(hba);
9915 
9916 	goto out;
9917 
9918 set_old_link_state:
9919 	ufshcd_link_state_transition(hba, old_link_state, 0);
9920 vendor_suspend:
9921 	ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9922 	ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9923 out:
9924 	if (ret)
9925 		ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9926 	hba->clk_gating.is_suspended = false;
9927 	ufshcd_release(hba);
9928 	hba->pm_op_in_progress = false;
9929 	return ret;
9930 }
9931 
ufshcd_wl_runtime_suspend(struct device * dev)9932 static int ufshcd_wl_runtime_suspend(struct device *dev)
9933 {
9934 	struct scsi_device *sdev = to_scsi_device(dev);
9935 	struct ufs_hba *hba;
9936 	int ret;
9937 	ktime_t start = ktime_get();
9938 
9939 	hba = shost_priv(sdev->host);
9940 
9941 	ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9942 	if (ret)
9943 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9944 
9945 	trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9946 		ktime_to_us(ktime_sub(ktime_get(), start)),
9947 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9948 
9949 	return ret;
9950 }
9951 
ufshcd_wl_runtime_resume(struct device * dev)9952 static int ufshcd_wl_runtime_resume(struct device *dev)
9953 {
9954 	struct scsi_device *sdev = to_scsi_device(dev);
9955 	struct ufs_hba *hba;
9956 	int ret = 0;
9957 	ktime_t start = ktime_get();
9958 
9959 	hba = shost_priv(sdev->host);
9960 
9961 	ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9962 	if (ret)
9963 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9964 
9965 	trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9966 		ktime_to_us(ktime_sub(ktime_get(), start)),
9967 		hba->curr_dev_pwr_mode, hba->uic_link_state);
9968 
9969 	return ret;
9970 }
9971 #endif
9972 
9973 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_suspend(struct device * dev)9974 static int ufshcd_wl_suspend(struct device *dev)
9975 {
9976 	struct scsi_device *sdev = to_scsi_device(dev);
9977 	struct ufs_hba *hba;
9978 	int ret = 0;
9979 	ktime_t start = ktime_get();
9980 
9981 	hba = shost_priv(sdev->host);
9982 	down(&hba->host_sem);
9983 	hba->system_suspending = true;
9984 
9985 	if (pm_runtime_suspended(dev))
9986 		goto out;
9987 
9988 	ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9989 	if (ret) {
9990 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__,  ret);
9991 		up(&hba->host_sem);
9992 	}
9993 
9994 out:
9995 	if (!ret)
9996 		hba->is_sys_suspended = true;
9997 	trace_ufshcd_wl_suspend(dev_name(dev), ret,
9998 		ktime_to_us(ktime_sub(ktime_get(), start)),
9999 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10000 
10001 	return ret;
10002 }
10003 
ufshcd_wl_resume(struct device * dev)10004 static int ufshcd_wl_resume(struct device *dev)
10005 {
10006 	struct scsi_device *sdev = to_scsi_device(dev);
10007 	struct ufs_hba *hba;
10008 	int ret = 0;
10009 	ktime_t start = ktime_get();
10010 
10011 	hba = shost_priv(sdev->host);
10012 
10013 	if (pm_runtime_suspended(dev))
10014 		goto out;
10015 
10016 	ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
10017 	if (ret)
10018 		dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
10019 out:
10020 	trace_ufshcd_wl_resume(dev_name(dev), ret,
10021 		ktime_to_us(ktime_sub(ktime_get(), start)),
10022 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10023 	if (!ret)
10024 		hba->is_sys_suspended = false;
10025 	hba->system_suspending = false;
10026 	up(&hba->host_sem);
10027 	return ret;
10028 }
10029 #endif
10030 
10031 /**
10032  * ufshcd_suspend - helper function for suspend operations
10033  * @hba: per adapter instance
10034  *
10035  * This function will put disable irqs, turn off clocks
10036  * and set vreg and hba-vreg in lpm mode.
10037  *
10038  * Return: 0 upon success; < 0 upon failure.
10039  */
ufshcd_suspend(struct ufs_hba * hba)10040 static int ufshcd_suspend(struct ufs_hba *hba)
10041 {
10042 	int ret;
10043 
10044 	if (!hba->is_powered)
10045 		return 0;
10046 	/*
10047 	 * Disable the host irq as host controller as there won't be any
10048 	 * host controller transaction expected till resume.
10049 	 */
10050 	ufshcd_disable_irq(hba);
10051 	ret = ufshcd_setup_clocks(hba, false);
10052 	if (ret) {
10053 		ufshcd_enable_irq(hba);
10054 		return ret;
10055 	}
10056 	if (ufshcd_is_clkgating_allowed(hba)) {
10057 		hba->clk_gating.state = CLKS_OFF;
10058 		trace_ufshcd_clk_gating(dev_name(hba->dev),
10059 					hba->clk_gating.state);
10060 	}
10061 
10062 	ufshcd_vreg_set_lpm(hba);
10063 	/* Put the host controller in low power mode if possible */
10064 	ufshcd_hba_vreg_set_lpm(hba);
10065 	return ret;
10066 }
10067 
10068 #ifdef CONFIG_PM
10069 /**
10070  * ufshcd_resume - helper function for resume operations
10071  * @hba: per adapter instance
10072  *
10073  * This function basically turns on the regulators, clocks and
10074  * irqs of the hba.
10075  *
10076  * Return: 0 for success and non-zero for failure.
10077  */
ufshcd_resume(struct ufs_hba * hba)10078 static int ufshcd_resume(struct ufs_hba *hba)
10079 {
10080 	int ret;
10081 
10082 	if (!hba->is_powered)
10083 		return 0;
10084 
10085 	ufshcd_hba_vreg_set_hpm(hba);
10086 	ret = ufshcd_vreg_set_hpm(hba);
10087 	if (ret)
10088 		goto out;
10089 
10090 	/* Make sure clocks are enabled before accessing controller */
10091 	ret = ufshcd_setup_clocks(hba, true);
10092 	if (ret)
10093 		goto disable_vreg;
10094 
10095 	/* enable the host irq as host controller would be active soon */
10096 	ufshcd_enable_irq(hba);
10097 
10098 	goto out;
10099 
10100 disable_vreg:
10101 	ufshcd_vreg_set_lpm(hba);
10102 out:
10103 	if (ret)
10104 		ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
10105 	return ret;
10106 }
10107 #endif /* CONFIG_PM */
10108 
10109 #ifdef CONFIG_PM_SLEEP
10110 /**
10111  * ufshcd_system_suspend - system suspend callback
10112  * @dev: Device associated with the UFS controller.
10113  *
10114  * Executed before putting the system into a sleep state in which the contents
10115  * of main memory are preserved.
10116  *
10117  * Return: 0 for success and non-zero for failure.
10118  */
ufshcd_system_suspend(struct device * dev)10119 int ufshcd_system_suspend(struct device *dev)
10120 {
10121 	struct ufs_hba *hba = dev_get_drvdata(dev);
10122 	int ret = 0;
10123 	ktime_t start = ktime_get();
10124 
10125 	if (pm_runtime_suspended(hba->dev))
10126 		goto out;
10127 
10128 	ret = ufshcd_suspend(hba);
10129 out:
10130 	trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
10131 		ktime_to_us(ktime_sub(ktime_get(), start)),
10132 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10133 	return ret;
10134 }
10135 EXPORT_SYMBOL(ufshcd_system_suspend);
10136 
10137 /**
10138  * ufshcd_system_resume - system resume callback
10139  * @dev: Device associated with the UFS controller.
10140  *
10141  * Executed after waking the system up from a sleep state in which the contents
10142  * of main memory were preserved.
10143  *
10144  * Return: 0 for success and non-zero for failure.
10145  */
ufshcd_system_resume(struct device * dev)10146 int ufshcd_system_resume(struct device *dev)
10147 {
10148 	struct ufs_hba *hba = dev_get_drvdata(dev);
10149 	ktime_t start = ktime_get();
10150 	int ret = 0;
10151 
10152 	if (pm_runtime_suspended(hba->dev))
10153 		goto out;
10154 
10155 	ret = ufshcd_resume(hba);
10156 
10157 out:
10158 	trace_ufshcd_system_resume(dev_name(hba->dev), ret,
10159 		ktime_to_us(ktime_sub(ktime_get(), start)),
10160 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10161 
10162 	return ret;
10163 }
10164 EXPORT_SYMBOL(ufshcd_system_resume);
10165 #endif /* CONFIG_PM_SLEEP */
10166 
10167 #ifdef CONFIG_PM
10168 /**
10169  * ufshcd_runtime_suspend - runtime suspend callback
10170  * @dev: Device associated with the UFS controller.
10171  *
10172  * Check the description of ufshcd_suspend() function for more details.
10173  *
10174  * Return: 0 for success and non-zero for failure.
10175  */
ufshcd_runtime_suspend(struct device * dev)10176 int ufshcd_runtime_suspend(struct device *dev)
10177 {
10178 	struct ufs_hba *hba = dev_get_drvdata(dev);
10179 	int ret;
10180 	ktime_t start = ktime_get();
10181 
10182 	ret = ufshcd_suspend(hba);
10183 
10184 	trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
10185 		ktime_to_us(ktime_sub(ktime_get(), start)),
10186 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10187 	return ret;
10188 }
10189 EXPORT_SYMBOL(ufshcd_runtime_suspend);
10190 
10191 /**
10192  * ufshcd_runtime_resume - runtime resume routine
10193  * @dev: Device associated with the UFS controller.
10194  *
10195  * This function basically brings controller
10196  * to active state. Following operations are done in this function:
10197  *
10198  * 1. Turn on all the controller related clocks
10199  * 2. Turn ON VCC rail
10200  *
10201  * Return: 0 upon success; < 0 upon failure.
10202  */
ufshcd_runtime_resume(struct device * dev)10203 int ufshcd_runtime_resume(struct device *dev)
10204 {
10205 	struct ufs_hba *hba = dev_get_drvdata(dev);
10206 	int ret;
10207 	ktime_t start = ktime_get();
10208 
10209 	ret = ufshcd_resume(hba);
10210 
10211 	trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
10212 		ktime_to_us(ktime_sub(ktime_get(), start)),
10213 		hba->curr_dev_pwr_mode, hba->uic_link_state);
10214 	return ret;
10215 }
10216 EXPORT_SYMBOL(ufshcd_runtime_resume);
10217 #endif /* CONFIG_PM */
10218 
ufshcd_wl_shutdown(struct device * dev)10219 static void ufshcd_wl_shutdown(struct device *dev)
10220 {
10221 	struct scsi_device *sdev = to_scsi_device(dev);
10222 	struct ufs_hba *hba = shost_priv(sdev->host);
10223 
10224 	down(&hba->host_sem);
10225 	hba->shutting_down = true;
10226 	up(&hba->host_sem);
10227 
10228 	/* Turn on everything while shutting down */
10229 	ufshcd_rpm_get_sync(hba);
10230 	scsi_device_quiesce(sdev);
10231 	shost_for_each_device(sdev, hba->host) {
10232 		if (sdev == hba->ufs_device_wlun)
10233 			continue;
10234 		mutex_lock(&sdev->state_mutex);
10235 		scsi_device_set_state(sdev, SDEV_OFFLINE);
10236 		mutex_unlock(&sdev->state_mutex);
10237 	}
10238 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10239 
10240 	/*
10241 	 * Next, turn off the UFS controller and the UFS regulators. Disable
10242 	 * clocks.
10243 	 */
10244 	if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
10245 		ufshcd_suspend(hba);
10246 
10247 	hba->is_powered = false;
10248 }
10249 
10250 /**
10251  * ufshcd_remove - de-allocate SCSI host and host memory space
10252  *		data structure memory
10253  * @hba: per adapter instance
10254  */
ufshcd_remove(struct ufs_hba * hba)10255 void ufshcd_remove(struct ufs_hba *hba)
10256 {
10257 	if (hba->ufs_device_wlun)
10258 		ufshcd_rpm_get_sync(hba);
10259 	ufs_hwmon_remove(hba);
10260 	ufs_bsg_remove(hba);
10261 	ufs_sysfs_remove_nodes(hba->dev);
10262 	cancel_delayed_work_sync(&hba->ufs_rtc_update_work);
10263 	blk_mq_destroy_queue(hba->tmf_queue);
10264 	blk_put_queue(hba->tmf_queue);
10265 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10266 	if (hba->scsi_host_added)
10267 		scsi_remove_host(hba->host);
10268 	/* disable interrupts */
10269 	ufshcd_disable_intr(hba, hba->intr_mask);
10270 	ufshcd_hba_stop(hba);
10271 	ufshcd_hba_exit(hba);
10272 }
10273 EXPORT_SYMBOL_GPL(ufshcd_remove);
10274 
10275 #ifdef CONFIG_PM_SLEEP
ufshcd_system_freeze(struct device * dev)10276 int ufshcd_system_freeze(struct device *dev)
10277 {
10278 
10279 	return ufshcd_system_suspend(dev);
10280 
10281 }
10282 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
10283 
ufshcd_system_restore(struct device * dev)10284 int ufshcd_system_restore(struct device *dev)
10285 {
10286 
10287 	struct ufs_hba *hba = dev_get_drvdata(dev);
10288 	int ret;
10289 
10290 	ret = ufshcd_system_resume(dev);
10291 	if (ret)
10292 		return ret;
10293 
10294 	/* Configure UTRL and UTMRL base address registers */
10295 	ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
10296 			REG_UTP_TRANSFER_REQ_LIST_BASE_L);
10297 	ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
10298 			REG_UTP_TRANSFER_REQ_LIST_BASE_H);
10299 	ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
10300 			REG_UTP_TASK_REQ_LIST_BASE_L);
10301 	ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
10302 			REG_UTP_TASK_REQ_LIST_BASE_H);
10303 	/*
10304 	 * Make sure that UTRL and UTMRL base address registers
10305 	 * are updated with the latest queue addresses. Only after
10306 	 * updating these addresses, we can queue the new commands.
10307 	 */
10308 	ufshcd_readl(hba, REG_UTP_TASK_REQ_LIST_BASE_H);
10309 
10310 	return 0;
10311 
10312 }
10313 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
10314 
ufshcd_system_thaw(struct device * dev)10315 int ufshcd_system_thaw(struct device *dev)
10316 {
10317 	return ufshcd_system_resume(dev);
10318 }
10319 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
10320 #endif /* CONFIG_PM_SLEEP  */
10321 
10322 /**
10323  * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
10324  * @hba: pointer to Host Bus Adapter (HBA)
10325  */
ufshcd_dealloc_host(struct ufs_hba * hba)10326 void ufshcd_dealloc_host(struct ufs_hba *hba)
10327 {
10328 	scsi_host_put(hba->host);
10329 }
10330 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
10331 
10332 /**
10333  * ufshcd_set_dma_mask - Set dma mask based on the controller
10334  *			 addressing capability
10335  * @hba: per adapter instance
10336  *
10337  * Return: 0 for success, non-zero for failure.
10338  */
ufshcd_set_dma_mask(struct ufs_hba * hba)10339 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
10340 {
10341 	if (hba->vops && hba->vops->set_dma_mask)
10342 		return hba->vops->set_dma_mask(hba);
10343 	if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
10344 		if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
10345 			return 0;
10346 	}
10347 	return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
10348 }
10349 
10350 /**
10351  * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
10352  * @dev: pointer to device handle
10353  * @hba_handle: driver private handle
10354  *
10355  * Return: 0 on success, non-zero value on failure.
10356  */
ufshcd_alloc_host(struct device * dev,struct ufs_hba ** hba_handle)10357 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
10358 {
10359 	struct Scsi_Host *host;
10360 	struct ufs_hba *hba;
10361 	int err = 0;
10362 
10363 	if (!dev) {
10364 		dev_err(dev,
10365 		"Invalid memory reference for dev is NULL\n");
10366 		err = -ENODEV;
10367 		goto out_error;
10368 	}
10369 
10370 	host = scsi_host_alloc(&ufshcd_driver_template,
10371 				sizeof(struct ufs_hba));
10372 	if (!host) {
10373 		dev_err(dev, "scsi_host_alloc failed\n");
10374 		err = -ENOMEM;
10375 		goto out_error;
10376 	}
10377 	host->nr_maps = HCTX_TYPE_POLL + 1;
10378 	hba = shost_priv(host);
10379 	hba->host = host;
10380 	hba->dev = dev;
10381 	hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
10382 	hba->nop_out_timeout = NOP_OUT_TIMEOUT;
10383 	ufshcd_set_sg_entry_size(hba, sizeof(struct ufshcd_sg_entry));
10384 	INIT_LIST_HEAD(&hba->clk_list_head);
10385 	spin_lock_init(&hba->outstanding_lock);
10386 
10387 	*hba_handle = hba;
10388 
10389 out_error:
10390 	return err;
10391 }
10392 EXPORT_SYMBOL(ufshcd_alloc_host);
10393 
10394 /* This function exists because blk_mq_alloc_tag_set() requires this. */
ufshcd_queue_tmf(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * qd)10395 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
10396 				     const struct blk_mq_queue_data *qd)
10397 {
10398 	WARN_ON_ONCE(true);
10399 	return BLK_STS_NOTSUPP;
10400 }
10401 
10402 static const struct blk_mq_ops ufshcd_tmf_ops = {
10403 	.queue_rq = ufshcd_queue_tmf,
10404 };
10405 
10406 /**
10407  * ufshcd_init - Driver initialization routine
10408  * @hba: per-adapter instance
10409  * @mmio_base: base register address
10410  * @irq: Interrupt line of device
10411  *
10412  * Return: 0 on success, non-zero value on failure.
10413  */
ufshcd_init(struct ufs_hba * hba,void __iomem * mmio_base,unsigned int irq)10414 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
10415 {
10416 	int err;
10417 	struct Scsi_Host *host = hba->host;
10418 	struct device *dev = hba->dev;
10419 	char eh_wq_name[sizeof("ufs_eh_wq_00")];
10420 
10421 	/*
10422 	 * dev_set_drvdata() must be called before any callbacks are registered
10423 	 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
10424 	 * sysfs).
10425 	 */
10426 	dev_set_drvdata(dev, hba);
10427 
10428 	if (!mmio_base) {
10429 		dev_err(hba->dev,
10430 		"Invalid memory reference for mmio_base is NULL\n");
10431 		err = -ENODEV;
10432 		goto out_error;
10433 	}
10434 
10435 	hba->mmio_base = mmio_base;
10436 	hba->irq = irq;
10437 	hba->vps = &ufs_hba_vps;
10438 
10439 	err = ufshcd_hba_init(hba);
10440 	if (err)
10441 		goto out_error;
10442 
10443 	/* Read capabilities registers */
10444 	err = ufshcd_hba_capabilities(hba);
10445 	if (err)
10446 		goto out_disable;
10447 
10448 	/* Get UFS version supported by the controller */
10449 	hba->ufs_version = ufshcd_get_ufs_version(hba);
10450 
10451 	/* Get Interrupt bit mask per version */
10452 	hba->intr_mask = ufshcd_get_intr_mask(hba);
10453 
10454 	err = ufshcd_set_dma_mask(hba);
10455 	if (err) {
10456 		dev_err(hba->dev, "set dma mask failed\n");
10457 		goto out_disable;
10458 	}
10459 
10460 	/* Allocate memory for host memory space */
10461 	err = ufshcd_memory_alloc(hba);
10462 	if (err) {
10463 		dev_err(hba->dev, "Memory allocation failed\n");
10464 		goto out_disable;
10465 	}
10466 
10467 	/* Configure LRB */
10468 	ufshcd_host_memory_configure(hba);
10469 
10470 	host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
10471 	host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
10472 	host->max_id = UFSHCD_MAX_ID;
10473 	host->max_lun = UFS_MAX_LUNS;
10474 	host->max_channel = UFSHCD_MAX_CHANNEL;
10475 	host->unique_id = host->host_no;
10476 	host->max_cmd_len = UFS_CDB_SIZE;
10477 	host->queuecommand_may_block = !!(hba->caps & UFSHCD_CAP_CLK_GATING);
10478 
10479 	hba->max_pwr_info.is_valid = false;
10480 
10481 	/* Initialize work queues */
10482 	snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
10483 		 hba->host->host_no);
10484 	hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
10485 	if (!hba->eh_wq) {
10486 		dev_err(hba->dev, "%s: failed to create eh workqueue\n",
10487 			__func__);
10488 		err = -ENOMEM;
10489 		goto out_disable;
10490 	}
10491 	INIT_WORK(&hba->eh_work, ufshcd_err_handler);
10492 	INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
10493 
10494 	sema_init(&hba->host_sem, 1);
10495 
10496 	/* Initialize UIC command mutex */
10497 	mutex_init(&hba->uic_cmd_mutex);
10498 
10499 	/* Initialize mutex for device management commands */
10500 	mutex_init(&hba->dev_cmd.lock);
10501 
10502 	/* Initialize mutex for exception event control */
10503 	mutex_init(&hba->ee_ctrl_mutex);
10504 
10505 	mutex_init(&hba->wb_mutex);
10506 	init_rwsem(&hba->clk_scaling_lock);
10507 
10508 	ufshcd_init_clk_gating(hba);
10509 
10510 	ufshcd_init_clk_scaling(hba);
10511 
10512 	/*
10513 	 * In order to avoid any spurious interrupt immediately after
10514 	 * registering UFS controller interrupt handler, clear any pending UFS
10515 	 * interrupt status and disable all the UFS interrupts.
10516 	 */
10517 	ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
10518 		      REG_INTERRUPT_STATUS);
10519 	ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
10520 	/*
10521 	 * Make sure that UFS interrupts are disabled and any pending interrupt
10522 	 * status is cleared before registering UFS interrupt handler.
10523 	 */
10524 	ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
10525 
10526 	/* IRQ registration */
10527 	err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
10528 	if (err) {
10529 		dev_err(hba->dev, "request irq failed\n");
10530 		goto out_disable;
10531 	} else {
10532 		hba->is_irq_enabled = true;
10533 	}
10534 
10535 	if (!is_mcq_supported(hba)) {
10536 		if (!hba->lsdb_sup) {
10537 			dev_err(hba->dev, "%s: failed to initialize (legacy doorbell mode not supported)\n",
10538 				__func__);
10539 			err = -EINVAL;
10540 			goto out_disable;
10541 		}
10542 		err = scsi_add_host(host, hba->dev);
10543 		if (err) {
10544 			dev_err(hba->dev, "scsi_add_host failed\n");
10545 			goto out_disable;
10546 		}
10547 		hba->scsi_host_added = true;
10548 	}
10549 
10550 	hba->tmf_tag_set = (struct blk_mq_tag_set) {
10551 		.nr_hw_queues	= 1,
10552 		.queue_depth	= hba->nutmrs,
10553 		.ops		= &ufshcd_tmf_ops,
10554 		.flags		= BLK_MQ_F_NO_SCHED,
10555 	};
10556 	err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
10557 	if (err < 0)
10558 		goto out_remove_scsi_host;
10559 	hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
10560 	if (IS_ERR(hba->tmf_queue)) {
10561 		err = PTR_ERR(hba->tmf_queue);
10562 		goto free_tmf_tag_set;
10563 	}
10564 	hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
10565 				    sizeof(*hba->tmf_rqs), GFP_KERNEL);
10566 	if (!hba->tmf_rqs) {
10567 		err = -ENOMEM;
10568 		goto free_tmf_queue;
10569 	}
10570 
10571 	/* Reset the attached device */
10572 	ufshcd_device_reset(hba);
10573 
10574 	ufshcd_init_crypto(hba);
10575 
10576 	/* Host controller enable */
10577 	err = ufshcd_hba_enable(hba);
10578 	if (err) {
10579 		dev_err(hba->dev, "Host controller enable failed\n");
10580 		ufshcd_print_evt_hist(hba);
10581 		ufshcd_print_host_state(hba);
10582 		goto free_tmf_queue;
10583 	}
10584 
10585 	/*
10586 	 * Set the default power management level for runtime and system PM if
10587 	 * not set by the host controller drivers.
10588 	 * Default power saving mode is to keep UFS link in Hibern8 state
10589 	 * and UFS device in sleep state.
10590 	 */
10591 	if (!hba->rpm_lvl)
10592 		hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10593 						UFS_SLEEP_PWR_MODE,
10594 						UIC_LINK_HIBERN8_STATE);
10595 	if (!hba->spm_lvl)
10596 		hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
10597 						UFS_SLEEP_PWR_MODE,
10598 						UIC_LINK_HIBERN8_STATE);
10599 
10600 	INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work, ufshcd_rpm_dev_flush_recheck_work);
10601 	INIT_DELAYED_WORK(&hba->ufs_rtc_update_work, ufshcd_rtc_work);
10602 
10603 	/* Set the default auto-hiberate idle timer value to 150 ms */
10604 	if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
10605 		hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
10606 			    FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
10607 	}
10608 
10609 	/* Hold auto suspend until async scan completes */
10610 	pm_runtime_get_sync(dev);
10611 	atomic_set(&hba->scsi_block_reqs_cnt, 0);
10612 	/*
10613 	 * We are assuming that device wasn't put in sleep/power-down
10614 	 * state exclusively during the boot stage before kernel.
10615 	 * This assumption helps avoid doing link startup twice during
10616 	 * ufshcd_probe_hba().
10617 	 */
10618 	ufshcd_set_ufs_dev_active(hba);
10619 
10620 	async_schedule(ufshcd_async_scan, hba);
10621 	ufs_sysfs_add_nodes(hba->dev);
10622 
10623 	device_enable_async_suspend(dev);
10624 	return 0;
10625 
10626 free_tmf_queue:
10627 	blk_mq_destroy_queue(hba->tmf_queue);
10628 	blk_put_queue(hba->tmf_queue);
10629 free_tmf_tag_set:
10630 	blk_mq_free_tag_set(&hba->tmf_tag_set);
10631 out_remove_scsi_host:
10632 	if (hba->scsi_host_added)
10633 		scsi_remove_host(hba->host);
10634 out_disable:
10635 	hba->is_irq_enabled = false;
10636 	ufshcd_hba_exit(hba);
10637 out_error:
10638 	return err;
10639 }
10640 EXPORT_SYMBOL_GPL(ufshcd_init);
10641 
ufshcd_resume_complete(struct device * dev)10642 void ufshcd_resume_complete(struct device *dev)
10643 {
10644 	struct ufs_hba *hba = dev_get_drvdata(dev);
10645 
10646 	if (hba->complete_put) {
10647 		ufshcd_rpm_put(hba);
10648 		hba->complete_put = false;
10649 	}
10650 }
10651 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
10652 
ufshcd_rpm_ok_for_spm(struct ufs_hba * hba)10653 static bool ufshcd_rpm_ok_for_spm(struct ufs_hba *hba)
10654 {
10655 	struct device *dev = &hba->ufs_device_wlun->sdev_gendev;
10656 	enum ufs_dev_pwr_mode dev_pwr_mode;
10657 	enum uic_link_state link_state;
10658 	unsigned long flags;
10659 	bool res;
10660 
10661 	spin_lock_irqsave(&dev->power.lock, flags);
10662 	dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(hba->spm_lvl);
10663 	link_state = ufs_get_pm_lvl_to_link_pwr_state(hba->spm_lvl);
10664 	res = pm_runtime_suspended(dev) &&
10665 	      hba->curr_dev_pwr_mode == dev_pwr_mode &&
10666 	      hba->uic_link_state == link_state &&
10667 	      !hba->dev_info.b_rpm_dev_flush_capable;
10668 	spin_unlock_irqrestore(&dev->power.lock, flags);
10669 
10670 	return res;
10671 }
10672 
__ufshcd_suspend_prepare(struct device * dev,bool rpm_ok_for_spm)10673 int __ufshcd_suspend_prepare(struct device *dev, bool rpm_ok_for_spm)
10674 {
10675 	struct ufs_hba *hba = dev_get_drvdata(dev);
10676 	int ret;
10677 
10678 	/*
10679 	 * SCSI assumes that runtime-pm and system-pm for scsi drivers
10680 	 * are same. And it doesn't wake up the device for system-suspend
10681 	 * if it's runtime suspended. But ufs doesn't follow that.
10682 	 * Refer ufshcd_resume_complete()
10683 	 */
10684 	if (hba->ufs_device_wlun) {
10685 		/* Prevent runtime suspend */
10686 		ufshcd_rpm_get_noresume(hba);
10687 		/*
10688 		 * Check if already runtime suspended in same state as system
10689 		 * suspend would be.
10690 		 */
10691 		if (!rpm_ok_for_spm || !ufshcd_rpm_ok_for_spm(hba)) {
10692 			/* RPM state is not ok for SPM, so runtime resume */
10693 			ret = ufshcd_rpm_resume(hba);
10694 			if (ret < 0 && ret != -EACCES) {
10695 				ufshcd_rpm_put(hba);
10696 				return ret;
10697 			}
10698 		}
10699 		hba->complete_put = true;
10700 	}
10701 	return 0;
10702 }
10703 EXPORT_SYMBOL_GPL(__ufshcd_suspend_prepare);
10704 
ufshcd_suspend_prepare(struct device * dev)10705 int ufshcd_suspend_prepare(struct device *dev)
10706 {
10707 	return __ufshcd_suspend_prepare(dev, true);
10708 }
10709 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
10710 
10711 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_poweroff(struct device * dev)10712 static int ufshcd_wl_poweroff(struct device *dev)
10713 {
10714 	struct scsi_device *sdev = to_scsi_device(dev);
10715 	struct ufs_hba *hba = shost_priv(sdev->host);
10716 
10717 	__ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
10718 	return 0;
10719 }
10720 #endif
10721 
ufshcd_wl_probe(struct device * dev)10722 static int ufshcd_wl_probe(struct device *dev)
10723 {
10724 	struct scsi_device *sdev = to_scsi_device(dev);
10725 
10726 	if (!is_device_wlun(sdev))
10727 		return -ENODEV;
10728 
10729 	blk_pm_runtime_init(sdev->request_queue, dev);
10730 	pm_runtime_set_autosuspend_delay(dev, 0);
10731 	pm_runtime_allow(dev);
10732 
10733 	return  0;
10734 }
10735 
ufshcd_wl_remove(struct device * dev)10736 static int ufshcd_wl_remove(struct device *dev)
10737 {
10738 	pm_runtime_forbid(dev);
10739 	return 0;
10740 }
10741 
10742 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
10743 #ifdef CONFIG_PM_SLEEP
10744 	.suspend = ufshcd_wl_suspend,
10745 	.resume = ufshcd_wl_resume,
10746 	.freeze = ufshcd_wl_suspend,
10747 	.thaw = ufshcd_wl_resume,
10748 	.poweroff = ufshcd_wl_poweroff,
10749 	.restore = ufshcd_wl_resume,
10750 #endif
10751 	SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
10752 };
10753 
ufshcd_check_header_layout(void)10754 static void ufshcd_check_header_layout(void)
10755 {
10756 	/*
10757 	 * gcc compilers before version 10 cannot do constant-folding for
10758 	 * sub-byte bitfields. Hence skip the layout checks for gcc 9 and
10759 	 * before.
10760 	 */
10761 	if (IS_ENABLED(CONFIG_CC_IS_GCC) && CONFIG_GCC_VERSION < 100000)
10762 		return;
10763 
10764 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10765 				.cci = 3})[0] != 3);
10766 
10767 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10768 				.ehs_length = 2})[1] != 2);
10769 
10770 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10771 				.enable_crypto = 1})[2]
10772 		     != 0x80);
10773 
10774 	BUILD_BUG_ON((((u8 *)&(struct request_desc_header){
10775 					.command_type = 5,
10776 					.data_direction = 3,
10777 					.interrupt = 1,
10778 				})[3]) != ((5 << 4) | (3 << 1) | 1));
10779 
10780 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10781 				.dunl = cpu_to_le32(0xdeadbeef)})[1] !=
10782 		cpu_to_le32(0xdeadbeef));
10783 
10784 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10785 				.ocs = 4})[8] != 4);
10786 
10787 	BUILD_BUG_ON(((u8 *)&(struct request_desc_header){
10788 				.cds = 5})[9] != 5);
10789 
10790 	BUILD_BUG_ON(((__le32 *)&(struct request_desc_header){
10791 				.dunu = cpu_to_le32(0xbadcafe)})[3] !=
10792 		cpu_to_le32(0xbadcafe));
10793 
10794 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10795 			     .iid = 0xf })[4] != 0xf0);
10796 
10797 	BUILD_BUG_ON(((u8 *)&(struct utp_upiu_header){
10798 			     .command_set_type = 0xf })[4] != 0xf);
10799 }
10800 
10801 /*
10802  * ufs_dev_wlun_template - describes ufs device wlun
10803  * ufs-device wlun - used to send pm commands
10804  * All luns are consumers of ufs-device wlun.
10805  *
10806  * Currently, no sd driver is present for wluns.
10807  * Hence the no specific pm operations are performed.
10808  * With ufs design, SSU should be sent to ufs-device wlun.
10809  * Hence register a scsi driver for ufs wluns only.
10810  */
10811 static struct scsi_driver ufs_dev_wlun_template = {
10812 	.gendrv = {
10813 		.name = "ufs_device_wlun",
10814 		.owner = THIS_MODULE,
10815 		.probe = ufshcd_wl_probe,
10816 		.remove = ufshcd_wl_remove,
10817 		.pm = &ufshcd_wl_pm_ops,
10818 		.shutdown = ufshcd_wl_shutdown,
10819 	},
10820 };
10821 
ufshcd_core_init(void)10822 static int __init ufshcd_core_init(void)
10823 {
10824 	int ret;
10825 
10826 	ufshcd_check_header_layout();
10827 
10828 	ufs_debugfs_init();
10829 
10830 	ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
10831 	if (ret)
10832 		ufs_debugfs_exit();
10833 	return ret;
10834 }
10835 
ufshcd_core_exit(void)10836 static void __exit ufshcd_core_exit(void)
10837 {
10838 	ufs_debugfs_exit();
10839 	scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10840 }
10841 
10842 module_init(ufshcd_core_init);
10843 module_exit(ufshcd_core_exit);
10844 
10845 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10846 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10847 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10848 MODULE_SOFTDEP("pre: governor_simpleondemand");
10849 MODULE_LICENSE("GPL");
10850