1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/debugfs.h>
3 #include <linux/delay.h>
4 #include <linux/gpio/consumer.h>
5 #include <linux/hwmon.h>
6 #include <linux/i2c.h>
7 #include <linux/interrupt.h>
8 #include <linux/jiffies.h>
9 #include <linux/mdio/mdio-i2c.h>
10 #include <linux/module.h>
11 #include <linux/mutex.h>
12 #include <linux/of.h>
13 #include <linux/phy.h>
14 #include <linux/platform_device.h>
15 #include <linux/rtnetlink.h>
16 #include <linux/slab.h>
17 #include <linux/workqueue.h>
18
19 #include "sfp.h"
20 #include "swphy.h"
21
22 enum {
23 GPIO_MODDEF0,
24 GPIO_LOS,
25 GPIO_TX_FAULT,
26 GPIO_TX_DISABLE,
27 GPIO_RS0,
28 GPIO_RS1,
29 GPIO_MAX,
30
31 SFP_F_PRESENT = BIT(GPIO_MODDEF0),
32 SFP_F_LOS = BIT(GPIO_LOS),
33 SFP_F_TX_FAULT = BIT(GPIO_TX_FAULT),
34 SFP_F_TX_DISABLE = BIT(GPIO_TX_DISABLE),
35 SFP_F_RS0 = BIT(GPIO_RS0),
36 SFP_F_RS1 = BIT(GPIO_RS1),
37
38 SFP_F_OUTPUTS = SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
39
40 SFP_E_INSERT = 0,
41 SFP_E_REMOVE,
42 SFP_E_DEV_ATTACH,
43 SFP_E_DEV_DETACH,
44 SFP_E_DEV_DOWN,
45 SFP_E_DEV_UP,
46 SFP_E_TX_FAULT,
47 SFP_E_TX_CLEAR,
48 SFP_E_LOS_HIGH,
49 SFP_E_LOS_LOW,
50 SFP_E_TIMEOUT,
51
52 SFP_MOD_EMPTY = 0,
53 SFP_MOD_ERROR,
54 SFP_MOD_PROBE,
55 SFP_MOD_WAITDEV,
56 SFP_MOD_HPOWER,
57 SFP_MOD_WAITPWR,
58 SFP_MOD_PRESENT,
59
60 SFP_DEV_DETACHED = 0,
61 SFP_DEV_DOWN,
62 SFP_DEV_UP,
63
64 SFP_S_DOWN = 0,
65 SFP_S_FAIL,
66 SFP_S_WAIT,
67 SFP_S_INIT,
68 SFP_S_INIT_PHY,
69 SFP_S_INIT_TX_FAULT,
70 SFP_S_WAIT_LOS,
71 SFP_S_LINK_UP,
72 SFP_S_TX_FAULT,
73 SFP_S_REINIT,
74 SFP_S_TX_DISABLE,
75 };
76
77 static const char * const mod_state_strings[] = {
78 [SFP_MOD_EMPTY] = "empty",
79 [SFP_MOD_ERROR] = "error",
80 [SFP_MOD_PROBE] = "probe",
81 [SFP_MOD_WAITDEV] = "waitdev",
82 [SFP_MOD_HPOWER] = "hpower",
83 [SFP_MOD_WAITPWR] = "waitpwr",
84 [SFP_MOD_PRESENT] = "present",
85 };
86
mod_state_to_str(unsigned short mod_state)87 static const char *mod_state_to_str(unsigned short mod_state)
88 {
89 if (mod_state >= ARRAY_SIZE(mod_state_strings))
90 return "Unknown module state";
91 return mod_state_strings[mod_state];
92 }
93
94 static const char * const dev_state_strings[] = {
95 [SFP_DEV_DETACHED] = "detached",
96 [SFP_DEV_DOWN] = "down",
97 [SFP_DEV_UP] = "up",
98 };
99
dev_state_to_str(unsigned short dev_state)100 static const char *dev_state_to_str(unsigned short dev_state)
101 {
102 if (dev_state >= ARRAY_SIZE(dev_state_strings))
103 return "Unknown device state";
104 return dev_state_strings[dev_state];
105 }
106
107 static const char * const event_strings[] = {
108 [SFP_E_INSERT] = "insert",
109 [SFP_E_REMOVE] = "remove",
110 [SFP_E_DEV_ATTACH] = "dev_attach",
111 [SFP_E_DEV_DETACH] = "dev_detach",
112 [SFP_E_DEV_DOWN] = "dev_down",
113 [SFP_E_DEV_UP] = "dev_up",
114 [SFP_E_TX_FAULT] = "tx_fault",
115 [SFP_E_TX_CLEAR] = "tx_clear",
116 [SFP_E_LOS_HIGH] = "los_high",
117 [SFP_E_LOS_LOW] = "los_low",
118 [SFP_E_TIMEOUT] = "timeout",
119 };
120
event_to_str(unsigned short event)121 static const char *event_to_str(unsigned short event)
122 {
123 if (event >= ARRAY_SIZE(event_strings))
124 return "Unknown event";
125 return event_strings[event];
126 }
127
128 static const char * const sm_state_strings[] = {
129 [SFP_S_DOWN] = "down",
130 [SFP_S_FAIL] = "fail",
131 [SFP_S_WAIT] = "wait",
132 [SFP_S_INIT] = "init",
133 [SFP_S_INIT_PHY] = "init_phy",
134 [SFP_S_INIT_TX_FAULT] = "init_tx_fault",
135 [SFP_S_WAIT_LOS] = "wait_los",
136 [SFP_S_LINK_UP] = "link_up",
137 [SFP_S_TX_FAULT] = "tx_fault",
138 [SFP_S_REINIT] = "reinit",
139 [SFP_S_TX_DISABLE] = "tx_disable",
140 };
141
sm_state_to_str(unsigned short sm_state)142 static const char *sm_state_to_str(unsigned short sm_state)
143 {
144 if (sm_state >= ARRAY_SIZE(sm_state_strings))
145 return "Unknown state";
146 return sm_state_strings[sm_state];
147 }
148
149 static const char *gpio_names[] = {
150 "mod-def0",
151 "los",
152 "tx-fault",
153 "tx-disable",
154 "rate-select0",
155 "rate-select1",
156 };
157
158 static const enum gpiod_flags gpio_flags[] = {
159 GPIOD_IN,
160 GPIOD_IN,
161 GPIOD_IN,
162 GPIOD_ASIS,
163 GPIOD_ASIS,
164 GPIOD_ASIS,
165 };
166
167 /* t_start_up (SFF-8431) or t_init (SFF-8472) is the time required for a
168 * non-cooled module to initialise its laser safety circuitry. We wait
169 * an initial T_WAIT period before we check the tx fault to give any PHY
170 * on board (for a copper SFP) time to initialise.
171 */
172 #define T_WAIT msecs_to_jiffies(50)
173 #define T_START_UP msecs_to_jiffies(300)
174 #define T_START_UP_BAD_GPON msecs_to_jiffies(60000)
175
176 /* t_reset is the time required to assert the TX_DISABLE signal to reset
177 * an indicated TX_FAULT.
178 */
179 #define T_RESET_US 10
180 #define T_FAULT_RECOVER msecs_to_jiffies(1000)
181
182 /* N_FAULT_INIT is the number of recovery attempts at module initialisation
183 * time. If the TX_FAULT signal is not deasserted after this number of
184 * attempts at clearing it, we decide that the module is faulty.
185 * N_FAULT is the same but after the module has initialised.
186 */
187 #define N_FAULT_INIT 5
188 #define N_FAULT 5
189
190 /* T_PHY_RETRY is the time interval between attempts to probe the PHY.
191 * R_PHY_RETRY is the number of attempts.
192 */
193 #define T_PHY_RETRY msecs_to_jiffies(50)
194 #define R_PHY_RETRY 12
195
196 /* SFP module presence detection is poor: the three MOD DEF signals are
197 * the same length on the PCB, which means it's possible for MOD DEF 0 to
198 * connect before the I2C bus on MOD DEF 1/2.
199 *
200 * The SFF-8472 specifies t_serial ("Time from power on until module is
201 * ready for data transmission over the two wire serial bus.") as 300ms.
202 */
203 #define T_SERIAL msecs_to_jiffies(300)
204 #define T_HPOWER_LEVEL msecs_to_jiffies(300)
205 #define T_PROBE_RETRY_INIT msecs_to_jiffies(100)
206 #define R_PROBE_RETRY_INIT 10
207 #define T_PROBE_RETRY_SLOW msecs_to_jiffies(5000)
208 #define R_PROBE_RETRY_SLOW 12
209
210 /* SFP modules appear to always have their PHY configured for bus address
211 * 0x56 (which with mdio-i2c, translates to a PHY address of 22).
212 * RollBall SFPs access phy via SFP Enhanced Digital Diagnostic Interface
213 * via address 0x51 (mdio-i2c will use RollBall protocol on this address).
214 */
215 #define SFP_PHY_ADDR 22
216 #define SFP_PHY_ADDR_ROLLBALL 17
217
218 /* SFP_EEPROM_BLOCK_SIZE is the size of data chunk to read the EEPROM
219 * at a time. Some SFP modules and also some Linux I2C drivers do not like
220 * reads longer than 16 bytes.
221 */
222 #define SFP_EEPROM_BLOCK_SIZE 16
223
224 struct sff_data {
225 unsigned int gpios;
226 bool (*module_supported)(const struct sfp_eeprom_id *id);
227 };
228
229 struct sfp {
230 struct device *dev;
231 struct i2c_adapter *i2c;
232 struct mii_bus *i2c_mii;
233 struct sfp_bus *sfp_bus;
234 enum mdio_i2c_proto mdio_protocol;
235 struct phy_device *mod_phy;
236 const struct sff_data *type;
237 size_t i2c_block_size;
238 u32 max_power_mW;
239
240 unsigned int (*get_state)(struct sfp *);
241 void (*set_state)(struct sfp *, unsigned int);
242 int (*read)(struct sfp *, bool, u8, void *, size_t);
243 int (*write)(struct sfp *, bool, u8, void *, size_t);
244
245 struct gpio_desc *gpio[GPIO_MAX];
246 int gpio_irq[GPIO_MAX];
247
248 bool need_poll;
249
250 /* Access rules:
251 * state_hw_drive: st_mutex held
252 * state_hw_mask: st_mutex held
253 * state_soft_mask: st_mutex held
254 * state: st_mutex held unless reading input bits
255 */
256 struct mutex st_mutex; /* Protects state */
257 unsigned int state_hw_drive;
258 unsigned int state_hw_mask;
259 unsigned int state_soft_mask;
260 unsigned int state;
261
262 struct delayed_work poll;
263 struct delayed_work timeout;
264 struct mutex sm_mutex; /* Protects state machine */
265 unsigned char sm_mod_state;
266 unsigned char sm_mod_tries_init;
267 unsigned char sm_mod_tries;
268 unsigned char sm_dev_state;
269 unsigned short sm_state;
270 unsigned char sm_fault_retries;
271 unsigned char sm_phy_retries;
272
273 struct sfp_eeprom_id id;
274 unsigned int module_power_mW;
275 unsigned int module_t_start_up;
276 unsigned int module_t_wait;
277
278 unsigned int rate_kbd;
279 unsigned int rs_threshold_kbd;
280 unsigned int rs_state_mask;
281
282 bool have_a2;
283 bool tx_fault_ignore;
284
285 const struct sfp_quirk *quirk;
286
287 #if IS_ENABLED(CONFIG_HWMON)
288 struct sfp_diag diag;
289 struct delayed_work hwmon_probe;
290 unsigned int hwmon_tries;
291 struct device *hwmon_dev;
292 char *hwmon_name;
293 #endif
294
295 #if IS_ENABLED(CONFIG_DEBUG_FS)
296 struct dentry *debugfs_dir;
297 #endif
298 };
299
sff_module_supported(const struct sfp_eeprom_id * id)300 static bool sff_module_supported(const struct sfp_eeprom_id *id)
301 {
302 return id->base.phys_id == SFF8024_ID_SFF_8472 &&
303 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP;
304 }
305
306 static const struct sff_data sff_data = {
307 .gpios = SFP_F_LOS | SFP_F_TX_FAULT | SFP_F_TX_DISABLE,
308 .module_supported = sff_module_supported,
309 };
310
sfp_module_supported(const struct sfp_eeprom_id * id)311 static bool sfp_module_supported(const struct sfp_eeprom_id *id)
312 {
313 if (id->base.phys_id == SFF8024_ID_SFP &&
314 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP)
315 return true;
316
317 /* SFP GPON module Ubiquiti U-Fiber Instant has in its EEPROM stored
318 * phys id SFF instead of SFP. Therefore mark this module explicitly
319 * as supported based on vendor name and pn match.
320 */
321 if (id->base.phys_id == SFF8024_ID_SFF_8472 &&
322 id->base.phys_ext_id == SFP_PHYS_EXT_ID_SFP &&
323 !memcmp(id->base.vendor_name, "UBNT ", 16) &&
324 !memcmp(id->base.vendor_pn, "UF-INSTANT ", 16))
325 return true;
326
327 return false;
328 }
329
330 static const struct sff_data sfp_data = {
331 .gpios = SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT |
332 SFP_F_TX_DISABLE | SFP_F_RS0 | SFP_F_RS1,
333 .module_supported = sfp_module_supported,
334 };
335
336 static const struct of_device_id sfp_of_match[] = {
337 { .compatible = "sff,sff", .data = &sff_data, },
338 { .compatible = "sff,sfp", .data = &sfp_data, },
339 { },
340 };
341 MODULE_DEVICE_TABLE(of, sfp_of_match);
342
sfp_fixup_long_startup(struct sfp * sfp)343 static void sfp_fixup_long_startup(struct sfp *sfp)
344 {
345 sfp->module_t_start_up = T_START_UP_BAD_GPON;
346 }
347
sfp_fixup_ignore_tx_fault(struct sfp * sfp)348 static void sfp_fixup_ignore_tx_fault(struct sfp *sfp)
349 {
350 sfp->tx_fault_ignore = true;
351 }
352
353 // For 10GBASE-T short-reach modules
sfp_fixup_10gbaset_30m(struct sfp * sfp)354 static void sfp_fixup_10gbaset_30m(struct sfp *sfp)
355 {
356 sfp->id.base.connector = SFF8024_CONNECTOR_RJ45;
357 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SR;
358 }
359
sfp_fixup_rollball_proto(struct sfp * sfp,unsigned int secs)360 static void sfp_fixup_rollball_proto(struct sfp *sfp, unsigned int secs)
361 {
362 sfp->mdio_protocol = MDIO_I2C_ROLLBALL;
363 sfp->module_t_wait = msecs_to_jiffies(secs * 1000);
364 }
365
sfp_fixup_fs_10gt(struct sfp * sfp)366 static void sfp_fixup_fs_10gt(struct sfp *sfp)
367 {
368 sfp_fixup_10gbaset_30m(sfp);
369
370 // These SFPs need 4 seconds before the PHY can be accessed
371 sfp_fixup_rollball_proto(sfp, 4);
372 }
373
sfp_fixup_halny_gsfp(struct sfp * sfp)374 static void sfp_fixup_halny_gsfp(struct sfp *sfp)
375 {
376 /* Ignore the TX_FAULT and LOS signals on this module.
377 * these are possibly used for other purposes on this
378 * module, e.g. a serial port.
379 */
380 sfp->state_hw_mask &= ~(SFP_F_TX_FAULT | SFP_F_LOS);
381 }
382
sfp_fixup_rollball(struct sfp * sfp)383 static void sfp_fixup_rollball(struct sfp *sfp)
384 {
385 // Rollball SFPs need 25 seconds before the PHY can be accessed
386 sfp_fixup_rollball_proto(sfp, 25);
387 }
388
sfp_fixup_rollball_cc(struct sfp * sfp)389 static void sfp_fixup_rollball_cc(struct sfp *sfp)
390 {
391 sfp_fixup_rollball(sfp);
392
393 /* Some RollBall SFPs may have wrong (zero) extended compliance code
394 * burned in EEPROM. For PHY probing we need the correct one.
395 */
396 sfp->id.base.extended_cc = SFF8024_ECC_10GBASE_T_SFI;
397 }
398
sfp_quirk_2500basex(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)399 static void sfp_quirk_2500basex(const struct sfp_eeprom_id *id,
400 unsigned long *modes,
401 unsigned long *interfaces)
402 {
403 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseX_Full_BIT, modes);
404 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
405 }
406
sfp_quirk_disable_autoneg(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)407 static void sfp_quirk_disable_autoneg(const struct sfp_eeprom_id *id,
408 unsigned long *modes,
409 unsigned long *interfaces)
410 {
411 linkmode_clear_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, modes);
412 }
413
sfp_quirk_oem_2_5g(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)414 static void sfp_quirk_oem_2_5g(const struct sfp_eeprom_id *id,
415 unsigned long *modes,
416 unsigned long *interfaces)
417 {
418 /* Copper 2.5G SFP */
419 linkmode_set_bit(ETHTOOL_LINK_MODE_2500baseT_Full_BIT, modes);
420 __set_bit(PHY_INTERFACE_MODE_2500BASEX, interfaces);
421 sfp_quirk_disable_autoneg(id, modes, interfaces);
422 }
423
sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id * id,unsigned long * modes,unsigned long * interfaces)424 static void sfp_quirk_ubnt_uf_instant(const struct sfp_eeprom_id *id,
425 unsigned long *modes,
426 unsigned long *interfaces)
427 {
428 /* Ubiquiti U-Fiber Instant module claims that support all transceiver
429 * types including 10G Ethernet which is not truth. So clear all claimed
430 * modes and set only one mode which module supports: 1000baseX_Full.
431 */
432 linkmode_zero(modes);
433 linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, modes);
434 }
435
436 #define SFP_QUIRK(_v, _p, _m, _f) \
437 { .vendor = _v, .part = _p, .modes = _m, .fixup = _f, }
438 #define SFP_QUIRK_M(_v, _p, _m) SFP_QUIRK(_v, _p, _m, NULL)
439 #define SFP_QUIRK_F(_v, _p, _f) SFP_QUIRK(_v, _p, NULL, _f)
440
441 static const struct sfp_quirk sfp_quirks[] = {
442 // Alcatel Lucent G-010S-P can operate at 2500base-X, but incorrectly
443 // report 2500MBd NRZ in their EEPROM
444 SFP_QUIRK("ALCATELLUCENT", "G010SP", sfp_quirk_2500basex,
445 sfp_fixup_ignore_tx_fault),
446
447 // Alcatel Lucent G-010S-A can operate at 2500base-X, but report 3.2GBd
448 // NRZ in their EEPROM
449 SFP_QUIRK("ALCATELLUCENT", "3FE46541AA", sfp_quirk_2500basex,
450 sfp_fixup_long_startup),
451
452 // Fiberstore SFP-10G-T doesn't identify as copper, and uses the
453 // Rollball protocol to talk to the PHY.
454 SFP_QUIRK_F("FS", "SFP-10G-T", sfp_fixup_fs_10gt),
455
456 // Fiberstore GPON-ONU-34-20BI can operate at 2500base-X, but report 1.2GBd
457 // NRZ in their EEPROM
458 SFP_QUIRK("FS", "GPON-ONU-34-20BI", sfp_quirk_2500basex,
459 sfp_fixup_ignore_tx_fault),
460
461 SFP_QUIRK_F("HALNy", "HL-GSFP", sfp_fixup_halny_gsfp),
462
463 // HG MXPD-483II-F 2.5G supports 2500Base-X, but incorrectly reports
464 // 2600MBd in their EERPOM
465 SFP_QUIRK_M("HG GENUINE", "MXPD-483II", sfp_quirk_2500basex),
466
467 // Huawei MA5671A can operate at 2500base-X, but report 1.2GBd NRZ in
468 // their EEPROM
469 SFP_QUIRK("HUAWEI", "MA5671A", sfp_quirk_2500basex,
470 sfp_fixup_ignore_tx_fault),
471
472 // FS 2.5G Base-T
473 SFP_QUIRK_M("FS", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
474
475 // Lantech 8330-262D-E can operate at 2500base-X, but incorrectly report
476 // 2500MBd NRZ in their EEPROM
477 SFP_QUIRK_M("Lantech", "8330-262D-E", sfp_quirk_2500basex),
478
479 SFP_QUIRK_M("UBNT", "UF-INSTANT", sfp_quirk_ubnt_uf_instant),
480
481 // Walsun HXSX-ATR[CI]-1 don't identify as copper, and use the
482 // Rollball protocol to talk to the PHY.
483 SFP_QUIRK_F("Walsun", "HXSX-ATRC-1", sfp_fixup_fs_10gt),
484 SFP_QUIRK_F("Walsun", "HXSX-ATRI-1", sfp_fixup_fs_10gt),
485
486 // OEM SFP-GE-T is a 1000Base-T module with broken TX_FAULT indicator
487 SFP_QUIRK_F("OEM", "SFP-GE-T", sfp_fixup_ignore_tx_fault),
488
489 SFP_QUIRK_F("OEM", "SFP-10G-T", sfp_fixup_rollball_cc),
490 SFP_QUIRK_M("OEM", "SFP-2.5G-T", sfp_quirk_oem_2_5g),
491 SFP_QUIRK_F("OEM", "RTSFP-10", sfp_fixup_rollball_cc),
492 SFP_QUIRK_F("OEM", "RTSFP-10G", sfp_fixup_rollball_cc),
493 SFP_QUIRK_F("Turris", "RTSFP-10", sfp_fixup_rollball),
494 SFP_QUIRK_F("Turris", "RTSFP-10G", sfp_fixup_rollball),
495 };
496
sfp_strlen(const char * str,size_t maxlen)497 static size_t sfp_strlen(const char *str, size_t maxlen)
498 {
499 size_t size, i;
500
501 /* Trailing characters should be filled with space chars, but
502 * some manufacturers can't read SFF-8472 and use NUL.
503 */
504 for (i = 0, size = 0; i < maxlen; i++)
505 if (str[i] != ' ' && str[i] != '\0')
506 size = i + 1;
507
508 return size;
509 }
510
sfp_match(const char * qs,const char * str,size_t len)511 static bool sfp_match(const char *qs, const char *str, size_t len)
512 {
513 if (!qs)
514 return true;
515 if (strlen(qs) != len)
516 return false;
517 return !strncmp(qs, str, len);
518 }
519
sfp_lookup_quirk(const struct sfp_eeprom_id * id)520 static const struct sfp_quirk *sfp_lookup_quirk(const struct sfp_eeprom_id *id)
521 {
522 const struct sfp_quirk *q;
523 unsigned int i;
524 size_t vs, ps;
525
526 vs = sfp_strlen(id->base.vendor_name, ARRAY_SIZE(id->base.vendor_name));
527 ps = sfp_strlen(id->base.vendor_pn, ARRAY_SIZE(id->base.vendor_pn));
528
529 for (i = 0, q = sfp_quirks; i < ARRAY_SIZE(sfp_quirks); i++, q++)
530 if (sfp_match(q->vendor, id->base.vendor_name, vs) &&
531 sfp_match(q->part, id->base.vendor_pn, ps))
532 return q;
533
534 return NULL;
535 }
536
537 static unsigned long poll_jiffies;
538
sfp_gpio_get_state(struct sfp * sfp)539 static unsigned int sfp_gpio_get_state(struct sfp *sfp)
540 {
541 unsigned int i, state, v;
542
543 for (i = state = 0; i < GPIO_MAX; i++) {
544 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
545 continue;
546
547 v = gpiod_get_value_cansleep(sfp->gpio[i]);
548 if (v)
549 state |= BIT(i);
550 }
551
552 return state;
553 }
554
sff_gpio_get_state(struct sfp * sfp)555 static unsigned int sff_gpio_get_state(struct sfp *sfp)
556 {
557 return sfp_gpio_get_state(sfp) | SFP_F_PRESENT;
558 }
559
sfp_gpio_set_state(struct sfp * sfp,unsigned int state)560 static void sfp_gpio_set_state(struct sfp *sfp, unsigned int state)
561 {
562 unsigned int drive;
563
564 if (state & SFP_F_PRESENT)
565 /* If the module is present, drive the requested signals */
566 drive = sfp->state_hw_drive;
567 else
568 /* Otherwise, let them float to the pull-ups */
569 drive = 0;
570
571 if (sfp->gpio[GPIO_TX_DISABLE]) {
572 if (drive & SFP_F_TX_DISABLE)
573 gpiod_direction_output(sfp->gpio[GPIO_TX_DISABLE],
574 state & SFP_F_TX_DISABLE);
575 else
576 gpiod_direction_input(sfp->gpio[GPIO_TX_DISABLE]);
577 }
578
579 if (sfp->gpio[GPIO_RS0]) {
580 if (drive & SFP_F_RS0)
581 gpiod_direction_output(sfp->gpio[GPIO_RS0],
582 state & SFP_F_RS0);
583 else
584 gpiod_direction_input(sfp->gpio[GPIO_RS0]);
585 }
586
587 if (sfp->gpio[GPIO_RS1]) {
588 if (drive & SFP_F_RS1)
589 gpiod_direction_output(sfp->gpio[GPIO_RS1],
590 state & SFP_F_RS1);
591 else
592 gpiod_direction_input(sfp->gpio[GPIO_RS1]);
593 }
594 }
595
sfp_i2c_read(struct sfp * sfp,bool a2,u8 dev_addr,void * buf,size_t len)596 static int sfp_i2c_read(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
597 size_t len)
598 {
599 struct i2c_msg msgs[2];
600 u8 bus_addr = a2 ? 0x51 : 0x50;
601 size_t block_size = sfp->i2c_block_size;
602 size_t this_len;
603 int ret;
604
605 msgs[0].addr = bus_addr;
606 msgs[0].flags = 0;
607 msgs[0].len = 1;
608 msgs[0].buf = &dev_addr;
609 msgs[1].addr = bus_addr;
610 msgs[1].flags = I2C_M_RD;
611 msgs[1].len = len;
612 msgs[1].buf = buf;
613
614 while (len) {
615 this_len = len;
616 if (this_len > block_size)
617 this_len = block_size;
618
619 msgs[1].len = this_len;
620
621 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
622 if (ret < 0)
623 return ret;
624
625 if (ret != ARRAY_SIZE(msgs))
626 break;
627
628 msgs[1].buf += this_len;
629 dev_addr += this_len;
630 len -= this_len;
631 }
632
633 return msgs[1].buf - (u8 *)buf;
634 }
635
sfp_i2c_write(struct sfp * sfp,bool a2,u8 dev_addr,void * buf,size_t len)636 static int sfp_i2c_write(struct sfp *sfp, bool a2, u8 dev_addr, void *buf,
637 size_t len)
638 {
639 struct i2c_msg msgs[1];
640 u8 bus_addr = a2 ? 0x51 : 0x50;
641 int ret;
642
643 msgs[0].addr = bus_addr;
644 msgs[0].flags = 0;
645 msgs[0].len = 1 + len;
646 msgs[0].buf = kmalloc(1 + len, GFP_KERNEL);
647 if (!msgs[0].buf)
648 return -ENOMEM;
649
650 msgs[0].buf[0] = dev_addr;
651 memcpy(&msgs[0].buf[1], buf, len);
652
653 ret = i2c_transfer(sfp->i2c, msgs, ARRAY_SIZE(msgs));
654
655 kfree(msgs[0].buf);
656
657 if (ret < 0)
658 return ret;
659
660 return ret == ARRAY_SIZE(msgs) ? len : 0;
661 }
662
sfp_i2c_configure(struct sfp * sfp,struct i2c_adapter * i2c)663 static int sfp_i2c_configure(struct sfp *sfp, struct i2c_adapter *i2c)
664 {
665 if (!i2c_check_functionality(i2c, I2C_FUNC_I2C))
666 return -EINVAL;
667
668 sfp->i2c = i2c;
669 sfp->read = sfp_i2c_read;
670 sfp->write = sfp_i2c_write;
671
672 return 0;
673 }
674
sfp_i2c_mdiobus_create(struct sfp * sfp)675 static int sfp_i2c_mdiobus_create(struct sfp *sfp)
676 {
677 struct mii_bus *i2c_mii;
678 int ret;
679
680 i2c_mii = mdio_i2c_alloc(sfp->dev, sfp->i2c, sfp->mdio_protocol);
681 if (IS_ERR(i2c_mii))
682 return PTR_ERR(i2c_mii);
683
684 i2c_mii->name = "SFP I2C Bus";
685 i2c_mii->phy_mask = ~0;
686
687 ret = mdiobus_register(i2c_mii);
688 if (ret < 0) {
689 mdiobus_free(i2c_mii);
690 return ret;
691 }
692
693 sfp->i2c_mii = i2c_mii;
694
695 return 0;
696 }
697
sfp_i2c_mdiobus_destroy(struct sfp * sfp)698 static void sfp_i2c_mdiobus_destroy(struct sfp *sfp)
699 {
700 mdiobus_unregister(sfp->i2c_mii);
701 sfp->i2c_mii = NULL;
702 }
703
704 /* Interface */
sfp_read(struct sfp * sfp,bool a2,u8 addr,void * buf,size_t len)705 static int sfp_read(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
706 {
707 return sfp->read(sfp, a2, addr, buf, len);
708 }
709
sfp_write(struct sfp * sfp,bool a2,u8 addr,void * buf,size_t len)710 static int sfp_write(struct sfp *sfp, bool a2, u8 addr, void *buf, size_t len)
711 {
712 return sfp->write(sfp, a2, addr, buf, len);
713 }
714
sfp_modify_u8(struct sfp * sfp,bool a2,u8 addr,u8 mask,u8 val)715 static int sfp_modify_u8(struct sfp *sfp, bool a2, u8 addr, u8 mask, u8 val)
716 {
717 int ret;
718 u8 old, v;
719
720 ret = sfp_read(sfp, a2, addr, &old, sizeof(old));
721 if (ret != sizeof(old))
722 return ret;
723
724 v = (old & ~mask) | (val & mask);
725 if (v == old)
726 return sizeof(v);
727
728 return sfp_write(sfp, a2, addr, &v, sizeof(v));
729 }
730
sfp_soft_get_state(struct sfp * sfp)731 static unsigned int sfp_soft_get_state(struct sfp *sfp)
732 {
733 unsigned int state = 0;
734 u8 status;
735 int ret;
736
737 ret = sfp_read(sfp, true, SFP_STATUS, &status, sizeof(status));
738 if (ret == sizeof(status)) {
739 if (status & SFP_STATUS_RX_LOS)
740 state |= SFP_F_LOS;
741 if (status & SFP_STATUS_TX_FAULT)
742 state |= SFP_F_TX_FAULT;
743 } else {
744 dev_err_ratelimited(sfp->dev,
745 "failed to read SFP soft status: %pe\n",
746 ERR_PTR(ret));
747 /* Preserve the current state */
748 state = sfp->state;
749 }
750
751 return state & sfp->state_soft_mask;
752 }
753
sfp_soft_set_state(struct sfp * sfp,unsigned int state,unsigned int soft)754 static void sfp_soft_set_state(struct sfp *sfp, unsigned int state,
755 unsigned int soft)
756 {
757 u8 mask = 0;
758 u8 val = 0;
759
760 if (soft & SFP_F_TX_DISABLE)
761 mask |= SFP_STATUS_TX_DISABLE_FORCE;
762 if (state & SFP_F_TX_DISABLE)
763 val |= SFP_STATUS_TX_DISABLE_FORCE;
764
765 if (soft & SFP_F_RS0)
766 mask |= SFP_STATUS_RS0_SELECT;
767 if (state & SFP_F_RS0)
768 val |= SFP_STATUS_RS0_SELECT;
769
770 if (mask)
771 sfp_modify_u8(sfp, true, SFP_STATUS, mask, val);
772
773 val = mask = 0;
774 if (soft & SFP_F_RS1)
775 mask |= SFP_EXT_STATUS_RS1_SELECT;
776 if (state & SFP_F_RS1)
777 val |= SFP_EXT_STATUS_RS1_SELECT;
778
779 if (mask)
780 sfp_modify_u8(sfp, true, SFP_EXT_STATUS, mask, val);
781 }
782
sfp_soft_start_poll(struct sfp * sfp)783 static void sfp_soft_start_poll(struct sfp *sfp)
784 {
785 const struct sfp_eeprom_id *id = &sfp->id;
786 unsigned int mask = 0;
787
788 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_DISABLE)
789 mask |= SFP_F_TX_DISABLE;
790 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_TX_FAULT)
791 mask |= SFP_F_TX_FAULT;
792 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RX_LOS)
793 mask |= SFP_F_LOS;
794 if (id->ext.enhopts & SFP_ENHOPTS_SOFT_RATE_SELECT)
795 mask |= sfp->rs_state_mask;
796
797 mutex_lock(&sfp->st_mutex);
798 // Poll the soft state for hardware pins we want to ignore
799 sfp->state_soft_mask = ~sfp->state_hw_mask & mask;
800
801 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) &&
802 !sfp->need_poll)
803 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
804 mutex_unlock(&sfp->st_mutex);
805 }
806
sfp_soft_stop_poll(struct sfp * sfp)807 static void sfp_soft_stop_poll(struct sfp *sfp)
808 {
809 mutex_lock(&sfp->st_mutex);
810 sfp->state_soft_mask = 0;
811 mutex_unlock(&sfp->st_mutex);
812 }
813
814 /* sfp_get_state() - must be called with st_mutex held, or in the
815 * initialisation path.
816 */
sfp_get_state(struct sfp * sfp)817 static unsigned int sfp_get_state(struct sfp *sfp)
818 {
819 unsigned int soft = sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT);
820 unsigned int state;
821
822 state = sfp->get_state(sfp) & sfp->state_hw_mask;
823 if (state & SFP_F_PRESENT && soft)
824 state |= sfp_soft_get_state(sfp);
825
826 return state;
827 }
828
829 /* sfp_set_state() - must be called with st_mutex held, or in the
830 * initialisation path.
831 */
sfp_set_state(struct sfp * sfp,unsigned int state)832 static void sfp_set_state(struct sfp *sfp, unsigned int state)
833 {
834 unsigned int soft;
835
836 sfp->set_state(sfp, state);
837
838 soft = sfp->state_soft_mask & SFP_F_OUTPUTS;
839 if (state & SFP_F_PRESENT && soft)
840 sfp_soft_set_state(sfp, state, soft);
841 }
842
sfp_mod_state(struct sfp * sfp,unsigned int mask,unsigned int set)843 static void sfp_mod_state(struct sfp *sfp, unsigned int mask, unsigned int set)
844 {
845 mutex_lock(&sfp->st_mutex);
846 sfp->state = (sfp->state & ~mask) | set;
847 sfp_set_state(sfp, sfp->state);
848 mutex_unlock(&sfp->st_mutex);
849 }
850
sfp_check(void * buf,size_t len)851 static unsigned int sfp_check(void *buf, size_t len)
852 {
853 u8 *p, check;
854
855 for (p = buf, check = 0; len; p++, len--)
856 check += *p;
857
858 return check;
859 }
860
861 /* hwmon */
862 #if IS_ENABLED(CONFIG_HWMON)
sfp_hwmon_is_visible(const void * data,enum hwmon_sensor_types type,u32 attr,int channel)863 static umode_t sfp_hwmon_is_visible(const void *data,
864 enum hwmon_sensor_types type,
865 u32 attr, int channel)
866 {
867 const struct sfp *sfp = data;
868
869 switch (type) {
870 case hwmon_temp:
871 switch (attr) {
872 case hwmon_temp_min_alarm:
873 case hwmon_temp_max_alarm:
874 case hwmon_temp_lcrit_alarm:
875 case hwmon_temp_crit_alarm:
876 case hwmon_temp_min:
877 case hwmon_temp_max:
878 case hwmon_temp_lcrit:
879 case hwmon_temp_crit:
880 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
881 return 0;
882 fallthrough;
883 case hwmon_temp_input:
884 case hwmon_temp_label:
885 return 0444;
886 default:
887 return 0;
888 }
889 case hwmon_in:
890 switch (attr) {
891 case hwmon_in_min_alarm:
892 case hwmon_in_max_alarm:
893 case hwmon_in_lcrit_alarm:
894 case hwmon_in_crit_alarm:
895 case hwmon_in_min:
896 case hwmon_in_max:
897 case hwmon_in_lcrit:
898 case hwmon_in_crit:
899 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
900 return 0;
901 fallthrough;
902 case hwmon_in_input:
903 case hwmon_in_label:
904 return 0444;
905 default:
906 return 0;
907 }
908 case hwmon_curr:
909 switch (attr) {
910 case hwmon_curr_min_alarm:
911 case hwmon_curr_max_alarm:
912 case hwmon_curr_lcrit_alarm:
913 case hwmon_curr_crit_alarm:
914 case hwmon_curr_min:
915 case hwmon_curr_max:
916 case hwmon_curr_lcrit:
917 case hwmon_curr_crit:
918 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
919 return 0;
920 fallthrough;
921 case hwmon_curr_input:
922 case hwmon_curr_label:
923 return 0444;
924 default:
925 return 0;
926 }
927 case hwmon_power:
928 /* External calibration of receive power requires
929 * floating point arithmetic. Doing that in the kernel
930 * is not easy, so just skip it. If the module does
931 * not require external calibration, we can however
932 * show receiver power, since FP is then not needed.
933 */
934 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL &&
935 channel == 1)
936 return 0;
937 switch (attr) {
938 case hwmon_power_min_alarm:
939 case hwmon_power_max_alarm:
940 case hwmon_power_lcrit_alarm:
941 case hwmon_power_crit_alarm:
942 case hwmon_power_min:
943 case hwmon_power_max:
944 case hwmon_power_lcrit:
945 case hwmon_power_crit:
946 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_ALARMWARN))
947 return 0;
948 fallthrough;
949 case hwmon_power_input:
950 case hwmon_power_label:
951 return 0444;
952 default:
953 return 0;
954 }
955 default:
956 return 0;
957 }
958 }
959
sfp_hwmon_read_sensor(struct sfp * sfp,int reg,long * value)960 static int sfp_hwmon_read_sensor(struct sfp *sfp, int reg, long *value)
961 {
962 __be16 val;
963 int err;
964
965 err = sfp_read(sfp, true, reg, &val, sizeof(val));
966 if (err < 0)
967 return err;
968
969 *value = be16_to_cpu(val);
970
971 return 0;
972 }
973
sfp_hwmon_to_rx_power(long * value)974 static void sfp_hwmon_to_rx_power(long *value)
975 {
976 *value = DIV_ROUND_CLOSEST(*value, 10);
977 }
978
sfp_hwmon_calibrate(struct sfp * sfp,unsigned int slope,int offset,long * value)979 static void sfp_hwmon_calibrate(struct sfp *sfp, unsigned int slope, int offset,
980 long *value)
981 {
982 if (sfp->id.ext.diagmon & SFP_DIAGMON_EXT_CAL)
983 *value = DIV_ROUND_CLOSEST(*value * slope, 256) + offset;
984 }
985
sfp_hwmon_calibrate_temp(struct sfp * sfp,long * value)986 static void sfp_hwmon_calibrate_temp(struct sfp *sfp, long *value)
987 {
988 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_t_slope),
989 be16_to_cpu(sfp->diag.cal_t_offset), value);
990
991 if (*value >= 0x8000)
992 *value -= 0x10000;
993
994 *value = DIV_ROUND_CLOSEST(*value * 1000, 256);
995 }
996
sfp_hwmon_calibrate_vcc(struct sfp * sfp,long * value)997 static void sfp_hwmon_calibrate_vcc(struct sfp *sfp, long *value)
998 {
999 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_v_slope),
1000 be16_to_cpu(sfp->diag.cal_v_offset), value);
1001
1002 *value = DIV_ROUND_CLOSEST(*value, 10);
1003 }
1004
sfp_hwmon_calibrate_bias(struct sfp * sfp,long * value)1005 static void sfp_hwmon_calibrate_bias(struct sfp *sfp, long *value)
1006 {
1007 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txi_slope),
1008 be16_to_cpu(sfp->diag.cal_txi_offset), value);
1009
1010 *value = DIV_ROUND_CLOSEST(*value, 500);
1011 }
1012
sfp_hwmon_calibrate_tx_power(struct sfp * sfp,long * value)1013 static void sfp_hwmon_calibrate_tx_power(struct sfp *sfp, long *value)
1014 {
1015 sfp_hwmon_calibrate(sfp, be16_to_cpu(sfp->diag.cal_txpwr_slope),
1016 be16_to_cpu(sfp->diag.cal_txpwr_offset), value);
1017
1018 *value = DIV_ROUND_CLOSEST(*value, 10);
1019 }
1020
sfp_hwmon_read_temp(struct sfp * sfp,int reg,long * value)1021 static int sfp_hwmon_read_temp(struct sfp *sfp, int reg, long *value)
1022 {
1023 int err;
1024
1025 err = sfp_hwmon_read_sensor(sfp, reg, value);
1026 if (err < 0)
1027 return err;
1028
1029 sfp_hwmon_calibrate_temp(sfp, value);
1030
1031 return 0;
1032 }
1033
sfp_hwmon_read_vcc(struct sfp * sfp,int reg,long * value)1034 static int sfp_hwmon_read_vcc(struct sfp *sfp, int reg, long *value)
1035 {
1036 int err;
1037
1038 err = sfp_hwmon_read_sensor(sfp, reg, value);
1039 if (err < 0)
1040 return err;
1041
1042 sfp_hwmon_calibrate_vcc(sfp, value);
1043
1044 return 0;
1045 }
1046
sfp_hwmon_read_bias(struct sfp * sfp,int reg,long * value)1047 static int sfp_hwmon_read_bias(struct sfp *sfp, int reg, long *value)
1048 {
1049 int err;
1050
1051 err = sfp_hwmon_read_sensor(sfp, reg, value);
1052 if (err < 0)
1053 return err;
1054
1055 sfp_hwmon_calibrate_bias(sfp, value);
1056
1057 return 0;
1058 }
1059
sfp_hwmon_read_tx_power(struct sfp * sfp,int reg,long * value)1060 static int sfp_hwmon_read_tx_power(struct sfp *sfp, int reg, long *value)
1061 {
1062 int err;
1063
1064 err = sfp_hwmon_read_sensor(sfp, reg, value);
1065 if (err < 0)
1066 return err;
1067
1068 sfp_hwmon_calibrate_tx_power(sfp, value);
1069
1070 return 0;
1071 }
1072
sfp_hwmon_read_rx_power(struct sfp * sfp,int reg,long * value)1073 static int sfp_hwmon_read_rx_power(struct sfp *sfp, int reg, long *value)
1074 {
1075 int err;
1076
1077 err = sfp_hwmon_read_sensor(sfp, reg, value);
1078 if (err < 0)
1079 return err;
1080
1081 sfp_hwmon_to_rx_power(value);
1082
1083 return 0;
1084 }
1085
sfp_hwmon_temp(struct sfp * sfp,u32 attr,long * value)1086 static int sfp_hwmon_temp(struct sfp *sfp, u32 attr, long *value)
1087 {
1088 u8 status;
1089 int err;
1090
1091 switch (attr) {
1092 case hwmon_temp_input:
1093 return sfp_hwmon_read_temp(sfp, SFP_TEMP, value);
1094
1095 case hwmon_temp_lcrit:
1096 *value = be16_to_cpu(sfp->diag.temp_low_alarm);
1097 sfp_hwmon_calibrate_temp(sfp, value);
1098 return 0;
1099
1100 case hwmon_temp_min:
1101 *value = be16_to_cpu(sfp->diag.temp_low_warn);
1102 sfp_hwmon_calibrate_temp(sfp, value);
1103 return 0;
1104 case hwmon_temp_max:
1105 *value = be16_to_cpu(sfp->diag.temp_high_warn);
1106 sfp_hwmon_calibrate_temp(sfp, value);
1107 return 0;
1108
1109 case hwmon_temp_crit:
1110 *value = be16_to_cpu(sfp->diag.temp_high_alarm);
1111 sfp_hwmon_calibrate_temp(sfp, value);
1112 return 0;
1113
1114 case hwmon_temp_lcrit_alarm:
1115 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1116 if (err < 0)
1117 return err;
1118
1119 *value = !!(status & SFP_ALARM0_TEMP_LOW);
1120 return 0;
1121
1122 case hwmon_temp_min_alarm:
1123 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1124 if (err < 0)
1125 return err;
1126
1127 *value = !!(status & SFP_WARN0_TEMP_LOW);
1128 return 0;
1129
1130 case hwmon_temp_max_alarm:
1131 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1132 if (err < 0)
1133 return err;
1134
1135 *value = !!(status & SFP_WARN0_TEMP_HIGH);
1136 return 0;
1137
1138 case hwmon_temp_crit_alarm:
1139 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1140 if (err < 0)
1141 return err;
1142
1143 *value = !!(status & SFP_ALARM0_TEMP_HIGH);
1144 return 0;
1145 default:
1146 return -EOPNOTSUPP;
1147 }
1148
1149 return -EOPNOTSUPP;
1150 }
1151
sfp_hwmon_vcc(struct sfp * sfp,u32 attr,long * value)1152 static int sfp_hwmon_vcc(struct sfp *sfp, u32 attr, long *value)
1153 {
1154 u8 status;
1155 int err;
1156
1157 switch (attr) {
1158 case hwmon_in_input:
1159 return sfp_hwmon_read_vcc(sfp, SFP_VCC, value);
1160
1161 case hwmon_in_lcrit:
1162 *value = be16_to_cpu(sfp->diag.volt_low_alarm);
1163 sfp_hwmon_calibrate_vcc(sfp, value);
1164 return 0;
1165
1166 case hwmon_in_min:
1167 *value = be16_to_cpu(sfp->diag.volt_low_warn);
1168 sfp_hwmon_calibrate_vcc(sfp, value);
1169 return 0;
1170
1171 case hwmon_in_max:
1172 *value = be16_to_cpu(sfp->diag.volt_high_warn);
1173 sfp_hwmon_calibrate_vcc(sfp, value);
1174 return 0;
1175
1176 case hwmon_in_crit:
1177 *value = be16_to_cpu(sfp->diag.volt_high_alarm);
1178 sfp_hwmon_calibrate_vcc(sfp, value);
1179 return 0;
1180
1181 case hwmon_in_lcrit_alarm:
1182 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1183 if (err < 0)
1184 return err;
1185
1186 *value = !!(status & SFP_ALARM0_VCC_LOW);
1187 return 0;
1188
1189 case hwmon_in_min_alarm:
1190 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1191 if (err < 0)
1192 return err;
1193
1194 *value = !!(status & SFP_WARN0_VCC_LOW);
1195 return 0;
1196
1197 case hwmon_in_max_alarm:
1198 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1199 if (err < 0)
1200 return err;
1201
1202 *value = !!(status & SFP_WARN0_VCC_HIGH);
1203 return 0;
1204
1205 case hwmon_in_crit_alarm:
1206 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1207 if (err < 0)
1208 return err;
1209
1210 *value = !!(status & SFP_ALARM0_VCC_HIGH);
1211 return 0;
1212 default:
1213 return -EOPNOTSUPP;
1214 }
1215
1216 return -EOPNOTSUPP;
1217 }
1218
sfp_hwmon_bias(struct sfp * sfp,u32 attr,long * value)1219 static int sfp_hwmon_bias(struct sfp *sfp, u32 attr, long *value)
1220 {
1221 u8 status;
1222 int err;
1223
1224 switch (attr) {
1225 case hwmon_curr_input:
1226 return sfp_hwmon_read_bias(sfp, SFP_TX_BIAS, value);
1227
1228 case hwmon_curr_lcrit:
1229 *value = be16_to_cpu(sfp->diag.bias_low_alarm);
1230 sfp_hwmon_calibrate_bias(sfp, value);
1231 return 0;
1232
1233 case hwmon_curr_min:
1234 *value = be16_to_cpu(sfp->diag.bias_low_warn);
1235 sfp_hwmon_calibrate_bias(sfp, value);
1236 return 0;
1237
1238 case hwmon_curr_max:
1239 *value = be16_to_cpu(sfp->diag.bias_high_warn);
1240 sfp_hwmon_calibrate_bias(sfp, value);
1241 return 0;
1242
1243 case hwmon_curr_crit:
1244 *value = be16_to_cpu(sfp->diag.bias_high_alarm);
1245 sfp_hwmon_calibrate_bias(sfp, value);
1246 return 0;
1247
1248 case hwmon_curr_lcrit_alarm:
1249 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1250 if (err < 0)
1251 return err;
1252
1253 *value = !!(status & SFP_ALARM0_TX_BIAS_LOW);
1254 return 0;
1255
1256 case hwmon_curr_min_alarm:
1257 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1258 if (err < 0)
1259 return err;
1260
1261 *value = !!(status & SFP_WARN0_TX_BIAS_LOW);
1262 return 0;
1263
1264 case hwmon_curr_max_alarm:
1265 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1266 if (err < 0)
1267 return err;
1268
1269 *value = !!(status & SFP_WARN0_TX_BIAS_HIGH);
1270 return 0;
1271
1272 case hwmon_curr_crit_alarm:
1273 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1274 if (err < 0)
1275 return err;
1276
1277 *value = !!(status & SFP_ALARM0_TX_BIAS_HIGH);
1278 return 0;
1279 default:
1280 return -EOPNOTSUPP;
1281 }
1282
1283 return -EOPNOTSUPP;
1284 }
1285
sfp_hwmon_tx_power(struct sfp * sfp,u32 attr,long * value)1286 static int sfp_hwmon_tx_power(struct sfp *sfp, u32 attr, long *value)
1287 {
1288 u8 status;
1289 int err;
1290
1291 switch (attr) {
1292 case hwmon_power_input:
1293 return sfp_hwmon_read_tx_power(sfp, SFP_TX_POWER, value);
1294
1295 case hwmon_power_lcrit:
1296 *value = be16_to_cpu(sfp->diag.txpwr_low_alarm);
1297 sfp_hwmon_calibrate_tx_power(sfp, value);
1298 return 0;
1299
1300 case hwmon_power_min:
1301 *value = be16_to_cpu(sfp->diag.txpwr_low_warn);
1302 sfp_hwmon_calibrate_tx_power(sfp, value);
1303 return 0;
1304
1305 case hwmon_power_max:
1306 *value = be16_to_cpu(sfp->diag.txpwr_high_warn);
1307 sfp_hwmon_calibrate_tx_power(sfp, value);
1308 return 0;
1309
1310 case hwmon_power_crit:
1311 *value = be16_to_cpu(sfp->diag.txpwr_high_alarm);
1312 sfp_hwmon_calibrate_tx_power(sfp, value);
1313 return 0;
1314
1315 case hwmon_power_lcrit_alarm:
1316 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1317 if (err < 0)
1318 return err;
1319
1320 *value = !!(status & SFP_ALARM0_TXPWR_LOW);
1321 return 0;
1322
1323 case hwmon_power_min_alarm:
1324 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1325 if (err < 0)
1326 return err;
1327
1328 *value = !!(status & SFP_WARN0_TXPWR_LOW);
1329 return 0;
1330
1331 case hwmon_power_max_alarm:
1332 err = sfp_read(sfp, true, SFP_WARN0, &status, sizeof(status));
1333 if (err < 0)
1334 return err;
1335
1336 *value = !!(status & SFP_WARN0_TXPWR_HIGH);
1337 return 0;
1338
1339 case hwmon_power_crit_alarm:
1340 err = sfp_read(sfp, true, SFP_ALARM0, &status, sizeof(status));
1341 if (err < 0)
1342 return err;
1343
1344 *value = !!(status & SFP_ALARM0_TXPWR_HIGH);
1345 return 0;
1346 default:
1347 return -EOPNOTSUPP;
1348 }
1349
1350 return -EOPNOTSUPP;
1351 }
1352
sfp_hwmon_rx_power(struct sfp * sfp,u32 attr,long * value)1353 static int sfp_hwmon_rx_power(struct sfp *sfp, u32 attr, long *value)
1354 {
1355 u8 status;
1356 int err;
1357
1358 switch (attr) {
1359 case hwmon_power_input:
1360 return sfp_hwmon_read_rx_power(sfp, SFP_RX_POWER, value);
1361
1362 case hwmon_power_lcrit:
1363 *value = be16_to_cpu(sfp->diag.rxpwr_low_alarm);
1364 sfp_hwmon_to_rx_power(value);
1365 return 0;
1366
1367 case hwmon_power_min:
1368 *value = be16_to_cpu(sfp->diag.rxpwr_low_warn);
1369 sfp_hwmon_to_rx_power(value);
1370 return 0;
1371
1372 case hwmon_power_max:
1373 *value = be16_to_cpu(sfp->diag.rxpwr_high_warn);
1374 sfp_hwmon_to_rx_power(value);
1375 return 0;
1376
1377 case hwmon_power_crit:
1378 *value = be16_to_cpu(sfp->diag.rxpwr_high_alarm);
1379 sfp_hwmon_to_rx_power(value);
1380 return 0;
1381
1382 case hwmon_power_lcrit_alarm:
1383 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1384 if (err < 0)
1385 return err;
1386
1387 *value = !!(status & SFP_ALARM1_RXPWR_LOW);
1388 return 0;
1389
1390 case hwmon_power_min_alarm:
1391 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1392 if (err < 0)
1393 return err;
1394
1395 *value = !!(status & SFP_WARN1_RXPWR_LOW);
1396 return 0;
1397
1398 case hwmon_power_max_alarm:
1399 err = sfp_read(sfp, true, SFP_WARN1, &status, sizeof(status));
1400 if (err < 0)
1401 return err;
1402
1403 *value = !!(status & SFP_WARN1_RXPWR_HIGH);
1404 return 0;
1405
1406 case hwmon_power_crit_alarm:
1407 err = sfp_read(sfp, true, SFP_ALARM1, &status, sizeof(status));
1408 if (err < 0)
1409 return err;
1410
1411 *value = !!(status & SFP_ALARM1_RXPWR_HIGH);
1412 return 0;
1413 default:
1414 return -EOPNOTSUPP;
1415 }
1416
1417 return -EOPNOTSUPP;
1418 }
1419
sfp_hwmon_read(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,long * value)1420 static int sfp_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
1421 u32 attr, int channel, long *value)
1422 {
1423 struct sfp *sfp = dev_get_drvdata(dev);
1424
1425 switch (type) {
1426 case hwmon_temp:
1427 return sfp_hwmon_temp(sfp, attr, value);
1428 case hwmon_in:
1429 return sfp_hwmon_vcc(sfp, attr, value);
1430 case hwmon_curr:
1431 return sfp_hwmon_bias(sfp, attr, value);
1432 case hwmon_power:
1433 switch (channel) {
1434 case 0:
1435 return sfp_hwmon_tx_power(sfp, attr, value);
1436 case 1:
1437 return sfp_hwmon_rx_power(sfp, attr, value);
1438 default:
1439 return -EOPNOTSUPP;
1440 }
1441 default:
1442 return -EOPNOTSUPP;
1443 }
1444 }
1445
1446 static const char *const sfp_hwmon_power_labels[] = {
1447 "TX_power",
1448 "RX_power",
1449 };
1450
sfp_hwmon_read_string(struct device * dev,enum hwmon_sensor_types type,u32 attr,int channel,const char ** str)1451 static int sfp_hwmon_read_string(struct device *dev,
1452 enum hwmon_sensor_types type,
1453 u32 attr, int channel, const char **str)
1454 {
1455 switch (type) {
1456 case hwmon_curr:
1457 switch (attr) {
1458 case hwmon_curr_label:
1459 *str = "bias";
1460 return 0;
1461 default:
1462 return -EOPNOTSUPP;
1463 }
1464 break;
1465 case hwmon_temp:
1466 switch (attr) {
1467 case hwmon_temp_label:
1468 *str = "temperature";
1469 return 0;
1470 default:
1471 return -EOPNOTSUPP;
1472 }
1473 break;
1474 case hwmon_in:
1475 switch (attr) {
1476 case hwmon_in_label:
1477 *str = "VCC";
1478 return 0;
1479 default:
1480 return -EOPNOTSUPP;
1481 }
1482 break;
1483 case hwmon_power:
1484 switch (attr) {
1485 case hwmon_power_label:
1486 *str = sfp_hwmon_power_labels[channel];
1487 return 0;
1488 default:
1489 return -EOPNOTSUPP;
1490 }
1491 break;
1492 default:
1493 return -EOPNOTSUPP;
1494 }
1495
1496 return -EOPNOTSUPP;
1497 }
1498
1499 static const struct hwmon_ops sfp_hwmon_ops = {
1500 .is_visible = sfp_hwmon_is_visible,
1501 .read = sfp_hwmon_read,
1502 .read_string = sfp_hwmon_read_string,
1503 };
1504
1505 static const struct hwmon_channel_info * const sfp_hwmon_info[] = {
1506 HWMON_CHANNEL_INFO(chip,
1507 HWMON_C_REGISTER_TZ),
1508 HWMON_CHANNEL_INFO(in,
1509 HWMON_I_INPUT |
1510 HWMON_I_MAX | HWMON_I_MIN |
1511 HWMON_I_MAX_ALARM | HWMON_I_MIN_ALARM |
1512 HWMON_I_CRIT | HWMON_I_LCRIT |
1513 HWMON_I_CRIT_ALARM | HWMON_I_LCRIT_ALARM |
1514 HWMON_I_LABEL),
1515 HWMON_CHANNEL_INFO(temp,
1516 HWMON_T_INPUT |
1517 HWMON_T_MAX | HWMON_T_MIN |
1518 HWMON_T_MAX_ALARM | HWMON_T_MIN_ALARM |
1519 HWMON_T_CRIT | HWMON_T_LCRIT |
1520 HWMON_T_CRIT_ALARM | HWMON_T_LCRIT_ALARM |
1521 HWMON_T_LABEL),
1522 HWMON_CHANNEL_INFO(curr,
1523 HWMON_C_INPUT |
1524 HWMON_C_MAX | HWMON_C_MIN |
1525 HWMON_C_MAX_ALARM | HWMON_C_MIN_ALARM |
1526 HWMON_C_CRIT | HWMON_C_LCRIT |
1527 HWMON_C_CRIT_ALARM | HWMON_C_LCRIT_ALARM |
1528 HWMON_C_LABEL),
1529 HWMON_CHANNEL_INFO(power,
1530 /* Transmit power */
1531 HWMON_P_INPUT |
1532 HWMON_P_MAX | HWMON_P_MIN |
1533 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1534 HWMON_P_CRIT | HWMON_P_LCRIT |
1535 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1536 HWMON_P_LABEL,
1537 /* Receive power */
1538 HWMON_P_INPUT |
1539 HWMON_P_MAX | HWMON_P_MIN |
1540 HWMON_P_MAX_ALARM | HWMON_P_MIN_ALARM |
1541 HWMON_P_CRIT | HWMON_P_LCRIT |
1542 HWMON_P_CRIT_ALARM | HWMON_P_LCRIT_ALARM |
1543 HWMON_P_LABEL),
1544 NULL,
1545 };
1546
1547 static const struct hwmon_chip_info sfp_hwmon_chip_info = {
1548 .ops = &sfp_hwmon_ops,
1549 .info = sfp_hwmon_info,
1550 };
1551
sfp_hwmon_probe(struct work_struct * work)1552 static void sfp_hwmon_probe(struct work_struct *work)
1553 {
1554 struct sfp *sfp = container_of(work, struct sfp, hwmon_probe.work);
1555 int err;
1556
1557 /* hwmon interface needs to access 16bit registers in atomic way to
1558 * guarantee coherency of the diagnostic monitoring data. If it is not
1559 * possible to guarantee coherency because EEPROM is broken in such way
1560 * that does not support atomic 16bit read operation then we have to
1561 * skip registration of hwmon device.
1562 */
1563 if (sfp->i2c_block_size < 2) {
1564 dev_info(sfp->dev,
1565 "skipping hwmon device registration due to broken EEPROM\n");
1566 dev_info(sfp->dev,
1567 "diagnostic EEPROM area cannot be read atomically to guarantee data coherency\n");
1568 return;
1569 }
1570
1571 err = sfp_read(sfp, true, 0, &sfp->diag, sizeof(sfp->diag));
1572 if (err < 0) {
1573 if (sfp->hwmon_tries--) {
1574 mod_delayed_work(system_wq, &sfp->hwmon_probe,
1575 T_PROBE_RETRY_SLOW);
1576 } else {
1577 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
1578 ERR_PTR(err));
1579 }
1580 return;
1581 }
1582
1583 sfp->hwmon_name = hwmon_sanitize_name(dev_name(sfp->dev));
1584 if (IS_ERR(sfp->hwmon_name)) {
1585 dev_err(sfp->dev, "out of memory for hwmon name\n");
1586 return;
1587 }
1588
1589 sfp->hwmon_dev = hwmon_device_register_with_info(sfp->dev,
1590 sfp->hwmon_name, sfp,
1591 &sfp_hwmon_chip_info,
1592 NULL);
1593 if (IS_ERR(sfp->hwmon_dev))
1594 dev_err(sfp->dev, "failed to register hwmon device: %ld\n",
1595 PTR_ERR(sfp->hwmon_dev));
1596 }
1597
sfp_hwmon_insert(struct sfp * sfp)1598 static int sfp_hwmon_insert(struct sfp *sfp)
1599 {
1600 if (sfp->have_a2 && sfp->id.ext.diagmon & SFP_DIAGMON_DDM) {
1601 mod_delayed_work(system_wq, &sfp->hwmon_probe, 1);
1602 sfp->hwmon_tries = R_PROBE_RETRY_SLOW;
1603 }
1604
1605 return 0;
1606 }
1607
sfp_hwmon_remove(struct sfp * sfp)1608 static void sfp_hwmon_remove(struct sfp *sfp)
1609 {
1610 cancel_delayed_work_sync(&sfp->hwmon_probe);
1611 if (!IS_ERR_OR_NULL(sfp->hwmon_dev)) {
1612 hwmon_device_unregister(sfp->hwmon_dev);
1613 sfp->hwmon_dev = NULL;
1614 kfree(sfp->hwmon_name);
1615 }
1616 }
1617
sfp_hwmon_init(struct sfp * sfp)1618 static int sfp_hwmon_init(struct sfp *sfp)
1619 {
1620 INIT_DELAYED_WORK(&sfp->hwmon_probe, sfp_hwmon_probe);
1621
1622 return 0;
1623 }
1624
sfp_hwmon_exit(struct sfp * sfp)1625 static void sfp_hwmon_exit(struct sfp *sfp)
1626 {
1627 cancel_delayed_work_sync(&sfp->hwmon_probe);
1628 }
1629 #else
sfp_hwmon_insert(struct sfp * sfp)1630 static int sfp_hwmon_insert(struct sfp *sfp)
1631 {
1632 return 0;
1633 }
1634
sfp_hwmon_remove(struct sfp * sfp)1635 static void sfp_hwmon_remove(struct sfp *sfp)
1636 {
1637 }
1638
sfp_hwmon_init(struct sfp * sfp)1639 static int sfp_hwmon_init(struct sfp *sfp)
1640 {
1641 return 0;
1642 }
1643
sfp_hwmon_exit(struct sfp * sfp)1644 static void sfp_hwmon_exit(struct sfp *sfp)
1645 {
1646 }
1647 #endif
1648
1649 /* Helpers */
sfp_module_tx_disable(struct sfp * sfp)1650 static void sfp_module_tx_disable(struct sfp *sfp)
1651 {
1652 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1653 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 1);
1654 sfp_mod_state(sfp, SFP_F_TX_DISABLE, SFP_F_TX_DISABLE);
1655 }
1656
sfp_module_tx_enable(struct sfp * sfp)1657 static void sfp_module_tx_enable(struct sfp *sfp)
1658 {
1659 dev_dbg(sfp->dev, "tx disable %u -> %u\n",
1660 sfp->state & SFP_F_TX_DISABLE ? 1 : 0, 0);
1661 sfp_mod_state(sfp, SFP_F_TX_DISABLE, 0);
1662 }
1663
1664 #if IS_ENABLED(CONFIG_DEBUG_FS)
sfp_debug_state_show(struct seq_file * s,void * data)1665 static int sfp_debug_state_show(struct seq_file *s, void *data)
1666 {
1667 struct sfp *sfp = s->private;
1668
1669 seq_printf(s, "Module state: %s\n",
1670 mod_state_to_str(sfp->sm_mod_state));
1671 seq_printf(s, "Module probe attempts: %d %d\n",
1672 R_PROBE_RETRY_INIT - sfp->sm_mod_tries_init,
1673 R_PROBE_RETRY_SLOW - sfp->sm_mod_tries);
1674 seq_printf(s, "Device state: %s\n",
1675 dev_state_to_str(sfp->sm_dev_state));
1676 seq_printf(s, "Main state: %s\n",
1677 sm_state_to_str(sfp->sm_state));
1678 seq_printf(s, "Fault recovery remaining retries: %d\n",
1679 sfp->sm_fault_retries);
1680 seq_printf(s, "PHY probe remaining retries: %d\n",
1681 sfp->sm_phy_retries);
1682 seq_printf(s, "Signalling rate: %u kBd\n", sfp->rate_kbd);
1683 seq_printf(s, "Rate select threshold: %u kBd\n",
1684 sfp->rs_threshold_kbd);
1685 seq_printf(s, "moddef0: %d\n", !!(sfp->state & SFP_F_PRESENT));
1686 seq_printf(s, "rx_los: %d\n", !!(sfp->state & SFP_F_LOS));
1687 seq_printf(s, "tx_fault: %d\n", !!(sfp->state & SFP_F_TX_FAULT));
1688 seq_printf(s, "tx_disable: %d\n", !!(sfp->state & SFP_F_TX_DISABLE));
1689 seq_printf(s, "rs0: %d\n", !!(sfp->state & SFP_F_RS0));
1690 seq_printf(s, "rs1: %d\n", !!(sfp->state & SFP_F_RS1));
1691 return 0;
1692 }
1693 DEFINE_SHOW_ATTRIBUTE(sfp_debug_state);
1694
sfp_debugfs_init(struct sfp * sfp)1695 static void sfp_debugfs_init(struct sfp *sfp)
1696 {
1697 sfp->debugfs_dir = debugfs_create_dir(dev_name(sfp->dev), NULL);
1698
1699 debugfs_create_file("state", 0600, sfp->debugfs_dir, sfp,
1700 &sfp_debug_state_fops);
1701 }
1702
sfp_debugfs_exit(struct sfp * sfp)1703 static void sfp_debugfs_exit(struct sfp *sfp)
1704 {
1705 debugfs_remove_recursive(sfp->debugfs_dir);
1706 }
1707 #else
sfp_debugfs_init(struct sfp * sfp)1708 static void sfp_debugfs_init(struct sfp *sfp)
1709 {
1710 }
1711
sfp_debugfs_exit(struct sfp * sfp)1712 static void sfp_debugfs_exit(struct sfp *sfp)
1713 {
1714 }
1715 #endif
1716
sfp_module_tx_fault_reset(struct sfp * sfp)1717 static void sfp_module_tx_fault_reset(struct sfp *sfp)
1718 {
1719 unsigned int state;
1720
1721 mutex_lock(&sfp->st_mutex);
1722 state = sfp->state;
1723 if (!(state & SFP_F_TX_DISABLE)) {
1724 sfp_set_state(sfp, state | SFP_F_TX_DISABLE);
1725
1726 udelay(T_RESET_US);
1727
1728 sfp_set_state(sfp, state);
1729 }
1730 mutex_unlock(&sfp->st_mutex);
1731 }
1732
1733 /* SFP state machine */
sfp_sm_set_timer(struct sfp * sfp,unsigned int timeout)1734 static void sfp_sm_set_timer(struct sfp *sfp, unsigned int timeout)
1735 {
1736 if (timeout)
1737 mod_delayed_work(system_power_efficient_wq, &sfp->timeout,
1738 timeout);
1739 else
1740 cancel_delayed_work(&sfp->timeout);
1741 }
1742
sfp_sm_next(struct sfp * sfp,unsigned int state,unsigned int timeout)1743 static void sfp_sm_next(struct sfp *sfp, unsigned int state,
1744 unsigned int timeout)
1745 {
1746 sfp->sm_state = state;
1747 sfp_sm_set_timer(sfp, timeout);
1748 }
1749
sfp_sm_mod_next(struct sfp * sfp,unsigned int state,unsigned int timeout)1750 static void sfp_sm_mod_next(struct sfp *sfp, unsigned int state,
1751 unsigned int timeout)
1752 {
1753 sfp->sm_mod_state = state;
1754 sfp_sm_set_timer(sfp, timeout);
1755 }
1756
sfp_sm_phy_detach(struct sfp * sfp)1757 static void sfp_sm_phy_detach(struct sfp *sfp)
1758 {
1759 sfp_remove_phy(sfp->sfp_bus);
1760 phy_device_remove(sfp->mod_phy);
1761 phy_device_free(sfp->mod_phy);
1762 sfp->mod_phy = NULL;
1763 }
1764
sfp_sm_probe_phy(struct sfp * sfp,int addr,bool is_c45)1765 static int sfp_sm_probe_phy(struct sfp *sfp, int addr, bool is_c45)
1766 {
1767 struct phy_device *phy;
1768 int err;
1769
1770 phy = get_phy_device(sfp->i2c_mii, addr, is_c45);
1771 if (phy == ERR_PTR(-ENODEV))
1772 return PTR_ERR(phy);
1773 if (IS_ERR(phy)) {
1774 dev_err(sfp->dev, "mdiobus scan returned %pe\n", phy);
1775 return PTR_ERR(phy);
1776 }
1777
1778 /* Mark this PHY as being on a SFP module */
1779 phy->is_on_sfp_module = true;
1780
1781 err = phy_device_register(phy);
1782 if (err) {
1783 phy_device_free(phy);
1784 dev_err(sfp->dev, "phy_device_register failed: %pe\n",
1785 ERR_PTR(err));
1786 return err;
1787 }
1788
1789 err = sfp_add_phy(sfp->sfp_bus, phy);
1790 if (err) {
1791 phy_device_remove(phy);
1792 phy_device_free(phy);
1793 dev_err(sfp->dev, "sfp_add_phy failed: %pe\n", ERR_PTR(err));
1794 return err;
1795 }
1796
1797 sfp->mod_phy = phy;
1798
1799 return 0;
1800 }
1801
sfp_sm_link_up(struct sfp * sfp)1802 static void sfp_sm_link_up(struct sfp *sfp)
1803 {
1804 sfp_link_up(sfp->sfp_bus);
1805 sfp_sm_next(sfp, SFP_S_LINK_UP, 0);
1806 }
1807
sfp_sm_link_down(struct sfp * sfp)1808 static void sfp_sm_link_down(struct sfp *sfp)
1809 {
1810 sfp_link_down(sfp->sfp_bus);
1811 }
1812
sfp_sm_link_check_los(struct sfp * sfp)1813 static void sfp_sm_link_check_los(struct sfp *sfp)
1814 {
1815 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1816 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1817 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1818 bool los = false;
1819
1820 /* If neither SFP_OPTIONS_LOS_INVERTED nor SFP_OPTIONS_LOS_NORMAL
1821 * are set, we assume that no LOS signal is available. If both are
1822 * set, we assume LOS is not implemented (and is meaningless.)
1823 */
1824 if (los_options == los_inverted)
1825 los = !(sfp->state & SFP_F_LOS);
1826 else if (los_options == los_normal)
1827 los = !!(sfp->state & SFP_F_LOS);
1828
1829 if (los)
1830 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
1831 else
1832 sfp_sm_link_up(sfp);
1833 }
1834
sfp_los_event_active(struct sfp * sfp,unsigned int event)1835 static bool sfp_los_event_active(struct sfp *sfp, unsigned int event)
1836 {
1837 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1838 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1839 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1840
1841 return (los_options == los_inverted && event == SFP_E_LOS_LOW) ||
1842 (los_options == los_normal && event == SFP_E_LOS_HIGH);
1843 }
1844
sfp_los_event_inactive(struct sfp * sfp,unsigned int event)1845 static bool sfp_los_event_inactive(struct sfp *sfp, unsigned int event)
1846 {
1847 const __be16 los_inverted = cpu_to_be16(SFP_OPTIONS_LOS_INVERTED);
1848 const __be16 los_normal = cpu_to_be16(SFP_OPTIONS_LOS_NORMAL);
1849 __be16 los_options = sfp->id.ext.options & (los_inverted | los_normal);
1850
1851 return (los_options == los_inverted && event == SFP_E_LOS_HIGH) ||
1852 (los_options == los_normal && event == SFP_E_LOS_LOW);
1853 }
1854
sfp_sm_fault(struct sfp * sfp,unsigned int next_state,bool warn)1855 static void sfp_sm_fault(struct sfp *sfp, unsigned int next_state, bool warn)
1856 {
1857 if (sfp->sm_fault_retries && !--sfp->sm_fault_retries) {
1858 dev_err(sfp->dev,
1859 "module persistently indicates fault, disabling\n");
1860 sfp_sm_next(sfp, SFP_S_TX_DISABLE, 0);
1861 } else {
1862 if (warn)
1863 dev_err(sfp->dev, "module transmit fault indicated\n");
1864
1865 sfp_sm_next(sfp, next_state, T_FAULT_RECOVER);
1866 }
1867 }
1868
sfp_sm_add_mdio_bus(struct sfp * sfp)1869 static int sfp_sm_add_mdio_bus(struct sfp *sfp)
1870 {
1871 if (sfp->mdio_protocol != MDIO_I2C_NONE)
1872 return sfp_i2c_mdiobus_create(sfp);
1873
1874 return 0;
1875 }
1876
1877 /* Probe a SFP for a PHY device if the module supports copper - the PHY
1878 * normally sits at I2C bus address 0x56, and may either be a clause 22
1879 * or clause 45 PHY.
1880 *
1881 * Clause 22 copper SFP modules normally operate in Cisco SGMII mode with
1882 * negotiation enabled, but some may be in 1000base-X - which is for the
1883 * PHY driver to determine.
1884 *
1885 * Clause 45 copper SFP+ modules (10G) appear to switch their interface
1886 * mode according to the negotiated line speed.
1887 */
sfp_sm_probe_for_phy(struct sfp * sfp)1888 static int sfp_sm_probe_for_phy(struct sfp *sfp)
1889 {
1890 int err = 0;
1891
1892 switch (sfp->mdio_protocol) {
1893 case MDIO_I2C_NONE:
1894 break;
1895
1896 case MDIO_I2C_MARVELL_C22:
1897 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, false);
1898 break;
1899
1900 case MDIO_I2C_C45:
1901 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR, true);
1902 break;
1903
1904 case MDIO_I2C_ROLLBALL:
1905 err = sfp_sm_probe_phy(sfp, SFP_PHY_ADDR_ROLLBALL, true);
1906 break;
1907 }
1908
1909 return err;
1910 }
1911
sfp_module_parse_power(struct sfp * sfp)1912 static int sfp_module_parse_power(struct sfp *sfp)
1913 {
1914 u32 power_mW = 1000;
1915 bool supports_a2;
1916
1917 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
1918 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_POWER_DECL))
1919 power_mW = 1500;
1920 /* Added in Rev 11.9, but there is no compliance code for this */
1921 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV11_4 &&
1922 sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_HIGH_POWER_LEVEL))
1923 power_mW = 2000;
1924
1925 /* Power level 1 modules (max. 1W) are always supported. */
1926 if (power_mW <= 1000) {
1927 sfp->module_power_mW = power_mW;
1928 return 0;
1929 }
1930
1931 supports_a2 = sfp->id.ext.sff8472_compliance !=
1932 SFP_SFF8472_COMPLIANCE_NONE ||
1933 sfp->id.ext.diagmon & SFP_DIAGMON_DDM;
1934
1935 if (power_mW > sfp->max_power_mW) {
1936 /* Module power specification exceeds the allowed maximum. */
1937 if (!supports_a2) {
1938 /* The module appears not to implement bus address
1939 * 0xa2, so assume that the module powers up in the
1940 * indicated mode.
1941 */
1942 dev_err(sfp->dev,
1943 "Host does not support %u.%uW modules\n",
1944 power_mW / 1000, (power_mW / 100) % 10);
1945 return -EINVAL;
1946 } else {
1947 dev_warn(sfp->dev,
1948 "Host does not support %u.%uW modules, module left in power mode 1\n",
1949 power_mW / 1000, (power_mW / 100) % 10);
1950 return 0;
1951 }
1952 }
1953
1954 if (!supports_a2) {
1955 /* The module power level is below the host maximum and the
1956 * module appears not to implement bus address 0xa2, so assume
1957 * that the module powers up in the indicated mode.
1958 */
1959 return 0;
1960 }
1961
1962 /* If the module requires a higher power mode, but also requires
1963 * an address change sequence, warn the user that the module may
1964 * not be functional.
1965 */
1966 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE) {
1967 dev_warn(sfp->dev,
1968 "Address Change Sequence not supported but module requires %u.%uW, module may not be functional\n",
1969 power_mW / 1000, (power_mW / 100) % 10);
1970 return 0;
1971 }
1972
1973 sfp->module_power_mW = power_mW;
1974
1975 return 0;
1976 }
1977
sfp_sm_mod_hpower(struct sfp * sfp,bool enable)1978 static int sfp_sm_mod_hpower(struct sfp *sfp, bool enable)
1979 {
1980 int err;
1981
1982 err = sfp_modify_u8(sfp, true, SFP_EXT_STATUS,
1983 SFP_EXT_STATUS_PWRLVL_SELECT,
1984 enable ? SFP_EXT_STATUS_PWRLVL_SELECT : 0);
1985 if (err != sizeof(u8)) {
1986 dev_err(sfp->dev, "failed to %sable high power: %pe\n",
1987 enable ? "en" : "dis", ERR_PTR(err));
1988 return -EAGAIN;
1989 }
1990
1991 if (enable)
1992 dev_info(sfp->dev, "Module switched to %u.%uW power level\n",
1993 sfp->module_power_mW / 1000,
1994 (sfp->module_power_mW / 100) % 10);
1995
1996 return 0;
1997 }
1998
sfp_module_parse_rate_select(struct sfp * sfp)1999 static void sfp_module_parse_rate_select(struct sfp *sfp)
2000 {
2001 u8 rate_id;
2002
2003 sfp->rs_threshold_kbd = 0;
2004 sfp->rs_state_mask = 0;
2005
2006 if (!(sfp->id.ext.options & cpu_to_be16(SFP_OPTIONS_RATE_SELECT)))
2007 /* No support for RateSelect */
2008 return;
2009
2010 /* Default to INF-8074 RateSelect operation. The signalling threshold
2011 * rate is not well specified, so always select "Full Bandwidth", but
2012 * SFF-8079 reveals that it is understood that RS0 will be low for
2013 * 1.0625Gb/s and high for 2.125Gb/s. Choose a value half-way between.
2014 * This method exists prior to SFF-8472.
2015 */
2016 sfp->rs_state_mask = SFP_F_RS0;
2017 sfp->rs_threshold_kbd = 1594;
2018
2019 /* Parse the rate identifier, which is complicated due to history:
2020 * SFF-8472 rev 9.5 marks this field as reserved.
2021 * SFF-8079 references SFF-8472 rev 9.5 and defines bit 0. SFF-8472
2022 * compliance is not required.
2023 * SFF-8472 rev 10.2 defines this field using values 0..4
2024 * SFF-8472 rev 11.0 redefines this field with bit 0 for SFF-8079
2025 * and even values.
2026 */
2027 rate_id = sfp->id.base.rate_id;
2028 if (rate_id == 0)
2029 /* Unspecified */
2030 return;
2031
2032 /* SFF-8472 rev 10.0..10.4 did not account for SFF-8079 using bit 0,
2033 * and allocated value 3 to SFF-8431 independent tx/rx rate select.
2034 * Convert this to a SFF-8472 rev 11.0 rate identifier.
2035 */
2036 if (sfp->id.ext.sff8472_compliance >= SFP_SFF8472_COMPLIANCE_REV10_2 &&
2037 sfp->id.ext.sff8472_compliance < SFP_SFF8472_COMPLIANCE_REV11_0 &&
2038 rate_id == 3)
2039 rate_id = SFF_RID_8431;
2040
2041 if (rate_id & SFF_RID_8079) {
2042 /* SFF-8079 RateSelect / Application Select in conjunction with
2043 * SFF-8472 rev 9.5. SFF-8079 defines rate_id as a bitfield
2044 * with only bit 0 used, which takes precedence over SFF-8472.
2045 */
2046 if (!(sfp->id.ext.enhopts & SFP_ENHOPTS_APP_SELECT_SFF8079)) {
2047 /* SFF-8079 Part 1 - rate selection between Fibre
2048 * Channel 1.0625/2.125/4.25 Gbd modes. Note that RS0
2049 * is high for 2125, so we have to subtract 1 to
2050 * include it.
2051 */
2052 sfp->rs_threshold_kbd = 2125 - 1;
2053 sfp->rs_state_mask = SFP_F_RS0;
2054 }
2055 return;
2056 }
2057
2058 /* SFF-8472 rev 9.5 does not define the rate identifier */
2059 if (sfp->id.ext.sff8472_compliance <= SFP_SFF8472_COMPLIANCE_REV9_5)
2060 return;
2061
2062 /* SFF-8472 rev 11.0 defines rate_id as a numerical value which will
2063 * always have bit 0 clear due to SFF-8079's bitfield usage of rate_id.
2064 */
2065 switch (rate_id) {
2066 case SFF_RID_8431_RX_ONLY:
2067 sfp->rs_threshold_kbd = 4250;
2068 sfp->rs_state_mask = SFP_F_RS0;
2069 break;
2070
2071 case SFF_RID_8431_TX_ONLY:
2072 sfp->rs_threshold_kbd = 4250;
2073 sfp->rs_state_mask = SFP_F_RS1;
2074 break;
2075
2076 case SFF_RID_8431:
2077 sfp->rs_threshold_kbd = 4250;
2078 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2079 break;
2080
2081 case SFF_RID_10G8G:
2082 sfp->rs_threshold_kbd = 9000;
2083 sfp->rs_state_mask = SFP_F_RS0 | SFP_F_RS1;
2084 break;
2085 }
2086 }
2087
2088 /* GPON modules based on Realtek RTL8672 and RTL9601C chips (e.g. V-SOL
2089 * V2801F, CarlitoxxPro CPGOS03-0490, Ubiquiti U-Fiber Instant, ...) do
2090 * not support multibyte reads from the EEPROM. Each multi-byte read
2091 * operation returns just one byte of EEPROM followed by zeros. There is
2092 * no way to identify which modules are using Realtek RTL8672 and RTL9601C
2093 * chips. Moreover every OEM of V-SOL V2801F module puts its own vendor
2094 * name and vendor id into EEPROM, so there is even no way to detect if
2095 * module is V-SOL V2801F. Therefore check for those zeros in the read
2096 * data and then based on check switch to reading EEPROM to one byte
2097 * at a time.
2098 */
sfp_id_needs_byte_io(struct sfp * sfp,void * buf,size_t len)2099 static bool sfp_id_needs_byte_io(struct sfp *sfp, void *buf, size_t len)
2100 {
2101 size_t i, block_size = sfp->i2c_block_size;
2102
2103 /* Already using byte IO */
2104 if (block_size == 1)
2105 return false;
2106
2107 for (i = 1; i < len; i += block_size) {
2108 if (memchr_inv(buf + i, '\0', min(block_size - 1, len - i)))
2109 return false;
2110 }
2111 return true;
2112 }
2113
sfp_cotsworks_fixup_check(struct sfp * sfp,struct sfp_eeprom_id * id)2114 static int sfp_cotsworks_fixup_check(struct sfp *sfp, struct sfp_eeprom_id *id)
2115 {
2116 u8 check;
2117 int err;
2118
2119 if (id->base.phys_id != SFF8024_ID_SFF_8472 ||
2120 id->base.phys_ext_id != SFP_PHYS_EXT_ID_SFP ||
2121 id->base.connector != SFF8024_CONNECTOR_LC) {
2122 dev_warn(sfp->dev, "Rewriting fiber module EEPROM with corrected values\n");
2123 id->base.phys_id = SFF8024_ID_SFF_8472;
2124 id->base.phys_ext_id = SFP_PHYS_EXT_ID_SFP;
2125 id->base.connector = SFF8024_CONNECTOR_LC;
2126 err = sfp_write(sfp, false, SFP_PHYS_ID, &id->base, 3);
2127 if (err != 3) {
2128 dev_err(sfp->dev,
2129 "Failed to rewrite module EEPROM: %pe\n",
2130 ERR_PTR(err));
2131 return err;
2132 }
2133
2134 /* Cotsworks modules have been found to require a delay between write operations. */
2135 mdelay(50);
2136
2137 /* Update base structure checksum */
2138 check = sfp_check(&id->base, sizeof(id->base) - 1);
2139 err = sfp_write(sfp, false, SFP_CC_BASE, &check, 1);
2140 if (err != 1) {
2141 dev_err(sfp->dev,
2142 "Failed to update base structure checksum in fiber module EEPROM: %pe\n",
2143 ERR_PTR(err));
2144 return err;
2145 }
2146 }
2147 return 0;
2148 }
2149
sfp_module_parse_sff8472(struct sfp * sfp)2150 static int sfp_module_parse_sff8472(struct sfp *sfp)
2151 {
2152 /* If the module requires address swap mode, warn about it */
2153 if (sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)
2154 dev_warn(sfp->dev,
2155 "module address swap to access page 0xA2 is not supported.\n");
2156 else
2157 sfp->have_a2 = true;
2158
2159 return 0;
2160 }
2161
sfp_sm_mod_probe(struct sfp * sfp,bool report)2162 static int sfp_sm_mod_probe(struct sfp *sfp, bool report)
2163 {
2164 /* SFP module inserted - read I2C data */
2165 struct sfp_eeprom_id id;
2166 bool cotsworks_sfbg;
2167 unsigned int mask;
2168 bool cotsworks;
2169 u8 check;
2170 int ret;
2171
2172 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2173
2174 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2175 if (ret < 0) {
2176 if (report)
2177 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2178 ERR_PTR(ret));
2179 return -EAGAIN;
2180 }
2181
2182 if (ret != sizeof(id.base)) {
2183 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2184 return -EAGAIN;
2185 }
2186
2187 /* Some SFP modules (e.g. Nokia 3FE46541AA) lock up if read from
2188 * address 0x51 is just one byte at a time. Also SFF-8472 requires
2189 * that EEPROM supports atomic 16bit read operation for diagnostic
2190 * fields, so do not switch to one byte reading at a time unless it
2191 * is really required and we have no other option.
2192 */
2193 if (sfp_id_needs_byte_io(sfp, &id.base, sizeof(id.base))) {
2194 dev_info(sfp->dev,
2195 "Detected broken RTL8672/RTL9601C emulated EEPROM\n");
2196 dev_info(sfp->dev,
2197 "Switching to reading EEPROM to one byte at a time\n");
2198 sfp->i2c_block_size = 1;
2199
2200 ret = sfp_read(sfp, false, 0, &id.base, sizeof(id.base));
2201 if (ret < 0) {
2202 if (report)
2203 dev_err(sfp->dev,
2204 "failed to read EEPROM: %pe\n",
2205 ERR_PTR(ret));
2206 return -EAGAIN;
2207 }
2208
2209 if (ret != sizeof(id.base)) {
2210 dev_err(sfp->dev, "EEPROM short read: %pe\n",
2211 ERR_PTR(ret));
2212 return -EAGAIN;
2213 }
2214 }
2215
2216 /* Cotsworks do not seem to update the checksums when they
2217 * do the final programming with the final module part number,
2218 * serial number and date code.
2219 */
2220 cotsworks = !memcmp(id.base.vendor_name, "COTSWORKS ", 16);
2221 cotsworks_sfbg = !memcmp(id.base.vendor_pn, "SFBG", 4);
2222
2223 /* Cotsworks SFF module EEPROM do not always have valid phys_id,
2224 * phys_ext_id, and connector bytes. Rewrite SFF EEPROM bytes if
2225 * Cotsworks PN matches and bytes are not correct.
2226 */
2227 if (cotsworks && cotsworks_sfbg) {
2228 ret = sfp_cotsworks_fixup_check(sfp, &id);
2229 if (ret < 0)
2230 return ret;
2231 }
2232
2233 /* Validate the checksum over the base structure */
2234 check = sfp_check(&id.base, sizeof(id.base) - 1);
2235 if (check != id.base.cc_base) {
2236 if (cotsworks) {
2237 dev_warn(sfp->dev,
2238 "EEPROM base structure checksum failure (0x%02x != 0x%02x)\n",
2239 check, id.base.cc_base);
2240 } else {
2241 dev_err(sfp->dev,
2242 "EEPROM base structure checksum failure: 0x%02x != 0x%02x\n",
2243 check, id.base.cc_base);
2244 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2245 16, 1, &id, sizeof(id), true);
2246 return -EINVAL;
2247 }
2248 }
2249
2250 ret = sfp_read(sfp, false, SFP_CC_BASE + 1, &id.ext, sizeof(id.ext));
2251 if (ret < 0) {
2252 if (report)
2253 dev_err(sfp->dev, "failed to read EEPROM: %pe\n",
2254 ERR_PTR(ret));
2255 return -EAGAIN;
2256 }
2257
2258 if (ret != sizeof(id.ext)) {
2259 dev_err(sfp->dev, "EEPROM short read: %pe\n", ERR_PTR(ret));
2260 return -EAGAIN;
2261 }
2262
2263 check = sfp_check(&id.ext, sizeof(id.ext) - 1);
2264 if (check != id.ext.cc_ext) {
2265 if (cotsworks) {
2266 dev_warn(sfp->dev,
2267 "EEPROM extended structure checksum failure (0x%02x != 0x%02x)\n",
2268 check, id.ext.cc_ext);
2269 } else {
2270 dev_err(sfp->dev,
2271 "EEPROM extended structure checksum failure: 0x%02x != 0x%02x\n",
2272 check, id.ext.cc_ext);
2273 print_hex_dump(KERN_ERR, "sfp EE: ", DUMP_PREFIX_OFFSET,
2274 16, 1, &id, sizeof(id), true);
2275 memset(&id.ext, 0, sizeof(id.ext));
2276 }
2277 }
2278
2279 sfp->id = id;
2280
2281 dev_info(sfp->dev, "module %.*s %.*s rev %.*s sn %.*s dc %.*s\n",
2282 (int)sizeof(id.base.vendor_name), id.base.vendor_name,
2283 (int)sizeof(id.base.vendor_pn), id.base.vendor_pn,
2284 (int)sizeof(id.base.vendor_rev), id.base.vendor_rev,
2285 (int)sizeof(id.ext.vendor_sn), id.ext.vendor_sn,
2286 (int)sizeof(id.ext.datecode), id.ext.datecode);
2287
2288 /* Check whether we support this module */
2289 if (!sfp->type->module_supported(&id)) {
2290 dev_err(sfp->dev,
2291 "module is not supported - phys id 0x%02x 0x%02x\n",
2292 sfp->id.base.phys_id, sfp->id.base.phys_ext_id);
2293 return -EINVAL;
2294 }
2295
2296 if (sfp->id.ext.sff8472_compliance != SFP_SFF8472_COMPLIANCE_NONE) {
2297 ret = sfp_module_parse_sff8472(sfp);
2298 if (ret < 0)
2299 return ret;
2300 }
2301
2302 /* Parse the module power requirement */
2303 ret = sfp_module_parse_power(sfp);
2304 if (ret < 0)
2305 return ret;
2306
2307 sfp_module_parse_rate_select(sfp);
2308
2309 mask = SFP_F_PRESENT;
2310 if (sfp->gpio[GPIO_TX_DISABLE])
2311 mask |= SFP_F_TX_DISABLE;
2312 if (sfp->gpio[GPIO_TX_FAULT])
2313 mask |= SFP_F_TX_FAULT;
2314 if (sfp->gpio[GPIO_LOS])
2315 mask |= SFP_F_LOS;
2316 if (sfp->gpio[GPIO_RS0])
2317 mask |= SFP_F_RS0;
2318 if (sfp->gpio[GPIO_RS1])
2319 mask |= SFP_F_RS1;
2320
2321 sfp->module_t_start_up = T_START_UP;
2322 sfp->module_t_wait = T_WAIT;
2323
2324 sfp->tx_fault_ignore = false;
2325
2326 if (sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SFI ||
2327 sfp->id.base.extended_cc == SFF8024_ECC_10GBASE_T_SR ||
2328 sfp->id.base.extended_cc == SFF8024_ECC_5GBASE_T ||
2329 sfp->id.base.extended_cc == SFF8024_ECC_2_5GBASE_T)
2330 sfp->mdio_protocol = MDIO_I2C_C45;
2331 else if (sfp->id.base.e1000_base_t)
2332 sfp->mdio_protocol = MDIO_I2C_MARVELL_C22;
2333 else
2334 sfp->mdio_protocol = MDIO_I2C_NONE;
2335
2336 sfp->quirk = sfp_lookup_quirk(&id);
2337
2338 mutex_lock(&sfp->st_mutex);
2339 /* Initialise state bits to use from hardware */
2340 sfp->state_hw_mask = mask;
2341
2342 /* We want to drive the rate select pins that the module is using */
2343 sfp->state_hw_drive |= sfp->rs_state_mask;
2344
2345 if (sfp->quirk && sfp->quirk->fixup)
2346 sfp->quirk->fixup(sfp);
2347 mutex_unlock(&sfp->st_mutex);
2348
2349 return 0;
2350 }
2351
sfp_sm_mod_remove(struct sfp * sfp)2352 static void sfp_sm_mod_remove(struct sfp *sfp)
2353 {
2354 if (sfp->sm_mod_state > SFP_MOD_WAITDEV)
2355 sfp_module_remove(sfp->sfp_bus);
2356
2357 sfp_hwmon_remove(sfp);
2358
2359 memset(&sfp->id, 0, sizeof(sfp->id));
2360 sfp->module_power_mW = 0;
2361 sfp->state_hw_drive = SFP_F_TX_DISABLE;
2362 sfp->have_a2 = false;
2363
2364 dev_info(sfp->dev, "module removed\n");
2365 }
2366
2367 /* This state machine tracks the upstream's state */
sfp_sm_device(struct sfp * sfp,unsigned int event)2368 static void sfp_sm_device(struct sfp *sfp, unsigned int event)
2369 {
2370 switch (sfp->sm_dev_state) {
2371 default:
2372 if (event == SFP_E_DEV_ATTACH)
2373 sfp->sm_dev_state = SFP_DEV_DOWN;
2374 break;
2375
2376 case SFP_DEV_DOWN:
2377 if (event == SFP_E_DEV_DETACH)
2378 sfp->sm_dev_state = SFP_DEV_DETACHED;
2379 else if (event == SFP_E_DEV_UP)
2380 sfp->sm_dev_state = SFP_DEV_UP;
2381 break;
2382
2383 case SFP_DEV_UP:
2384 if (event == SFP_E_DEV_DETACH)
2385 sfp->sm_dev_state = SFP_DEV_DETACHED;
2386 else if (event == SFP_E_DEV_DOWN)
2387 sfp->sm_dev_state = SFP_DEV_DOWN;
2388 break;
2389 }
2390 }
2391
2392 /* This state machine tracks the insert/remove state of the module, probes
2393 * the on-board EEPROM, and sets up the power level.
2394 */
sfp_sm_module(struct sfp * sfp,unsigned int event)2395 static void sfp_sm_module(struct sfp *sfp, unsigned int event)
2396 {
2397 int err;
2398
2399 /* Handle remove event globally, it resets this state machine */
2400 if (event == SFP_E_REMOVE) {
2401 sfp_sm_mod_remove(sfp);
2402 sfp_sm_mod_next(sfp, SFP_MOD_EMPTY, 0);
2403 return;
2404 }
2405
2406 /* Handle device detach globally */
2407 if (sfp->sm_dev_state < SFP_DEV_DOWN &&
2408 sfp->sm_mod_state > SFP_MOD_WAITDEV) {
2409 if (sfp->module_power_mW > 1000 &&
2410 sfp->sm_mod_state > SFP_MOD_HPOWER)
2411 sfp_sm_mod_hpower(sfp, false);
2412 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2413 return;
2414 }
2415
2416 switch (sfp->sm_mod_state) {
2417 default:
2418 if (event == SFP_E_INSERT) {
2419 sfp_sm_mod_next(sfp, SFP_MOD_PROBE, T_SERIAL);
2420 sfp->sm_mod_tries_init = R_PROBE_RETRY_INIT;
2421 sfp->sm_mod_tries = R_PROBE_RETRY_SLOW;
2422 }
2423 break;
2424
2425 case SFP_MOD_PROBE:
2426 /* Wait for T_PROBE_INIT to time out */
2427 if (event != SFP_E_TIMEOUT)
2428 break;
2429
2430 err = sfp_sm_mod_probe(sfp, sfp->sm_mod_tries == 1);
2431 if (err == -EAGAIN) {
2432 if (sfp->sm_mod_tries_init &&
2433 --sfp->sm_mod_tries_init) {
2434 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2435 break;
2436 } else if (sfp->sm_mod_tries && --sfp->sm_mod_tries) {
2437 if (sfp->sm_mod_tries == R_PROBE_RETRY_SLOW - 1)
2438 dev_warn(sfp->dev,
2439 "please wait, module slow to respond\n");
2440 sfp_sm_set_timer(sfp, T_PROBE_RETRY_SLOW);
2441 break;
2442 }
2443 }
2444 if (err < 0) {
2445 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2446 break;
2447 }
2448
2449 /* Force a poll to re-read the hardware signal state after
2450 * sfp_sm_mod_probe() changed state_hw_mask.
2451 */
2452 mod_delayed_work(system_wq, &sfp->poll, 1);
2453
2454 err = sfp_hwmon_insert(sfp);
2455 if (err)
2456 dev_warn(sfp->dev, "hwmon probe failed: %pe\n",
2457 ERR_PTR(err));
2458
2459 sfp_sm_mod_next(sfp, SFP_MOD_WAITDEV, 0);
2460 fallthrough;
2461 case SFP_MOD_WAITDEV:
2462 /* Ensure that the device is attached before proceeding */
2463 if (sfp->sm_dev_state < SFP_DEV_DOWN)
2464 break;
2465
2466 /* Report the module insertion to the upstream device */
2467 err = sfp_module_insert(sfp->sfp_bus, &sfp->id,
2468 sfp->quirk);
2469 if (err < 0) {
2470 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2471 break;
2472 }
2473
2474 /* If this is a power level 1 module, we are done */
2475 if (sfp->module_power_mW <= 1000)
2476 goto insert;
2477
2478 sfp_sm_mod_next(sfp, SFP_MOD_HPOWER, 0);
2479 fallthrough;
2480 case SFP_MOD_HPOWER:
2481 /* Enable high power mode */
2482 err = sfp_sm_mod_hpower(sfp, true);
2483 if (err < 0) {
2484 if (err != -EAGAIN) {
2485 sfp_module_remove(sfp->sfp_bus);
2486 sfp_sm_mod_next(sfp, SFP_MOD_ERROR, 0);
2487 } else {
2488 sfp_sm_set_timer(sfp, T_PROBE_RETRY_INIT);
2489 }
2490 break;
2491 }
2492
2493 sfp_sm_mod_next(sfp, SFP_MOD_WAITPWR, T_HPOWER_LEVEL);
2494 break;
2495
2496 case SFP_MOD_WAITPWR:
2497 /* Wait for T_HPOWER_LEVEL to time out */
2498 if (event != SFP_E_TIMEOUT)
2499 break;
2500
2501 insert:
2502 sfp_sm_mod_next(sfp, SFP_MOD_PRESENT, 0);
2503 break;
2504
2505 case SFP_MOD_PRESENT:
2506 case SFP_MOD_ERROR:
2507 break;
2508 }
2509 }
2510
sfp_sm_main(struct sfp * sfp,unsigned int event)2511 static void sfp_sm_main(struct sfp *sfp, unsigned int event)
2512 {
2513 unsigned long timeout;
2514 int ret;
2515
2516 /* Some events are global */
2517 if (sfp->sm_state != SFP_S_DOWN &&
2518 (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2519 sfp->sm_dev_state != SFP_DEV_UP)) {
2520 if (sfp->sm_state == SFP_S_LINK_UP &&
2521 sfp->sm_dev_state == SFP_DEV_UP)
2522 sfp_sm_link_down(sfp);
2523 if (sfp->sm_state > SFP_S_INIT)
2524 sfp_module_stop(sfp->sfp_bus);
2525 if (sfp->mod_phy)
2526 sfp_sm_phy_detach(sfp);
2527 if (sfp->i2c_mii)
2528 sfp_i2c_mdiobus_destroy(sfp);
2529 sfp_module_tx_disable(sfp);
2530 sfp_soft_stop_poll(sfp);
2531 sfp_sm_next(sfp, SFP_S_DOWN, 0);
2532 return;
2533 }
2534
2535 /* The main state machine */
2536 switch (sfp->sm_state) {
2537 case SFP_S_DOWN:
2538 if (sfp->sm_mod_state != SFP_MOD_PRESENT ||
2539 sfp->sm_dev_state != SFP_DEV_UP)
2540 break;
2541
2542 /* Only use the soft state bits if we have access to the A2h
2543 * memory, which implies that we have some level of SFF-8472
2544 * compliance.
2545 */
2546 if (sfp->have_a2)
2547 sfp_soft_start_poll(sfp);
2548
2549 sfp_module_tx_enable(sfp);
2550
2551 /* Initialise the fault clearance retries */
2552 sfp->sm_fault_retries = N_FAULT_INIT;
2553
2554 /* We need to check the TX_FAULT state, which is not defined
2555 * while TX_DISABLE is asserted. The earliest we want to do
2556 * anything (such as probe for a PHY) is 50ms (or more on
2557 * specific modules).
2558 */
2559 sfp_sm_next(sfp, SFP_S_WAIT, sfp->module_t_wait);
2560 break;
2561
2562 case SFP_S_WAIT:
2563 if (event != SFP_E_TIMEOUT)
2564 break;
2565
2566 if (sfp->state & SFP_F_TX_FAULT) {
2567 /* Wait up to t_init (SFF-8472) or t_start_up (SFF-8431)
2568 * from the TX_DISABLE deassertion for the module to
2569 * initialise, which is indicated by TX_FAULT
2570 * deasserting.
2571 */
2572 timeout = sfp->module_t_start_up;
2573 if (timeout > sfp->module_t_wait)
2574 timeout -= sfp->module_t_wait;
2575 else
2576 timeout = 1;
2577
2578 sfp_sm_next(sfp, SFP_S_INIT, timeout);
2579 } else {
2580 /* TX_FAULT is not asserted, assume the module has
2581 * finished initialising.
2582 */
2583 goto init_done;
2584 }
2585 break;
2586
2587 case SFP_S_INIT:
2588 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2589 /* TX_FAULT is still asserted after t_init
2590 * or t_start_up, so assume there is a fault.
2591 */
2592 sfp_sm_fault(sfp, SFP_S_INIT_TX_FAULT,
2593 sfp->sm_fault_retries == N_FAULT_INIT);
2594 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2595 init_done:
2596 /* Create mdiobus and start trying for PHY */
2597 ret = sfp_sm_add_mdio_bus(sfp);
2598 if (ret < 0) {
2599 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2600 break;
2601 }
2602 sfp->sm_phy_retries = R_PHY_RETRY;
2603 goto phy_probe;
2604 }
2605 break;
2606
2607 case SFP_S_INIT_PHY:
2608 if (event != SFP_E_TIMEOUT)
2609 break;
2610 phy_probe:
2611 /* TX_FAULT deasserted or we timed out with TX_FAULT
2612 * clear. Probe for the PHY and check the LOS state.
2613 */
2614 ret = sfp_sm_probe_for_phy(sfp);
2615 if (ret == -ENODEV) {
2616 if (--sfp->sm_phy_retries) {
2617 sfp_sm_next(sfp, SFP_S_INIT_PHY, T_PHY_RETRY);
2618 break;
2619 } else {
2620 dev_info(sfp->dev, "no PHY detected\n");
2621 }
2622 } else if (ret) {
2623 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2624 break;
2625 }
2626 if (sfp_module_start(sfp->sfp_bus)) {
2627 sfp_sm_next(sfp, SFP_S_FAIL, 0);
2628 break;
2629 }
2630 sfp_sm_link_check_los(sfp);
2631
2632 /* Reset the fault retry count */
2633 sfp->sm_fault_retries = N_FAULT;
2634 break;
2635
2636 case SFP_S_INIT_TX_FAULT:
2637 if (event == SFP_E_TIMEOUT) {
2638 sfp_module_tx_fault_reset(sfp);
2639 sfp_sm_next(sfp, SFP_S_INIT, sfp->module_t_start_up);
2640 }
2641 break;
2642
2643 case SFP_S_WAIT_LOS:
2644 if (event == SFP_E_TX_FAULT)
2645 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2646 else if (sfp_los_event_inactive(sfp, event))
2647 sfp_sm_link_up(sfp);
2648 break;
2649
2650 case SFP_S_LINK_UP:
2651 if (event == SFP_E_TX_FAULT) {
2652 sfp_sm_link_down(sfp);
2653 sfp_sm_fault(sfp, SFP_S_TX_FAULT, true);
2654 } else if (sfp_los_event_active(sfp, event)) {
2655 sfp_sm_link_down(sfp);
2656 sfp_sm_next(sfp, SFP_S_WAIT_LOS, 0);
2657 }
2658 break;
2659
2660 case SFP_S_TX_FAULT:
2661 if (event == SFP_E_TIMEOUT) {
2662 sfp_module_tx_fault_reset(sfp);
2663 sfp_sm_next(sfp, SFP_S_REINIT, sfp->module_t_start_up);
2664 }
2665 break;
2666
2667 case SFP_S_REINIT:
2668 if (event == SFP_E_TIMEOUT && sfp->state & SFP_F_TX_FAULT) {
2669 sfp_sm_fault(sfp, SFP_S_TX_FAULT, false);
2670 } else if (event == SFP_E_TIMEOUT || event == SFP_E_TX_CLEAR) {
2671 dev_info(sfp->dev, "module transmit fault recovered\n");
2672 sfp_sm_link_check_los(sfp);
2673 }
2674 break;
2675
2676 case SFP_S_TX_DISABLE:
2677 break;
2678 }
2679 }
2680
__sfp_sm_event(struct sfp * sfp,unsigned int event)2681 static void __sfp_sm_event(struct sfp *sfp, unsigned int event)
2682 {
2683 dev_dbg(sfp->dev, "SM: enter %s:%s:%s event %s\n",
2684 mod_state_to_str(sfp->sm_mod_state),
2685 dev_state_to_str(sfp->sm_dev_state),
2686 sm_state_to_str(sfp->sm_state),
2687 event_to_str(event));
2688
2689 sfp_sm_device(sfp, event);
2690 sfp_sm_module(sfp, event);
2691 sfp_sm_main(sfp, event);
2692
2693 dev_dbg(sfp->dev, "SM: exit %s:%s:%s\n",
2694 mod_state_to_str(sfp->sm_mod_state),
2695 dev_state_to_str(sfp->sm_dev_state),
2696 sm_state_to_str(sfp->sm_state));
2697 }
2698
sfp_sm_event(struct sfp * sfp,unsigned int event)2699 static void sfp_sm_event(struct sfp *sfp, unsigned int event)
2700 {
2701 mutex_lock(&sfp->sm_mutex);
2702 __sfp_sm_event(sfp, event);
2703 mutex_unlock(&sfp->sm_mutex);
2704 }
2705
sfp_attach(struct sfp * sfp)2706 static void sfp_attach(struct sfp *sfp)
2707 {
2708 sfp_sm_event(sfp, SFP_E_DEV_ATTACH);
2709 }
2710
sfp_detach(struct sfp * sfp)2711 static void sfp_detach(struct sfp *sfp)
2712 {
2713 sfp_sm_event(sfp, SFP_E_DEV_DETACH);
2714 }
2715
sfp_start(struct sfp * sfp)2716 static void sfp_start(struct sfp *sfp)
2717 {
2718 sfp_sm_event(sfp, SFP_E_DEV_UP);
2719 }
2720
sfp_stop(struct sfp * sfp)2721 static void sfp_stop(struct sfp *sfp)
2722 {
2723 sfp_sm_event(sfp, SFP_E_DEV_DOWN);
2724 }
2725
sfp_set_signal_rate(struct sfp * sfp,unsigned int rate_kbd)2726 static void sfp_set_signal_rate(struct sfp *sfp, unsigned int rate_kbd)
2727 {
2728 unsigned int set;
2729
2730 sfp->rate_kbd = rate_kbd;
2731
2732 if (rate_kbd > sfp->rs_threshold_kbd)
2733 set = sfp->rs_state_mask;
2734 else
2735 set = 0;
2736
2737 sfp_mod_state(sfp, SFP_F_RS0 | SFP_F_RS1, set);
2738 }
2739
sfp_module_info(struct sfp * sfp,struct ethtool_modinfo * modinfo)2740 static int sfp_module_info(struct sfp *sfp, struct ethtool_modinfo *modinfo)
2741 {
2742 /* locking... and check module is present */
2743
2744 if (sfp->id.ext.sff8472_compliance &&
2745 !(sfp->id.ext.diagmon & SFP_DIAGMON_ADDRMODE)) {
2746 modinfo->type = ETH_MODULE_SFF_8472;
2747 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
2748 } else {
2749 modinfo->type = ETH_MODULE_SFF_8079;
2750 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
2751 }
2752 return 0;
2753 }
2754
sfp_module_eeprom(struct sfp * sfp,struct ethtool_eeprom * ee,u8 * data)2755 static int sfp_module_eeprom(struct sfp *sfp, struct ethtool_eeprom *ee,
2756 u8 *data)
2757 {
2758 unsigned int first, last, len;
2759 int ret;
2760
2761 if (!(sfp->state & SFP_F_PRESENT))
2762 return -ENODEV;
2763
2764 if (ee->len == 0)
2765 return -EINVAL;
2766
2767 first = ee->offset;
2768 last = ee->offset + ee->len;
2769 if (first < ETH_MODULE_SFF_8079_LEN) {
2770 len = min_t(unsigned int, last, ETH_MODULE_SFF_8079_LEN);
2771 len -= first;
2772
2773 ret = sfp_read(sfp, false, first, data, len);
2774 if (ret < 0)
2775 return ret;
2776
2777 first += len;
2778 data += len;
2779 }
2780 if (first < ETH_MODULE_SFF_8472_LEN && last > ETH_MODULE_SFF_8079_LEN) {
2781 len = min_t(unsigned int, last, ETH_MODULE_SFF_8472_LEN);
2782 len -= first;
2783 first -= ETH_MODULE_SFF_8079_LEN;
2784
2785 ret = sfp_read(sfp, true, first, data, len);
2786 if (ret < 0)
2787 return ret;
2788 }
2789 return 0;
2790 }
2791
sfp_module_eeprom_by_page(struct sfp * sfp,const struct ethtool_module_eeprom * page,struct netlink_ext_ack * extack)2792 static int sfp_module_eeprom_by_page(struct sfp *sfp,
2793 const struct ethtool_module_eeprom *page,
2794 struct netlink_ext_ack *extack)
2795 {
2796 if (!(sfp->state & SFP_F_PRESENT))
2797 return -ENODEV;
2798
2799 if (page->bank) {
2800 NL_SET_ERR_MSG(extack, "Banks not supported");
2801 return -EOPNOTSUPP;
2802 }
2803
2804 if (page->page) {
2805 NL_SET_ERR_MSG(extack, "Only page 0 supported");
2806 return -EOPNOTSUPP;
2807 }
2808
2809 if (page->i2c_address != 0x50 &&
2810 page->i2c_address != 0x51) {
2811 NL_SET_ERR_MSG(extack, "Only address 0x50 and 0x51 supported");
2812 return -EOPNOTSUPP;
2813 }
2814
2815 return sfp_read(sfp, page->i2c_address == 0x51, page->offset,
2816 page->data, page->length);
2817 };
2818
2819 static const struct sfp_socket_ops sfp_module_ops = {
2820 .attach = sfp_attach,
2821 .detach = sfp_detach,
2822 .start = sfp_start,
2823 .stop = sfp_stop,
2824 .set_signal_rate = sfp_set_signal_rate,
2825 .module_info = sfp_module_info,
2826 .module_eeprom = sfp_module_eeprom,
2827 .module_eeprom_by_page = sfp_module_eeprom_by_page,
2828 };
2829
sfp_timeout(struct work_struct * work)2830 static void sfp_timeout(struct work_struct *work)
2831 {
2832 struct sfp *sfp = container_of(work, struct sfp, timeout.work);
2833
2834 rtnl_lock();
2835 sfp_sm_event(sfp, SFP_E_TIMEOUT);
2836 rtnl_unlock();
2837 }
2838
sfp_check_state(struct sfp * sfp)2839 static void sfp_check_state(struct sfp *sfp)
2840 {
2841 unsigned int state, i, changed;
2842
2843 rtnl_lock();
2844 mutex_lock(&sfp->st_mutex);
2845 state = sfp_get_state(sfp);
2846 changed = state ^ sfp->state;
2847 if (sfp->tx_fault_ignore)
2848 changed &= SFP_F_PRESENT | SFP_F_LOS;
2849 else
2850 changed &= SFP_F_PRESENT | SFP_F_LOS | SFP_F_TX_FAULT;
2851
2852 for (i = 0; i < GPIO_MAX; i++)
2853 if (changed & BIT(i))
2854 dev_dbg(sfp->dev, "%s %u -> %u\n", gpio_names[i],
2855 !!(sfp->state & BIT(i)), !!(state & BIT(i)));
2856
2857 state |= sfp->state & SFP_F_OUTPUTS;
2858 sfp->state = state;
2859 mutex_unlock(&sfp->st_mutex);
2860
2861 mutex_lock(&sfp->sm_mutex);
2862 if (changed & SFP_F_PRESENT)
2863 __sfp_sm_event(sfp, state & SFP_F_PRESENT ?
2864 SFP_E_INSERT : SFP_E_REMOVE);
2865
2866 if (changed & SFP_F_TX_FAULT)
2867 __sfp_sm_event(sfp, state & SFP_F_TX_FAULT ?
2868 SFP_E_TX_FAULT : SFP_E_TX_CLEAR);
2869
2870 if (changed & SFP_F_LOS)
2871 __sfp_sm_event(sfp, state & SFP_F_LOS ?
2872 SFP_E_LOS_HIGH : SFP_E_LOS_LOW);
2873 mutex_unlock(&sfp->sm_mutex);
2874 rtnl_unlock();
2875 }
2876
sfp_irq(int irq,void * data)2877 static irqreturn_t sfp_irq(int irq, void *data)
2878 {
2879 struct sfp *sfp = data;
2880
2881 sfp_check_state(sfp);
2882
2883 return IRQ_HANDLED;
2884 }
2885
sfp_poll(struct work_struct * work)2886 static void sfp_poll(struct work_struct *work)
2887 {
2888 struct sfp *sfp = container_of(work, struct sfp, poll.work);
2889
2890 sfp_check_state(sfp);
2891
2892 // st_mutex doesn't need to be held here for state_soft_mask,
2893 // it's unimportant if we race while reading this.
2894 if (sfp->state_soft_mask & (SFP_F_LOS | SFP_F_TX_FAULT) ||
2895 sfp->need_poll)
2896 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
2897 }
2898
sfp_alloc(struct device * dev)2899 static struct sfp *sfp_alloc(struct device *dev)
2900 {
2901 struct sfp *sfp;
2902
2903 sfp = kzalloc(sizeof(*sfp), GFP_KERNEL);
2904 if (!sfp)
2905 return ERR_PTR(-ENOMEM);
2906
2907 sfp->dev = dev;
2908 sfp->i2c_block_size = SFP_EEPROM_BLOCK_SIZE;
2909
2910 mutex_init(&sfp->sm_mutex);
2911 mutex_init(&sfp->st_mutex);
2912 INIT_DELAYED_WORK(&sfp->poll, sfp_poll);
2913 INIT_DELAYED_WORK(&sfp->timeout, sfp_timeout);
2914
2915 sfp_hwmon_init(sfp);
2916
2917 return sfp;
2918 }
2919
sfp_cleanup(void * data)2920 static void sfp_cleanup(void *data)
2921 {
2922 struct sfp *sfp = data;
2923
2924 sfp_hwmon_exit(sfp);
2925
2926 cancel_delayed_work_sync(&sfp->poll);
2927 cancel_delayed_work_sync(&sfp->timeout);
2928 if (sfp->i2c_mii) {
2929 mdiobus_unregister(sfp->i2c_mii);
2930 mdiobus_free(sfp->i2c_mii);
2931 }
2932 if (sfp->i2c)
2933 i2c_put_adapter(sfp->i2c);
2934 kfree(sfp);
2935 }
2936
sfp_i2c_get(struct sfp * sfp)2937 static int sfp_i2c_get(struct sfp *sfp)
2938 {
2939 struct fwnode_handle *h;
2940 struct i2c_adapter *i2c;
2941 int err;
2942
2943 h = fwnode_find_reference(dev_fwnode(sfp->dev), "i2c-bus", 0);
2944 if (IS_ERR(h)) {
2945 dev_err(sfp->dev, "missing 'i2c-bus' property\n");
2946 return -ENODEV;
2947 }
2948
2949 i2c = i2c_get_adapter_by_fwnode(h);
2950 if (!i2c) {
2951 err = -EPROBE_DEFER;
2952 goto put;
2953 }
2954
2955 err = sfp_i2c_configure(sfp, i2c);
2956 if (err)
2957 i2c_put_adapter(i2c);
2958 put:
2959 fwnode_handle_put(h);
2960 return err;
2961 }
2962
sfp_probe(struct platform_device * pdev)2963 static int sfp_probe(struct platform_device *pdev)
2964 {
2965 const struct sff_data *sff;
2966 char *sfp_irq_name;
2967 struct sfp *sfp;
2968 int err, i;
2969
2970 sfp = sfp_alloc(&pdev->dev);
2971 if (IS_ERR(sfp))
2972 return PTR_ERR(sfp);
2973
2974 platform_set_drvdata(pdev, sfp);
2975
2976 err = devm_add_action_or_reset(sfp->dev, sfp_cleanup, sfp);
2977 if (err < 0)
2978 return err;
2979
2980 sff = device_get_match_data(sfp->dev);
2981 if (!sff)
2982 sff = &sfp_data;
2983
2984 sfp->type = sff;
2985
2986 err = sfp_i2c_get(sfp);
2987 if (err)
2988 return err;
2989
2990 for (i = 0; i < GPIO_MAX; i++)
2991 if (sff->gpios & BIT(i)) {
2992 sfp->gpio[i] = devm_gpiod_get_optional(sfp->dev,
2993 gpio_names[i], gpio_flags[i]);
2994 if (IS_ERR(sfp->gpio[i]))
2995 return PTR_ERR(sfp->gpio[i]);
2996 }
2997
2998 sfp->state_hw_mask = SFP_F_PRESENT;
2999 sfp->state_hw_drive = SFP_F_TX_DISABLE;
3000
3001 sfp->get_state = sfp_gpio_get_state;
3002 sfp->set_state = sfp_gpio_set_state;
3003
3004 /* Modules that have no detect signal are always present */
3005 if (!(sfp->gpio[GPIO_MODDEF0]))
3006 sfp->get_state = sff_gpio_get_state;
3007
3008 device_property_read_u32(&pdev->dev, "maximum-power-milliwatt",
3009 &sfp->max_power_mW);
3010 if (sfp->max_power_mW < 1000) {
3011 if (sfp->max_power_mW)
3012 dev_warn(sfp->dev,
3013 "Firmware bug: host maximum power should be at least 1W\n");
3014 sfp->max_power_mW = 1000;
3015 }
3016
3017 dev_info(sfp->dev, "Host maximum power %u.%uW\n",
3018 sfp->max_power_mW / 1000, (sfp->max_power_mW / 100) % 10);
3019
3020 /* Get the initial state, and always signal TX disable,
3021 * since the network interface will not be up.
3022 */
3023 sfp->state = sfp_get_state(sfp) | SFP_F_TX_DISABLE;
3024
3025 if (sfp->gpio[GPIO_RS0] &&
3026 gpiod_get_value_cansleep(sfp->gpio[GPIO_RS0]))
3027 sfp->state |= SFP_F_RS0;
3028 sfp_set_state(sfp, sfp->state);
3029 sfp_module_tx_disable(sfp);
3030 if (sfp->state & SFP_F_PRESENT) {
3031 rtnl_lock();
3032 sfp_sm_event(sfp, SFP_E_INSERT);
3033 rtnl_unlock();
3034 }
3035
3036 for (i = 0; i < GPIO_MAX; i++) {
3037 if (gpio_flags[i] != GPIOD_IN || !sfp->gpio[i])
3038 continue;
3039
3040 sfp->gpio_irq[i] = gpiod_to_irq(sfp->gpio[i]);
3041 if (sfp->gpio_irq[i] < 0) {
3042 sfp->gpio_irq[i] = 0;
3043 sfp->need_poll = true;
3044 continue;
3045 }
3046
3047 sfp_irq_name = devm_kasprintf(sfp->dev, GFP_KERNEL,
3048 "%s-%s", dev_name(sfp->dev),
3049 gpio_names[i]);
3050
3051 if (!sfp_irq_name)
3052 return -ENOMEM;
3053
3054 err = devm_request_threaded_irq(sfp->dev, sfp->gpio_irq[i],
3055 NULL, sfp_irq,
3056 IRQF_ONESHOT |
3057 IRQF_TRIGGER_RISING |
3058 IRQF_TRIGGER_FALLING,
3059 sfp_irq_name, sfp);
3060 if (err) {
3061 sfp->gpio_irq[i] = 0;
3062 sfp->need_poll = true;
3063 }
3064 }
3065
3066 if (sfp->need_poll)
3067 mod_delayed_work(system_wq, &sfp->poll, poll_jiffies);
3068
3069 /* We could have an issue in cases no Tx disable pin is available or
3070 * wired as modules using a laser as their light source will continue to
3071 * be active when the fiber is removed. This could be a safety issue and
3072 * we should at least warn the user about that.
3073 */
3074 if (!sfp->gpio[GPIO_TX_DISABLE])
3075 dev_warn(sfp->dev,
3076 "No tx_disable pin: SFP modules will always be emitting.\n");
3077
3078 sfp->sfp_bus = sfp_register_socket(sfp->dev, sfp, &sfp_module_ops);
3079 if (!sfp->sfp_bus)
3080 return -ENOMEM;
3081
3082 sfp_debugfs_init(sfp);
3083
3084 return 0;
3085 }
3086
sfp_remove(struct platform_device * pdev)3087 static int sfp_remove(struct platform_device *pdev)
3088 {
3089 struct sfp *sfp = platform_get_drvdata(pdev);
3090
3091 sfp_debugfs_exit(sfp);
3092 sfp_unregister_socket(sfp->sfp_bus);
3093
3094 rtnl_lock();
3095 sfp_sm_event(sfp, SFP_E_REMOVE);
3096 rtnl_unlock();
3097
3098 return 0;
3099 }
3100
sfp_shutdown(struct platform_device * pdev)3101 static void sfp_shutdown(struct platform_device *pdev)
3102 {
3103 struct sfp *sfp = platform_get_drvdata(pdev);
3104 int i;
3105
3106 for (i = 0; i < GPIO_MAX; i++) {
3107 if (!sfp->gpio_irq[i])
3108 continue;
3109
3110 devm_free_irq(sfp->dev, sfp->gpio_irq[i], sfp);
3111 }
3112
3113 cancel_delayed_work_sync(&sfp->poll);
3114 cancel_delayed_work_sync(&sfp->timeout);
3115 }
3116
3117 static struct platform_driver sfp_driver = {
3118 .probe = sfp_probe,
3119 .remove = sfp_remove,
3120 .shutdown = sfp_shutdown,
3121 .driver = {
3122 .name = "sfp",
3123 .of_match_table = sfp_of_match,
3124 },
3125 };
3126
sfp_init(void)3127 static int sfp_init(void)
3128 {
3129 poll_jiffies = msecs_to_jiffies(100);
3130
3131 return platform_driver_register(&sfp_driver);
3132 }
3133 module_init(sfp_init);
3134
sfp_exit(void)3135 static void sfp_exit(void)
3136 {
3137 platform_driver_unregister(&sfp_driver);
3138 }
3139 module_exit(sfp_exit);
3140
3141 MODULE_ALIAS("platform:sfp");
3142 MODULE_AUTHOR("Russell King");
3143 MODULE_LICENSE("GPL v2");
3144