xref: /openbmc/u-boot/arch/arm/mach-imx/mx6/clock.c (revision e8f80a5a)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
4  */
5 
6 #include <common.h>
7 #include <div64.h>
8 #include <asm/io.h>
9 #include <linux/errno.h>
10 #include <asm/arch/imx-regs.h>
11 #include <asm/arch/crm_regs.h>
12 #include <asm/arch/clock.h>
13 #include <asm/arch/sys_proto.h>
14 
15 enum pll_clocks {
16 	PLL_SYS,	/* System PLL */
17 	PLL_BUS,	/* System Bus PLL*/
18 	PLL_USBOTG,	/* OTG USB PLL */
19 	PLL_ENET,	/* ENET PLL */
20 	PLL_AUDIO,	/* AUDIO PLL */
21 	PLL_VIDEO,	/* VIDEO PLL */
22 };
23 
24 struct mxc_ccm_reg *imx_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
25 
26 #ifdef CONFIG_MXC_OCOTP
enable_ocotp_clk(unsigned char enable)27 void enable_ocotp_clk(unsigned char enable)
28 {
29 	u32 reg;
30 
31 	reg = __raw_readl(&imx_ccm->CCGR2);
32 	if (enable)
33 		reg |= MXC_CCM_CCGR2_OCOTP_CTRL_MASK;
34 	else
35 		reg &= ~MXC_CCM_CCGR2_OCOTP_CTRL_MASK;
36 	__raw_writel(reg, &imx_ccm->CCGR2);
37 }
38 #endif
39 
40 #ifdef CONFIG_NAND_MXS
setup_gpmi_io_clk(u32 cfg)41 void setup_gpmi_io_clk(u32 cfg)
42 {
43 	/* Disable clocks per ERR007177 from MX6 errata */
44 	clrbits_le32(&imx_ccm->CCGR4,
45 		     MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
46 		     MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
47 		     MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
48 		     MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
49 		     MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK);
50 
51 #if defined(CONFIG_MX6SX)
52 	clrbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK);
53 
54 	clrsetbits_le32(&imx_ccm->cs2cdr,
55 			MXC_CCM_CS2CDR_QSPI2_CLK_PODF_MASK |
56 			MXC_CCM_CS2CDR_QSPI2_CLK_PRED_MASK |
57 			MXC_CCM_CS2CDR_QSPI2_CLK_SEL_MASK,
58 			cfg);
59 
60 	setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK);
61 #else
62 	clrbits_le32(&imx_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK);
63 
64 	clrsetbits_le32(&imx_ccm->cs2cdr,
65 			MXC_CCM_CS2CDR_ENFC_CLK_PODF_MASK |
66 			MXC_CCM_CS2CDR_ENFC_CLK_PRED_MASK |
67 			MXC_CCM_CS2CDR_ENFC_CLK_SEL_MASK,
68 			cfg);
69 
70 	setbits_le32(&imx_ccm->CCGR2, MXC_CCM_CCGR2_IOMUX_IPT_CLK_IO_MASK);
71 #endif
72 	setbits_le32(&imx_ccm->CCGR4,
73 		     MXC_CCM_CCGR4_RAWNAND_U_BCH_INPUT_APB_MASK |
74 		     MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_BCH_MASK |
75 		     MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK |
76 		     MXC_CCM_CCGR4_RAWNAND_U_GPMI_INPUT_APB_MASK |
77 		     MXC_CCM_CCGR4_PL301_MX6QPER1_BCH_MASK);
78 }
79 #endif
80 
enable_usboh3_clk(unsigned char enable)81 void enable_usboh3_clk(unsigned char enable)
82 {
83 	u32 reg;
84 
85 	reg = __raw_readl(&imx_ccm->CCGR6);
86 	if (enable)
87 		reg |= MXC_CCM_CCGR6_USBOH3_MASK;
88 	else
89 		reg &= ~(MXC_CCM_CCGR6_USBOH3_MASK);
90 	__raw_writel(reg, &imx_ccm->CCGR6);
91 
92 }
93 
94 #if defined(CONFIG_FEC_MXC) && !defined(CONFIG_MX6SX)
enable_enet_clk(unsigned char enable)95 void enable_enet_clk(unsigned char enable)
96 {
97 	u32 mask, *addr;
98 
99 	if (is_mx6ull()) {
100 		mask = MXC_CCM_CCGR0_ENET_CLK_ENABLE_MASK;
101 		addr = &imx_ccm->CCGR0;
102 	} else if (is_mx6ul()) {
103 		mask = MXC_CCM_CCGR3_ENET_MASK;
104 		addr = &imx_ccm->CCGR3;
105 	} else {
106 		mask = MXC_CCM_CCGR1_ENET_MASK;
107 		addr = &imx_ccm->CCGR1;
108 	}
109 
110 	if (enable)
111 		setbits_le32(addr, mask);
112 	else
113 		clrbits_le32(addr, mask);
114 }
115 #endif
116 
117 #ifdef CONFIG_MXC_UART
enable_uart_clk(unsigned char enable)118 void enable_uart_clk(unsigned char enable)
119 {
120 	u32 mask;
121 
122 	if (is_mx6ul() || is_mx6ull())
123 		mask = MXC_CCM_CCGR5_UART_MASK;
124 	else
125 		mask = MXC_CCM_CCGR5_UART_MASK | MXC_CCM_CCGR5_UART_SERIAL_MASK;
126 
127 	if (enable)
128 		setbits_le32(&imx_ccm->CCGR5, mask);
129 	else
130 		clrbits_le32(&imx_ccm->CCGR5, mask);
131 }
132 #endif
133 
134 #ifdef CONFIG_MMC
enable_usdhc_clk(unsigned char enable,unsigned bus_num)135 int enable_usdhc_clk(unsigned char enable, unsigned bus_num)
136 {
137 	u32 mask;
138 
139 	if (bus_num > 3)
140 		return -EINVAL;
141 
142 	mask = MXC_CCM_CCGR_CG_MASK << (bus_num * 2 + 2);
143 	if (enable)
144 		setbits_le32(&imx_ccm->CCGR6, mask);
145 	else
146 		clrbits_le32(&imx_ccm->CCGR6, mask);
147 
148 	return 0;
149 }
150 #endif
151 
152 #ifdef CONFIG_SYS_I2C_MXC
153 /* i2c_num can be from 0 - 3 */
enable_i2c_clk(unsigned char enable,unsigned i2c_num)154 int enable_i2c_clk(unsigned char enable, unsigned i2c_num)
155 {
156 	u32 reg;
157 	u32 mask;
158 	u32 *addr;
159 
160 	if (i2c_num > 3)
161 		return -EINVAL;
162 	if (i2c_num < 3) {
163 		mask = MXC_CCM_CCGR_CG_MASK
164 			<< (MXC_CCM_CCGR2_I2C1_SERIAL_OFFSET
165 			+ (i2c_num << 1));
166 		reg = __raw_readl(&imx_ccm->CCGR2);
167 		if (enable)
168 			reg |= mask;
169 		else
170 			reg &= ~mask;
171 		__raw_writel(reg, &imx_ccm->CCGR2);
172 	} else {
173 		if (is_mx6sll())
174 			return -EINVAL;
175 		if (is_mx6sx() || is_mx6ul() || is_mx6ull()) {
176 			mask = MXC_CCM_CCGR6_I2C4_MASK;
177 			addr = &imx_ccm->CCGR6;
178 		} else {
179 			mask = MXC_CCM_CCGR1_I2C4_SERIAL_MASK;
180 			addr = &imx_ccm->CCGR1;
181 		}
182 		reg = __raw_readl(addr);
183 		if (enable)
184 			reg |= mask;
185 		else
186 			reg &= ~mask;
187 		__raw_writel(reg, addr);
188 	}
189 	return 0;
190 }
191 #endif
192 
193 /* spi_num can be from 0 - SPI_MAX_NUM */
enable_spi_clk(unsigned char enable,unsigned spi_num)194 int enable_spi_clk(unsigned char enable, unsigned spi_num)
195 {
196 	u32 reg;
197 	u32 mask;
198 
199 	if (spi_num > SPI_MAX_NUM)
200 		return -EINVAL;
201 
202 	mask = MXC_CCM_CCGR_CG_MASK << (spi_num << 1);
203 	reg = __raw_readl(&imx_ccm->CCGR1);
204 	if (enable)
205 		reg |= mask;
206 	else
207 		reg &= ~mask;
208 	__raw_writel(reg, &imx_ccm->CCGR1);
209 	return 0;
210 }
decode_pll(enum pll_clocks pll,u32 infreq)211 static u32 decode_pll(enum pll_clocks pll, u32 infreq)
212 {
213 	u32 div, test_div, pll_num, pll_denom;
214 
215 	switch (pll) {
216 	case PLL_SYS:
217 		div = __raw_readl(&imx_ccm->analog_pll_sys);
218 		div &= BM_ANADIG_PLL_SYS_DIV_SELECT;
219 
220 		return (infreq * div) >> 1;
221 	case PLL_BUS:
222 		div = __raw_readl(&imx_ccm->analog_pll_528);
223 		div &= BM_ANADIG_PLL_528_DIV_SELECT;
224 
225 		return infreq * (20 + (div << 1));
226 	case PLL_USBOTG:
227 		div = __raw_readl(&imx_ccm->analog_usb1_pll_480_ctrl);
228 		div &= BM_ANADIG_USB1_PLL_480_CTRL_DIV_SELECT;
229 
230 		return infreq * (20 + (div << 1));
231 	case PLL_ENET:
232 		div = __raw_readl(&imx_ccm->analog_pll_enet);
233 		div &= BM_ANADIG_PLL_ENET_DIV_SELECT;
234 
235 		return 25000000 * (div + (div >> 1) + 1);
236 	case PLL_AUDIO:
237 		div = __raw_readl(&imx_ccm->analog_pll_audio);
238 		if (!(div & BM_ANADIG_PLL_AUDIO_ENABLE))
239 			return 0;
240 		/* BM_ANADIG_PLL_AUDIO_BYPASS_CLK_SRC is ignored */
241 		if (div & BM_ANADIG_PLL_AUDIO_BYPASS)
242 			return MXC_HCLK;
243 		pll_num = __raw_readl(&imx_ccm->analog_pll_audio_num);
244 		pll_denom = __raw_readl(&imx_ccm->analog_pll_audio_denom);
245 		test_div = (div & BM_ANADIG_PLL_AUDIO_TEST_DIV_SELECT) >>
246 			BP_ANADIG_PLL_AUDIO_TEST_DIV_SELECT;
247 		div &= BM_ANADIG_PLL_AUDIO_DIV_SELECT;
248 		if (test_div == 3) {
249 			debug("Error test_div\n");
250 			return 0;
251 		}
252 		test_div = 1 << (2 - test_div);
253 
254 		return infreq * (div + pll_num / pll_denom) / test_div;
255 	case PLL_VIDEO:
256 		div = __raw_readl(&imx_ccm->analog_pll_video);
257 		if (!(div & BM_ANADIG_PLL_VIDEO_ENABLE))
258 			return 0;
259 		/* BM_ANADIG_PLL_AUDIO_BYPASS_CLK_SRC is ignored */
260 		if (div & BM_ANADIG_PLL_VIDEO_BYPASS)
261 			return MXC_HCLK;
262 		pll_num = __raw_readl(&imx_ccm->analog_pll_video_num);
263 		pll_denom = __raw_readl(&imx_ccm->analog_pll_video_denom);
264 		test_div = (div & BM_ANADIG_PLL_VIDEO_POST_DIV_SELECT) >>
265 			BP_ANADIG_PLL_VIDEO_POST_DIV_SELECT;
266 		div &= BM_ANADIG_PLL_VIDEO_DIV_SELECT;
267 		if (test_div == 3) {
268 			debug("Error test_div\n");
269 			return 0;
270 		}
271 		test_div = 1 << (2 - test_div);
272 
273 		return infreq * (div + pll_num / pll_denom) / test_div;
274 	default:
275 		return 0;
276 	}
277 	/* NOTREACHED */
278 }
mxc_get_pll_pfd(enum pll_clocks pll,int pfd_num)279 static u32 mxc_get_pll_pfd(enum pll_clocks pll, int pfd_num)
280 {
281 	u32 div;
282 	u64 freq;
283 
284 	switch (pll) {
285 	case PLL_BUS:
286 		if (!is_mx6ul() && !is_mx6ull()) {
287 			if (pfd_num == 3) {
288 				/* No PFD3 on PLL2 */
289 				return 0;
290 			}
291 		}
292 		div = __raw_readl(&imx_ccm->analog_pfd_528);
293 		freq = (u64)decode_pll(PLL_BUS, MXC_HCLK);
294 		break;
295 	case PLL_USBOTG:
296 		div = __raw_readl(&imx_ccm->analog_pfd_480);
297 		freq = (u64)decode_pll(PLL_USBOTG, MXC_HCLK);
298 		break;
299 	default:
300 		/* No PFD on other PLL					     */
301 		return 0;
302 	}
303 
304 	return lldiv(freq * 18, (div & ANATOP_PFD_FRAC_MASK(pfd_num)) >>
305 			      ANATOP_PFD_FRAC_SHIFT(pfd_num));
306 }
307 
get_mcu_main_clk(void)308 static u32 get_mcu_main_clk(void)
309 {
310 	u32 reg, freq;
311 
312 	reg = __raw_readl(&imx_ccm->cacrr);
313 	reg &= MXC_CCM_CACRR_ARM_PODF_MASK;
314 	reg >>= MXC_CCM_CACRR_ARM_PODF_OFFSET;
315 	freq = decode_pll(PLL_SYS, MXC_HCLK);
316 
317 	return freq / (reg + 1);
318 }
319 
get_periph_clk(void)320 u32 get_periph_clk(void)
321 {
322 	u32 reg, div = 0, freq = 0;
323 
324 	reg = __raw_readl(&imx_ccm->cbcdr);
325 	if (reg & MXC_CCM_CBCDR_PERIPH_CLK_SEL) {
326 		div = (reg & MXC_CCM_CBCDR_PERIPH_CLK2_PODF_MASK) >>
327 		       MXC_CCM_CBCDR_PERIPH_CLK2_PODF_OFFSET;
328 		reg = __raw_readl(&imx_ccm->cbcmr);
329 		reg &= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_MASK;
330 		reg >>= MXC_CCM_CBCMR_PERIPH_CLK2_SEL_OFFSET;
331 
332 		switch (reg) {
333 		case 0:
334 			freq = decode_pll(PLL_USBOTG, MXC_HCLK);
335 			break;
336 		case 1:
337 		case 2:
338 			freq = MXC_HCLK;
339 			break;
340 		default:
341 			break;
342 		}
343 	} else {
344 		reg = __raw_readl(&imx_ccm->cbcmr);
345 		reg &= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_MASK;
346 		reg >>= MXC_CCM_CBCMR_PRE_PERIPH_CLK_SEL_OFFSET;
347 
348 		switch (reg) {
349 		case 0:
350 			freq = decode_pll(PLL_BUS, MXC_HCLK);
351 			break;
352 		case 1:
353 			freq = mxc_get_pll_pfd(PLL_BUS, 2);
354 			break;
355 		case 2:
356 			freq = mxc_get_pll_pfd(PLL_BUS, 0);
357 			break;
358 		case 3:
359 			/* static / 2 divider */
360 			freq = mxc_get_pll_pfd(PLL_BUS, 2) / 2;
361 			break;
362 		default:
363 			break;
364 		}
365 	}
366 
367 	return freq / (div + 1);
368 }
369 
get_ipg_clk(void)370 static u32 get_ipg_clk(void)
371 {
372 	u32 reg, ipg_podf;
373 
374 	reg = __raw_readl(&imx_ccm->cbcdr);
375 	reg &= MXC_CCM_CBCDR_IPG_PODF_MASK;
376 	ipg_podf = reg >> MXC_CCM_CBCDR_IPG_PODF_OFFSET;
377 
378 	return get_ahb_clk() / (ipg_podf + 1);
379 }
380 
get_ipg_per_clk(void)381 static u32 get_ipg_per_clk(void)
382 {
383 	u32 reg, perclk_podf;
384 
385 	reg = __raw_readl(&imx_ccm->cscmr1);
386 	if (is_mx6sll() || is_mx6sl() || is_mx6sx() ||
387 	    is_mx6dqp() || is_mx6ul() || is_mx6ull()) {
388 		if (reg & MXC_CCM_CSCMR1_PER_CLK_SEL_MASK)
389 			return MXC_HCLK; /* OSC 24Mhz */
390 	}
391 
392 	perclk_podf = reg & MXC_CCM_CSCMR1_PERCLK_PODF_MASK;
393 
394 	return get_ipg_clk() / (perclk_podf + 1);
395 }
396 
get_uart_clk(void)397 static u32 get_uart_clk(void)
398 {
399 	u32 reg, uart_podf;
400 	u32 freq = decode_pll(PLL_USBOTG, MXC_HCLK) / 6; /* static divider */
401 	reg = __raw_readl(&imx_ccm->cscdr1);
402 
403 	if (is_mx6sl() || is_mx6sx() || is_mx6dqp() || is_mx6ul() ||
404 	    is_mx6sll() || is_mx6ull()) {
405 		if (reg & MXC_CCM_CSCDR1_UART_CLK_SEL)
406 			freq = MXC_HCLK;
407 	}
408 
409 	reg &= MXC_CCM_CSCDR1_UART_CLK_PODF_MASK;
410 	uart_podf = reg >> MXC_CCM_CSCDR1_UART_CLK_PODF_OFFSET;
411 
412 	return freq / (uart_podf + 1);
413 }
414 
get_cspi_clk(void)415 static u32 get_cspi_clk(void)
416 {
417 	u32 reg, cspi_podf;
418 
419 	reg = __raw_readl(&imx_ccm->cscdr2);
420 	cspi_podf = (reg & MXC_CCM_CSCDR2_ECSPI_CLK_PODF_MASK) >>
421 		     MXC_CCM_CSCDR2_ECSPI_CLK_PODF_OFFSET;
422 
423 	if (is_mx6dqp() || is_mx6sl() || is_mx6sx() || is_mx6ul() ||
424 	    is_mx6sll() || is_mx6ull()) {
425 		if (reg & MXC_CCM_CSCDR2_ECSPI_CLK_SEL_MASK)
426 			return MXC_HCLK / (cspi_podf + 1);
427 	}
428 
429 	return	decode_pll(PLL_USBOTG, MXC_HCLK) / (8 * (cspi_podf + 1));
430 }
431 
get_axi_clk(void)432 static u32 get_axi_clk(void)
433 {
434 	u32 root_freq, axi_podf;
435 	u32 cbcdr =  __raw_readl(&imx_ccm->cbcdr);
436 
437 	axi_podf = cbcdr & MXC_CCM_CBCDR_AXI_PODF_MASK;
438 	axi_podf >>= MXC_CCM_CBCDR_AXI_PODF_OFFSET;
439 
440 	if (cbcdr & MXC_CCM_CBCDR_AXI_SEL) {
441 		if (cbcdr & MXC_CCM_CBCDR_AXI_ALT_SEL)
442 			root_freq = mxc_get_pll_pfd(PLL_USBOTG, 1);
443 		else
444 			root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
445 	} else
446 		root_freq = get_periph_clk();
447 
448 	return  root_freq / (axi_podf + 1);
449 }
450 
get_emi_slow_clk(void)451 static u32 get_emi_slow_clk(void)
452 {
453 	u32 emi_clk_sel, emi_slow_podf, cscmr1, root_freq = 0;
454 
455 	cscmr1 =  __raw_readl(&imx_ccm->cscmr1);
456 	emi_clk_sel = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_MASK;
457 	emi_clk_sel >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_OFFSET;
458 	emi_slow_podf = cscmr1 & MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_MASK;
459 	emi_slow_podf >>= MXC_CCM_CSCMR1_ACLK_EMI_SLOW_PODF_OFFSET;
460 
461 	switch (emi_clk_sel) {
462 	case 0:
463 		root_freq = get_axi_clk();
464 		break;
465 	case 1:
466 		root_freq = decode_pll(PLL_USBOTG, MXC_HCLK);
467 		break;
468 	case 2:
469 		root_freq =  mxc_get_pll_pfd(PLL_BUS, 2);
470 		break;
471 	case 3:
472 		root_freq =  mxc_get_pll_pfd(PLL_BUS, 0);
473 		break;
474 	}
475 
476 	return root_freq / (emi_slow_podf + 1);
477 }
478 
get_mmdc_ch0_clk(void)479 static u32 get_mmdc_ch0_clk(void)
480 {
481 	u32 cbcmr = __raw_readl(&imx_ccm->cbcmr);
482 	u32 cbcdr = __raw_readl(&imx_ccm->cbcdr);
483 
484 	u32 freq, podf, per2_clk2_podf, pmu_misc2_audio_div;
485 
486 	if (is_mx6sx() || is_mx6ul() || is_mx6ull() || is_mx6sl() ||
487 	    is_mx6sll()) {
488 		podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH1_PODF_MASK) >>
489 			MXC_CCM_CBCDR_MMDC_CH1_PODF_OFFSET;
490 		if (cbcdr & MXC_CCM_CBCDR_PERIPH2_CLK_SEL) {
491 			per2_clk2_podf = (cbcdr & MXC_CCM_CBCDR_PERIPH2_CLK2_PODF_MASK) >>
492 				MXC_CCM_CBCDR_PERIPH2_CLK2_PODF_OFFSET;
493 			if (is_mx6sl()) {
494 				if (cbcmr & MXC_CCM_CBCMR_PERIPH2_CLK2_SEL)
495 					freq = MXC_HCLK;
496 				else
497 					freq = decode_pll(PLL_USBOTG, MXC_HCLK);
498 			} else {
499 				if (cbcmr & MXC_CCM_CBCMR_PERIPH2_CLK2_SEL)
500 					freq = decode_pll(PLL_BUS, MXC_HCLK);
501 				else
502 					freq = decode_pll(PLL_USBOTG, MXC_HCLK);
503 			}
504 		} else {
505 			per2_clk2_podf = 0;
506 			switch ((cbcmr &
507 				MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_MASK) >>
508 				MXC_CCM_CBCMR_PRE_PERIPH2_CLK_SEL_OFFSET) {
509 			case 0:
510 				freq = decode_pll(PLL_BUS, MXC_HCLK);
511 				break;
512 			case 1:
513 				freq = mxc_get_pll_pfd(PLL_BUS, 2);
514 				break;
515 			case 2:
516 				freq = mxc_get_pll_pfd(PLL_BUS, 0);
517 				break;
518 			case 3:
519 				if (is_mx6sl()) {
520 					freq = mxc_get_pll_pfd(PLL_BUS, 2) >> 1;
521 					break;
522 				}
523 
524 				pmu_misc2_audio_div = PMU_MISC2_AUDIO_DIV(__raw_readl(&imx_ccm->pmu_misc2));
525 				switch (pmu_misc2_audio_div) {
526 				case 0:
527 				case 2:
528 					pmu_misc2_audio_div = 1;
529 					break;
530 				case 1:
531 					pmu_misc2_audio_div = 2;
532 					break;
533 				case 3:
534 					pmu_misc2_audio_div = 4;
535 					break;
536 				}
537 				freq = decode_pll(PLL_AUDIO, MXC_HCLK) /
538 					pmu_misc2_audio_div;
539 				break;
540 			}
541 		}
542 		return freq / (podf + 1) / (per2_clk2_podf + 1);
543 	} else {
544 		podf = (cbcdr & MXC_CCM_CBCDR_MMDC_CH0_PODF_MASK) >>
545 			MXC_CCM_CBCDR_MMDC_CH0_PODF_OFFSET;
546 		return get_periph_clk() / (podf + 1);
547 	}
548 }
549 
550 #if defined(CONFIG_VIDEO_MXS)
enable_pll_video(u32 pll_div,u32 pll_num,u32 pll_denom,u32 post_div)551 static int enable_pll_video(u32 pll_div, u32 pll_num, u32 pll_denom,
552 			    u32 post_div)
553 {
554 	u32 reg = 0;
555 	ulong start;
556 
557 	debug("pll5 div = %d, num = %d, denom = %d\n",
558 	      pll_div, pll_num, pll_denom);
559 
560 	/* Power up PLL5 video */
561 	writel(BM_ANADIG_PLL_VIDEO_POWERDOWN |
562 	       BM_ANADIG_PLL_VIDEO_BYPASS |
563 	       BM_ANADIG_PLL_VIDEO_DIV_SELECT |
564 	       BM_ANADIG_PLL_VIDEO_POST_DIV_SELECT,
565 	       &imx_ccm->analog_pll_video_clr);
566 
567 	/* Set div, num and denom */
568 	switch (post_div) {
569 	case 1:
570 		writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) |
571 		       BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x2),
572 		       &imx_ccm->analog_pll_video_set);
573 		break;
574 	case 2:
575 		writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) |
576 		       BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x1),
577 		       &imx_ccm->analog_pll_video_set);
578 		break;
579 	case 4:
580 		writel(BF_ANADIG_PLL_VIDEO_DIV_SELECT(pll_div) |
581 		       BF_ANADIG_PLL_VIDEO_POST_DIV_SELECT(0x0),
582 		       &imx_ccm->analog_pll_video_set);
583 		break;
584 	default:
585 		puts("Wrong test_div!\n");
586 		return -EINVAL;
587 	}
588 
589 	writel(BF_ANADIG_PLL_VIDEO_NUM_A(pll_num),
590 	       &imx_ccm->analog_pll_video_num);
591 	writel(BF_ANADIG_PLL_VIDEO_DENOM_B(pll_denom),
592 	       &imx_ccm->analog_pll_video_denom);
593 
594 	/* Wait PLL5 lock */
595 	start = get_timer(0);	/* Get current timestamp */
596 
597 	do {
598 		reg = readl(&imx_ccm->analog_pll_video);
599 		if (reg & BM_ANADIG_PLL_VIDEO_LOCK) {
600 			/* Enable PLL out */
601 			writel(BM_ANADIG_PLL_VIDEO_ENABLE,
602 			       &imx_ccm->analog_pll_video_set);
603 			return 0;
604 		}
605 	} while (get_timer(0) < (start + 10)); /* Wait 10ms */
606 
607 	puts("Lock PLL5 timeout\n");
608 
609 	return -ETIME;
610 }
611 
612 /*
613  * 24M--> PLL_VIDEO -> LCDIFx_PRED -> LCDIFx_PODF -> LCD
614  *
615  * 'freq' using KHz as unit, see driver/video/mxsfb.c.
616  */
mxs_set_lcdclk(u32 base_addr,u32 freq)617 void mxs_set_lcdclk(u32 base_addr, u32 freq)
618 {
619 	u32 reg = 0;
620 	u32 hck = MXC_HCLK / 1000;
621 	/* DIV_SELECT ranges from 27 to 54 */
622 	u32 min = hck * 27;
623 	u32 max = hck * 54;
624 	u32 temp, best = 0;
625 	u32 i, j, max_pred = 8, max_postd = 8, pred = 1, postd = 1;
626 	u32 pll_div, pll_num, pll_denom, post_div = 1;
627 
628 	debug("mxs_set_lcdclk, freq = %dKHz\n", freq);
629 
630 	if (!is_mx6sx() && !is_mx6ul() && !is_mx6ull() && !is_mx6sl() &&
631 	    !is_mx6sll()) {
632 		debug("This chip not support lcd!\n");
633 		return;
634 	}
635 
636 	if (!is_mx6sl()) {
637 		if (base_addr == LCDIF1_BASE_ADDR) {
638 			reg = readl(&imx_ccm->cscdr2);
639 			/* Can't change clocks when clock not from pre-mux */
640 			if ((reg & MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK) != 0)
641 				return;
642 		}
643 	}
644 
645 	if (is_mx6sx()) {
646 		reg = readl(&imx_ccm->cscdr2);
647 		/* Can't change clocks when clock not from pre-mux */
648 		if ((reg & MXC_CCM_CSCDR2_LCDIF2_CLK_SEL_MASK) != 0)
649 			return;
650 	}
651 
652 	temp = freq * max_pred * max_postd;
653 	if (temp < min) {
654 		/*
655 		 * Register: PLL_VIDEO
656 		 * Bit Field: POST_DIV_SELECT
657 		 * 00 — Divide by 4.
658 		 * 01 — Divide by 2.
659 		 * 10 — Divide by 1.
660 		 * 11 — Reserved
661 		 * No need to check post_div(1)
662 		 */
663 		for (post_div = 2; post_div <= 4; post_div <<= 1) {
664 			if ((temp * post_div) > min) {
665 				freq *= post_div;
666 				break;
667 			}
668 		}
669 
670 		if (post_div > 4) {
671 			printf("Fail to set rate to %dkhz", freq);
672 			return;
673 		}
674 	}
675 
676 	/* Choose the best pred and postd to match freq for lcd */
677 	for (i = 1; i <= max_pred; i++) {
678 		for (j = 1; j <= max_postd; j++) {
679 			temp = freq * i * j;
680 			if (temp > max || temp < min)
681 				continue;
682 			if (best == 0 || temp < best) {
683 				best = temp;
684 				pred = i;
685 				postd = j;
686 			}
687 		}
688 	}
689 
690 	if (best == 0) {
691 		printf("Fail to set rate to %dKHz", freq);
692 		return;
693 	}
694 
695 	debug("best %d, pred = %d, postd = %d\n", best, pred, postd);
696 
697 	pll_div = best / hck;
698 	pll_denom = 1000000;
699 	pll_num = (best - hck * pll_div) * pll_denom / hck;
700 
701 	/*
702 	 *                                  pll_num
703 	 *             (24MHz * (pll_div + --------- ))
704 	 *                                 pll_denom
705 	 *freq KHz =  --------------------------------
706 	 *             post_div * pred * postd * 1000
707 	 */
708 
709 	if (base_addr == LCDIF1_BASE_ADDR) {
710 		if (enable_pll_video(pll_div, pll_num, pll_denom, post_div))
711 			return;
712 
713 		enable_lcdif_clock(base_addr, 0);
714 		if (!is_mx6sl()) {
715 			/* Select pre-lcd clock to PLL5 and set pre divider */
716 			clrsetbits_le32(&imx_ccm->cscdr2,
717 					MXC_CCM_CSCDR2_LCDIF1_PRED_SEL_MASK |
718 					MXC_CCM_CSCDR2_LCDIF1_PRE_DIV_MASK,
719 					(0x2 << MXC_CCM_CSCDR2_LCDIF1_PRED_SEL_OFFSET) |
720 					((pred - 1) <<
721 					 MXC_CCM_CSCDR2_LCDIF1_PRE_DIV_OFFSET));
722 
723 			/* Set the post divider */
724 			clrsetbits_le32(&imx_ccm->cbcmr,
725 					MXC_CCM_CBCMR_LCDIF1_PODF_MASK,
726 					((postd - 1) <<
727 					MXC_CCM_CBCMR_LCDIF1_PODF_OFFSET));
728 		} else {
729 			/* Select pre-lcd clock to PLL5 and set pre divider */
730 			clrsetbits_le32(&imx_ccm->cscdr2,
731 					MXC_CCM_CSCDR2_LCDIF_PIX_CLK_SEL_MASK |
732 					MXC_CCM_CSCDR2_LCDIF_PIX_PRE_DIV_MASK,
733 					(0x2 << MXC_CCM_CSCDR2_LCDIF_PIX_CLK_SEL_OFFSET) |
734 					((pred - 1) <<
735 					 MXC_CCM_CSCDR2_LCDIF_PIX_PRE_DIV_OFFSET));
736 
737 			/* Set the post divider */
738 			clrsetbits_le32(&imx_ccm->cscmr1,
739 					MXC_CCM_CSCMR1_LCDIF_PIX_PODF_MASK,
740 					(((postd - 1)^0x6) <<
741 					 MXC_CCM_CSCMR1_LCDIF_PIX_PODF_OFFSET));
742 		}
743 
744 		enable_lcdif_clock(base_addr, 1);
745 	} else if (is_mx6sx()) {
746 		/* Setting LCDIF2 for i.MX6SX */
747 		if (enable_pll_video(pll_div, pll_num, pll_denom, post_div))
748 			return;
749 
750 		enable_lcdif_clock(base_addr, 0);
751 		/* Select pre-lcd clock to PLL5 and set pre divider */
752 		clrsetbits_le32(&imx_ccm->cscdr2,
753 				MXC_CCM_CSCDR2_LCDIF2_PRED_SEL_MASK |
754 				MXC_CCM_CSCDR2_LCDIF2_PRE_DIV_MASK,
755 				(0x2 << MXC_CCM_CSCDR2_LCDIF2_PRED_SEL_OFFSET) |
756 				((pred - 1) <<
757 				 MXC_CCM_CSCDR2_LCDIF2_PRE_DIV_OFFSET));
758 
759 		/* Set the post divider */
760 		clrsetbits_le32(&imx_ccm->cscmr1,
761 				MXC_CCM_CSCMR1_LCDIF2_PODF_MASK,
762 				((postd - 1) <<
763 				 MXC_CCM_CSCMR1_LCDIF2_PODF_OFFSET));
764 
765 		enable_lcdif_clock(base_addr, 1);
766 	}
767 }
768 
enable_lcdif_clock(u32 base_addr,bool enable)769 int enable_lcdif_clock(u32 base_addr, bool enable)
770 {
771 	u32 reg = 0;
772 	u32 lcdif_clk_sel_mask, lcdif_ccgr3_mask;
773 
774 	if (is_mx6sx()) {
775 		if ((base_addr != LCDIF1_BASE_ADDR) &&
776 		    (base_addr != LCDIF2_BASE_ADDR)) {
777 			puts("Wrong LCD interface!\n");
778 			return -EINVAL;
779 		}
780 		/* Set to pre-mux clock at default */
781 		lcdif_clk_sel_mask = (base_addr == LCDIF2_BASE_ADDR) ?
782 			MXC_CCM_CSCDR2_LCDIF2_CLK_SEL_MASK :
783 			MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK;
784 		lcdif_ccgr3_mask = (base_addr == LCDIF2_BASE_ADDR) ?
785 			(MXC_CCM_CCGR3_LCDIF2_PIX_MASK |
786 			 MXC_CCM_CCGR3_DISP_AXI_MASK) :
787 			(MXC_CCM_CCGR3_LCDIF1_PIX_MASK |
788 			 MXC_CCM_CCGR3_DISP_AXI_MASK);
789 	} else if (is_mx6ul() || is_mx6ull() || is_mx6sll()) {
790 		if (base_addr != LCDIF1_BASE_ADDR) {
791 			puts("Wrong LCD interface!\n");
792 			return -EINVAL;
793 		}
794 		/* Set to pre-mux clock at default */
795 		lcdif_clk_sel_mask = MXC_CCM_CSCDR2_LCDIF1_CLK_SEL_MASK;
796 		lcdif_ccgr3_mask =  MXC_CCM_CCGR3_LCDIF1_PIX_MASK;
797 	} else if (is_mx6sl()) {
798 		if (base_addr != LCDIF1_BASE_ADDR) {
799 			puts("Wrong LCD interface!\n");
800 			return -EINVAL;
801 		}
802 
803 		reg = readl(&imx_ccm->CCGR3);
804 		reg &= ~(MXC_CCM_CCGR3_LCDIF_AXI_MASK |
805 			 MXC_CCM_CCGR3_LCDIF_PIX_MASK);
806 		writel(reg, &imx_ccm->CCGR3);
807 
808 		if (enable) {
809 			reg = readl(&imx_ccm->cscdr3);
810 			reg &= ~MXC_CCM_CSCDR3_LCDIF_AXI_CLK_SEL_MASK;
811 			reg |= 1 << MXC_CCM_CSCDR3_LCDIF_AXI_CLK_SEL_OFFSET;
812 			writel(reg, &imx_ccm->cscdr3);
813 
814 			reg = readl(&imx_ccm->CCGR3);
815 			reg |= MXC_CCM_CCGR3_LCDIF_AXI_MASK |
816 				MXC_CCM_CCGR3_LCDIF_PIX_MASK;
817 			writel(reg, &imx_ccm->CCGR3);
818 		}
819 
820 		return 0;
821 	} else {
822 		return 0;
823 	}
824 
825 	/* Gate LCDIF clock first */
826 	reg = readl(&imx_ccm->CCGR3);
827 	reg &= ~lcdif_ccgr3_mask;
828 	writel(reg, &imx_ccm->CCGR3);
829 
830 	reg = readl(&imx_ccm->CCGR2);
831 	reg &= ~MXC_CCM_CCGR2_LCD_MASK;
832 	writel(reg, &imx_ccm->CCGR2);
833 
834 	if (enable) {
835 		/* Select pre-mux */
836 		reg = readl(&imx_ccm->cscdr2);
837 		reg &= ~lcdif_clk_sel_mask;
838 		writel(reg, &imx_ccm->cscdr2);
839 
840 		/* Enable the LCDIF pix clock */
841 		reg = readl(&imx_ccm->CCGR3);
842 		reg |= lcdif_ccgr3_mask;
843 		writel(reg, &imx_ccm->CCGR3);
844 
845 		reg = readl(&imx_ccm->CCGR2);
846 		reg |= MXC_CCM_CCGR2_LCD_MASK;
847 		writel(reg, &imx_ccm->CCGR2);
848 	}
849 
850 	return 0;
851 }
852 #endif
853 
854 #ifdef CONFIG_FSL_QSPI
855 /* qspi_num can be from 0 - 1 */
enable_qspi_clk(int qspi_num)856 void enable_qspi_clk(int qspi_num)
857 {
858 	u32 reg = 0;
859 	/* Enable QuadSPI clock */
860 	switch (qspi_num) {
861 	case 0:
862 		/* disable the clock gate */
863 		clrbits_le32(&imx_ccm->CCGR3, MXC_CCM_CCGR3_QSPI1_MASK);
864 
865 		/* set 50M  : (50 = 396 / 2 / 4) */
866 		reg = readl(&imx_ccm->cscmr1);
867 		reg &= ~(MXC_CCM_CSCMR1_QSPI1_PODF_MASK |
868 			 MXC_CCM_CSCMR1_QSPI1_CLK_SEL_MASK);
869 		reg |= ((1 << MXC_CCM_CSCMR1_QSPI1_PODF_OFFSET) |
870 			(2 << MXC_CCM_CSCMR1_QSPI1_CLK_SEL_OFFSET));
871 		writel(reg, &imx_ccm->cscmr1);
872 
873 		/* enable the clock gate */
874 		setbits_le32(&imx_ccm->CCGR3, MXC_CCM_CCGR3_QSPI1_MASK);
875 		break;
876 	case 1:
877 		/*
878 		 * disable the clock gate
879 		 * QSPI2 and GPMI_BCH_INPUT_GPMI_IO share the same clock gate,
880 		 * disable both of them.
881 		 */
882 		clrbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK |
883 			     MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK);
884 
885 		/* set 50M  : (50 = 396 / 2 / 4) */
886 		reg = readl(&imx_ccm->cs2cdr);
887 		reg &= ~(MXC_CCM_CS2CDR_QSPI2_CLK_PODF_MASK |
888 			 MXC_CCM_CS2CDR_QSPI2_CLK_PRED_MASK |
889 			 MXC_CCM_CS2CDR_QSPI2_CLK_SEL_MASK);
890 		reg |= (MXC_CCM_CS2CDR_QSPI2_CLK_PRED(0x1) |
891 			MXC_CCM_CS2CDR_QSPI2_CLK_SEL(0x3));
892 		writel(reg, &imx_ccm->cs2cdr);
893 
894 		/*enable the clock gate*/
895 		setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_QSPI2_ENFC_MASK |
896 			     MXC_CCM_CCGR4_RAWNAND_U_GPMI_BCH_INPUT_GPMI_IO_MASK);
897 		break;
898 	default:
899 		break;
900 	}
901 }
902 #endif
903 
904 #ifdef CONFIG_FEC_MXC
enable_fec_anatop_clock(int fec_id,enum enet_freq freq)905 int enable_fec_anatop_clock(int fec_id, enum enet_freq freq)
906 {
907 	u32 reg = 0;
908 	s32 timeout = 100000;
909 
910 	struct anatop_regs __iomem *anatop =
911 		(struct anatop_regs __iomem *)ANATOP_BASE_ADDR;
912 
913 	if (freq < ENET_25MHZ || freq > ENET_125MHZ)
914 		return -EINVAL;
915 
916 	reg = readl(&anatop->pll_enet);
917 
918 	if (fec_id == 0) {
919 		reg &= ~BM_ANADIG_PLL_ENET_DIV_SELECT;
920 		reg |= BF_ANADIG_PLL_ENET_DIV_SELECT(freq);
921 	} else if (fec_id == 1) {
922 		/* Only i.MX6SX/UL support ENET2 */
923 		if (!(is_mx6sx() || is_mx6ul() || is_mx6ull()))
924 			return -EINVAL;
925 		reg &= ~BM_ANADIG_PLL_ENET2_DIV_SELECT;
926 		reg |= BF_ANADIG_PLL_ENET2_DIV_SELECT(freq);
927 	} else {
928 		return -EINVAL;
929 	}
930 
931 	if ((reg & BM_ANADIG_PLL_ENET_POWERDOWN) ||
932 	    (!(reg & BM_ANADIG_PLL_ENET_LOCK))) {
933 		reg &= ~BM_ANADIG_PLL_ENET_POWERDOWN;
934 		writel(reg, &anatop->pll_enet);
935 		while (timeout--) {
936 			if (readl(&anatop->pll_enet) & BM_ANADIG_PLL_ENET_LOCK)
937 				break;
938 		}
939 		if (timeout < 0)
940 			return -ETIMEDOUT;
941 	}
942 
943 	/* Enable FEC clock */
944 	if (fec_id == 0)
945 		reg |= BM_ANADIG_PLL_ENET_ENABLE;
946 	else
947 		reg |= BM_ANADIG_PLL_ENET2_ENABLE;
948 	reg &= ~BM_ANADIG_PLL_ENET_BYPASS;
949 	writel(reg, &anatop->pll_enet);
950 
951 #ifdef CONFIG_MX6SX
952 	/* Disable enet system clcok before switching clock parent */
953 	reg = readl(&imx_ccm->CCGR3);
954 	reg &= ~MXC_CCM_CCGR3_ENET_MASK;
955 	writel(reg, &imx_ccm->CCGR3);
956 
957 	/*
958 	 * Set enet ahb clock to 200MHz
959 	 * pll2_pfd2_396m-> ENET_PODF-> ENET_AHB
960 	 */
961 	reg = readl(&imx_ccm->chsccdr);
962 	reg &= ~(MXC_CCM_CHSCCDR_ENET_PRE_CLK_SEL_MASK
963 		 | MXC_CCM_CHSCCDR_ENET_PODF_MASK
964 		 | MXC_CCM_CHSCCDR_ENET_CLK_SEL_MASK);
965 	/* PLL2 PFD2 */
966 	reg |= (4 << MXC_CCM_CHSCCDR_ENET_PRE_CLK_SEL_OFFSET);
967 	/* Div = 2*/
968 	reg |= (1 << MXC_CCM_CHSCCDR_ENET_PODF_OFFSET);
969 	reg |= (0 << MXC_CCM_CHSCCDR_ENET_CLK_SEL_OFFSET);
970 	writel(reg, &imx_ccm->chsccdr);
971 
972 	/* Enable enet system clock */
973 	reg = readl(&imx_ccm->CCGR3);
974 	reg |= MXC_CCM_CCGR3_ENET_MASK;
975 	writel(reg, &imx_ccm->CCGR3);
976 #endif
977 	return 0;
978 }
979 #endif
980 
get_usdhc_clk(u32 port)981 static u32 get_usdhc_clk(u32 port)
982 {
983 	u32 root_freq = 0, usdhc_podf = 0, clk_sel = 0;
984 	u32 cscmr1 = __raw_readl(&imx_ccm->cscmr1);
985 	u32 cscdr1 = __raw_readl(&imx_ccm->cscdr1);
986 
987 	if (is_mx6ul() || is_mx6ull()) {
988 		if (port > 1)
989 			return 0;
990 	}
991 
992 	if (is_mx6sll()) {
993 		if (port > 2)
994 			return 0;
995 	}
996 
997 	switch (port) {
998 	case 0:
999 		usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC1_PODF_MASK) >>
1000 					MXC_CCM_CSCDR1_USDHC1_PODF_OFFSET;
1001 		clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC1_CLK_SEL;
1002 
1003 		break;
1004 	case 1:
1005 		usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC2_PODF_MASK) >>
1006 					MXC_CCM_CSCDR1_USDHC2_PODF_OFFSET;
1007 		clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC2_CLK_SEL;
1008 
1009 		break;
1010 	case 2:
1011 		usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC3_PODF_MASK) >>
1012 					MXC_CCM_CSCDR1_USDHC3_PODF_OFFSET;
1013 		clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC3_CLK_SEL;
1014 
1015 		break;
1016 	case 3:
1017 		usdhc_podf = (cscdr1 & MXC_CCM_CSCDR1_USDHC4_PODF_MASK) >>
1018 					MXC_CCM_CSCDR1_USDHC4_PODF_OFFSET;
1019 		clk_sel = cscmr1 & MXC_CCM_CSCMR1_USDHC4_CLK_SEL;
1020 
1021 		break;
1022 	default:
1023 		break;
1024 	}
1025 
1026 	if (clk_sel)
1027 		root_freq = mxc_get_pll_pfd(PLL_BUS, 0);
1028 	else
1029 		root_freq = mxc_get_pll_pfd(PLL_BUS, 2);
1030 
1031 	return root_freq / (usdhc_podf + 1);
1032 }
1033 
imx_get_uartclk(void)1034 u32 imx_get_uartclk(void)
1035 {
1036 	return get_uart_clk();
1037 }
1038 
imx_get_fecclk(void)1039 u32 imx_get_fecclk(void)
1040 {
1041 	return mxc_get_clock(MXC_IPG_CLK);
1042 }
1043 
1044 #if defined(CONFIG_SATA) || defined(CONFIG_PCIE_IMX)
enable_enet_pll(uint32_t en)1045 static int enable_enet_pll(uint32_t en)
1046 {
1047 	struct mxc_ccm_reg *const imx_ccm
1048 		= (struct mxc_ccm_reg *) CCM_BASE_ADDR;
1049 	s32 timeout = 100000;
1050 	u32 reg = 0;
1051 
1052 	/* Enable PLLs */
1053 	reg = readl(&imx_ccm->analog_pll_enet);
1054 	reg &= ~BM_ANADIG_PLL_SYS_POWERDOWN;
1055 	writel(reg, &imx_ccm->analog_pll_enet);
1056 	reg |= BM_ANADIG_PLL_SYS_ENABLE;
1057 	while (timeout--) {
1058 		if (readl(&imx_ccm->analog_pll_enet) & BM_ANADIG_PLL_SYS_LOCK)
1059 			break;
1060 	}
1061 	if (timeout <= 0)
1062 		return -EIO;
1063 	reg &= ~BM_ANADIG_PLL_SYS_BYPASS;
1064 	writel(reg, &imx_ccm->analog_pll_enet);
1065 	reg |= en;
1066 	writel(reg, &imx_ccm->analog_pll_enet);
1067 	return 0;
1068 }
1069 #endif
1070 
1071 #ifdef CONFIG_SATA
ungate_sata_clock(void)1072 static void ungate_sata_clock(void)
1073 {
1074 	struct mxc_ccm_reg *const imx_ccm =
1075 		(struct mxc_ccm_reg *)CCM_BASE_ADDR;
1076 
1077 	/* Enable SATA clock. */
1078 	setbits_le32(&imx_ccm->CCGR5, MXC_CCM_CCGR5_SATA_MASK);
1079 }
1080 
enable_sata_clock(void)1081 int enable_sata_clock(void)
1082 {
1083 	ungate_sata_clock();
1084 	return enable_enet_pll(BM_ANADIG_PLL_ENET_ENABLE_SATA);
1085 }
1086 
disable_sata_clock(void)1087 void disable_sata_clock(void)
1088 {
1089 	struct mxc_ccm_reg *const imx_ccm =
1090 		(struct mxc_ccm_reg *)CCM_BASE_ADDR;
1091 
1092 	clrbits_le32(&imx_ccm->CCGR5, MXC_CCM_CCGR5_SATA_MASK);
1093 }
1094 #endif
1095 
1096 #ifdef CONFIG_PCIE_IMX
ungate_pcie_clock(void)1097 static void ungate_pcie_clock(void)
1098 {
1099 	struct mxc_ccm_reg *const imx_ccm =
1100 		(struct mxc_ccm_reg *)CCM_BASE_ADDR;
1101 
1102 	/* Enable PCIe clock. */
1103 	setbits_le32(&imx_ccm->CCGR4, MXC_CCM_CCGR4_PCIE_MASK);
1104 }
1105 
enable_pcie_clock(void)1106 int enable_pcie_clock(void)
1107 {
1108 	struct anatop_regs *anatop_regs =
1109 		(struct anatop_regs *)ANATOP_BASE_ADDR;
1110 	struct mxc_ccm_reg *ccm_regs = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
1111 	u32 lvds1_clk_sel;
1112 
1113 	/*
1114 	 * Here be dragons!
1115 	 *
1116 	 * The register ANATOP_MISC1 is not documented in the Freescale
1117 	 * MX6RM. The register that is mapped in the ANATOP space and
1118 	 * marked as ANATOP_MISC1 is actually documented in the PMU section
1119 	 * of the datasheet as PMU_MISC1.
1120 	 *
1121 	 * Switch LVDS clock source to SATA (0xb) on mx6q/dl or PCI (0xa) on
1122 	 * mx6sx, disable clock INPUT and enable clock OUTPUT. This is important
1123 	 * for PCI express link that is clocked from the i.MX6.
1124 	 */
1125 #define ANADIG_ANA_MISC1_LVDSCLK1_IBEN		(1 << 12)
1126 #define ANADIG_ANA_MISC1_LVDSCLK1_OBEN		(1 << 10)
1127 #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_MASK	0x0000001F
1128 #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_PCIE_REF	0xa
1129 #define ANADIG_ANA_MISC1_LVDS1_CLK_SEL_SATA_REF	0xb
1130 
1131 	if (is_mx6sx())
1132 		lvds1_clk_sel = ANADIG_ANA_MISC1_LVDS1_CLK_SEL_PCIE_REF;
1133 	else
1134 		lvds1_clk_sel = ANADIG_ANA_MISC1_LVDS1_CLK_SEL_SATA_REF;
1135 
1136 	clrsetbits_le32(&anatop_regs->ana_misc1,
1137 			ANADIG_ANA_MISC1_LVDSCLK1_IBEN |
1138 			ANADIG_ANA_MISC1_LVDS1_CLK_SEL_MASK,
1139 			ANADIG_ANA_MISC1_LVDSCLK1_OBEN | lvds1_clk_sel);
1140 
1141 	/* PCIe reference clock sourced from AXI. */
1142 	clrbits_le32(&ccm_regs->cbcmr, MXC_CCM_CBCMR_PCIE_AXI_CLK_SEL);
1143 
1144 	/* Party time! Ungate the clock to the PCIe. */
1145 #ifdef CONFIG_SATA
1146 	ungate_sata_clock();
1147 #endif
1148 	ungate_pcie_clock();
1149 
1150 	return enable_enet_pll(BM_ANADIG_PLL_ENET_ENABLE_SATA |
1151 			       BM_ANADIG_PLL_ENET_ENABLE_PCIE);
1152 }
1153 #endif
1154 
1155 #ifdef CONFIG_SECURE_BOOT
hab_caam_clock_enable(unsigned char enable)1156 void hab_caam_clock_enable(unsigned char enable)
1157 {
1158 	u32 reg;
1159 
1160 	if (is_mx6ull() || is_mx6sll()) {
1161 		/* CG5, DCP clock */
1162 		reg = __raw_readl(&imx_ccm->CCGR0);
1163 		if (enable)
1164 			reg |= MXC_CCM_CCGR0_DCP_CLK_MASK;
1165 		else
1166 			reg &= ~MXC_CCM_CCGR0_DCP_CLK_MASK;
1167 		__raw_writel(reg, &imx_ccm->CCGR0);
1168 	} else {
1169 		/* CG4 ~ CG6, CAAM clocks */
1170 		reg = __raw_readl(&imx_ccm->CCGR0);
1171 		if (enable)
1172 			reg |= (MXC_CCM_CCGR0_CAAM_WRAPPER_IPG_MASK |
1173 				MXC_CCM_CCGR0_CAAM_WRAPPER_ACLK_MASK |
1174 				MXC_CCM_CCGR0_CAAM_SECURE_MEM_MASK);
1175 		else
1176 			reg &= ~(MXC_CCM_CCGR0_CAAM_WRAPPER_IPG_MASK |
1177 				MXC_CCM_CCGR0_CAAM_WRAPPER_ACLK_MASK |
1178 				MXC_CCM_CCGR0_CAAM_SECURE_MEM_MASK);
1179 		__raw_writel(reg, &imx_ccm->CCGR0);
1180 	}
1181 
1182 	/* EMI slow clk */
1183 	reg = __raw_readl(&imx_ccm->CCGR6);
1184 	if (enable)
1185 		reg |= MXC_CCM_CCGR6_EMI_SLOW_MASK;
1186 	else
1187 		reg &= ~MXC_CCM_CCGR6_EMI_SLOW_MASK;
1188 	__raw_writel(reg, &imx_ccm->CCGR6);
1189 }
1190 #endif
1191 
enable_pll3(void)1192 static void enable_pll3(void)
1193 {
1194 	struct anatop_regs __iomem *anatop =
1195 		(struct anatop_regs __iomem *)ANATOP_BASE_ADDR;
1196 
1197 	/* make sure pll3 is enabled */
1198 	if ((readl(&anatop->usb1_pll_480_ctrl) &
1199 			BM_ANADIG_USB1_PLL_480_CTRL_LOCK) == 0) {
1200 		/* enable pll's power */
1201 		writel(BM_ANADIG_USB1_PLL_480_CTRL_POWER,
1202 		       &anatop->usb1_pll_480_ctrl_set);
1203 		writel(0x80, &anatop->ana_misc2_clr);
1204 		/* wait for pll lock */
1205 		while ((readl(&anatop->usb1_pll_480_ctrl) &
1206 			BM_ANADIG_USB1_PLL_480_CTRL_LOCK) == 0)
1207 			;
1208 		/* disable bypass */
1209 		writel(BM_ANADIG_USB1_PLL_480_CTRL_BYPASS,
1210 		       &anatop->usb1_pll_480_ctrl_clr);
1211 		/* enable pll output */
1212 		writel(BM_ANADIG_USB1_PLL_480_CTRL_ENABLE,
1213 		       &anatop->usb1_pll_480_ctrl_set);
1214 	}
1215 }
1216 
enable_thermal_clk(void)1217 void enable_thermal_clk(void)
1218 {
1219 	enable_pll3();
1220 }
1221 
1222 #ifdef CONFIG_MTD_NOR_FLASH
enable_eim_clk(unsigned char enable)1223 void enable_eim_clk(unsigned char enable)
1224 {
1225 	u32 reg;
1226 
1227 	reg = __raw_readl(&imx_ccm->CCGR6);
1228 	if (enable)
1229 		reg |= MXC_CCM_CCGR6_EMI_SLOW_MASK;
1230 	else
1231 		reg &= ~MXC_CCM_CCGR6_EMI_SLOW_MASK;
1232 	__raw_writel(reg, &imx_ccm->CCGR6);
1233 }
1234 #endif
1235 
mxc_get_clock(enum mxc_clock clk)1236 unsigned int mxc_get_clock(enum mxc_clock clk)
1237 {
1238 	switch (clk) {
1239 	case MXC_ARM_CLK:
1240 		return get_mcu_main_clk();
1241 	case MXC_PER_CLK:
1242 		return get_periph_clk();
1243 	case MXC_AHB_CLK:
1244 		return get_ahb_clk();
1245 	case MXC_IPG_CLK:
1246 		return get_ipg_clk();
1247 	case MXC_IPG_PERCLK:
1248 	case MXC_I2C_CLK:
1249 		return get_ipg_per_clk();
1250 	case MXC_UART_CLK:
1251 		return get_uart_clk();
1252 	case MXC_CSPI_CLK:
1253 		return get_cspi_clk();
1254 	case MXC_AXI_CLK:
1255 		return get_axi_clk();
1256 	case MXC_EMI_SLOW_CLK:
1257 		return get_emi_slow_clk();
1258 	case MXC_DDR_CLK:
1259 		return get_mmdc_ch0_clk();
1260 	case MXC_ESDHC_CLK:
1261 		return get_usdhc_clk(0);
1262 	case MXC_ESDHC2_CLK:
1263 		return get_usdhc_clk(1);
1264 	case MXC_ESDHC3_CLK:
1265 		return get_usdhc_clk(2);
1266 	case MXC_ESDHC4_CLK:
1267 		return get_usdhc_clk(3);
1268 	case MXC_SATA_CLK:
1269 		return get_ahb_clk();
1270 	default:
1271 		printf("Unsupported MXC CLK: %d\n", clk);
1272 		break;
1273 	}
1274 
1275 	return 0;
1276 }
1277 
1278 #ifndef CONFIG_SPL_BUILD
1279 /*
1280  * Dump some core clockes.
1281  */
do_mx6_showclocks(cmd_tbl_t * cmdtp,int flag,int argc,char * const argv[])1282 int do_mx6_showclocks(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
1283 {
1284 	u32 freq;
1285 	freq = decode_pll(PLL_SYS, MXC_HCLK);
1286 	printf("PLL_SYS    %8d MHz\n", freq / 1000000);
1287 	freq = decode_pll(PLL_BUS, MXC_HCLK);
1288 	printf("PLL_BUS    %8d MHz\n", freq / 1000000);
1289 	freq = decode_pll(PLL_USBOTG, MXC_HCLK);
1290 	printf("PLL_OTG    %8d MHz\n", freq / 1000000);
1291 	freq = decode_pll(PLL_ENET, MXC_HCLK);
1292 	printf("PLL_NET    %8d MHz\n", freq / 1000000);
1293 
1294 	printf("\n");
1295 	printf("ARM        %8d kHz\n", mxc_get_clock(MXC_ARM_CLK) / 1000);
1296 	printf("IPG        %8d kHz\n", mxc_get_clock(MXC_IPG_CLK) / 1000);
1297 	printf("UART       %8d kHz\n", mxc_get_clock(MXC_UART_CLK) / 1000);
1298 #ifdef CONFIG_MXC_SPI
1299 	printf("CSPI       %8d kHz\n", mxc_get_clock(MXC_CSPI_CLK) / 1000);
1300 #endif
1301 	printf("AHB        %8d kHz\n", mxc_get_clock(MXC_AHB_CLK) / 1000);
1302 	printf("AXI        %8d kHz\n", mxc_get_clock(MXC_AXI_CLK) / 1000);
1303 	printf("DDR        %8d kHz\n", mxc_get_clock(MXC_DDR_CLK) / 1000);
1304 	printf("USDHC1     %8d kHz\n", mxc_get_clock(MXC_ESDHC_CLK) / 1000);
1305 	printf("USDHC2     %8d kHz\n", mxc_get_clock(MXC_ESDHC2_CLK) / 1000);
1306 	printf("USDHC3     %8d kHz\n", mxc_get_clock(MXC_ESDHC3_CLK) / 1000);
1307 	printf("USDHC4     %8d kHz\n", mxc_get_clock(MXC_ESDHC4_CLK) / 1000);
1308 	printf("EMI SLOW   %8d kHz\n", mxc_get_clock(MXC_EMI_SLOW_CLK) / 1000);
1309 	printf("IPG PERCLK %8d kHz\n", mxc_get_clock(MXC_IPG_PERCLK) / 1000);
1310 
1311 	return 0;
1312 }
1313 
1314 #ifndef CONFIG_MX6SX
enable_ipu_clock(void)1315 void enable_ipu_clock(void)
1316 {
1317 	struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
1318 	int reg;
1319 	reg = readl(&mxc_ccm->CCGR3);
1320 	reg |= MXC_CCM_CCGR3_IPU1_IPU_MASK;
1321 	writel(reg, &mxc_ccm->CCGR3);
1322 
1323 	if (is_mx6dqp()) {
1324 		setbits_le32(&mxc_ccm->CCGR6, MXC_CCM_CCGR6_PRG_CLK0_MASK);
1325 		setbits_le32(&mxc_ccm->CCGR3, MXC_CCM_CCGR3_IPU2_IPU_MASK);
1326 	}
1327 }
1328 #endif
1329 
1330 #if defined(CONFIG_MX6Q) || defined(CONFIG_MX6D) || defined(CONFIG_MX6DL) || \
1331 	defined(CONFIG_MX6S)
disable_ldb_di_clock_sources(void)1332 static void disable_ldb_di_clock_sources(void)
1333 {
1334 	struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
1335 	int reg;
1336 
1337 	/* Make sure PFDs are disabled at boot. */
1338 	reg = readl(&mxc_ccm->analog_pfd_528);
1339 	/* Cannot disable pll2_pfd2_396M, as it is the MMDC clock in iMX6DL */
1340 	if (is_mx6sdl())
1341 		reg |= 0x80008080;
1342 	else
1343 		reg |= 0x80808080;
1344 	writel(reg, &mxc_ccm->analog_pfd_528);
1345 
1346 	/* Disable PLL3 PFDs */
1347 	reg = readl(&mxc_ccm->analog_pfd_480);
1348 	reg |= 0x80808080;
1349 	writel(reg, &mxc_ccm->analog_pfd_480);
1350 
1351 	/* Disable PLL5 */
1352 	reg = readl(&mxc_ccm->analog_pll_video);
1353 	reg &= ~(1 << 13);
1354 	writel(reg, &mxc_ccm->analog_pll_video);
1355 }
1356 
enable_ldb_di_clock_sources(void)1357 static void enable_ldb_di_clock_sources(void)
1358 {
1359 	struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
1360 	int reg;
1361 
1362 	reg = readl(&mxc_ccm->analog_pfd_528);
1363 	if (is_mx6sdl())
1364 		reg &= ~(0x80008080);
1365 	else
1366 		reg &= ~(0x80808080);
1367 	writel(reg, &mxc_ccm->analog_pfd_528);
1368 
1369 	reg = readl(&mxc_ccm->analog_pfd_480);
1370 	reg &= ~(0x80808080);
1371 	writel(reg, &mxc_ccm->analog_pfd_480);
1372 }
1373 
1374 /*
1375  * Try call this function as early in the boot process as possible since the
1376  * function temporarily disables PLL2 PFD's, PLL3 PFD's and PLL5.
1377  */
select_ldb_di_clock_source(enum ldb_di_clock clk)1378 void select_ldb_di_clock_source(enum ldb_di_clock clk)
1379 {
1380 	struct mxc_ccm_reg *mxc_ccm = (struct mxc_ccm_reg *)CCM_BASE_ADDR;
1381 	int reg;
1382 
1383 	/*
1384 	 * Need to follow a strict procedure when changing the LDB
1385 	 * clock, else we can introduce a glitch. Things to keep in
1386 	 * mind:
1387 	 * 1. The current and new parent clocks must be disabled.
1388 	 * 2. The default clock for ldb_dio_clk is mmdc_ch1 which has
1389 	 * no CG bit.
1390 	 * 3. In the RTL implementation of the LDB_DI_CLK_SEL mux
1391 	 * the top four options are in one mux and the PLL3 option along
1392 	 * with another option is in the second mux. There is third mux
1393 	 * used to decide between the first and second mux.
1394 	 * The code below switches the parent to the bottom mux first
1395 	 * and then manipulates the top mux. This ensures that no glitch
1396 	 * will enter the divider.
1397 	 *
1398 	 * Need to disable MMDC_CH1 clock manually as there is no CG bit
1399 	 * for this clock. The only way to disable this clock is to move
1400 	 * it to pll3_sw_clk and then to disable pll3_sw_clk
1401 	 * Make sure periph2_clk2_sel is set to pll3_sw_clk
1402 	 */
1403 
1404 	/* Disable all ldb_di clock parents */
1405 	disable_ldb_di_clock_sources();
1406 
1407 	/* Set MMDC_CH1 mask bit */
1408 	reg = readl(&mxc_ccm->ccdr);
1409 	reg |= MXC_CCM_CCDR_MMDC_CH1_HS_MASK;
1410 	writel(reg, &mxc_ccm->ccdr);
1411 
1412 	/* Set periph2_clk2_sel to be sourced from PLL3_sw_clk */
1413 	reg = readl(&mxc_ccm->cbcmr);
1414 	reg &= ~MXC_CCM_CBCMR_PERIPH2_CLK2_SEL;
1415 	writel(reg, &mxc_ccm->cbcmr);
1416 
1417 	/*
1418 	 * Set the periph2_clk_sel to the top mux so that
1419 	 * mmdc_ch1 is from pll3_sw_clk.
1420 	 */
1421 	reg = readl(&mxc_ccm->cbcdr);
1422 	reg |= MXC_CCM_CBCDR_PERIPH2_CLK_SEL;
1423 	writel(reg, &mxc_ccm->cbcdr);
1424 
1425 	/* Wait for the clock switch */
1426 	while (readl(&mxc_ccm->cdhipr))
1427 		;
1428 	/* Disable pll3_sw_clk by selecting bypass clock source */
1429 	reg = readl(&mxc_ccm->ccsr);
1430 	reg |= MXC_CCM_CCSR_PLL3_SW_CLK_SEL;
1431 	writel(reg, &mxc_ccm->ccsr);
1432 
1433 	/* Set the ldb_di0_clk and ldb_di1_clk to 111b */
1434 	reg = readl(&mxc_ccm->cs2cdr);
1435 	reg |= ((7 << MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_OFFSET)
1436 	      | (7 << MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_OFFSET));
1437 	writel(reg, &mxc_ccm->cs2cdr);
1438 
1439 	/* Set the ldb_di0_clk and ldb_di1_clk to 100b */
1440 	reg = readl(&mxc_ccm->cs2cdr);
1441 	reg &= ~(MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_MASK
1442 	      | MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_MASK);
1443 	reg |= ((4 << MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_OFFSET)
1444 	      | (4 << MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_OFFSET));
1445 	writel(reg, &mxc_ccm->cs2cdr);
1446 
1447 	/* Set the ldb_di0_clk and ldb_di1_clk to desired source */
1448 	reg = readl(&mxc_ccm->cs2cdr);
1449 	reg &= ~(MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_MASK
1450 	      | MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_MASK);
1451 	reg |= ((clk << MXC_CCM_CS2CDR_LDB_DI1_CLK_SEL_OFFSET)
1452 	      | (clk << MXC_CCM_CS2CDR_LDB_DI0_CLK_SEL_OFFSET));
1453 	writel(reg, &mxc_ccm->cs2cdr);
1454 
1455 	/* Unbypass pll3_sw_clk */
1456 	reg = readl(&mxc_ccm->ccsr);
1457 	reg &= ~MXC_CCM_CCSR_PLL3_SW_CLK_SEL;
1458 	writel(reg, &mxc_ccm->ccsr);
1459 
1460 	/*
1461 	 * Set the periph2_clk_sel back to the bottom mux so that
1462 	 * mmdc_ch1 is from its original parent.
1463 	 */
1464 	reg = readl(&mxc_ccm->cbcdr);
1465 	reg &= ~MXC_CCM_CBCDR_PERIPH2_CLK_SEL;
1466 	writel(reg, &mxc_ccm->cbcdr);
1467 
1468 	/* Wait for the clock switch */
1469 	while (readl(&mxc_ccm->cdhipr))
1470 		;
1471 	/* Clear MMDC_CH1 mask bit */
1472 	reg = readl(&mxc_ccm->ccdr);
1473 	reg &= ~MXC_CCM_CCDR_MMDC_CH1_HS_MASK;
1474 	writel(reg, &mxc_ccm->ccdr);
1475 
1476 	enable_ldb_di_clock_sources();
1477 }
1478 #endif
1479 
1480 /***************************************************/
1481 
1482 U_BOOT_CMD(
1483 	clocks,	CONFIG_SYS_MAXARGS, 1, do_mx6_showclocks,
1484 	"display clocks",
1485 	""
1486 );
1487 #endif
1488