1 /*
2 * AArch64 specific helpers
3 *
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 #include "cpu.h"
23 #include "gdbstub/helpers.h"
24 #include "exec/helper-proto.h"
25 #include "qemu/host-utils.h"
26 #include "qemu/log.h"
27 #include "qemu/main-loop.h"
28 #include "qemu/bitops.h"
29 #include "internals.h"
30 #include "qemu/crc32c.h"
31 #include "exec/cpu-common.h"
32 #include "exec/exec-all.h"
33 #include "exec/cpu_ldst.h"
34 #include "qemu/int128.h"
35 #include "qemu/atomic128.h"
36 #include "fpu/softfloat.h"
37 #include <zlib.h> /* for crc32 */
38 #ifdef CONFIG_USER_ONLY
39 #include "user/page-protection.h"
40 #endif
41 #include "vec_internal.h"
42
43 /* C2.4.7 Multiply and divide */
44 /* special cases for 0 and LLONG_MIN are mandated by the standard */
HELPER(udiv64)45 uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
46 {
47 if (den == 0) {
48 return 0;
49 }
50 return num / den;
51 }
52
HELPER(sdiv64)53 int64_t HELPER(sdiv64)(int64_t num, int64_t den)
54 {
55 if (den == 0) {
56 return 0;
57 }
58 if (num == LLONG_MIN && den == -1) {
59 return LLONG_MIN;
60 }
61 return num / den;
62 }
63
HELPER(rbit64)64 uint64_t HELPER(rbit64)(uint64_t x)
65 {
66 return revbit64(x);
67 }
68
HELPER(msr_i_spsel)69 void HELPER(msr_i_spsel)(CPUARMState *env, uint32_t imm)
70 {
71 update_spsel(env, imm);
72 }
73
HELPER(msr_set_allint_el1)74 void HELPER(msr_set_allint_el1)(CPUARMState *env)
75 {
76 /* ALLINT update to PSTATE. */
77 if (arm_hcrx_el2_eff(env) & HCRX_TALLINT) {
78 raise_exception_ra(env, EXCP_UDEF,
79 syn_aa64_sysregtrap(0, 1, 0, 4, 1, 0x1f, 0), 2,
80 GETPC());
81 }
82
83 env->pstate |= PSTATE_ALLINT;
84 }
85
daif_check(CPUARMState * env,uint32_t op,uint32_t imm,uintptr_t ra)86 static void daif_check(CPUARMState *env, uint32_t op,
87 uint32_t imm, uintptr_t ra)
88 {
89 /* DAIF update to PSTATE. This is OK from EL0 only if UMA is set. */
90 if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
91 raise_exception_ra(env, EXCP_UDEF,
92 syn_aa64_sysregtrap(0, extract32(op, 0, 3),
93 extract32(op, 3, 3), 4,
94 imm, 0x1f, 0),
95 exception_target_el(env), ra);
96 }
97 }
98
HELPER(msr_i_daifset)99 void HELPER(msr_i_daifset)(CPUARMState *env, uint32_t imm)
100 {
101 daif_check(env, 0x1e, imm, GETPC());
102 env->daif |= (imm << 6) & PSTATE_DAIF;
103 arm_rebuild_hflags(env);
104 }
105
HELPER(msr_i_daifclear)106 void HELPER(msr_i_daifclear)(CPUARMState *env, uint32_t imm)
107 {
108 daif_check(env, 0x1f, imm, GETPC());
109 env->daif &= ~((imm << 6) & PSTATE_DAIF);
110 arm_rebuild_hflags(env);
111 }
112
113 /* Convert a softfloat float_relation_ (as returned by
114 * the float*_compare functions) to the correct ARM
115 * NZCV flag state.
116 */
float_rel_to_flags(int res)117 static inline uint32_t float_rel_to_flags(int res)
118 {
119 uint64_t flags;
120 switch (res) {
121 case float_relation_equal:
122 flags = PSTATE_Z | PSTATE_C;
123 break;
124 case float_relation_less:
125 flags = PSTATE_N;
126 break;
127 case float_relation_greater:
128 flags = PSTATE_C;
129 break;
130 case float_relation_unordered:
131 default:
132 flags = PSTATE_C | PSTATE_V;
133 break;
134 }
135 return flags;
136 }
137
HELPER(vfp_cmph_a64)138 uint64_t HELPER(vfp_cmph_a64)(uint32_t x, uint32_t y, float_status *fp_status)
139 {
140 return float_rel_to_flags(float16_compare_quiet(x, y, fp_status));
141 }
142
HELPER(vfp_cmpeh_a64)143 uint64_t HELPER(vfp_cmpeh_a64)(uint32_t x, uint32_t y, float_status *fp_status)
144 {
145 return float_rel_to_flags(float16_compare(x, y, fp_status));
146 }
147
HELPER(vfp_cmps_a64)148 uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, float_status *fp_status)
149 {
150 return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
151 }
152
HELPER(vfp_cmpes_a64)153 uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, float_status *fp_status)
154 {
155 return float_rel_to_flags(float32_compare(x, y, fp_status));
156 }
157
HELPER(vfp_cmpd_a64)158 uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, float_status *fp_status)
159 {
160 return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
161 }
162
HELPER(vfp_cmped_a64)163 uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, float_status *fp_status)
164 {
165 return float_rel_to_flags(float64_compare(x, y, fp_status));
166 }
167
HELPER(vfp_mulxs)168 float32 HELPER(vfp_mulxs)(float32 a, float32 b, float_status *fpst)
169 {
170 a = float32_squash_input_denormal(a, fpst);
171 b = float32_squash_input_denormal(b, fpst);
172
173 if ((float32_is_zero(a) && float32_is_infinity(b)) ||
174 (float32_is_infinity(a) && float32_is_zero(b))) {
175 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
176 return make_float32((1U << 30) |
177 ((float32_val(a) ^ float32_val(b)) & (1U << 31)));
178 }
179 return float32_mul(a, b, fpst);
180 }
181
HELPER(vfp_mulxd)182 float64 HELPER(vfp_mulxd)(float64 a, float64 b, float_status *fpst)
183 {
184 a = float64_squash_input_denormal(a, fpst);
185 b = float64_squash_input_denormal(b, fpst);
186
187 if ((float64_is_zero(a) && float64_is_infinity(b)) ||
188 (float64_is_infinity(a) && float64_is_zero(b))) {
189 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
190 return make_float64((1ULL << 62) |
191 ((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
192 }
193 return float64_mul(a, b, fpst);
194 }
195
196 /* 64bit/double versions of the neon float compare functions */
HELPER(neon_ceq_f64)197 uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, float_status *fpst)
198 {
199 return -float64_eq_quiet(a, b, fpst);
200 }
201
HELPER(neon_cge_f64)202 uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, float_status *fpst)
203 {
204 return -float64_le(b, a, fpst);
205 }
206
HELPER(neon_cgt_f64)207 uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, float_status *fpst)
208 {
209 return -float64_lt(b, a, fpst);
210 }
211
212 /*
213 * Reciprocal step and sqrt step. Note that unlike the A32/T32
214 * versions, these do a fully fused multiply-add or
215 * multiply-add-and-halve.
216 * The FPCR.AH == 1 versions need to avoid flipping the sign of NaN.
217 */
218 #define DO_RECPS(NAME, CTYPE, FLOATTYPE, CHSFN) \
219 CTYPE HELPER(NAME)(CTYPE a, CTYPE b, float_status *fpst) \
220 { \
221 a = FLOATTYPE ## _squash_input_denormal(a, fpst); \
222 b = FLOATTYPE ## _squash_input_denormal(b, fpst); \
223 a = FLOATTYPE ## _ ## CHSFN(a); \
224 if ((FLOATTYPE ## _is_infinity(a) && FLOATTYPE ## _is_zero(b)) || \
225 (FLOATTYPE ## _is_infinity(b) && FLOATTYPE ## _is_zero(a))) { \
226 return FLOATTYPE ## _two; \
227 } \
228 return FLOATTYPE ## _muladd(a, b, FLOATTYPE ## _two, 0, fpst); \
229 }
230
DO_RECPS(recpsf_f16,uint32_t,float16,chs)231 DO_RECPS(recpsf_f16, uint32_t, float16, chs)
232 DO_RECPS(recpsf_f32, float32, float32, chs)
233 DO_RECPS(recpsf_f64, float64, float64, chs)
234 DO_RECPS(recpsf_ah_f16, uint32_t, float16, ah_chs)
235 DO_RECPS(recpsf_ah_f32, float32, float32, ah_chs)
236 DO_RECPS(recpsf_ah_f64, float64, float64, ah_chs)
237
238 #define DO_RSQRTSF(NAME, CTYPE, FLOATTYPE, CHSFN) \
239 CTYPE HELPER(NAME)(CTYPE a, CTYPE b, float_status *fpst) \
240 { \
241 a = FLOATTYPE ## _squash_input_denormal(a, fpst); \
242 b = FLOATTYPE ## _squash_input_denormal(b, fpst); \
243 a = FLOATTYPE ## _ ## CHSFN(a); \
244 if ((FLOATTYPE ## _is_infinity(a) && FLOATTYPE ## _is_zero(b)) || \
245 (FLOATTYPE ## _is_infinity(b) && FLOATTYPE ## _is_zero(a))) { \
246 return FLOATTYPE ## _one_point_five; \
247 } \
248 return FLOATTYPE ## _muladd_scalbn(a, b, FLOATTYPE ## _three, \
249 -1, 0, fpst); \
250 } \
251
252 DO_RSQRTSF(rsqrtsf_f16, uint32_t, float16, chs)
253 DO_RSQRTSF(rsqrtsf_f32, float32, float32, chs)
254 DO_RSQRTSF(rsqrtsf_f64, float64, float64, chs)
255 DO_RSQRTSF(rsqrtsf_ah_f16, uint32_t, float16, ah_chs)
256 DO_RSQRTSF(rsqrtsf_ah_f32, float32, float32, ah_chs)
257 DO_RSQRTSF(rsqrtsf_ah_f64, float64, float64, ah_chs)
258
259 /* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
260 uint32_t HELPER(frecpx_f16)(uint32_t a, float_status *fpst)
261 {
262 uint16_t val16, sbit;
263 int16_t exp;
264
265 if (float16_is_any_nan(a)) {
266 float16 nan = a;
267 if (float16_is_signaling_nan(a, fpst)) {
268 float_raise(float_flag_invalid, fpst);
269 if (!fpst->default_nan_mode) {
270 nan = float16_silence_nan(a, fpst);
271 }
272 }
273 if (fpst->default_nan_mode) {
274 nan = float16_default_nan(fpst);
275 }
276 return nan;
277 }
278
279 a = float16_squash_input_denormal(a, fpst);
280
281 val16 = float16_val(a);
282 sbit = 0x8000 & val16;
283 exp = extract32(val16, 10, 5);
284
285 if (exp == 0) {
286 return make_float16(deposit32(sbit, 10, 5, 0x1e));
287 } else {
288 return make_float16(deposit32(sbit, 10, 5, ~exp));
289 }
290 }
291
HELPER(frecpx_f32)292 float32 HELPER(frecpx_f32)(float32 a, float_status *fpst)
293 {
294 uint32_t val32, sbit;
295 int32_t exp;
296
297 if (float32_is_any_nan(a)) {
298 float32 nan = a;
299 if (float32_is_signaling_nan(a, fpst)) {
300 float_raise(float_flag_invalid, fpst);
301 if (!fpst->default_nan_mode) {
302 nan = float32_silence_nan(a, fpst);
303 }
304 }
305 if (fpst->default_nan_mode) {
306 nan = float32_default_nan(fpst);
307 }
308 return nan;
309 }
310
311 a = float32_squash_input_denormal(a, fpst);
312
313 val32 = float32_val(a);
314 sbit = 0x80000000ULL & val32;
315 exp = extract32(val32, 23, 8);
316
317 if (exp == 0) {
318 return make_float32(sbit | (0xfe << 23));
319 } else {
320 return make_float32(sbit | (~exp & 0xff) << 23);
321 }
322 }
323
HELPER(frecpx_f64)324 float64 HELPER(frecpx_f64)(float64 a, float_status *fpst)
325 {
326 uint64_t val64, sbit;
327 int64_t exp;
328
329 if (float64_is_any_nan(a)) {
330 float64 nan = a;
331 if (float64_is_signaling_nan(a, fpst)) {
332 float_raise(float_flag_invalid, fpst);
333 if (!fpst->default_nan_mode) {
334 nan = float64_silence_nan(a, fpst);
335 }
336 }
337 if (fpst->default_nan_mode) {
338 nan = float64_default_nan(fpst);
339 }
340 return nan;
341 }
342
343 a = float64_squash_input_denormal(a, fpst);
344
345 val64 = float64_val(a);
346 sbit = 0x8000000000000000ULL & val64;
347 exp = extract64(float64_val(a), 52, 11);
348
349 if (exp == 0) {
350 return make_float64(sbit | (0x7feULL << 52));
351 } else {
352 return make_float64(sbit | (~exp & 0x7ffULL) << 52);
353 }
354 }
355
HELPER(fcvtx_f64_to_f32)356 float32 HELPER(fcvtx_f64_to_f32)(float64 a, float_status *fpst)
357 {
358 float32 r;
359 int old = get_float_rounding_mode(fpst);
360
361 set_float_rounding_mode(float_round_to_odd, fpst);
362 r = float64_to_float32(a, fpst);
363 set_float_rounding_mode(old, fpst);
364 return r;
365 }
366
367 /*
368 * AH=1 min/max have some odd special cases:
369 * comparing two zeroes (regardless of sign), (NaN, anything),
370 * or (anything, NaN) should return the second argument (possibly
371 * squashed to zero).
372 * Also, denormal outputs are not squashed to zero regardless of FZ or FZ16.
373 */
374 #define AH_MINMAX_HELPER(NAME, CTYPE, FLOATTYPE, MINMAX) \
375 CTYPE HELPER(NAME)(CTYPE a, CTYPE b, float_status *fpst) \
376 { \
377 bool save; \
378 CTYPE r; \
379 a = FLOATTYPE ## _squash_input_denormal(a, fpst); \
380 b = FLOATTYPE ## _squash_input_denormal(b, fpst); \
381 if (FLOATTYPE ## _is_zero(a) && FLOATTYPE ## _is_zero(b)) { \
382 return b; \
383 } \
384 if (FLOATTYPE ## _is_any_nan(a) || \
385 FLOATTYPE ## _is_any_nan(b)) { \
386 float_raise(float_flag_invalid, fpst); \
387 return b; \
388 } \
389 save = get_flush_to_zero(fpst); \
390 set_flush_to_zero(false, fpst); \
391 r = FLOATTYPE ## _ ## MINMAX(a, b, fpst); \
392 set_flush_to_zero(save, fpst); \
393 return r; \
394 }
395
AH_MINMAX_HELPER(vfp_ah_minh,dh_ctype_f16,float16,min)396 AH_MINMAX_HELPER(vfp_ah_minh, dh_ctype_f16, float16, min)
397 AH_MINMAX_HELPER(vfp_ah_mins, float32, float32, min)
398 AH_MINMAX_HELPER(vfp_ah_mind, float64, float64, min)
399 AH_MINMAX_HELPER(vfp_ah_maxh, dh_ctype_f16, float16, max)
400 AH_MINMAX_HELPER(vfp_ah_maxs, float32, float32, max)
401 AH_MINMAX_HELPER(vfp_ah_maxd, float64, float64, max)
402
403 /* 64-bit versions of the CRC helpers. Note that although the operation
404 * (and the prototypes of crc32c() and crc32() mean that only the bottom
405 * 32 bits of the accumulator and result are used, we pass and return
406 * uint64_t for convenience of the generated code. Unlike the 32-bit
407 * instruction set versions, val may genuinely have 64 bits of data in it.
408 * The upper bytes of val (above the number specified by 'bytes') must have
409 * been zeroed out by the caller.
410 */
411 uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes)
412 {
413 uint8_t buf[8];
414
415 stq_le_p(buf, val);
416
417 /* zlib crc32 converts the accumulator and output to one's complement. */
418 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
419 }
420
HELPER(crc32c_64)421 uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes)
422 {
423 uint8_t buf[8];
424
425 stq_le_p(buf, val);
426
427 /* Linux crc32c converts the output to one's complement. */
428 return crc32c(acc, buf, bytes) ^ 0xffffffff;
429 }
430
431 /*
432 * AdvSIMD half-precision
433 */
434
435 #define ADVSIMD_HELPER(name, suffix) HELPER(glue(glue(advsimd_, name), suffix))
436
437 #define ADVSIMD_HALFOP(name) \
438 uint32_t ADVSIMD_HELPER(name, h)(uint32_t a, uint32_t b, float_status *fpst) \
439 { \
440 return float16_ ## name(a, b, fpst); \
441 }
442
443 #define ADVSIMD_TWOHALFOP(name) \
444 uint32_t ADVSIMD_HELPER(name, 2h)(uint32_t two_a, uint32_t two_b, \
445 float_status *fpst) \
446 { \
447 float16 a1, a2, b1, b2; \
448 uint32_t r1, r2; \
449 a1 = extract32(two_a, 0, 16); \
450 a2 = extract32(two_a, 16, 16); \
451 b1 = extract32(two_b, 0, 16); \
452 b2 = extract32(two_b, 16, 16); \
453 r1 = float16_ ## name(a1, b1, fpst); \
454 r2 = float16_ ## name(a2, b2, fpst); \
455 return deposit32(r1, 16, 16, r2); \
456 }
457
458 ADVSIMD_TWOHALFOP(add)
ADVSIMD_TWOHALFOP(sub)459 ADVSIMD_TWOHALFOP(sub)
460 ADVSIMD_TWOHALFOP(mul)
461 ADVSIMD_TWOHALFOP(div)
462 ADVSIMD_TWOHALFOP(min)
463 ADVSIMD_TWOHALFOP(max)
464 ADVSIMD_TWOHALFOP(minnum)
465 ADVSIMD_TWOHALFOP(maxnum)
466
467 /* Data processing - scalar floating-point and advanced SIMD */
468 static float16 float16_mulx(float16 a, float16 b, float_status *fpst)
469 {
470 a = float16_squash_input_denormal(a, fpst);
471 b = float16_squash_input_denormal(b, fpst);
472
473 if ((float16_is_zero(a) && float16_is_infinity(b)) ||
474 (float16_is_infinity(a) && float16_is_zero(b))) {
475 /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
476 return make_float16((1U << 14) |
477 ((float16_val(a) ^ float16_val(b)) & (1U << 15)));
478 }
479 return float16_mul(a, b, fpst);
480 }
481
482 ADVSIMD_HALFOP(mulx)
ADVSIMD_TWOHALFOP(mulx)483 ADVSIMD_TWOHALFOP(mulx)
484
485 /* fused multiply-accumulate */
486 uint32_t HELPER(advsimd_muladdh)(uint32_t a, uint32_t b, uint32_t c,
487 float_status *fpst)
488 {
489 return float16_muladd(a, b, c, 0, fpst);
490 }
491
HELPER(advsimd_muladd2h)492 uint32_t HELPER(advsimd_muladd2h)(uint32_t two_a, uint32_t two_b,
493 uint32_t two_c, float_status *fpst)
494 {
495 float16 a1, a2, b1, b2, c1, c2;
496 uint32_t r1, r2;
497 a1 = extract32(two_a, 0, 16);
498 a2 = extract32(two_a, 16, 16);
499 b1 = extract32(two_b, 0, 16);
500 b2 = extract32(two_b, 16, 16);
501 c1 = extract32(two_c, 0, 16);
502 c2 = extract32(two_c, 16, 16);
503 r1 = float16_muladd(a1, b1, c1, 0, fpst);
504 r2 = float16_muladd(a2, b2, c2, 0, fpst);
505 return deposit32(r1, 16, 16, r2);
506 }
507
508 /*
509 * Floating point comparisons produce an integer result. Softfloat
510 * routines return float_relation types which we convert to the 0/-1
511 * Neon requires.
512 */
513
514 #define ADVSIMD_CMPRES(test) (test) ? 0xffff : 0
515
HELPER(advsimd_ceq_f16)516 uint32_t HELPER(advsimd_ceq_f16)(uint32_t a, uint32_t b, float_status *fpst)
517 {
518 int compare = float16_compare_quiet(a, b, fpst);
519 return ADVSIMD_CMPRES(compare == float_relation_equal);
520 }
521
HELPER(advsimd_cge_f16)522 uint32_t HELPER(advsimd_cge_f16)(uint32_t a, uint32_t b, float_status *fpst)
523 {
524 int compare = float16_compare(a, b, fpst);
525 return ADVSIMD_CMPRES(compare == float_relation_greater ||
526 compare == float_relation_equal);
527 }
528
HELPER(advsimd_cgt_f16)529 uint32_t HELPER(advsimd_cgt_f16)(uint32_t a, uint32_t b, float_status *fpst)
530 {
531 int compare = float16_compare(a, b, fpst);
532 return ADVSIMD_CMPRES(compare == float_relation_greater);
533 }
534
HELPER(advsimd_acge_f16)535 uint32_t HELPER(advsimd_acge_f16)(uint32_t a, uint32_t b, float_status *fpst)
536 {
537 float16 f0 = float16_abs(a);
538 float16 f1 = float16_abs(b);
539 int compare = float16_compare(f0, f1, fpst);
540 return ADVSIMD_CMPRES(compare == float_relation_greater ||
541 compare == float_relation_equal);
542 }
543
HELPER(advsimd_acgt_f16)544 uint32_t HELPER(advsimd_acgt_f16)(uint32_t a, uint32_t b, float_status *fpst)
545 {
546 float16 f0 = float16_abs(a);
547 float16 f1 = float16_abs(b);
548 int compare = float16_compare(f0, f1, fpst);
549 return ADVSIMD_CMPRES(compare == float_relation_greater);
550 }
551
552 /* round to integral */
HELPER(advsimd_rinth_exact)553 uint32_t HELPER(advsimd_rinth_exact)(uint32_t x, float_status *fp_status)
554 {
555 return float16_round_to_int(x, fp_status);
556 }
557
HELPER(advsimd_rinth)558 uint32_t HELPER(advsimd_rinth)(uint32_t x, float_status *fp_status)
559 {
560 int old_flags = get_float_exception_flags(fp_status), new_flags;
561 float16 ret;
562
563 ret = float16_round_to_int(x, fp_status);
564
565 /* Suppress any inexact exceptions the conversion produced */
566 if (!(old_flags & float_flag_inexact)) {
567 new_flags = get_float_exception_flags(fp_status);
568 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
569 }
570
571 return ret;
572 }
573
el_from_spsr(uint32_t spsr)574 static int el_from_spsr(uint32_t spsr)
575 {
576 /* Return the exception level that this SPSR is requesting a return to,
577 * or -1 if it is invalid (an illegal return)
578 */
579 if (spsr & PSTATE_nRW) {
580 switch (spsr & CPSR_M) {
581 case ARM_CPU_MODE_USR:
582 return 0;
583 case ARM_CPU_MODE_HYP:
584 return 2;
585 case ARM_CPU_MODE_FIQ:
586 case ARM_CPU_MODE_IRQ:
587 case ARM_CPU_MODE_SVC:
588 case ARM_CPU_MODE_ABT:
589 case ARM_CPU_MODE_UND:
590 case ARM_CPU_MODE_SYS:
591 return 1;
592 case ARM_CPU_MODE_MON:
593 /* Returning to Mon from AArch64 is never possible,
594 * so this is an illegal return.
595 */
596 default:
597 return -1;
598 }
599 } else {
600 if (extract32(spsr, 1, 1)) {
601 /* Return with reserved M[1] bit set */
602 return -1;
603 }
604 if (extract32(spsr, 0, 4) == 1) {
605 /* return to EL0 with M[0] bit set */
606 return -1;
607 }
608 return extract32(spsr, 2, 2);
609 }
610 }
611
cpsr_write_from_spsr_elx(CPUARMState * env,uint32_t val)612 static void cpsr_write_from_spsr_elx(CPUARMState *env,
613 uint32_t val)
614 {
615 uint32_t mask;
616
617 /* Save SPSR_ELx.SS into PSTATE. */
618 env->pstate = (env->pstate & ~PSTATE_SS) | (val & PSTATE_SS);
619 val &= ~PSTATE_SS;
620
621 /* Move DIT to the correct location for CPSR */
622 if (val & PSTATE_DIT) {
623 val &= ~PSTATE_DIT;
624 val |= CPSR_DIT;
625 }
626
627 mask = aarch32_cpsr_valid_mask(env->features, \
628 &env_archcpu(env)->isar);
629 cpsr_write(env, val, mask, CPSRWriteRaw);
630 }
631
HELPER(exception_return)632 void HELPER(exception_return)(CPUARMState *env, uint64_t new_pc)
633 {
634 ARMCPU *cpu = env_archcpu(env);
635 int cur_el = arm_current_el(env);
636 unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
637 uint32_t spsr = env->banked_spsr[spsr_idx];
638 int new_el;
639 bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
640
641 aarch64_save_sp(env, cur_el);
642
643 arm_clear_exclusive(env);
644
645 /* We must squash the PSTATE.SS bit to zero unless both of the
646 * following hold:
647 * 1. debug exceptions are currently disabled
648 * 2. singlestep will be active in the EL we return to
649 * We check 1 here and 2 after we've done the pstate/cpsr write() to
650 * transition to the EL we're going to.
651 */
652 if (arm_generate_debug_exceptions(env)) {
653 spsr &= ~PSTATE_SS;
654 }
655
656 /*
657 * FEAT_RME forbids return from EL3 with an invalid security state.
658 * We don't need an explicit check for FEAT_RME here because we enforce
659 * in scr_write() that you can't set the NSE bit without it.
660 */
661 if (cur_el == 3 && (env->cp15.scr_el3 & (SCR_NS | SCR_NSE)) == SCR_NSE) {
662 goto illegal_return;
663 }
664
665 new_el = el_from_spsr(spsr);
666 if (new_el == -1) {
667 goto illegal_return;
668 }
669 if (new_el > cur_el || (new_el == 2 && !arm_is_el2_enabled(env))) {
670 /* Disallow return to an EL which is unimplemented or higher
671 * than the current one.
672 */
673 goto illegal_return;
674 }
675
676 if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
677 /* Return to an EL which is configured for a different register width */
678 goto illegal_return;
679 }
680
681 if (!return_to_aa64 && !cpu_isar_feature(aa64_aa32, cpu)) {
682 /* Return to AArch32 when CPU is AArch64-only */
683 goto illegal_return;
684 }
685
686 if (new_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
687 goto illegal_return;
688 }
689
690 bql_lock();
691 arm_call_pre_el_change_hook(cpu);
692 bql_unlock();
693
694 if (!return_to_aa64) {
695 env->aarch64 = false;
696 /* We do a raw CPSR write because aarch64_sync_64_to_32()
697 * will sort the register banks out for us, and we've already
698 * caught all the bad-mode cases in el_from_spsr().
699 */
700 cpsr_write_from_spsr_elx(env, spsr);
701 if (!arm_singlestep_active(env)) {
702 env->pstate &= ~PSTATE_SS;
703 }
704 aarch64_sync_64_to_32(env);
705
706 if (spsr & CPSR_T) {
707 env->regs[15] = new_pc & ~0x1;
708 } else {
709 env->regs[15] = new_pc & ~0x3;
710 }
711 helper_rebuild_hflags_a32(env, new_el);
712 qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
713 "AArch32 EL%d PC 0x%" PRIx32 "\n",
714 cur_el, new_el, env->regs[15]);
715 } else {
716 int tbii;
717
718 env->aarch64 = true;
719 spsr &= aarch64_pstate_valid_mask(&cpu->isar);
720 pstate_write(env, spsr);
721 if (!arm_singlestep_active(env)) {
722 env->pstate &= ~PSTATE_SS;
723 }
724 aarch64_restore_sp(env, new_el);
725 helper_rebuild_hflags_a64(env, new_el);
726
727 /*
728 * Apply TBI to the exception return address. We had to delay this
729 * until after we selected the new EL, so that we could select the
730 * correct TBI+TBID bits. This is made easier by waiting until after
731 * the hflags rebuild, since we can pull the composite TBII field
732 * from there.
733 */
734 tbii = EX_TBFLAG_A64(env->hflags, TBII);
735 if ((tbii >> extract64(new_pc, 55, 1)) & 1) {
736 /* TBI is enabled. */
737 int core_mmu_idx = arm_env_mmu_index(env);
738 if (regime_has_2_ranges(core_to_aa64_mmu_idx(core_mmu_idx))) {
739 new_pc = sextract64(new_pc, 0, 56);
740 } else {
741 new_pc = extract64(new_pc, 0, 56);
742 }
743 }
744 env->pc = new_pc;
745
746 qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
747 "AArch64 EL%d PC 0x%" PRIx64 "\n",
748 cur_el, new_el, env->pc);
749 }
750
751 /*
752 * Note that cur_el can never be 0. If new_el is 0, then
753 * el0_a64 is return_to_aa64, else el0_a64 is ignored.
754 */
755 aarch64_sve_change_el(env, cur_el, new_el, return_to_aa64);
756
757 bql_lock();
758 arm_call_el_change_hook(cpu);
759 bql_unlock();
760
761 return;
762
763 illegal_return:
764 /* Illegal return events of various kinds have architecturally
765 * mandated behaviour:
766 * restore NZCV and DAIF from SPSR_ELx
767 * set PSTATE.IL
768 * restore PC from ELR_ELx
769 * no change to exception level, execution state or stack pointer
770 */
771 env->pstate |= PSTATE_IL;
772 env->pc = new_pc;
773 spsr &= PSTATE_NZCV | PSTATE_DAIF | PSTATE_ALLINT;
774 spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF | PSTATE_ALLINT);
775 pstate_write(env, spsr);
776 if (!arm_singlestep_active(env)) {
777 env->pstate &= ~PSTATE_SS;
778 }
779 helper_rebuild_hflags_a64(env, cur_el);
780 qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: "
781 "resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc);
782 }
783
HELPER(dc_zva)784 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
785 {
786 uintptr_t ra = GETPC();
787
788 /*
789 * Implement DC ZVA, which zeroes a fixed-length block of memory.
790 * Note that we do not implement the (architecturally mandated)
791 * alignment fault for attempts to use this on Device memory
792 * (which matches the usual QEMU behaviour of not implementing either
793 * alignment faults or any memory attribute handling).
794 */
795 int blocklen = 4 << env_archcpu(env)->dcz_blocksize;
796 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
797 int mmu_idx = arm_env_mmu_index(env);
798 void *mem;
799
800 /*
801 * Trapless lookup. In addition to actual invalid page, may
802 * return NULL for I/O, watchpoints, clean pages, etc.
803 */
804 mem = tlb_vaddr_to_host(env, vaddr, MMU_DATA_STORE, mmu_idx);
805
806 #ifndef CONFIG_USER_ONLY
807 if (unlikely(!mem)) {
808 /*
809 * Trap if accessing an invalid page. DC_ZVA requires that we supply
810 * the original pointer for an invalid page. But watchpoints require
811 * that we probe the actual space. So do both.
812 */
813 (void) probe_write(env, vaddr_in, 1, mmu_idx, ra);
814 mem = probe_write(env, vaddr, blocklen, mmu_idx, ra);
815
816 if (unlikely(!mem)) {
817 /*
818 * The only remaining reason for mem == NULL is I/O.
819 * Just do a series of byte writes as the architecture demands.
820 */
821 for (int i = 0; i < blocklen; i++) {
822 cpu_stb_mmuidx_ra(env, vaddr + i, 0, mmu_idx, ra);
823 }
824 return;
825 }
826 }
827 #endif
828
829 set_helper_retaddr(ra);
830 memset(mem, 0, blocklen);
831 clear_helper_retaddr();
832 }
833
HELPER(unaligned_access)834 void HELPER(unaligned_access)(CPUARMState *env, uint64_t addr,
835 uint32_t access_type, uint32_t mmu_idx)
836 {
837 arm_cpu_do_unaligned_access(env_cpu(env), addr, access_type,
838 mmu_idx, GETPC());
839 }
840
841 /* Memory operations (memset, memmove, memcpy) */
842
843 /*
844 * Return true if the CPY* and SET* insns can execute; compare
845 * pseudocode CheckMOPSEnabled(), though we refactor it a little.
846 */
mops_enabled(CPUARMState * env)847 static bool mops_enabled(CPUARMState *env)
848 {
849 int el = arm_current_el(env);
850
851 if (el < 2 &&
852 (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) &&
853 !(arm_hcrx_el2_eff(env) & HCRX_MSCEN)) {
854 return false;
855 }
856
857 if (el == 0) {
858 if (!el_is_in_host(env, 0)) {
859 return env->cp15.sctlr_el[1] & SCTLR_MSCEN;
860 } else {
861 return env->cp15.sctlr_el[2] & SCTLR_MSCEN;
862 }
863 }
864 return true;
865 }
866
check_mops_enabled(CPUARMState * env,uintptr_t ra)867 static void check_mops_enabled(CPUARMState *env, uintptr_t ra)
868 {
869 if (!mops_enabled(env)) {
870 raise_exception_ra(env, EXCP_UDEF, syn_uncategorized(),
871 exception_target_el(env), ra);
872 }
873 }
874
875 /*
876 * Return the target exception level for an exception due
877 * to mismatched arguments in a FEAT_MOPS copy or set.
878 * Compare pseudocode MismatchedCpySetTargetEL()
879 */
mops_mismatch_exception_target_el(CPUARMState * env)880 static int mops_mismatch_exception_target_el(CPUARMState *env)
881 {
882 int el = arm_current_el(env);
883
884 if (el > 1) {
885 return el;
886 }
887 if (el == 0 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
888 return 2;
889 }
890 if (el == 1 && (arm_hcrx_el2_eff(env) & HCRX_MCE2)) {
891 return 2;
892 }
893 return 1;
894 }
895
896 /*
897 * Check whether an M or E instruction was executed with a CF value
898 * indicating the wrong option for this implementation.
899 * Assumes we are always Option A.
900 */
check_mops_wrong_option(CPUARMState * env,uint32_t syndrome,uintptr_t ra)901 static void check_mops_wrong_option(CPUARMState *env, uint32_t syndrome,
902 uintptr_t ra)
903 {
904 if (env->CF != 0) {
905 syndrome |= 1 << 17; /* Set the wrong-option bit */
906 raise_exception_ra(env, EXCP_UDEF, syndrome,
907 mops_mismatch_exception_target_el(env), ra);
908 }
909 }
910
911 /*
912 * Return the maximum number of bytes we can transfer starting at addr
913 * without crossing a page boundary.
914 */
page_limit(uint64_t addr)915 static uint64_t page_limit(uint64_t addr)
916 {
917 return TARGET_PAGE_ALIGN(addr + 1) - addr;
918 }
919
920 /*
921 * Return the number of bytes we can copy starting from addr and working
922 * backwards without crossing a page boundary.
923 */
page_limit_rev(uint64_t addr)924 static uint64_t page_limit_rev(uint64_t addr)
925 {
926 return (addr & ~TARGET_PAGE_MASK) + 1;
927 }
928
929 /*
930 * Perform part of a memory set on an area of guest memory starting at
931 * toaddr (a dirty address) and extending for setsize bytes.
932 *
933 * Returns the number of bytes actually set, which might be less than
934 * setsize; the caller should loop until the whole set has been done.
935 * The caller should ensure that the guest registers are correct
936 * for the possibility that the first byte of the set encounters
937 * an exception or watchpoint. We guarantee not to take any faults
938 * for bytes other than the first.
939 */
set_step(CPUARMState * env,uint64_t toaddr,uint64_t setsize,uint32_t data,int memidx,uint32_t * mtedesc,uintptr_t ra)940 static uint64_t set_step(CPUARMState *env, uint64_t toaddr,
941 uint64_t setsize, uint32_t data, int memidx,
942 uint32_t *mtedesc, uintptr_t ra)
943 {
944 void *mem;
945
946 setsize = MIN(setsize, page_limit(toaddr));
947 if (*mtedesc) {
948 uint64_t mtesize = mte_mops_probe(env, toaddr, setsize, *mtedesc);
949 if (mtesize == 0) {
950 /* Trap, or not. All CPU state is up to date */
951 mte_check_fail(env, *mtedesc, toaddr, ra);
952 /* Continue, with no further MTE checks required */
953 *mtedesc = 0;
954 } else {
955 /* Advance to the end, or to the tag mismatch */
956 setsize = MIN(setsize, mtesize);
957 }
958 }
959
960 toaddr = useronly_clean_ptr(toaddr);
961 /*
962 * Trapless lookup: returns NULL for invalid page, I/O,
963 * watchpoints, clean pages, etc.
964 */
965 mem = tlb_vaddr_to_host(env, toaddr, MMU_DATA_STORE, memidx);
966
967 #ifndef CONFIG_USER_ONLY
968 if (unlikely(!mem)) {
969 /*
970 * Slow-path: just do one byte write. This will handle the
971 * watchpoint, invalid page, etc handling correctly.
972 * For clean code pages, the next iteration will see
973 * the page dirty and will use the fast path.
974 */
975 cpu_stb_mmuidx_ra(env, toaddr, data, memidx, ra);
976 return 1;
977 }
978 #endif
979 /* Easy case: just memset the host memory */
980 set_helper_retaddr(ra);
981 memset(mem, data, setsize);
982 clear_helper_retaddr();
983 return setsize;
984 }
985
986 /*
987 * Similar, but setting tags. The architecture requires us to do this
988 * in 16-byte chunks. SETP accesses are not tag checked; they set
989 * the tags.
990 */
set_step_tags(CPUARMState * env,uint64_t toaddr,uint64_t setsize,uint32_t data,int memidx,uint32_t * mtedesc,uintptr_t ra)991 static uint64_t set_step_tags(CPUARMState *env, uint64_t toaddr,
992 uint64_t setsize, uint32_t data, int memidx,
993 uint32_t *mtedesc, uintptr_t ra)
994 {
995 void *mem;
996 uint64_t cleanaddr;
997
998 setsize = MIN(setsize, page_limit(toaddr));
999
1000 cleanaddr = useronly_clean_ptr(toaddr);
1001 /*
1002 * Trapless lookup: returns NULL for invalid page, I/O,
1003 * watchpoints, clean pages, etc.
1004 */
1005 mem = tlb_vaddr_to_host(env, cleanaddr, MMU_DATA_STORE, memidx);
1006
1007 #ifndef CONFIG_USER_ONLY
1008 if (unlikely(!mem)) {
1009 /*
1010 * Slow-path: just do one write. This will handle the
1011 * watchpoint, invalid page, etc handling correctly.
1012 * The architecture requires that we do 16 bytes at a time,
1013 * and we know both ptr and size are 16 byte aligned.
1014 * For clean code pages, the next iteration will see
1015 * the page dirty and will use the fast path.
1016 */
1017 uint64_t repldata = data * 0x0101010101010101ULL;
1018 MemOpIdx oi16 = make_memop_idx(MO_TE | MO_128, memidx);
1019 cpu_st16_mmu(env, toaddr, int128_make128(repldata, repldata), oi16, ra);
1020 mte_mops_set_tags(env, toaddr, 16, *mtedesc);
1021 return 16;
1022 }
1023 #endif
1024 /* Easy case: just memset the host memory */
1025 set_helper_retaddr(ra);
1026 memset(mem, data, setsize);
1027 clear_helper_retaddr();
1028 mte_mops_set_tags(env, toaddr, setsize, *mtedesc);
1029 return setsize;
1030 }
1031
1032 typedef uint64_t StepFn(CPUARMState *env, uint64_t toaddr,
1033 uint64_t setsize, uint32_t data,
1034 int memidx, uint32_t *mtedesc, uintptr_t ra);
1035
1036 /* Extract register numbers from a MOPS exception syndrome value */
mops_destreg(uint32_t syndrome)1037 static int mops_destreg(uint32_t syndrome)
1038 {
1039 return extract32(syndrome, 10, 5);
1040 }
1041
mops_srcreg(uint32_t syndrome)1042 static int mops_srcreg(uint32_t syndrome)
1043 {
1044 return extract32(syndrome, 5, 5);
1045 }
1046
mops_sizereg(uint32_t syndrome)1047 static int mops_sizereg(uint32_t syndrome)
1048 {
1049 return extract32(syndrome, 0, 5);
1050 }
1051
1052 /*
1053 * Return true if TCMA and TBI bits mean we need to do MTE checks.
1054 * We only need to do this once per MOPS insn, not for every page.
1055 */
mte_checks_needed(uint64_t ptr,uint32_t desc)1056 static bool mte_checks_needed(uint64_t ptr, uint32_t desc)
1057 {
1058 int bit55 = extract64(ptr, 55, 1);
1059
1060 /*
1061 * Note that tbi_check() returns true for "access checked" but
1062 * tcma_check() returns true for "access unchecked".
1063 */
1064 if (!tbi_check(desc, bit55)) {
1065 return false;
1066 }
1067 return !tcma_check(desc, bit55, allocation_tag_from_addr(ptr));
1068 }
1069
1070 /* Take an exception if the SETG addr/size are not granule aligned */
check_setg_alignment(CPUARMState * env,uint64_t ptr,uint64_t size,uint32_t memidx,uintptr_t ra)1071 static void check_setg_alignment(CPUARMState *env, uint64_t ptr, uint64_t size,
1072 uint32_t memidx, uintptr_t ra)
1073 {
1074 if ((size != 0 && !QEMU_IS_ALIGNED(ptr, TAG_GRANULE)) ||
1075 !QEMU_IS_ALIGNED(size, TAG_GRANULE)) {
1076 arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE,
1077 memidx, ra);
1078
1079 }
1080 }
1081
arm_reg_or_xzr(CPUARMState * env,int reg)1082 static uint64_t arm_reg_or_xzr(CPUARMState *env, int reg)
1083 {
1084 /*
1085 * Runtime equivalent of cpu_reg() -- return the CPU register value,
1086 * for contexts when index 31 means XZR (not SP).
1087 */
1088 return reg == 31 ? 0 : env->xregs[reg];
1089 }
1090
1091 /*
1092 * For the Memory Set operation, our implementation chooses
1093 * always to use "option A", where we update Xd to the final
1094 * address in the SETP insn, and set Xn to be -(bytes remaining).
1095 * On SETM and SETE insns we only need update Xn.
1096 *
1097 * @env: CPU
1098 * @syndrome: syndrome value for mismatch exceptions
1099 * (also contains the register numbers we need to use)
1100 * @mtedesc: MTE descriptor word
1101 * @stepfn: function which does a single part of the set operation
1102 * @is_setg: true if this is the tag-setting SETG variant
1103 */
do_setp(CPUARMState * env,uint32_t syndrome,uint32_t mtedesc,StepFn * stepfn,bool is_setg,uintptr_t ra)1104 static void do_setp(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc,
1105 StepFn *stepfn, bool is_setg, uintptr_t ra)
1106 {
1107 /* Prologue: we choose to do up to the next page boundary */
1108 int rd = mops_destreg(syndrome);
1109 int rs = mops_srcreg(syndrome);
1110 int rn = mops_sizereg(syndrome);
1111 uint8_t data = arm_reg_or_xzr(env, rs);
1112 uint32_t memidx = FIELD_EX32(mtedesc, MTEDESC, MIDX);
1113 uint64_t toaddr = env->xregs[rd];
1114 uint64_t setsize = env->xregs[rn];
1115 uint64_t stagesetsize, step;
1116
1117 check_mops_enabled(env, ra);
1118
1119 if (setsize > INT64_MAX) {
1120 setsize = INT64_MAX;
1121 if (is_setg) {
1122 setsize &= ~0xf;
1123 }
1124 }
1125
1126 if (unlikely(is_setg)) {
1127 check_setg_alignment(env, toaddr, setsize, memidx, ra);
1128 } else if (!mte_checks_needed(toaddr, mtedesc)) {
1129 mtedesc = 0;
1130 }
1131
1132 stagesetsize = MIN(setsize, page_limit(toaddr));
1133 while (stagesetsize) {
1134 env->xregs[rd] = toaddr;
1135 env->xregs[rn] = setsize;
1136 step = stepfn(env, toaddr, stagesetsize, data, memidx, &mtedesc, ra);
1137 toaddr += step;
1138 setsize -= step;
1139 stagesetsize -= step;
1140 }
1141 /* Insn completed, so update registers to the Option A format */
1142 env->xregs[rd] = toaddr + setsize;
1143 env->xregs[rn] = -setsize;
1144
1145 /* Set NZCV = 0000 to indicate we are an Option A implementation */
1146 env->NF = 0;
1147 env->ZF = 1; /* our env->ZF encoding is inverted */
1148 env->CF = 0;
1149 env->VF = 0;
1150 return;
1151 }
1152
HELPER(setp)1153 void HELPER(setp)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
1154 {
1155 do_setp(env, syndrome, mtedesc, set_step, false, GETPC());
1156 }
1157
HELPER(setgp)1158 void HELPER(setgp)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
1159 {
1160 do_setp(env, syndrome, mtedesc, set_step_tags, true, GETPC());
1161 }
1162
do_setm(CPUARMState * env,uint32_t syndrome,uint32_t mtedesc,StepFn * stepfn,bool is_setg,uintptr_t ra)1163 static void do_setm(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc,
1164 StepFn *stepfn, bool is_setg, uintptr_t ra)
1165 {
1166 /* Main: we choose to do all the full-page chunks */
1167 CPUState *cs = env_cpu(env);
1168 int rd = mops_destreg(syndrome);
1169 int rs = mops_srcreg(syndrome);
1170 int rn = mops_sizereg(syndrome);
1171 uint8_t data = arm_reg_or_xzr(env, rs);
1172 uint64_t toaddr = env->xregs[rd] + env->xregs[rn];
1173 uint64_t setsize = -env->xregs[rn];
1174 uint32_t memidx = FIELD_EX32(mtedesc, MTEDESC, MIDX);
1175 uint64_t step, stagesetsize;
1176
1177 check_mops_enabled(env, ra);
1178
1179 /*
1180 * We're allowed to NOP out "no data to copy" before the consistency
1181 * checks; we choose to do so.
1182 */
1183 if (env->xregs[rn] == 0) {
1184 return;
1185 }
1186
1187 check_mops_wrong_option(env, syndrome, ra);
1188
1189 /*
1190 * Our implementation will work fine even if we have an unaligned
1191 * destination address, and because we update Xn every time around
1192 * the loop below and the return value from stepfn() may be less
1193 * than requested, we might find toaddr is unaligned. So we don't
1194 * have an IMPDEF check for alignment here.
1195 */
1196
1197 if (unlikely(is_setg)) {
1198 check_setg_alignment(env, toaddr, setsize, memidx, ra);
1199 } else if (!mte_checks_needed(toaddr, mtedesc)) {
1200 mtedesc = 0;
1201 }
1202
1203 /* Do the actual memset: we leave the last partial page to SETE */
1204 stagesetsize = setsize & TARGET_PAGE_MASK;
1205 while (stagesetsize > 0) {
1206 step = stepfn(env, toaddr, stagesetsize, data, memidx, &mtedesc, ra);
1207 toaddr += step;
1208 setsize -= step;
1209 stagesetsize -= step;
1210 env->xregs[rn] = -setsize;
1211 if (stagesetsize > 0 && unlikely(cpu_loop_exit_requested(cs))) {
1212 cpu_loop_exit_restore(cs, ra);
1213 }
1214 }
1215 }
1216
HELPER(setm)1217 void HELPER(setm)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
1218 {
1219 do_setm(env, syndrome, mtedesc, set_step, false, GETPC());
1220 }
1221
HELPER(setgm)1222 void HELPER(setgm)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
1223 {
1224 do_setm(env, syndrome, mtedesc, set_step_tags, true, GETPC());
1225 }
1226
do_sete(CPUARMState * env,uint32_t syndrome,uint32_t mtedesc,StepFn * stepfn,bool is_setg,uintptr_t ra)1227 static void do_sete(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc,
1228 StepFn *stepfn, bool is_setg, uintptr_t ra)
1229 {
1230 /* Epilogue: do the last partial page */
1231 int rd = mops_destreg(syndrome);
1232 int rs = mops_srcreg(syndrome);
1233 int rn = mops_sizereg(syndrome);
1234 uint8_t data = arm_reg_or_xzr(env, rs);
1235 uint64_t toaddr = env->xregs[rd] + env->xregs[rn];
1236 uint64_t setsize = -env->xregs[rn];
1237 uint32_t memidx = FIELD_EX32(mtedesc, MTEDESC, MIDX);
1238 uint64_t step;
1239
1240 check_mops_enabled(env, ra);
1241
1242 /*
1243 * We're allowed to NOP out "no data to copy" before the consistency
1244 * checks; we choose to do so.
1245 */
1246 if (setsize == 0) {
1247 return;
1248 }
1249
1250 check_mops_wrong_option(env, syndrome, ra);
1251
1252 /*
1253 * Our implementation has no address alignment requirements, but
1254 * we do want to enforce the "less than a page" size requirement,
1255 * so we don't need to have the "check for interrupts" here.
1256 */
1257 if (setsize >= TARGET_PAGE_SIZE) {
1258 raise_exception_ra(env, EXCP_UDEF, syndrome,
1259 mops_mismatch_exception_target_el(env), ra);
1260 }
1261
1262 if (unlikely(is_setg)) {
1263 check_setg_alignment(env, toaddr, setsize, memidx, ra);
1264 } else if (!mte_checks_needed(toaddr, mtedesc)) {
1265 mtedesc = 0;
1266 }
1267
1268 /* Do the actual memset */
1269 while (setsize > 0) {
1270 step = stepfn(env, toaddr, setsize, data, memidx, &mtedesc, ra);
1271 toaddr += step;
1272 setsize -= step;
1273 env->xregs[rn] = -setsize;
1274 }
1275 }
1276
HELPER(sete)1277 void HELPER(sete)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
1278 {
1279 do_sete(env, syndrome, mtedesc, set_step, false, GETPC());
1280 }
1281
HELPER(setge)1282 void HELPER(setge)(CPUARMState *env, uint32_t syndrome, uint32_t mtedesc)
1283 {
1284 do_sete(env, syndrome, mtedesc, set_step_tags, true, GETPC());
1285 }
1286
1287 /*
1288 * Perform part of a memory copy from the guest memory at fromaddr
1289 * and extending for copysize bytes, to the guest memory at
1290 * toaddr. Both addresses are dirty.
1291 *
1292 * Returns the number of bytes actually set, which might be less than
1293 * copysize; the caller should loop until the whole copy has been done.
1294 * The caller should ensure that the guest registers are correct
1295 * for the possibility that the first byte of the copy encounters
1296 * an exception or watchpoint. We guarantee not to take any faults
1297 * for bytes other than the first.
1298 */
copy_step(CPUARMState * env,uint64_t toaddr,uint64_t fromaddr,uint64_t copysize,int wmemidx,int rmemidx,uint32_t * wdesc,uint32_t * rdesc,uintptr_t ra)1299 static uint64_t copy_step(CPUARMState *env, uint64_t toaddr, uint64_t fromaddr,
1300 uint64_t copysize, int wmemidx, int rmemidx,
1301 uint32_t *wdesc, uint32_t *rdesc, uintptr_t ra)
1302 {
1303 void *rmem;
1304 void *wmem;
1305
1306 /* Don't cross a page boundary on either source or destination */
1307 copysize = MIN(copysize, page_limit(toaddr));
1308 copysize = MIN(copysize, page_limit(fromaddr));
1309 /*
1310 * Handle MTE tag checks: either handle the tag mismatch for byte 0,
1311 * or else copy up to but not including the byte with the mismatch.
1312 */
1313 if (*rdesc) {
1314 uint64_t mtesize = mte_mops_probe(env, fromaddr, copysize, *rdesc);
1315 if (mtesize == 0) {
1316 mte_check_fail(env, *rdesc, fromaddr, ra);
1317 *rdesc = 0;
1318 } else {
1319 copysize = MIN(copysize, mtesize);
1320 }
1321 }
1322 if (*wdesc) {
1323 uint64_t mtesize = mte_mops_probe(env, toaddr, copysize, *wdesc);
1324 if (mtesize == 0) {
1325 mte_check_fail(env, *wdesc, toaddr, ra);
1326 *wdesc = 0;
1327 } else {
1328 copysize = MIN(copysize, mtesize);
1329 }
1330 }
1331
1332 toaddr = useronly_clean_ptr(toaddr);
1333 fromaddr = useronly_clean_ptr(fromaddr);
1334 /* Trapless lookup of whether we can get a host memory pointer */
1335 wmem = tlb_vaddr_to_host(env, toaddr, MMU_DATA_STORE, wmemidx);
1336 rmem = tlb_vaddr_to_host(env, fromaddr, MMU_DATA_LOAD, rmemidx);
1337
1338 #ifndef CONFIG_USER_ONLY
1339 /*
1340 * If we don't have host memory for both source and dest then just
1341 * do a single byte copy. This will handle watchpoints, invalid pages,
1342 * etc correctly. For clean code pages, the next iteration will see
1343 * the page dirty and will use the fast path.
1344 */
1345 if (unlikely(!rmem || !wmem)) {
1346 uint8_t byte;
1347 if (rmem) {
1348 byte = *(uint8_t *)rmem;
1349 } else {
1350 byte = cpu_ldub_mmuidx_ra(env, fromaddr, rmemidx, ra);
1351 }
1352 if (wmem) {
1353 *(uint8_t *)wmem = byte;
1354 } else {
1355 cpu_stb_mmuidx_ra(env, toaddr, byte, wmemidx, ra);
1356 }
1357 return 1;
1358 }
1359 #endif
1360 /* Easy case: just memmove the host memory */
1361 set_helper_retaddr(ra);
1362 memmove(wmem, rmem, copysize);
1363 clear_helper_retaddr();
1364 return copysize;
1365 }
1366
1367 /*
1368 * Do part of a backwards memory copy. Here toaddr and fromaddr point
1369 * to the *last* byte to be copied.
1370 */
copy_step_rev(CPUARMState * env,uint64_t toaddr,uint64_t fromaddr,uint64_t copysize,int wmemidx,int rmemidx,uint32_t * wdesc,uint32_t * rdesc,uintptr_t ra)1371 static uint64_t copy_step_rev(CPUARMState *env, uint64_t toaddr,
1372 uint64_t fromaddr,
1373 uint64_t copysize, int wmemidx, int rmemidx,
1374 uint32_t *wdesc, uint32_t *rdesc, uintptr_t ra)
1375 {
1376 void *rmem;
1377 void *wmem;
1378
1379 /* Don't cross a page boundary on either source or destination */
1380 copysize = MIN(copysize, page_limit_rev(toaddr));
1381 copysize = MIN(copysize, page_limit_rev(fromaddr));
1382
1383 /*
1384 * Handle MTE tag checks: either handle the tag mismatch for byte 0,
1385 * or else copy up to but not including the byte with the mismatch.
1386 */
1387 if (*rdesc) {
1388 uint64_t mtesize = mte_mops_probe_rev(env, fromaddr, copysize, *rdesc);
1389 if (mtesize == 0) {
1390 mte_check_fail(env, *rdesc, fromaddr, ra);
1391 *rdesc = 0;
1392 } else {
1393 copysize = MIN(copysize, mtesize);
1394 }
1395 }
1396 if (*wdesc) {
1397 uint64_t mtesize = mte_mops_probe_rev(env, toaddr, copysize, *wdesc);
1398 if (mtesize == 0) {
1399 mte_check_fail(env, *wdesc, toaddr, ra);
1400 *wdesc = 0;
1401 } else {
1402 copysize = MIN(copysize, mtesize);
1403 }
1404 }
1405
1406 toaddr = useronly_clean_ptr(toaddr);
1407 fromaddr = useronly_clean_ptr(fromaddr);
1408 /* Trapless lookup of whether we can get a host memory pointer */
1409 wmem = tlb_vaddr_to_host(env, toaddr, MMU_DATA_STORE, wmemidx);
1410 rmem = tlb_vaddr_to_host(env, fromaddr, MMU_DATA_LOAD, rmemidx);
1411
1412 #ifndef CONFIG_USER_ONLY
1413 /*
1414 * If we don't have host memory for both source and dest then just
1415 * do a single byte copy. This will handle watchpoints, invalid pages,
1416 * etc correctly. For clean code pages, the next iteration will see
1417 * the page dirty and will use the fast path.
1418 */
1419 if (unlikely(!rmem || !wmem)) {
1420 uint8_t byte;
1421 if (rmem) {
1422 byte = *(uint8_t *)rmem;
1423 } else {
1424 byte = cpu_ldub_mmuidx_ra(env, fromaddr, rmemidx, ra);
1425 }
1426 if (wmem) {
1427 *(uint8_t *)wmem = byte;
1428 } else {
1429 cpu_stb_mmuidx_ra(env, toaddr, byte, wmemidx, ra);
1430 }
1431 return 1;
1432 }
1433 #endif
1434 /*
1435 * Easy case: just memmove the host memory. Note that wmem and
1436 * rmem here point to the *last* byte to copy.
1437 */
1438 set_helper_retaddr(ra);
1439 memmove(wmem - (copysize - 1), rmem - (copysize - 1), copysize);
1440 clear_helper_retaddr();
1441 return copysize;
1442 }
1443
1444 /*
1445 * for the Memory Copy operation, our implementation chooses always
1446 * to use "option A", where we update Xd and Xs to the final addresses
1447 * in the CPYP insn, and then in CPYM and CPYE only need to update Xn.
1448 *
1449 * @env: CPU
1450 * @syndrome: syndrome value for mismatch exceptions
1451 * (also contains the register numbers we need to use)
1452 * @wdesc: MTE descriptor for the writes (destination)
1453 * @rdesc: MTE descriptor for the reads (source)
1454 * @move: true if this is CPY (memmove), false for CPYF (memcpy forwards)
1455 */
do_cpyp(CPUARMState * env,uint32_t syndrome,uint32_t wdesc,uint32_t rdesc,uint32_t move,uintptr_t ra)1456 static void do_cpyp(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1457 uint32_t rdesc, uint32_t move, uintptr_t ra)
1458 {
1459 int rd = mops_destreg(syndrome);
1460 int rs = mops_srcreg(syndrome);
1461 int rn = mops_sizereg(syndrome);
1462 uint32_t rmemidx = FIELD_EX32(rdesc, MTEDESC, MIDX);
1463 uint32_t wmemidx = FIELD_EX32(wdesc, MTEDESC, MIDX);
1464 bool forwards = true;
1465 uint64_t toaddr = env->xregs[rd];
1466 uint64_t fromaddr = env->xregs[rs];
1467 uint64_t copysize = env->xregs[rn];
1468 uint64_t stagecopysize, step;
1469
1470 check_mops_enabled(env, ra);
1471
1472
1473 if (move) {
1474 /*
1475 * Copy backwards if necessary. The direction for a non-overlapping
1476 * copy is IMPDEF; we choose forwards.
1477 */
1478 if (copysize > 0x007FFFFFFFFFFFFFULL) {
1479 copysize = 0x007FFFFFFFFFFFFFULL;
1480 }
1481 uint64_t fs = extract64(fromaddr, 0, 56);
1482 uint64_t ts = extract64(toaddr, 0, 56);
1483 uint64_t fe = extract64(fromaddr + copysize, 0, 56);
1484
1485 if (fs < ts && fe > ts) {
1486 forwards = false;
1487 }
1488 } else {
1489 if (copysize > INT64_MAX) {
1490 copysize = INT64_MAX;
1491 }
1492 }
1493
1494 if (!mte_checks_needed(fromaddr, rdesc)) {
1495 rdesc = 0;
1496 }
1497 if (!mte_checks_needed(toaddr, wdesc)) {
1498 wdesc = 0;
1499 }
1500
1501 if (forwards) {
1502 stagecopysize = MIN(copysize, page_limit(toaddr));
1503 stagecopysize = MIN(stagecopysize, page_limit(fromaddr));
1504 while (stagecopysize) {
1505 env->xregs[rd] = toaddr;
1506 env->xregs[rs] = fromaddr;
1507 env->xregs[rn] = copysize;
1508 step = copy_step(env, toaddr, fromaddr, stagecopysize,
1509 wmemidx, rmemidx, &wdesc, &rdesc, ra);
1510 toaddr += step;
1511 fromaddr += step;
1512 copysize -= step;
1513 stagecopysize -= step;
1514 }
1515 /* Insn completed, so update registers to the Option A format */
1516 env->xregs[rd] = toaddr + copysize;
1517 env->xregs[rs] = fromaddr + copysize;
1518 env->xregs[rn] = -copysize;
1519 } else {
1520 /*
1521 * In a reverse copy the to and from addrs in Xs and Xd are the start
1522 * of the range, but it's more convenient for us to work with pointers
1523 * to the last byte being copied.
1524 */
1525 toaddr += copysize - 1;
1526 fromaddr += copysize - 1;
1527 stagecopysize = MIN(copysize, page_limit_rev(toaddr));
1528 stagecopysize = MIN(stagecopysize, page_limit_rev(fromaddr));
1529 while (stagecopysize) {
1530 env->xregs[rn] = copysize;
1531 step = copy_step_rev(env, toaddr, fromaddr, stagecopysize,
1532 wmemidx, rmemidx, &wdesc, &rdesc, ra);
1533 copysize -= step;
1534 stagecopysize -= step;
1535 toaddr -= step;
1536 fromaddr -= step;
1537 }
1538 /*
1539 * Insn completed, so update registers to the Option A format.
1540 * For a reverse copy this is no different to the CPYP input format.
1541 */
1542 env->xregs[rn] = copysize;
1543 }
1544
1545 /* Set NZCV = 0000 to indicate we are an Option A implementation */
1546 env->NF = 0;
1547 env->ZF = 1; /* our env->ZF encoding is inverted */
1548 env->CF = 0;
1549 env->VF = 0;
1550 return;
1551 }
1552
HELPER(cpyp)1553 void HELPER(cpyp)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1554 uint32_t rdesc)
1555 {
1556 do_cpyp(env, syndrome, wdesc, rdesc, true, GETPC());
1557 }
1558
HELPER(cpyfp)1559 void HELPER(cpyfp)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1560 uint32_t rdesc)
1561 {
1562 do_cpyp(env, syndrome, wdesc, rdesc, false, GETPC());
1563 }
1564
do_cpym(CPUARMState * env,uint32_t syndrome,uint32_t wdesc,uint32_t rdesc,uint32_t move,uintptr_t ra)1565 static void do_cpym(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1566 uint32_t rdesc, uint32_t move, uintptr_t ra)
1567 {
1568 /* Main: we choose to copy until less than a page remaining */
1569 CPUState *cs = env_cpu(env);
1570 int rd = mops_destreg(syndrome);
1571 int rs = mops_srcreg(syndrome);
1572 int rn = mops_sizereg(syndrome);
1573 uint32_t rmemidx = FIELD_EX32(rdesc, MTEDESC, MIDX);
1574 uint32_t wmemidx = FIELD_EX32(wdesc, MTEDESC, MIDX);
1575 bool forwards = true;
1576 uint64_t toaddr, fromaddr, copysize, step;
1577
1578 check_mops_enabled(env, ra);
1579
1580 /* We choose to NOP out "no data to copy" before consistency checks */
1581 if (env->xregs[rn] == 0) {
1582 return;
1583 }
1584
1585 check_mops_wrong_option(env, syndrome, ra);
1586
1587 if (move) {
1588 forwards = (int64_t)env->xregs[rn] < 0;
1589 }
1590
1591 if (forwards) {
1592 toaddr = env->xregs[rd] + env->xregs[rn];
1593 fromaddr = env->xregs[rs] + env->xregs[rn];
1594 copysize = -env->xregs[rn];
1595 } else {
1596 copysize = env->xregs[rn];
1597 /* This toaddr and fromaddr point to the *last* byte to copy */
1598 toaddr = env->xregs[rd] + copysize - 1;
1599 fromaddr = env->xregs[rs] + copysize - 1;
1600 }
1601
1602 if (!mte_checks_needed(fromaddr, rdesc)) {
1603 rdesc = 0;
1604 }
1605 if (!mte_checks_needed(toaddr, wdesc)) {
1606 wdesc = 0;
1607 }
1608
1609 /* Our implementation has no particular parameter requirements for CPYM */
1610
1611 /* Do the actual memmove */
1612 if (forwards) {
1613 while (copysize >= TARGET_PAGE_SIZE) {
1614 step = copy_step(env, toaddr, fromaddr, copysize,
1615 wmemidx, rmemidx, &wdesc, &rdesc, ra);
1616 toaddr += step;
1617 fromaddr += step;
1618 copysize -= step;
1619 env->xregs[rn] = -copysize;
1620 if (copysize >= TARGET_PAGE_SIZE &&
1621 unlikely(cpu_loop_exit_requested(cs))) {
1622 cpu_loop_exit_restore(cs, ra);
1623 }
1624 }
1625 } else {
1626 while (copysize >= TARGET_PAGE_SIZE) {
1627 step = copy_step_rev(env, toaddr, fromaddr, copysize,
1628 wmemidx, rmemidx, &wdesc, &rdesc, ra);
1629 toaddr -= step;
1630 fromaddr -= step;
1631 copysize -= step;
1632 env->xregs[rn] = copysize;
1633 if (copysize >= TARGET_PAGE_SIZE &&
1634 unlikely(cpu_loop_exit_requested(cs))) {
1635 cpu_loop_exit_restore(cs, ra);
1636 }
1637 }
1638 }
1639 }
1640
HELPER(cpym)1641 void HELPER(cpym)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1642 uint32_t rdesc)
1643 {
1644 do_cpym(env, syndrome, wdesc, rdesc, true, GETPC());
1645 }
1646
HELPER(cpyfm)1647 void HELPER(cpyfm)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1648 uint32_t rdesc)
1649 {
1650 do_cpym(env, syndrome, wdesc, rdesc, false, GETPC());
1651 }
1652
do_cpye(CPUARMState * env,uint32_t syndrome,uint32_t wdesc,uint32_t rdesc,uint32_t move,uintptr_t ra)1653 static void do_cpye(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1654 uint32_t rdesc, uint32_t move, uintptr_t ra)
1655 {
1656 /* Epilogue: do the last partial page */
1657 int rd = mops_destreg(syndrome);
1658 int rs = mops_srcreg(syndrome);
1659 int rn = mops_sizereg(syndrome);
1660 uint32_t rmemidx = FIELD_EX32(rdesc, MTEDESC, MIDX);
1661 uint32_t wmemidx = FIELD_EX32(wdesc, MTEDESC, MIDX);
1662 bool forwards = true;
1663 uint64_t toaddr, fromaddr, copysize, step;
1664
1665 check_mops_enabled(env, ra);
1666
1667 /* We choose to NOP out "no data to copy" before consistency checks */
1668 if (env->xregs[rn] == 0) {
1669 return;
1670 }
1671
1672 check_mops_wrong_option(env, syndrome, ra);
1673
1674 if (move) {
1675 forwards = (int64_t)env->xregs[rn] < 0;
1676 }
1677
1678 if (forwards) {
1679 toaddr = env->xregs[rd] + env->xregs[rn];
1680 fromaddr = env->xregs[rs] + env->xregs[rn];
1681 copysize = -env->xregs[rn];
1682 } else {
1683 copysize = env->xregs[rn];
1684 /* This toaddr and fromaddr point to the *last* byte to copy */
1685 toaddr = env->xregs[rd] + copysize - 1;
1686 fromaddr = env->xregs[rs] + copysize - 1;
1687 }
1688
1689 if (!mte_checks_needed(fromaddr, rdesc)) {
1690 rdesc = 0;
1691 }
1692 if (!mte_checks_needed(toaddr, wdesc)) {
1693 wdesc = 0;
1694 }
1695
1696 /* Check the size; we don't want to have do a check-for-interrupts */
1697 if (copysize >= TARGET_PAGE_SIZE) {
1698 raise_exception_ra(env, EXCP_UDEF, syndrome,
1699 mops_mismatch_exception_target_el(env), ra);
1700 }
1701
1702 /* Do the actual memmove */
1703 if (forwards) {
1704 while (copysize > 0) {
1705 step = copy_step(env, toaddr, fromaddr, copysize,
1706 wmemidx, rmemidx, &wdesc, &rdesc, ra);
1707 toaddr += step;
1708 fromaddr += step;
1709 copysize -= step;
1710 env->xregs[rn] = -copysize;
1711 }
1712 } else {
1713 while (copysize > 0) {
1714 step = copy_step_rev(env, toaddr, fromaddr, copysize,
1715 wmemidx, rmemidx, &wdesc, &rdesc, ra);
1716 toaddr -= step;
1717 fromaddr -= step;
1718 copysize -= step;
1719 env->xregs[rn] = copysize;
1720 }
1721 }
1722 }
1723
HELPER(cpye)1724 void HELPER(cpye)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1725 uint32_t rdesc)
1726 {
1727 do_cpye(env, syndrome, wdesc, rdesc, true, GETPC());
1728 }
1729
HELPER(cpyfe)1730 void HELPER(cpyfe)(CPUARMState *env, uint32_t syndrome, uint32_t wdesc,
1731 uint32_t rdesc)
1732 {
1733 do_cpye(env, syndrome, wdesc, rdesc, false, GETPC());
1734 }
1735
is_guarded_page(CPUARMState * env,target_ulong addr,uintptr_t ra)1736 static bool is_guarded_page(CPUARMState *env, target_ulong addr, uintptr_t ra)
1737 {
1738 #ifdef CONFIG_USER_ONLY
1739 return page_get_flags(addr) & PAGE_BTI;
1740 #else
1741 CPUTLBEntryFull *full;
1742 void *host;
1743 int mmu_idx = cpu_mmu_index(env_cpu(env), true);
1744 int flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
1745 false, &host, &full, ra);
1746
1747 assert(!(flags & TLB_INVALID_MASK));
1748 return full->extra.arm.guarded;
1749 #endif
1750 }
1751
HELPER(guarded_page_check)1752 void HELPER(guarded_page_check)(CPUARMState *env)
1753 {
1754 /*
1755 * We have already verified that bti is enabled, and that the
1756 * instruction at PC is not ok for BTYPE. This is always at
1757 * the beginning of a block, so PC is always up-to-date and
1758 * no unwind is required.
1759 */
1760 if (is_guarded_page(env, env->pc, 0)) {
1761 raise_exception(env, EXCP_UDEF, syn_btitrap(env->btype),
1762 exception_target_el(env));
1763 }
1764 }
1765
HELPER(guarded_page_br)1766 void HELPER(guarded_page_br)(CPUARMState *env, target_ulong pc)
1767 {
1768 /*
1769 * We have already checked for branch via x16 and x17.
1770 * What remains for choosing BTYPE is checking for a guarded page.
1771 */
1772 env->btype = is_guarded_page(env, pc, GETPC()) ? 3 : 1;
1773 }
1774