1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1994 Linus Torvalds
4 *
5 * Cyrix stuff, June 1998 by:
6 * - Rafael R. Reilova (moved everything from head.S),
7 * <rreilova@ececs.uc.edu>
8 * - Channing Corn (tests & fixes),
9 * - Andrew D. Balsa (code cleanup).
10 */
11 #include <linux/init.h>
12 #include <linux/cpu.h>
13 #include <linux/module.h>
14 #include <linux/nospec.h>
15 #include <linux/prctl.h>
16 #include <linux/sched/smt.h>
17 #include <linux/pgtable.h>
18 #include <linux/bpf.h>
19
20 #include <asm/spec-ctrl.h>
21 #include <asm/cmdline.h>
22 #include <asm/bugs.h>
23 #include <asm/processor.h>
24 #include <asm/processor-flags.h>
25 #include <asm/fpu/api.h>
26 #include <asm/msr.h>
27 #include <asm/vmx.h>
28 #include <asm/paravirt.h>
29 #include <asm/intel-family.h>
30 #include <asm/e820/api.h>
31 #include <asm/hypervisor.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cpu.h>
34
35 #include "cpu.h"
36
37 static void __init spectre_v1_select_mitigation(void);
38 static void __init spectre_v2_select_mitigation(void);
39 static void __init retbleed_select_mitigation(void);
40 static void __init spectre_v2_user_select_mitigation(void);
41 static void __init ssb_select_mitigation(void);
42 static void __init l1tf_select_mitigation(void);
43 static void __init mds_select_mitigation(void);
44 static void __init md_clear_update_mitigation(void);
45 static void __init md_clear_select_mitigation(void);
46 static void __init taa_select_mitigation(void);
47 static void __init mmio_select_mitigation(void);
48 static void __init srbds_select_mitigation(void);
49 static void __init l1d_flush_select_mitigation(void);
50 static void __init srso_select_mitigation(void);
51 static void __init gds_select_mitigation(void);
52 static void __init its_select_mitigation(void);
53
54 /* The base value of the SPEC_CTRL MSR without task-specific bits set */
55 u64 x86_spec_ctrl_base;
56 EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
57
58 /* The current value of the SPEC_CTRL MSR with task-specific bits set */
59 DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
60 EXPORT_SYMBOL_GPL(x86_spec_ctrl_current);
61
62 u64 x86_pred_cmd __ro_after_init = PRED_CMD_IBPB;
63 EXPORT_SYMBOL_GPL(x86_pred_cmd);
64
65 static u64 __ro_after_init x86_arch_cap_msr;
66
67 static DEFINE_MUTEX(spec_ctrl_mutex);
68
69 void (*x86_return_thunk)(void) __ro_after_init = __x86_return_thunk;
70
set_return_thunk(void * thunk)71 static void __init set_return_thunk(void *thunk)
72 {
73 if (x86_return_thunk != __x86_return_thunk)
74 pr_warn("x86/bugs: return thunk changed\n");
75
76 x86_return_thunk = thunk;
77 }
78
79 /* Update SPEC_CTRL MSR and its cached copy unconditionally */
update_spec_ctrl(u64 val)80 static void update_spec_ctrl(u64 val)
81 {
82 this_cpu_write(x86_spec_ctrl_current, val);
83 wrmsrl(MSR_IA32_SPEC_CTRL, val);
84 }
85
86 /*
87 * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
88 * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
89 */
update_spec_ctrl_cond(u64 val)90 void update_spec_ctrl_cond(u64 val)
91 {
92 if (this_cpu_read(x86_spec_ctrl_current) == val)
93 return;
94
95 this_cpu_write(x86_spec_ctrl_current, val);
96
97 /*
98 * When KERNEL_IBRS this MSR is written on return-to-user, unless
99 * forced the update can be delayed until that time.
100 */
101 if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
102 wrmsrl(MSR_IA32_SPEC_CTRL, val);
103 }
104
spec_ctrl_current(void)105 noinstr u64 spec_ctrl_current(void)
106 {
107 return this_cpu_read(x86_spec_ctrl_current);
108 }
109 EXPORT_SYMBOL_GPL(spec_ctrl_current);
110
111 /*
112 * AMD specific MSR info for Speculative Store Bypass control.
113 * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
114 */
115 u64 __ro_after_init x86_amd_ls_cfg_base;
116 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
117
118 /* Control conditional STIBP in switch_to() */
119 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
120 /* Control conditional IBPB in switch_mm() */
121 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
122 /* Control unconditional IBPB in switch_mm() */
123 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
124
125 /* Control MDS CPU buffer clear before idling (halt, mwait) */
126 DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
127 EXPORT_SYMBOL_GPL(mds_idle_clear);
128
129 /*
130 * Controls whether l1d flush based mitigations are enabled,
131 * based on hw features and admin setting via boot parameter
132 * defaults to false
133 */
134 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
135
136 /* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
137 DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
138 EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
139
cpu_select_mitigations(void)140 void __init cpu_select_mitigations(void)
141 {
142 /*
143 * Read the SPEC_CTRL MSR to account for reserved bits which may
144 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
145 * init code as it is not enumerated and depends on the family.
146 */
147 if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) {
148 rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
149
150 /*
151 * Previously running kernel (kexec), may have some controls
152 * turned ON. Clear them and let the mitigations setup below
153 * rediscover them based on configuration.
154 */
155 x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK;
156 }
157
158 x86_arch_cap_msr = x86_read_arch_cap_msr();
159
160 /* Select the proper CPU mitigations before patching alternatives: */
161 spectre_v1_select_mitigation();
162 spectre_v2_select_mitigation();
163 /*
164 * retbleed_select_mitigation() relies on the state set by
165 * spectre_v2_select_mitigation(); specifically it wants to know about
166 * spectre_v2=ibrs.
167 */
168 retbleed_select_mitigation();
169 /*
170 * spectre_v2_user_select_mitigation() relies on the state set by
171 * retbleed_select_mitigation(); specifically the STIBP selection is
172 * forced for UNRET or IBPB.
173 */
174 spectre_v2_user_select_mitigation();
175 ssb_select_mitigation();
176 l1tf_select_mitigation();
177 md_clear_select_mitigation();
178 srbds_select_mitigation();
179 l1d_flush_select_mitigation();
180
181 /*
182 * srso_select_mitigation() depends and must run after
183 * retbleed_select_mitigation().
184 */
185 srso_select_mitigation();
186 gds_select_mitigation();
187 its_select_mitigation();
188 }
189
190 /*
191 * NOTE: This function is *only* called for SVM, since Intel uses
192 * MSR_IA32_SPEC_CTRL for SSBD.
193 */
194 void
x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl,bool setguest)195 x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest)
196 {
197 u64 guestval, hostval;
198 struct thread_info *ti = current_thread_info();
199
200 /*
201 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
202 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
203 */
204 if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
205 !static_cpu_has(X86_FEATURE_VIRT_SSBD))
206 return;
207
208 /*
209 * If the host has SSBD mitigation enabled, force it in the host's
210 * virtual MSR value. If its not permanently enabled, evaluate
211 * current's TIF_SSBD thread flag.
212 */
213 if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
214 hostval = SPEC_CTRL_SSBD;
215 else
216 hostval = ssbd_tif_to_spec_ctrl(ti->flags);
217
218 /* Sanitize the guest value */
219 guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
220
221 if (hostval != guestval) {
222 unsigned long tif;
223
224 tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
225 ssbd_spec_ctrl_to_tif(hostval);
226
227 speculation_ctrl_update(tif);
228 }
229 }
230 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
231
x86_amd_ssb_disable(void)232 static void x86_amd_ssb_disable(void)
233 {
234 u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
235
236 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
237 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
238 else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
239 wrmsrl(MSR_AMD64_LS_CFG, msrval);
240 }
241
242 #undef pr_fmt
243 #define pr_fmt(fmt) "MDS: " fmt
244
245 /* Default mitigation for MDS-affected CPUs */
246 static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
247 static bool mds_nosmt __ro_after_init = false;
248
249 static const char * const mds_strings[] = {
250 [MDS_MITIGATION_OFF] = "Vulnerable",
251 [MDS_MITIGATION_FULL] = "Mitigation: Clear CPU buffers",
252 [MDS_MITIGATION_VMWERV] = "Vulnerable: Clear CPU buffers attempted, no microcode",
253 };
254
mds_select_mitigation(void)255 static void __init mds_select_mitigation(void)
256 {
257 if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
258 mds_mitigation = MDS_MITIGATION_OFF;
259 return;
260 }
261
262 if (mds_mitigation == MDS_MITIGATION_FULL) {
263 if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
264 mds_mitigation = MDS_MITIGATION_VMWERV;
265
266 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
267
268 if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
269 (mds_nosmt || cpu_mitigations_auto_nosmt()))
270 cpu_smt_disable(false);
271 }
272 }
273
mds_cmdline(char * str)274 static int __init mds_cmdline(char *str)
275 {
276 if (!boot_cpu_has_bug(X86_BUG_MDS))
277 return 0;
278
279 if (!str)
280 return -EINVAL;
281
282 if (!strcmp(str, "off"))
283 mds_mitigation = MDS_MITIGATION_OFF;
284 else if (!strcmp(str, "full"))
285 mds_mitigation = MDS_MITIGATION_FULL;
286 else if (!strcmp(str, "full,nosmt")) {
287 mds_mitigation = MDS_MITIGATION_FULL;
288 mds_nosmt = true;
289 }
290
291 return 0;
292 }
293 early_param("mds", mds_cmdline);
294
295 #undef pr_fmt
296 #define pr_fmt(fmt) "TAA: " fmt
297
298 enum taa_mitigations {
299 TAA_MITIGATION_OFF,
300 TAA_MITIGATION_UCODE_NEEDED,
301 TAA_MITIGATION_VERW,
302 TAA_MITIGATION_TSX_DISABLED,
303 };
304
305 /* Default mitigation for TAA-affected CPUs */
306 static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
307 static bool taa_nosmt __ro_after_init;
308
309 static const char * const taa_strings[] = {
310 [TAA_MITIGATION_OFF] = "Vulnerable",
311 [TAA_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
312 [TAA_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
313 [TAA_MITIGATION_TSX_DISABLED] = "Mitigation: TSX disabled",
314 };
315
taa_select_mitigation(void)316 static void __init taa_select_mitigation(void)
317 {
318 if (!boot_cpu_has_bug(X86_BUG_TAA)) {
319 taa_mitigation = TAA_MITIGATION_OFF;
320 return;
321 }
322
323 /* TSX previously disabled by tsx=off */
324 if (!boot_cpu_has(X86_FEATURE_RTM)) {
325 taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
326 return;
327 }
328
329 if (cpu_mitigations_off()) {
330 taa_mitigation = TAA_MITIGATION_OFF;
331 return;
332 }
333
334 /*
335 * TAA mitigation via VERW is turned off if both
336 * tsx_async_abort=off and mds=off are specified.
337 */
338 if (taa_mitigation == TAA_MITIGATION_OFF &&
339 mds_mitigation == MDS_MITIGATION_OFF)
340 return;
341
342 if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
343 taa_mitigation = TAA_MITIGATION_VERW;
344 else
345 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
346
347 /*
348 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
349 * A microcode update fixes this behavior to clear CPU buffers. It also
350 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
351 * ARCH_CAP_TSX_CTRL_MSR bit.
352 *
353 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
354 * update is required.
355 */
356 if ( (x86_arch_cap_msr & ARCH_CAP_MDS_NO) &&
357 !(x86_arch_cap_msr & ARCH_CAP_TSX_CTRL_MSR))
358 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
359
360 /*
361 * TSX is enabled, select alternate mitigation for TAA which is
362 * the same as MDS. Enable MDS static branch to clear CPU buffers.
363 *
364 * For guests that can't determine whether the correct microcode is
365 * present on host, enable the mitigation for UCODE_NEEDED as well.
366 */
367 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
368
369 if (taa_nosmt || cpu_mitigations_auto_nosmt())
370 cpu_smt_disable(false);
371 }
372
tsx_async_abort_parse_cmdline(char * str)373 static int __init tsx_async_abort_parse_cmdline(char *str)
374 {
375 if (!boot_cpu_has_bug(X86_BUG_TAA))
376 return 0;
377
378 if (!str)
379 return -EINVAL;
380
381 if (!strcmp(str, "off")) {
382 taa_mitigation = TAA_MITIGATION_OFF;
383 } else if (!strcmp(str, "full")) {
384 taa_mitigation = TAA_MITIGATION_VERW;
385 } else if (!strcmp(str, "full,nosmt")) {
386 taa_mitigation = TAA_MITIGATION_VERW;
387 taa_nosmt = true;
388 }
389
390 return 0;
391 }
392 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
393
394 #undef pr_fmt
395 #define pr_fmt(fmt) "MMIO Stale Data: " fmt
396
397 enum mmio_mitigations {
398 MMIO_MITIGATION_OFF,
399 MMIO_MITIGATION_UCODE_NEEDED,
400 MMIO_MITIGATION_VERW,
401 };
402
403 /* Default mitigation for Processor MMIO Stale Data vulnerabilities */
404 static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW;
405 static bool mmio_nosmt __ro_after_init = false;
406
407 static const char * const mmio_strings[] = {
408 [MMIO_MITIGATION_OFF] = "Vulnerable",
409 [MMIO_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
410 [MMIO_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
411 };
412
mmio_select_mitigation(void)413 static void __init mmio_select_mitigation(void)
414 {
415 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
416 boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) ||
417 cpu_mitigations_off()) {
418 mmio_mitigation = MMIO_MITIGATION_OFF;
419 return;
420 }
421
422 if (mmio_mitigation == MMIO_MITIGATION_OFF)
423 return;
424
425 /*
426 * Enable CPU buffer clear mitigation for host and VMM, if also affected
427 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
428 */
429 if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
430 boot_cpu_has(X86_FEATURE_RTM)))
431 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
432
433 /*
434 * X86_FEATURE_CLEAR_CPU_BUF could be enabled by other VERW based
435 * mitigations, disable KVM-only mitigation in that case.
436 */
437 if (boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF))
438 static_branch_disable(&mmio_stale_data_clear);
439 else
440 static_branch_enable(&mmio_stale_data_clear);
441
442 /*
443 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
444 * be propagated to uncore buffers, clearing the Fill buffers on idle
445 * is required irrespective of SMT state.
446 */
447 if (!(x86_arch_cap_msr & ARCH_CAP_FBSDP_NO))
448 static_branch_enable(&mds_idle_clear);
449
450 /*
451 * Check if the system has the right microcode.
452 *
453 * CPU Fill buffer clear mitigation is enumerated by either an explicit
454 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
455 * affected systems.
456 */
457 if ((x86_arch_cap_msr & ARCH_CAP_FB_CLEAR) ||
458 (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
459 boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
460 !(x86_arch_cap_msr & ARCH_CAP_MDS_NO)))
461 mmio_mitigation = MMIO_MITIGATION_VERW;
462 else
463 mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
464
465 if (mmio_nosmt || cpu_mitigations_auto_nosmt())
466 cpu_smt_disable(false);
467 }
468
mmio_stale_data_parse_cmdline(char * str)469 static int __init mmio_stale_data_parse_cmdline(char *str)
470 {
471 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
472 return 0;
473
474 if (!str)
475 return -EINVAL;
476
477 if (!strcmp(str, "off")) {
478 mmio_mitigation = MMIO_MITIGATION_OFF;
479 } else if (!strcmp(str, "full")) {
480 mmio_mitigation = MMIO_MITIGATION_VERW;
481 } else if (!strcmp(str, "full,nosmt")) {
482 mmio_mitigation = MMIO_MITIGATION_VERW;
483 mmio_nosmt = true;
484 }
485
486 return 0;
487 }
488 early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
489
490 #undef pr_fmt
491 #define pr_fmt(fmt) "Register File Data Sampling: " fmt
492
493 enum rfds_mitigations {
494 RFDS_MITIGATION_OFF,
495 RFDS_MITIGATION_VERW,
496 RFDS_MITIGATION_UCODE_NEEDED,
497 };
498
499 /* Default mitigation for Register File Data Sampling */
500 static enum rfds_mitigations rfds_mitigation __ro_after_init =
501 IS_ENABLED(CONFIG_MITIGATION_RFDS) ? RFDS_MITIGATION_VERW : RFDS_MITIGATION_OFF;
502
503 static const char * const rfds_strings[] = {
504 [RFDS_MITIGATION_OFF] = "Vulnerable",
505 [RFDS_MITIGATION_VERW] = "Mitigation: Clear Register File",
506 [RFDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
507 };
508
rfds_select_mitigation(void)509 static void __init rfds_select_mitigation(void)
510 {
511 if (!boot_cpu_has_bug(X86_BUG_RFDS) || cpu_mitigations_off()) {
512 rfds_mitigation = RFDS_MITIGATION_OFF;
513 return;
514 }
515 if (rfds_mitigation == RFDS_MITIGATION_OFF)
516 return;
517
518 if (x86_arch_cap_msr & ARCH_CAP_RFDS_CLEAR)
519 setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
520 else
521 rfds_mitigation = RFDS_MITIGATION_UCODE_NEEDED;
522 }
523
rfds_parse_cmdline(char * str)524 static __init int rfds_parse_cmdline(char *str)
525 {
526 if (!str)
527 return -EINVAL;
528
529 if (!boot_cpu_has_bug(X86_BUG_RFDS))
530 return 0;
531
532 if (!strcmp(str, "off"))
533 rfds_mitigation = RFDS_MITIGATION_OFF;
534 else if (!strcmp(str, "on"))
535 rfds_mitigation = RFDS_MITIGATION_VERW;
536
537 return 0;
538 }
539 early_param("reg_file_data_sampling", rfds_parse_cmdline);
540
541 #undef pr_fmt
542 #define pr_fmt(fmt) "" fmt
543
md_clear_update_mitigation(void)544 static void __init md_clear_update_mitigation(void)
545 {
546 if (cpu_mitigations_off())
547 return;
548
549 if (!boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF))
550 goto out;
551
552 /*
553 * X86_FEATURE_CLEAR_CPU_BUF is now enabled. Update MDS, TAA and MMIO
554 * Stale Data mitigation, if necessary.
555 */
556 if (mds_mitigation == MDS_MITIGATION_OFF &&
557 boot_cpu_has_bug(X86_BUG_MDS)) {
558 mds_mitigation = MDS_MITIGATION_FULL;
559 mds_select_mitigation();
560 }
561 if (taa_mitigation == TAA_MITIGATION_OFF &&
562 boot_cpu_has_bug(X86_BUG_TAA)) {
563 taa_mitigation = TAA_MITIGATION_VERW;
564 taa_select_mitigation();
565 }
566 /*
567 * MMIO_MITIGATION_OFF is not checked here so that mmio_stale_data_clear
568 * gets updated correctly as per X86_FEATURE_CLEAR_CPU_BUF state.
569 */
570 if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
571 mmio_mitigation = MMIO_MITIGATION_VERW;
572 mmio_select_mitigation();
573 }
574 if (rfds_mitigation == RFDS_MITIGATION_OFF &&
575 boot_cpu_has_bug(X86_BUG_RFDS)) {
576 rfds_mitigation = RFDS_MITIGATION_VERW;
577 rfds_select_mitigation();
578 }
579 out:
580 if (boot_cpu_has_bug(X86_BUG_MDS))
581 pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
582 if (boot_cpu_has_bug(X86_BUG_TAA))
583 pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
584 if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
585 pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
586 else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
587 pr_info("MMIO Stale Data: Unknown: No mitigations\n");
588 if (boot_cpu_has_bug(X86_BUG_RFDS))
589 pr_info("Register File Data Sampling: %s\n", rfds_strings[rfds_mitigation]);
590 }
591
md_clear_select_mitigation(void)592 static void __init md_clear_select_mitigation(void)
593 {
594 mds_select_mitigation();
595 taa_select_mitigation();
596 mmio_select_mitigation();
597 rfds_select_mitigation();
598
599 /*
600 * As these mitigations are inter-related and rely on VERW instruction
601 * to clear the microarchitural buffers, update and print their status
602 * after mitigation selection is done for each of these vulnerabilities.
603 */
604 md_clear_update_mitigation();
605 }
606
607 #undef pr_fmt
608 #define pr_fmt(fmt) "SRBDS: " fmt
609
610 enum srbds_mitigations {
611 SRBDS_MITIGATION_OFF,
612 SRBDS_MITIGATION_UCODE_NEEDED,
613 SRBDS_MITIGATION_FULL,
614 SRBDS_MITIGATION_TSX_OFF,
615 SRBDS_MITIGATION_HYPERVISOR,
616 };
617
618 static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL;
619
620 static const char * const srbds_strings[] = {
621 [SRBDS_MITIGATION_OFF] = "Vulnerable",
622 [SRBDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
623 [SRBDS_MITIGATION_FULL] = "Mitigation: Microcode",
624 [SRBDS_MITIGATION_TSX_OFF] = "Mitigation: TSX disabled",
625 [SRBDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status",
626 };
627
628 static bool srbds_off;
629
update_srbds_msr(void)630 void update_srbds_msr(void)
631 {
632 u64 mcu_ctrl;
633
634 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
635 return;
636
637 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
638 return;
639
640 if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
641 return;
642
643 /*
644 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
645 * being disabled and it hasn't received the SRBDS MSR microcode.
646 */
647 if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
648 return;
649
650 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
651
652 switch (srbds_mitigation) {
653 case SRBDS_MITIGATION_OFF:
654 case SRBDS_MITIGATION_TSX_OFF:
655 mcu_ctrl |= RNGDS_MITG_DIS;
656 break;
657 case SRBDS_MITIGATION_FULL:
658 mcu_ctrl &= ~RNGDS_MITG_DIS;
659 break;
660 default:
661 break;
662 }
663
664 wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
665 }
666
srbds_select_mitigation(void)667 static void __init srbds_select_mitigation(void)
668 {
669 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
670 return;
671
672 /*
673 * Check to see if this is one of the MDS_NO systems supporting TSX that
674 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
675 * by Processor MMIO Stale Data vulnerability.
676 */
677 if ((x86_arch_cap_msr & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
678 !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
679 srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
680 else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
681 srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
682 else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
683 srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
684 else if (cpu_mitigations_off() || srbds_off)
685 srbds_mitigation = SRBDS_MITIGATION_OFF;
686
687 update_srbds_msr();
688 pr_info("%s\n", srbds_strings[srbds_mitigation]);
689 }
690
srbds_parse_cmdline(char * str)691 static int __init srbds_parse_cmdline(char *str)
692 {
693 if (!str)
694 return -EINVAL;
695
696 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
697 return 0;
698
699 srbds_off = !strcmp(str, "off");
700 return 0;
701 }
702 early_param("srbds", srbds_parse_cmdline);
703
704 #undef pr_fmt
705 #define pr_fmt(fmt) "L1D Flush : " fmt
706
707 enum l1d_flush_mitigations {
708 L1D_FLUSH_OFF = 0,
709 L1D_FLUSH_ON,
710 };
711
712 static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
713
l1d_flush_select_mitigation(void)714 static void __init l1d_flush_select_mitigation(void)
715 {
716 if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
717 return;
718
719 static_branch_enable(&switch_mm_cond_l1d_flush);
720 pr_info("Conditional flush on switch_mm() enabled\n");
721 }
722
l1d_flush_parse_cmdline(char * str)723 static int __init l1d_flush_parse_cmdline(char *str)
724 {
725 if (!strcmp(str, "on"))
726 l1d_flush_mitigation = L1D_FLUSH_ON;
727
728 return 0;
729 }
730 early_param("l1d_flush", l1d_flush_parse_cmdline);
731
732 #undef pr_fmt
733 #define pr_fmt(fmt) "GDS: " fmt
734
735 enum gds_mitigations {
736 GDS_MITIGATION_OFF,
737 GDS_MITIGATION_UCODE_NEEDED,
738 GDS_MITIGATION_FORCE,
739 GDS_MITIGATION_FULL,
740 GDS_MITIGATION_FULL_LOCKED,
741 GDS_MITIGATION_HYPERVISOR,
742 };
743
744 #if IS_ENABLED(CONFIG_GDS_FORCE_MITIGATION)
745 static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FORCE;
746 #else
747 static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FULL;
748 #endif
749
750 static const char * const gds_strings[] = {
751 [GDS_MITIGATION_OFF] = "Vulnerable",
752 [GDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
753 [GDS_MITIGATION_FORCE] = "Mitigation: AVX disabled, no microcode",
754 [GDS_MITIGATION_FULL] = "Mitigation: Microcode",
755 [GDS_MITIGATION_FULL_LOCKED] = "Mitigation: Microcode (locked)",
756 [GDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status",
757 };
758
gds_ucode_mitigated(void)759 bool gds_ucode_mitigated(void)
760 {
761 return (gds_mitigation == GDS_MITIGATION_FULL ||
762 gds_mitigation == GDS_MITIGATION_FULL_LOCKED);
763 }
764 EXPORT_SYMBOL_GPL(gds_ucode_mitigated);
765
update_gds_msr(void)766 void update_gds_msr(void)
767 {
768 u64 mcu_ctrl_after;
769 u64 mcu_ctrl;
770
771 switch (gds_mitigation) {
772 case GDS_MITIGATION_OFF:
773 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
774 mcu_ctrl |= GDS_MITG_DIS;
775 break;
776 case GDS_MITIGATION_FULL_LOCKED:
777 /*
778 * The LOCKED state comes from the boot CPU. APs might not have
779 * the same state. Make sure the mitigation is enabled on all
780 * CPUs.
781 */
782 case GDS_MITIGATION_FULL:
783 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
784 mcu_ctrl &= ~GDS_MITG_DIS;
785 break;
786 case GDS_MITIGATION_FORCE:
787 case GDS_MITIGATION_UCODE_NEEDED:
788 case GDS_MITIGATION_HYPERVISOR:
789 return;
790 };
791
792 wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
793
794 /*
795 * Check to make sure that the WRMSR value was not ignored. Writes to
796 * GDS_MITG_DIS will be ignored if this processor is locked but the boot
797 * processor was not.
798 */
799 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl_after);
800 WARN_ON_ONCE(mcu_ctrl != mcu_ctrl_after);
801 }
802
gds_select_mitigation(void)803 static void __init gds_select_mitigation(void)
804 {
805 u64 mcu_ctrl;
806
807 if (!boot_cpu_has_bug(X86_BUG_GDS))
808 return;
809
810 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
811 gds_mitigation = GDS_MITIGATION_HYPERVISOR;
812 goto out;
813 }
814
815 if (cpu_mitigations_off())
816 gds_mitigation = GDS_MITIGATION_OFF;
817 /* Will verify below that mitigation _can_ be disabled */
818
819 /* No microcode */
820 if (!(x86_arch_cap_msr & ARCH_CAP_GDS_CTRL)) {
821 if (gds_mitigation == GDS_MITIGATION_FORCE) {
822 /*
823 * This only needs to be done on the boot CPU so do it
824 * here rather than in update_gds_msr()
825 */
826 setup_clear_cpu_cap(X86_FEATURE_AVX);
827 pr_warn("Microcode update needed! Disabling AVX as mitigation.\n");
828 } else {
829 gds_mitigation = GDS_MITIGATION_UCODE_NEEDED;
830 }
831 goto out;
832 }
833
834 /* Microcode has mitigation, use it */
835 if (gds_mitigation == GDS_MITIGATION_FORCE)
836 gds_mitigation = GDS_MITIGATION_FULL;
837
838 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
839 if (mcu_ctrl & GDS_MITG_LOCKED) {
840 if (gds_mitigation == GDS_MITIGATION_OFF)
841 pr_warn("Mitigation locked. Disable failed.\n");
842
843 /*
844 * The mitigation is selected from the boot CPU. All other CPUs
845 * _should_ have the same state. If the boot CPU isn't locked
846 * but others are then update_gds_msr() will WARN() of the state
847 * mismatch. If the boot CPU is locked update_gds_msr() will
848 * ensure the other CPUs have the mitigation enabled.
849 */
850 gds_mitigation = GDS_MITIGATION_FULL_LOCKED;
851 }
852
853 update_gds_msr();
854 out:
855 pr_info("%s\n", gds_strings[gds_mitigation]);
856 }
857
gds_parse_cmdline(char * str)858 static int __init gds_parse_cmdline(char *str)
859 {
860 if (!str)
861 return -EINVAL;
862
863 if (!boot_cpu_has_bug(X86_BUG_GDS))
864 return 0;
865
866 if (!strcmp(str, "off"))
867 gds_mitigation = GDS_MITIGATION_OFF;
868 else if (!strcmp(str, "force"))
869 gds_mitigation = GDS_MITIGATION_FORCE;
870
871 return 0;
872 }
873 early_param("gather_data_sampling", gds_parse_cmdline);
874
875 #undef pr_fmt
876 #define pr_fmt(fmt) "Spectre V1 : " fmt
877
878 enum spectre_v1_mitigation {
879 SPECTRE_V1_MITIGATION_NONE,
880 SPECTRE_V1_MITIGATION_AUTO,
881 };
882
883 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
884 SPECTRE_V1_MITIGATION_AUTO;
885
886 static const char * const spectre_v1_strings[] = {
887 [SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
888 [SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
889 };
890
891 /*
892 * Does SMAP provide full mitigation against speculative kernel access to
893 * userspace?
894 */
smap_works_speculatively(void)895 static bool smap_works_speculatively(void)
896 {
897 if (!boot_cpu_has(X86_FEATURE_SMAP))
898 return false;
899
900 /*
901 * On CPUs which are vulnerable to Meltdown, SMAP does not
902 * prevent speculative access to user data in the L1 cache.
903 * Consider SMAP to be non-functional as a mitigation on these
904 * CPUs.
905 */
906 if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
907 return false;
908
909 return true;
910 }
911
spectre_v1_select_mitigation(void)912 static void __init spectre_v1_select_mitigation(void)
913 {
914 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
915 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
916 return;
917 }
918
919 if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
920 /*
921 * With Spectre v1, a user can speculatively control either
922 * path of a conditional swapgs with a user-controlled GS
923 * value. The mitigation is to add lfences to both code paths.
924 *
925 * If FSGSBASE is enabled, the user can put a kernel address in
926 * GS, in which case SMAP provides no protection.
927 *
928 * If FSGSBASE is disabled, the user can only put a user space
929 * address in GS. That makes an attack harder, but still
930 * possible if there's no SMAP protection.
931 */
932 if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
933 !smap_works_speculatively()) {
934 /*
935 * Mitigation can be provided from SWAPGS itself or
936 * PTI as the CR3 write in the Meltdown mitigation
937 * is serializing.
938 *
939 * If neither is there, mitigate with an LFENCE to
940 * stop speculation through swapgs.
941 */
942 if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
943 !boot_cpu_has(X86_FEATURE_PTI))
944 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
945
946 /*
947 * Enable lfences in the kernel entry (non-swapgs)
948 * paths, to prevent user entry from speculatively
949 * skipping swapgs.
950 */
951 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
952 }
953 }
954
955 pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
956 }
957
nospectre_v1_cmdline(char * str)958 static int __init nospectre_v1_cmdline(char *str)
959 {
960 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
961 return 0;
962 }
963 early_param("nospectre_v1", nospectre_v1_cmdline);
964
965 enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = SPECTRE_V2_NONE;
966
967 #undef pr_fmt
968 #define pr_fmt(fmt) "RETBleed: " fmt
969
970 enum retbleed_mitigation {
971 RETBLEED_MITIGATION_NONE,
972 RETBLEED_MITIGATION_UNRET,
973 RETBLEED_MITIGATION_IBPB,
974 RETBLEED_MITIGATION_IBRS,
975 RETBLEED_MITIGATION_EIBRS,
976 RETBLEED_MITIGATION_STUFF,
977 };
978
979 enum retbleed_mitigation_cmd {
980 RETBLEED_CMD_OFF,
981 RETBLEED_CMD_AUTO,
982 RETBLEED_CMD_UNRET,
983 RETBLEED_CMD_IBPB,
984 RETBLEED_CMD_STUFF,
985 };
986
987 static const char * const retbleed_strings[] = {
988 [RETBLEED_MITIGATION_NONE] = "Vulnerable",
989 [RETBLEED_MITIGATION_UNRET] = "Mitigation: untrained return thunk",
990 [RETBLEED_MITIGATION_IBPB] = "Mitigation: IBPB",
991 [RETBLEED_MITIGATION_IBRS] = "Mitigation: IBRS",
992 [RETBLEED_MITIGATION_EIBRS] = "Mitigation: Enhanced IBRS",
993 [RETBLEED_MITIGATION_STUFF] = "Mitigation: Stuffing",
994 };
995
996 static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
997 RETBLEED_MITIGATION_NONE;
998 static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init =
999 RETBLEED_CMD_AUTO;
1000
1001 static int __ro_after_init retbleed_nosmt = false;
1002
retbleed_parse_cmdline(char * str)1003 static int __init retbleed_parse_cmdline(char *str)
1004 {
1005 if (!str)
1006 return -EINVAL;
1007
1008 while (str) {
1009 char *next = strchr(str, ',');
1010 if (next) {
1011 *next = 0;
1012 next++;
1013 }
1014
1015 if (!strcmp(str, "off")) {
1016 retbleed_cmd = RETBLEED_CMD_OFF;
1017 } else if (!strcmp(str, "auto")) {
1018 retbleed_cmd = RETBLEED_CMD_AUTO;
1019 } else if (!strcmp(str, "unret")) {
1020 retbleed_cmd = RETBLEED_CMD_UNRET;
1021 } else if (!strcmp(str, "ibpb")) {
1022 retbleed_cmd = RETBLEED_CMD_IBPB;
1023 } else if (!strcmp(str, "stuff")) {
1024 retbleed_cmd = RETBLEED_CMD_STUFF;
1025 } else if (!strcmp(str, "nosmt")) {
1026 retbleed_nosmt = true;
1027 } else if (!strcmp(str, "force")) {
1028 setup_force_cpu_bug(X86_BUG_RETBLEED);
1029 } else {
1030 pr_err("Ignoring unknown retbleed option (%s).", str);
1031 }
1032
1033 str = next;
1034 }
1035
1036 return 0;
1037 }
1038 early_param("retbleed", retbleed_parse_cmdline);
1039
1040 #define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
1041 #define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
1042
retbleed_select_mitigation(void)1043 static void __init retbleed_select_mitigation(void)
1044 {
1045 bool mitigate_smt = false;
1046
1047 if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off())
1048 return;
1049
1050 switch (retbleed_cmd) {
1051 case RETBLEED_CMD_OFF:
1052 return;
1053
1054 case RETBLEED_CMD_UNRET:
1055 if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY)) {
1056 retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1057 } else {
1058 pr_err("WARNING: kernel not compiled with CPU_UNRET_ENTRY.\n");
1059 goto do_cmd_auto;
1060 }
1061 break;
1062
1063 case RETBLEED_CMD_IBPB:
1064 if (!boot_cpu_has(X86_FEATURE_IBPB)) {
1065 pr_err("WARNING: CPU does not support IBPB.\n");
1066 goto do_cmd_auto;
1067 } else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) {
1068 retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1069 } else {
1070 pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n");
1071 goto do_cmd_auto;
1072 }
1073 break;
1074
1075 case RETBLEED_CMD_STUFF:
1076 if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING) &&
1077 spectre_v2_enabled == SPECTRE_V2_RETPOLINE) {
1078 retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
1079
1080 } else {
1081 if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING))
1082 pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n");
1083 else
1084 pr_err("WARNING: kernel not compiled with CALL_DEPTH_TRACKING.\n");
1085
1086 goto do_cmd_auto;
1087 }
1088 break;
1089
1090 do_cmd_auto:
1091 case RETBLEED_CMD_AUTO:
1092 default:
1093 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1094 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
1095 if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY))
1096 retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1097 else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY) && boot_cpu_has(X86_FEATURE_IBPB))
1098 retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1099 }
1100
1101 /*
1102 * The Intel mitigation (IBRS or eIBRS) was already selected in
1103 * spectre_v2_select_mitigation(). 'retbleed_mitigation' will
1104 * be set accordingly below.
1105 */
1106
1107 break;
1108 }
1109
1110 switch (retbleed_mitigation) {
1111 case RETBLEED_MITIGATION_UNRET:
1112 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1113 setup_force_cpu_cap(X86_FEATURE_UNRET);
1114
1115 set_return_thunk(retbleed_return_thunk);
1116
1117 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
1118 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
1119 pr_err(RETBLEED_UNTRAIN_MSG);
1120
1121 mitigate_smt = true;
1122 break;
1123
1124 case RETBLEED_MITIGATION_IBPB:
1125 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
1126 setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
1127 mitigate_smt = true;
1128
1129 /*
1130 * IBPB on entry already obviates the need for
1131 * software-based untraining so clear those in case some
1132 * other mitigation like SRSO has selected them.
1133 */
1134 setup_clear_cpu_cap(X86_FEATURE_UNRET);
1135 setup_clear_cpu_cap(X86_FEATURE_RETHUNK);
1136
1137 /*
1138 * There is no need for RSB filling: entry_ibpb() ensures
1139 * all predictions, including the RSB, are invalidated,
1140 * regardless of IBPB implementation.
1141 */
1142 setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1143
1144 break;
1145
1146 case RETBLEED_MITIGATION_STUFF:
1147 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1148 setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
1149 #ifdef CONFIG_CALL_DEPTH_TRACKING
1150 set_return_thunk(&__x86_return_skl);
1151 #endif
1152 break;
1153
1154 default:
1155 break;
1156 }
1157
1158 if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
1159 (retbleed_nosmt || cpu_mitigations_auto_nosmt()))
1160 cpu_smt_disable(false);
1161
1162 /*
1163 * Let IBRS trump all on Intel without affecting the effects of the
1164 * retbleed= cmdline option except for call depth based stuffing
1165 */
1166 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1167 switch (spectre_v2_enabled) {
1168 case SPECTRE_V2_IBRS:
1169 retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
1170 break;
1171 case SPECTRE_V2_EIBRS:
1172 case SPECTRE_V2_EIBRS_RETPOLINE:
1173 case SPECTRE_V2_EIBRS_LFENCE:
1174 retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
1175 break;
1176 default:
1177 if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF)
1178 pr_err(RETBLEED_INTEL_MSG);
1179 }
1180 }
1181
1182 pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
1183 }
1184
1185 #undef pr_fmt
1186 #define pr_fmt(fmt) "ITS: " fmt
1187
1188 enum its_mitigation_cmd {
1189 ITS_CMD_OFF,
1190 ITS_CMD_ON,
1191 ITS_CMD_VMEXIT,
1192 ITS_CMD_RSB_STUFF,
1193 };
1194
1195 enum its_mitigation {
1196 ITS_MITIGATION_OFF,
1197 ITS_MITIGATION_VMEXIT_ONLY,
1198 ITS_MITIGATION_ALIGNED_THUNKS,
1199 ITS_MITIGATION_RETPOLINE_STUFF,
1200 };
1201
1202 static const char * const its_strings[] = {
1203 [ITS_MITIGATION_OFF] = "Vulnerable",
1204 [ITS_MITIGATION_VMEXIT_ONLY] = "Mitigation: Vulnerable, KVM: Not affected",
1205 [ITS_MITIGATION_ALIGNED_THUNKS] = "Mitigation: Aligned branch/return thunks",
1206 [ITS_MITIGATION_RETPOLINE_STUFF] = "Mitigation: Retpolines, Stuffing RSB",
1207 };
1208
1209 static enum its_mitigation its_mitigation __ro_after_init = ITS_MITIGATION_ALIGNED_THUNKS;
1210
1211 static enum its_mitigation_cmd its_cmd __ro_after_init =
1212 IS_ENABLED(CONFIG_MITIGATION_ITS) ? ITS_CMD_ON : ITS_CMD_OFF;
1213
its_parse_cmdline(char * str)1214 static int __init its_parse_cmdline(char *str)
1215 {
1216 if (!str)
1217 return -EINVAL;
1218
1219 if (!IS_ENABLED(CONFIG_MITIGATION_ITS)) {
1220 pr_err("Mitigation disabled at compile time, ignoring option (%s)", str);
1221 return 0;
1222 }
1223
1224 if (!strcmp(str, "off")) {
1225 its_cmd = ITS_CMD_OFF;
1226 } else if (!strcmp(str, "on")) {
1227 its_cmd = ITS_CMD_ON;
1228 } else if (!strcmp(str, "force")) {
1229 its_cmd = ITS_CMD_ON;
1230 setup_force_cpu_bug(X86_BUG_ITS);
1231 } else if (!strcmp(str, "vmexit")) {
1232 its_cmd = ITS_CMD_VMEXIT;
1233 } else if (!strcmp(str, "stuff")) {
1234 its_cmd = ITS_CMD_RSB_STUFF;
1235 } else {
1236 pr_err("Ignoring unknown indirect_target_selection option (%s).", str);
1237 }
1238
1239 return 0;
1240 }
1241 early_param("indirect_target_selection", its_parse_cmdline);
1242
its_select_mitigation(void)1243 static void __init its_select_mitigation(void)
1244 {
1245 enum its_mitigation_cmd cmd = its_cmd;
1246
1247 if (!boot_cpu_has_bug(X86_BUG_ITS) || cpu_mitigations_off()) {
1248 its_mitigation = ITS_MITIGATION_OFF;
1249 return;
1250 }
1251
1252 /* Retpoline+CDT mitigates ITS, bail out */
1253 if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
1254 boot_cpu_has(X86_FEATURE_CALL_DEPTH)) {
1255 its_mitigation = ITS_MITIGATION_RETPOLINE_STUFF;
1256 goto out;
1257 }
1258
1259 /* Exit early to avoid irrelevant warnings */
1260 if (cmd == ITS_CMD_OFF) {
1261 its_mitigation = ITS_MITIGATION_OFF;
1262 goto out;
1263 }
1264 if (spectre_v2_enabled == SPECTRE_V2_NONE) {
1265 pr_err("WARNING: Spectre-v2 mitigation is off, disabling ITS\n");
1266 its_mitigation = ITS_MITIGATION_OFF;
1267 goto out;
1268 }
1269 if (!IS_ENABLED(CONFIG_RETPOLINE) || !IS_ENABLED(CONFIG_RETHUNK)) {
1270 pr_err("WARNING: ITS mitigation depends on retpoline and rethunk support\n");
1271 its_mitigation = ITS_MITIGATION_OFF;
1272 goto out;
1273 }
1274 if (IS_ENABLED(CONFIG_DEBUG_FORCE_FUNCTION_ALIGN_64B)) {
1275 pr_err("WARNING: ITS mitigation is not compatible with CONFIG_DEBUG_FORCE_FUNCTION_ALIGN_64B\n");
1276 its_mitigation = ITS_MITIGATION_OFF;
1277 goto out;
1278 }
1279 if (boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE)) {
1280 pr_err("WARNING: ITS mitigation is not compatible with lfence mitigation\n");
1281 its_mitigation = ITS_MITIGATION_OFF;
1282 goto out;
1283 }
1284
1285 if (cmd == ITS_CMD_RSB_STUFF &&
1286 (!boot_cpu_has(X86_FEATURE_RETPOLINE) || !IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING))) {
1287 pr_err("RSB stuff mitigation not supported, using default\n");
1288 cmd = ITS_CMD_ON;
1289 }
1290
1291 switch (cmd) {
1292 case ITS_CMD_OFF:
1293 its_mitigation = ITS_MITIGATION_OFF;
1294 break;
1295 case ITS_CMD_VMEXIT:
1296 if (boot_cpu_has_bug(X86_BUG_ITS_NATIVE_ONLY)) {
1297 its_mitigation = ITS_MITIGATION_VMEXIT_ONLY;
1298 goto out;
1299 }
1300 fallthrough;
1301 case ITS_CMD_ON:
1302 its_mitigation = ITS_MITIGATION_ALIGNED_THUNKS;
1303 if (!boot_cpu_has(X86_FEATURE_RETPOLINE))
1304 setup_force_cpu_cap(X86_FEATURE_INDIRECT_THUNK_ITS);
1305 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1306 set_return_thunk(its_return_thunk);
1307 break;
1308 case ITS_CMD_RSB_STUFF:
1309 its_mitigation = ITS_MITIGATION_RETPOLINE_STUFF;
1310 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1311 setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
1312 #ifdef CONFIG_CALL_DEPTH_TRACKING
1313 set_return_thunk(&__x86_return_skl);
1314 #endif
1315 if (retbleed_mitigation == RETBLEED_MITIGATION_NONE) {
1316 retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
1317 pr_info("Retbleed mitigation updated to stuffing\n");
1318 }
1319 break;
1320 }
1321 out:
1322 pr_info("%s\n", its_strings[its_mitigation]);
1323 }
1324
1325 #undef pr_fmt
1326 #define pr_fmt(fmt) "Spectre V2 : " fmt
1327
1328 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
1329 SPECTRE_V2_USER_NONE;
1330 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
1331 SPECTRE_V2_USER_NONE;
1332
1333 #ifdef CONFIG_RETPOLINE
1334 static bool spectre_v2_bad_module;
1335
retpoline_module_ok(bool has_retpoline)1336 bool retpoline_module_ok(bool has_retpoline)
1337 {
1338 if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
1339 return true;
1340
1341 pr_err("System may be vulnerable to spectre v2\n");
1342 spectre_v2_bad_module = true;
1343 return false;
1344 }
1345
spectre_v2_module_string(void)1346 static inline const char *spectre_v2_module_string(void)
1347 {
1348 return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
1349 }
1350 #else
spectre_v2_module_string(void)1351 static inline const char *spectre_v2_module_string(void) { return ""; }
1352 #endif
1353
1354 #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
1355 #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
1356 #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
1357 #define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
1358
1359 #ifdef CONFIG_BPF_SYSCALL
unpriv_ebpf_notify(int new_state)1360 void unpriv_ebpf_notify(int new_state)
1361 {
1362 if (new_state)
1363 return;
1364
1365 /* Unprivileged eBPF is enabled */
1366
1367 switch (spectre_v2_enabled) {
1368 case SPECTRE_V2_EIBRS:
1369 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1370 break;
1371 case SPECTRE_V2_EIBRS_LFENCE:
1372 if (sched_smt_active())
1373 pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1374 break;
1375 default:
1376 break;
1377 }
1378 }
1379 #endif
1380
match_option(const char * arg,int arglen,const char * opt)1381 static inline bool match_option(const char *arg, int arglen, const char *opt)
1382 {
1383 int len = strlen(opt);
1384
1385 return len == arglen && !strncmp(arg, opt, len);
1386 }
1387
1388 /* The kernel command line selection for spectre v2 */
1389 enum spectre_v2_mitigation_cmd {
1390 SPECTRE_V2_CMD_NONE,
1391 SPECTRE_V2_CMD_AUTO,
1392 SPECTRE_V2_CMD_FORCE,
1393 SPECTRE_V2_CMD_RETPOLINE,
1394 SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1395 SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1396 SPECTRE_V2_CMD_EIBRS,
1397 SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1398 SPECTRE_V2_CMD_EIBRS_LFENCE,
1399 SPECTRE_V2_CMD_IBRS,
1400 };
1401
1402 enum spectre_v2_user_cmd {
1403 SPECTRE_V2_USER_CMD_NONE,
1404 SPECTRE_V2_USER_CMD_AUTO,
1405 SPECTRE_V2_USER_CMD_FORCE,
1406 SPECTRE_V2_USER_CMD_PRCTL,
1407 SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1408 SPECTRE_V2_USER_CMD_SECCOMP,
1409 SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1410 };
1411
1412 static const char * const spectre_v2_user_strings[] = {
1413 [SPECTRE_V2_USER_NONE] = "User space: Vulnerable",
1414 [SPECTRE_V2_USER_STRICT] = "User space: Mitigation: STIBP protection",
1415 [SPECTRE_V2_USER_STRICT_PREFERRED] = "User space: Mitigation: STIBP always-on protection",
1416 [SPECTRE_V2_USER_PRCTL] = "User space: Mitigation: STIBP via prctl",
1417 [SPECTRE_V2_USER_SECCOMP] = "User space: Mitigation: STIBP via seccomp and prctl",
1418 };
1419
1420 static const struct {
1421 const char *option;
1422 enum spectre_v2_user_cmd cmd;
1423 bool secure;
1424 } v2_user_options[] __initconst = {
1425 { "auto", SPECTRE_V2_USER_CMD_AUTO, false },
1426 { "off", SPECTRE_V2_USER_CMD_NONE, false },
1427 { "on", SPECTRE_V2_USER_CMD_FORCE, true },
1428 { "prctl", SPECTRE_V2_USER_CMD_PRCTL, false },
1429 { "prctl,ibpb", SPECTRE_V2_USER_CMD_PRCTL_IBPB, false },
1430 { "seccomp", SPECTRE_V2_USER_CMD_SECCOMP, false },
1431 { "seccomp,ibpb", SPECTRE_V2_USER_CMD_SECCOMP_IBPB, false },
1432 };
1433
spec_v2_user_print_cond(const char * reason,bool secure)1434 static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1435 {
1436 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1437 pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1438 }
1439
1440 static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd;
1441
1442 static enum spectre_v2_user_cmd __init
spectre_v2_parse_user_cmdline(void)1443 spectre_v2_parse_user_cmdline(void)
1444 {
1445 enum spectre_v2_user_cmd mode;
1446 char arg[20];
1447 int ret, i;
1448
1449 mode = IS_ENABLED(CONFIG_MITIGATION_SPECTRE_V2) ?
1450 SPECTRE_V2_USER_CMD_AUTO : SPECTRE_V2_USER_CMD_NONE;
1451
1452 switch (spectre_v2_cmd) {
1453 case SPECTRE_V2_CMD_NONE:
1454 return SPECTRE_V2_USER_CMD_NONE;
1455 case SPECTRE_V2_CMD_FORCE:
1456 return SPECTRE_V2_USER_CMD_FORCE;
1457 default:
1458 break;
1459 }
1460
1461 ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
1462 arg, sizeof(arg));
1463 if (ret < 0)
1464 return mode;
1465
1466 for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1467 if (match_option(arg, ret, v2_user_options[i].option)) {
1468 spec_v2_user_print_cond(v2_user_options[i].option,
1469 v2_user_options[i].secure);
1470 return v2_user_options[i].cmd;
1471 }
1472 }
1473
1474 pr_err("Unknown user space protection option (%s). Switching to default\n", arg);
1475 return mode;
1476 }
1477
spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)1478 static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1479 {
1480 return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS;
1481 }
1482
1483 static void __init
spectre_v2_user_select_mitigation(void)1484 spectre_v2_user_select_mitigation(void)
1485 {
1486 enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
1487 bool smt_possible = IS_ENABLED(CONFIG_SMP);
1488 enum spectre_v2_user_cmd cmd;
1489
1490 if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1491 return;
1492
1493 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
1494 cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
1495 smt_possible = false;
1496
1497 cmd = spectre_v2_parse_user_cmdline();
1498 switch (cmd) {
1499 case SPECTRE_V2_USER_CMD_NONE:
1500 goto set_mode;
1501 case SPECTRE_V2_USER_CMD_FORCE:
1502 mode = SPECTRE_V2_USER_STRICT;
1503 break;
1504 case SPECTRE_V2_USER_CMD_AUTO:
1505 case SPECTRE_V2_USER_CMD_PRCTL:
1506 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1507 mode = SPECTRE_V2_USER_PRCTL;
1508 break;
1509 case SPECTRE_V2_USER_CMD_SECCOMP:
1510 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1511 if (IS_ENABLED(CONFIG_SECCOMP))
1512 mode = SPECTRE_V2_USER_SECCOMP;
1513 else
1514 mode = SPECTRE_V2_USER_PRCTL;
1515 break;
1516 }
1517
1518 /* Initialize Indirect Branch Prediction Barrier */
1519 if (boot_cpu_has(X86_FEATURE_IBPB)) {
1520 setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
1521
1522 spectre_v2_user_ibpb = mode;
1523 switch (cmd) {
1524 case SPECTRE_V2_USER_CMD_FORCE:
1525 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1526 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1527 static_branch_enable(&switch_mm_always_ibpb);
1528 spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1529 break;
1530 case SPECTRE_V2_USER_CMD_PRCTL:
1531 case SPECTRE_V2_USER_CMD_AUTO:
1532 case SPECTRE_V2_USER_CMD_SECCOMP:
1533 static_branch_enable(&switch_mm_cond_ibpb);
1534 break;
1535 default:
1536 break;
1537 }
1538
1539 pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
1540 static_key_enabled(&switch_mm_always_ibpb) ?
1541 "always-on" : "conditional");
1542 }
1543
1544 /*
1545 * If no STIBP, Intel enhanced IBRS is enabled, or SMT impossible, STIBP
1546 * is not required.
1547 *
1548 * Intel's Enhanced IBRS also protects against cross-thread branch target
1549 * injection in user-mode as the IBRS bit remains always set which
1550 * implicitly enables cross-thread protections. However, in legacy IBRS
1551 * mode, the IBRS bit is set only on kernel entry and cleared on return
1552 * to userspace. AMD Automatic IBRS also does not protect userspace.
1553 * These modes therefore disable the implicit cross-thread protection,
1554 * so allow for STIBP to be selected in those cases.
1555 */
1556 if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1557 !smt_possible ||
1558 (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
1559 !boot_cpu_has(X86_FEATURE_AUTOIBRS)))
1560 return;
1561
1562 /*
1563 * At this point, an STIBP mode other than "off" has been set.
1564 * If STIBP support is not being forced, check if STIBP always-on
1565 * is preferred.
1566 */
1567 if (mode != SPECTRE_V2_USER_STRICT &&
1568 boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1569 mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1570
1571 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
1572 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
1573 if (mode != SPECTRE_V2_USER_STRICT &&
1574 mode != SPECTRE_V2_USER_STRICT_PREFERRED)
1575 pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
1576 mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1577 }
1578
1579 spectre_v2_user_stibp = mode;
1580
1581 set_mode:
1582 pr_info("%s\n", spectre_v2_user_strings[mode]);
1583 }
1584
1585 static const char * const spectre_v2_strings[] = {
1586 [SPECTRE_V2_NONE] = "Vulnerable",
1587 [SPECTRE_V2_RETPOLINE] = "Mitigation: Retpolines",
1588 [SPECTRE_V2_LFENCE] = "Mitigation: LFENCE",
1589 [SPECTRE_V2_EIBRS] = "Mitigation: Enhanced / Automatic IBRS",
1590 [SPECTRE_V2_EIBRS_LFENCE] = "Mitigation: Enhanced / Automatic IBRS + LFENCE",
1591 [SPECTRE_V2_EIBRS_RETPOLINE] = "Mitigation: Enhanced / Automatic IBRS + Retpolines",
1592 [SPECTRE_V2_IBRS] = "Mitigation: IBRS",
1593 };
1594
1595 static const struct {
1596 const char *option;
1597 enum spectre_v2_mitigation_cmd cmd;
1598 bool secure;
1599 } mitigation_options[] __initconst = {
1600 { "off", SPECTRE_V2_CMD_NONE, false },
1601 { "on", SPECTRE_V2_CMD_FORCE, true },
1602 { "retpoline", SPECTRE_V2_CMD_RETPOLINE, false },
1603 { "retpoline,amd", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false },
1604 { "retpoline,lfence", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false },
1605 { "retpoline,generic", SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1606 { "eibrs", SPECTRE_V2_CMD_EIBRS, false },
1607 { "eibrs,lfence", SPECTRE_V2_CMD_EIBRS_LFENCE, false },
1608 { "eibrs,retpoline", SPECTRE_V2_CMD_EIBRS_RETPOLINE, false },
1609 { "auto", SPECTRE_V2_CMD_AUTO, false },
1610 { "ibrs", SPECTRE_V2_CMD_IBRS, false },
1611 };
1612
spec_v2_print_cond(const char * reason,bool secure)1613 static void __init spec_v2_print_cond(const char *reason, bool secure)
1614 {
1615 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1616 pr_info("%s selected on command line.\n", reason);
1617 }
1618
spectre_v2_parse_cmdline(void)1619 static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1620 {
1621 enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
1622 char arg[20];
1623 int ret, i;
1624
1625 if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1626 cpu_mitigations_off())
1627 return SPECTRE_V2_CMD_NONE;
1628
1629 ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1630 if (ret < 0)
1631 return SPECTRE_V2_CMD_AUTO;
1632
1633 for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1634 if (!match_option(arg, ret, mitigation_options[i].option))
1635 continue;
1636 cmd = mitigation_options[i].cmd;
1637 break;
1638 }
1639
1640 if (i >= ARRAY_SIZE(mitigation_options)) {
1641 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1642 return SPECTRE_V2_CMD_AUTO;
1643 }
1644
1645 if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1646 cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1647 cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1648 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1649 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1650 !IS_ENABLED(CONFIG_RETPOLINE)) {
1651 pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1652 mitigation_options[i].option);
1653 return SPECTRE_V2_CMD_AUTO;
1654 }
1655
1656 if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1657 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1658 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1659 !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1660 pr_err("%s selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n",
1661 mitigation_options[i].option);
1662 return SPECTRE_V2_CMD_AUTO;
1663 }
1664
1665 if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1666 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1667 !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1668 pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1669 mitigation_options[i].option);
1670 return SPECTRE_V2_CMD_AUTO;
1671 }
1672
1673 if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_CPU_IBRS_ENTRY)) {
1674 pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1675 mitigation_options[i].option);
1676 return SPECTRE_V2_CMD_AUTO;
1677 }
1678
1679 if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1680 pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
1681 mitigation_options[i].option);
1682 return SPECTRE_V2_CMD_AUTO;
1683 }
1684
1685 if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
1686 pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
1687 mitigation_options[i].option);
1688 return SPECTRE_V2_CMD_AUTO;
1689 }
1690
1691 if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) {
1692 pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
1693 mitigation_options[i].option);
1694 return SPECTRE_V2_CMD_AUTO;
1695 }
1696
1697 spec_v2_print_cond(mitigation_options[i].option,
1698 mitigation_options[i].secure);
1699 return cmd;
1700 }
1701
spectre_v2_select_retpoline(void)1702 static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1703 {
1704 if (!IS_ENABLED(CONFIG_RETPOLINE)) {
1705 pr_err("Kernel not compiled with retpoline; no mitigation available!");
1706 return SPECTRE_V2_NONE;
1707 }
1708
1709 return SPECTRE_V2_RETPOLINE;
1710 }
1711
1712 static bool __ro_after_init rrsba_disabled;
1713
1714 /* Disable in-kernel use of non-RSB RET predictors */
spec_ctrl_disable_kernel_rrsba(void)1715 static void __init spec_ctrl_disable_kernel_rrsba(void)
1716 {
1717 if (rrsba_disabled)
1718 return;
1719
1720 if (!(x86_arch_cap_msr & ARCH_CAP_RRSBA)) {
1721 rrsba_disabled = true;
1722 return;
1723 }
1724
1725 if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
1726 return;
1727
1728 x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
1729 update_spec_ctrl(x86_spec_ctrl_base);
1730 rrsba_disabled = true;
1731 }
1732
spectre_v2_select_rsb_mitigation(enum spectre_v2_mitigation mode)1733 static void __init spectre_v2_select_rsb_mitigation(enum spectre_v2_mitigation mode)
1734 {
1735 /*
1736 * Similar to context switches, there are two types of RSB attacks
1737 * after VM exit:
1738 *
1739 * 1) RSB underflow
1740 *
1741 * 2) Poisoned RSB entry
1742 *
1743 * When retpoline is enabled, both are mitigated by filling/clearing
1744 * the RSB.
1745 *
1746 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
1747 * prediction isolation protections, RSB still needs to be cleared
1748 * because of #2. Note that SMEP provides no protection here, unlike
1749 * user-space-poisoned RSB entries.
1750 *
1751 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB
1752 * bug is present then a LITE version of RSB protection is required,
1753 * just a single call needs to retire before a RET is executed.
1754 */
1755 switch (mode) {
1756 case SPECTRE_V2_NONE:
1757 break;
1758
1759 case SPECTRE_V2_EIBRS:
1760 case SPECTRE_V2_EIBRS_LFENCE:
1761 case SPECTRE_V2_EIBRS_RETPOLINE:
1762 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
1763 pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
1764 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
1765 }
1766 break;
1767
1768 case SPECTRE_V2_RETPOLINE:
1769 case SPECTRE_V2_LFENCE:
1770 case SPECTRE_V2_IBRS:
1771 pr_info("Spectre v2 / SpectreRSB: Filling RSB on context switch and VMEXIT\n");
1772 setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1773 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1774 break;
1775
1776 default:
1777 pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation\n");
1778 dump_stack();
1779 break;
1780 }
1781 }
1782
1783 /*
1784 * Set BHI_DIS_S to prevent indirect branches in kernel to be influenced by
1785 * branch history in userspace. Not needed if BHI_NO is set.
1786 */
spec_ctrl_bhi_dis(void)1787 static bool __init spec_ctrl_bhi_dis(void)
1788 {
1789 if (!boot_cpu_has(X86_FEATURE_BHI_CTRL))
1790 return false;
1791
1792 x86_spec_ctrl_base |= SPEC_CTRL_BHI_DIS_S;
1793 update_spec_ctrl(x86_spec_ctrl_base);
1794 setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_HW);
1795
1796 return true;
1797 }
1798
1799 enum bhi_mitigations {
1800 BHI_MITIGATION_OFF,
1801 BHI_MITIGATION_ON,
1802 };
1803
1804 static enum bhi_mitigations bhi_mitigation __ro_after_init =
1805 IS_ENABLED(CONFIG_MITIGATION_SPECTRE_BHI) ? BHI_MITIGATION_ON : BHI_MITIGATION_OFF;
1806
spectre_bhi_parse_cmdline(char * str)1807 static int __init spectre_bhi_parse_cmdline(char *str)
1808 {
1809 if (!str)
1810 return -EINVAL;
1811
1812 if (!strcmp(str, "off"))
1813 bhi_mitigation = BHI_MITIGATION_OFF;
1814 else if (!strcmp(str, "on"))
1815 bhi_mitigation = BHI_MITIGATION_ON;
1816 else
1817 pr_err("Ignoring unknown spectre_bhi option (%s)", str);
1818
1819 return 0;
1820 }
1821 early_param("spectre_bhi", spectre_bhi_parse_cmdline);
1822
bhi_select_mitigation(void)1823 static void __init bhi_select_mitigation(void)
1824 {
1825 if (bhi_mitigation == BHI_MITIGATION_OFF)
1826 return;
1827
1828 /* Retpoline mitigates against BHI unless the CPU has RRSBA behavior */
1829 if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
1830 !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE)) {
1831 spec_ctrl_disable_kernel_rrsba();
1832 if (rrsba_disabled)
1833 return;
1834 }
1835
1836 if (!IS_ENABLED(CONFIG_X86_64))
1837 return;
1838
1839 /* Mitigate in hardware if supported */
1840 if (spec_ctrl_bhi_dis())
1841 return;
1842
1843 /* Mitigate KVM by default */
1844 setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT);
1845 pr_info("Spectre BHI mitigation: SW BHB clearing on vm exit\n");
1846
1847 /* Mitigate syscalls when the mitigation is forced =on */
1848 setup_force_cpu_cap(X86_FEATURE_CLEAR_BHB_LOOP);
1849 pr_info("Spectre BHI mitigation: SW BHB clearing on syscall\n");
1850 }
1851
spectre_v2_select_mitigation(void)1852 static void __init spectre_v2_select_mitigation(void)
1853 {
1854 enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1855 enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1856
1857 /*
1858 * If the CPU is not affected and the command line mode is NONE or AUTO
1859 * then nothing to do.
1860 */
1861 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1862 (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1863 return;
1864
1865 switch (cmd) {
1866 case SPECTRE_V2_CMD_NONE:
1867 return;
1868
1869 case SPECTRE_V2_CMD_FORCE:
1870 case SPECTRE_V2_CMD_AUTO:
1871 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1872 mode = SPECTRE_V2_EIBRS;
1873 break;
1874 }
1875
1876 if (IS_ENABLED(CONFIG_CPU_IBRS_ENTRY) &&
1877 boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1878 retbleed_cmd != RETBLEED_CMD_OFF &&
1879 retbleed_cmd != RETBLEED_CMD_STUFF &&
1880 boot_cpu_has(X86_FEATURE_IBRS) &&
1881 boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1882 mode = SPECTRE_V2_IBRS;
1883 break;
1884 }
1885
1886 mode = spectre_v2_select_retpoline();
1887 break;
1888
1889 case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1890 pr_err(SPECTRE_V2_LFENCE_MSG);
1891 mode = SPECTRE_V2_LFENCE;
1892 break;
1893
1894 case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1895 mode = SPECTRE_V2_RETPOLINE;
1896 break;
1897
1898 case SPECTRE_V2_CMD_RETPOLINE:
1899 mode = spectre_v2_select_retpoline();
1900 break;
1901
1902 case SPECTRE_V2_CMD_IBRS:
1903 mode = SPECTRE_V2_IBRS;
1904 break;
1905
1906 case SPECTRE_V2_CMD_EIBRS:
1907 mode = SPECTRE_V2_EIBRS;
1908 break;
1909
1910 case SPECTRE_V2_CMD_EIBRS_LFENCE:
1911 mode = SPECTRE_V2_EIBRS_LFENCE;
1912 break;
1913
1914 case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1915 mode = SPECTRE_V2_EIBRS_RETPOLINE;
1916 break;
1917 }
1918
1919 if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1920 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1921
1922 if (spectre_v2_in_ibrs_mode(mode)) {
1923 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) {
1924 msr_set_bit(MSR_EFER, _EFER_AUTOIBRS);
1925 } else {
1926 x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1927 update_spec_ctrl(x86_spec_ctrl_base);
1928 }
1929 }
1930
1931 switch (mode) {
1932 case SPECTRE_V2_NONE:
1933 case SPECTRE_V2_EIBRS:
1934 break;
1935
1936 case SPECTRE_V2_IBRS:
1937 setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
1938 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
1939 pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
1940 break;
1941
1942 case SPECTRE_V2_LFENCE:
1943 case SPECTRE_V2_EIBRS_LFENCE:
1944 setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1945 fallthrough;
1946
1947 case SPECTRE_V2_RETPOLINE:
1948 case SPECTRE_V2_EIBRS_RETPOLINE:
1949 setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1950 break;
1951 }
1952
1953 /*
1954 * Disable alternate RSB predictions in kernel when indirect CALLs and
1955 * JMPs gets protection against BHI and Intramode-BTI, but RET
1956 * prediction from a non-RSB predictor is still a risk.
1957 */
1958 if (mode == SPECTRE_V2_EIBRS_LFENCE ||
1959 mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1960 mode == SPECTRE_V2_RETPOLINE)
1961 spec_ctrl_disable_kernel_rrsba();
1962
1963 if (boot_cpu_has(X86_BUG_BHI))
1964 bhi_select_mitigation();
1965
1966 spectre_v2_enabled = mode;
1967 pr_info("%s\n", spectre_v2_strings[mode]);
1968
1969 /*
1970 * If Spectre v2 protection has been enabled, fill the RSB during a
1971 * context switch. In general there are two types of RSB attacks
1972 * across context switches, for which the CALLs/RETs may be unbalanced.
1973 *
1974 * 1) RSB underflow
1975 *
1976 * Some Intel parts have "bottomless RSB". When the RSB is empty,
1977 * speculated return targets may come from the branch predictor,
1978 * which could have a user-poisoned BTB or BHB entry.
1979 *
1980 * AMD has it even worse: *all* returns are speculated from the BTB,
1981 * regardless of the state of the RSB.
1982 *
1983 * When IBRS or eIBRS is enabled, the "user -> kernel" attack
1984 * scenario is mitigated by the IBRS branch prediction isolation
1985 * properties, so the RSB buffer filling wouldn't be necessary to
1986 * protect against this type of attack.
1987 *
1988 * The "user -> user" attack scenario is mitigated by RSB filling.
1989 *
1990 * 2) Poisoned RSB entry
1991 *
1992 * If the 'next' in-kernel return stack is shorter than 'prev',
1993 * 'next' could be tricked into speculating with a user-poisoned RSB
1994 * entry.
1995 *
1996 * The "user -> kernel" attack scenario is mitigated by SMEP and
1997 * eIBRS.
1998 *
1999 * The "user -> user" scenario, also known as SpectreBHB, requires
2000 * RSB clearing.
2001 *
2002 * So to mitigate all cases, unconditionally fill RSB on context
2003 * switches.
2004 *
2005 * FIXME: Is this pointless for retbleed-affected AMD?
2006 */
2007 spectre_v2_select_rsb_mitigation(mode);
2008
2009 /*
2010 * Retpoline protects the kernel, but doesn't protect firmware. IBRS
2011 * and Enhanced IBRS protect firmware too, so enable IBRS around
2012 * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't
2013 * otherwise enabled.
2014 *
2015 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
2016 * the user might select retpoline on the kernel command line and if
2017 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
2018 * enable IBRS around firmware calls.
2019 */
2020 if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
2021 boot_cpu_has(X86_FEATURE_IBPB) &&
2022 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2023 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
2024
2025 if (retbleed_cmd != RETBLEED_CMD_IBPB) {
2026 setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
2027 pr_info("Enabling Speculation Barrier for firmware calls\n");
2028 }
2029
2030 } else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) {
2031 setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
2032 pr_info("Enabling Restricted Speculation for firmware calls\n");
2033 }
2034
2035 /* Set up IBPB and STIBP depending on the general spectre V2 command */
2036 spectre_v2_cmd = cmd;
2037 }
2038
update_stibp_msr(void * __unused)2039 static void update_stibp_msr(void * __unused)
2040 {
2041 u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
2042 update_spec_ctrl(val);
2043 }
2044
2045 /* Update x86_spec_ctrl_base in case SMT state changed. */
update_stibp_strict(void)2046 static void update_stibp_strict(void)
2047 {
2048 u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
2049
2050 if (sched_smt_active())
2051 mask |= SPEC_CTRL_STIBP;
2052
2053 if (mask == x86_spec_ctrl_base)
2054 return;
2055
2056 pr_info("Update user space SMT mitigation: STIBP %s\n",
2057 mask & SPEC_CTRL_STIBP ? "always-on" : "off");
2058 x86_spec_ctrl_base = mask;
2059 on_each_cpu(update_stibp_msr, NULL, 1);
2060 }
2061
2062 /* Update the static key controlling the evaluation of TIF_SPEC_IB */
update_indir_branch_cond(void)2063 static void update_indir_branch_cond(void)
2064 {
2065 if (sched_smt_active())
2066 static_branch_enable(&switch_to_cond_stibp);
2067 else
2068 static_branch_disable(&switch_to_cond_stibp);
2069 }
2070
2071 #undef pr_fmt
2072 #define pr_fmt(fmt) fmt
2073
2074 /* Update the static key controlling the MDS CPU buffer clear in idle */
update_mds_branch_idle(void)2075 static void update_mds_branch_idle(void)
2076 {
2077 /*
2078 * Enable the idle clearing if SMT is active on CPUs which are
2079 * affected only by MSBDS and not any other MDS variant.
2080 *
2081 * The other variants cannot be mitigated when SMT is enabled, so
2082 * clearing the buffers on idle just to prevent the Store Buffer
2083 * repartitioning leak would be a window dressing exercise.
2084 */
2085 if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
2086 return;
2087
2088 if (sched_smt_active()) {
2089 static_branch_enable(&mds_idle_clear);
2090 } else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
2091 (x86_arch_cap_msr & ARCH_CAP_FBSDP_NO)) {
2092 static_branch_disable(&mds_idle_clear);
2093 }
2094 }
2095
2096 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
2097 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
2098 #define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
2099
cpu_bugs_smt_update(void)2100 void cpu_bugs_smt_update(void)
2101 {
2102 mutex_lock(&spec_ctrl_mutex);
2103
2104 if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2105 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2106 pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
2107
2108 switch (spectre_v2_user_stibp) {
2109 case SPECTRE_V2_USER_NONE:
2110 break;
2111 case SPECTRE_V2_USER_STRICT:
2112 case SPECTRE_V2_USER_STRICT_PREFERRED:
2113 update_stibp_strict();
2114 break;
2115 case SPECTRE_V2_USER_PRCTL:
2116 case SPECTRE_V2_USER_SECCOMP:
2117 update_indir_branch_cond();
2118 break;
2119 }
2120
2121 switch (mds_mitigation) {
2122 case MDS_MITIGATION_FULL:
2123 case MDS_MITIGATION_VMWERV:
2124 if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
2125 pr_warn_once(MDS_MSG_SMT);
2126 update_mds_branch_idle();
2127 break;
2128 case MDS_MITIGATION_OFF:
2129 break;
2130 }
2131
2132 switch (taa_mitigation) {
2133 case TAA_MITIGATION_VERW:
2134 case TAA_MITIGATION_UCODE_NEEDED:
2135 if (sched_smt_active())
2136 pr_warn_once(TAA_MSG_SMT);
2137 break;
2138 case TAA_MITIGATION_TSX_DISABLED:
2139 case TAA_MITIGATION_OFF:
2140 break;
2141 }
2142
2143 switch (mmio_mitigation) {
2144 case MMIO_MITIGATION_VERW:
2145 case MMIO_MITIGATION_UCODE_NEEDED:
2146 if (sched_smt_active())
2147 pr_warn_once(MMIO_MSG_SMT);
2148 break;
2149 case MMIO_MITIGATION_OFF:
2150 break;
2151 }
2152
2153 mutex_unlock(&spec_ctrl_mutex);
2154 }
2155
2156 #undef pr_fmt
2157 #define pr_fmt(fmt) "Speculative Store Bypass: " fmt
2158
2159 static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
2160
2161 /* The kernel command line selection */
2162 enum ssb_mitigation_cmd {
2163 SPEC_STORE_BYPASS_CMD_NONE,
2164 SPEC_STORE_BYPASS_CMD_AUTO,
2165 SPEC_STORE_BYPASS_CMD_ON,
2166 SPEC_STORE_BYPASS_CMD_PRCTL,
2167 SPEC_STORE_BYPASS_CMD_SECCOMP,
2168 };
2169
2170 static const char * const ssb_strings[] = {
2171 [SPEC_STORE_BYPASS_NONE] = "Vulnerable",
2172 [SPEC_STORE_BYPASS_DISABLE] = "Mitigation: Speculative Store Bypass disabled",
2173 [SPEC_STORE_BYPASS_PRCTL] = "Mitigation: Speculative Store Bypass disabled via prctl",
2174 [SPEC_STORE_BYPASS_SECCOMP] = "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
2175 };
2176
2177 static const struct {
2178 const char *option;
2179 enum ssb_mitigation_cmd cmd;
2180 } ssb_mitigation_options[] __initconst = {
2181 { "auto", SPEC_STORE_BYPASS_CMD_AUTO }, /* Platform decides */
2182 { "on", SPEC_STORE_BYPASS_CMD_ON }, /* Disable Speculative Store Bypass */
2183 { "off", SPEC_STORE_BYPASS_CMD_NONE }, /* Don't touch Speculative Store Bypass */
2184 { "prctl", SPEC_STORE_BYPASS_CMD_PRCTL }, /* Disable Speculative Store Bypass via prctl */
2185 { "seccomp", SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
2186 };
2187
ssb_parse_cmdline(void)2188 static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
2189 {
2190 enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
2191 char arg[20];
2192 int ret, i;
2193
2194 if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
2195 cpu_mitigations_off()) {
2196 return SPEC_STORE_BYPASS_CMD_NONE;
2197 } else {
2198 ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
2199 arg, sizeof(arg));
2200 if (ret < 0)
2201 return SPEC_STORE_BYPASS_CMD_AUTO;
2202
2203 for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
2204 if (!match_option(arg, ret, ssb_mitigation_options[i].option))
2205 continue;
2206
2207 cmd = ssb_mitigation_options[i].cmd;
2208 break;
2209 }
2210
2211 if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
2212 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
2213 return SPEC_STORE_BYPASS_CMD_AUTO;
2214 }
2215 }
2216
2217 return cmd;
2218 }
2219
__ssb_select_mitigation(void)2220 static enum ssb_mitigation __init __ssb_select_mitigation(void)
2221 {
2222 enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
2223 enum ssb_mitigation_cmd cmd;
2224
2225 if (!boot_cpu_has(X86_FEATURE_SSBD))
2226 return mode;
2227
2228 cmd = ssb_parse_cmdline();
2229 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
2230 (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
2231 cmd == SPEC_STORE_BYPASS_CMD_AUTO))
2232 return mode;
2233
2234 switch (cmd) {
2235 case SPEC_STORE_BYPASS_CMD_SECCOMP:
2236 /*
2237 * Choose prctl+seccomp as the default mode if seccomp is
2238 * enabled.
2239 */
2240 if (IS_ENABLED(CONFIG_SECCOMP))
2241 mode = SPEC_STORE_BYPASS_SECCOMP;
2242 else
2243 mode = SPEC_STORE_BYPASS_PRCTL;
2244 break;
2245 case SPEC_STORE_BYPASS_CMD_ON:
2246 mode = SPEC_STORE_BYPASS_DISABLE;
2247 break;
2248 case SPEC_STORE_BYPASS_CMD_AUTO:
2249 case SPEC_STORE_BYPASS_CMD_PRCTL:
2250 mode = SPEC_STORE_BYPASS_PRCTL;
2251 break;
2252 case SPEC_STORE_BYPASS_CMD_NONE:
2253 break;
2254 }
2255
2256 /*
2257 * We have three CPU feature flags that are in play here:
2258 * - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
2259 * - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
2260 * - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
2261 */
2262 if (mode == SPEC_STORE_BYPASS_DISABLE) {
2263 setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
2264 /*
2265 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
2266 * use a completely different MSR and bit dependent on family.
2267 */
2268 if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
2269 !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
2270 x86_amd_ssb_disable();
2271 } else {
2272 x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
2273 update_spec_ctrl(x86_spec_ctrl_base);
2274 }
2275 }
2276
2277 return mode;
2278 }
2279
ssb_select_mitigation(void)2280 static void ssb_select_mitigation(void)
2281 {
2282 ssb_mode = __ssb_select_mitigation();
2283
2284 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2285 pr_info("%s\n", ssb_strings[ssb_mode]);
2286 }
2287
2288 #undef pr_fmt
2289 #define pr_fmt(fmt) "Speculation prctl: " fmt
2290
task_update_spec_tif(struct task_struct * tsk)2291 static void task_update_spec_tif(struct task_struct *tsk)
2292 {
2293 /* Force the update of the real TIF bits */
2294 set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
2295
2296 /*
2297 * Immediately update the speculation control MSRs for the current
2298 * task, but for a non-current task delay setting the CPU
2299 * mitigation until it is scheduled next.
2300 *
2301 * This can only happen for SECCOMP mitigation. For PRCTL it's
2302 * always the current task.
2303 */
2304 if (tsk == current)
2305 speculation_ctrl_update_current();
2306 }
2307
l1d_flush_prctl_set(struct task_struct * task,unsigned long ctrl)2308 static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
2309 {
2310
2311 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2312 return -EPERM;
2313
2314 switch (ctrl) {
2315 case PR_SPEC_ENABLE:
2316 set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2317 return 0;
2318 case PR_SPEC_DISABLE:
2319 clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
2320 return 0;
2321 default:
2322 return -ERANGE;
2323 }
2324 }
2325
ssb_prctl_set(struct task_struct * task,unsigned long ctrl)2326 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
2327 {
2328 if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
2329 ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
2330 return -ENXIO;
2331
2332 switch (ctrl) {
2333 case PR_SPEC_ENABLE:
2334 /* If speculation is force disabled, enable is not allowed */
2335 if (task_spec_ssb_force_disable(task))
2336 return -EPERM;
2337 task_clear_spec_ssb_disable(task);
2338 task_clear_spec_ssb_noexec(task);
2339 task_update_spec_tif(task);
2340 break;
2341 case PR_SPEC_DISABLE:
2342 task_set_spec_ssb_disable(task);
2343 task_clear_spec_ssb_noexec(task);
2344 task_update_spec_tif(task);
2345 break;
2346 case PR_SPEC_FORCE_DISABLE:
2347 task_set_spec_ssb_disable(task);
2348 task_set_spec_ssb_force_disable(task);
2349 task_clear_spec_ssb_noexec(task);
2350 task_update_spec_tif(task);
2351 break;
2352 case PR_SPEC_DISABLE_NOEXEC:
2353 if (task_spec_ssb_force_disable(task))
2354 return -EPERM;
2355 task_set_spec_ssb_disable(task);
2356 task_set_spec_ssb_noexec(task);
2357 task_update_spec_tif(task);
2358 break;
2359 default:
2360 return -ERANGE;
2361 }
2362 return 0;
2363 }
2364
is_spec_ib_user_controlled(void)2365 static bool is_spec_ib_user_controlled(void)
2366 {
2367 return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
2368 spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2369 spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
2370 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
2371 }
2372
ib_prctl_set(struct task_struct * task,unsigned long ctrl)2373 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
2374 {
2375 switch (ctrl) {
2376 case PR_SPEC_ENABLE:
2377 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2378 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2379 return 0;
2380
2381 /*
2382 * With strict mode for both IBPB and STIBP, the instruction
2383 * code paths avoid checking this task flag and instead,
2384 * unconditionally run the instruction. However, STIBP and IBPB
2385 * are independent and either can be set to conditionally
2386 * enabled regardless of the mode of the other.
2387 *
2388 * If either is set to conditional, allow the task flag to be
2389 * updated, unless it was force-disabled by a previous prctl
2390 * call. Currently, this is possible on an AMD CPU which has the
2391 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
2392 * kernel is booted with 'spectre_v2_user=seccomp', then
2393 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
2394 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
2395 */
2396 if (!is_spec_ib_user_controlled() ||
2397 task_spec_ib_force_disable(task))
2398 return -EPERM;
2399
2400 task_clear_spec_ib_disable(task);
2401 task_update_spec_tif(task);
2402 break;
2403 case PR_SPEC_DISABLE:
2404 case PR_SPEC_FORCE_DISABLE:
2405 /*
2406 * Indirect branch speculation is always allowed when
2407 * mitigation is force disabled.
2408 */
2409 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2410 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2411 return -EPERM;
2412
2413 if (!is_spec_ib_user_controlled())
2414 return 0;
2415
2416 task_set_spec_ib_disable(task);
2417 if (ctrl == PR_SPEC_FORCE_DISABLE)
2418 task_set_spec_ib_force_disable(task);
2419 task_update_spec_tif(task);
2420 if (task == current)
2421 indirect_branch_prediction_barrier();
2422 break;
2423 default:
2424 return -ERANGE;
2425 }
2426 return 0;
2427 }
2428
arch_prctl_spec_ctrl_set(struct task_struct * task,unsigned long which,unsigned long ctrl)2429 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
2430 unsigned long ctrl)
2431 {
2432 switch (which) {
2433 case PR_SPEC_STORE_BYPASS:
2434 return ssb_prctl_set(task, ctrl);
2435 case PR_SPEC_INDIRECT_BRANCH:
2436 return ib_prctl_set(task, ctrl);
2437 case PR_SPEC_L1D_FLUSH:
2438 return l1d_flush_prctl_set(task, ctrl);
2439 default:
2440 return -ENODEV;
2441 }
2442 }
2443
2444 #ifdef CONFIG_SECCOMP
arch_seccomp_spec_mitigate(struct task_struct * task)2445 void arch_seccomp_spec_mitigate(struct task_struct *task)
2446 {
2447 if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
2448 ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2449 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2450 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
2451 ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2452 }
2453 #endif
2454
l1d_flush_prctl_get(struct task_struct * task)2455 static int l1d_flush_prctl_get(struct task_struct *task)
2456 {
2457 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2458 return PR_SPEC_FORCE_DISABLE;
2459
2460 if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
2461 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2462 else
2463 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2464 }
2465
ssb_prctl_get(struct task_struct * task)2466 static int ssb_prctl_get(struct task_struct *task)
2467 {
2468 switch (ssb_mode) {
2469 case SPEC_STORE_BYPASS_DISABLE:
2470 return PR_SPEC_DISABLE;
2471 case SPEC_STORE_BYPASS_SECCOMP:
2472 case SPEC_STORE_BYPASS_PRCTL:
2473 if (task_spec_ssb_force_disable(task))
2474 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2475 if (task_spec_ssb_noexec(task))
2476 return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
2477 if (task_spec_ssb_disable(task))
2478 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2479 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2480 default:
2481 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2482 return PR_SPEC_ENABLE;
2483 return PR_SPEC_NOT_AFFECTED;
2484 }
2485 }
2486
ib_prctl_get(struct task_struct * task)2487 static int ib_prctl_get(struct task_struct *task)
2488 {
2489 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2490 return PR_SPEC_NOT_AFFECTED;
2491
2492 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2493 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2494 return PR_SPEC_ENABLE;
2495 else if (is_spec_ib_user_controlled()) {
2496 if (task_spec_ib_force_disable(task))
2497 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2498 if (task_spec_ib_disable(task))
2499 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2500 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2501 } else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
2502 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2503 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
2504 return PR_SPEC_DISABLE;
2505 else
2506 return PR_SPEC_NOT_AFFECTED;
2507 }
2508
arch_prctl_spec_ctrl_get(struct task_struct * task,unsigned long which)2509 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
2510 {
2511 switch (which) {
2512 case PR_SPEC_STORE_BYPASS:
2513 return ssb_prctl_get(task);
2514 case PR_SPEC_INDIRECT_BRANCH:
2515 return ib_prctl_get(task);
2516 case PR_SPEC_L1D_FLUSH:
2517 return l1d_flush_prctl_get(task);
2518 default:
2519 return -ENODEV;
2520 }
2521 }
2522
x86_spec_ctrl_setup_ap(void)2523 void x86_spec_ctrl_setup_ap(void)
2524 {
2525 if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2526 update_spec_ctrl(x86_spec_ctrl_base);
2527
2528 if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
2529 x86_amd_ssb_disable();
2530 }
2531
2532 bool itlb_multihit_kvm_mitigation;
2533 EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
2534
2535 #undef pr_fmt
2536 #define pr_fmt(fmt) "L1TF: " fmt
2537
2538 /* Default mitigation for L1TF-affected CPUs */
2539 enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
2540 #if IS_ENABLED(CONFIG_KVM_INTEL)
2541 EXPORT_SYMBOL_GPL(l1tf_mitigation);
2542 #endif
2543 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
2544 EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
2545
2546 /*
2547 * These CPUs all support 44bits physical address space internally in the
2548 * cache but CPUID can report a smaller number of physical address bits.
2549 *
2550 * The L1TF mitigation uses the top most address bit for the inversion of
2551 * non present PTEs. When the installed memory reaches into the top most
2552 * address bit due to memory holes, which has been observed on machines
2553 * which report 36bits physical address bits and have 32G RAM installed,
2554 * then the mitigation range check in l1tf_select_mitigation() triggers.
2555 * This is a false positive because the mitigation is still possible due to
2556 * the fact that the cache uses 44bit internally. Use the cache bits
2557 * instead of the reported physical bits and adjust them on the affected
2558 * machines to 44bit if the reported bits are less than 44.
2559 */
override_cache_bits(struct cpuinfo_x86 * c)2560 static void override_cache_bits(struct cpuinfo_x86 *c)
2561 {
2562 if (c->x86 != 6)
2563 return;
2564
2565 switch (c->x86_model) {
2566 case INTEL_FAM6_NEHALEM:
2567 case INTEL_FAM6_WESTMERE:
2568 case INTEL_FAM6_SANDYBRIDGE:
2569 case INTEL_FAM6_IVYBRIDGE:
2570 case INTEL_FAM6_HASWELL:
2571 case INTEL_FAM6_HASWELL_L:
2572 case INTEL_FAM6_HASWELL_G:
2573 case INTEL_FAM6_BROADWELL:
2574 case INTEL_FAM6_BROADWELL_G:
2575 case INTEL_FAM6_SKYLAKE_L:
2576 case INTEL_FAM6_SKYLAKE:
2577 case INTEL_FAM6_KABYLAKE_L:
2578 case INTEL_FAM6_KABYLAKE:
2579 if (c->x86_cache_bits < 44)
2580 c->x86_cache_bits = 44;
2581 break;
2582 }
2583 }
2584
l1tf_select_mitigation(void)2585 static void __init l1tf_select_mitigation(void)
2586 {
2587 u64 half_pa;
2588
2589 if (!boot_cpu_has_bug(X86_BUG_L1TF))
2590 return;
2591
2592 if (cpu_mitigations_off())
2593 l1tf_mitigation = L1TF_MITIGATION_OFF;
2594 else if (cpu_mitigations_auto_nosmt())
2595 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2596
2597 override_cache_bits(&boot_cpu_data);
2598
2599 switch (l1tf_mitigation) {
2600 case L1TF_MITIGATION_OFF:
2601 case L1TF_MITIGATION_FLUSH_NOWARN:
2602 case L1TF_MITIGATION_FLUSH:
2603 break;
2604 case L1TF_MITIGATION_FLUSH_NOSMT:
2605 case L1TF_MITIGATION_FULL:
2606 cpu_smt_disable(false);
2607 break;
2608 case L1TF_MITIGATION_FULL_FORCE:
2609 cpu_smt_disable(true);
2610 break;
2611 }
2612
2613 #if CONFIG_PGTABLE_LEVELS == 2
2614 pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2615 return;
2616 #endif
2617
2618 half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2619 if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2620 e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
2621 pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2622 pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2623 half_pa);
2624 pr_info("However, doing so will make a part of your RAM unusable.\n");
2625 pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2626 return;
2627 }
2628
2629 setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2630 }
2631
l1tf_cmdline(char * str)2632 static int __init l1tf_cmdline(char *str)
2633 {
2634 if (!boot_cpu_has_bug(X86_BUG_L1TF))
2635 return 0;
2636
2637 if (!str)
2638 return -EINVAL;
2639
2640 if (!strcmp(str, "off"))
2641 l1tf_mitigation = L1TF_MITIGATION_OFF;
2642 else if (!strcmp(str, "flush,nowarn"))
2643 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2644 else if (!strcmp(str, "flush"))
2645 l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2646 else if (!strcmp(str, "flush,nosmt"))
2647 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2648 else if (!strcmp(str, "full"))
2649 l1tf_mitigation = L1TF_MITIGATION_FULL;
2650 else if (!strcmp(str, "full,force"))
2651 l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
2652
2653 return 0;
2654 }
2655 early_param("l1tf", l1tf_cmdline);
2656
2657 #undef pr_fmt
2658 #define pr_fmt(fmt) "Speculative Return Stack Overflow: " fmt
2659
2660 enum srso_mitigation {
2661 SRSO_MITIGATION_NONE,
2662 SRSO_MITIGATION_UCODE_NEEDED,
2663 SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED,
2664 SRSO_MITIGATION_MICROCODE,
2665 SRSO_MITIGATION_SAFE_RET,
2666 SRSO_MITIGATION_IBPB,
2667 SRSO_MITIGATION_IBPB_ON_VMEXIT,
2668 };
2669
2670 enum srso_mitigation_cmd {
2671 SRSO_CMD_OFF,
2672 SRSO_CMD_MICROCODE,
2673 SRSO_CMD_SAFE_RET,
2674 SRSO_CMD_IBPB,
2675 SRSO_CMD_IBPB_ON_VMEXIT,
2676 };
2677
2678 static const char * const srso_strings[] = {
2679 [SRSO_MITIGATION_NONE] = "Vulnerable",
2680 [SRSO_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
2681 [SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED] = "Vulnerable: Safe RET, no microcode",
2682 [SRSO_MITIGATION_MICROCODE] = "Vulnerable: Microcode, no safe RET",
2683 [SRSO_MITIGATION_SAFE_RET] = "Mitigation: Safe RET",
2684 [SRSO_MITIGATION_IBPB] = "Mitigation: IBPB",
2685 [SRSO_MITIGATION_IBPB_ON_VMEXIT] = "Mitigation: IBPB on VMEXIT only"
2686 };
2687
2688 static enum srso_mitigation srso_mitigation __ro_after_init = SRSO_MITIGATION_NONE;
2689 static enum srso_mitigation_cmd srso_cmd __ro_after_init = SRSO_CMD_SAFE_RET;
2690
srso_parse_cmdline(char * str)2691 static int __init srso_parse_cmdline(char *str)
2692 {
2693 if (!str)
2694 return -EINVAL;
2695
2696 if (!strcmp(str, "off"))
2697 srso_cmd = SRSO_CMD_OFF;
2698 else if (!strcmp(str, "microcode"))
2699 srso_cmd = SRSO_CMD_MICROCODE;
2700 else if (!strcmp(str, "safe-ret"))
2701 srso_cmd = SRSO_CMD_SAFE_RET;
2702 else if (!strcmp(str, "ibpb"))
2703 srso_cmd = SRSO_CMD_IBPB;
2704 else if (!strcmp(str, "ibpb-vmexit"))
2705 srso_cmd = SRSO_CMD_IBPB_ON_VMEXIT;
2706 else
2707 pr_err("Ignoring unknown SRSO option (%s).", str);
2708
2709 return 0;
2710 }
2711 early_param("spec_rstack_overflow", srso_parse_cmdline);
2712
2713 #define SRSO_NOTICE "WARNING: See https://kernel.org/doc/html/latest/admin-guide/hw-vuln/srso.html for mitigation options."
2714
srso_select_mitigation(void)2715 static void __init srso_select_mitigation(void)
2716 {
2717 bool has_microcode = boot_cpu_has(X86_FEATURE_IBPB_BRTYPE);
2718
2719 if (!boot_cpu_has_bug(X86_BUG_SRSO) || cpu_mitigations_off())
2720 goto pred_cmd;
2721
2722 if (has_microcode) {
2723 /*
2724 * Zen1/2 with SMT off aren't vulnerable after the right
2725 * IBPB microcode has been applied.
2726 */
2727 if (boot_cpu_data.x86 < 0x19 && !cpu_smt_possible()) {
2728 setup_force_cpu_cap(X86_FEATURE_SRSO_NO);
2729 return;
2730 }
2731
2732 if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2733 srso_mitigation = SRSO_MITIGATION_IBPB;
2734 goto out;
2735 }
2736 } else {
2737 pr_warn("IBPB-extending microcode not applied!\n");
2738 pr_warn(SRSO_NOTICE);
2739
2740 /* may be overwritten by SRSO_CMD_SAFE_RET below */
2741 srso_mitigation = SRSO_MITIGATION_UCODE_NEEDED;
2742 }
2743
2744 switch (srso_cmd) {
2745 case SRSO_CMD_OFF:
2746 goto pred_cmd;
2747
2748 case SRSO_CMD_MICROCODE:
2749 if (has_microcode) {
2750 srso_mitigation = SRSO_MITIGATION_MICROCODE;
2751 pr_warn(SRSO_NOTICE);
2752 }
2753 break;
2754
2755 case SRSO_CMD_SAFE_RET:
2756 if (IS_ENABLED(CONFIG_CPU_SRSO)) {
2757 /*
2758 * Enable the return thunk for generated code
2759 * like ftrace, static_call, etc.
2760 */
2761 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
2762 setup_force_cpu_cap(X86_FEATURE_UNRET);
2763
2764 if (boot_cpu_data.x86 == 0x19) {
2765 setup_force_cpu_cap(X86_FEATURE_SRSO_ALIAS);
2766 set_return_thunk(srso_alias_return_thunk);
2767 } else {
2768 setup_force_cpu_cap(X86_FEATURE_SRSO);
2769 set_return_thunk(srso_return_thunk);
2770 }
2771 if (has_microcode)
2772 srso_mitigation = SRSO_MITIGATION_SAFE_RET;
2773 else
2774 srso_mitigation = SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED;
2775 } else {
2776 pr_err("WARNING: kernel not compiled with CPU_SRSO.\n");
2777 goto pred_cmd;
2778 }
2779 break;
2780
2781 case SRSO_CMD_IBPB:
2782 if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) {
2783 if (has_microcode) {
2784 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
2785 setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
2786 srso_mitigation = SRSO_MITIGATION_IBPB;
2787
2788 /*
2789 * IBPB on entry already obviates the need for
2790 * software-based untraining so clear those in case some
2791 * other mitigation like Retbleed has selected them.
2792 */
2793 setup_clear_cpu_cap(X86_FEATURE_UNRET);
2794 setup_clear_cpu_cap(X86_FEATURE_RETHUNK);
2795
2796 /*
2797 * There is no need for RSB filling: entry_ibpb() ensures
2798 * all predictions, including the RSB, are invalidated,
2799 * regardless of IBPB implementation.
2800 */
2801 setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
2802 }
2803 } else {
2804 pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n");
2805 goto pred_cmd;
2806 }
2807 break;
2808
2809 case SRSO_CMD_IBPB_ON_VMEXIT:
2810 if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) {
2811 if (has_microcode) {
2812 setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
2813 srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT;
2814
2815 /*
2816 * There is no need for RSB filling: entry_ibpb() ensures
2817 * all predictions, including the RSB, are invalidated,
2818 * regardless of IBPB implementation.
2819 */
2820 setup_clear_cpu_cap(X86_FEATURE_RSB_VMEXIT);
2821 }
2822 } else {
2823 pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n");
2824 goto pred_cmd;
2825 }
2826 break;
2827
2828 default:
2829 break;
2830 }
2831
2832 out:
2833 pr_info("%s\n", srso_strings[srso_mitigation]);
2834
2835 pred_cmd:
2836 if ((!boot_cpu_has_bug(X86_BUG_SRSO) || srso_cmd == SRSO_CMD_OFF) &&
2837 boot_cpu_has(X86_FEATURE_SBPB))
2838 x86_pred_cmd = PRED_CMD_SBPB;
2839 }
2840
2841 #undef pr_fmt
2842 #define pr_fmt(fmt) fmt
2843
2844 #ifdef CONFIG_SYSFS
2845
2846 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
2847
2848 #if IS_ENABLED(CONFIG_KVM_INTEL)
2849 static const char * const l1tf_vmx_states[] = {
2850 [VMENTER_L1D_FLUSH_AUTO] = "auto",
2851 [VMENTER_L1D_FLUSH_NEVER] = "vulnerable",
2852 [VMENTER_L1D_FLUSH_COND] = "conditional cache flushes",
2853 [VMENTER_L1D_FLUSH_ALWAYS] = "cache flushes",
2854 [VMENTER_L1D_FLUSH_EPT_DISABLED] = "EPT disabled",
2855 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = "flush not necessary"
2856 };
2857
l1tf_show_state(char * buf)2858 static ssize_t l1tf_show_state(char *buf)
2859 {
2860 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
2861 return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2862
2863 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
2864 (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
2865 sched_smt_active())) {
2866 return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
2867 l1tf_vmx_states[l1tf_vmx_mitigation]);
2868 }
2869
2870 return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
2871 l1tf_vmx_states[l1tf_vmx_mitigation],
2872 sched_smt_active() ? "vulnerable" : "disabled");
2873 }
2874
itlb_multihit_show_state(char * buf)2875 static ssize_t itlb_multihit_show_state(char *buf)
2876 {
2877 if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2878 !boot_cpu_has(X86_FEATURE_VMX))
2879 return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n");
2880 else if (!(cr4_read_shadow() & X86_CR4_VMXE))
2881 return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n");
2882 else if (itlb_multihit_kvm_mitigation)
2883 return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n");
2884 else
2885 return sysfs_emit(buf, "KVM: Vulnerable\n");
2886 }
2887 #else
l1tf_show_state(char * buf)2888 static ssize_t l1tf_show_state(char *buf)
2889 {
2890 return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2891 }
2892
itlb_multihit_show_state(char * buf)2893 static ssize_t itlb_multihit_show_state(char *buf)
2894 {
2895 return sysfs_emit(buf, "Processor vulnerable\n");
2896 }
2897 #endif
2898
mds_show_state(char * buf)2899 static ssize_t mds_show_state(char *buf)
2900 {
2901 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2902 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2903 mds_strings[mds_mitigation]);
2904 }
2905
2906 if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
2907 return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2908 (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
2909 sched_smt_active() ? "mitigated" : "disabled"));
2910 }
2911
2912 return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2913 sched_smt_active() ? "vulnerable" : "disabled");
2914 }
2915
tsx_async_abort_show_state(char * buf)2916 static ssize_t tsx_async_abort_show_state(char *buf)
2917 {
2918 if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
2919 (taa_mitigation == TAA_MITIGATION_OFF))
2920 return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]);
2921
2922 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2923 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2924 taa_strings[taa_mitigation]);
2925 }
2926
2927 return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
2928 sched_smt_active() ? "vulnerable" : "disabled");
2929 }
2930
mmio_stale_data_show_state(char * buf)2931 static ssize_t mmio_stale_data_show_state(char *buf)
2932 {
2933 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2934 return sysfs_emit(buf, "Unknown: No mitigations\n");
2935
2936 if (mmio_mitigation == MMIO_MITIGATION_OFF)
2937 return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
2938
2939 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2940 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2941 mmio_strings[mmio_mitigation]);
2942 }
2943
2944 return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
2945 sched_smt_active() ? "vulnerable" : "disabled");
2946 }
2947
rfds_show_state(char * buf)2948 static ssize_t rfds_show_state(char *buf)
2949 {
2950 return sysfs_emit(buf, "%s\n", rfds_strings[rfds_mitigation]);
2951 }
2952
its_show_state(char * buf)2953 static ssize_t its_show_state(char *buf)
2954 {
2955 return sysfs_emit(buf, "%s\n", its_strings[its_mitigation]);
2956 }
2957
stibp_state(void)2958 static char *stibp_state(void)
2959 {
2960 if (spectre_v2_in_eibrs_mode(spectre_v2_enabled) &&
2961 !boot_cpu_has(X86_FEATURE_AUTOIBRS))
2962 return "";
2963
2964 switch (spectre_v2_user_stibp) {
2965 case SPECTRE_V2_USER_NONE:
2966 return "; STIBP: disabled";
2967 case SPECTRE_V2_USER_STRICT:
2968 return "; STIBP: forced";
2969 case SPECTRE_V2_USER_STRICT_PREFERRED:
2970 return "; STIBP: always-on";
2971 case SPECTRE_V2_USER_PRCTL:
2972 case SPECTRE_V2_USER_SECCOMP:
2973 if (static_key_enabled(&switch_to_cond_stibp))
2974 return "; STIBP: conditional";
2975 }
2976 return "";
2977 }
2978
ibpb_state(void)2979 static char *ibpb_state(void)
2980 {
2981 if (boot_cpu_has(X86_FEATURE_IBPB)) {
2982 if (static_key_enabled(&switch_mm_always_ibpb))
2983 return "; IBPB: always-on";
2984 if (static_key_enabled(&switch_mm_cond_ibpb))
2985 return "; IBPB: conditional";
2986 return "; IBPB: disabled";
2987 }
2988 return "";
2989 }
2990
pbrsb_eibrs_state(void)2991 static char *pbrsb_eibrs_state(void)
2992 {
2993 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
2994 if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
2995 boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
2996 return "; PBRSB-eIBRS: SW sequence";
2997 else
2998 return "; PBRSB-eIBRS: Vulnerable";
2999 } else {
3000 return "; PBRSB-eIBRS: Not affected";
3001 }
3002 }
3003
spectre_bhi_state(void)3004 static const char *spectre_bhi_state(void)
3005 {
3006 if (!boot_cpu_has_bug(X86_BUG_BHI))
3007 return "; BHI: Not affected";
3008 else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_HW))
3009 return "; BHI: BHI_DIS_S";
3010 else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP))
3011 return "; BHI: SW loop, KVM: SW loop";
3012 else if (boot_cpu_has(X86_FEATURE_RETPOLINE) &&
3013 !boot_cpu_has(X86_FEATURE_RETPOLINE_LFENCE) &&
3014 rrsba_disabled)
3015 return "; BHI: Retpoline";
3016 else if (boot_cpu_has(X86_FEATURE_CLEAR_BHB_LOOP_ON_VMEXIT))
3017 return "; BHI: Vulnerable, KVM: SW loop";
3018
3019 return "; BHI: Vulnerable";
3020 }
3021
spectre_v2_show_state(char * buf)3022 static ssize_t spectre_v2_show_state(char *buf)
3023 {
3024 if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
3025 return sysfs_emit(buf, "Vulnerable: LFENCE\n");
3026
3027 if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
3028 return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
3029
3030 if (sched_smt_active() && unprivileged_ebpf_enabled() &&
3031 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
3032 return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
3033
3034 return sysfs_emit(buf, "%s%s%s%s%s%s%s%s\n",
3035 spectre_v2_strings[spectre_v2_enabled],
3036 ibpb_state(),
3037 boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? "; IBRS_FW" : "",
3038 stibp_state(),
3039 boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? "; RSB filling" : "",
3040 pbrsb_eibrs_state(),
3041 spectre_bhi_state(),
3042 /* this should always be at the end */
3043 spectre_v2_module_string());
3044 }
3045
srbds_show_state(char * buf)3046 static ssize_t srbds_show_state(char *buf)
3047 {
3048 return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]);
3049 }
3050
retbleed_show_state(char * buf)3051 static ssize_t retbleed_show_state(char *buf)
3052 {
3053 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
3054 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
3055 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
3056 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
3057 return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
3058
3059 return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation],
3060 !sched_smt_active() ? "disabled" :
3061 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
3062 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
3063 "enabled with STIBP protection" : "vulnerable");
3064 }
3065
3066 return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
3067 }
3068
srso_show_state(char * buf)3069 static ssize_t srso_show_state(char *buf)
3070 {
3071 if (boot_cpu_has(X86_FEATURE_SRSO_NO))
3072 return sysfs_emit(buf, "Mitigation: SMT disabled\n");
3073
3074 return sysfs_emit(buf, "%s\n", srso_strings[srso_mitigation]);
3075 }
3076
gds_show_state(char * buf)3077 static ssize_t gds_show_state(char *buf)
3078 {
3079 return sysfs_emit(buf, "%s\n", gds_strings[gds_mitigation]);
3080 }
3081
cpu_show_common(struct device * dev,struct device_attribute * attr,char * buf,unsigned int bug)3082 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
3083 char *buf, unsigned int bug)
3084 {
3085 if (!boot_cpu_has_bug(bug))
3086 return sysfs_emit(buf, "Not affected\n");
3087
3088 switch (bug) {
3089 case X86_BUG_CPU_MELTDOWN:
3090 if (boot_cpu_has(X86_FEATURE_PTI))
3091 return sysfs_emit(buf, "Mitigation: PTI\n");
3092
3093 if (hypervisor_is_type(X86_HYPER_XEN_PV))
3094 return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
3095
3096 break;
3097
3098 case X86_BUG_SPECTRE_V1:
3099 return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
3100
3101 case X86_BUG_SPECTRE_V2:
3102 return spectre_v2_show_state(buf);
3103
3104 case X86_BUG_SPEC_STORE_BYPASS:
3105 return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]);
3106
3107 case X86_BUG_L1TF:
3108 if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
3109 return l1tf_show_state(buf);
3110 break;
3111
3112 case X86_BUG_MDS:
3113 return mds_show_state(buf);
3114
3115 case X86_BUG_TAA:
3116 return tsx_async_abort_show_state(buf);
3117
3118 case X86_BUG_ITLB_MULTIHIT:
3119 return itlb_multihit_show_state(buf);
3120
3121 case X86_BUG_SRBDS:
3122 return srbds_show_state(buf);
3123
3124 case X86_BUG_MMIO_STALE_DATA:
3125 case X86_BUG_MMIO_UNKNOWN:
3126 return mmio_stale_data_show_state(buf);
3127
3128 case X86_BUG_RETBLEED:
3129 return retbleed_show_state(buf);
3130
3131 case X86_BUG_SRSO:
3132 return srso_show_state(buf);
3133
3134 case X86_BUG_GDS:
3135 return gds_show_state(buf);
3136
3137 case X86_BUG_RFDS:
3138 return rfds_show_state(buf);
3139
3140 case X86_BUG_ITS:
3141 return its_show_state(buf);
3142
3143 default:
3144 break;
3145 }
3146
3147 return sysfs_emit(buf, "Vulnerable\n");
3148 }
3149
cpu_show_meltdown(struct device * dev,struct device_attribute * attr,char * buf)3150 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
3151 {
3152 return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
3153 }
3154
cpu_show_spectre_v1(struct device * dev,struct device_attribute * attr,char * buf)3155 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
3156 {
3157 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
3158 }
3159
cpu_show_spectre_v2(struct device * dev,struct device_attribute * attr,char * buf)3160 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
3161 {
3162 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
3163 }
3164
cpu_show_spec_store_bypass(struct device * dev,struct device_attribute * attr,char * buf)3165 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
3166 {
3167 return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
3168 }
3169
cpu_show_l1tf(struct device * dev,struct device_attribute * attr,char * buf)3170 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
3171 {
3172 return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
3173 }
3174
cpu_show_mds(struct device * dev,struct device_attribute * attr,char * buf)3175 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
3176 {
3177 return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
3178 }
3179
cpu_show_tsx_async_abort(struct device * dev,struct device_attribute * attr,char * buf)3180 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
3181 {
3182 return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
3183 }
3184
cpu_show_itlb_multihit(struct device * dev,struct device_attribute * attr,char * buf)3185 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
3186 {
3187 return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
3188 }
3189
cpu_show_srbds(struct device * dev,struct device_attribute * attr,char * buf)3190 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
3191 {
3192 return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
3193 }
3194
cpu_show_mmio_stale_data(struct device * dev,struct device_attribute * attr,char * buf)3195 ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
3196 {
3197 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
3198 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN);
3199 else
3200 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
3201 }
3202
cpu_show_retbleed(struct device * dev,struct device_attribute * attr,char * buf)3203 ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
3204 {
3205 return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
3206 }
3207
cpu_show_spec_rstack_overflow(struct device * dev,struct device_attribute * attr,char * buf)3208 ssize_t cpu_show_spec_rstack_overflow(struct device *dev, struct device_attribute *attr, char *buf)
3209 {
3210 return cpu_show_common(dev, attr, buf, X86_BUG_SRSO);
3211 }
3212
cpu_show_gds(struct device * dev,struct device_attribute * attr,char * buf)3213 ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf)
3214 {
3215 return cpu_show_common(dev, attr, buf, X86_BUG_GDS);
3216 }
3217
cpu_show_reg_file_data_sampling(struct device * dev,struct device_attribute * attr,char * buf)3218 ssize_t cpu_show_reg_file_data_sampling(struct device *dev, struct device_attribute *attr, char *buf)
3219 {
3220 return cpu_show_common(dev, attr, buf, X86_BUG_RFDS);
3221 }
3222
cpu_show_indirect_target_selection(struct device * dev,struct device_attribute * attr,char * buf)3223 ssize_t cpu_show_indirect_target_selection(struct device *dev, struct device_attribute *attr, char *buf)
3224 {
3225 return cpu_show_common(dev, attr, buf, X86_BUG_ITS);
3226 }
3227 #endif
3228