xref: /openbmc/phosphor-host-ipmid/sensorhandler.cpp (revision 6b47d5a1da42dca58eff80c6f348eb4e719b427b)
1 #include "config.h"
2 
3 #include "sensorhandler.hpp"
4 
5 #include "fruread.hpp"
6 
7 #include <systemd/sd-bus.h>
8 
9 #include <ipmid/api.hpp>
10 #include <ipmid/entity_map_json.hpp>
11 #include <ipmid/types.hpp>
12 #include <ipmid/utils.hpp>
13 #include <phosphor-logging/elog-errors.hpp>
14 #include <phosphor-logging/lg2.hpp>
15 #include <sdbusplus/message/types.hpp>
16 #include <xyz/openbmc_project/Common/error.hpp>
17 #include <xyz/openbmc_project/Sensor/Value/server.hpp>
18 
19 #include <bitset>
20 #include <cmath>
21 #include <cstring>
22 #include <set>
23 
24 static constexpr uint8_t fruInventoryDevice = 0x10;
25 static constexpr uint8_t IPMIFruInventory = 0x02;
26 static constexpr uint8_t BMCTargetAddress = 0x20;
27 
28 extern int updateSensorRecordFromSSRAESC(const void*);
29 extern sd_bus* bus;
30 
31 namespace ipmi
32 {
33 namespace sensor
34 {
35 extern const IdInfoMap sensors;
36 } // namespace sensor
37 } // namespace ipmi
38 
39 extern const FruMap frus;
40 
41 using namespace phosphor::logging;
42 using InternalFailure =
43     sdbusplus::error::xyz::openbmc_project::common::InternalFailure;
44 
45 void registerNetFnSenFunctions() __attribute__((constructor));
46 
47 struct sensorTypemap_t
48 {
49     uint8_t number;
50     uint8_t typecode;
51     char dbusname[32];
52 };
53 
54 sensorTypemap_t g_SensorTypeMap[] = {
55 
56     {0x01, 0x6F, "Temp"},
57     {0x0C, 0x6F, "DIMM"},
58     {0x0C, 0x6F, "MEMORY_BUFFER"},
59     {0x07, 0x6F, "PROC"},
60     {0x07, 0x6F, "CORE"},
61     {0x07, 0x6F, "CPU"},
62     {0x0F, 0x6F, "BootProgress"},
63     {0xe9, 0x09, "OccStatus"}, // E9 is an internal mapping to handle sensor
64                                // type code os 0x09
65     {0xC3, 0x6F, "BootCount"},
66     {0x1F, 0x6F, "OperatingSystemStatus"},
67     {0x12, 0x6F, "SYSTEM_EVENT"},
68     {0xC7, 0x03, "SYSTEM"},
69     {0xC7, 0x03, "MAIN_PLANAR"},
70     {0xC2, 0x6F, "PowerCap"},
71     {0x0b, 0xCA, "PowerSupplyRedundancy"},
72     {0xDA, 0x03, "TurboAllowed"},
73     {0xD8, 0xC8, "PowerSupplyDerating"},
74     {0xFF, 0x00, ""},
75 };
76 
77 struct sensor_data_t
78 {
79     uint8_t sennum;
80 } __attribute__((packed));
81 
82 using SDRCacheMap = std::unordered_map<uint8_t, get_sdr::SensorDataFullRecord>;
83 SDRCacheMap sdrCacheMap __attribute__((init_priority(101)));
84 
85 using SensorThresholdMap =
86     std::unordered_map<uint8_t, get_sdr::GetSensorThresholdsResponse>;
87 SensorThresholdMap sensorThresholdMap __attribute__((init_priority(101)));
88 
89 #ifdef FEATURE_SENSORS_CACHE
90 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorAddedMatches
91     __attribute__((init_priority(101)));
92 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorUpdatedMatches
93     __attribute__((init_priority(101)));
94 std::map<uint8_t, std::unique_ptr<sdbusplus::bus::match_t>> sensorRemovedMatches
95     __attribute__((init_priority(101)));
96 std::unique_ptr<sdbusplus::bus::match_t> sensorsOwnerMatch
97     __attribute__((init_priority(101)));
98 
99 ipmi::sensor::SensorCacheMap sensorCacheMap __attribute__((init_priority(101)));
100 
101 // It is needed to know which objects belong to which service, so that when a
102 // service exits without interfacesRemoved signal, we could invaildate the cache
103 // that is related to the service. It uses below two variables:
104 // - idToServiceMap records which sensors are known to have a related service;
105 // - serviceToIdMap maps a service to the sensors.
106 using sensorIdToServiceMap = std::unordered_map<uint8_t, std::string>;
107 sensorIdToServiceMap idToServiceMap __attribute__((init_priority(101)));
108 
109 using sensorServiceToIdMap = std::unordered_map<std::string, std::set<uint8_t>>;
110 sensorServiceToIdMap serviceToIdMap __attribute__((init_priority(101)));
111 
fillSensorIdServiceMap(const std::string &,const std::string &,uint8_t id,const std::string & service)112 static void fillSensorIdServiceMap(const std::string&,
113                                    const std::string& /*intf*/, uint8_t id,
114                                    const std::string& service)
115 {
116     if (idToServiceMap.find(id) != idToServiceMap.end())
117     {
118         return;
119     }
120     idToServiceMap[id] = service;
121     serviceToIdMap[service].insert(id);
122 }
123 
fillSensorIdServiceMap(const std::string & obj,const std::string & intf,uint8_t id)124 static void fillSensorIdServiceMap(const std::string& obj,
125                                    const std::string& intf, uint8_t id)
126 {
127     if (idToServiceMap.find(id) != idToServiceMap.end())
128     {
129         return;
130     }
131     try
132     {
133         sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()};
134         auto service = ipmi::getService(bus, intf, obj);
135         idToServiceMap[id] = service;
136         serviceToIdMap[service].insert(id);
137     }
138     catch (...)
139     {
140         // Ignore
141     }
142 }
143 
initSensorMatches()144 void initSensorMatches()
145 {
146     using namespace sdbusplus::bus::match::rules;
147     sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()};
148     for (const auto& s : ipmi::sensor::sensors)
149     {
150         sensorAddedMatches.emplace(
151             s.first,
152             std::make_unique<sdbusplus::bus::match_t>(
153                 bus, interfacesAdded() + argNpath(0, s.second.sensorPath),
154                 [id = s.first, obj = s.second.sensorPath,
155                  intf = s.second.propertyInterfaces.begin()->first](
156                     auto& /*msg*/) { fillSensorIdServiceMap(obj, intf, id); }));
157         sensorRemovedMatches.emplace(
158             s.first,
159             std::make_unique<sdbusplus::bus::match_t>(
160                 bus, interfacesRemoved() + argNpath(0, s.second.sensorPath),
161                 [id = s.first](auto& /*msg*/) {
162                     // Ideally this should work.
163                     // But when a service is terminated or crashed, it does not
164                     // emit interfacesRemoved signal. In that case it's handled
165                     // by sensorsOwnerMatch
166                     sensorCacheMap[id].reset();
167                 }));
168         sensorUpdatedMatches.emplace(
169             s.first,
170             std::make_unique<sdbusplus::bus::match_t>(
171                 bus,
172                 type::signal() + path(s.second.sensorPath) +
173                     member("PropertiesChanged"s) +
174                     interface("org.freedesktop.DBus.Properties"s),
175                 [&s](auto& msg) {
176                     fillSensorIdServiceMap(
177                         s.second.sensorPath,
178                         s.second.propertyInterfaces.begin()->first, s.first);
179                     try
180                     {
181                         // This is signal callback
182                         std::string interfaceName;
183                         msg.read(interfaceName);
184                         ipmi::PropertyMap props;
185                         msg.read(props);
186                         s.second.getFunc(s.first, s.second, props);
187                     }
188                     catch (const std::exception& e)
189                     {
190                         sensorCacheMap[s.first].reset();
191                     }
192                 }));
193     }
194     sensorsOwnerMatch = std::make_unique<sdbusplus::bus::match_t>(
195         bus, nameOwnerChanged(), [](auto& msg) {
196             std::string name;
197             std::string oldOwner;
198             std::string newOwner;
199             msg.read(name, oldOwner, newOwner);
200 
201             if (!name.empty() && newOwner.empty())
202             {
203                 // The service exits
204                 const auto it = serviceToIdMap.find(name);
205                 if (it == serviceToIdMap.end())
206                 {
207                     return;
208                 }
209                 for (const auto& id : it->second)
210                 {
211                     // Invalidate cache
212                     sensorCacheMap[id].reset();
213                 }
214             }
215         });
216 }
217 #endif
218 
219 // Use a lookup table to find the interface name of a specific sensor
220 // This will be used until an alternative is found.  this is the first
221 // step for mapping IPMI
find_openbmc_path(uint8_t num,dbus_interface_t * interface)222 int find_openbmc_path(uint8_t num, dbus_interface_t* interface)
223 {
224     const auto& sensor_it = ipmi::sensor::sensors.find(num);
225     if (sensor_it == ipmi::sensor::sensors.end())
226     {
227         // The sensor map does not contain the sensor requested
228         return -EINVAL;
229     }
230 
231     const auto& info = sensor_it->second;
232 
233     std::string serviceName{};
234     try
235     {
236         sdbusplus::bus_t bus{ipmid_get_sd_bus_connection()};
237         serviceName =
238             ipmi::getService(bus, info.sensorInterface, info.sensorPath);
239     }
240     catch (const sdbusplus::exception_t&)
241     {
242         std::fprintf(stderr, "Failed to get %s busname: %s\n",
243                      info.sensorPath.c_str(), serviceName.c_str());
244         return -EINVAL;
245     }
246 
247     interface->sensortype = info.sensorType;
248     strcpy(interface->bus, serviceName.c_str());
249     strcpy(interface->path, info.sensorPath.c_str());
250     // Take the interface name from the beginning of the DbusInterfaceMap. This
251     // works for the Value interface but may not suffice for more complex
252     // sensors.
253     // tracked https://github.com/openbmc/phosphor-host-ipmid/issues/103
254     strcpy(interface->interface,
255            info.propertyInterfaces.begin()->first.c_str());
256     interface->sensornumber = num;
257 
258     return 0;
259 }
260 
261 /////////////////////////////////////////////////////////////////////
262 //
263 // Routines used by ipmi commands wanting to interact on the dbus
264 //
265 /////////////////////////////////////////////////////////////////////
set_sensor_dbus_state_s(uint8_t number,const char * method,const char * value)266 int set_sensor_dbus_state_s(uint8_t number, const char* method,
267                             const char* value)
268 {
269     dbus_interface_t a;
270     int r;
271     sd_bus_error error = SD_BUS_ERROR_NULL;
272     sd_bus_message* m = nullptr;
273 
274     r = find_openbmc_path(number, &a);
275 
276     if (r < 0)
277     {
278         std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number);
279         return 0;
280     }
281 
282     r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface,
283                                        method);
284     if (r < 0)
285     {
286         std::fprintf(stderr, "Failed to create a method call: %s",
287                      strerror(-r));
288         goto final;
289     }
290 
291     r = sd_bus_message_append(m, "v", "s", value);
292     if (r < 0)
293     {
294         std::fprintf(stderr, "Failed to create a input parameter: %s",
295                      strerror(-r));
296         goto final;
297     }
298 
299     r = sd_bus_call(bus, m, 0, &error, nullptr);
300     if (r < 0)
301     {
302         std::fprintf(stderr, "Failed to call the method: %s", strerror(-r));
303     }
304 
305 final:
306     sd_bus_error_free(&error);
307     m = sd_bus_message_unref(m);
308 
309     return 0;
310 }
set_sensor_dbus_state_y(uint8_t number,const char * method,const uint8_t value)311 int set_sensor_dbus_state_y(uint8_t number, const char* method,
312                             const uint8_t value)
313 {
314     dbus_interface_t a;
315     int r;
316     sd_bus_error error = SD_BUS_ERROR_NULL;
317     sd_bus_message* m = nullptr;
318 
319     r = find_openbmc_path(number, &a);
320 
321     if (r < 0)
322     {
323         std::fprintf(stderr, "Failed to find Sensor 0x%02x\n", number);
324         return 0;
325     }
326 
327     r = sd_bus_message_new_method_call(bus, &m, a.bus, a.path, a.interface,
328                                        method);
329     if (r < 0)
330     {
331         std::fprintf(stderr, "Failed to create a method call: %s",
332                      strerror(-r));
333         goto final;
334     }
335 
336     r = sd_bus_message_append(m, "v", "i", value);
337     if (r < 0)
338     {
339         std::fprintf(stderr, "Failed to create a input parameter: %s",
340                      strerror(-r));
341         goto final;
342     }
343 
344     r = sd_bus_call(bus, m, 0, &error, nullptr);
345     if (r < 0)
346     {
347         std::fprintf(stderr, "12 Failed to call the method: %s", strerror(-r));
348     }
349 
350 final:
351     sd_bus_error_free(&error);
352     m = sd_bus_message_unref(m);
353 
354     return 0;
355 }
356 
dbus_to_sensor_type(char * p)357 uint8_t dbus_to_sensor_type(char* p)
358 {
359     sensorTypemap_t* s = g_SensorTypeMap;
360     char r = 0;
361     while (s->number != 0xFF)
362     {
363         if (!strcmp(s->dbusname, p))
364         {
365             r = s->typecode;
366             break;
367         }
368         s++;
369     }
370 
371     if (s->number == 0xFF)
372         printf("Failed to find Sensor Type %s\n", p);
373 
374     return r;
375 }
376 
get_type_from_interface(dbus_interface_t dbus_if)377 uint8_t get_type_from_interface(dbus_interface_t dbus_if)
378 {
379     uint8_t type;
380 
381     // This is where sensors that do not exist in dbus but do
382     // exist in the host code stop.  This should indicate it
383     // is not a supported sensor
384     if (dbus_if.interface[0] == 0)
385     {
386         return 0;
387     }
388 
389     // Fetch type from interface itself.
390     if (dbus_if.sensortype != 0)
391     {
392         type = dbus_if.sensortype;
393     }
394     else
395     {
396         // Non InventoryItems
397         char* p = strrchr(dbus_if.path, '/');
398         type = dbus_to_sensor_type(p + 1);
399     }
400 
401     return type;
402 }
403 
404 // Replaces find_sensor
find_type_for_sensor_number(uint8_t num)405 uint8_t find_type_for_sensor_number(uint8_t num)
406 {
407     int r;
408     dbus_interface_t dbus_if;
409     r = find_openbmc_path(num, &dbus_if);
410     if (r < 0)
411     {
412         std::fprintf(stderr, "Could not find sensor %d\n", num);
413         return 0;
414     }
415     return get_type_from_interface(dbus_if);
416 }
417 
418 /**
419  *  @brief implements the get sensor type command.
420  *  @param - sensorNumber
421  *
422  *  @return IPMI completion code plus response data on success.
423  *   - sensorType
424  *   - eventType
425  **/
426 
427 ipmi::RspType<uint8_t, // sensorType
428               uint8_t  // eventType
429               >
ipmiGetSensorType(uint8_t sensorNumber)430     ipmiGetSensorType(uint8_t sensorNumber)
431 {
432     const auto it = ipmi::sensor::sensors.find(sensorNumber);
433     if (it == ipmi::sensor::sensors.end())
434     {
435         // The sensor map does not contain the sensor requested
436         return ipmi::responseSensorInvalid();
437     }
438 
439     const auto& info = it->second;
440     uint8_t sensorType = info.sensorType;
441     uint8_t eventType = info.sensorReadingType;
442 
443     return ipmi::responseSuccess(sensorType, eventType);
444 }
445 
446 const std::set<std::string> analogSensorInterfaces = {
447     "xyz.openbmc_project.Sensor.Value",
448     "xyz.openbmc_project.Control.FanPwm",
449 };
450 
isAnalogSensor(const std::string & interface)451 bool isAnalogSensor(const std::string& interface)
452 {
453     return (analogSensorInterfaces.count(interface));
454 }
455 
456 /**
457 @brief This command is used to set sensorReading.
458 
459 @param
460     -  sensorNumber
461     -  operation
462     -  reading
463     -  assertOffset0_7
464     -  assertOffset8_14
465     -  deassertOffset0_7
466     -  deassertOffset8_14
467     -  eventData1
468     -  eventData2
469     -  eventData3
470 
471 @return completion code on success.
472 **/
473 
ipmiSetSensorReading(uint8_t sensorNumber,uint8_t operation,uint8_t reading,uint8_t assertOffset0_7,uint8_t assertOffset8_14,uint8_t deassertOffset0_7,uint8_t deassertOffset8_14,uint8_t eventData1,uint8_t eventData2,uint8_t eventData3)474 ipmi::RspType<> ipmiSetSensorReading(
475     uint8_t sensorNumber, uint8_t operation, uint8_t reading,
476     uint8_t assertOffset0_7, uint8_t assertOffset8_14,
477     uint8_t deassertOffset0_7, uint8_t deassertOffset8_14, uint8_t eventData1,
478     uint8_t eventData2, uint8_t eventData3)
479 {
480     lg2::debug("IPMI SET_SENSOR, sensorNumber: {SENSOR_NUM}", "SENSOR_NUM",
481                lg2::hex, sensorNumber);
482 
483     if (sensorNumber == 0xFF)
484     {
485         return ipmi::responseInvalidFieldRequest();
486     }
487     ipmi::sensor::SetSensorReadingReq cmdData;
488 
489     cmdData.number = sensorNumber;
490     cmdData.operation = operation;
491     cmdData.reading = reading;
492     cmdData.assertOffset0_7 = assertOffset0_7;
493     cmdData.assertOffset8_14 = assertOffset8_14;
494     cmdData.deassertOffset0_7 = deassertOffset0_7;
495     cmdData.deassertOffset8_14 = deassertOffset8_14;
496     cmdData.eventData1 = eventData1;
497     cmdData.eventData2 = eventData2;
498     cmdData.eventData3 = eventData3;
499 
500     // Check if the Sensor Number is present
501     const auto iter = ipmi::sensor::sensors.find(sensorNumber);
502     if (iter == ipmi::sensor::sensors.end())
503     {
504         updateSensorRecordFromSSRAESC(&sensorNumber);
505         return ipmi::responseSuccess();
506     }
507 
508     try
509     {
510         if (ipmi::sensor::Mutability::Write !=
511             (iter->second.mutability & ipmi::sensor::Mutability::Write))
512         {
513             lg2::error("Sensor Set operation is not allowed, "
514                        "sensorNumber: {SENSOR_NUM}",
515                        "SENSOR_NUM", lg2::hex, sensorNumber);
516             return ipmi::responseIllegalCommand();
517         }
518         auto ipmiRC = iter->second.updateFunc(cmdData, iter->second);
519         return ipmi::response(ipmiRC);
520     }
521     catch (const InternalFailure& e)
522     {
523         lg2::error("Set sensor failed, sensorNumber: {SENSOR_NUM}",
524                    "SENSOR_NUM", lg2::hex, sensorNumber);
525         commit<InternalFailure>();
526         return ipmi::responseUnspecifiedError();
527     }
528     catch (const std::runtime_error& e)
529     {
530         lg2::error("runtime error: {ERROR}", "ERROR", e);
531         return ipmi::responseUnspecifiedError();
532     }
533 }
534 
535 /** @brief implements the get sensor reading command
536  *  @param sensorNum - sensor number
537  *
538  *  @returns IPMI completion code plus response data
539  *   - senReading           - sensor reading
540  *   - reserved
541  *   - readState            - sensor reading state enabled
542  *   - senScanState         - sensor scan state disabled
543  *   - allEventMessageState - all Event message state disabled
544  *   - assertionStatesLsb   - threshold levels states
545  *   - assertionStatesMsb   - discrete reading sensor states
546  */
547 ipmi::RspType<uint8_t, // sensor reading
548 
549               uint5_t, // reserved
550               bool,    // reading state
551               bool,    // 0 = sensor scanning state disabled
552               bool,    // 0 = all event messages disabled
553 
554               uint8_t, // threshold levels states
555               uint8_t  // discrete reading sensor states
556               >
ipmiSensorGetSensorReading(ipmi::Context::ptr & ctx,uint8_t sensorNum)557     ipmiSensorGetSensorReading([[maybe_unused]] ipmi::Context::ptr& ctx,
558                                uint8_t sensorNum)
559 {
560     if (sensorNum == 0xFF)
561     {
562         return ipmi::responseInvalidFieldRequest();
563     }
564 
565     const auto iter = ipmi::sensor::sensors.find(sensorNum);
566     if (iter == ipmi::sensor::sensors.end())
567     {
568         return ipmi::responseSensorInvalid();
569     }
570     if (ipmi::sensor::Mutability::Read !=
571         (iter->second.mutability & ipmi::sensor::Mutability::Read))
572     {
573         return ipmi::responseIllegalCommand();
574     }
575 
576     try
577     {
578 #ifdef FEATURE_SENSORS_CACHE
579         auto& sensorData = sensorCacheMap[sensorNum];
580         if (!sensorData.has_value())
581         {
582             // No cached value, try read it
583             std::string service;
584             boost::system::error_code ec;
585             const auto& sensorInfo = iter->second;
586             ec = ipmi::getService(ctx, sensorInfo.sensorInterface,
587                                   sensorInfo.sensorPath, service);
588             if (ec)
589             {
590                 return ipmi::responseUnspecifiedError();
591             }
592             fillSensorIdServiceMap(sensorInfo.sensorPath,
593                                    sensorInfo.propertyInterfaces.begin()->first,
594                                    iter->first, service);
595 
596             ipmi::PropertyMap props;
597             ec = ipmi::getAllDbusProperties(
598                 ctx, service, sensorInfo.sensorPath,
599                 sensorInfo.propertyInterfaces.begin()->first, props);
600             if (ec)
601             {
602                 fprintf(stderr, "Failed to get sensor %s, %d: %s\n",
603                         sensorInfo.sensorPath.c_str(), ec.value(),
604                         ec.message().c_str());
605                 // Intitilizing with default values
606                 constexpr uint8_t senReading = 0;
607                 constexpr uint5_t reserved{0};
608                 constexpr bool readState = true;
609                 constexpr bool senScanState = false;
610                 constexpr bool allEventMessageState = false;
611                 constexpr uint8_t assertionStatesLsb = 0;
612                 constexpr uint8_t assertionStatesMsb = 0;
613 
614                 return ipmi::responseSuccess(
615                     senReading, reserved, readState, senScanState,
616                     allEventMessageState, assertionStatesLsb,
617                     assertionStatesMsb);
618             }
619             sensorInfo.getFunc(sensorNum, sensorInfo, props);
620         }
621         return ipmi::responseSuccess(
622             sensorData->response.reading, uint5_t(0),
623             sensorData->response.readingOrStateUnavailable,
624             sensorData->response.scanningEnabled,
625             sensorData->response.allEventMessagesEnabled,
626             sensorData->response.thresholdLevelsStates,
627             sensorData->response.discreteReadingSensorStates);
628 
629 #else
630         ipmi::sensor::GetSensorResponse getResponse =
631             iter->second.getFunc(iter->second);
632 
633         return ipmi::responseSuccess(
634             getResponse.reading, uint5_t(0),
635             getResponse.readingOrStateUnavailable, getResponse.scanningEnabled,
636             getResponse.allEventMessagesEnabled,
637             getResponse.thresholdLevelsStates,
638             getResponse.discreteReadingSensorStates);
639 #endif
640     }
641 #ifdef UPDATE_FUNCTIONAL_ON_FAIL
642     catch (const SensorFunctionalError& e)
643     {
644         return ipmi::responseResponseError();
645     }
646 #endif
647     catch (const std::exception& e)
648     {
649         // Intitilizing with default values
650         constexpr uint8_t senReading = 0;
651         constexpr uint5_t reserved{0};
652         constexpr bool readState = true;
653         constexpr bool senScanState = false;
654         constexpr bool allEventMessageState = false;
655         constexpr uint8_t assertionStatesLsb = 0;
656         constexpr uint8_t assertionStatesMsb = 0;
657 
658         return ipmi::responseSuccess(senReading, reserved, readState,
659                                      senScanState, allEventMessageState,
660                                      assertionStatesLsb, assertionStatesMsb);
661     }
662 }
663 
updateWarningThreshold(uint8_t lowerValue,uint8_t upperValue,get_sdr::GetSensorThresholdsResponse & resp)664 void updateWarningThreshold(uint8_t lowerValue, uint8_t upperValue,
665                             get_sdr::GetSensorThresholdsResponse& resp)
666 {
667     resp.lowerNonCritical = lowerValue;
668     resp.upperNonCritical = upperValue;
669     if (lowerValue)
670     {
671         resp.validMask |= static_cast<uint8_t>(
672             ipmi::sensor::ThresholdMask::NON_CRITICAL_LOW_MASK);
673     }
674 
675     if (upperValue)
676     {
677         resp.validMask |= static_cast<uint8_t>(
678             ipmi::sensor::ThresholdMask::NON_CRITICAL_HIGH_MASK);
679     }
680 }
681 
updateCriticalThreshold(uint8_t lowerValue,uint8_t upperValue,get_sdr::GetSensorThresholdsResponse & resp)682 void updateCriticalThreshold(uint8_t lowerValue, uint8_t upperValue,
683                              get_sdr::GetSensorThresholdsResponse& resp)
684 {
685     resp.lowerCritical = lowerValue;
686     resp.upperCritical = upperValue;
687     if (lowerValue)
688     {
689         resp.validMask |= static_cast<uint8_t>(
690             ipmi::sensor::ThresholdMask::CRITICAL_LOW_MASK);
691     }
692 
693     if (upperValue)
694     {
695         resp.validMask |= static_cast<uint8_t>(
696             ipmi::sensor::ThresholdMask::CRITICAL_HIGH_MASK);
697     }
698 }
699 
updateNonRecoverableThreshold(uint8_t lowerValue,uint8_t upperValue,get_sdr::GetSensorThresholdsResponse & resp)700 void updateNonRecoverableThreshold(uint8_t lowerValue, uint8_t upperValue,
701                                    get_sdr::GetSensorThresholdsResponse& resp)
702 {
703     resp.lowerNonRecoverable = lowerValue;
704     resp.upperNonRecoverable = upperValue;
705     if (lowerValue)
706     {
707         resp.validMask |= static_cast<uint8_t>(
708             ipmi::sensor::ThresholdMask::NON_RECOVERABLE_LOW_MASK);
709     }
710 
711     if (upperValue)
712     {
713         resp.validMask |= static_cast<uint8_t>(
714             ipmi::sensor::ThresholdMask::NON_RECOVERABLE_HIGH_MASK);
715     }
716 }
717 
getSensorThresholds(ipmi::Context::ptr & ctx,uint8_t sensorNum)718 get_sdr::GetSensorThresholdsResponse getSensorThresholds(
719     ipmi::Context::ptr& ctx, uint8_t sensorNum)
720 {
721     get_sdr::GetSensorThresholdsResponse resp{};
722     const auto iter = ipmi::sensor::sensors.find(sensorNum);
723     const auto info = iter->second;
724 
725     std::string service;
726     boost::system::error_code ec;
727     ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service);
728     if (ec)
729     {
730         return resp;
731     }
732 
733     int32_t minClamp;
734     int32_t maxClamp;
735     int32_t rawData;
736     constexpr uint8_t sensorUnitsSignedBits = 2 << 6;
737     constexpr uint8_t signedDataFormat = 0x80;
738     if ((info.sensorUnits1 & sensorUnitsSignedBits) == signedDataFormat)
739     {
740         minClamp = std::numeric_limits<int8_t>::lowest();
741         maxClamp = std::numeric_limits<int8_t>::max();
742     }
743     else
744     {
745         minClamp = std::numeric_limits<uint8_t>::lowest();
746         maxClamp = std::numeric_limits<uint8_t>::max();
747     }
748 
749     static std::vector<std::string> thresholdNames{"Warning", "Critical",
750                                                    "NonRecoverable"};
751 
752     for (const auto& thresholdName : thresholdNames)
753     {
754         std::string thresholdInterface =
755             "xyz.openbmc_project.Sensor.Threshold." + thresholdName;
756         std::string thresholdLow = thresholdName + "Low";
757         std::string thresholdHigh = thresholdName + "High";
758 
759         ipmi::PropertyMap thresholds;
760         ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
761                                         thresholdInterface, thresholds);
762         if (ec)
763         {
764             continue;
765         }
766 
767         double lowValue = ipmi::mappedVariant<double>(
768             thresholds, thresholdLow, std::numeric_limits<double>::quiet_NaN());
769         double highValue = ipmi::mappedVariant<double>(
770             thresholds, thresholdHigh,
771             std::numeric_limits<double>::quiet_NaN());
772 
773         uint8_t lowerValue = 0;
774         uint8_t upperValue = 0;
775         if (std::isfinite(lowValue))
776         {
777             lowValue *= std::pow(10, info.scale - info.exponentR);
778             rawData = round((lowValue - info.scaledOffset) / info.coefficientM);
779             lowerValue =
780                 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp));
781         }
782 
783         if (std::isfinite(highValue))
784         {
785             highValue *= std::pow(10, info.scale - info.exponentR);
786             rawData =
787                 round((highValue - info.scaledOffset) / info.coefficientM);
788             upperValue =
789                 static_cast<uint8_t>(std::clamp(rawData, minClamp, maxClamp));
790         }
791 
792         if (thresholdName == "Warning")
793         {
794             updateWarningThreshold(lowerValue, upperValue, resp);
795         }
796         else if (thresholdName == "Critical")
797         {
798             updateCriticalThreshold(lowerValue, upperValue, resp);
799         }
800         else if (thresholdName == "NonRecoverable")
801         {
802             updateNonRecoverableThreshold(lowerValue, upperValue, resp);
803         }
804     }
805 
806     return resp;
807 }
808 
809 /** @brief implements the get sensor thresholds command
810  *  @param ctx - IPMI context pointer
811  *  @param sensorNum - sensor number
812  *
813  *  @returns IPMI completion code plus response data
814  *   - validMask - threshold mask
815  *   - lower non-critical threshold - IPMI messaging state
816  *   - lower critical threshold - link authentication state
817  *   - lower non-recoverable threshold - callback state
818  *   - upper non-critical threshold
819  *   - upper critical
820  *   - upper non-recoverable
821  */
822 ipmi::RspType<uint8_t, // validMask
823               uint8_t, // lowerNonCritical
824               uint8_t, // lowerCritical
825               uint8_t, // lowerNonRecoverable
826               uint8_t, // upperNonCritical
827               uint8_t, // upperCritical
828               uint8_t  // upperNonRecoverable
829               >
ipmiSensorGetSensorThresholds(ipmi::Context::ptr & ctx,uint8_t sensorNum)830     ipmiSensorGetSensorThresholds(ipmi::Context::ptr& ctx, uint8_t sensorNum)
831 {
832     constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value";
833 
834     const auto iter = ipmi::sensor::sensors.find(sensorNum);
835     if (iter == ipmi::sensor::sensors.end())
836     {
837         return ipmi::responseSensorInvalid();
838     }
839 
840     const auto info = iter->second;
841 
842     // Proceed only if the sensor value interface is implemented.
843     if (info.propertyInterfaces.find(valueInterface) ==
844         info.propertyInterfaces.end())
845     {
846         // return with valid mask as 0
847         return ipmi::responseSuccess();
848     }
849 
850     auto it = sensorThresholdMap.find(sensorNum);
851     if (it == sensorThresholdMap.end())
852     {
853         auto resp = getSensorThresholds(ctx, sensorNum);
854         if (resp.validMask == 0)
855         {
856             return ipmi::responseSensorInvalid();
857         }
858         sensorThresholdMap[sensorNum] = std::move(resp);
859     }
860 
861     const auto& resp = sensorThresholdMap[sensorNum];
862 
863     return ipmi::responseSuccess(
864         resp.validMask, resp.lowerNonCritical, resp.lowerCritical,
865         resp.lowerNonRecoverable, resp.upperNonCritical, resp.upperCritical,
866         resp.upperNonRecoverable);
867 }
868 
869 /** @brief implements the Set Sensor threshold command
870  *  @param sensorNumber        - sensor number
871  *  @param lowerNonCriticalThreshMask
872  *  @param lowerCriticalThreshMask
873  *  @param lowerNonRecovThreshMask
874  *  @param upperNonCriticalThreshMask
875  *  @param upperCriticalThreshMask
876  *  @param upperNonRecovThreshMask
877  *  @param reserved
878  *  @param lowerNonCritical    - lower non-critical threshold
879  *  @param lowerCritical       - Lower critical threshold
880  *  @param lowerNonRecoverable - Lower non recovarable threshold
881  *  @param upperNonCritical    - Upper non-critical threshold
882  *  @param upperCritical       - Upper critical
883  *  @param upperNonRecoverable - Upper Non-recoverable
884  *
885  *  @returns IPMI completion code
886  */
ipmiSenSetSensorThresholds(ipmi::Context::ptr & ctx,uint8_t sensorNum,bool lowerNonCriticalThreshMask,bool lowerCriticalThreshMask,bool lowerNonRecovThreshMask,bool upperNonCriticalThreshMask,bool upperCriticalThreshMask,bool upperNonRecovThreshMask,uint2_t reserved,uint8_t lowerNonCritical,uint8_t lowerCritical,uint8_t,uint8_t upperNonCritical,uint8_t upperCritical,uint8_t)887 ipmi::RspType<> ipmiSenSetSensorThresholds(
888     ipmi::Context::ptr& ctx, uint8_t sensorNum, bool lowerNonCriticalThreshMask,
889     bool lowerCriticalThreshMask, bool lowerNonRecovThreshMask,
890     bool upperNonCriticalThreshMask, bool upperCriticalThreshMask,
891     bool upperNonRecovThreshMask, uint2_t reserved, uint8_t lowerNonCritical,
892     uint8_t lowerCritical, uint8_t, uint8_t upperNonCritical,
893     uint8_t upperCritical, uint8_t)
894 {
895     if (reserved)
896     {
897         return ipmi::responseInvalidFieldRequest();
898     }
899 
900     // lower nc and upper nc not suppported on any sensor
901     if (lowerNonRecovThreshMask || upperNonRecovThreshMask)
902     {
903         return ipmi::responseInvalidFieldRequest();
904     }
905 
906     // if none of the threshold mask are set, nothing to do
907     if (!(lowerNonCriticalThreshMask | lowerCriticalThreshMask |
908           lowerNonRecovThreshMask | upperNonCriticalThreshMask |
909           upperCriticalThreshMask | upperNonRecovThreshMask))
910     {
911         return ipmi::responseSuccess();
912     }
913 
914     constexpr auto valueInterface = "xyz.openbmc_project.Sensor.Value";
915 
916     const auto iter = ipmi::sensor::sensors.find(sensorNum);
917     if (iter == ipmi::sensor::sensors.end())
918     {
919         return ipmi::responseSensorInvalid();
920     }
921 
922     const auto& info = iter->second;
923 
924     // Proceed only if the sensor value interface is implemented.
925     if (info.propertyInterfaces.find(valueInterface) ==
926         info.propertyInterfaces.end())
927     {
928         // return with valid mask as 0
929         return ipmi::responseSuccess();
930     }
931 
932     constexpr auto warningThreshIntf =
933         "xyz.openbmc_project.Sensor.Threshold.Warning";
934     constexpr auto criticalThreshIntf =
935         "xyz.openbmc_project.Sensor.Threshold.Critical";
936 
937     std::string service;
938     boost::system::error_code ec;
939     ec = ipmi::getService(ctx, info.sensorInterface, info.sensorPath, service);
940     if (ec)
941     {
942         return ipmi::responseResponseError();
943     }
944     // store a vector of property name, value to set, and interface
945     std::vector<std::tuple<std::string, uint8_t, std::string>> thresholdsToSet;
946 
947     // define the indexes of the tuple
948     constexpr uint8_t propertyName = 0;
949     constexpr uint8_t thresholdValue = 1;
950     constexpr uint8_t interface = 2;
951     // verifiy all needed fields are present
952     if (lowerCriticalThreshMask || upperCriticalThreshMask)
953     {
954         ipmi::PropertyMap findThreshold;
955         ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
956                                         criticalThreshIntf, findThreshold);
957 
958         if (!ec)
959         {
960             if (lowerCriticalThreshMask)
961             {
962                 auto findLower = findThreshold.find("CriticalLow");
963                 if (findLower == findThreshold.end())
964                 {
965                     return ipmi::responseInvalidFieldRequest();
966                 }
967                 thresholdsToSet.emplace_back("CriticalLow", lowerCritical,
968                                              criticalThreshIntf);
969             }
970             if (upperCriticalThreshMask)
971             {
972                 auto findUpper = findThreshold.find("CriticalHigh");
973                 if (findUpper == findThreshold.end())
974                 {
975                     return ipmi::responseInvalidFieldRequest();
976                 }
977                 thresholdsToSet.emplace_back("CriticalHigh", upperCritical,
978                                              criticalThreshIntf);
979             }
980         }
981     }
982     if (lowerNonCriticalThreshMask || upperNonCriticalThreshMask)
983     {
984         ipmi::PropertyMap findThreshold;
985         ec = ipmi::getAllDbusProperties(ctx, service, info.sensorPath,
986                                         warningThreshIntf, findThreshold);
987 
988         if (!ec)
989         {
990             if (lowerNonCriticalThreshMask)
991             {
992                 auto findLower = findThreshold.find("WarningLow");
993                 if (findLower == findThreshold.end())
994                 {
995                     return ipmi::responseInvalidFieldRequest();
996                 }
997                 thresholdsToSet.emplace_back("WarningLow", lowerNonCritical,
998                                              warningThreshIntf);
999             }
1000             if (upperNonCriticalThreshMask)
1001             {
1002                 auto findUpper = findThreshold.find("WarningHigh");
1003                 if (findUpper == findThreshold.end())
1004                 {
1005                     return ipmi::responseInvalidFieldRequest();
1006                 }
1007                 thresholdsToSet.emplace_back("WarningHigh", upperNonCritical,
1008                                              warningThreshIntf);
1009             }
1010         }
1011     }
1012     for (const auto& property : thresholdsToSet)
1013     {
1014         // from section 36.3 in the IPMI Spec, assume all linear
1015         double valueToSet =
1016             ((info.coefficientM * std::get<thresholdValue>(property)) +
1017              (info.scaledOffset * std::pow(10.0, info.scale))) *
1018             std::pow(10.0, info.exponentR);
1019         ipmi::setDbusProperty(
1020             ctx, service, info.sensorPath, std::get<interface>(property),
1021             std::get<propertyName>(property), ipmi::Value(valueToSet));
1022     }
1023 
1024     // Invalidate the cache
1025     sensorThresholdMap.erase(sensorNum);
1026     return ipmi::responseSuccess();
1027 }
1028 
1029 /** @brief implements the get SDR Info command
1030  *  @param count - Operation
1031  *
1032  *  @returns IPMI completion code plus response data
1033  *   - sdrCount - sensor/SDR count
1034  *   - lunsAndDynamicPopulation - static/Dynamic sensor population flag
1035  */
1036 ipmi::RspType<uint8_t, // respcount
1037               uint8_t  // dynamic population flags
1038               >
ipmiSensorGetDeviceSdrInfo(std::optional<uint8_t> count)1039     ipmiSensorGetDeviceSdrInfo(std::optional<uint8_t> count)
1040 {
1041     uint8_t sdrCount;
1042     // multiple LUNs not supported.
1043     constexpr uint8_t lunsAndDynamicPopulation = 1;
1044     constexpr uint8_t getSdrCount = 0x01;
1045     constexpr uint8_t getSensorCount = 0x00;
1046 
1047     if (count.value_or(0) == getSdrCount)
1048     {
1049         // Get SDR count. This returns the total number of SDRs in the device.
1050         const auto& entityRecords =
1051             ipmi::sensor::EntityInfoMapContainer::getContainer()
1052                 ->getIpmiEntityRecords();
1053         sdrCount = ipmi::sensor::sensors.size() + frus.size() +
1054                    entityRecords.size();
1055     }
1056     else if (count.value_or(0) == getSensorCount)
1057     {
1058         // Get Sensor count. This returns the number of sensors
1059         sdrCount = ipmi::sensor::sensors.size();
1060     }
1061     else
1062     {
1063         return ipmi::responseInvalidCommandOnLun();
1064     }
1065 
1066     return ipmi::responseSuccess(sdrCount, lunsAndDynamicPopulation);
1067 }
1068 
1069 /** @brief implements the reserve SDR command
1070  *  @returns IPMI completion code plus response data
1071  *   - reservationID - reservation ID
1072  */
ipmiSensorReserveSdr()1073 ipmi::RspType<uint16_t> ipmiSensorReserveSdr()
1074 {
1075     // A constant reservation ID is okay until we implement add/remove SDR.
1076     constexpr uint16_t reservationID = 1;
1077 
1078     return ipmi::responseSuccess(reservationID);
1079 }
1080 
setUnitFieldsForObject(const ipmi::sensor::Info & info,get_sdr::SensorDataFullRecordBody & body)1081 void setUnitFieldsForObject(const ipmi::sensor::Info& info,
1082                             get_sdr::SensorDataFullRecordBody& body)
1083 {
1084     namespace server = sdbusplus::server::xyz::openbmc_project::sensor;
1085     body.sensorUnits1 = info.sensorUnits1; // default is 0. unsigned, no rate,
1086                                            // no modifier, not a %
1087     try
1088     {
1089         auto unit = server::Value::convertUnitFromString(info.unit);
1090         // Unit strings defined in
1091         // phosphor-dbus-interfaces/xyz/openbmc_project/Sensor/Value.interface.yaml
1092         switch (unit)
1093         {
1094             case server::Value::Unit::DegreesC:
1095                 body.sensorUnits2Base = get_sdr::SENSOR_UNIT_DEGREES_C;
1096                 break;
1097             case server::Value::Unit::RPMS:
1098                 body.sensorUnits2Base = get_sdr::SENSOR_UNIT_RPM;
1099                 break;
1100             case server::Value::Unit::Volts:
1101                 body.sensorUnits2Base = get_sdr::SENSOR_UNIT_VOLTS;
1102                 break;
1103             case server::Value::Unit::Meters:
1104                 body.sensorUnits2Base = get_sdr::SENSOR_UNIT_METERS;
1105                 break;
1106             case server::Value::Unit::Amperes:
1107                 body.sensorUnits2Base = get_sdr::SENSOR_UNIT_AMPERES;
1108                 break;
1109             case server::Value::Unit::Joules:
1110                 body.sensorUnits2Base = get_sdr::SENSOR_UNIT_JOULES;
1111                 break;
1112             case server::Value::Unit::Watts:
1113                 body.sensorUnits2Base = get_sdr::SENSOR_UNIT_WATTS;
1114                 break;
1115             case server::Value::Unit::Percent:
1116                 get_sdr::body::setPercentage(body);
1117                 break;
1118             default:
1119                 // Cannot be hit.
1120                 std::fprintf(stderr, "Unknown value unit type: = %s\n",
1121                              info.unit.c_str());
1122         }
1123     }
1124     catch (const sdbusplus::exception::InvalidEnumString& e)
1125     {
1126         lg2::warning("Warning: no unit provided for sensor!");
1127     }
1128 }
1129 
populateRecordFromDbus(const ipmi::sensor::Info & info,get_sdr::SensorDataFullRecordBody & body)1130 ipmi::Cc populateRecordFromDbus(const ipmi::sensor::Info& info,
1131                                 get_sdr::SensorDataFullRecordBody& body)
1132 {
1133     /* Functional sensor case */
1134     if (isAnalogSensor(info.propertyInterfaces.begin()->first))
1135     {
1136         /* Unit info */
1137         setUnitFieldsForObject(info, body);
1138 
1139         get_sdr::body::setB(info.coefficientB, body);
1140         get_sdr::body::setM(info.coefficientM, body);
1141         get_sdr::body::setBexp(info.exponentB, body);
1142         get_sdr::body::setRexp(info.exponentR, body);
1143     }
1144 
1145     /* ID string */
1146     auto idString = info.sensorName;
1147 
1148     if (idString.empty())
1149     {
1150         idString = info.sensorNameFunc(info);
1151     }
1152 
1153     if (idString.length() > FULL_RECORD_ID_STR_MAX_LENGTH)
1154     {
1155         get_sdr::body::setIdStrLen(FULL_RECORD_ID_STR_MAX_LENGTH, body);
1156     }
1157     else
1158     {
1159         get_sdr::body::setIdStrLen(idString.length(), body);
1160     }
1161     get_sdr::body::setIdType(3, body); // "8-bit ASCII + Latin 1"
1162     strncpy(body.idString, idString.c_str(), get_sdr::body::getIdStrLen(body));
1163 
1164     return ipmi::ccSuccess;
1165 };
1166 
1167 ipmi::RspType<uint16_t,            // nextRecordId
1168               std::vector<uint8_t> // recordData
1169               >
ipmiFruGetSdr(uint16_t recordID,uint8_t offset,uint8_t bytesToRead)1170     ipmiFruGetSdr(uint16_t recordID, uint8_t offset, uint8_t bytesToRead)
1171 {
1172     auto fru = frus.begin();
1173     uint8_t fruID{};
1174 
1175     fruID = recordID - FRU_RECORD_ID_START;
1176     fru = frus.find(fruID);
1177     if (fru == frus.end())
1178     {
1179         return ipmi::responseSensorInvalid();
1180     }
1181 
1182     get_sdr::SensorDataFruRecord record{};
1183     /* Header */
1184     record.header.recordId = recordID;
1185     record.header.sdrVersion = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1
1186     record.header.recordType = get_sdr::SENSOR_DATA_FRU_RECORD;
1187     record.header.recordLength = sizeof(record.key) + sizeof(record.body);
1188 
1189     /* Key */
1190     record.key.fruID = fruID;
1191     record.key.accessLun |= IPMI_LOGICAL_FRU;
1192     record.key.deviceAddress = BMCTargetAddress;
1193 
1194     /* Body */
1195     record.body.entityID = fru->second[0].entityID;
1196     record.body.entityInstance = fru->second[0].entityInstance;
1197     record.body.deviceType = fruInventoryDevice;
1198     record.body.deviceTypeModifier = IPMIFruInventory;
1199 
1200     /* Device ID string */
1201     auto deviceID =
1202         fru->second[0].path.substr(fru->second[0].path.find_last_of('/') + 1,
1203                                    fru->second[0].path.length());
1204 
1205     if (deviceID.length() > get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH)
1206     {
1207         get_sdr::body::setDeviceIdStrLen(
1208             get_sdr::FRU_RECORD_DEVICE_ID_MAX_LENGTH, record.body);
1209     }
1210     else
1211     {
1212         get_sdr::body::setDeviceIdStrLen(deviceID.length(), record.body);
1213     }
1214 
1215     uint16_t nextRecordId{};
1216     strncpy(record.body.deviceID, deviceID.c_str(),
1217             get_sdr::body::getDeviceIdStrLen(record.body));
1218 
1219     if (++fru == frus.end())
1220     {
1221         // we have reached till end of fru, so assign the next record id to
1222         // 512(Max fru ID = 511) + Entity Record ID(may start with 0).
1223         const auto& entityRecords =
1224             ipmi::sensor::EntityInfoMapContainer::getContainer()
1225                 ->getIpmiEntityRecords();
1226         nextRecordId =
1227             (entityRecords.size())
1228                 ? entityRecords.begin()->first + ENTITY_RECORD_ID_START
1229                 : END_OF_RECORD;
1230     }
1231     else
1232     {
1233         nextRecordId = FRU_RECORD_ID_START + fru->first;
1234     }
1235 
1236     // Check for invalid offset size
1237     if (offset > sizeof(record))
1238     {
1239         return ipmi::responseParmOutOfRange();
1240     }
1241 
1242     size_t dataLen =
1243         std::min(static_cast<size_t>(bytesToRead), sizeof(record) - offset);
1244 
1245     std::vector<uint8_t> recordData(dataLen);
1246     std::memcpy(recordData.data(),
1247                 reinterpret_cast<const uint8_t*>(&record) + offset, dataLen);
1248 
1249     return ipmi::responseSuccess(nextRecordId, recordData);
1250 }
1251 
1252 ipmi::RspType<uint16_t,            // nextRecordId
1253               std::vector<uint8_t> // recordData
1254               >
ipmiEntityGetSdr(uint16_t recordID,uint8_t offset,uint8_t bytesToRead)1255     ipmiEntityGetSdr(uint16_t recordID, uint8_t offset, uint8_t bytesToRead)
1256 {
1257     const auto& entityRecords =
1258         ipmi::sensor::EntityInfoMapContainer::getContainer()
1259             ->getIpmiEntityRecords();
1260     auto entity = entityRecords.begin();
1261     uint8_t entityRecordID;
1262 
1263     entityRecordID = recordID - ENTITY_RECORD_ID_START;
1264     entity = entityRecords.find(entityRecordID);
1265     if (entity == entityRecords.end())
1266     {
1267         return ipmi::responseSensorInvalid();
1268     }
1269 
1270     get_sdr::SensorDataEntityRecord record{};
1271     /* Header */
1272     record.header.recordId = recordID;
1273     record.header.sdrVersion = SDR_VERSION; // Based on IPMI Spec v2.0 rev 1.1
1274     record.header.recordType = get_sdr::SENSOR_DATA_ENTITY_RECORD;
1275     record.header.recordLength = sizeof(record.key) + sizeof(record.body);
1276 
1277     /* Key */
1278     record.key.containerEntityId = entity->second.containerEntityId;
1279     record.key.containerEntityInstance = entity->second.containerEntityInstance;
1280     get_sdr::key::setFlags(entity->second.isList, entity->second.isLinked,
1281                            record.key);
1282     record.key.entityId1 = entity->second.containedEntities[0].first;
1283     record.key.entityInstance1 = entity->second.containedEntities[0].second;
1284 
1285     /* Body */
1286     record.body.entityId2 = entity->second.containedEntities[1].first;
1287     record.body.entityInstance2 = entity->second.containedEntities[1].second;
1288     record.body.entityId3 = entity->second.containedEntities[2].first;
1289     record.body.entityInstance3 = entity->second.containedEntities[2].second;
1290     record.body.entityId4 = entity->second.containedEntities[3].first;
1291     record.body.entityInstance4 = entity->second.containedEntities[3].second;
1292 
1293     uint16_t nextRecordId{};
1294     if (++entity == entityRecords.end())
1295     {
1296         nextRecordId = END_OF_RECORD;
1297     }
1298     else
1299     {
1300         nextRecordId = entity->first + ENTITY_RECORD_ID_START;
1301     }
1302 
1303     // Check for invalid offset size
1304     if (offset > sizeof(record))
1305     {
1306         return ipmi::responseParmOutOfRange();
1307     }
1308 
1309     size_t dataLen =
1310         std::min(static_cast<size_t>(bytesToRead), sizeof(record) - offset);
1311 
1312     std::vector<uint8_t> recordData(dataLen);
1313     std::memcpy(recordData.data(),
1314                 reinterpret_cast<const uint8_t*>(&record) + offset, dataLen);
1315 
1316     return ipmi::responseSuccess(nextRecordId, recordData);
1317 }
1318 
1319 ipmi::RspType<uint16_t,            // nextRecordId
1320               std::vector<uint8_t> // recordData
1321               >
ipmiSensorGetSdr(uint16_t,uint16_t recordID,uint8_t offset,uint8_t bytesToRead)1322     ipmiSensorGetSdr(uint16_t /* reservationId */, uint16_t recordID,
1323                      uint8_t offset, uint8_t bytesToRead)
1324 {
1325     // Note: we use an iterator so we can provide the next ID at the end of
1326     // the call.
1327     auto sensor = ipmi::sensor::sensors.begin();
1328 
1329     // At the beginning of a scan, the host side will send us id=0.
1330     if (recordID != 0)
1331     {
1332         // recordID 0 to 255 means it is a FULL record.
1333         // recordID 256 to 511 means it is a FRU record.
1334         // recordID greater then 511 means it is a Entity Association
1335         // record. Currently we are supporting three record types: FULL
1336         // record, FRU record and Enttiy Association record.
1337         if (recordID >= ENTITY_RECORD_ID_START)
1338         {
1339             return ipmiEntityGetSdr(recordID, offset, bytesToRead);
1340         }
1341         else if (recordID >= FRU_RECORD_ID_START &&
1342                  recordID < ENTITY_RECORD_ID_START)
1343         {
1344             return ipmiFruGetSdr(recordID, offset, bytesToRead);
1345         }
1346         else
1347         {
1348             sensor = ipmi::sensor::sensors.find(recordID);
1349             if (sensor == ipmi::sensor::sensors.end())
1350             {
1351                 return ipmi::responseSensorInvalid();
1352             }
1353         }
1354     }
1355 
1356     uint8_t sensorId = sensor->first;
1357 
1358     auto it = sdrCacheMap.find(sensorId);
1359     if (it == sdrCacheMap.end())
1360     {
1361         /* Header */
1362         get_sdr::SensorDataFullRecord record = {};
1363         record.header.recordId = sensorId;
1364         record.header.sdrVersion = 0x51; // Based on IPMI Spec v2.0 rev 1.1
1365         record.header.recordType = get_sdr::SENSOR_DATA_FULL_RECORD;
1366         record.header.recordLength = sizeof(record.key) + sizeof(record.body);
1367 
1368         /* Key */
1369         get_sdr::key::setOwnerIdBmc(record.key);
1370         record.key.sensorNumber = sensorId;
1371 
1372         /* Body */
1373         record.body.entityId = sensor->second.entityType;
1374         record.body.sensorType = sensor->second.sensorType;
1375         record.body.eventReadingType = sensor->second.sensorReadingType;
1376         record.body.entityInstance = sensor->second.instance;
1377         if (ipmi::sensor::Mutability::Write ==
1378             (sensor->second.mutability & ipmi::sensor::Mutability::Write))
1379         {
1380             get_sdr::body::initSettableState(true, record.body);
1381         }
1382 
1383         // Set the type-specific details given the DBus interface
1384         populateRecordFromDbus(sensor->second, record.body);
1385         sdrCacheMap[sensorId] = std::move(record);
1386     }
1387 
1388     uint16_t nextRecordId{};
1389     const auto& record = sdrCacheMap[sensorId];
1390 
1391     if (++sensor == ipmi::sensor::sensors.end())
1392     {
1393         // we have reached till end of sensor, so assign the next record id
1394         // to 256(Max Sensor ID = 255) + FRU ID(may start with 0).
1395         nextRecordId = (frus.size()) ? frus.begin()->first + FRU_RECORD_ID_START
1396                                      : END_OF_RECORD;
1397     }
1398     else
1399     {
1400         nextRecordId = sensor->first;
1401     }
1402 
1403     if (offset > sizeof(record))
1404     {
1405         return ipmi::responseParmOutOfRange();
1406     }
1407 
1408     size_t dataLen =
1409         std::min(static_cast<size_t>(bytesToRead), sizeof(record) - offset);
1410 
1411     std::vector<uint8_t> recordData(dataLen);
1412     std::memcpy(recordData.data(),
1413                 reinterpret_cast<const uint8_t*>(&record) + offset, dataLen);
1414 
1415     return ipmi::responseSuccess(nextRecordId, recordData);
1416 }
1417 
isFromSystemChannel()1418 static bool isFromSystemChannel()
1419 {
1420     // TODO we could not figure out where the request is from based on IPMI
1421     // command handler parameters. because of it, we can not differentiate
1422     // request from SMS/SMM or IPMB channel
1423     return true;
1424 }
1425 
ipmicmdPlatformEvent(ipmi::Context::ptr & ctx,const std::vector<uint8_t> & data)1426 ipmi::RspType<> ipmicmdPlatformEvent(ipmi::Context::ptr& ctx,
1427                                      const std::vector<uint8_t>& data)
1428 {
1429     size_t paraLen = data.size();
1430     if (paraLen < selSystemEventSizeWith1Bytes ||
1431         paraLen > selSystemEventSizeWith3Bytes)
1432     {
1433         return ipmi::responseReqDataLenInvalid();
1434     }
1435 
1436     uint16_t generatorID = 0xff;
1437     std::string sensorPath = "IPMB";
1438     const uint8_t* raw = data.data();
1439     const PlatformEventRequest* req = nullptr;
1440     if (isFromSystemChannel())
1441     {
1442         // first byte for SYSTEM Interface is Generator ID +1 to get common
1443         // struct
1444         req = reinterpret_cast<const PlatformEventRequest*>(raw + 1);
1445         // Capture the generator ID
1446         generatorID = *raw;
1447         // Platform Event usually comes from other firmware, like BIOS.
1448         // Unlike BMC sensor, it does not have BMC DBUS sensor path.
1449         sensorPath = "System";
1450     }
1451     else
1452     {
1453         req = reinterpret_cast<const PlatformEventRequest*>(raw);
1454         // TODO GenratorID for IPMB is combination of RqSA and RqLUN
1455     }
1456 
1457     // Content of event data field depends on sensor class.
1458     // When data0 bit[5:4] is non-zero, valid data counts is 3.
1459     // When data0 bit[7:6] is non-zero, valid data counts is 2.
1460     if (((req->data[0] & byte3EnableMask) != 0 &&
1461          paraLen < selSystemEventSizeWith3Bytes) ||
1462         ((req->data[0] & byte2EnableMask) != 0 &&
1463          paraLen < selSystemEventSizeWith2Bytes))
1464     {
1465         return ipmi::responseReqDataLenInvalid();
1466     }
1467 
1468     // Count bytes of Event Data
1469     size_t count;
1470     if ((req->data[0] & byte3EnableMask) != 0)
1471     {
1472         count = 3;
1473     }
1474     else if ((req->data[0] & byte2EnableMask) != 0)
1475     {
1476         count = 2;
1477     }
1478     else
1479     {
1480         count = 1;
1481     }
1482     bool assert = req->eventDirectionType & directionMask ? false : true;
1483     std::vector<uint8_t> eventData(req->data, req->data + count);
1484 
1485     auto ec = ipmi::callDbusMethod(
1486         ctx, ipmiSELObject, ipmiSELPath, ipmiSELAddInterface, "IpmiSelAdd",
1487         ipmiSELAddMessage, sensorPath, eventData, assert, generatorID);
1488     if (ec)
1489     {
1490         lg2::error("IpmiSelAdd call failed: {ERROR}", "ERROR", ec.message());
1491         return ipmi::responseUnspecifiedError();
1492     }
1493 
1494     return ipmi::responseSuccess();
1495 }
1496 
registerNetFnSenFunctions()1497 void registerNetFnSenFunctions()
1498 {
1499     // Handlers with dbus-sdr handler implementation.
1500     // Do not register the hander if it dynamic sensors stack is used.
1501 
1502 #ifndef FEATURE_DYNAMIC_SENSORS
1503 
1504 #ifdef FEATURE_SENSORS_CACHE
1505     // Initialize the sensor matches
1506     initSensorMatches();
1507 #endif
1508 
1509     // <Set Sensor Reading and Event Status>
1510     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1511                           ipmi::sensor_event::cmdSetSensorReadingAndEvtSts,
1512                           ipmi::Privilege::Operator, ipmiSetSensorReading);
1513     // <Get Sensor Reading>
1514     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1515                           ipmi::sensor_event::cmdGetSensorReading,
1516                           ipmi::Privilege::User, ipmiSensorGetSensorReading);
1517 
1518     // <Reserve Device SDR Repository>
1519     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1520                           ipmi::sensor_event::cmdReserveDeviceSdrRepository,
1521                           ipmi::Privilege::User, ipmiSensorReserveSdr);
1522 
1523     // <Get Device SDR Info>
1524     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1525                           ipmi::sensor_event::cmdGetDeviceSdrInfo,
1526                           ipmi::Privilege::User, ipmiSensorGetDeviceSdrInfo);
1527 
1528     // <Get Sensor Thresholds>
1529     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1530                           ipmi::sensor_event::cmdGetSensorThreshold,
1531                           ipmi::Privilege::User, ipmiSensorGetSensorThresholds);
1532 
1533     // <Set Sensor Thresholds>
1534     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1535                           ipmi::sensor_event::cmdSetSensorThreshold,
1536                           ipmi::Privilege::User, ipmiSenSetSensorThresholds);
1537 
1538     // <Get Device SDR>
1539     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1540                           ipmi::sensor_event::cmdGetDeviceSdr,
1541                           ipmi::Privilege::User, ipmiSensorGetSdr);
1542 
1543 #endif
1544 
1545     // Common Handers used by both implementation.
1546 
1547     // <Platform Event Message>
1548     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1549                           ipmi::sensor_event::cmdPlatformEvent,
1550                           ipmi::Privilege::Operator, ipmicmdPlatformEvent);
1551 
1552     // <Get Sensor Type>
1553     ipmi::registerHandler(ipmi::prioOpenBmcBase, ipmi::netFnSensor,
1554                           ipmi::sensor_event::cmdGetSensorType,
1555                           ipmi::Privilege::User, ipmiGetSensorType);
1556 
1557     return;
1558 }
1559