1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
67
68 #ifdef CONFIG_PREEMPT_DYNAMIC
69 # ifdef CONFIG_GENERIC_ENTRY
70 # include <linux/entry-common.h>
71 # endif
72 #endif
73
74 #include <uapi/linux/sched/types.h>
75
76 #include <asm/irq_regs.h>
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79
80 #define CREATE_TRACE_POINTS
81 #include <linux/sched/rseq_api.h>
82 #include <trace/events/sched.h>
83 #include <trace/events/ipi.h>
84 #undef CREATE_TRACE_POINTS
85
86 #include "sched.h"
87 #include "stats.h"
88 #include "autogroup.h"
89
90 #include "autogroup.h"
91 #include "pelt.h"
92 #include "smp.h"
93 #include "stats.h"
94
95 #include "../workqueue_internal.h"
96 #include "../../io_uring/io-wq.h"
97 #include "../smpboot.h"
98
99 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu);
100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask);
101
102 /*
103 * Export tracepoints that act as a bare tracehook (ie: have no trace event
104 * associated with them) to allow external modules to probe them.
105 */
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
117
118 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
119
120 #ifdef CONFIG_SCHED_DEBUG
121 /*
122 * Debugging: various feature bits
123 *
124 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
125 * sysctl_sched_features, defined in sched.h, to allow constants propagation
126 * at compile time and compiler optimization based on features default.
127 */
128 #define SCHED_FEAT(name, enabled) \
129 (1UL << __SCHED_FEAT_##name) * enabled |
130 const_debug unsigned int sysctl_sched_features =
131 #include "features.h"
132 0;
133 #undef SCHED_FEAT
134
135 /*
136 * Print a warning if need_resched is set for the given duration (if
137 * LATENCY_WARN is enabled).
138 *
139 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
140 * per boot.
141 */
142 __read_mostly int sysctl_resched_latency_warn_ms = 100;
143 __read_mostly int sysctl_resched_latency_warn_once = 1;
144 #endif /* CONFIG_SCHED_DEBUG */
145
146 /*
147 * Number of tasks to iterate in a single balance run.
148 * Limited because this is done with IRQs disabled.
149 */
150 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
151
152 __read_mostly int scheduler_running;
153
154 #ifdef CONFIG_SCHED_CORE
155
156 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
157
158 /* kernel prio, less is more */
__task_prio(const struct task_struct * p)159 static inline int __task_prio(const struct task_struct *p)
160 {
161 if (p->sched_class == &stop_sched_class) /* trumps deadline */
162 return -2;
163
164 if (rt_prio(p->prio)) /* includes deadline */
165 return p->prio; /* [-1, 99] */
166
167 if (p->sched_class == &idle_sched_class)
168 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
169
170 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
171 }
172
173 /*
174 * l(a,b)
175 * le(a,b) := !l(b,a)
176 * g(a,b) := l(b,a)
177 * ge(a,b) := !l(a,b)
178 */
179
180 /* real prio, less is less */
prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)181 static inline bool prio_less(const struct task_struct *a,
182 const struct task_struct *b, bool in_fi)
183 {
184
185 int pa = __task_prio(a), pb = __task_prio(b);
186
187 if (-pa < -pb)
188 return true;
189
190 if (-pb < -pa)
191 return false;
192
193 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
194 return !dl_time_before(a->dl.deadline, b->dl.deadline);
195
196 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
197 return cfs_prio_less(a, b, in_fi);
198
199 return false;
200 }
201
__sched_core_less(const struct task_struct * a,const struct task_struct * b)202 static inline bool __sched_core_less(const struct task_struct *a,
203 const struct task_struct *b)
204 {
205 if (a->core_cookie < b->core_cookie)
206 return true;
207
208 if (a->core_cookie > b->core_cookie)
209 return false;
210
211 /* flip prio, so high prio is leftmost */
212 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
213 return true;
214
215 return false;
216 }
217
218 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
219
rb_sched_core_less(struct rb_node * a,const struct rb_node * b)220 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
221 {
222 return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
223 }
224
rb_sched_core_cmp(const void * key,const struct rb_node * node)225 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
226 {
227 const struct task_struct *p = __node_2_sc(node);
228 unsigned long cookie = (unsigned long)key;
229
230 if (cookie < p->core_cookie)
231 return -1;
232
233 if (cookie > p->core_cookie)
234 return 1;
235
236 return 0;
237 }
238
sched_core_enqueue(struct rq * rq,struct task_struct * p)239 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
240 {
241 rq->core->core_task_seq++;
242
243 if (!p->core_cookie)
244 return;
245
246 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
247 }
248
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)249 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
250 {
251 rq->core->core_task_seq++;
252
253 if (sched_core_enqueued(p)) {
254 rb_erase(&p->core_node, &rq->core_tree);
255 RB_CLEAR_NODE(&p->core_node);
256 }
257
258 /*
259 * Migrating the last task off the cpu, with the cpu in forced idle
260 * state. Reschedule to create an accounting edge for forced idle,
261 * and re-examine whether the core is still in forced idle state.
262 */
263 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
264 rq->core->core_forceidle_count && rq->curr == rq->idle)
265 resched_curr(rq);
266 }
267
sched_task_is_throttled(struct task_struct * p,int cpu)268 static int sched_task_is_throttled(struct task_struct *p, int cpu)
269 {
270 if (p->sched_class->task_is_throttled)
271 return p->sched_class->task_is_throttled(p, cpu);
272
273 return 0;
274 }
275
sched_core_next(struct task_struct * p,unsigned long cookie)276 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
277 {
278 struct rb_node *node = &p->core_node;
279 int cpu = task_cpu(p);
280
281 do {
282 node = rb_next(node);
283 if (!node)
284 return NULL;
285
286 p = __node_2_sc(node);
287 if (p->core_cookie != cookie)
288 return NULL;
289
290 } while (sched_task_is_throttled(p, cpu));
291
292 return p;
293 }
294
295 /*
296 * Find left-most (aka, highest priority) and unthrottled task matching @cookie.
297 * If no suitable task is found, NULL will be returned.
298 */
sched_core_find(struct rq * rq,unsigned long cookie)299 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
300 {
301 struct task_struct *p;
302 struct rb_node *node;
303
304 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
305 if (!node)
306 return NULL;
307
308 p = __node_2_sc(node);
309 if (!sched_task_is_throttled(p, rq->cpu))
310 return p;
311
312 return sched_core_next(p, cookie);
313 }
314
315 /*
316 * Magic required such that:
317 *
318 * raw_spin_rq_lock(rq);
319 * ...
320 * raw_spin_rq_unlock(rq);
321 *
322 * ends up locking and unlocking the _same_ lock, and all CPUs
323 * always agree on what rq has what lock.
324 *
325 * XXX entirely possible to selectively enable cores, don't bother for now.
326 */
327
328 static DEFINE_MUTEX(sched_core_mutex);
329 static atomic_t sched_core_count;
330 static struct cpumask sched_core_mask;
331
sched_core_lock(int cpu,unsigned long * flags)332 static void sched_core_lock(int cpu, unsigned long *flags)
333 {
334 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
335 int t, i = 0;
336
337 local_irq_save(*flags);
338 for_each_cpu(t, smt_mask)
339 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
340 }
341
sched_core_unlock(int cpu,unsigned long * flags)342 static void sched_core_unlock(int cpu, unsigned long *flags)
343 {
344 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
345 int t;
346
347 for_each_cpu(t, smt_mask)
348 raw_spin_unlock(&cpu_rq(t)->__lock);
349 local_irq_restore(*flags);
350 }
351
__sched_core_flip(bool enabled)352 static void __sched_core_flip(bool enabled)
353 {
354 unsigned long flags;
355 int cpu, t;
356
357 cpus_read_lock();
358
359 /*
360 * Toggle the online cores, one by one.
361 */
362 cpumask_copy(&sched_core_mask, cpu_online_mask);
363 for_each_cpu(cpu, &sched_core_mask) {
364 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
365
366 sched_core_lock(cpu, &flags);
367
368 for_each_cpu(t, smt_mask)
369 cpu_rq(t)->core_enabled = enabled;
370
371 cpu_rq(cpu)->core->core_forceidle_start = 0;
372
373 sched_core_unlock(cpu, &flags);
374
375 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
376 }
377
378 /*
379 * Toggle the offline CPUs.
380 */
381 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
382 cpu_rq(cpu)->core_enabled = enabled;
383
384 cpus_read_unlock();
385 }
386
sched_core_assert_empty(void)387 static void sched_core_assert_empty(void)
388 {
389 int cpu;
390
391 for_each_possible_cpu(cpu)
392 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
393 }
394
__sched_core_enable(void)395 static void __sched_core_enable(void)
396 {
397 static_branch_enable(&__sched_core_enabled);
398 /*
399 * Ensure all previous instances of raw_spin_rq_*lock() have finished
400 * and future ones will observe !sched_core_disabled().
401 */
402 synchronize_rcu();
403 __sched_core_flip(true);
404 sched_core_assert_empty();
405 }
406
__sched_core_disable(void)407 static void __sched_core_disable(void)
408 {
409 sched_core_assert_empty();
410 __sched_core_flip(false);
411 static_branch_disable(&__sched_core_enabled);
412 }
413
sched_core_get(void)414 void sched_core_get(void)
415 {
416 if (atomic_inc_not_zero(&sched_core_count))
417 return;
418
419 mutex_lock(&sched_core_mutex);
420 if (!atomic_read(&sched_core_count))
421 __sched_core_enable();
422
423 smp_mb__before_atomic();
424 atomic_inc(&sched_core_count);
425 mutex_unlock(&sched_core_mutex);
426 }
427
__sched_core_put(struct work_struct * work)428 static void __sched_core_put(struct work_struct *work)
429 {
430 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
431 __sched_core_disable();
432 mutex_unlock(&sched_core_mutex);
433 }
434 }
435
sched_core_put(void)436 void sched_core_put(void)
437 {
438 static DECLARE_WORK(_work, __sched_core_put);
439
440 /*
441 * "There can be only one"
442 *
443 * Either this is the last one, or we don't actually need to do any
444 * 'work'. If it is the last *again*, we rely on
445 * WORK_STRUCT_PENDING_BIT.
446 */
447 if (!atomic_add_unless(&sched_core_count, -1, 1))
448 schedule_work(&_work);
449 }
450
451 #else /* !CONFIG_SCHED_CORE */
452
sched_core_enqueue(struct rq * rq,struct task_struct * p)453 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
454 static inline void
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)455 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
456
457 #endif /* CONFIG_SCHED_CORE */
458
459 /*
460 * Serialization rules:
461 *
462 * Lock order:
463 *
464 * p->pi_lock
465 * rq->lock
466 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
467 *
468 * rq1->lock
469 * rq2->lock where: rq1 < rq2
470 *
471 * Regular state:
472 *
473 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
474 * local CPU's rq->lock, it optionally removes the task from the runqueue and
475 * always looks at the local rq data structures to find the most eligible task
476 * to run next.
477 *
478 * Task enqueue is also under rq->lock, possibly taken from another CPU.
479 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
480 * the local CPU to avoid bouncing the runqueue state around [ see
481 * ttwu_queue_wakelist() ]
482 *
483 * Task wakeup, specifically wakeups that involve migration, are horribly
484 * complicated to avoid having to take two rq->locks.
485 *
486 * Special state:
487 *
488 * System-calls and anything external will use task_rq_lock() which acquires
489 * both p->pi_lock and rq->lock. As a consequence the state they change is
490 * stable while holding either lock:
491 *
492 * - sched_setaffinity()/
493 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
494 * - set_user_nice(): p->se.load, p->*prio
495 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
496 * p->se.load, p->rt_priority,
497 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
498 * - sched_setnuma(): p->numa_preferred_nid
499 * - sched_move_task(): p->sched_task_group
500 * - uclamp_update_active() p->uclamp*
501 *
502 * p->state <- TASK_*:
503 *
504 * is changed locklessly using set_current_state(), __set_current_state() or
505 * set_special_state(), see their respective comments, or by
506 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
507 * concurrent self.
508 *
509 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
510 *
511 * is set by activate_task() and cleared by deactivate_task(), under
512 * rq->lock. Non-zero indicates the task is runnable, the special
513 * ON_RQ_MIGRATING state is used for migration without holding both
514 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
515 *
516 * p->on_cpu <- { 0, 1 }:
517 *
518 * is set by prepare_task() and cleared by finish_task() such that it will be
519 * set before p is scheduled-in and cleared after p is scheduled-out, both
520 * under rq->lock. Non-zero indicates the task is running on its CPU.
521 *
522 * [ The astute reader will observe that it is possible for two tasks on one
523 * CPU to have ->on_cpu = 1 at the same time. ]
524 *
525 * task_cpu(p): is changed by set_task_cpu(), the rules are:
526 *
527 * - Don't call set_task_cpu() on a blocked task:
528 *
529 * We don't care what CPU we're not running on, this simplifies hotplug,
530 * the CPU assignment of blocked tasks isn't required to be valid.
531 *
532 * - for try_to_wake_up(), called under p->pi_lock:
533 *
534 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
535 *
536 * - for migration called under rq->lock:
537 * [ see task_on_rq_migrating() in task_rq_lock() ]
538 *
539 * o move_queued_task()
540 * o detach_task()
541 *
542 * - for migration called under double_rq_lock():
543 *
544 * o __migrate_swap_task()
545 * o push_rt_task() / pull_rt_task()
546 * o push_dl_task() / pull_dl_task()
547 * o dl_task_offline_migration()
548 *
549 */
550
raw_spin_rq_lock_nested(struct rq * rq,int subclass)551 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
552 {
553 raw_spinlock_t *lock;
554
555 /* Matches synchronize_rcu() in __sched_core_enable() */
556 preempt_disable();
557 if (sched_core_disabled()) {
558 raw_spin_lock_nested(&rq->__lock, subclass);
559 /* preempt_count *MUST* be > 1 */
560 preempt_enable_no_resched();
561 return;
562 }
563
564 for (;;) {
565 lock = __rq_lockp(rq);
566 raw_spin_lock_nested(lock, subclass);
567 if (likely(lock == __rq_lockp(rq))) {
568 /* preempt_count *MUST* be > 1 */
569 preempt_enable_no_resched();
570 return;
571 }
572 raw_spin_unlock(lock);
573 }
574 }
575
raw_spin_rq_trylock(struct rq * rq)576 bool raw_spin_rq_trylock(struct rq *rq)
577 {
578 raw_spinlock_t *lock;
579 bool ret;
580
581 /* Matches synchronize_rcu() in __sched_core_enable() */
582 preempt_disable();
583 if (sched_core_disabled()) {
584 ret = raw_spin_trylock(&rq->__lock);
585 preempt_enable();
586 return ret;
587 }
588
589 for (;;) {
590 lock = __rq_lockp(rq);
591 ret = raw_spin_trylock(lock);
592 if (!ret || (likely(lock == __rq_lockp(rq)))) {
593 preempt_enable();
594 return ret;
595 }
596 raw_spin_unlock(lock);
597 }
598 }
599
raw_spin_rq_unlock(struct rq * rq)600 void raw_spin_rq_unlock(struct rq *rq)
601 {
602 raw_spin_unlock(rq_lockp(rq));
603 }
604
605 #ifdef CONFIG_SMP
606 /*
607 * double_rq_lock - safely lock two runqueues
608 */
double_rq_lock(struct rq * rq1,struct rq * rq2)609 void double_rq_lock(struct rq *rq1, struct rq *rq2)
610 {
611 lockdep_assert_irqs_disabled();
612
613 if (rq_order_less(rq2, rq1))
614 swap(rq1, rq2);
615
616 raw_spin_rq_lock(rq1);
617 if (__rq_lockp(rq1) != __rq_lockp(rq2))
618 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
619
620 double_rq_clock_clear_update(rq1, rq2);
621 }
622 #endif
623
624 /*
625 * __task_rq_lock - lock the rq @p resides on.
626 */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)627 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
628 __acquires(rq->lock)
629 {
630 struct rq *rq;
631
632 lockdep_assert_held(&p->pi_lock);
633
634 for (;;) {
635 rq = task_rq(p);
636 raw_spin_rq_lock(rq);
637 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
638 rq_pin_lock(rq, rf);
639 return rq;
640 }
641 raw_spin_rq_unlock(rq);
642
643 while (unlikely(task_on_rq_migrating(p)))
644 cpu_relax();
645 }
646 }
647
648 /*
649 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
650 */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)651 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
652 __acquires(p->pi_lock)
653 __acquires(rq->lock)
654 {
655 struct rq *rq;
656
657 for (;;) {
658 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
659 rq = task_rq(p);
660 raw_spin_rq_lock(rq);
661 /*
662 * move_queued_task() task_rq_lock()
663 *
664 * ACQUIRE (rq->lock)
665 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
666 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
667 * [S] ->cpu = new_cpu [L] task_rq()
668 * [L] ->on_rq
669 * RELEASE (rq->lock)
670 *
671 * If we observe the old CPU in task_rq_lock(), the acquire of
672 * the old rq->lock will fully serialize against the stores.
673 *
674 * If we observe the new CPU in task_rq_lock(), the address
675 * dependency headed by '[L] rq = task_rq()' and the acquire
676 * will pair with the WMB to ensure we then also see migrating.
677 */
678 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
679 rq_pin_lock(rq, rf);
680 return rq;
681 }
682 raw_spin_rq_unlock(rq);
683 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
684
685 while (unlikely(task_on_rq_migrating(p)))
686 cpu_relax();
687 }
688 }
689
690 /*
691 * RQ-clock updating methods:
692 */
693
update_rq_clock_task(struct rq * rq,s64 delta)694 static void update_rq_clock_task(struct rq *rq, s64 delta)
695 {
696 /*
697 * In theory, the compile should just see 0 here, and optimize out the call
698 * to sched_rt_avg_update. But I don't trust it...
699 */
700 s64 __maybe_unused steal = 0, irq_delta = 0;
701
702 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
703 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
704
705 /*
706 * Since irq_time is only updated on {soft,}irq_exit, we might run into
707 * this case when a previous update_rq_clock() happened inside a
708 * {soft,}irq region.
709 *
710 * When this happens, we stop ->clock_task and only update the
711 * prev_irq_time stamp to account for the part that fit, so that a next
712 * update will consume the rest. This ensures ->clock_task is
713 * monotonic.
714 *
715 * It does however cause some slight miss-attribution of {soft,}irq
716 * time, a more accurate solution would be to update the irq_time using
717 * the current rq->clock timestamp, except that would require using
718 * atomic ops.
719 */
720 if (irq_delta > delta)
721 irq_delta = delta;
722
723 rq->prev_irq_time += irq_delta;
724 delta -= irq_delta;
725 delayacct_irq(rq->curr, irq_delta);
726 #endif
727 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
728 if (static_key_false((¶virt_steal_rq_enabled))) {
729 u64 prev_steal;
730
731 steal = prev_steal = paravirt_steal_clock(cpu_of(rq));
732 steal -= rq->prev_steal_time_rq;
733
734 if (unlikely(steal > delta))
735 steal = delta;
736
737 rq->prev_steal_time_rq = prev_steal;
738 delta -= steal;
739 }
740 #endif
741
742 rq->clock_task += delta;
743
744 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
745 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
746 update_irq_load_avg(rq, irq_delta + steal);
747 #endif
748 update_rq_clock_pelt(rq, delta);
749 }
750
update_rq_clock(struct rq * rq)751 void update_rq_clock(struct rq *rq)
752 {
753 s64 delta;
754
755 lockdep_assert_rq_held(rq);
756
757 if (rq->clock_update_flags & RQCF_ACT_SKIP)
758 return;
759
760 #ifdef CONFIG_SCHED_DEBUG
761 if (sched_feat(WARN_DOUBLE_CLOCK))
762 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
763 rq->clock_update_flags |= RQCF_UPDATED;
764 #endif
765
766 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
767 if (delta < 0)
768 return;
769 rq->clock += delta;
770 update_rq_clock_task(rq, delta);
771 }
772
773 #ifdef CONFIG_SCHED_HRTICK
774 /*
775 * Use HR-timers to deliver accurate preemption points.
776 */
777
hrtick_clear(struct rq * rq)778 static void hrtick_clear(struct rq *rq)
779 {
780 if (hrtimer_active(&rq->hrtick_timer))
781 hrtimer_cancel(&rq->hrtick_timer);
782 }
783
784 /*
785 * High-resolution timer tick.
786 * Runs from hardirq context with interrupts disabled.
787 */
hrtick(struct hrtimer * timer)788 static enum hrtimer_restart hrtick(struct hrtimer *timer)
789 {
790 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
791 struct rq_flags rf;
792
793 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
794
795 rq_lock(rq, &rf);
796 update_rq_clock(rq);
797 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
798 rq_unlock(rq, &rf);
799
800 return HRTIMER_NORESTART;
801 }
802
803 #ifdef CONFIG_SMP
804
__hrtick_restart(struct rq * rq)805 static void __hrtick_restart(struct rq *rq)
806 {
807 struct hrtimer *timer = &rq->hrtick_timer;
808 ktime_t time = rq->hrtick_time;
809
810 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
811 }
812
813 /*
814 * called from hardirq (IPI) context
815 */
__hrtick_start(void * arg)816 static void __hrtick_start(void *arg)
817 {
818 struct rq *rq = arg;
819 struct rq_flags rf;
820
821 rq_lock(rq, &rf);
822 __hrtick_restart(rq);
823 rq_unlock(rq, &rf);
824 }
825
826 /*
827 * Called to set the hrtick timer state.
828 *
829 * called with rq->lock held and irqs disabled
830 */
hrtick_start(struct rq * rq,u64 delay)831 void hrtick_start(struct rq *rq, u64 delay)
832 {
833 struct hrtimer *timer = &rq->hrtick_timer;
834 s64 delta;
835
836 /*
837 * Don't schedule slices shorter than 10000ns, that just
838 * doesn't make sense and can cause timer DoS.
839 */
840 delta = max_t(s64, delay, 10000LL);
841 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
842
843 if (rq == this_rq())
844 __hrtick_restart(rq);
845 else
846 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
847 }
848
849 #else
850 /*
851 * Called to set the hrtick timer state.
852 *
853 * called with rq->lock held and irqs disabled
854 */
hrtick_start(struct rq * rq,u64 delay)855 void hrtick_start(struct rq *rq, u64 delay)
856 {
857 /*
858 * Don't schedule slices shorter than 10000ns, that just
859 * doesn't make sense. Rely on vruntime for fairness.
860 */
861 delay = max_t(u64, delay, 10000LL);
862 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
863 HRTIMER_MODE_REL_PINNED_HARD);
864 }
865
866 #endif /* CONFIG_SMP */
867
hrtick_rq_init(struct rq * rq)868 static void hrtick_rq_init(struct rq *rq)
869 {
870 #ifdef CONFIG_SMP
871 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
872 #endif
873 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
874 rq->hrtick_timer.function = hrtick;
875 }
876 #else /* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)877 static inline void hrtick_clear(struct rq *rq)
878 {
879 }
880
hrtick_rq_init(struct rq * rq)881 static inline void hrtick_rq_init(struct rq *rq)
882 {
883 }
884 #endif /* CONFIG_SCHED_HRTICK */
885
886 /*
887 * cmpxchg based fetch_or, macro so it works for different integer types
888 */
889 #define fetch_or(ptr, mask) \
890 ({ \
891 typeof(ptr) _ptr = (ptr); \
892 typeof(mask) _mask = (mask); \
893 typeof(*_ptr) _val = *_ptr; \
894 \
895 do { \
896 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \
897 _val; \
898 })
899
900 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
901 /*
902 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
903 * this avoids any races wrt polling state changes and thereby avoids
904 * spurious IPIs.
905 */
set_nr_and_not_polling(struct task_struct * p)906 static inline bool set_nr_and_not_polling(struct task_struct *p)
907 {
908 struct thread_info *ti = task_thread_info(p);
909 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
910 }
911
912 /*
913 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
914 *
915 * If this returns true, then the idle task promises to call
916 * sched_ttwu_pending() and reschedule soon.
917 */
set_nr_if_polling(struct task_struct * p)918 static bool set_nr_if_polling(struct task_struct *p)
919 {
920 struct thread_info *ti = task_thread_info(p);
921 typeof(ti->flags) val = READ_ONCE(ti->flags);
922
923 for (;;) {
924 if (!(val & _TIF_POLLING_NRFLAG))
925 return false;
926 if (val & _TIF_NEED_RESCHED)
927 return true;
928 if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
929 break;
930 }
931 return true;
932 }
933
934 #else
set_nr_and_not_polling(struct task_struct * p)935 static inline bool set_nr_and_not_polling(struct task_struct *p)
936 {
937 set_tsk_need_resched(p);
938 return true;
939 }
940
941 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)942 static inline bool set_nr_if_polling(struct task_struct *p)
943 {
944 return false;
945 }
946 #endif
947 #endif
948
__wake_q_add(struct wake_q_head * head,struct task_struct * task)949 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
950 {
951 struct wake_q_node *node = &task->wake_q;
952
953 /*
954 * Atomically grab the task, if ->wake_q is !nil already it means
955 * it's already queued (either by us or someone else) and will get the
956 * wakeup due to that.
957 *
958 * In order to ensure that a pending wakeup will observe our pending
959 * state, even in the failed case, an explicit smp_mb() must be used.
960 */
961 smp_mb__before_atomic();
962 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
963 return false;
964
965 /*
966 * The head is context local, there can be no concurrency.
967 */
968 *head->lastp = node;
969 head->lastp = &node->next;
970 return true;
971 }
972
973 /**
974 * wake_q_add() - queue a wakeup for 'later' waking.
975 * @head: the wake_q_head to add @task to
976 * @task: the task to queue for 'later' wakeup
977 *
978 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
979 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
980 * instantly.
981 *
982 * This function must be used as-if it were wake_up_process(); IOW the task
983 * must be ready to be woken at this location.
984 */
wake_q_add(struct wake_q_head * head,struct task_struct * task)985 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
986 {
987 if (__wake_q_add(head, task))
988 get_task_struct(task);
989 }
990
991 /**
992 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
993 * @head: the wake_q_head to add @task to
994 * @task: the task to queue for 'later' wakeup
995 *
996 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
997 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
998 * instantly.
999 *
1000 * This function must be used as-if it were wake_up_process(); IOW the task
1001 * must be ready to be woken at this location.
1002 *
1003 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
1004 * that already hold reference to @task can call the 'safe' version and trust
1005 * wake_q to do the right thing depending whether or not the @task is already
1006 * queued for wakeup.
1007 */
wake_q_add_safe(struct wake_q_head * head,struct task_struct * task)1008 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
1009 {
1010 if (!__wake_q_add(head, task))
1011 put_task_struct(task);
1012 }
1013
wake_up_q(struct wake_q_head * head)1014 void wake_up_q(struct wake_q_head *head)
1015 {
1016 struct wake_q_node *node = head->first;
1017
1018 while (node != WAKE_Q_TAIL) {
1019 struct task_struct *task;
1020
1021 task = container_of(node, struct task_struct, wake_q);
1022 /* Task can safely be re-inserted now: */
1023 node = node->next;
1024 task->wake_q.next = NULL;
1025
1026 /*
1027 * wake_up_process() executes a full barrier, which pairs with
1028 * the queueing in wake_q_add() so as not to miss wakeups.
1029 */
1030 wake_up_process(task);
1031 put_task_struct(task);
1032 }
1033 }
1034
1035 /*
1036 * resched_curr - mark rq's current task 'to be rescheduled now'.
1037 *
1038 * On UP this means the setting of the need_resched flag, on SMP it
1039 * might also involve a cross-CPU call to trigger the scheduler on
1040 * the target CPU.
1041 */
resched_curr(struct rq * rq)1042 void resched_curr(struct rq *rq)
1043 {
1044 struct task_struct *curr = rq->curr;
1045 int cpu;
1046
1047 lockdep_assert_rq_held(rq);
1048
1049 if (test_tsk_need_resched(curr))
1050 return;
1051
1052 cpu = cpu_of(rq);
1053
1054 if (cpu == smp_processor_id()) {
1055 set_tsk_need_resched(curr);
1056 set_preempt_need_resched();
1057 return;
1058 }
1059
1060 if (set_nr_and_not_polling(curr))
1061 smp_send_reschedule(cpu);
1062 else
1063 trace_sched_wake_idle_without_ipi(cpu);
1064 }
1065
resched_cpu(int cpu)1066 void resched_cpu(int cpu)
1067 {
1068 struct rq *rq = cpu_rq(cpu);
1069 unsigned long flags;
1070
1071 raw_spin_rq_lock_irqsave(rq, flags);
1072 if (cpu_online(cpu) || cpu == smp_processor_id())
1073 resched_curr(rq);
1074 raw_spin_rq_unlock_irqrestore(rq, flags);
1075 }
1076
1077 #ifdef CONFIG_SMP
1078 #ifdef CONFIG_NO_HZ_COMMON
1079 /*
1080 * In the semi idle case, use the nearest busy CPU for migrating timers
1081 * from an idle CPU. This is good for power-savings.
1082 *
1083 * We don't do similar optimization for completely idle system, as
1084 * selecting an idle CPU will add more delays to the timers than intended
1085 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1086 */
get_nohz_timer_target(void)1087 int get_nohz_timer_target(void)
1088 {
1089 int i, cpu = smp_processor_id(), default_cpu = -1;
1090 struct sched_domain *sd;
1091 const struct cpumask *hk_mask;
1092
1093 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1094 if (!idle_cpu(cpu))
1095 return cpu;
1096 default_cpu = cpu;
1097 }
1098
1099 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1100
1101 guard(rcu)();
1102
1103 for_each_domain(cpu, sd) {
1104 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1105 if (cpu == i)
1106 continue;
1107
1108 if (!idle_cpu(i))
1109 return i;
1110 }
1111 }
1112
1113 if (default_cpu == -1)
1114 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1115
1116 return default_cpu;
1117 }
1118
1119 /*
1120 * When add_timer_on() enqueues a timer into the timer wheel of an
1121 * idle CPU then this timer might expire before the next timer event
1122 * which is scheduled to wake up that CPU. In case of a completely
1123 * idle system the next event might even be infinite time into the
1124 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1125 * leaves the inner idle loop so the newly added timer is taken into
1126 * account when the CPU goes back to idle and evaluates the timer
1127 * wheel for the next timer event.
1128 */
wake_up_idle_cpu(int cpu)1129 static void wake_up_idle_cpu(int cpu)
1130 {
1131 struct rq *rq = cpu_rq(cpu);
1132
1133 if (cpu == smp_processor_id())
1134 return;
1135
1136 if (set_nr_and_not_polling(rq->idle))
1137 smp_send_reschedule(cpu);
1138 else
1139 trace_sched_wake_idle_without_ipi(cpu);
1140 }
1141
wake_up_full_nohz_cpu(int cpu)1142 static bool wake_up_full_nohz_cpu(int cpu)
1143 {
1144 /*
1145 * We just need the target to call irq_exit() and re-evaluate
1146 * the next tick. The nohz full kick at least implies that.
1147 * If needed we can still optimize that later with an
1148 * empty IRQ.
1149 */
1150 if (cpu_is_offline(cpu))
1151 return true; /* Don't try to wake offline CPUs. */
1152 if (tick_nohz_full_cpu(cpu)) {
1153 if (cpu != smp_processor_id() ||
1154 tick_nohz_tick_stopped())
1155 tick_nohz_full_kick_cpu(cpu);
1156 return true;
1157 }
1158
1159 return false;
1160 }
1161
1162 /*
1163 * Wake up the specified CPU. If the CPU is going offline, it is the
1164 * caller's responsibility to deal with the lost wakeup, for example,
1165 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1166 */
wake_up_nohz_cpu(int cpu)1167 void wake_up_nohz_cpu(int cpu)
1168 {
1169 if (!wake_up_full_nohz_cpu(cpu))
1170 wake_up_idle_cpu(cpu);
1171 }
1172
nohz_csd_func(void * info)1173 static void nohz_csd_func(void *info)
1174 {
1175 struct rq *rq = info;
1176 int cpu = cpu_of(rq);
1177 unsigned int flags;
1178
1179 /*
1180 * Release the rq::nohz_csd.
1181 */
1182 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1183 WARN_ON(!(flags & NOHZ_KICK_MASK));
1184
1185 rq->idle_balance = idle_cpu(cpu);
1186 if (rq->idle_balance) {
1187 rq->nohz_idle_balance = flags;
1188 __raise_softirq_irqoff(SCHED_SOFTIRQ);
1189 }
1190 }
1191
1192 #endif /* CONFIG_NO_HZ_COMMON */
1193
1194 #ifdef CONFIG_NO_HZ_FULL
__need_bw_check(struct rq * rq,struct task_struct * p)1195 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p)
1196 {
1197 if (rq->nr_running != 1)
1198 return false;
1199
1200 if (p->sched_class != &fair_sched_class)
1201 return false;
1202
1203 if (!task_on_rq_queued(p))
1204 return false;
1205
1206 return true;
1207 }
1208
sched_can_stop_tick(struct rq * rq)1209 bool sched_can_stop_tick(struct rq *rq)
1210 {
1211 int fifo_nr_running;
1212
1213 /* Deadline tasks, even if single, need the tick */
1214 if (rq->dl.dl_nr_running)
1215 return false;
1216
1217 /*
1218 * If there are more than one RR tasks, we need the tick to affect the
1219 * actual RR behaviour.
1220 */
1221 if (rq->rt.rr_nr_running) {
1222 if (rq->rt.rr_nr_running == 1)
1223 return true;
1224 else
1225 return false;
1226 }
1227
1228 /*
1229 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1230 * forced preemption between FIFO tasks.
1231 */
1232 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1233 if (fifo_nr_running)
1234 return true;
1235
1236 /*
1237 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1238 * if there's more than one we need the tick for involuntary
1239 * preemption.
1240 */
1241 if (rq->nr_running > 1)
1242 return false;
1243
1244 /*
1245 * If there is one task and it has CFS runtime bandwidth constraints
1246 * and it's on the cpu now we don't want to stop the tick.
1247 * This check prevents clearing the bit if a newly enqueued task here is
1248 * dequeued by migrating while the constrained task continues to run.
1249 * E.g. going from 2->1 without going through pick_next_task().
1250 */
1251 if (sched_feat(HZ_BW) && __need_bw_check(rq, rq->curr)) {
1252 if (cfs_task_bw_constrained(rq->curr))
1253 return false;
1254 }
1255
1256 return true;
1257 }
1258 #endif /* CONFIG_NO_HZ_FULL */
1259 #endif /* CONFIG_SMP */
1260
1261 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1262 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1263 /*
1264 * Iterate task_group tree rooted at *from, calling @down when first entering a
1265 * node and @up when leaving it for the final time.
1266 *
1267 * Caller must hold rcu_lock or sufficient equivalent.
1268 */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)1269 int walk_tg_tree_from(struct task_group *from,
1270 tg_visitor down, tg_visitor up, void *data)
1271 {
1272 struct task_group *parent, *child;
1273 int ret;
1274
1275 parent = from;
1276
1277 down:
1278 ret = (*down)(parent, data);
1279 if (ret)
1280 goto out;
1281 list_for_each_entry_rcu(child, &parent->children, siblings) {
1282 parent = child;
1283 goto down;
1284
1285 up:
1286 continue;
1287 }
1288 ret = (*up)(parent, data);
1289 if (ret || parent == from)
1290 goto out;
1291
1292 child = parent;
1293 parent = parent->parent;
1294 if (parent)
1295 goto up;
1296 out:
1297 return ret;
1298 }
1299
tg_nop(struct task_group * tg,void * data)1300 int tg_nop(struct task_group *tg, void *data)
1301 {
1302 return 0;
1303 }
1304 #endif
1305
set_load_weight(struct task_struct * p,bool update_load)1306 static void set_load_weight(struct task_struct *p, bool update_load)
1307 {
1308 int prio = p->static_prio - MAX_RT_PRIO;
1309 struct load_weight lw;
1310
1311 if (task_has_idle_policy(p)) {
1312 lw.weight = scale_load(WEIGHT_IDLEPRIO);
1313 lw.inv_weight = WMULT_IDLEPRIO;
1314 } else {
1315 lw.weight = scale_load(sched_prio_to_weight[prio]);
1316 lw.inv_weight = sched_prio_to_wmult[prio];
1317 }
1318
1319 /*
1320 * SCHED_OTHER tasks have to update their load when changing their
1321 * weight
1322 */
1323 if (update_load && p->sched_class == &fair_sched_class)
1324 reweight_task(p, &lw);
1325 else
1326 p->se.load = lw;
1327 }
1328
1329 #ifdef CONFIG_UCLAMP_TASK
1330 /*
1331 * Serializes updates of utilization clamp values
1332 *
1333 * The (slow-path) user-space triggers utilization clamp value updates which
1334 * can require updates on (fast-path) scheduler's data structures used to
1335 * support enqueue/dequeue operations.
1336 * While the per-CPU rq lock protects fast-path update operations, user-space
1337 * requests are serialized using a mutex to reduce the risk of conflicting
1338 * updates or API abuses.
1339 */
1340 static DEFINE_MUTEX(uclamp_mutex);
1341
1342 /* Max allowed minimum utilization */
1343 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1344
1345 /* Max allowed maximum utilization */
1346 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1347
1348 /*
1349 * By default RT tasks run at the maximum performance point/capacity of the
1350 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1351 * SCHED_CAPACITY_SCALE.
1352 *
1353 * This knob allows admins to change the default behavior when uclamp is being
1354 * used. In battery powered devices, particularly, running at the maximum
1355 * capacity and frequency will increase energy consumption and shorten the
1356 * battery life.
1357 *
1358 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1359 *
1360 * This knob will not override the system default sched_util_clamp_min defined
1361 * above.
1362 */
1363 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1364
1365 /* All clamps are required to be less or equal than these values */
1366 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1367
1368 /*
1369 * This static key is used to reduce the uclamp overhead in the fast path. It
1370 * primarily disables the call to uclamp_rq_{inc, dec}() in
1371 * enqueue/dequeue_task().
1372 *
1373 * This allows users to continue to enable uclamp in their kernel config with
1374 * minimum uclamp overhead in the fast path.
1375 *
1376 * As soon as userspace modifies any of the uclamp knobs, the static key is
1377 * enabled, since we have an actual users that make use of uclamp
1378 * functionality.
1379 *
1380 * The knobs that would enable this static key are:
1381 *
1382 * * A task modifying its uclamp value with sched_setattr().
1383 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1384 * * An admin modifying the cgroup cpu.uclamp.{min, max}
1385 */
1386 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1387
1388 /* Integer rounded range for each bucket */
1389 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1390
1391 #define for_each_clamp_id(clamp_id) \
1392 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1393
uclamp_bucket_id(unsigned int clamp_value)1394 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1395 {
1396 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1397 }
1398
uclamp_none(enum uclamp_id clamp_id)1399 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1400 {
1401 if (clamp_id == UCLAMP_MIN)
1402 return 0;
1403 return SCHED_CAPACITY_SCALE;
1404 }
1405
uclamp_se_set(struct uclamp_se * uc_se,unsigned int value,bool user_defined)1406 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1407 unsigned int value, bool user_defined)
1408 {
1409 uc_se->value = value;
1410 uc_se->bucket_id = uclamp_bucket_id(value);
1411 uc_se->user_defined = user_defined;
1412 }
1413
1414 static inline unsigned int
uclamp_idle_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1415 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1416 unsigned int clamp_value)
1417 {
1418 /*
1419 * Avoid blocked utilization pushing up the frequency when we go
1420 * idle (which drops the max-clamp) by retaining the last known
1421 * max-clamp.
1422 */
1423 if (clamp_id == UCLAMP_MAX) {
1424 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1425 return clamp_value;
1426 }
1427
1428 return uclamp_none(UCLAMP_MIN);
1429 }
1430
uclamp_idle_reset(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1431 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1432 unsigned int clamp_value)
1433 {
1434 /* Reset max-clamp retention only on idle exit */
1435 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1436 return;
1437
1438 uclamp_rq_set(rq, clamp_id, clamp_value);
1439 }
1440
1441 static inline
uclamp_rq_max_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1442 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1443 unsigned int clamp_value)
1444 {
1445 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1446 int bucket_id = UCLAMP_BUCKETS - 1;
1447
1448 /*
1449 * Since both min and max clamps are max aggregated, find the
1450 * top most bucket with tasks in.
1451 */
1452 for ( ; bucket_id >= 0; bucket_id--) {
1453 if (!bucket[bucket_id].tasks)
1454 continue;
1455 return bucket[bucket_id].value;
1456 }
1457
1458 /* No tasks -- default clamp values */
1459 return uclamp_idle_value(rq, clamp_id, clamp_value);
1460 }
1461
__uclamp_update_util_min_rt_default(struct task_struct * p)1462 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1463 {
1464 unsigned int default_util_min;
1465 struct uclamp_se *uc_se;
1466
1467 lockdep_assert_held(&p->pi_lock);
1468
1469 uc_se = &p->uclamp_req[UCLAMP_MIN];
1470
1471 /* Only sync if user didn't override the default */
1472 if (uc_se->user_defined)
1473 return;
1474
1475 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1476 uclamp_se_set(uc_se, default_util_min, false);
1477 }
1478
uclamp_update_util_min_rt_default(struct task_struct * p)1479 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1480 {
1481 struct rq_flags rf;
1482 struct rq *rq;
1483
1484 if (!rt_task(p))
1485 return;
1486
1487 /* Protect updates to p->uclamp_* */
1488 rq = task_rq_lock(p, &rf);
1489 __uclamp_update_util_min_rt_default(p);
1490 task_rq_unlock(rq, p, &rf);
1491 }
1492
1493 static inline struct uclamp_se
uclamp_tg_restrict(struct task_struct * p,enum uclamp_id clamp_id)1494 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1495 {
1496 /* Copy by value as we could modify it */
1497 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1498 #ifdef CONFIG_UCLAMP_TASK_GROUP
1499 unsigned int tg_min, tg_max, value;
1500
1501 /*
1502 * Tasks in autogroups or root task group will be
1503 * restricted by system defaults.
1504 */
1505 if (task_group_is_autogroup(task_group(p)))
1506 return uc_req;
1507 if (task_group(p) == &root_task_group)
1508 return uc_req;
1509
1510 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1511 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1512 value = uc_req.value;
1513 value = clamp(value, tg_min, tg_max);
1514 uclamp_se_set(&uc_req, value, false);
1515 #endif
1516
1517 return uc_req;
1518 }
1519
1520 /*
1521 * The effective clamp bucket index of a task depends on, by increasing
1522 * priority:
1523 * - the task specific clamp value, when explicitly requested from userspace
1524 * - the task group effective clamp value, for tasks not either in the root
1525 * group or in an autogroup
1526 * - the system default clamp value, defined by the sysadmin
1527 */
1528 static inline struct uclamp_se
uclamp_eff_get(struct task_struct * p,enum uclamp_id clamp_id)1529 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1530 {
1531 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1532 struct uclamp_se uc_max = uclamp_default[clamp_id];
1533
1534 /* System default restrictions always apply */
1535 if (unlikely(uc_req.value > uc_max.value))
1536 return uc_max;
1537
1538 return uc_req;
1539 }
1540
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)1541 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1542 {
1543 struct uclamp_se uc_eff;
1544
1545 /* Task currently refcounted: use back-annotated (effective) value */
1546 if (p->uclamp[clamp_id].active)
1547 return (unsigned long)p->uclamp[clamp_id].value;
1548
1549 uc_eff = uclamp_eff_get(p, clamp_id);
1550
1551 return (unsigned long)uc_eff.value;
1552 }
1553
1554 /*
1555 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1556 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1557 * updates the rq's clamp value if required.
1558 *
1559 * Tasks can have a task-specific value requested from user-space, track
1560 * within each bucket the maximum value for tasks refcounted in it.
1561 * This "local max aggregation" allows to track the exact "requested" value
1562 * for each bucket when all its RUNNABLE tasks require the same clamp.
1563 */
uclamp_rq_inc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1564 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1565 enum uclamp_id clamp_id)
1566 {
1567 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1568 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1569 struct uclamp_bucket *bucket;
1570
1571 lockdep_assert_rq_held(rq);
1572
1573 /* Update task effective clamp */
1574 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1575
1576 bucket = &uc_rq->bucket[uc_se->bucket_id];
1577 bucket->tasks++;
1578 uc_se->active = true;
1579
1580 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1581
1582 /*
1583 * Local max aggregation: rq buckets always track the max
1584 * "requested" clamp value of its RUNNABLE tasks.
1585 */
1586 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1587 bucket->value = uc_se->value;
1588
1589 if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1590 uclamp_rq_set(rq, clamp_id, uc_se->value);
1591 }
1592
1593 /*
1594 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1595 * is released. If this is the last task reference counting the rq's max
1596 * active clamp value, then the rq's clamp value is updated.
1597 *
1598 * Both refcounted tasks and rq's cached clamp values are expected to be
1599 * always valid. If it's detected they are not, as defensive programming,
1600 * enforce the expected state and warn.
1601 */
uclamp_rq_dec_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1602 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1603 enum uclamp_id clamp_id)
1604 {
1605 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1606 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1607 struct uclamp_bucket *bucket;
1608 unsigned int bkt_clamp;
1609 unsigned int rq_clamp;
1610
1611 lockdep_assert_rq_held(rq);
1612
1613 /*
1614 * If sched_uclamp_used was enabled after task @p was enqueued,
1615 * we could end up with unbalanced call to uclamp_rq_dec_id().
1616 *
1617 * In this case the uc_se->active flag should be false since no uclamp
1618 * accounting was performed at enqueue time and we can just return
1619 * here.
1620 *
1621 * Need to be careful of the following enqueue/dequeue ordering
1622 * problem too
1623 *
1624 * enqueue(taskA)
1625 * // sched_uclamp_used gets enabled
1626 * enqueue(taskB)
1627 * dequeue(taskA)
1628 * // Must not decrement bucket->tasks here
1629 * dequeue(taskB)
1630 *
1631 * where we could end up with stale data in uc_se and
1632 * bucket[uc_se->bucket_id].
1633 *
1634 * The following check here eliminates the possibility of such race.
1635 */
1636 if (unlikely(!uc_se->active))
1637 return;
1638
1639 bucket = &uc_rq->bucket[uc_se->bucket_id];
1640
1641 SCHED_WARN_ON(!bucket->tasks);
1642 if (likely(bucket->tasks))
1643 bucket->tasks--;
1644
1645 uc_se->active = false;
1646
1647 /*
1648 * Keep "local max aggregation" simple and accept to (possibly)
1649 * overboost some RUNNABLE tasks in the same bucket.
1650 * The rq clamp bucket value is reset to its base value whenever
1651 * there are no more RUNNABLE tasks refcounting it.
1652 */
1653 if (likely(bucket->tasks))
1654 return;
1655
1656 rq_clamp = uclamp_rq_get(rq, clamp_id);
1657 /*
1658 * Defensive programming: this should never happen. If it happens,
1659 * e.g. due to future modification, warn and fixup the expected value.
1660 */
1661 SCHED_WARN_ON(bucket->value > rq_clamp);
1662 if (bucket->value >= rq_clamp) {
1663 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1664 uclamp_rq_set(rq, clamp_id, bkt_clamp);
1665 }
1666 }
1667
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1668 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1669 {
1670 enum uclamp_id clamp_id;
1671
1672 /*
1673 * Avoid any overhead until uclamp is actually used by the userspace.
1674 *
1675 * The condition is constructed such that a NOP is generated when
1676 * sched_uclamp_used is disabled.
1677 */
1678 if (!static_branch_unlikely(&sched_uclamp_used))
1679 return;
1680
1681 if (unlikely(!p->sched_class->uclamp_enabled))
1682 return;
1683
1684 for_each_clamp_id(clamp_id)
1685 uclamp_rq_inc_id(rq, p, clamp_id);
1686
1687 /* Reset clamp idle holding when there is one RUNNABLE task */
1688 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1689 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1690 }
1691
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1692 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1693 {
1694 enum uclamp_id clamp_id;
1695
1696 /*
1697 * Avoid any overhead until uclamp is actually used by the userspace.
1698 *
1699 * The condition is constructed such that a NOP is generated when
1700 * sched_uclamp_used is disabled.
1701 */
1702 if (!static_branch_unlikely(&sched_uclamp_used))
1703 return;
1704
1705 if (unlikely(!p->sched_class->uclamp_enabled))
1706 return;
1707
1708 for_each_clamp_id(clamp_id)
1709 uclamp_rq_dec_id(rq, p, clamp_id);
1710 }
1711
uclamp_rq_reinc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1712 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1713 enum uclamp_id clamp_id)
1714 {
1715 if (!p->uclamp[clamp_id].active)
1716 return;
1717
1718 uclamp_rq_dec_id(rq, p, clamp_id);
1719 uclamp_rq_inc_id(rq, p, clamp_id);
1720
1721 /*
1722 * Make sure to clear the idle flag if we've transiently reached 0
1723 * active tasks on rq.
1724 */
1725 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1726 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1727 }
1728
1729 static inline void
uclamp_update_active(struct task_struct * p)1730 uclamp_update_active(struct task_struct *p)
1731 {
1732 enum uclamp_id clamp_id;
1733 struct rq_flags rf;
1734 struct rq *rq;
1735
1736 /*
1737 * Lock the task and the rq where the task is (or was) queued.
1738 *
1739 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1740 * price to pay to safely serialize util_{min,max} updates with
1741 * enqueues, dequeues and migration operations.
1742 * This is the same locking schema used by __set_cpus_allowed_ptr().
1743 */
1744 rq = task_rq_lock(p, &rf);
1745
1746 /*
1747 * Setting the clamp bucket is serialized by task_rq_lock().
1748 * If the task is not yet RUNNABLE and its task_struct is not
1749 * affecting a valid clamp bucket, the next time it's enqueued,
1750 * it will already see the updated clamp bucket value.
1751 */
1752 for_each_clamp_id(clamp_id)
1753 uclamp_rq_reinc_id(rq, p, clamp_id);
1754
1755 task_rq_unlock(rq, p, &rf);
1756 }
1757
1758 #ifdef CONFIG_UCLAMP_TASK_GROUP
1759 static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state * css)1760 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1761 {
1762 struct css_task_iter it;
1763 struct task_struct *p;
1764
1765 css_task_iter_start(css, 0, &it);
1766 while ((p = css_task_iter_next(&it)))
1767 uclamp_update_active(p);
1768 css_task_iter_end(&it);
1769 }
1770
1771 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1772 #endif
1773
1774 #ifdef CONFIG_SYSCTL
1775 #ifdef CONFIG_UCLAMP_TASK
1776 #ifdef CONFIG_UCLAMP_TASK_GROUP
uclamp_update_root_tg(void)1777 static void uclamp_update_root_tg(void)
1778 {
1779 struct task_group *tg = &root_task_group;
1780
1781 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1782 sysctl_sched_uclamp_util_min, false);
1783 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1784 sysctl_sched_uclamp_util_max, false);
1785
1786 rcu_read_lock();
1787 cpu_util_update_eff(&root_task_group.css);
1788 rcu_read_unlock();
1789 }
1790 #else
uclamp_update_root_tg(void)1791 static void uclamp_update_root_tg(void) { }
1792 #endif
1793
uclamp_sync_util_min_rt_default(void)1794 static void uclamp_sync_util_min_rt_default(void)
1795 {
1796 struct task_struct *g, *p;
1797
1798 /*
1799 * copy_process() sysctl_uclamp
1800 * uclamp_min_rt = X;
1801 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1802 * // link thread smp_mb__after_spinlock()
1803 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1804 * sched_post_fork() for_each_process_thread()
1805 * __uclamp_sync_rt() __uclamp_sync_rt()
1806 *
1807 * Ensures that either sched_post_fork() will observe the new
1808 * uclamp_min_rt or for_each_process_thread() will observe the new
1809 * task.
1810 */
1811 read_lock(&tasklist_lock);
1812 smp_mb__after_spinlock();
1813 read_unlock(&tasklist_lock);
1814
1815 rcu_read_lock();
1816 for_each_process_thread(g, p)
1817 uclamp_update_util_min_rt_default(p);
1818 rcu_read_unlock();
1819 }
1820
sysctl_sched_uclamp_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1821 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1822 void *buffer, size_t *lenp, loff_t *ppos)
1823 {
1824 bool update_root_tg = false;
1825 int old_min, old_max, old_min_rt;
1826 int result;
1827
1828 guard(mutex)(&uclamp_mutex);
1829
1830 old_min = sysctl_sched_uclamp_util_min;
1831 old_max = sysctl_sched_uclamp_util_max;
1832 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1833
1834 result = proc_dointvec(table, write, buffer, lenp, ppos);
1835 if (result)
1836 goto undo;
1837 if (!write)
1838 return 0;
1839
1840 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1841 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1842 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1843
1844 result = -EINVAL;
1845 goto undo;
1846 }
1847
1848 if (old_min != sysctl_sched_uclamp_util_min) {
1849 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1850 sysctl_sched_uclamp_util_min, false);
1851 update_root_tg = true;
1852 }
1853 if (old_max != sysctl_sched_uclamp_util_max) {
1854 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1855 sysctl_sched_uclamp_util_max, false);
1856 update_root_tg = true;
1857 }
1858
1859 if (update_root_tg) {
1860 static_branch_enable(&sched_uclamp_used);
1861 uclamp_update_root_tg();
1862 }
1863
1864 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1865 static_branch_enable(&sched_uclamp_used);
1866 uclamp_sync_util_min_rt_default();
1867 }
1868
1869 /*
1870 * We update all RUNNABLE tasks only when task groups are in use.
1871 * Otherwise, keep it simple and do just a lazy update at each next
1872 * task enqueue time.
1873 */
1874 return 0;
1875
1876 undo:
1877 sysctl_sched_uclamp_util_min = old_min;
1878 sysctl_sched_uclamp_util_max = old_max;
1879 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1880 return result;
1881 }
1882 #endif
1883 #endif
1884
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1885 static int uclamp_validate(struct task_struct *p,
1886 const struct sched_attr *attr)
1887 {
1888 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1889 int util_max = p->uclamp_req[UCLAMP_MAX].value;
1890
1891 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1892 util_min = attr->sched_util_min;
1893
1894 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1895 return -EINVAL;
1896 }
1897
1898 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1899 util_max = attr->sched_util_max;
1900
1901 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1902 return -EINVAL;
1903 }
1904
1905 if (util_min != -1 && util_max != -1 && util_min > util_max)
1906 return -EINVAL;
1907
1908 /*
1909 * We have valid uclamp attributes; make sure uclamp is enabled.
1910 *
1911 * We need to do that here, because enabling static branches is a
1912 * blocking operation which obviously cannot be done while holding
1913 * scheduler locks.
1914 */
1915 static_branch_enable(&sched_uclamp_used);
1916
1917 return 0;
1918 }
1919
uclamp_reset(const struct sched_attr * attr,enum uclamp_id clamp_id,struct uclamp_se * uc_se)1920 static bool uclamp_reset(const struct sched_attr *attr,
1921 enum uclamp_id clamp_id,
1922 struct uclamp_se *uc_se)
1923 {
1924 /* Reset on sched class change for a non user-defined clamp value. */
1925 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1926 !uc_se->user_defined)
1927 return true;
1928
1929 /* Reset on sched_util_{min,max} == -1. */
1930 if (clamp_id == UCLAMP_MIN &&
1931 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1932 attr->sched_util_min == -1) {
1933 return true;
1934 }
1935
1936 if (clamp_id == UCLAMP_MAX &&
1937 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1938 attr->sched_util_max == -1) {
1939 return true;
1940 }
1941
1942 return false;
1943 }
1944
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1945 static void __setscheduler_uclamp(struct task_struct *p,
1946 const struct sched_attr *attr)
1947 {
1948 enum uclamp_id clamp_id;
1949
1950 for_each_clamp_id(clamp_id) {
1951 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1952 unsigned int value;
1953
1954 if (!uclamp_reset(attr, clamp_id, uc_se))
1955 continue;
1956
1957 /*
1958 * RT by default have a 100% boost value that could be modified
1959 * at runtime.
1960 */
1961 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1962 value = sysctl_sched_uclamp_util_min_rt_default;
1963 else
1964 value = uclamp_none(clamp_id);
1965
1966 uclamp_se_set(uc_se, value, false);
1967
1968 }
1969
1970 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1971 return;
1972
1973 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1974 attr->sched_util_min != -1) {
1975 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1976 attr->sched_util_min, true);
1977 }
1978
1979 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1980 attr->sched_util_max != -1) {
1981 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1982 attr->sched_util_max, true);
1983 }
1984 }
1985
uclamp_fork(struct task_struct * p)1986 static void uclamp_fork(struct task_struct *p)
1987 {
1988 enum uclamp_id clamp_id;
1989
1990 /*
1991 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1992 * as the task is still at its early fork stages.
1993 */
1994 for_each_clamp_id(clamp_id)
1995 p->uclamp[clamp_id].active = false;
1996
1997 if (likely(!p->sched_reset_on_fork))
1998 return;
1999
2000 for_each_clamp_id(clamp_id) {
2001 uclamp_se_set(&p->uclamp_req[clamp_id],
2002 uclamp_none(clamp_id), false);
2003 }
2004 }
2005
uclamp_post_fork(struct task_struct * p)2006 static void uclamp_post_fork(struct task_struct *p)
2007 {
2008 uclamp_update_util_min_rt_default(p);
2009 }
2010
init_uclamp_rq(struct rq * rq)2011 static void __init init_uclamp_rq(struct rq *rq)
2012 {
2013 enum uclamp_id clamp_id;
2014 struct uclamp_rq *uc_rq = rq->uclamp;
2015
2016 for_each_clamp_id(clamp_id) {
2017 uc_rq[clamp_id] = (struct uclamp_rq) {
2018 .value = uclamp_none(clamp_id)
2019 };
2020 }
2021
2022 rq->uclamp_flags = UCLAMP_FLAG_IDLE;
2023 }
2024
init_uclamp(void)2025 static void __init init_uclamp(void)
2026 {
2027 struct uclamp_se uc_max = {};
2028 enum uclamp_id clamp_id;
2029 int cpu;
2030
2031 for_each_possible_cpu(cpu)
2032 init_uclamp_rq(cpu_rq(cpu));
2033
2034 for_each_clamp_id(clamp_id) {
2035 uclamp_se_set(&init_task.uclamp_req[clamp_id],
2036 uclamp_none(clamp_id), false);
2037 }
2038
2039 /* System defaults allow max clamp values for both indexes */
2040 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2041 for_each_clamp_id(clamp_id) {
2042 uclamp_default[clamp_id] = uc_max;
2043 #ifdef CONFIG_UCLAMP_TASK_GROUP
2044 root_task_group.uclamp_req[clamp_id] = uc_max;
2045 root_task_group.uclamp[clamp_id] = uc_max;
2046 #endif
2047 }
2048 }
2049
2050 #else /* CONFIG_UCLAMP_TASK */
uclamp_rq_inc(struct rq * rq,struct task_struct * p)2051 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
uclamp_rq_dec(struct rq * rq,struct task_struct * p)2052 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)2053 static inline int uclamp_validate(struct task_struct *p,
2054 const struct sched_attr *attr)
2055 {
2056 return -EOPNOTSUPP;
2057 }
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)2058 static void __setscheduler_uclamp(struct task_struct *p,
2059 const struct sched_attr *attr) { }
uclamp_fork(struct task_struct * p)2060 static inline void uclamp_fork(struct task_struct *p) { }
uclamp_post_fork(struct task_struct * p)2061 static inline void uclamp_post_fork(struct task_struct *p) { }
init_uclamp(void)2062 static inline void init_uclamp(void) { }
2063 #endif /* CONFIG_UCLAMP_TASK */
2064
sched_task_on_rq(struct task_struct * p)2065 bool sched_task_on_rq(struct task_struct *p)
2066 {
2067 return task_on_rq_queued(p);
2068 }
2069
get_wchan(struct task_struct * p)2070 unsigned long get_wchan(struct task_struct *p)
2071 {
2072 unsigned long ip = 0;
2073 unsigned int state;
2074
2075 if (!p || p == current)
2076 return 0;
2077
2078 /* Only get wchan if task is blocked and we can keep it that way. */
2079 raw_spin_lock_irq(&p->pi_lock);
2080 state = READ_ONCE(p->__state);
2081 smp_rmb(); /* see try_to_wake_up() */
2082 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2083 ip = __get_wchan(p);
2084 raw_spin_unlock_irq(&p->pi_lock);
2085
2086 return ip;
2087 }
2088
enqueue_task(struct rq * rq,struct task_struct * p,int flags)2089 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2090 {
2091 if (!(flags & ENQUEUE_NOCLOCK))
2092 update_rq_clock(rq);
2093
2094 if (!(flags & ENQUEUE_RESTORE)) {
2095 sched_info_enqueue(rq, p);
2096 psi_enqueue(p, (flags & ENQUEUE_WAKEUP) && !(flags & ENQUEUE_MIGRATED));
2097 }
2098
2099 uclamp_rq_inc(rq, p);
2100 p->sched_class->enqueue_task(rq, p, flags);
2101
2102 if (sched_core_enabled(rq))
2103 sched_core_enqueue(rq, p);
2104 }
2105
dequeue_task(struct rq * rq,struct task_struct * p,int flags)2106 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2107 {
2108 if (sched_core_enabled(rq))
2109 sched_core_dequeue(rq, p, flags);
2110
2111 if (!(flags & DEQUEUE_NOCLOCK))
2112 update_rq_clock(rq);
2113
2114 if (!(flags & DEQUEUE_SAVE)) {
2115 sched_info_dequeue(rq, p);
2116 psi_dequeue(p, flags & DEQUEUE_SLEEP);
2117 }
2118
2119 uclamp_rq_dec(rq, p);
2120 p->sched_class->dequeue_task(rq, p, flags);
2121 }
2122
activate_task(struct rq * rq,struct task_struct * p,int flags)2123 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2124 {
2125 if (task_on_rq_migrating(p))
2126 flags |= ENQUEUE_MIGRATED;
2127 if (flags & ENQUEUE_MIGRATED)
2128 sched_mm_cid_migrate_to(rq, p);
2129
2130 enqueue_task(rq, p, flags);
2131
2132 p->on_rq = TASK_ON_RQ_QUEUED;
2133 }
2134
deactivate_task(struct rq * rq,struct task_struct * p,int flags)2135 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2136 {
2137 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2138
2139 dequeue_task(rq, p, flags);
2140 }
2141
__normal_prio(int policy,int rt_prio,int nice)2142 static inline int __normal_prio(int policy, int rt_prio, int nice)
2143 {
2144 int prio;
2145
2146 if (dl_policy(policy))
2147 prio = MAX_DL_PRIO - 1;
2148 else if (rt_policy(policy))
2149 prio = MAX_RT_PRIO - 1 - rt_prio;
2150 else
2151 prio = NICE_TO_PRIO(nice);
2152
2153 return prio;
2154 }
2155
2156 /*
2157 * Calculate the expected normal priority: i.e. priority
2158 * without taking RT-inheritance into account. Might be
2159 * boosted by interactivity modifiers. Changes upon fork,
2160 * setprio syscalls, and whenever the interactivity
2161 * estimator recalculates.
2162 */
normal_prio(struct task_struct * p)2163 static inline int normal_prio(struct task_struct *p)
2164 {
2165 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2166 }
2167
2168 /*
2169 * Calculate the current priority, i.e. the priority
2170 * taken into account by the scheduler. This value might
2171 * be boosted by RT tasks, or might be boosted by
2172 * interactivity modifiers. Will be RT if the task got
2173 * RT-boosted. If not then it returns p->normal_prio.
2174 */
effective_prio(struct task_struct * p)2175 static int effective_prio(struct task_struct *p)
2176 {
2177 p->normal_prio = normal_prio(p);
2178 /*
2179 * If we are RT tasks or we were boosted to RT priority,
2180 * keep the priority unchanged. Otherwise, update priority
2181 * to the normal priority:
2182 */
2183 if (!rt_prio(p->prio))
2184 return p->normal_prio;
2185 return p->prio;
2186 }
2187
2188 /**
2189 * task_curr - is this task currently executing on a CPU?
2190 * @p: the task in question.
2191 *
2192 * Return: 1 if the task is currently executing. 0 otherwise.
2193 */
task_curr(const struct task_struct * p)2194 inline int task_curr(const struct task_struct *p)
2195 {
2196 return cpu_curr(task_cpu(p)) == p;
2197 }
2198
2199 /*
2200 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2201 * use the balance_callback list if you want balancing.
2202 *
2203 * this means any call to check_class_changed() must be followed by a call to
2204 * balance_callback().
2205 */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)2206 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2207 const struct sched_class *prev_class,
2208 int oldprio)
2209 {
2210 if (prev_class != p->sched_class) {
2211 if (prev_class->switched_from)
2212 prev_class->switched_from(rq, p);
2213
2214 p->sched_class->switched_to(rq, p);
2215 } else if (oldprio != p->prio || dl_task(p))
2216 p->sched_class->prio_changed(rq, p, oldprio);
2217 }
2218
wakeup_preempt(struct rq * rq,struct task_struct * p,int flags)2219 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags)
2220 {
2221 if (p->sched_class == rq->curr->sched_class)
2222 rq->curr->sched_class->wakeup_preempt(rq, p, flags);
2223 else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2224 resched_curr(rq);
2225
2226 /*
2227 * A queue event has occurred, and we're going to schedule. In
2228 * this case, we can save a useless back to back clock update.
2229 */
2230 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2231 rq_clock_skip_update(rq);
2232 }
2233
2234 static __always_inline
__task_state_match(struct task_struct * p,unsigned int state)2235 int __task_state_match(struct task_struct *p, unsigned int state)
2236 {
2237 if (READ_ONCE(p->__state) & state)
2238 return 1;
2239
2240 #ifdef CONFIG_PREEMPT_RT
2241 if (READ_ONCE(p->saved_state) & state)
2242 return -1;
2243 #endif
2244 return 0;
2245 }
2246
2247 static __always_inline
task_state_match(struct task_struct * p,unsigned int state)2248 int task_state_match(struct task_struct *p, unsigned int state)
2249 {
2250 #ifdef CONFIG_PREEMPT_RT
2251 int match;
2252
2253 /*
2254 * Serialize against current_save_and_set_rtlock_wait_state() and
2255 * current_restore_rtlock_saved_state().
2256 */
2257 raw_spin_lock_irq(&p->pi_lock);
2258 match = __task_state_match(p, state);
2259 raw_spin_unlock_irq(&p->pi_lock);
2260
2261 return match;
2262 #else
2263 return __task_state_match(p, state);
2264 #endif
2265 }
2266
2267 /*
2268 * wait_task_inactive - wait for a thread to unschedule.
2269 *
2270 * Wait for the thread to block in any of the states set in @match_state.
2271 * If it changes, i.e. @p might have woken up, then return zero. When we
2272 * succeed in waiting for @p to be off its CPU, we return a positive number
2273 * (its total switch count). If a second call a short while later returns the
2274 * same number, the caller can be sure that @p has remained unscheduled the
2275 * whole time.
2276 *
2277 * The caller must ensure that the task *will* unschedule sometime soon,
2278 * else this function might spin for a *long* time. This function can't
2279 * be called with interrupts off, or it may introduce deadlock with
2280 * smp_call_function() if an IPI is sent by the same process we are
2281 * waiting to become inactive.
2282 */
wait_task_inactive(struct task_struct * p,unsigned int match_state)2283 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
2284 {
2285 int running, queued, match;
2286 struct rq_flags rf;
2287 unsigned long ncsw;
2288 struct rq *rq;
2289
2290 for (;;) {
2291 /*
2292 * We do the initial early heuristics without holding
2293 * any task-queue locks at all. We'll only try to get
2294 * the runqueue lock when things look like they will
2295 * work out!
2296 */
2297 rq = task_rq(p);
2298
2299 /*
2300 * If the task is actively running on another CPU
2301 * still, just relax and busy-wait without holding
2302 * any locks.
2303 *
2304 * NOTE! Since we don't hold any locks, it's not
2305 * even sure that "rq" stays as the right runqueue!
2306 * But we don't care, since "task_on_cpu()" will
2307 * return false if the runqueue has changed and p
2308 * is actually now running somewhere else!
2309 */
2310 while (task_on_cpu(rq, p)) {
2311 if (!task_state_match(p, match_state))
2312 return 0;
2313 cpu_relax();
2314 }
2315
2316 /*
2317 * Ok, time to look more closely! We need the rq
2318 * lock now, to be *sure*. If we're wrong, we'll
2319 * just go back and repeat.
2320 */
2321 rq = task_rq_lock(p, &rf);
2322 trace_sched_wait_task(p);
2323 running = task_on_cpu(rq, p);
2324 queued = task_on_rq_queued(p);
2325 ncsw = 0;
2326 if ((match = __task_state_match(p, match_state))) {
2327 /*
2328 * When matching on p->saved_state, consider this task
2329 * still queued so it will wait.
2330 */
2331 if (match < 0)
2332 queued = 1;
2333 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2334 }
2335 task_rq_unlock(rq, p, &rf);
2336
2337 /*
2338 * If it changed from the expected state, bail out now.
2339 */
2340 if (unlikely(!ncsw))
2341 break;
2342
2343 /*
2344 * Was it really running after all now that we
2345 * checked with the proper locks actually held?
2346 *
2347 * Oops. Go back and try again..
2348 */
2349 if (unlikely(running)) {
2350 cpu_relax();
2351 continue;
2352 }
2353
2354 /*
2355 * It's not enough that it's not actively running,
2356 * it must be off the runqueue _entirely_, and not
2357 * preempted!
2358 *
2359 * So if it was still runnable (but just not actively
2360 * running right now), it's preempted, and we should
2361 * yield - it could be a while.
2362 */
2363 if (unlikely(queued)) {
2364 ktime_t to = NSEC_PER_SEC / HZ;
2365
2366 set_current_state(TASK_UNINTERRUPTIBLE);
2367 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
2368 continue;
2369 }
2370
2371 /*
2372 * Ahh, all good. It wasn't running, and it wasn't
2373 * runnable, which means that it will never become
2374 * running in the future either. We're all done!
2375 */
2376 break;
2377 }
2378
2379 return ncsw;
2380 }
2381
2382 #ifdef CONFIG_SMP
2383
2384 static void
2385 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx);
2386
2387 static int __set_cpus_allowed_ptr(struct task_struct *p,
2388 struct affinity_context *ctx);
2389
migrate_disable_switch(struct rq * rq,struct task_struct * p)2390 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2391 {
2392 struct affinity_context ac = {
2393 .new_mask = cpumask_of(rq->cpu),
2394 .flags = SCA_MIGRATE_DISABLE,
2395 };
2396
2397 if (likely(!p->migration_disabled))
2398 return;
2399
2400 if (p->cpus_ptr != &p->cpus_mask)
2401 return;
2402
2403 /*
2404 * Violates locking rules! see comment in __do_set_cpus_allowed().
2405 */
2406 __do_set_cpus_allowed(p, &ac);
2407 }
2408
migrate_disable(void)2409 void migrate_disable(void)
2410 {
2411 struct task_struct *p = current;
2412
2413 if (p->migration_disabled) {
2414 p->migration_disabled++;
2415 return;
2416 }
2417
2418 preempt_disable();
2419 this_rq()->nr_pinned++;
2420 p->migration_disabled = 1;
2421 preempt_enable();
2422 }
2423 EXPORT_SYMBOL_GPL(migrate_disable);
2424
migrate_enable(void)2425 void migrate_enable(void)
2426 {
2427 struct task_struct *p = current;
2428 struct affinity_context ac = {
2429 .new_mask = &p->cpus_mask,
2430 .flags = SCA_MIGRATE_ENABLE,
2431 };
2432
2433 if (p->migration_disabled > 1) {
2434 p->migration_disabled--;
2435 return;
2436 }
2437
2438 if (WARN_ON_ONCE(!p->migration_disabled))
2439 return;
2440
2441 /*
2442 * Ensure stop_task runs either before or after this, and that
2443 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2444 */
2445 preempt_disable();
2446 if (p->cpus_ptr != &p->cpus_mask)
2447 __set_cpus_allowed_ptr(p, &ac);
2448 /*
2449 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2450 * regular cpus_mask, otherwise things that race (eg.
2451 * select_fallback_rq) get confused.
2452 */
2453 barrier();
2454 p->migration_disabled = 0;
2455 this_rq()->nr_pinned--;
2456 preempt_enable();
2457 }
2458 EXPORT_SYMBOL_GPL(migrate_enable);
2459
rq_has_pinned_tasks(struct rq * rq)2460 static inline bool rq_has_pinned_tasks(struct rq *rq)
2461 {
2462 return rq->nr_pinned;
2463 }
2464
2465 /*
2466 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2467 * __set_cpus_allowed_ptr() and select_fallback_rq().
2468 */
is_cpu_allowed(struct task_struct * p,int cpu)2469 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2470 {
2471 /* When not in the task's cpumask, no point in looking further. */
2472 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2473 return false;
2474
2475 /* migrate_disabled() must be allowed to finish. */
2476 if (is_migration_disabled(p))
2477 return cpu_online(cpu);
2478
2479 /* Non kernel threads are not allowed during either online or offline. */
2480 if (!(p->flags & PF_KTHREAD))
2481 return cpu_active(cpu) && task_cpu_possible(cpu, p);
2482
2483 /* KTHREAD_IS_PER_CPU is always allowed. */
2484 if (kthread_is_per_cpu(p))
2485 return cpu_online(cpu);
2486
2487 /* Regular kernel threads don't get to stay during offline. */
2488 if (cpu_dying(cpu))
2489 return false;
2490
2491 /* But are allowed during online. */
2492 return cpu_online(cpu);
2493 }
2494
2495 /*
2496 * This is how migration works:
2497 *
2498 * 1) we invoke migration_cpu_stop() on the target CPU using
2499 * stop_one_cpu().
2500 * 2) stopper starts to run (implicitly forcing the migrated thread
2501 * off the CPU)
2502 * 3) it checks whether the migrated task is still in the wrong runqueue.
2503 * 4) if it's in the wrong runqueue then the migration thread removes
2504 * it and puts it into the right queue.
2505 * 5) stopper completes and stop_one_cpu() returns and the migration
2506 * is done.
2507 */
2508
2509 /*
2510 * move_queued_task - move a queued task to new rq.
2511 *
2512 * Returns (locked) new rq. Old rq's lock is released.
2513 */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)2514 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2515 struct task_struct *p, int new_cpu)
2516 {
2517 lockdep_assert_rq_held(rq);
2518
2519 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2520 set_task_cpu(p, new_cpu);
2521 rq_unlock(rq, rf);
2522
2523 rq = cpu_rq(new_cpu);
2524
2525 rq_lock(rq, rf);
2526 WARN_ON_ONCE(task_cpu(p) != new_cpu);
2527 activate_task(rq, p, 0);
2528 wakeup_preempt(rq, p, 0);
2529
2530 return rq;
2531 }
2532
2533 struct migration_arg {
2534 struct task_struct *task;
2535 int dest_cpu;
2536 struct set_affinity_pending *pending;
2537 };
2538
2539 /*
2540 * @refs: number of wait_for_completion()
2541 * @stop_pending: is @stop_work in use
2542 */
2543 struct set_affinity_pending {
2544 refcount_t refs;
2545 unsigned int stop_pending;
2546 struct completion done;
2547 struct cpu_stop_work stop_work;
2548 struct migration_arg arg;
2549 };
2550
2551 /*
2552 * Move (not current) task off this CPU, onto the destination CPU. We're doing
2553 * this because either it can't run here any more (set_cpus_allowed()
2554 * away from this CPU, or CPU going down), or because we're
2555 * attempting to rebalance this task on exec (sched_exec).
2556 *
2557 * So we race with normal scheduler movements, but that's OK, as long
2558 * as the task is no longer on this CPU.
2559 */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)2560 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2561 struct task_struct *p, int dest_cpu)
2562 {
2563 /* Affinity changed (again). */
2564 if (!is_cpu_allowed(p, dest_cpu))
2565 return rq;
2566
2567 rq = move_queued_task(rq, rf, p, dest_cpu);
2568
2569 return rq;
2570 }
2571
2572 /*
2573 * migration_cpu_stop - this will be executed by a highprio stopper thread
2574 * and performs thread migration by bumping thread off CPU then
2575 * 'pushing' onto another runqueue.
2576 */
migration_cpu_stop(void * data)2577 static int migration_cpu_stop(void *data)
2578 {
2579 struct migration_arg *arg = data;
2580 struct set_affinity_pending *pending = arg->pending;
2581 struct task_struct *p = arg->task;
2582 struct rq *rq = this_rq();
2583 bool complete = false;
2584 struct rq_flags rf;
2585
2586 /*
2587 * The original target CPU might have gone down and we might
2588 * be on another CPU but it doesn't matter.
2589 */
2590 local_irq_save(rf.flags);
2591 /*
2592 * We need to explicitly wake pending tasks before running
2593 * __migrate_task() such that we will not miss enforcing cpus_ptr
2594 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2595 */
2596 flush_smp_call_function_queue();
2597
2598 raw_spin_lock(&p->pi_lock);
2599 rq_lock(rq, &rf);
2600
2601 /*
2602 * If we were passed a pending, then ->stop_pending was set, thus
2603 * p->migration_pending must have remained stable.
2604 */
2605 WARN_ON_ONCE(pending && pending != p->migration_pending);
2606
2607 /*
2608 * If task_rq(p) != rq, it cannot be migrated here, because we're
2609 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2610 * we're holding p->pi_lock.
2611 */
2612 if (task_rq(p) == rq) {
2613 if (is_migration_disabled(p))
2614 goto out;
2615
2616 if (pending) {
2617 p->migration_pending = NULL;
2618 complete = true;
2619
2620 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2621 goto out;
2622 }
2623
2624 if (task_on_rq_queued(p)) {
2625 update_rq_clock(rq);
2626 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2627 } else {
2628 p->wake_cpu = arg->dest_cpu;
2629 }
2630
2631 /*
2632 * XXX __migrate_task() can fail, at which point we might end
2633 * up running on a dodgy CPU, AFAICT this can only happen
2634 * during CPU hotplug, at which point we'll get pushed out
2635 * anyway, so it's probably not a big deal.
2636 */
2637
2638 } else if (pending) {
2639 /*
2640 * This happens when we get migrated between migrate_enable()'s
2641 * preempt_enable() and scheduling the stopper task. At that
2642 * point we're a regular task again and not current anymore.
2643 *
2644 * A !PREEMPT kernel has a giant hole here, which makes it far
2645 * more likely.
2646 */
2647
2648 /*
2649 * The task moved before the stopper got to run. We're holding
2650 * ->pi_lock, so the allowed mask is stable - if it got
2651 * somewhere allowed, we're done.
2652 */
2653 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2654 p->migration_pending = NULL;
2655 complete = true;
2656 goto out;
2657 }
2658
2659 /*
2660 * When migrate_enable() hits a rq mis-match we can't reliably
2661 * determine is_migration_disabled() and so have to chase after
2662 * it.
2663 */
2664 WARN_ON_ONCE(!pending->stop_pending);
2665 preempt_disable();
2666 task_rq_unlock(rq, p, &rf);
2667 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2668 &pending->arg, &pending->stop_work);
2669 preempt_enable();
2670 return 0;
2671 }
2672 out:
2673 if (pending)
2674 pending->stop_pending = false;
2675 task_rq_unlock(rq, p, &rf);
2676
2677 if (complete)
2678 complete_all(&pending->done);
2679
2680 return 0;
2681 }
2682
push_cpu_stop(void * arg)2683 int push_cpu_stop(void *arg)
2684 {
2685 struct rq *lowest_rq = NULL, *rq = this_rq();
2686 struct task_struct *p = arg;
2687
2688 raw_spin_lock_irq(&p->pi_lock);
2689 raw_spin_rq_lock(rq);
2690
2691 if (task_rq(p) != rq)
2692 goto out_unlock;
2693
2694 if (is_migration_disabled(p)) {
2695 p->migration_flags |= MDF_PUSH;
2696 goto out_unlock;
2697 }
2698
2699 p->migration_flags &= ~MDF_PUSH;
2700
2701 if (p->sched_class->find_lock_rq)
2702 lowest_rq = p->sched_class->find_lock_rq(p, rq);
2703
2704 if (!lowest_rq)
2705 goto out_unlock;
2706
2707 // XXX validate p is still the highest prio task
2708 if (task_rq(p) == rq) {
2709 deactivate_task(rq, p, 0);
2710 set_task_cpu(p, lowest_rq->cpu);
2711 activate_task(lowest_rq, p, 0);
2712 resched_curr(lowest_rq);
2713 }
2714
2715 double_unlock_balance(rq, lowest_rq);
2716
2717 out_unlock:
2718 rq->push_busy = false;
2719 raw_spin_rq_unlock(rq);
2720 raw_spin_unlock_irq(&p->pi_lock);
2721
2722 put_task_struct(p);
2723 return 0;
2724 }
2725
2726 /*
2727 * sched_class::set_cpus_allowed must do the below, but is not required to
2728 * actually call this function.
2729 */
set_cpus_allowed_common(struct task_struct * p,struct affinity_context * ctx)2730 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx)
2731 {
2732 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2733 p->cpus_ptr = ctx->new_mask;
2734 return;
2735 }
2736
2737 cpumask_copy(&p->cpus_mask, ctx->new_mask);
2738 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask);
2739
2740 /*
2741 * Swap in a new user_cpus_ptr if SCA_USER flag set
2742 */
2743 if (ctx->flags & SCA_USER)
2744 swap(p->user_cpus_ptr, ctx->user_mask);
2745 }
2746
2747 static void
__do_set_cpus_allowed(struct task_struct * p,struct affinity_context * ctx)2748 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx)
2749 {
2750 struct rq *rq = task_rq(p);
2751 bool queued, running;
2752
2753 /*
2754 * This here violates the locking rules for affinity, since we're only
2755 * supposed to change these variables while holding both rq->lock and
2756 * p->pi_lock.
2757 *
2758 * HOWEVER, it magically works, because ttwu() is the only code that
2759 * accesses these variables under p->pi_lock and only does so after
2760 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2761 * before finish_task().
2762 *
2763 * XXX do further audits, this smells like something putrid.
2764 */
2765 if (ctx->flags & SCA_MIGRATE_DISABLE)
2766 SCHED_WARN_ON(!p->on_cpu);
2767 else
2768 lockdep_assert_held(&p->pi_lock);
2769
2770 queued = task_on_rq_queued(p);
2771 running = task_current(rq, p);
2772
2773 if (queued) {
2774 /*
2775 * Because __kthread_bind() calls this on blocked tasks without
2776 * holding rq->lock.
2777 */
2778 lockdep_assert_rq_held(rq);
2779 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2780 }
2781 if (running)
2782 put_prev_task(rq, p);
2783
2784 p->sched_class->set_cpus_allowed(p, ctx);
2785
2786 if (queued)
2787 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2788 if (running)
2789 set_next_task(rq, p);
2790 }
2791
2792 /*
2793 * Used for kthread_bind() and select_fallback_rq(), in both cases the user
2794 * affinity (if any) should be destroyed too.
2795 */
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)2796 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2797 {
2798 struct affinity_context ac = {
2799 .new_mask = new_mask,
2800 .user_mask = NULL,
2801 .flags = SCA_USER, /* clear the user requested mask */
2802 };
2803 union cpumask_rcuhead {
2804 cpumask_t cpumask;
2805 struct rcu_head rcu;
2806 };
2807
2808 __do_set_cpus_allowed(p, &ac);
2809
2810 /*
2811 * Because this is called with p->pi_lock held, it is not possible
2812 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using
2813 * kfree_rcu().
2814 */
2815 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu);
2816 }
2817
alloc_user_cpus_ptr(int node)2818 static cpumask_t *alloc_user_cpus_ptr(int node)
2819 {
2820 /*
2821 * See do_set_cpus_allowed() above for the rcu_head usage.
2822 */
2823 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2824
2825 return kmalloc_node(size, GFP_KERNEL, node);
2826 }
2827
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)2828 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2829 int node)
2830 {
2831 cpumask_t *user_mask;
2832 unsigned long flags;
2833
2834 /*
2835 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's
2836 * may differ by now due to racing.
2837 */
2838 dst->user_cpus_ptr = NULL;
2839
2840 /*
2841 * This check is racy and losing the race is a valid situation.
2842 * It is not worth the extra overhead of taking the pi_lock on
2843 * every fork/clone.
2844 */
2845 if (data_race(!src->user_cpus_ptr))
2846 return 0;
2847
2848 user_mask = alloc_user_cpus_ptr(node);
2849 if (!user_mask)
2850 return -ENOMEM;
2851
2852 /*
2853 * Use pi_lock to protect content of user_cpus_ptr
2854 *
2855 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent
2856 * do_set_cpus_allowed().
2857 */
2858 raw_spin_lock_irqsave(&src->pi_lock, flags);
2859 if (src->user_cpus_ptr) {
2860 swap(dst->user_cpus_ptr, user_mask);
2861 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2862 }
2863 raw_spin_unlock_irqrestore(&src->pi_lock, flags);
2864
2865 if (unlikely(user_mask))
2866 kfree(user_mask);
2867
2868 return 0;
2869 }
2870
clear_user_cpus_ptr(struct task_struct * p)2871 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2872 {
2873 struct cpumask *user_mask = NULL;
2874
2875 swap(p->user_cpus_ptr, user_mask);
2876
2877 return user_mask;
2878 }
2879
release_user_cpus_ptr(struct task_struct * p)2880 void release_user_cpus_ptr(struct task_struct *p)
2881 {
2882 kfree(clear_user_cpus_ptr(p));
2883 }
2884
2885 /*
2886 * This function is wildly self concurrent; here be dragons.
2887 *
2888 *
2889 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2890 * designated task is enqueued on an allowed CPU. If that task is currently
2891 * running, we have to kick it out using the CPU stopper.
2892 *
2893 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2894 * Consider:
2895 *
2896 * Initial conditions: P0->cpus_mask = [0, 1]
2897 *
2898 * P0@CPU0 P1
2899 *
2900 * migrate_disable();
2901 * <preempted>
2902 * set_cpus_allowed_ptr(P0, [1]);
2903 *
2904 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2905 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2906 * This means we need the following scheme:
2907 *
2908 * P0@CPU0 P1
2909 *
2910 * migrate_disable();
2911 * <preempted>
2912 * set_cpus_allowed_ptr(P0, [1]);
2913 * <blocks>
2914 * <resumes>
2915 * migrate_enable();
2916 * __set_cpus_allowed_ptr();
2917 * <wakes local stopper>
2918 * `--> <woken on migration completion>
2919 *
2920 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2921 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2922 * task p are serialized by p->pi_lock, which we can leverage: the one that
2923 * should come into effect at the end of the Migrate-Disable region is the last
2924 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2925 * but we still need to properly signal those waiting tasks at the appropriate
2926 * moment.
2927 *
2928 * This is implemented using struct set_affinity_pending. The first
2929 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2930 * setup an instance of that struct and install it on the targeted task_struct.
2931 * Any and all further callers will reuse that instance. Those then wait for
2932 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2933 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2934 *
2935 *
2936 * (1) In the cases covered above. There is one more where the completion is
2937 * signaled within affine_move_task() itself: when a subsequent affinity request
2938 * occurs after the stopper bailed out due to the targeted task still being
2939 * Migrate-Disable. Consider:
2940 *
2941 * Initial conditions: P0->cpus_mask = [0, 1]
2942 *
2943 * CPU0 P1 P2
2944 * <P0>
2945 * migrate_disable();
2946 * <preempted>
2947 * set_cpus_allowed_ptr(P0, [1]);
2948 * <blocks>
2949 * <migration/0>
2950 * migration_cpu_stop()
2951 * is_migration_disabled()
2952 * <bails>
2953 * set_cpus_allowed_ptr(P0, [0, 1]);
2954 * <signal completion>
2955 * <awakes>
2956 *
2957 * Note that the above is safe vs a concurrent migrate_enable(), as any
2958 * pending affinity completion is preceded by an uninstallation of
2959 * p->migration_pending done with p->pi_lock held.
2960 */
affine_move_task(struct rq * rq,struct task_struct * p,struct rq_flags * rf,int dest_cpu,unsigned int flags)2961 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2962 int dest_cpu, unsigned int flags)
2963 __releases(rq->lock)
2964 __releases(p->pi_lock)
2965 {
2966 struct set_affinity_pending my_pending = { }, *pending = NULL;
2967 bool stop_pending, complete = false;
2968
2969 /* Can the task run on the task's current CPU? If so, we're done */
2970 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2971 struct task_struct *push_task = NULL;
2972
2973 if ((flags & SCA_MIGRATE_ENABLE) &&
2974 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2975 rq->push_busy = true;
2976 push_task = get_task_struct(p);
2977 }
2978
2979 /*
2980 * If there are pending waiters, but no pending stop_work,
2981 * then complete now.
2982 */
2983 pending = p->migration_pending;
2984 if (pending && !pending->stop_pending) {
2985 p->migration_pending = NULL;
2986 complete = true;
2987 }
2988
2989 preempt_disable();
2990 task_rq_unlock(rq, p, rf);
2991 if (push_task) {
2992 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2993 p, &rq->push_work);
2994 }
2995 preempt_enable();
2996
2997 if (complete)
2998 complete_all(&pending->done);
2999
3000 return 0;
3001 }
3002
3003 if (!(flags & SCA_MIGRATE_ENABLE)) {
3004 /* serialized by p->pi_lock */
3005 if (!p->migration_pending) {
3006 /* Install the request */
3007 refcount_set(&my_pending.refs, 1);
3008 init_completion(&my_pending.done);
3009 my_pending.arg = (struct migration_arg) {
3010 .task = p,
3011 .dest_cpu = dest_cpu,
3012 .pending = &my_pending,
3013 };
3014
3015 p->migration_pending = &my_pending;
3016 } else {
3017 pending = p->migration_pending;
3018 refcount_inc(&pending->refs);
3019 /*
3020 * Affinity has changed, but we've already installed a
3021 * pending. migration_cpu_stop() *must* see this, else
3022 * we risk a completion of the pending despite having a
3023 * task on a disallowed CPU.
3024 *
3025 * Serialized by p->pi_lock, so this is safe.
3026 */
3027 pending->arg.dest_cpu = dest_cpu;
3028 }
3029 }
3030 pending = p->migration_pending;
3031 /*
3032 * - !MIGRATE_ENABLE:
3033 * we'll have installed a pending if there wasn't one already.
3034 *
3035 * - MIGRATE_ENABLE:
3036 * we're here because the current CPU isn't matching anymore,
3037 * the only way that can happen is because of a concurrent
3038 * set_cpus_allowed_ptr() call, which should then still be
3039 * pending completion.
3040 *
3041 * Either way, we really should have a @pending here.
3042 */
3043 if (WARN_ON_ONCE(!pending)) {
3044 task_rq_unlock(rq, p, rf);
3045 return -EINVAL;
3046 }
3047
3048 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
3049 /*
3050 * MIGRATE_ENABLE gets here because 'p == current', but for
3051 * anything else we cannot do is_migration_disabled(), punt
3052 * and have the stopper function handle it all race-free.
3053 */
3054 stop_pending = pending->stop_pending;
3055 if (!stop_pending)
3056 pending->stop_pending = true;
3057
3058 if (flags & SCA_MIGRATE_ENABLE)
3059 p->migration_flags &= ~MDF_PUSH;
3060
3061 preempt_disable();
3062 task_rq_unlock(rq, p, rf);
3063 if (!stop_pending) {
3064 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
3065 &pending->arg, &pending->stop_work);
3066 }
3067 preempt_enable();
3068
3069 if (flags & SCA_MIGRATE_ENABLE)
3070 return 0;
3071 } else {
3072
3073 if (!is_migration_disabled(p)) {
3074 if (task_on_rq_queued(p))
3075 rq = move_queued_task(rq, rf, p, dest_cpu);
3076
3077 if (!pending->stop_pending) {
3078 p->migration_pending = NULL;
3079 complete = true;
3080 }
3081 }
3082 task_rq_unlock(rq, p, rf);
3083
3084 if (complete)
3085 complete_all(&pending->done);
3086 }
3087
3088 wait_for_completion(&pending->done);
3089
3090 if (refcount_dec_and_test(&pending->refs))
3091 wake_up_var(&pending->refs); /* No UaF, just an address */
3092
3093 /*
3094 * Block the original owner of &pending until all subsequent callers
3095 * have seen the completion and decremented the refcount
3096 */
3097 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
3098
3099 /* ARGH */
3100 WARN_ON_ONCE(my_pending.stop_pending);
3101
3102 return 0;
3103 }
3104
3105 /*
3106 * Called with both p->pi_lock and rq->lock held; drops both before returning.
3107 */
__set_cpus_allowed_ptr_locked(struct task_struct * p,struct affinity_context * ctx,struct rq * rq,struct rq_flags * rf)3108 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
3109 struct affinity_context *ctx,
3110 struct rq *rq,
3111 struct rq_flags *rf)
3112 __releases(rq->lock)
3113 __releases(p->pi_lock)
3114 {
3115 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
3116 const struct cpumask *cpu_valid_mask = cpu_active_mask;
3117 bool kthread = p->flags & PF_KTHREAD;
3118 unsigned int dest_cpu;
3119 int ret = 0;
3120
3121 update_rq_clock(rq);
3122
3123 if (kthread || is_migration_disabled(p)) {
3124 /*
3125 * Kernel threads are allowed on online && !active CPUs,
3126 * however, during cpu-hot-unplug, even these might get pushed
3127 * away if not KTHREAD_IS_PER_CPU.
3128 *
3129 * Specifically, migration_disabled() tasks must not fail the
3130 * cpumask_any_and_distribute() pick below, esp. so on
3131 * SCA_MIGRATE_ENABLE, otherwise we'll not call
3132 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
3133 */
3134 cpu_valid_mask = cpu_online_mask;
3135 }
3136
3137 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) {
3138 ret = -EINVAL;
3139 goto out;
3140 }
3141
3142 /*
3143 * Must re-check here, to close a race against __kthread_bind(),
3144 * sched_setaffinity() is not guaranteed to observe the flag.
3145 */
3146 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
3147 ret = -EINVAL;
3148 goto out;
3149 }
3150
3151 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) {
3152 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) {
3153 if (ctx->flags & SCA_USER)
3154 swap(p->user_cpus_ptr, ctx->user_mask);
3155 goto out;
3156 }
3157
3158 if (WARN_ON_ONCE(p == current &&
3159 is_migration_disabled(p) &&
3160 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) {
3161 ret = -EBUSY;
3162 goto out;
3163 }
3164 }
3165
3166 /*
3167 * Picking a ~random cpu helps in cases where we are changing affinity
3168 * for groups of tasks (ie. cpuset), so that load balancing is not
3169 * immediately required to distribute the tasks within their new mask.
3170 */
3171 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask);
3172 if (dest_cpu >= nr_cpu_ids) {
3173 ret = -EINVAL;
3174 goto out;
3175 }
3176
3177 __do_set_cpus_allowed(p, ctx);
3178
3179 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags);
3180
3181 out:
3182 task_rq_unlock(rq, p, rf);
3183
3184 return ret;
3185 }
3186
3187 /*
3188 * Change a given task's CPU affinity. Migrate the thread to a
3189 * proper CPU and schedule it away if the CPU it's executing on
3190 * is removed from the allowed bitmask.
3191 *
3192 * NOTE: the caller must have a valid reference to the task, the
3193 * task must not exit() & deallocate itself prematurely. The
3194 * call is not atomic; no spinlocks may be held.
3195 */
__set_cpus_allowed_ptr(struct task_struct * p,struct affinity_context * ctx)3196 static int __set_cpus_allowed_ptr(struct task_struct *p,
3197 struct affinity_context *ctx)
3198 {
3199 struct rq_flags rf;
3200 struct rq *rq;
3201
3202 rq = task_rq_lock(p, &rf);
3203 /*
3204 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_*
3205 * flags are set.
3206 */
3207 if (p->user_cpus_ptr &&
3208 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) &&
3209 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr))
3210 ctx->new_mask = rq->scratch_mask;
3211
3212 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf);
3213 }
3214
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)3215 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
3216 {
3217 struct affinity_context ac = {
3218 .new_mask = new_mask,
3219 .flags = 0,
3220 };
3221
3222 return __set_cpus_allowed_ptr(p, &ac);
3223 }
3224 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
3225
3226 /*
3227 * Change a given task's CPU affinity to the intersection of its current
3228 * affinity mask and @subset_mask, writing the resulting mask to @new_mask.
3229 * If user_cpus_ptr is defined, use it as the basis for restricting CPU
3230 * affinity or use cpu_online_mask instead.
3231 *
3232 * If the resulting mask is empty, leave the affinity unchanged and return
3233 * -EINVAL.
3234 */
restrict_cpus_allowed_ptr(struct task_struct * p,struct cpumask * new_mask,const struct cpumask * subset_mask)3235 static int restrict_cpus_allowed_ptr(struct task_struct *p,
3236 struct cpumask *new_mask,
3237 const struct cpumask *subset_mask)
3238 {
3239 struct affinity_context ac = {
3240 .new_mask = new_mask,
3241 .flags = 0,
3242 };
3243 struct rq_flags rf;
3244 struct rq *rq;
3245 int err;
3246
3247 rq = task_rq_lock(p, &rf);
3248
3249 /*
3250 * Forcefully restricting the affinity of a deadline task is
3251 * likely to cause problems, so fail and noisily override the
3252 * mask entirely.
3253 */
3254 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
3255 err = -EPERM;
3256 goto err_unlock;
3257 }
3258
3259 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) {
3260 err = -EINVAL;
3261 goto err_unlock;
3262 }
3263
3264 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf);
3265
3266 err_unlock:
3267 task_rq_unlock(rq, p, &rf);
3268 return err;
3269 }
3270
3271 /*
3272 * Restrict the CPU affinity of task @p so that it is a subset of
3273 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the
3274 * old affinity mask. If the resulting mask is empty, we warn and walk
3275 * up the cpuset hierarchy until we find a suitable mask.
3276 */
force_compatible_cpus_allowed_ptr(struct task_struct * p)3277 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3278 {
3279 cpumask_var_t new_mask;
3280 const struct cpumask *override_mask = task_cpu_possible_mask(p);
3281
3282 alloc_cpumask_var(&new_mask, GFP_KERNEL);
3283
3284 /*
3285 * __migrate_task() can fail silently in the face of concurrent
3286 * offlining of the chosen destination CPU, so take the hotplug
3287 * lock to ensure that the migration succeeds.
3288 */
3289 cpus_read_lock();
3290 if (!cpumask_available(new_mask))
3291 goto out_set_mask;
3292
3293 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3294 goto out_free_mask;
3295
3296 /*
3297 * We failed to find a valid subset of the affinity mask for the
3298 * task, so override it based on its cpuset hierarchy.
3299 */
3300 cpuset_cpus_allowed(p, new_mask);
3301 override_mask = new_mask;
3302
3303 out_set_mask:
3304 if (printk_ratelimit()) {
3305 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3306 task_pid_nr(p), p->comm,
3307 cpumask_pr_args(override_mask));
3308 }
3309
3310 WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3311 out_free_mask:
3312 cpus_read_unlock();
3313 free_cpumask_var(new_mask);
3314 }
3315
3316 static int
3317 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3318
3319 /*
3320 * Restore the affinity of a task @p which was previously restricted by a
3321 * call to force_compatible_cpus_allowed_ptr().
3322 *
3323 * It is the caller's responsibility to serialise this with any calls to
3324 * force_compatible_cpus_allowed_ptr(@p).
3325 */
relax_compatible_cpus_allowed_ptr(struct task_struct * p)3326 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3327 {
3328 struct affinity_context ac = {
3329 .new_mask = task_user_cpus(p),
3330 .flags = 0,
3331 };
3332 int ret;
3333
3334 /*
3335 * Try to restore the old affinity mask with __sched_setaffinity().
3336 * Cpuset masking will be done there too.
3337 */
3338 ret = __sched_setaffinity(p, &ac);
3339 WARN_ON_ONCE(ret);
3340 }
3341
set_task_cpu(struct task_struct * p,unsigned int new_cpu)3342 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3343 {
3344 #ifdef CONFIG_SCHED_DEBUG
3345 unsigned int state = READ_ONCE(p->__state);
3346
3347 /*
3348 * We should never call set_task_cpu() on a blocked task,
3349 * ttwu() will sort out the placement.
3350 */
3351 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3352
3353 /*
3354 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3355 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3356 * time relying on p->on_rq.
3357 */
3358 WARN_ON_ONCE(state == TASK_RUNNING &&
3359 p->sched_class == &fair_sched_class &&
3360 (p->on_rq && !task_on_rq_migrating(p)));
3361
3362 #ifdef CONFIG_LOCKDEP
3363 /*
3364 * The caller should hold either p->pi_lock or rq->lock, when changing
3365 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3366 *
3367 * sched_move_task() holds both and thus holding either pins the cgroup,
3368 * see task_group().
3369 *
3370 * Furthermore, all task_rq users should acquire both locks, see
3371 * task_rq_lock().
3372 */
3373 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3374 lockdep_is_held(__rq_lockp(task_rq(p)))));
3375 #endif
3376 /*
3377 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3378 */
3379 WARN_ON_ONCE(!cpu_online(new_cpu));
3380
3381 WARN_ON_ONCE(is_migration_disabled(p));
3382 #endif
3383
3384 trace_sched_migrate_task(p, new_cpu);
3385
3386 if (task_cpu(p) != new_cpu) {
3387 if (p->sched_class->migrate_task_rq)
3388 p->sched_class->migrate_task_rq(p, new_cpu);
3389 p->se.nr_migrations++;
3390 rseq_migrate(p);
3391 sched_mm_cid_migrate_from(p);
3392 perf_event_task_migrate(p);
3393 }
3394
3395 __set_task_cpu(p, new_cpu);
3396 }
3397
3398 #ifdef CONFIG_NUMA_BALANCING
__migrate_swap_task(struct task_struct * p,int cpu)3399 static void __migrate_swap_task(struct task_struct *p, int cpu)
3400 {
3401 if (task_on_rq_queued(p)) {
3402 struct rq *src_rq, *dst_rq;
3403 struct rq_flags srf, drf;
3404
3405 src_rq = task_rq(p);
3406 dst_rq = cpu_rq(cpu);
3407
3408 rq_pin_lock(src_rq, &srf);
3409 rq_pin_lock(dst_rq, &drf);
3410
3411 deactivate_task(src_rq, p, 0);
3412 set_task_cpu(p, cpu);
3413 activate_task(dst_rq, p, 0);
3414 wakeup_preempt(dst_rq, p, 0);
3415
3416 rq_unpin_lock(dst_rq, &drf);
3417 rq_unpin_lock(src_rq, &srf);
3418
3419 } else {
3420 /*
3421 * Task isn't running anymore; make it appear like we migrated
3422 * it before it went to sleep. This means on wakeup we make the
3423 * previous CPU our target instead of where it really is.
3424 */
3425 p->wake_cpu = cpu;
3426 }
3427 }
3428
3429 struct migration_swap_arg {
3430 struct task_struct *src_task, *dst_task;
3431 int src_cpu, dst_cpu;
3432 };
3433
migrate_swap_stop(void * data)3434 static int migrate_swap_stop(void *data)
3435 {
3436 struct migration_swap_arg *arg = data;
3437 struct rq *src_rq, *dst_rq;
3438
3439 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3440 return -EAGAIN;
3441
3442 src_rq = cpu_rq(arg->src_cpu);
3443 dst_rq = cpu_rq(arg->dst_cpu);
3444
3445 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock);
3446 guard(double_rq_lock)(src_rq, dst_rq);
3447
3448 if (task_cpu(arg->dst_task) != arg->dst_cpu)
3449 return -EAGAIN;
3450
3451 if (task_cpu(arg->src_task) != arg->src_cpu)
3452 return -EAGAIN;
3453
3454 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3455 return -EAGAIN;
3456
3457 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3458 return -EAGAIN;
3459
3460 __migrate_swap_task(arg->src_task, arg->dst_cpu);
3461 __migrate_swap_task(arg->dst_task, arg->src_cpu);
3462
3463 return 0;
3464 }
3465
3466 /*
3467 * Cross migrate two tasks
3468 */
migrate_swap(struct task_struct * cur,struct task_struct * p,int target_cpu,int curr_cpu)3469 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3470 int target_cpu, int curr_cpu)
3471 {
3472 struct migration_swap_arg arg;
3473 int ret = -EINVAL;
3474
3475 arg = (struct migration_swap_arg){
3476 .src_task = cur,
3477 .src_cpu = curr_cpu,
3478 .dst_task = p,
3479 .dst_cpu = target_cpu,
3480 };
3481
3482 if (arg.src_cpu == arg.dst_cpu)
3483 goto out;
3484
3485 /*
3486 * These three tests are all lockless; this is OK since all of them
3487 * will be re-checked with proper locks held further down the line.
3488 */
3489 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3490 goto out;
3491
3492 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3493 goto out;
3494
3495 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3496 goto out;
3497
3498 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3499 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3500
3501 out:
3502 return ret;
3503 }
3504 #endif /* CONFIG_NUMA_BALANCING */
3505
3506 /***
3507 * kick_process - kick a running thread to enter/exit the kernel
3508 * @p: the to-be-kicked thread
3509 *
3510 * Cause a process which is running on another CPU to enter
3511 * kernel-mode, without any delay. (to get signals handled.)
3512 *
3513 * NOTE: this function doesn't have to take the runqueue lock,
3514 * because all it wants to ensure is that the remote task enters
3515 * the kernel. If the IPI races and the task has been migrated
3516 * to another CPU then no harm is done and the purpose has been
3517 * achieved as well.
3518 */
kick_process(struct task_struct * p)3519 void kick_process(struct task_struct *p)
3520 {
3521 int cpu;
3522
3523 preempt_disable();
3524 cpu = task_cpu(p);
3525 if ((cpu != smp_processor_id()) && task_curr(p))
3526 smp_send_reschedule(cpu);
3527 preempt_enable();
3528 }
3529 EXPORT_SYMBOL_GPL(kick_process);
3530
3531 /*
3532 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3533 *
3534 * A few notes on cpu_active vs cpu_online:
3535 *
3536 * - cpu_active must be a subset of cpu_online
3537 *
3538 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3539 * see __set_cpus_allowed_ptr(). At this point the newly online
3540 * CPU isn't yet part of the sched domains, and balancing will not
3541 * see it.
3542 *
3543 * - on CPU-down we clear cpu_active() to mask the sched domains and
3544 * avoid the load balancer to place new tasks on the to be removed
3545 * CPU. Existing tasks will remain running there and will be taken
3546 * off.
3547 *
3548 * This means that fallback selection must not select !active CPUs.
3549 * And can assume that any active CPU must be online. Conversely
3550 * select_task_rq() below may allow selection of !active CPUs in order
3551 * to satisfy the above rules.
3552 */
select_fallback_rq(int cpu,struct task_struct * p)3553 static int select_fallback_rq(int cpu, struct task_struct *p)
3554 {
3555 int nid = cpu_to_node(cpu);
3556 const struct cpumask *nodemask = NULL;
3557 enum { cpuset, possible, fail } state = cpuset;
3558 int dest_cpu;
3559
3560 /*
3561 * If the node that the CPU is on has been offlined, cpu_to_node()
3562 * will return -1. There is no CPU on the node, and we should
3563 * select the CPU on the other node.
3564 */
3565 if (nid != -1) {
3566 nodemask = cpumask_of_node(nid);
3567
3568 /* Look for allowed, online CPU in same node. */
3569 for_each_cpu(dest_cpu, nodemask) {
3570 if (is_cpu_allowed(p, dest_cpu))
3571 return dest_cpu;
3572 }
3573 }
3574
3575 for (;;) {
3576 /* Any allowed, online CPU? */
3577 for_each_cpu(dest_cpu, p->cpus_ptr) {
3578 if (!is_cpu_allowed(p, dest_cpu))
3579 continue;
3580
3581 goto out;
3582 }
3583
3584 /* No more Mr. Nice Guy. */
3585 switch (state) {
3586 case cpuset:
3587 if (cpuset_cpus_allowed_fallback(p)) {
3588 state = possible;
3589 break;
3590 }
3591 fallthrough;
3592 case possible:
3593 /*
3594 * XXX When called from select_task_rq() we only
3595 * hold p->pi_lock and again violate locking order.
3596 *
3597 * More yuck to audit.
3598 */
3599 do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3600 state = fail;
3601 break;
3602 case fail:
3603 BUG();
3604 break;
3605 }
3606 }
3607
3608 out:
3609 if (state != cpuset) {
3610 /*
3611 * Don't tell them about moving exiting tasks or
3612 * kernel threads (both mm NULL), since they never
3613 * leave kernel.
3614 */
3615 if (p->mm && printk_ratelimit()) {
3616 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3617 task_pid_nr(p), p->comm, cpu);
3618 }
3619 }
3620
3621 return dest_cpu;
3622 }
3623
3624 /*
3625 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3626 */
3627 static inline
select_task_rq(struct task_struct * p,int cpu,int wake_flags)3628 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3629 {
3630 lockdep_assert_held(&p->pi_lock);
3631
3632 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3633 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3634 else
3635 cpu = cpumask_any(p->cpus_ptr);
3636
3637 /*
3638 * In order not to call set_task_cpu() on a blocking task we need
3639 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3640 * CPU.
3641 *
3642 * Since this is common to all placement strategies, this lives here.
3643 *
3644 * [ this allows ->select_task() to simply return task_cpu(p) and
3645 * not worry about this generic constraint ]
3646 */
3647 if (unlikely(!is_cpu_allowed(p, cpu)))
3648 cpu = select_fallback_rq(task_cpu(p), p);
3649
3650 return cpu;
3651 }
3652
sched_set_stop_task(int cpu,struct task_struct * stop)3653 void sched_set_stop_task(int cpu, struct task_struct *stop)
3654 {
3655 static struct lock_class_key stop_pi_lock;
3656 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3657 struct task_struct *old_stop = cpu_rq(cpu)->stop;
3658
3659 if (stop) {
3660 /*
3661 * Make it appear like a SCHED_FIFO task, its something
3662 * userspace knows about and won't get confused about.
3663 *
3664 * Also, it will make PI more or less work without too
3665 * much confusion -- but then, stop work should not
3666 * rely on PI working anyway.
3667 */
3668 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
3669
3670 stop->sched_class = &stop_sched_class;
3671
3672 /*
3673 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3674 * adjust the effective priority of a task. As a result,
3675 * rt_mutex_setprio() can trigger (RT) balancing operations,
3676 * which can then trigger wakeups of the stop thread to push
3677 * around the current task.
3678 *
3679 * The stop task itself will never be part of the PI-chain, it
3680 * never blocks, therefore that ->pi_lock recursion is safe.
3681 * Tell lockdep about this by placing the stop->pi_lock in its
3682 * own class.
3683 */
3684 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3685 }
3686
3687 cpu_rq(cpu)->stop = stop;
3688
3689 if (old_stop) {
3690 /*
3691 * Reset it back to a normal scheduling class so that
3692 * it can die in pieces.
3693 */
3694 old_stop->sched_class = &rt_sched_class;
3695 }
3696 }
3697
3698 #else /* CONFIG_SMP */
3699
__set_cpus_allowed_ptr(struct task_struct * p,struct affinity_context * ctx)3700 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3701 struct affinity_context *ctx)
3702 {
3703 return set_cpus_allowed_ptr(p, ctx->new_mask);
3704 }
3705
migrate_disable_switch(struct rq * rq,struct task_struct * p)3706 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3707
rq_has_pinned_tasks(struct rq * rq)3708 static inline bool rq_has_pinned_tasks(struct rq *rq)
3709 {
3710 return false;
3711 }
3712
alloc_user_cpus_ptr(int node)3713 static inline cpumask_t *alloc_user_cpus_ptr(int node)
3714 {
3715 return NULL;
3716 }
3717
3718 #endif /* !CONFIG_SMP */
3719
3720 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)3721 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3722 {
3723 struct rq *rq;
3724
3725 if (!schedstat_enabled())
3726 return;
3727
3728 rq = this_rq();
3729
3730 #ifdef CONFIG_SMP
3731 if (cpu == rq->cpu) {
3732 __schedstat_inc(rq->ttwu_local);
3733 __schedstat_inc(p->stats.nr_wakeups_local);
3734 } else {
3735 struct sched_domain *sd;
3736
3737 __schedstat_inc(p->stats.nr_wakeups_remote);
3738
3739 guard(rcu)();
3740 for_each_domain(rq->cpu, sd) {
3741 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3742 __schedstat_inc(sd->ttwu_wake_remote);
3743 break;
3744 }
3745 }
3746 }
3747
3748 if (wake_flags & WF_MIGRATED)
3749 __schedstat_inc(p->stats.nr_wakeups_migrate);
3750 #endif /* CONFIG_SMP */
3751
3752 __schedstat_inc(rq->ttwu_count);
3753 __schedstat_inc(p->stats.nr_wakeups);
3754
3755 if (wake_flags & WF_SYNC)
3756 __schedstat_inc(p->stats.nr_wakeups_sync);
3757 }
3758
3759 /*
3760 * Mark the task runnable.
3761 */
ttwu_do_wakeup(struct task_struct * p)3762 static inline void ttwu_do_wakeup(struct task_struct *p)
3763 {
3764 WRITE_ONCE(p->__state, TASK_RUNNING);
3765 trace_sched_wakeup(p);
3766 }
3767
3768 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)3769 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3770 struct rq_flags *rf)
3771 {
3772 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3773
3774 lockdep_assert_rq_held(rq);
3775
3776 if (p->sched_contributes_to_load)
3777 rq->nr_uninterruptible--;
3778
3779 #ifdef CONFIG_SMP
3780 if (wake_flags & WF_MIGRATED)
3781 en_flags |= ENQUEUE_MIGRATED;
3782 else
3783 #endif
3784 if (p->in_iowait) {
3785 delayacct_blkio_end(p);
3786 atomic_dec(&task_rq(p)->nr_iowait);
3787 }
3788
3789 activate_task(rq, p, en_flags);
3790 wakeup_preempt(rq, p, wake_flags);
3791
3792 ttwu_do_wakeup(p);
3793
3794 #ifdef CONFIG_SMP
3795 if (p->sched_class->task_woken) {
3796 /*
3797 * Our task @p is fully woken up and running; so it's safe to
3798 * drop the rq->lock, hereafter rq is only used for statistics.
3799 */
3800 rq_unpin_lock(rq, rf);
3801 p->sched_class->task_woken(rq, p);
3802 rq_repin_lock(rq, rf);
3803 }
3804
3805 if (rq->idle_stamp) {
3806 u64 delta = rq_clock(rq) - rq->idle_stamp;
3807 u64 max = 2*rq->max_idle_balance_cost;
3808
3809 update_avg(&rq->avg_idle, delta);
3810
3811 if (rq->avg_idle > max)
3812 rq->avg_idle = max;
3813
3814 rq->wake_stamp = jiffies;
3815 rq->wake_avg_idle = rq->avg_idle / 2;
3816
3817 rq->idle_stamp = 0;
3818 }
3819 #endif
3820 }
3821
3822 /*
3823 * Consider @p being inside a wait loop:
3824 *
3825 * for (;;) {
3826 * set_current_state(TASK_UNINTERRUPTIBLE);
3827 *
3828 * if (CONDITION)
3829 * break;
3830 *
3831 * schedule();
3832 * }
3833 * __set_current_state(TASK_RUNNING);
3834 *
3835 * between set_current_state() and schedule(). In this case @p is still
3836 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3837 * an atomic manner.
3838 *
3839 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3840 * then schedule() must still happen and p->state can be changed to
3841 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3842 * need to do a full wakeup with enqueue.
3843 *
3844 * Returns: %true when the wakeup is done,
3845 * %false otherwise.
3846 */
ttwu_runnable(struct task_struct * p,int wake_flags)3847 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3848 {
3849 struct rq_flags rf;
3850 struct rq *rq;
3851 int ret = 0;
3852
3853 rq = __task_rq_lock(p, &rf);
3854 if (task_on_rq_queued(p)) {
3855 if (!task_on_cpu(rq, p)) {
3856 /*
3857 * When on_rq && !on_cpu the task is preempted, see if
3858 * it should preempt the task that is current now.
3859 */
3860 update_rq_clock(rq);
3861 wakeup_preempt(rq, p, wake_flags);
3862 }
3863 ttwu_do_wakeup(p);
3864 ret = 1;
3865 }
3866 __task_rq_unlock(rq, &rf);
3867
3868 return ret;
3869 }
3870
3871 #ifdef CONFIG_SMP
sched_ttwu_pending(void * arg)3872 void sched_ttwu_pending(void *arg)
3873 {
3874 struct llist_node *llist = arg;
3875 struct rq *rq = this_rq();
3876 struct task_struct *p, *t;
3877 struct rq_flags rf;
3878
3879 if (!llist)
3880 return;
3881
3882 rq_lock_irqsave(rq, &rf);
3883 update_rq_clock(rq);
3884
3885 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3886 if (WARN_ON_ONCE(p->on_cpu))
3887 smp_cond_load_acquire(&p->on_cpu, !VAL);
3888
3889 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3890 set_task_cpu(p, cpu_of(rq));
3891
3892 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3893 }
3894
3895 /*
3896 * Must be after enqueueing at least once task such that
3897 * idle_cpu() does not observe a false-negative -- if it does,
3898 * it is possible for select_idle_siblings() to stack a number
3899 * of tasks on this CPU during that window.
3900 *
3901 * It is ok to clear ttwu_pending when another task pending.
3902 * We will receive IPI after local irq enabled and then enqueue it.
3903 * Since now nr_running > 0, idle_cpu() will always get correct result.
3904 */
3905 WRITE_ONCE(rq->ttwu_pending, 0);
3906 rq_unlock_irqrestore(rq, &rf);
3907 }
3908
3909 /*
3910 * Prepare the scene for sending an IPI for a remote smp_call
3911 *
3912 * Returns true if the caller can proceed with sending the IPI.
3913 * Returns false otherwise.
3914 */
call_function_single_prep_ipi(int cpu)3915 bool call_function_single_prep_ipi(int cpu)
3916 {
3917 if (set_nr_if_polling(cpu_rq(cpu)->idle)) {
3918 trace_sched_wake_idle_without_ipi(cpu);
3919 return false;
3920 }
3921
3922 return true;
3923 }
3924
3925 /*
3926 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3927 * necessary. The wakee CPU on receipt of the IPI will queue the task
3928 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3929 * of the wakeup instead of the waker.
3930 */
__ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3931 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3932 {
3933 struct rq *rq = cpu_rq(cpu);
3934
3935 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3936
3937 WRITE_ONCE(rq->ttwu_pending, 1);
3938 __smp_call_single_queue(cpu, &p->wake_entry.llist);
3939 }
3940
wake_up_if_idle(int cpu)3941 void wake_up_if_idle(int cpu)
3942 {
3943 struct rq *rq = cpu_rq(cpu);
3944
3945 guard(rcu)();
3946 if (is_idle_task(rcu_dereference(rq->curr))) {
3947 guard(rq_lock_irqsave)(rq);
3948 if (is_idle_task(rq->curr))
3949 resched_curr(rq);
3950 }
3951 }
3952
cpus_share_cache(int this_cpu,int that_cpu)3953 bool cpus_share_cache(int this_cpu, int that_cpu)
3954 {
3955 if (this_cpu == that_cpu)
3956 return true;
3957
3958 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3959 }
3960
ttwu_queue_cond(struct task_struct * p,int cpu)3961 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3962 {
3963 /*
3964 * Do not complicate things with the async wake_list while the CPU is
3965 * in hotplug state.
3966 */
3967 if (!cpu_active(cpu))
3968 return false;
3969
3970 /* Ensure the task will still be allowed to run on the CPU. */
3971 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3972 return false;
3973
3974 /*
3975 * If the CPU does not share cache, then queue the task on the
3976 * remote rqs wakelist to avoid accessing remote data.
3977 */
3978 if (!cpus_share_cache(smp_processor_id(), cpu))
3979 return true;
3980
3981 if (cpu == smp_processor_id())
3982 return false;
3983
3984 /*
3985 * If the wakee cpu is idle, or the task is descheduling and the
3986 * only running task on the CPU, then use the wakelist to offload
3987 * the task activation to the idle (or soon-to-be-idle) CPU as
3988 * the current CPU is likely busy. nr_running is checked to
3989 * avoid unnecessary task stacking.
3990 *
3991 * Note that we can only get here with (wakee) p->on_rq=0,
3992 * p->on_cpu can be whatever, we've done the dequeue, so
3993 * the wakee has been accounted out of ->nr_running.
3994 */
3995 if (!cpu_rq(cpu)->nr_running)
3996 return true;
3997
3998 return false;
3999 }
4000
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)4001 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4002 {
4003 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
4004 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
4005 __ttwu_queue_wakelist(p, cpu, wake_flags);
4006 return true;
4007 }
4008
4009 return false;
4010 }
4011
4012 #else /* !CONFIG_SMP */
4013
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)4014 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
4015 {
4016 return false;
4017 }
4018
4019 #endif /* CONFIG_SMP */
4020
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)4021 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
4022 {
4023 struct rq *rq = cpu_rq(cpu);
4024 struct rq_flags rf;
4025
4026 if (ttwu_queue_wakelist(p, cpu, wake_flags))
4027 return;
4028
4029 rq_lock(rq, &rf);
4030 update_rq_clock(rq);
4031 ttwu_do_activate(rq, p, wake_flags, &rf);
4032 rq_unlock(rq, &rf);
4033 }
4034
4035 /*
4036 * Invoked from try_to_wake_up() to check whether the task can be woken up.
4037 *
4038 * The caller holds p::pi_lock if p != current or has preemption
4039 * disabled when p == current.
4040 *
4041 * The rules of PREEMPT_RT saved_state:
4042 *
4043 * The related locking code always holds p::pi_lock when updating
4044 * p::saved_state, which means the code is fully serialized in both cases.
4045 *
4046 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
4047 * bits set. This allows to distinguish all wakeup scenarios.
4048 */
4049 static __always_inline
ttwu_state_match(struct task_struct * p,unsigned int state,int * success)4050 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
4051 {
4052 int match;
4053
4054 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
4055 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
4056 state != TASK_RTLOCK_WAIT);
4057 }
4058
4059 *success = !!(match = __task_state_match(p, state));
4060
4061 #ifdef CONFIG_PREEMPT_RT
4062 /*
4063 * Saved state preserves the task state across blocking on
4064 * an RT lock. If the state matches, set p::saved_state to
4065 * TASK_RUNNING, but do not wake the task because it waits
4066 * for a lock wakeup. Also indicate success because from
4067 * the regular waker's point of view this has succeeded.
4068 *
4069 * After acquiring the lock the task will restore p::__state
4070 * from p::saved_state which ensures that the regular
4071 * wakeup is not lost. The restore will also set
4072 * p::saved_state to TASK_RUNNING so any further tests will
4073 * not result in false positives vs. @success
4074 */
4075 if (match < 0)
4076 p->saved_state = TASK_RUNNING;
4077 #endif
4078 return match > 0;
4079 }
4080
4081 /*
4082 * Notes on Program-Order guarantees on SMP systems.
4083 *
4084 * MIGRATION
4085 *
4086 * The basic program-order guarantee on SMP systems is that when a task [t]
4087 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
4088 * execution on its new CPU [c1].
4089 *
4090 * For migration (of runnable tasks) this is provided by the following means:
4091 *
4092 * A) UNLOCK of the rq(c0)->lock scheduling out task t
4093 * B) migration for t is required to synchronize *both* rq(c0)->lock and
4094 * rq(c1)->lock (if not at the same time, then in that order).
4095 * C) LOCK of the rq(c1)->lock scheduling in task
4096 *
4097 * Release/acquire chaining guarantees that B happens after A and C after B.
4098 * Note: the CPU doing B need not be c0 or c1
4099 *
4100 * Example:
4101 *
4102 * CPU0 CPU1 CPU2
4103 *
4104 * LOCK rq(0)->lock
4105 * sched-out X
4106 * sched-in Y
4107 * UNLOCK rq(0)->lock
4108 *
4109 * LOCK rq(0)->lock // orders against CPU0
4110 * dequeue X
4111 * UNLOCK rq(0)->lock
4112 *
4113 * LOCK rq(1)->lock
4114 * enqueue X
4115 * UNLOCK rq(1)->lock
4116 *
4117 * LOCK rq(1)->lock // orders against CPU2
4118 * sched-out Z
4119 * sched-in X
4120 * UNLOCK rq(1)->lock
4121 *
4122 *
4123 * BLOCKING -- aka. SLEEP + WAKEUP
4124 *
4125 * For blocking we (obviously) need to provide the same guarantee as for
4126 * migration. However the means are completely different as there is no lock
4127 * chain to provide order. Instead we do:
4128 *
4129 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
4130 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
4131 *
4132 * Example:
4133 *
4134 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
4135 *
4136 * LOCK rq(0)->lock LOCK X->pi_lock
4137 * dequeue X
4138 * sched-out X
4139 * smp_store_release(X->on_cpu, 0);
4140 *
4141 * smp_cond_load_acquire(&X->on_cpu, !VAL);
4142 * X->state = WAKING
4143 * set_task_cpu(X,2)
4144 *
4145 * LOCK rq(2)->lock
4146 * enqueue X
4147 * X->state = RUNNING
4148 * UNLOCK rq(2)->lock
4149 *
4150 * LOCK rq(2)->lock // orders against CPU1
4151 * sched-out Z
4152 * sched-in X
4153 * UNLOCK rq(2)->lock
4154 *
4155 * UNLOCK X->pi_lock
4156 * UNLOCK rq(0)->lock
4157 *
4158 *
4159 * However, for wakeups there is a second guarantee we must provide, namely we
4160 * must ensure that CONDITION=1 done by the caller can not be reordered with
4161 * accesses to the task state; see try_to_wake_up() and set_current_state().
4162 */
4163
4164 /**
4165 * try_to_wake_up - wake up a thread
4166 * @p: the thread to be awakened
4167 * @state: the mask of task states that can be woken
4168 * @wake_flags: wake modifier flags (WF_*)
4169 *
4170 * Conceptually does:
4171 *
4172 * If (@state & @p->state) @p->state = TASK_RUNNING.
4173 *
4174 * If the task was not queued/runnable, also place it back on a runqueue.
4175 *
4176 * This function is atomic against schedule() which would dequeue the task.
4177 *
4178 * It issues a full memory barrier before accessing @p->state, see the comment
4179 * with set_current_state().
4180 *
4181 * Uses p->pi_lock to serialize against concurrent wake-ups.
4182 *
4183 * Relies on p->pi_lock stabilizing:
4184 * - p->sched_class
4185 * - p->cpus_ptr
4186 * - p->sched_task_group
4187 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4188 *
4189 * Tries really hard to only take one task_rq(p)->lock for performance.
4190 * Takes rq->lock in:
4191 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
4192 * - ttwu_queue() -- new rq, for enqueue of the task;
4193 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4194 *
4195 * As a consequence we race really badly with just about everything. See the
4196 * many memory barriers and their comments for details.
4197 *
4198 * Return: %true if @p->state changes (an actual wakeup was done),
4199 * %false otherwise.
4200 */
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)4201 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4202 {
4203 guard(preempt)();
4204 int cpu, success = 0;
4205
4206 if (p == current) {
4207 /*
4208 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4209 * == smp_processor_id()'. Together this means we can special
4210 * case the whole 'p->on_rq && ttwu_runnable()' case below
4211 * without taking any locks.
4212 *
4213 * In particular:
4214 * - we rely on Program-Order guarantees for all the ordering,
4215 * - we're serialized against set_special_state() by virtue of
4216 * it disabling IRQs (this allows not taking ->pi_lock).
4217 */
4218 if (!ttwu_state_match(p, state, &success))
4219 goto out;
4220
4221 trace_sched_waking(p);
4222 ttwu_do_wakeup(p);
4223 goto out;
4224 }
4225
4226 /*
4227 * If we are going to wake up a thread waiting for CONDITION we
4228 * need to ensure that CONDITION=1 done by the caller can not be
4229 * reordered with p->state check below. This pairs with smp_store_mb()
4230 * in set_current_state() that the waiting thread does.
4231 */
4232 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
4233 smp_mb__after_spinlock();
4234 if (!ttwu_state_match(p, state, &success))
4235 break;
4236
4237 trace_sched_waking(p);
4238
4239 /*
4240 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4241 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4242 * in smp_cond_load_acquire() below.
4243 *
4244 * sched_ttwu_pending() try_to_wake_up()
4245 * STORE p->on_rq = 1 LOAD p->state
4246 * UNLOCK rq->lock
4247 *
4248 * __schedule() (switch to task 'p')
4249 * LOCK rq->lock smp_rmb();
4250 * smp_mb__after_spinlock();
4251 * UNLOCK rq->lock
4252 *
4253 * [task p]
4254 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
4255 *
4256 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4257 * __schedule(). See the comment for smp_mb__after_spinlock().
4258 *
4259 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4260 */
4261 smp_rmb();
4262 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4263 break;
4264
4265 #ifdef CONFIG_SMP
4266 /*
4267 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4268 * possible to, falsely, observe p->on_cpu == 0.
4269 *
4270 * One must be running (->on_cpu == 1) in order to remove oneself
4271 * from the runqueue.
4272 *
4273 * __schedule() (switch to task 'p') try_to_wake_up()
4274 * STORE p->on_cpu = 1 LOAD p->on_rq
4275 * UNLOCK rq->lock
4276 *
4277 * __schedule() (put 'p' to sleep)
4278 * LOCK rq->lock smp_rmb();
4279 * smp_mb__after_spinlock();
4280 * STORE p->on_rq = 0 LOAD p->on_cpu
4281 *
4282 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4283 * __schedule(). See the comment for smp_mb__after_spinlock().
4284 *
4285 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4286 * schedule()'s deactivate_task() has 'happened' and p will no longer
4287 * care about it's own p->state. See the comment in __schedule().
4288 */
4289 smp_acquire__after_ctrl_dep();
4290
4291 /*
4292 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4293 * == 0), which means we need to do an enqueue, change p->state to
4294 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4295 * enqueue, such as ttwu_queue_wakelist().
4296 */
4297 WRITE_ONCE(p->__state, TASK_WAKING);
4298
4299 /*
4300 * If the owning (remote) CPU is still in the middle of schedule() with
4301 * this task as prev, considering queueing p on the remote CPUs wake_list
4302 * which potentially sends an IPI instead of spinning on p->on_cpu to
4303 * let the waker make forward progress. This is safe because IRQs are
4304 * disabled and the IPI will deliver after on_cpu is cleared.
4305 *
4306 * Ensure we load task_cpu(p) after p->on_cpu:
4307 *
4308 * set_task_cpu(p, cpu);
4309 * STORE p->cpu = @cpu
4310 * __schedule() (switch to task 'p')
4311 * LOCK rq->lock
4312 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
4313 * STORE p->on_cpu = 1 LOAD p->cpu
4314 *
4315 * to ensure we observe the correct CPU on which the task is currently
4316 * scheduling.
4317 */
4318 if (smp_load_acquire(&p->on_cpu) &&
4319 ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4320 break;
4321
4322 /*
4323 * If the owning (remote) CPU is still in the middle of schedule() with
4324 * this task as prev, wait until it's done referencing the task.
4325 *
4326 * Pairs with the smp_store_release() in finish_task().
4327 *
4328 * This ensures that tasks getting woken will be fully ordered against
4329 * their previous state and preserve Program Order.
4330 */
4331 smp_cond_load_acquire(&p->on_cpu, !VAL);
4332
4333 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4334 if (task_cpu(p) != cpu) {
4335 if (p->in_iowait) {
4336 delayacct_blkio_end(p);
4337 atomic_dec(&task_rq(p)->nr_iowait);
4338 }
4339
4340 wake_flags |= WF_MIGRATED;
4341 psi_ttwu_dequeue(p);
4342 set_task_cpu(p, cpu);
4343 }
4344 #else
4345 cpu = task_cpu(p);
4346 #endif /* CONFIG_SMP */
4347
4348 ttwu_queue(p, cpu, wake_flags);
4349 }
4350 out:
4351 if (success)
4352 ttwu_stat(p, task_cpu(p), wake_flags);
4353
4354 return success;
4355 }
4356
__task_needs_rq_lock(struct task_struct * p)4357 static bool __task_needs_rq_lock(struct task_struct *p)
4358 {
4359 unsigned int state = READ_ONCE(p->__state);
4360
4361 /*
4362 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4363 * the task is blocked. Make sure to check @state since ttwu() can drop
4364 * locks at the end, see ttwu_queue_wakelist().
4365 */
4366 if (state == TASK_RUNNING || state == TASK_WAKING)
4367 return true;
4368
4369 /*
4370 * Ensure we load p->on_rq after p->__state, otherwise it would be
4371 * possible to, falsely, observe p->on_rq == 0.
4372 *
4373 * See try_to_wake_up() for a longer comment.
4374 */
4375 smp_rmb();
4376 if (p->on_rq)
4377 return true;
4378
4379 #ifdef CONFIG_SMP
4380 /*
4381 * Ensure the task has finished __schedule() and will not be referenced
4382 * anymore. Again, see try_to_wake_up() for a longer comment.
4383 */
4384 smp_rmb();
4385 smp_cond_load_acquire(&p->on_cpu, !VAL);
4386 #endif
4387
4388 return false;
4389 }
4390
4391 /**
4392 * task_call_func - Invoke a function on task in fixed state
4393 * @p: Process for which the function is to be invoked, can be @current.
4394 * @func: Function to invoke.
4395 * @arg: Argument to function.
4396 *
4397 * Fix the task in it's current state by avoiding wakeups and or rq operations
4398 * and call @func(@arg) on it. This function can use ->on_rq and task_curr()
4399 * to work out what the state is, if required. Given that @func can be invoked
4400 * with a runqueue lock held, it had better be quite lightweight.
4401 *
4402 * Returns:
4403 * Whatever @func returns
4404 */
task_call_func(struct task_struct * p,task_call_f func,void * arg)4405 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4406 {
4407 struct rq *rq = NULL;
4408 struct rq_flags rf;
4409 int ret;
4410
4411 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4412
4413 if (__task_needs_rq_lock(p))
4414 rq = __task_rq_lock(p, &rf);
4415
4416 /*
4417 * At this point the task is pinned; either:
4418 * - blocked and we're holding off wakeups (pi->lock)
4419 * - woken, and we're holding off enqueue (rq->lock)
4420 * - queued, and we're holding off schedule (rq->lock)
4421 * - running, and we're holding off de-schedule (rq->lock)
4422 *
4423 * The called function (@func) can use: task_curr(), p->on_rq and
4424 * p->__state to differentiate between these states.
4425 */
4426 ret = func(p, arg);
4427
4428 if (rq)
4429 rq_unlock(rq, &rf);
4430
4431 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4432 return ret;
4433 }
4434
4435 /**
4436 * cpu_curr_snapshot - Return a snapshot of the currently running task
4437 * @cpu: The CPU on which to snapshot the task.
4438 *
4439 * Returns the task_struct pointer of the task "currently" running on
4440 * the specified CPU.
4441 *
4442 * If the specified CPU was offline, the return value is whatever it
4443 * is, perhaps a pointer to the task_struct structure of that CPU's idle
4444 * task, but there is no guarantee. Callers wishing a useful return
4445 * value must take some action to ensure that the specified CPU remains
4446 * online throughout.
4447 *
4448 * This function executes full memory barriers before and after fetching
4449 * the pointer, which permits the caller to confine this function's fetch
4450 * with respect to the caller's accesses to other shared variables.
4451 */
cpu_curr_snapshot(int cpu)4452 struct task_struct *cpu_curr_snapshot(int cpu)
4453 {
4454 struct rq *rq = cpu_rq(cpu);
4455 struct task_struct *t;
4456 struct rq_flags rf;
4457
4458 rq_lock_irqsave(rq, &rf);
4459 smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */
4460 t = rcu_dereference(cpu_curr(cpu));
4461 rq_unlock_irqrestore(rq, &rf);
4462 smp_mb(); /* Pairing determined by caller's synchronization design. */
4463
4464 return t;
4465 }
4466
4467 /**
4468 * wake_up_process - Wake up a specific process
4469 * @p: The process to be woken up.
4470 *
4471 * Attempt to wake up the nominated process and move it to the set of runnable
4472 * processes.
4473 *
4474 * Return: 1 if the process was woken up, 0 if it was already running.
4475 *
4476 * This function executes a full memory barrier before accessing the task state.
4477 */
wake_up_process(struct task_struct * p)4478 int wake_up_process(struct task_struct *p)
4479 {
4480 return try_to_wake_up(p, TASK_NORMAL, 0);
4481 }
4482 EXPORT_SYMBOL(wake_up_process);
4483
wake_up_state(struct task_struct * p,unsigned int state)4484 int wake_up_state(struct task_struct *p, unsigned int state)
4485 {
4486 return try_to_wake_up(p, state, 0);
4487 }
4488
4489 /*
4490 * Perform scheduler related setup for a newly forked process p.
4491 * p is forked by current.
4492 *
4493 * __sched_fork() is basic setup which is also used by sched_init() to
4494 * initialize the boot CPU's idle task.
4495 */
__sched_fork(unsigned long clone_flags,struct task_struct * p)4496 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4497 {
4498 p->on_rq = 0;
4499
4500 p->se.on_rq = 0;
4501 p->se.exec_start = 0;
4502 p->se.sum_exec_runtime = 0;
4503 p->se.prev_sum_exec_runtime = 0;
4504 p->se.nr_migrations = 0;
4505 p->se.vruntime = 0;
4506 p->se.vlag = 0;
4507 p->se.slice = sysctl_sched_base_slice;
4508 INIT_LIST_HEAD(&p->se.group_node);
4509
4510 #ifdef CONFIG_FAIR_GROUP_SCHED
4511 p->se.cfs_rq = NULL;
4512 #endif
4513
4514 #ifdef CONFIG_SCHEDSTATS
4515 /* Even if schedstat is disabled, there should not be garbage */
4516 memset(&p->stats, 0, sizeof(p->stats));
4517 #endif
4518
4519 init_dl_entity(&p->dl);
4520
4521 INIT_LIST_HEAD(&p->rt.run_list);
4522 p->rt.timeout = 0;
4523 p->rt.time_slice = sched_rr_timeslice;
4524 p->rt.on_rq = 0;
4525 p->rt.on_list = 0;
4526
4527 #ifdef CONFIG_PREEMPT_NOTIFIERS
4528 INIT_HLIST_HEAD(&p->preempt_notifiers);
4529 #endif
4530
4531 #ifdef CONFIG_COMPACTION
4532 p->capture_control = NULL;
4533 #endif
4534 init_numa_balancing(clone_flags, p);
4535 #ifdef CONFIG_SMP
4536 p->wake_entry.u_flags = CSD_TYPE_TTWU;
4537 p->migration_pending = NULL;
4538 #endif
4539 init_sched_mm_cid(p);
4540 }
4541
4542 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4543
4544 #ifdef CONFIG_NUMA_BALANCING
4545
4546 int sysctl_numa_balancing_mode;
4547
__set_numabalancing_state(bool enabled)4548 static void __set_numabalancing_state(bool enabled)
4549 {
4550 if (enabled)
4551 static_branch_enable(&sched_numa_balancing);
4552 else
4553 static_branch_disable(&sched_numa_balancing);
4554 }
4555
set_numabalancing_state(bool enabled)4556 void set_numabalancing_state(bool enabled)
4557 {
4558 if (enabled)
4559 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4560 else
4561 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4562 __set_numabalancing_state(enabled);
4563 }
4564
4565 #ifdef CONFIG_PROC_SYSCTL
reset_memory_tiering(void)4566 static void reset_memory_tiering(void)
4567 {
4568 struct pglist_data *pgdat;
4569
4570 for_each_online_pgdat(pgdat) {
4571 pgdat->nbp_threshold = 0;
4572 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4573 pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4574 }
4575 }
4576
sysctl_numa_balancing(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4577 static int sysctl_numa_balancing(struct ctl_table *table, int write,
4578 void *buffer, size_t *lenp, loff_t *ppos)
4579 {
4580 struct ctl_table t;
4581 int err;
4582 int state = sysctl_numa_balancing_mode;
4583
4584 if (write && !capable(CAP_SYS_ADMIN))
4585 return -EPERM;
4586
4587 t = *table;
4588 t.data = &state;
4589 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4590 if (err < 0)
4591 return err;
4592 if (write) {
4593 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4594 (state & NUMA_BALANCING_MEMORY_TIERING))
4595 reset_memory_tiering();
4596 sysctl_numa_balancing_mode = state;
4597 __set_numabalancing_state(state);
4598 }
4599 return err;
4600 }
4601 #endif
4602 #endif
4603
4604 #ifdef CONFIG_SCHEDSTATS
4605
4606 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4607
set_schedstats(bool enabled)4608 static void set_schedstats(bool enabled)
4609 {
4610 if (enabled)
4611 static_branch_enable(&sched_schedstats);
4612 else
4613 static_branch_disable(&sched_schedstats);
4614 }
4615
force_schedstat_enabled(void)4616 void force_schedstat_enabled(void)
4617 {
4618 if (!schedstat_enabled()) {
4619 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4620 static_branch_enable(&sched_schedstats);
4621 }
4622 }
4623
setup_schedstats(char * str)4624 static int __init setup_schedstats(char *str)
4625 {
4626 int ret = 0;
4627 if (!str)
4628 goto out;
4629
4630 if (!strcmp(str, "enable")) {
4631 set_schedstats(true);
4632 ret = 1;
4633 } else if (!strcmp(str, "disable")) {
4634 set_schedstats(false);
4635 ret = 1;
4636 }
4637 out:
4638 if (!ret)
4639 pr_warn("Unable to parse schedstats=\n");
4640
4641 return ret;
4642 }
4643 __setup("schedstats=", setup_schedstats);
4644
4645 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4646 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4647 size_t *lenp, loff_t *ppos)
4648 {
4649 struct ctl_table t;
4650 int err;
4651 int state = static_branch_likely(&sched_schedstats);
4652
4653 if (write && !capable(CAP_SYS_ADMIN))
4654 return -EPERM;
4655
4656 t = *table;
4657 t.data = &state;
4658 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4659 if (err < 0)
4660 return err;
4661 if (write)
4662 set_schedstats(state);
4663 return err;
4664 }
4665 #endif /* CONFIG_PROC_SYSCTL */
4666 #endif /* CONFIG_SCHEDSTATS */
4667
4668 #ifdef CONFIG_SYSCTL
4669 static struct ctl_table sched_core_sysctls[] = {
4670 #ifdef CONFIG_SCHEDSTATS
4671 {
4672 .procname = "sched_schedstats",
4673 .data = NULL,
4674 .maxlen = sizeof(unsigned int),
4675 .mode = 0644,
4676 .proc_handler = sysctl_schedstats,
4677 .extra1 = SYSCTL_ZERO,
4678 .extra2 = SYSCTL_ONE,
4679 },
4680 #endif /* CONFIG_SCHEDSTATS */
4681 #ifdef CONFIG_UCLAMP_TASK
4682 {
4683 .procname = "sched_util_clamp_min",
4684 .data = &sysctl_sched_uclamp_util_min,
4685 .maxlen = sizeof(unsigned int),
4686 .mode = 0644,
4687 .proc_handler = sysctl_sched_uclamp_handler,
4688 },
4689 {
4690 .procname = "sched_util_clamp_max",
4691 .data = &sysctl_sched_uclamp_util_max,
4692 .maxlen = sizeof(unsigned int),
4693 .mode = 0644,
4694 .proc_handler = sysctl_sched_uclamp_handler,
4695 },
4696 {
4697 .procname = "sched_util_clamp_min_rt_default",
4698 .data = &sysctl_sched_uclamp_util_min_rt_default,
4699 .maxlen = sizeof(unsigned int),
4700 .mode = 0644,
4701 .proc_handler = sysctl_sched_uclamp_handler,
4702 },
4703 #endif /* CONFIG_UCLAMP_TASK */
4704 #ifdef CONFIG_NUMA_BALANCING
4705 {
4706 .procname = "numa_balancing",
4707 .data = NULL, /* filled in by handler */
4708 .maxlen = sizeof(unsigned int),
4709 .mode = 0644,
4710 .proc_handler = sysctl_numa_balancing,
4711 .extra1 = SYSCTL_ZERO,
4712 .extra2 = SYSCTL_FOUR,
4713 },
4714 #endif /* CONFIG_NUMA_BALANCING */
4715 {}
4716 };
sched_core_sysctl_init(void)4717 static int __init sched_core_sysctl_init(void)
4718 {
4719 register_sysctl_init("kernel", sched_core_sysctls);
4720 return 0;
4721 }
4722 late_initcall(sched_core_sysctl_init);
4723 #endif /* CONFIG_SYSCTL */
4724
4725 /*
4726 * fork()/clone()-time setup:
4727 */
sched_fork(unsigned long clone_flags,struct task_struct * p)4728 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4729 {
4730 __sched_fork(clone_flags, p);
4731 /*
4732 * We mark the process as NEW here. This guarantees that
4733 * nobody will actually run it, and a signal or other external
4734 * event cannot wake it up and insert it on the runqueue either.
4735 */
4736 p->__state = TASK_NEW;
4737
4738 /*
4739 * Make sure we do not leak PI boosting priority to the child.
4740 */
4741 p->prio = current->normal_prio;
4742
4743 uclamp_fork(p);
4744
4745 /*
4746 * Revert to default priority/policy on fork if requested.
4747 */
4748 if (unlikely(p->sched_reset_on_fork)) {
4749 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4750 p->policy = SCHED_NORMAL;
4751 p->static_prio = NICE_TO_PRIO(0);
4752 p->rt_priority = 0;
4753 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4754 p->static_prio = NICE_TO_PRIO(0);
4755
4756 p->prio = p->normal_prio = p->static_prio;
4757 set_load_weight(p, false);
4758
4759 /*
4760 * We don't need the reset flag anymore after the fork. It has
4761 * fulfilled its duty:
4762 */
4763 p->sched_reset_on_fork = 0;
4764 }
4765
4766 if (dl_prio(p->prio))
4767 return -EAGAIN;
4768 else if (rt_prio(p->prio))
4769 p->sched_class = &rt_sched_class;
4770 else
4771 p->sched_class = &fair_sched_class;
4772
4773 init_entity_runnable_average(&p->se);
4774
4775
4776 #ifdef CONFIG_SCHED_INFO
4777 if (likely(sched_info_on()))
4778 memset(&p->sched_info, 0, sizeof(p->sched_info));
4779 #endif
4780 #if defined(CONFIG_SMP)
4781 p->on_cpu = 0;
4782 #endif
4783 init_task_preempt_count(p);
4784 #ifdef CONFIG_SMP
4785 plist_node_init(&p->pushable_tasks, MAX_PRIO);
4786 RB_CLEAR_NODE(&p->pushable_dl_tasks);
4787 #endif
4788 return 0;
4789 }
4790
sched_cgroup_fork(struct task_struct * p,struct kernel_clone_args * kargs)4791 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4792 {
4793 unsigned long flags;
4794
4795 /*
4796 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4797 * required yet, but lockdep gets upset if rules are violated.
4798 */
4799 raw_spin_lock_irqsave(&p->pi_lock, flags);
4800 #ifdef CONFIG_CGROUP_SCHED
4801 if (1) {
4802 struct task_group *tg;
4803 tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4804 struct task_group, css);
4805 tg = autogroup_task_group(p, tg);
4806 p->sched_task_group = tg;
4807 }
4808 #endif
4809 rseq_migrate(p);
4810 /*
4811 * We're setting the CPU for the first time, we don't migrate,
4812 * so use __set_task_cpu().
4813 */
4814 __set_task_cpu(p, smp_processor_id());
4815 if (p->sched_class->task_fork)
4816 p->sched_class->task_fork(p);
4817 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4818 }
4819
sched_post_fork(struct task_struct * p)4820 void sched_post_fork(struct task_struct *p)
4821 {
4822 uclamp_post_fork(p);
4823 }
4824
to_ratio(u64 period,u64 runtime)4825 unsigned long to_ratio(u64 period, u64 runtime)
4826 {
4827 if (runtime == RUNTIME_INF)
4828 return BW_UNIT;
4829
4830 /*
4831 * Doing this here saves a lot of checks in all
4832 * the calling paths, and returning zero seems
4833 * safe for them anyway.
4834 */
4835 if (period == 0)
4836 return 0;
4837
4838 return div64_u64(runtime << BW_SHIFT, period);
4839 }
4840
4841 /*
4842 * wake_up_new_task - wake up a newly created task for the first time.
4843 *
4844 * This function will do some initial scheduler statistics housekeeping
4845 * that must be done for every newly created context, then puts the task
4846 * on the runqueue and wakes it.
4847 */
wake_up_new_task(struct task_struct * p)4848 void wake_up_new_task(struct task_struct *p)
4849 {
4850 struct rq_flags rf;
4851 struct rq *rq;
4852
4853 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4854 WRITE_ONCE(p->__state, TASK_RUNNING);
4855 #ifdef CONFIG_SMP
4856 /*
4857 * Fork balancing, do it here and not earlier because:
4858 * - cpus_ptr can change in the fork path
4859 * - any previously selected CPU might disappear through hotplug
4860 *
4861 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4862 * as we're not fully set-up yet.
4863 */
4864 p->recent_used_cpu = task_cpu(p);
4865 rseq_migrate(p);
4866 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4867 #endif
4868 rq = __task_rq_lock(p, &rf);
4869 update_rq_clock(rq);
4870 post_init_entity_util_avg(p);
4871
4872 activate_task(rq, p, ENQUEUE_NOCLOCK);
4873 trace_sched_wakeup_new(p);
4874 wakeup_preempt(rq, p, WF_FORK);
4875 #ifdef CONFIG_SMP
4876 if (p->sched_class->task_woken) {
4877 /*
4878 * Nothing relies on rq->lock after this, so it's fine to
4879 * drop it.
4880 */
4881 rq_unpin_lock(rq, &rf);
4882 p->sched_class->task_woken(rq, p);
4883 rq_repin_lock(rq, &rf);
4884 }
4885 #endif
4886 task_rq_unlock(rq, p, &rf);
4887 }
4888
4889 #ifdef CONFIG_PREEMPT_NOTIFIERS
4890
4891 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4892
preempt_notifier_inc(void)4893 void preempt_notifier_inc(void)
4894 {
4895 static_branch_inc(&preempt_notifier_key);
4896 }
4897 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4898
preempt_notifier_dec(void)4899 void preempt_notifier_dec(void)
4900 {
4901 static_branch_dec(&preempt_notifier_key);
4902 }
4903 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4904
4905 /**
4906 * preempt_notifier_register - tell me when current is being preempted & rescheduled
4907 * @notifier: notifier struct to register
4908 */
preempt_notifier_register(struct preempt_notifier * notifier)4909 void preempt_notifier_register(struct preempt_notifier *notifier)
4910 {
4911 if (!static_branch_unlikely(&preempt_notifier_key))
4912 WARN(1, "registering preempt_notifier while notifiers disabled\n");
4913
4914 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
4915 }
4916 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4917
4918 /**
4919 * preempt_notifier_unregister - no longer interested in preemption notifications
4920 * @notifier: notifier struct to unregister
4921 *
4922 * This is *not* safe to call from within a preemption notifier.
4923 */
preempt_notifier_unregister(struct preempt_notifier * notifier)4924 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4925 {
4926 hlist_del(¬ifier->link);
4927 }
4928 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4929
__fire_sched_in_preempt_notifiers(struct task_struct * curr)4930 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4931 {
4932 struct preempt_notifier *notifier;
4933
4934 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4935 notifier->ops->sched_in(notifier, raw_smp_processor_id());
4936 }
4937
fire_sched_in_preempt_notifiers(struct task_struct * curr)4938 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4939 {
4940 if (static_branch_unlikely(&preempt_notifier_key))
4941 __fire_sched_in_preempt_notifiers(curr);
4942 }
4943
4944 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4945 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4946 struct task_struct *next)
4947 {
4948 struct preempt_notifier *notifier;
4949
4950 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4951 notifier->ops->sched_out(notifier, next);
4952 }
4953
4954 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4955 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4956 struct task_struct *next)
4957 {
4958 if (static_branch_unlikely(&preempt_notifier_key))
4959 __fire_sched_out_preempt_notifiers(curr, next);
4960 }
4961
4962 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4963
fire_sched_in_preempt_notifiers(struct task_struct * curr)4964 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4965 {
4966 }
4967
4968 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4969 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4970 struct task_struct *next)
4971 {
4972 }
4973
4974 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4975
prepare_task(struct task_struct * next)4976 static inline void prepare_task(struct task_struct *next)
4977 {
4978 #ifdef CONFIG_SMP
4979 /*
4980 * Claim the task as running, we do this before switching to it
4981 * such that any running task will have this set.
4982 *
4983 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4984 * its ordering comment.
4985 */
4986 WRITE_ONCE(next->on_cpu, 1);
4987 #endif
4988 }
4989
finish_task(struct task_struct * prev)4990 static inline void finish_task(struct task_struct *prev)
4991 {
4992 #ifdef CONFIG_SMP
4993 /*
4994 * This must be the very last reference to @prev from this CPU. After
4995 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4996 * must ensure this doesn't happen until the switch is completely
4997 * finished.
4998 *
4999 * In particular, the load of prev->state in finish_task_switch() must
5000 * happen before this.
5001 *
5002 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
5003 */
5004 smp_store_release(&prev->on_cpu, 0);
5005 #endif
5006 }
5007
5008 #ifdef CONFIG_SMP
5009
do_balance_callbacks(struct rq * rq,struct balance_callback * head)5010 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
5011 {
5012 void (*func)(struct rq *rq);
5013 struct balance_callback *next;
5014
5015 lockdep_assert_rq_held(rq);
5016
5017 while (head) {
5018 func = (void (*)(struct rq *))head->func;
5019 next = head->next;
5020 head->next = NULL;
5021 head = next;
5022
5023 func(rq);
5024 }
5025 }
5026
5027 static void balance_push(struct rq *rq);
5028
5029 /*
5030 * balance_push_callback is a right abuse of the callback interface and plays
5031 * by significantly different rules.
5032 *
5033 * Where the normal balance_callback's purpose is to be ran in the same context
5034 * that queued it (only later, when it's safe to drop rq->lock again),
5035 * balance_push_callback is specifically targeted at __schedule().
5036 *
5037 * This abuse is tolerated because it places all the unlikely/odd cases behind
5038 * a single test, namely: rq->balance_callback == NULL.
5039 */
5040 struct balance_callback balance_push_callback = {
5041 .next = NULL,
5042 .func = balance_push,
5043 };
5044
5045 static inline struct balance_callback *
__splice_balance_callbacks(struct rq * rq,bool split)5046 __splice_balance_callbacks(struct rq *rq, bool split)
5047 {
5048 struct balance_callback *head = rq->balance_callback;
5049
5050 if (likely(!head))
5051 return NULL;
5052
5053 lockdep_assert_rq_held(rq);
5054 /*
5055 * Must not take balance_push_callback off the list when
5056 * splice_balance_callbacks() and balance_callbacks() are not
5057 * in the same rq->lock section.
5058 *
5059 * In that case it would be possible for __schedule() to interleave
5060 * and observe the list empty.
5061 */
5062 if (split && head == &balance_push_callback)
5063 head = NULL;
5064 else
5065 rq->balance_callback = NULL;
5066
5067 return head;
5068 }
5069
splice_balance_callbacks(struct rq * rq)5070 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5071 {
5072 return __splice_balance_callbacks(rq, true);
5073 }
5074
__balance_callbacks(struct rq * rq)5075 static void __balance_callbacks(struct rq *rq)
5076 {
5077 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
5078 }
5079
balance_callbacks(struct rq * rq,struct balance_callback * head)5080 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5081 {
5082 unsigned long flags;
5083
5084 if (unlikely(head)) {
5085 raw_spin_rq_lock_irqsave(rq, flags);
5086 do_balance_callbacks(rq, head);
5087 raw_spin_rq_unlock_irqrestore(rq, flags);
5088 }
5089 }
5090
5091 #else
5092
__balance_callbacks(struct rq * rq)5093 static inline void __balance_callbacks(struct rq *rq)
5094 {
5095 }
5096
splice_balance_callbacks(struct rq * rq)5097 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
5098 {
5099 return NULL;
5100 }
5101
balance_callbacks(struct rq * rq,struct balance_callback * head)5102 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
5103 {
5104 }
5105
5106 #endif
5107
5108 static inline void
prepare_lock_switch(struct rq * rq,struct task_struct * next,struct rq_flags * rf)5109 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
5110 {
5111 /*
5112 * Since the runqueue lock will be released by the next
5113 * task (which is an invalid locking op but in the case
5114 * of the scheduler it's an obvious special-case), so we
5115 * do an early lockdep release here:
5116 */
5117 rq_unpin_lock(rq, rf);
5118 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
5119 #ifdef CONFIG_DEBUG_SPINLOCK
5120 /* this is a valid case when another task releases the spinlock */
5121 rq_lockp(rq)->owner = next;
5122 #endif
5123 }
5124
finish_lock_switch(struct rq * rq)5125 static inline void finish_lock_switch(struct rq *rq)
5126 {
5127 /*
5128 * If we are tracking spinlock dependencies then we have to
5129 * fix up the runqueue lock - which gets 'carried over' from
5130 * prev into current:
5131 */
5132 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
5133 __balance_callbacks(rq);
5134 raw_spin_rq_unlock_irq(rq);
5135 }
5136
5137 /*
5138 * NOP if the arch has not defined these:
5139 */
5140
5141 #ifndef prepare_arch_switch
5142 # define prepare_arch_switch(next) do { } while (0)
5143 #endif
5144
5145 #ifndef finish_arch_post_lock_switch
5146 # define finish_arch_post_lock_switch() do { } while (0)
5147 #endif
5148
kmap_local_sched_out(void)5149 static inline void kmap_local_sched_out(void)
5150 {
5151 #ifdef CONFIG_KMAP_LOCAL
5152 if (unlikely(current->kmap_ctrl.idx))
5153 __kmap_local_sched_out();
5154 #endif
5155 }
5156
kmap_local_sched_in(void)5157 static inline void kmap_local_sched_in(void)
5158 {
5159 #ifdef CONFIG_KMAP_LOCAL
5160 if (unlikely(current->kmap_ctrl.idx))
5161 __kmap_local_sched_in();
5162 #endif
5163 }
5164
5165 /**
5166 * prepare_task_switch - prepare to switch tasks
5167 * @rq: the runqueue preparing to switch
5168 * @prev: the current task that is being switched out
5169 * @next: the task we are going to switch to.
5170 *
5171 * This is called with the rq lock held and interrupts off. It must
5172 * be paired with a subsequent finish_task_switch after the context
5173 * switch.
5174 *
5175 * prepare_task_switch sets up locking and calls architecture specific
5176 * hooks.
5177 */
5178 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)5179 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5180 struct task_struct *next)
5181 {
5182 kcov_prepare_switch(prev);
5183 sched_info_switch(rq, prev, next);
5184 perf_event_task_sched_out(prev, next);
5185 rseq_preempt(prev);
5186 fire_sched_out_preempt_notifiers(prev, next);
5187 kmap_local_sched_out();
5188 prepare_task(next);
5189 prepare_arch_switch(next);
5190 }
5191
5192 /**
5193 * finish_task_switch - clean up after a task-switch
5194 * @prev: the thread we just switched away from.
5195 *
5196 * finish_task_switch must be called after the context switch, paired
5197 * with a prepare_task_switch call before the context switch.
5198 * finish_task_switch will reconcile locking set up by prepare_task_switch,
5199 * and do any other architecture-specific cleanup actions.
5200 *
5201 * Note that we may have delayed dropping an mm in context_switch(). If
5202 * so, we finish that here outside of the runqueue lock. (Doing it
5203 * with the lock held can cause deadlocks; see schedule() for
5204 * details.)
5205 *
5206 * The context switch have flipped the stack from under us and restored the
5207 * local variables which were saved when this task called schedule() in the
5208 * past. prev == current is still correct but we need to recalculate this_rq
5209 * because prev may have moved to another CPU.
5210 */
finish_task_switch(struct task_struct * prev)5211 static struct rq *finish_task_switch(struct task_struct *prev)
5212 __releases(rq->lock)
5213 {
5214 struct rq *rq = this_rq();
5215 struct mm_struct *mm = rq->prev_mm;
5216 unsigned int prev_state;
5217
5218 /*
5219 * The previous task will have left us with a preempt_count of 2
5220 * because it left us after:
5221 *
5222 * schedule()
5223 * preempt_disable(); // 1
5224 * __schedule()
5225 * raw_spin_lock_irq(&rq->lock) // 2
5226 *
5227 * Also, see FORK_PREEMPT_COUNT.
5228 */
5229 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5230 "corrupted preempt_count: %s/%d/0x%x\n",
5231 current->comm, current->pid, preempt_count()))
5232 preempt_count_set(FORK_PREEMPT_COUNT);
5233
5234 rq->prev_mm = NULL;
5235
5236 /*
5237 * A task struct has one reference for the use as "current".
5238 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5239 * schedule one last time. The schedule call will never return, and
5240 * the scheduled task must drop that reference.
5241 *
5242 * We must observe prev->state before clearing prev->on_cpu (in
5243 * finish_task), otherwise a concurrent wakeup can get prev
5244 * running on another CPU and we could rave with its RUNNING -> DEAD
5245 * transition, resulting in a double drop.
5246 */
5247 prev_state = READ_ONCE(prev->__state);
5248 vtime_task_switch(prev);
5249 perf_event_task_sched_in(prev, current);
5250 finish_task(prev);
5251 tick_nohz_task_switch();
5252 finish_lock_switch(rq);
5253 finish_arch_post_lock_switch();
5254 kcov_finish_switch(current);
5255 /*
5256 * kmap_local_sched_out() is invoked with rq::lock held and
5257 * interrupts disabled. There is no requirement for that, but the
5258 * sched out code does not have an interrupt enabled section.
5259 * Restoring the maps on sched in does not require interrupts being
5260 * disabled either.
5261 */
5262 kmap_local_sched_in();
5263
5264 fire_sched_in_preempt_notifiers(current);
5265 /*
5266 * When switching through a kernel thread, the loop in
5267 * membarrier_{private,global}_expedited() may have observed that
5268 * kernel thread and not issued an IPI. It is therefore possible to
5269 * schedule between user->kernel->user threads without passing though
5270 * switch_mm(). Membarrier requires a barrier after storing to
5271 * rq->curr, before returning to userspace, so provide them here:
5272 *
5273 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5274 * provided by mmdrop_lazy_tlb(),
5275 * - a sync_core for SYNC_CORE.
5276 */
5277 if (mm) {
5278 membarrier_mm_sync_core_before_usermode(mm);
5279 mmdrop_lazy_tlb_sched(mm);
5280 }
5281
5282 if (unlikely(prev_state == TASK_DEAD)) {
5283 if (prev->sched_class->task_dead)
5284 prev->sched_class->task_dead(prev);
5285
5286 /* Task is done with its stack. */
5287 put_task_stack(prev);
5288
5289 put_task_struct_rcu_user(prev);
5290 }
5291
5292 return rq;
5293 }
5294
5295 /**
5296 * schedule_tail - first thing a freshly forked thread must call.
5297 * @prev: the thread we just switched away from.
5298 */
schedule_tail(struct task_struct * prev)5299 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5300 __releases(rq->lock)
5301 {
5302 /*
5303 * New tasks start with FORK_PREEMPT_COUNT, see there and
5304 * finish_task_switch() for details.
5305 *
5306 * finish_task_switch() will drop rq->lock() and lower preempt_count
5307 * and the preempt_enable() will end up enabling preemption (on
5308 * PREEMPT_COUNT kernels).
5309 */
5310
5311 finish_task_switch(prev);
5312 preempt_enable();
5313
5314 if (current->set_child_tid)
5315 put_user(task_pid_vnr(current), current->set_child_tid);
5316
5317 calculate_sigpending();
5318 }
5319
5320 /*
5321 * context_switch - switch to the new MM and the new thread's register state.
5322 */
5323 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)5324 context_switch(struct rq *rq, struct task_struct *prev,
5325 struct task_struct *next, struct rq_flags *rf)
5326 {
5327 prepare_task_switch(rq, prev, next);
5328
5329 /*
5330 * For paravirt, this is coupled with an exit in switch_to to
5331 * combine the page table reload and the switch backend into
5332 * one hypercall.
5333 */
5334 arch_start_context_switch(prev);
5335
5336 /*
5337 * kernel -> kernel lazy + transfer active
5338 * user -> kernel lazy + mmgrab_lazy_tlb() active
5339 *
5340 * kernel -> user switch + mmdrop_lazy_tlb() active
5341 * user -> user switch
5342 *
5343 * switch_mm_cid() needs to be updated if the barriers provided
5344 * by context_switch() are modified.
5345 */
5346 if (!next->mm) { // to kernel
5347 enter_lazy_tlb(prev->active_mm, next);
5348
5349 next->active_mm = prev->active_mm;
5350 if (prev->mm) // from user
5351 mmgrab_lazy_tlb(prev->active_mm);
5352 else
5353 prev->active_mm = NULL;
5354 } else { // to user
5355 membarrier_switch_mm(rq, prev->active_mm, next->mm);
5356 /*
5357 * sys_membarrier() requires an smp_mb() between setting
5358 * rq->curr / membarrier_switch_mm() and returning to userspace.
5359 *
5360 * The below provides this either through switch_mm(), or in
5361 * case 'prev->active_mm == next->mm' through
5362 * finish_task_switch()'s mmdrop().
5363 */
5364 switch_mm_irqs_off(prev->active_mm, next->mm, next);
5365 lru_gen_use_mm(next->mm);
5366
5367 if (!prev->mm) { // from kernel
5368 /* will mmdrop_lazy_tlb() in finish_task_switch(). */
5369 rq->prev_mm = prev->active_mm;
5370 prev->active_mm = NULL;
5371 }
5372 }
5373
5374 /* switch_mm_cid() requires the memory barriers above. */
5375 switch_mm_cid(rq, prev, next);
5376
5377 prepare_lock_switch(rq, next, rf);
5378
5379 /* Here we just switch the register state and the stack. */
5380 switch_to(prev, next, prev);
5381 barrier();
5382
5383 return finish_task_switch(prev);
5384 }
5385
5386 /*
5387 * nr_running and nr_context_switches:
5388 *
5389 * externally visible scheduler statistics: current number of runnable
5390 * threads, total number of context switches performed since bootup.
5391 */
nr_running(void)5392 unsigned int nr_running(void)
5393 {
5394 unsigned int i, sum = 0;
5395
5396 for_each_online_cpu(i)
5397 sum += cpu_rq(i)->nr_running;
5398
5399 return sum;
5400 }
5401
5402 /*
5403 * Check if only the current task is running on the CPU.
5404 *
5405 * Caution: this function does not check that the caller has disabled
5406 * preemption, thus the result might have a time-of-check-to-time-of-use
5407 * race. The caller is responsible to use it correctly, for example:
5408 *
5409 * - from a non-preemptible section (of course)
5410 *
5411 * - from a thread that is bound to a single CPU
5412 *
5413 * - in a loop with very short iterations (e.g. a polling loop)
5414 */
single_task_running(void)5415 bool single_task_running(void)
5416 {
5417 return raw_rq()->nr_running == 1;
5418 }
5419 EXPORT_SYMBOL(single_task_running);
5420
nr_context_switches_cpu(int cpu)5421 unsigned long long nr_context_switches_cpu(int cpu)
5422 {
5423 return cpu_rq(cpu)->nr_switches;
5424 }
5425
nr_context_switches(void)5426 unsigned long long nr_context_switches(void)
5427 {
5428 int i;
5429 unsigned long long sum = 0;
5430
5431 for_each_possible_cpu(i)
5432 sum += cpu_rq(i)->nr_switches;
5433
5434 return sum;
5435 }
5436
5437 /*
5438 * Consumers of these two interfaces, like for example the cpuidle menu
5439 * governor, are using nonsensical data. Preferring shallow idle state selection
5440 * for a CPU that has IO-wait which might not even end up running the task when
5441 * it does become runnable.
5442 */
5443
nr_iowait_cpu(int cpu)5444 unsigned int nr_iowait_cpu(int cpu)
5445 {
5446 return atomic_read(&cpu_rq(cpu)->nr_iowait);
5447 }
5448
5449 /*
5450 * IO-wait accounting, and how it's mostly bollocks (on SMP).
5451 *
5452 * The idea behind IO-wait account is to account the idle time that we could
5453 * have spend running if it were not for IO. That is, if we were to improve the
5454 * storage performance, we'd have a proportional reduction in IO-wait time.
5455 *
5456 * This all works nicely on UP, where, when a task blocks on IO, we account
5457 * idle time as IO-wait, because if the storage were faster, it could've been
5458 * running and we'd not be idle.
5459 *
5460 * This has been extended to SMP, by doing the same for each CPU. This however
5461 * is broken.
5462 *
5463 * Imagine for instance the case where two tasks block on one CPU, only the one
5464 * CPU will have IO-wait accounted, while the other has regular idle. Even
5465 * though, if the storage were faster, both could've ran at the same time,
5466 * utilising both CPUs.
5467 *
5468 * This means, that when looking globally, the current IO-wait accounting on
5469 * SMP is a lower bound, by reason of under accounting.
5470 *
5471 * Worse, since the numbers are provided per CPU, they are sometimes
5472 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5473 * associated with any one particular CPU, it can wake to another CPU than it
5474 * blocked on. This means the per CPU IO-wait number is meaningless.
5475 *
5476 * Task CPU affinities can make all that even more 'interesting'.
5477 */
5478
nr_iowait(void)5479 unsigned int nr_iowait(void)
5480 {
5481 unsigned int i, sum = 0;
5482
5483 for_each_possible_cpu(i)
5484 sum += nr_iowait_cpu(i);
5485
5486 return sum;
5487 }
5488
5489 #ifdef CONFIG_SMP
5490
5491 /*
5492 * sched_exec - execve() is a valuable balancing opportunity, because at
5493 * this point the task has the smallest effective memory and cache footprint.
5494 */
sched_exec(void)5495 void sched_exec(void)
5496 {
5497 struct task_struct *p = current;
5498 struct migration_arg arg;
5499 int dest_cpu;
5500
5501 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) {
5502 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5503 if (dest_cpu == smp_processor_id())
5504 return;
5505
5506 if (unlikely(!cpu_active(dest_cpu)))
5507 return;
5508
5509 arg = (struct migration_arg){ p, dest_cpu };
5510 }
5511 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5512 }
5513
5514 #endif
5515
5516 DEFINE_PER_CPU(struct kernel_stat, kstat);
5517 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5518
5519 EXPORT_PER_CPU_SYMBOL(kstat);
5520 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5521
5522 /*
5523 * The function fair_sched_class.update_curr accesses the struct curr
5524 * and its field curr->exec_start; when called from task_sched_runtime(),
5525 * we observe a high rate of cache misses in practice.
5526 * Prefetching this data results in improved performance.
5527 */
prefetch_curr_exec_start(struct task_struct * p)5528 static inline void prefetch_curr_exec_start(struct task_struct *p)
5529 {
5530 #ifdef CONFIG_FAIR_GROUP_SCHED
5531 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5532 #else
5533 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5534 #endif
5535 prefetch(curr);
5536 prefetch(&curr->exec_start);
5537 }
5538
5539 /*
5540 * Return accounted runtime for the task.
5541 * In case the task is currently running, return the runtime plus current's
5542 * pending runtime that have not been accounted yet.
5543 */
task_sched_runtime(struct task_struct * p)5544 unsigned long long task_sched_runtime(struct task_struct *p)
5545 {
5546 struct rq_flags rf;
5547 struct rq *rq;
5548 u64 ns;
5549
5550 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5551 /*
5552 * 64-bit doesn't need locks to atomically read a 64-bit value.
5553 * So we have a optimization chance when the task's delta_exec is 0.
5554 * Reading ->on_cpu is racy, but this is ok.
5555 *
5556 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5557 * If we race with it entering CPU, unaccounted time is 0. This is
5558 * indistinguishable from the read occurring a few cycles earlier.
5559 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5560 * been accounted, so we're correct here as well.
5561 */
5562 if (!p->on_cpu || !task_on_rq_queued(p))
5563 return p->se.sum_exec_runtime;
5564 #endif
5565
5566 rq = task_rq_lock(p, &rf);
5567 /*
5568 * Must be ->curr _and_ ->on_rq. If dequeued, we would
5569 * project cycles that may never be accounted to this
5570 * thread, breaking clock_gettime().
5571 */
5572 if (task_current(rq, p) && task_on_rq_queued(p)) {
5573 prefetch_curr_exec_start(p);
5574 update_rq_clock(rq);
5575 p->sched_class->update_curr(rq);
5576 }
5577 ns = p->se.sum_exec_runtime;
5578 task_rq_unlock(rq, p, &rf);
5579
5580 return ns;
5581 }
5582
5583 #ifdef CONFIG_SCHED_DEBUG
cpu_resched_latency(struct rq * rq)5584 static u64 cpu_resched_latency(struct rq *rq)
5585 {
5586 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5587 u64 resched_latency, now = rq_clock(rq);
5588 static bool warned_once;
5589
5590 if (sysctl_resched_latency_warn_once && warned_once)
5591 return 0;
5592
5593 if (!need_resched() || !latency_warn_ms)
5594 return 0;
5595
5596 if (system_state == SYSTEM_BOOTING)
5597 return 0;
5598
5599 if (!rq->last_seen_need_resched_ns) {
5600 rq->last_seen_need_resched_ns = now;
5601 rq->ticks_without_resched = 0;
5602 return 0;
5603 }
5604
5605 rq->ticks_without_resched++;
5606 resched_latency = now - rq->last_seen_need_resched_ns;
5607 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5608 return 0;
5609
5610 warned_once = true;
5611
5612 return resched_latency;
5613 }
5614
setup_resched_latency_warn_ms(char * str)5615 static int __init setup_resched_latency_warn_ms(char *str)
5616 {
5617 long val;
5618
5619 if ((kstrtol(str, 0, &val))) {
5620 pr_warn("Unable to set resched_latency_warn_ms\n");
5621 return 1;
5622 }
5623
5624 sysctl_resched_latency_warn_ms = val;
5625 return 1;
5626 }
5627 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5628 #else
cpu_resched_latency(struct rq * rq)5629 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5630 #endif /* CONFIG_SCHED_DEBUG */
5631
5632 /*
5633 * This function gets called by the timer code, with HZ frequency.
5634 * We call it with interrupts disabled.
5635 */
scheduler_tick(void)5636 void scheduler_tick(void)
5637 {
5638 int cpu = smp_processor_id();
5639 struct rq *rq = cpu_rq(cpu);
5640 struct task_struct *curr;
5641 struct rq_flags rf;
5642 unsigned long thermal_pressure;
5643 u64 resched_latency;
5644
5645 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5646 arch_scale_freq_tick();
5647
5648 sched_clock_tick();
5649
5650 rq_lock(rq, &rf);
5651
5652 curr = rq->curr;
5653 psi_account_irqtime(rq, curr, NULL);
5654
5655 update_rq_clock(rq);
5656 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5657 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5658 curr->sched_class->task_tick(rq, curr, 0);
5659 if (sched_feat(LATENCY_WARN))
5660 resched_latency = cpu_resched_latency(rq);
5661 calc_global_load_tick(rq);
5662 sched_core_tick(rq);
5663 task_tick_mm_cid(rq, curr);
5664
5665 rq_unlock(rq, &rf);
5666
5667 if (sched_feat(LATENCY_WARN) && resched_latency)
5668 resched_latency_warn(cpu, resched_latency);
5669
5670 perf_event_task_tick();
5671
5672 if (curr->flags & PF_WQ_WORKER)
5673 wq_worker_tick(curr);
5674
5675 #ifdef CONFIG_SMP
5676 rq->idle_balance = idle_cpu(cpu);
5677 trigger_load_balance(rq);
5678 #endif
5679 }
5680
5681 #ifdef CONFIG_NO_HZ_FULL
5682
5683 struct tick_work {
5684 int cpu;
5685 atomic_t state;
5686 struct delayed_work work;
5687 };
5688 /* Values for ->state, see diagram below. */
5689 #define TICK_SCHED_REMOTE_OFFLINE 0
5690 #define TICK_SCHED_REMOTE_OFFLINING 1
5691 #define TICK_SCHED_REMOTE_RUNNING 2
5692
5693 /*
5694 * State diagram for ->state:
5695 *
5696 *
5697 * TICK_SCHED_REMOTE_OFFLINE
5698 * | ^
5699 * | |
5700 * | | sched_tick_remote()
5701 * | |
5702 * | |
5703 * +--TICK_SCHED_REMOTE_OFFLINING
5704 * | ^
5705 * | |
5706 * sched_tick_start() | | sched_tick_stop()
5707 * | |
5708 * V |
5709 * TICK_SCHED_REMOTE_RUNNING
5710 *
5711 *
5712 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5713 * and sched_tick_start() are happy to leave the state in RUNNING.
5714 */
5715
5716 static struct tick_work __percpu *tick_work_cpu;
5717
sched_tick_remote(struct work_struct * work)5718 static void sched_tick_remote(struct work_struct *work)
5719 {
5720 struct delayed_work *dwork = to_delayed_work(work);
5721 struct tick_work *twork = container_of(dwork, struct tick_work, work);
5722 int cpu = twork->cpu;
5723 struct rq *rq = cpu_rq(cpu);
5724 int os;
5725
5726 /*
5727 * Handle the tick only if it appears the remote CPU is running in full
5728 * dynticks mode. The check is racy by nature, but missing a tick or
5729 * having one too much is no big deal because the scheduler tick updates
5730 * statistics and checks timeslices in a time-independent way, regardless
5731 * of when exactly it is running.
5732 */
5733 if (tick_nohz_tick_stopped_cpu(cpu)) {
5734 guard(rq_lock_irq)(rq);
5735 struct task_struct *curr = rq->curr;
5736
5737 if (cpu_online(cpu)) {
5738 update_rq_clock(rq);
5739
5740 if (!is_idle_task(curr)) {
5741 /*
5742 * Make sure the next tick runs within a
5743 * reasonable amount of time.
5744 */
5745 u64 delta = rq_clock_task(rq) - curr->se.exec_start;
5746 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5747 }
5748 curr->sched_class->task_tick(rq, curr, 0);
5749
5750 calc_load_nohz_remote(rq);
5751 }
5752 }
5753
5754 /*
5755 * Run the remote tick once per second (1Hz). This arbitrary
5756 * frequency is large enough to avoid overload but short enough
5757 * to keep scheduler internal stats reasonably up to date. But
5758 * first update state to reflect hotplug activity if required.
5759 */
5760 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5761 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5762 if (os == TICK_SCHED_REMOTE_RUNNING)
5763 queue_delayed_work(system_unbound_wq, dwork, HZ);
5764 }
5765
sched_tick_start(int cpu)5766 static void sched_tick_start(int cpu)
5767 {
5768 int os;
5769 struct tick_work *twork;
5770
5771 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5772 return;
5773
5774 WARN_ON_ONCE(!tick_work_cpu);
5775
5776 twork = per_cpu_ptr(tick_work_cpu, cpu);
5777 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5778 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5779 if (os == TICK_SCHED_REMOTE_OFFLINE) {
5780 twork->cpu = cpu;
5781 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5782 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5783 }
5784 }
5785
5786 #ifdef CONFIG_HOTPLUG_CPU
sched_tick_stop(int cpu)5787 static void sched_tick_stop(int cpu)
5788 {
5789 struct tick_work *twork;
5790 int os;
5791
5792 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5793 return;
5794
5795 WARN_ON_ONCE(!tick_work_cpu);
5796
5797 twork = per_cpu_ptr(tick_work_cpu, cpu);
5798 /* There cannot be competing actions, but don't rely on stop-machine. */
5799 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5800 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5801 /* Don't cancel, as this would mess up the state machine. */
5802 }
5803 #endif /* CONFIG_HOTPLUG_CPU */
5804
sched_tick_offload_init(void)5805 int __init sched_tick_offload_init(void)
5806 {
5807 tick_work_cpu = alloc_percpu(struct tick_work);
5808 BUG_ON(!tick_work_cpu);
5809 return 0;
5810 }
5811
5812 #else /* !CONFIG_NO_HZ_FULL */
sched_tick_start(int cpu)5813 static inline void sched_tick_start(int cpu) { }
sched_tick_stop(int cpu)5814 static inline void sched_tick_stop(int cpu) { }
5815 #endif
5816
5817 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5818 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5819 /*
5820 * If the value passed in is equal to the current preempt count
5821 * then we just disabled preemption. Start timing the latency.
5822 */
preempt_latency_start(int val)5823 static inline void preempt_latency_start(int val)
5824 {
5825 if (preempt_count() == val) {
5826 unsigned long ip = get_lock_parent_ip();
5827 #ifdef CONFIG_DEBUG_PREEMPT
5828 current->preempt_disable_ip = ip;
5829 #endif
5830 trace_preempt_off(CALLER_ADDR0, ip);
5831 }
5832 }
5833
preempt_count_add(int val)5834 void preempt_count_add(int val)
5835 {
5836 #ifdef CONFIG_DEBUG_PREEMPT
5837 /*
5838 * Underflow?
5839 */
5840 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5841 return;
5842 #endif
5843 __preempt_count_add(val);
5844 #ifdef CONFIG_DEBUG_PREEMPT
5845 /*
5846 * Spinlock count overflowing soon?
5847 */
5848 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5849 PREEMPT_MASK - 10);
5850 #endif
5851 preempt_latency_start(val);
5852 }
5853 EXPORT_SYMBOL(preempt_count_add);
5854 NOKPROBE_SYMBOL(preempt_count_add);
5855
5856 /*
5857 * If the value passed in equals to the current preempt count
5858 * then we just enabled preemption. Stop timing the latency.
5859 */
preempt_latency_stop(int val)5860 static inline void preempt_latency_stop(int val)
5861 {
5862 if (preempt_count() == val)
5863 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5864 }
5865
preempt_count_sub(int val)5866 void preempt_count_sub(int val)
5867 {
5868 #ifdef CONFIG_DEBUG_PREEMPT
5869 /*
5870 * Underflow?
5871 */
5872 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5873 return;
5874 /*
5875 * Is the spinlock portion underflowing?
5876 */
5877 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5878 !(preempt_count() & PREEMPT_MASK)))
5879 return;
5880 #endif
5881
5882 preempt_latency_stop(val);
5883 __preempt_count_sub(val);
5884 }
5885 EXPORT_SYMBOL(preempt_count_sub);
5886 NOKPROBE_SYMBOL(preempt_count_sub);
5887
5888 #else
preempt_latency_start(int val)5889 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)5890 static inline void preempt_latency_stop(int val) { }
5891 #endif
5892
get_preempt_disable_ip(struct task_struct * p)5893 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5894 {
5895 #ifdef CONFIG_DEBUG_PREEMPT
5896 return p->preempt_disable_ip;
5897 #else
5898 return 0;
5899 #endif
5900 }
5901
5902 /*
5903 * Print scheduling while atomic bug:
5904 */
__schedule_bug(struct task_struct * prev)5905 static noinline void __schedule_bug(struct task_struct *prev)
5906 {
5907 /* Save this before calling printk(), since that will clobber it */
5908 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5909
5910 if (oops_in_progress)
5911 return;
5912
5913 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5914 prev->comm, prev->pid, preempt_count());
5915
5916 debug_show_held_locks(prev);
5917 print_modules();
5918 if (irqs_disabled())
5919 print_irqtrace_events(prev);
5920 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5921 && in_atomic_preempt_off()) {
5922 pr_err("Preemption disabled at:");
5923 print_ip_sym(KERN_ERR, preempt_disable_ip);
5924 }
5925 check_panic_on_warn("scheduling while atomic");
5926
5927 dump_stack();
5928 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5929 }
5930
5931 /*
5932 * Various schedule()-time debugging checks and statistics:
5933 */
schedule_debug(struct task_struct * prev,bool preempt)5934 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5935 {
5936 #ifdef CONFIG_SCHED_STACK_END_CHECK
5937 if (task_stack_end_corrupted(prev))
5938 panic("corrupted stack end detected inside scheduler\n");
5939
5940 if (task_scs_end_corrupted(prev))
5941 panic("corrupted shadow stack detected inside scheduler\n");
5942 #endif
5943
5944 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5945 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5946 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5947 prev->comm, prev->pid, prev->non_block_count);
5948 dump_stack();
5949 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5950 }
5951 #endif
5952
5953 if (unlikely(in_atomic_preempt_off())) {
5954 __schedule_bug(prev);
5955 preempt_count_set(PREEMPT_DISABLED);
5956 }
5957 rcu_sleep_check();
5958 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5959
5960 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5961
5962 schedstat_inc(this_rq()->sched_count);
5963 }
5964
put_prev_task_balance(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)5965 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5966 struct rq_flags *rf)
5967 {
5968 #ifdef CONFIG_SMP
5969 const struct sched_class *class;
5970 /*
5971 * We must do the balancing pass before put_prev_task(), such
5972 * that when we release the rq->lock the task is in the same
5973 * state as before we took rq->lock.
5974 *
5975 * We can terminate the balance pass as soon as we know there is
5976 * a runnable task of @class priority or higher.
5977 */
5978 for_class_range(class, prev->sched_class, &idle_sched_class) {
5979 if (class->balance(rq, prev, rf))
5980 break;
5981 }
5982 #endif
5983
5984 put_prev_task(rq, prev);
5985 }
5986
5987 /*
5988 * Pick up the highest-prio task:
5989 */
5990 static inline struct task_struct *
__pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)5991 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5992 {
5993 const struct sched_class *class;
5994 struct task_struct *p;
5995
5996 /*
5997 * Optimization: we know that if all tasks are in the fair class we can
5998 * call that function directly, but only if the @prev task wasn't of a
5999 * higher scheduling class, because otherwise those lose the
6000 * opportunity to pull in more work from other CPUs.
6001 */
6002 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
6003 rq->nr_running == rq->cfs.h_nr_running)) {
6004
6005 p = pick_next_task_fair(rq, prev, rf);
6006 if (unlikely(p == RETRY_TASK))
6007 goto restart;
6008
6009 /* Assume the next prioritized class is idle_sched_class */
6010 if (!p) {
6011 put_prev_task(rq, prev);
6012 p = pick_next_task_idle(rq);
6013 }
6014
6015 return p;
6016 }
6017
6018 restart:
6019 put_prev_task_balance(rq, prev, rf);
6020
6021 for_each_class(class) {
6022 p = class->pick_next_task(rq);
6023 if (p)
6024 return p;
6025 }
6026
6027 BUG(); /* The idle class should always have a runnable task. */
6028 }
6029
6030 #ifdef CONFIG_SCHED_CORE
is_task_rq_idle(struct task_struct * t)6031 static inline bool is_task_rq_idle(struct task_struct *t)
6032 {
6033 return (task_rq(t)->idle == t);
6034 }
6035
cookie_equals(struct task_struct * a,unsigned long cookie)6036 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
6037 {
6038 return is_task_rq_idle(a) || (a->core_cookie == cookie);
6039 }
6040
cookie_match(struct task_struct * a,struct task_struct * b)6041 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
6042 {
6043 if (is_task_rq_idle(a) || is_task_rq_idle(b))
6044 return true;
6045
6046 return a->core_cookie == b->core_cookie;
6047 }
6048
pick_task(struct rq * rq)6049 static inline struct task_struct *pick_task(struct rq *rq)
6050 {
6051 const struct sched_class *class;
6052 struct task_struct *p;
6053
6054 for_each_class(class) {
6055 p = class->pick_task(rq);
6056 if (p)
6057 return p;
6058 }
6059
6060 BUG(); /* The idle class should always have a runnable task. */
6061 }
6062
6063 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
6064
6065 static void queue_core_balance(struct rq *rq);
6066
6067 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6068 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6069 {
6070 struct task_struct *next, *p, *max = NULL;
6071 const struct cpumask *smt_mask;
6072 bool fi_before = false;
6073 bool core_clock_updated = (rq == rq->core);
6074 unsigned long cookie;
6075 int i, cpu, occ = 0;
6076 struct rq *rq_i;
6077 bool need_sync;
6078
6079 if (!sched_core_enabled(rq))
6080 return __pick_next_task(rq, prev, rf);
6081
6082 cpu = cpu_of(rq);
6083
6084 /* Stopper task is switching into idle, no need core-wide selection. */
6085 if (cpu_is_offline(cpu)) {
6086 /*
6087 * Reset core_pick so that we don't enter the fastpath when
6088 * coming online. core_pick would already be migrated to
6089 * another cpu during offline.
6090 */
6091 rq->core_pick = NULL;
6092 return __pick_next_task(rq, prev, rf);
6093 }
6094
6095 /*
6096 * If there were no {en,de}queues since we picked (IOW, the task
6097 * pointers are all still valid), and we haven't scheduled the last
6098 * pick yet, do so now.
6099 *
6100 * rq->core_pick can be NULL if no selection was made for a CPU because
6101 * it was either offline or went offline during a sibling's core-wide
6102 * selection. In this case, do a core-wide selection.
6103 */
6104 if (rq->core->core_pick_seq == rq->core->core_task_seq &&
6105 rq->core->core_pick_seq != rq->core_sched_seq &&
6106 rq->core_pick) {
6107 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
6108
6109 next = rq->core_pick;
6110 if (next != prev) {
6111 put_prev_task(rq, prev);
6112 set_next_task(rq, next);
6113 }
6114
6115 rq->core_pick = NULL;
6116 goto out;
6117 }
6118
6119 put_prev_task_balance(rq, prev, rf);
6120
6121 smt_mask = cpu_smt_mask(cpu);
6122 need_sync = !!rq->core->core_cookie;
6123
6124 /* reset state */
6125 rq->core->core_cookie = 0UL;
6126 if (rq->core->core_forceidle_count) {
6127 if (!core_clock_updated) {
6128 update_rq_clock(rq->core);
6129 core_clock_updated = true;
6130 }
6131 sched_core_account_forceidle(rq);
6132 /* reset after accounting force idle */
6133 rq->core->core_forceidle_start = 0;
6134 rq->core->core_forceidle_count = 0;
6135 rq->core->core_forceidle_occupation = 0;
6136 need_sync = true;
6137 fi_before = true;
6138 }
6139
6140 /*
6141 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
6142 *
6143 * @task_seq guards the task state ({en,de}queues)
6144 * @pick_seq is the @task_seq we did a selection on
6145 * @sched_seq is the @pick_seq we scheduled
6146 *
6147 * However, preemptions can cause multiple picks on the same task set.
6148 * 'Fix' this by also increasing @task_seq for every pick.
6149 */
6150 rq->core->core_task_seq++;
6151
6152 /*
6153 * Optimize for common case where this CPU has no cookies
6154 * and there are no cookied tasks running on siblings.
6155 */
6156 if (!need_sync) {
6157 next = pick_task(rq);
6158 if (!next->core_cookie) {
6159 rq->core_pick = NULL;
6160 /*
6161 * For robustness, update the min_vruntime_fi for
6162 * unconstrained picks as well.
6163 */
6164 WARN_ON_ONCE(fi_before);
6165 task_vruntime_update(rq, next, false);
6166 goto out_set_next;
6167 }
6168 }
6169
6170 /*
6171 * For each thread: do the regular task pick and find the max prio task
6172 * amongst them.
6173 *
6174 * Tie-break prio towards the current CPU
6175 */
6176 for_each_cpu_wrap(i, smt_mask, cpu) {
6177 rq_i = cpu_rq(i);
6178
6179 /*
6180 * Current cpu always has its clock updated on entrance to
6181 * pick_next_task(). If the current cpu is not the core,
6182 * the core may also have been updated above.
6183 */
6184 if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6185 update_rq_clock(rq_i);
6186
6187 p = rq_i->core_pick = pick_task(rq_i);
6188 if (!max || prio_less(max, p, fi_before))
6189 max = p;
6190 }
6191
6192 cookie = rq->core->core_cookie = max->core_cookie;
6193
6194 /*
6195 * For each thread: try and find a runnable task that matches @max or
6196 * force idle.
6197 */
6198 for_each_cpu(i, smt_mask) {
6199 rq_i = cpu_rq(i);
6200 p = rq_i->core_pick;
6201
6202 if (!cookie_equals(p, cookie)) {
6203 p = NULL;
6204 if (cookie)
6205 p = sched_core_find(rq_i, cookie);
6206 if (!p)
6207 p = idle_sched_class.pick_task(rq_i);
6208 }
6209
6210 rq_i->core_pick = p;
6211
6212 if (p == rq_i->idle) {
6213 if (rq_i->nr_running) {
6214 rq->core->core_forceidle_count++;
6215 if (!fi_before)
6216 rq->core->core_forceidle_seq++;
6217 }
6218 } else {
6219 occ++;
6220 }
6221 }
6222
6223 if (schedstat_enabled() && rq->core->core_forceidle_count) {
6224 rq->core->core_forceidle_start = rq_clock(rq->core);
6225 rq->core->core_forceidle_occupation = occ;
6226 }
6227
6228 rq->core->core_pick_seq = rq->core->core_task_seq;
6229 next = rq->core_pick;
6230 rq->core_sched_seq = rq->core->core_pick_seq;
6231
6232 /* Something should have been selected for current CPU */
6233 WARN_ON_ONCE(!next);
6234
6235 /*
6236 * Reschedule siblings
6237 *
6238 * NOTE: L1TF -- at this point we're no longer running the old task and
6239 * sending an IPI (below) ensures the sibling will no longer be running
6240 * their task. This ensures there is no inter-sibling overlap between
6241 * non-matching user state.
6242 */
6243 for_each_cpu(i, smt_mask) {
6244 rq_i = cpu_rq(i);
6245
6246 /*
6247 * An online sibling might have gone offline before a task
6248 * could be picked for it, or it might be offline but later
6249 * happen to come online, but its too late and nothing was
6250 * picked for it. That's Ok - it will pick tasks for itself,
6251 * so ignore it.
6252 */
6253 if (!rq_i->core_pick)
6254 continue;
6255
6256 /*
6257 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6258 * fi_before fi update?
6259 * 0 0 1
6260 * 0 1 1
6261 * 1 0 1
6262 * 1 1 0
6263 */
6264 if (!(fi_before && rq->core->core_forceidle_count))
6265 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6266
6267 rq_i->core_pick->core_occupation = occ;
6268
6269 if (i == cpu) {
6270 rq_i->core_pick = NULL;
6271 continue;
6272 }
6273
6274 /* Did we break L1TF mitigation requirements? */
6275 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6276
6277 if (rq_i->curr == rq_i->core_pick) {
6278 rq_i->core_pick = NULL;
6279 continue;
6280 }
6281
6282 resched_curr(rq_i);
6283 }
6284
6285 out_set_next:
6286 set_next_task(rq, next);
6287 out:
6288 if (rq->core->core_forceidle_count && next == rq->idle)
6289 queue_core_balance(rq);
6290
6291 return next;
6292 }
6293
try_steal_cookie(int this,int that)6294 static bool try_steal_cookie(int this, int that)
6295 {
6296 struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6297 struct task_struct *p;
6298 unsigned long cookie;
6299 bool success = false;
6300
6301 guard(irq)();
6302 guard(double_rq_lock)(dst, src);
6303
6304 cookie = dst->core->core_cookie;
6305 if (!cookie)
6306 return false;
6307
6308 if (dst->curr != dst->idle)
6309 return false;
6310
6311 p = sched_core_find(src, cookie);
6312 if (!p)
6313 return false;
6314
6315 do {
6316 if (p == src->core_pick || p == src->curr)
6317 goto next;
6318
6319 if (!is_cpu_allowed(p, this))
6320 goto next;
6321
6322 if (p->core_occupation > dst->idle->core_occupation)
6323 goto next;
6324 /*
6325 * sched_core_find() and sched_core_next() will ensure
6326 * that task @p is not throttled now, we also need to
6327 * check whether the runqueue of the destination CPU is
6328 * being throttled.
6329 */
6330 if (sched_task_is_throttled(p, this))
6331 goto next;
6332
6333 deactivate_task(src, p, 0);
6334 set_task_cpu(p, this);
6335 activate_task(dst, p, 0);
6336
6337 resched_curr(dst);
6338
6339 success = true;
6340 break;
6341
6342 next:
6343 p = sched_core_next(p, cookie);
6344 } while (p);
6345
6346 return success;
6347 }
6348
steal_cookie_task(int cpu,struct sched_domain * sd)6349 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6350 {
6351 int i;
6352
6353 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) {
6354 if (i == cpu)
6355 continue;
6356
6357 if (need_resched())
6358 break;
6359
6360 if (try_steal_cookie(cpu, i))
6361 return true;
6362 }
6363
6364 return false;
6365 }
6366
sched_core_balance(struct rq * rq)6367 static void sched_core_balance(struct rq *rq)
6368 {
6369 struct sched_domain *sd;
6370 int cpu = cpu_of(rq);
6371
6372 preempt_disable();
6373 rcu_read_lock();
6374 raw_spin_rq_unlock_irq(rq);
6375 for_each_domain(cpu, sd) {
6376 if (need_resched())
6377 break;
6378
6379 if (steal_cookie_task(cpu, sd))
6380 break;
6381 }
6382 raw_spin_rq_lock_irq(rq);
6383 rcu_read_unlock();
6384 preempt_enable();
6385 }
6386
6387 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6388
queue_core_balance(struct rq * rq)6389 static void queue_core_balance(struct rq *rq)
6390 {
6391 if (!sched_core_enabled(rq))
6392 return;
6393
6394 if (!rq->core->core_cookie)
6395 return;
6396
6397 if (!rq->nr_running) /* not forced idle */
6398 return;
6399
6400 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6401 }
6402
6403 DEFINE_LOCK_GUARD_1(core_lock, int,
6404 sched_core_lock(*_T->lock, &_T->flags),
6405 sched_core_unlock(*_T->lock, &_T->flags),
6406 unsigned long flags)
6407
sched_core_cpu_starting(unsigned int cpu)6408 static void sched_core_cpu_starting(unsigned int cpu)
6409 {
6410 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6411 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6412 int t;
6413
6414 guard(core_lock)(&cpu);
6415
6416 WARN_ON_ONCE(rq->core != rq);
6417
6418 /* if we're the first, we'll be our own leader */
6419 if (cpumask_weight(smt_mask) == 1)
6420 return;
6421
6422 /* find the leader */
6423 for_each_cpu(t, smt_mask) {
6424 if (t == cpu)
6425 continue;
6426 rq = cpu_rq(t);
6427 if (rq->core == rq) {
6428 core_rq = rq;
6429 break;
6430 }
6431 }
6432
6433 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6434 return;
6435
6436 /* install and validate core_rq */
6437 for_each_cpu(t, smt_mask) {
6438 rq = cpu_rq(t);
6439
6440 if (t == cpu)
6441 rq->core = core_rq;
6442
6443 WARN_ON_ONCE(rq->core != core_rq);
6444 }
6445 }
6446
sched_core_cpu_deactivate(unsigned int cpu)6447 static void sched_core_cpu_deactivate(unsigned int cpu)
6448 {
6449 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6450 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6451 int t;
6452
6453 guard(core_lock)(&cpu);
6454
6455 /* if we're the last man standing, nothing to do */
6456 if (cpumask_weight(smt_mask) == 1) {
6457 WARN_ON_ONCE(rq->core != rq);
6458 return;
6459 }
6460
6461 /* if we're not the leader, nothing to do */
6462 if (rq->core != rq)
6463 return;
6464
6465 /* find a new leader */
6466 for_each_cpu(t, smt_mask) {
6467 if (t == cpu)
6468 continue;
6469 core_rq = cpu_rq(t);
6470 break;
6471 }
6472
6473 if (WARN_ON_ONCE(!core_rq)) /* impossible */
6474 return;
6475
6476 /* copy the shared state to the new leader */
6477 core_rq->core_task_seq = rq->core_task_seq;
6478 core_rq->core_pick_seq = rq->core_pick_seq;
6479 core_rq->core_cookie = rq->core_cookie;
6480 core_rq->core_forceidle_count = rq->core_forceidle_count;
6481 core_rq->core_forceidle_seq = rq->core_forceidle_seq;
6482 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6483
6484 /*
6485 * Accounting edge for forced idle is handled in pick_next_task().
6486 * Don't need another one here, since the hotplug thread shouldn't
6487 * have a cookie.
6488 */
6489 core_rq->core_forceidle_start = 0;
6490
6491 /* install new leader */
6492 for_each_cpu(t, smt_mask) {
6493 rq = cpu_rq(t);
6494 rq->core = core_rq;
6495 }
6496 }
6497
sched_core_cpu_dying(unsigned int cpu)6498 static inline void sched_core_cpu_dying(unsigned int cpu)
6499 {
6500 struct rq *rq = cpu_rq(cpu);
6501
6502 if (rq->core != rq)
6503 rq->core = rq;
6504 }
6505
6506 #else /* !CONFIG_SCHED_CORE */
6507
sched_core_cpu_starting(unsigned int cpu)6508 static inline void sched_core_cpu_starting(unsigned int cpu) {}
sched_core_cpu_deactivate(unsigned int cpu)6509 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
sched_core_cpu_dying(unsigned int cpu)6510 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6511
6512 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6513 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6514 {
6515 return __pick_next_task(rq, prev, rf);
6516 }
6517
6518 #endif /* CONFIG_SCHED_CORE */
6519
6520 /*
6521 * Constants for the sched_mode argument of __schedule().
6522 *
6523 * The mode argument allows RT enabled kernels to differentiate a
6524 * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6525 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6526 * optimize the AND operation out and just check for zero.
6527 */
6528 #define SM_NONE 0x0
6529 #define SM_PREEMPT 0x1
6530 #define SM_RTLOCK_WAIT 0x2
6531
6532 #ifndef CONFIG_PREEMPT_RT
6533 # define SM_MASK_PREEMPT (~0U)
6534 #else
6535 # define SM_MASK_PREEMPT SM_PREEMPT
6536 #endif
6537
6538 /*
6539 * __schedule() is the main scheduler function.
6540 *
6541 * The main means of driving the scheduler and thus entering this function are:
6542 *
6543 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6544 *
6545 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6546 * paths. For example, see arch/x86/entry_64.S.
6547 *
6548 * To drive preemption between tasks, the scheduler sets the flag in timer
6549 * interrupt handler scheduler_tick().
6550 *
6551 * 3. Wakeups don't really cause entry into schedule(). They add a
6552 * task to the run-queue and that's it.
6553 *
6554 * Now, if the new task added to the run-queue preempts the current
6555 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6556 * called on the nearest possible occasion:
6557 *
6558 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6559 *
6560 * - in syscall or exception context, at the next outmost
6561 * preempt_enable(). (this might be as soon as the wake_up()'s
6562 * spin_unlock()!)
6563 *
6564 * - in IRQ context, return from interrupt-handler to
6565 * preemptible context
6566 *
6567 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6568 * then at the next:
6569 *
6570 * - cond_resched() call
6571 * - explicit schedule() call
6572 * - return from syscall or exception to user-space
6573 * - return from interrupt-handler to user-space
6574 *
6575 * WARNING: must be called with preemption disabled!
6576 */
__schedule(unsigned int sched_mode)6577 static void __sched notrace __schedule(unsigned int sched_mode)
6578 {
6579 struct task_struct *prev, *next;
6580 unsigned long *switch_count;
6581 unsigned long prev_state;
6582 struct rq_flags rf;
6583 struct rq *rq;
6584 int cpu;
6585
6586 cpu = smp_processor_id();
6587 rq = cpu_rq(cpu);
6588 prev = rq->curr;
6589
6590 schedule_debug(prev, !!sched_mode);
6591
6592 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6593 hrtick_clear(rq);
6594
6595 local_irq_disable();
6596 rcu_note_context_switch(!!sched_mode);
6597
6598 /*
6599 * Make sure that signal_pending_state()->signal_pending() below
6600 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6601 * done by the caller to avoid the race with signal_wake_up():
6602 *
6603 * __set_current_state(@state) signal_wake_up()
6604 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
6605 * wake_up_state(p, state)
6606 * LOCK rq->lock LOCK p->pi_state
6607 * smp_mb__after_spinlock() smp_mb__after_spinlock()
6608 * if (signal_pending_state()) if (p->state & @state)
6609 *
6610 * Also, the membarrier system call requires a full memory barrier
6611 * after coming from user-space, before storing to rq->curr.
6612 */
6613 rq_lock(rq, &rf);
6614 smp_mb__after_spinlock();
6615
6616 /* Promote REQ to ACT */
6617 rq->clock_update_flags <<= 1;
6618 update_rq_clock(rq);
6619 rq->clock_update_flags = RQCF_UPDATED;
6620
6621 switch_count = &prev->nivcsw;
6622
6623 /*
6624 * We must load prev->state once (task_struct::state is volatile), such
6625 * that we form a control dependency vs deactivate_task() below.
6626 */
6627 prev_state = READ_ONCE(prev->__state);
6628 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6629 if (signal_pending_state(prev_state, prev)) {
6630 WRITE_ONCE(prev->__state, TASK_RUNNING);
6631 } else {
6632 prev->sched_contributes_to_load =
6633 (prev_state & TASK_UNINTERRUPTIBLE) &&
6634 !(prev_state & TASK_NOLOAD) &&
6635 !(prev_state & TASK_FROZEN);
6636
6637 if (prev->sched_contributes_to_load)
6638 rq->nr_uninterruptible++;
6639
6640 /*
6641 * __schedule() ttwu()
6642 * prev_state = prev->state; if (p->on_rq && ...)
6643 * if (prev_state) goto out;
6644 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
6645 * p->state = TASK_WAKING
6646 *
6647 * Where __schedule() and ttwu() have matching control dependencies.
6648 *
6649 * After this, schedule() must not care about p->state any more.
6650 */
6651 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6652
6653 if (prev->in_iowait) {
6654 atomic_inc(&rq->nr_iowait);
6655 delayacct_blkio_start();
6656 }
6657 }
6658 switch_count = &prev->nvcsw;
6659 }
6660
6661 next = pick_next_task(rq, prev, &rf);
6662 clear_tsk_need_resched(prev);
6663 clear_preempt_need_resched();
6664 #ifdef CONFIG_SCHED_DEBUG
6665 rq->last_seen_need_resched_ns = 0;
6666 #endif
6667
6668 if (likely(prev != next)) {
6669 rq->nr_switches++;
6670 /*
6671 * RCU users of rcu_dereference(rq->curr) may not see
6672 * changes to task_struct made by pick_next_task().
6673 */
6674 RCU_INIT_POINTER(rq->curr, next);
6675 /*
6676 * The membarrier system call requires each architecture
6677 * to have a full memory barrier after updating
6678 * rq->curr, before returning to user-space.
6679 *
6680 * Here are the schemes providing that barrier on the
6681 * various architectures:
6682 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC,
6683 * RISC-V. switch_mm() relies on membarrier_arch_switch_mm()
6684 * on PowerPC and on RISC-V.
6685 * - finish_lock_switch() for weakly-ordered
6686 * architectures where spin_unlock is a full barrier,
6687 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6688 * is a RELEASE barrier),
6689 */
6690 ++*switch_count;
6691
6692 migrate_disable_switch(rq, prev);
6693 psi_account_irqtime(rq, prev, next);
6694 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6695
6696 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6697
6698 /* Also unlocks the rq: */
6699 rq = context_switch(rq, prev, next, &rf);
6700 } else {
6701 rq_unpin_lock(rq, &rf);
6702 __balance_callbacks(rq);
6703 raw_spin_rq_unlock_irq(rq);
6704 }
6705 }
6706
do_task_dead(void)6707 void __noreturn do_task_dead(void)
6708 {
6709 /* Causes final put_task_struct in finish_task_switch(): */
6710 set_special_state(TASK_DEAD);
6711
6712 /* Tell freezer to ignore us: */
6713 current->flags |= PF_NOFREEZE;
6714
6715 __schedule(SM_NONE);
6716 BUG();
6717
6718 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6719 for (;;)
6720 cpu_relax();
6721 }
6722
sched_submit_work(struct task_struct * tsk)6723 static inline void sched_submit_work(struct task_struct *tsk)
6724 {
6725 unsigned int task_flags;
6726
6727 if (task_is_running(tsk))
6728 return;
6729
6730 task_flags = tsk->flags;
6731 /*
6732 * If a worker goes to sleep, notify and ask workqueue whether it
6733 * wants to wake up a task to maintain concurrency.
6734 */
6735 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6736 if (task_flags & PF_WQ_WORKER)
6737 wq_worker_sleeping(tsk);
6738 else
6739 io_wq_worker_sleeping(tsk);
6740 }
6741
6742 /*
6743 * spinlock and rwlock must not flush block requests. This will
6744 * deadlock if the callback attempts to acquire a lock which is
6745 * already acquired.
6746 */
6747 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6748
6749 /*
6750 * If we are going to sleep and we have plugged IO queued,
6751 * make sure to submit it to avoid deadlocks.
6752 */
6753 blk_flush_plug(tsk->plug, true);
6754 }
6755
sched_update_worker(struct task_struct * tsk)6756 static void sched_update_worker(struct task_struct *tsk)
6757 {
6758 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6759 if (tsk->flags & PF_WQ_WORKER)
6760 wq_worker_running(tsk);
6761 else
6762 io_wq_worker_running(tsk);
6763 }
6764 }
6765
schedule(void)6766 asmlinkage __visible void __sched schedule(void)
6767 {
6768 struct task_struct *tsk = current;
6769
6770 sched_submit_work(tsk);
6771 do {
6772 preempt_disable();
6773 __schedule(SM_NONE);
6774 sched_preempt_enable_no_resched();
6775 } while (need_resched());
6776 sched_update_worker(tsk);
6777 }
6778 EXPORT_SYMBOL(schedule);
6779
6780 /*
6781 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6782 * state (have scheduled out non-voluntarily) by making sure that all
6783 * tasks have either left the run queue or have gone into user space.
6784 * As idle tasks do not do either, they must not ever be preempted
6785 * (schedule out non-voluntarily).
6786 *
6787 * schedule_idle() is similar to schedule_preempt_disable() except that it
6788 * never enables preemption because it does not call sched_submit_work().
6789 */
schedule_idle(void)6790 void __sched schedule_idle(void)
6791 {
6792 /*
6793 * As this skips calling sched_submit_work(), which the idle task does
6794 * regardless because that function is a nop when the task is in a
6795 * TASK_RUNNING state, make sure this isn't used someplace that the
6796 * current task can be in any other state. Note, idle is always in the
6797 * TASK_RUNNING state.
6798 */
6799 WARN_ON_ONCE(current->__state);
6800 do {
6801 __schedule(SM_NONE);
6802 } while (need_resched());
6803 }
6804
6805 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
schedule_user(void)6806 asmlinkage __visible void __sched schedule_user(void)
6807 {
6808 /*
6809 * If we come here after a random call to set_need_resched(),
6810 * or we have been woken up remotely but the IPI has not yet arrived,
6811 * we haven't yet exited the RCU idle mode. Do it here manually until
6812 * we find a better solution.
6813 *
6814 * NB: There are buggy callers of this function. Ideally we
6815 * should warn if prev_state != CONTEXT_USER, but that will trigger
6816 * too frequently to make sense yet.
6817 */
6818 enum ctx_state prev_state = exception_enter();
6819 schedule();
6820 exception_exit(prev_state);
6821 }
6822 #endif
6823
6824 /**
6825 * schedule_preempt_disabled - called with preemption disabled
6826 *
6827 * Returns with preemption disabled. Note: preempt_count must be 1
6828 */
schedule_preempt_disabled(void)6829 void __sched schedule_preempt_disabled(void)
6830 {
6831 sched_preempt_enable_no_resched();
6832 schedule();
6833 preempt_disable();
6834 }
6835
6836 #ifdef CONFIG_PREEMPT_RT
schedule_rtlock(void)6837 void __sched notrace schedule_rtlock(void)
6838 {
6839 do {
6840 preempt_disable();
6841 __schedule(SM_RTLOCK_WAIT);
6842 sched_preempt_enable_no_resched();
6843 } while (need_resched());
6844 }
6845 NOKPROBE_SYMBOL(schedule_rtlock);
6846 #endif
6847
preempt_schedule_common(void)6848 static void __sched notrace preempt_schedule_common(void)
6849 {
6850 do {
6851 /*
6852 * Because the function tracer can trace preempt_count_sub()
6853 * and it also uses preempt_enable/disable_notrace(), if
6854 * NEED_RESCHED is set, the preempt_enable_notrace() called
6855 * by the function tracer will call this function again and
6856 * cause infinite recursion.
6857 *
6858 * Preemption must be disabled here before the function
6859 * tracer can trace. Break up preempt_disable() into two
6860 * calls. One to disable preemption without fear of being
6861 * traced. The other to still record the preemption latency,
6862 * which can also be traced by the function tracer.
6863 */
6864 preempt_disable_notrace();
6865 preempt_latency_start(1);
6866 __schedule(SM_PREEMPT);
6867 preempt_latency_stop(1);
6868 preempt_enable_no_resched_notrace();
6869
6870 /*
6871 * Check again in case we missed a preemption opportunity
6872 * between schedule and now.
6873 */
6874 } while (need_resched());
6875 }
6876
6877 #ifdef CONFIG_PREEMPTION
6878 /*
6879 * This is the entry point to schedule() from in-kernel preemption
6880 * off of preempt_enable.
6881 */
preempt_schedule(void)6882 asmlinkage __visible void __sched notrace preempt_schedule(void)
6883 {
6884 /*
6885 * If there is a non-zero preempt_count or interrupts are disabled,
6886 * we do not want to preempt the current task. Just return..
6887 */
6888 if (likely(!preemptible()))
6889 return;
6890 preempt_schedule_common();
6891 }
6892 NOKPROBE_SYMBOL(preempt_schedule);
6893 EXPORT_SYMBOL(preempt_schedule);
6894
6895 #ifdef CONFIG_PREEMPT_DYNAMIC
6896 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6897 #ifndef preempt_schedule_dynamic_enabled
6898 #define preempt_schedule_dynamic_enabled preempt_schedule
6899 #define preempt_schedule_dynamic_disabled NULL
6900 #endif
6901 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6902 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6903 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6904 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
dynamic_preempt_schedule(void)6905 void __sched notrace dynamic_preempt_schedule(void)
6906 {
6907 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6908 return;
6909 preempt_schedule();
6910 }
6911 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6912 EXPORT_SYMBOL(dynamic_preempt_schedule);
6913 #endif
6914 #endif
6915
6916 /**
6917 * preempt_schedule_notrace - preempt_schedule called by tracing
6918 *
6919 * The tracing infrastructure uses preempt_enable_notrace to prevent
6920 * recursion and tracing preempt enabling caused by the tracing
6921 * infrastructure itself. But as tracing can happen in areas coming
6922 * from userspace or just about to enter userspace, a preempt enable
6923 * can occur before user_exit() is called. This will cause the scheduler
6924 * to be called when the system is still in usermode.
6925 *
6926 * To prevent this, the preempt_enable_notrace will use this function
6927 * instead of preempt_schedule() to exit user context if needed before
6928 * calling the scheduler.
6929 */
preempt_schedule_notrace(void)6930 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6931 {
6932 enum ctx_state prev_ctx;
6933
6934 if (likely(!preemptible()))
6935 return;
6936
6937 do {
6938 /*
6939 * Because the function tracer can trace preempt_count_sub()
6940 * and it also uses preempt_enable/disable_notrace(), if
6941 * NEED_RESCHED is set, the preempt_enable_notrace() called
6942 * by the function tracer will call this function again and
6943 * cause infinite recursion.
6944 *
6945 * Preemption must be disabled here before the function
6946 * tracer can trace. Break up preempt_disable() into two
6947 * calls. One to disable preemption without fear of being
6948 * traced. The other to still record the preemption latency,
6949 * which can also be traced by the function tracer.
6950 */
6951 preempt_disable_notrace();
6952 preempt_latency_start(1);
6953 /*
6954 * Needs preempt disabled in case user_exit() is traced
6955 * and the tracer calls preempt_enable_notrace() causing
6956 * an infinite recursion.
6957 */
6958 prev_ctx = exception_enter();
6959 __schedule(SM_PREEMPT);
6960 exception_exit(prev_ctx);
6961
6962 preempt_latency_stop(1);
6963 preempt_enable_no_resched_notrace();
6964 } while (need_resched());
6965 }
6966 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6967
6968 #ifdef CONFIG_PREEMPT_DYNAMIC
6969 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6970 #ifndef preempt_schedule_notrace_dynamic_enabled
6971 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace
6972 #define preempt_schedule_notrace_dynamic_disabled NULL
6973 #endif
6974 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6975 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6976 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6977 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
dynamic_preempt_schedule_notrace(void)6978 void __sched notrace dynamic_preempt_schedule_notrace(void)
6979 {
6980 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6981 return;
6982 preempt_schedule_notrace();
6983 }
6984 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6985 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6986 #endif
6987 #endif
6988
6989 #endif /* CONFIG_PREEMPTION */
6990
6991 /*
6992 * This is the entry point to schedule() from kernel preemption
6993 * off of irq context.
6994 * Note, that this is called and return with irqs disabled. This will
6995 * protect us against recursive calling from irq.
6996 */
preempt_schedule_irq(void)6997 asmlinkage __visible void __sched preempt_schedule_irq(void)
6998 {
6999 enum ctx_state prev_state;
7000
7001 /* Catch callers which need to be fixed */
7002 BUG_ON(preempt_count() || !irqs_disabled());
7003
7004 prev_state = exception_enter();
7005
7006 do {
7007 preempt_disable();
7008 local_irq_enable();
7009 __schedule(SM_PREEMPT);
7010 local_irq_disable();
7011 sched_preempt_enable_no_resched();
7012 } while (need_resched());
7013
7014 exception_exit(prev_state);
7015 }
7016
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)7017 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
7018 void *key)
7019 {
7020 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU));
7021 return try_to_wake_up(curr->private, mode, wake_flags);
7022 }
7023 EXPORT_SYMBOL(default_wake_function);
7024
__setscheduler_prio(struct task_struct * p,int prio)7025 static void __setscheduler_prio(struct task_struct *p, int prio)
7026 {
7027 if (dl_prio(prio))
7028 p->sched_class = &dl_sched_class;
7029 else if (rt_prio(prio))
7030 p->sched_class = &rt_sched_class;
7031 else
7032 p->sched_class = &fair_sched_class;
7033
7034 p->prio = prio;
7035 }
7036
7037 #ifdef CONFIG_RT_MUTEXES
7038
__rt_effective_prio(struct task_struct * pi_task,int prio)7039 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
7040 {
7041 if (pi_task)
7042 prio = min(prio, pi_task->prio);
7043
7044 return prio;
7045 }
7046
rt_effective_prio(struct task_struct * p,int prio)7047 static inline int rt_effective_prio(struct task_struct *p, int prio)
7048 {
7049 struct task_struct *pi_task = rt_mutex_get_top_task(p);
7050
7051 return __rt_effective_prio(pi_task, prio);
7052 }
7053
7054 /*
7055 * rt_mutex_setprio - set the current priority of a task
7056 * @p: task to boost
7057 * @pi_task: donor task
7058 *
7059 * This function changes the 'effective' priority of a task. It does
7060 * not touch ->normal_prio like __setscheduler().
7061 *
7062 * Used by the rt_mutex code to implement priority inheritance
7063 * logic. Call site only calls if the priority of the task changed.
7064 */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)7065 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
7066 {
7067 int prio, oldprio, queued, running, queue_flag =
7068 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7069 const struct sched_class *prev_class;
7070 struct rq_flags rf;
7071 struct rq *rq;
7072
7073 /* XXX used to be waiter->prio, not waiter->task->prio */
7074 prio = __rt_effective_prio(pi_task, p->normal_prio);
7075
7076 /*
7077 * If nothing changed; bail early.
7078 */
7079 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
7080 return;
7081
7082 rq = __task_rq_lock(p, &rf);
7083 update_rq_clock(rq);
7084 /*
7085 * Set under pi_lock && rq->lock, such that the value can be used under
7086 * either lock.
7087 *
7088 * Note that there is loads of tricky to make this pointer cache work
7089 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
7090 * ensure a task is de-boosted (pi_task is set to NULL) before the
7091 * task is allowed to run again (and can exit). This ensures the pointer
7092 * points to a blocked task -- which guarantees the task is present.
7093 */
7094 p->pi_top_task = pi_task;
7095
7096 /*
7097 * For FIFO/RR we only need to set prio, if that matches we're done.
7098 */
7099 if (prio == p->prio && !dl_prio(prio))
7100 goto out_unlock;
7101
7102 /*
7103 * Idle task boosting is a nono in general. There is one
7104 * exception, when PREEMPT_RT and NOHZ is active:
7105 *
7106 * The idle task calls get_next_timer_interrupt() and holds
7107 * the timer wheel base->lock on the CPU and another CPU wants
7108 * to access the timer (probably to cancel it). We can safely
7109 * ignore the boosting request, as the idle CPU runs this code
7110 * with interrupts disabled and will complete the lock
7111 * protected section without being interrupted. So there is no
7112 * real need to boost.
7113 */
7114 if (unlikely(p == rq->idle)) {
7115 WARN_ON(p != rq->curr);
7116 WARN_ON(p->pi_blocked_on);
7117 goto out_unlock;
7118 }
7119
7120 trace_sched_pi_setprio(p, pi_task);
7121 oldprio = p->prio;
7122
7123 if (oldprio == prio)
7124 queue_flag &= ~DEQUEUE_MOVE;
7125
7126 prev_class = p->sched_class;
7127 queued = task_on_rq_queued(p);
7128 running = task_current(rq, p);
7129 if (queued)
7130 dequeue_task(rq, p, queue_flag);
7131 if (running)
7132 put_prev_task(rq, p);
7133
7134 /*
7135 * Boosting condition are:
7136 * 1. -rt task is running and holds mutex A
7137 * --> -dl task blocks on mutex A
7138 *
7139 * 2. -dl task is running and holds mutex A
7140 * --> -dl task blocks on mutex A and could preempt the
7141 * running task
7142 */
7143 if (dl_prio(prio)) {
7144 if (!dl_prio(p->normal_prio) ||
7145 (pi_task && dl_prio(pi_task->prio) &&
7146 dl_entity_preempt(&pi_task->dl, &p->dl))) {
7147 p->dl.pi_se = pi_task->dl.pi_se;
7148 queue_flag |= ENQUEUE_REPLENISH;
7149 } else {
7150 p->dl.pi_se = &p->dl;
7151 }
7152 } else if (rt_prio(prio)) {
7153 if (dl_prio(oldprio))
7154 p->dl.pi_se = &p->dl;
7155 if (oldprio < prio)
7156 queue_flag |= ENQUEUE_HEAD;
7157 } else {
7158 if (dl_prio(oldprio))
7159 p->dl.pi_se = &p->dl;
7160 if (rt_prio(oldprio))
7161 p->rt.timeout = 0;
7162 }
7163
7164 __setscheduler_prio(p, prio);
7165
7166 if (queued)
7167 enqueue_task(rq, p, queue_flag);
7168 if (running)
7169 set_next_task(rq, p);
7170
7171 check_class_changed(rq, p, prev_class, oldprio);
7172 out_unlock:
7173 /* Avoid rq from going away on us: */
7174 preempt_disable();
7175
7176 rq_unpin_lock(rq, &rf);
7177 __balance_callbacks(rq);
7178 raw_spin_rq_unlock(rq);
7179
7180 preempt_enable();
7181 }
7182 #else
rt_effective_prio(struct task_struct * p,int prio)7183 static inline int rt_effective_prio(struct task_struct *p, int prio)
7184 {
7185 return prio;
7186 }
7187 #endif
7188
set_user_nice(struct task_struct * p,long nice)7189 void set_user_nice(struct task_struct *p, long nice)
7190 {
7191 bool queued, running;
7192 int old_prio;
7193 struct rq_flags rf;
7194 struct rq *rq;
7195
7196 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
7197 return;
7198 /*
7199 * We have to be careful, if called from sys_setpriority(),
7200 * the task might be in the middle of scheduling on another CPU.
7201 */
7202 rq = task_rq_lock(p, &rf);
7203 update_rq_clock(rq);
7204
7205 /*
7206 * The RT priorities are set via sched_setscheduler(), but we still
7207 * allow the 'normal' nice value to be set - but as expected
7208 * it won't have any effect on scheduling until the task is
7209 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7210 */
7211 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7212 p->static_prio = NICE_TO_PRIO(nice);
7213 goto out_unlock;
7214 }
7215 queued = task_on_rq_queued(p);
7216 running = task_current(rq, p);
7217 if (queued)
7218 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7219 if (running)
7220 put_prev_task(rq, p);
7221
7222 p->static_prio = NICE_TO_PRIO(nice);
7223 set_load_weight(p, true);
7224 old_prio = p->prio;
7225 p->prio = effective_prio(p);
7226
7227 if (queued)
7228 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7229 if (running)
7230 set_next_task(rq, p);
7231
7232 /*
7233 * If the task increased its priority or is running and
7234 * lowered its priority, then reschedule its CPU:
7235 */
7236 p->sched_class->prio_changed(rq, p, old_prio);
7237
7238 out_unlock:
7239 task_rq_unlock(rq, p, &rf);
7240 }
7241 EXPORT_SYMBOL(set_user_nice);
7242
7243 /*
7244 * is_nice_reduction - check if nice value is an actual reduction
7245 *
7246 * Similar to can_nice() but does not perform a capability check.
7247 *
7248 * @p: task
7249 * @nice: nice value
7250 */
is_nice_reduction(const struct task_struct * p,const int nice)7251 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7252 {
7253 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7254 int nice_rlim = nice_to_rlimit(nice);
7255
7256 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7257 }
7258
7259 /*
7260 * can_nice - check if a task can reduce its nice value
7261 * @p: task
7262 * @nice: nice value
7263 */
can_nice(const struct task_struct * p,const int nice)7264 int can_nice(const struct task_struct *p, const int nice)
7265 {
7266 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7267 }
7268
7269 #ifdef __ARCH_WANT_SYS_NICE
7270
7271 /*
7272 * sys_nice - change the priority of the current process.
7273 * @increment: priority increment
7274 *
7275 * sys_setpriority is a more generic, but much slower function that
7276 * does similar things.
7277 */
SYSCALL_DEFINE1(nice,int,increment)7278 SYSCALL_DEFINE1(nice, int, increment)
7279 {
7280 long nice, retval;
7281
7282 /*
7283 * Setpriority might change our priority at the same moment.
7284 * We don't have to worry. Conceptually one call occurs first
7285 * and we have a single winner.
7286 */
7287 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7288 nice = task_nice(current) + increment;
7289
7290 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7291 if (increment < 0 && !can_nice(current, nice))
7292 return -EPERM;
7293
7294 retval = security_task_setnice(current, nice);
7295 if (retval)
7296 return retval;
7297
7298 set_user_nice(current, nice);
7299 return 0;
7300 }
7301
7302 #endif
7303
7304 /**
7305 * task_prio - return the priority value of a given task.
7306 * @p: the task in question.
7307 *
7308 * Return: The priority value as seen by users in /proc.
7309 *
7310 * sched policy return value kernel prio user prio/nice
7311 *
7312 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
7313 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
7314 * deadline -101 -1 0
7315 */
task_prio(const struct task_struct * p)7316 int task_prio(const struct task_struct *p)
7317 {
7318 return p->prio - MAX_RT_PRIO;
7319 }
7320
7321 /**
7322 * idle_cpu - is a given CPU idle currently?
7323 * @cpu: the processor in question.
7324 *
7325 * Return: 1 if the CPU is currently idle. 0 otherwise.
7326 */
idle_cpu(int cpu)7327 int idle_cpu(int cpu)
7328 {
7329 struct rq *rq = cpu_rq(cpu);
7330
7331 if (rq->curr != rq->idle)
7332 return 0;
7333
7334 if (rq->nr_running)
7335 return 0;
7336
7337 #ifdef CONFIG_SMP
7338 if (rq->ttwu_pending)
7339 return 0;
7340 #endif
7341
7342 return 1;
7343 }
7344
7345 /**
7346 * available_idle_cpu - is a given CPU idle for enqueuing work.
7347 * @cpu: the CPU in question.
7348 *
7349 * Return: 1 if the CPU is currently idle. 0 otherwise.
7350 */
available_idle_cpu(int cpu)7351 int available_idle_cpu(int cpu)
7352 {
7353 if (!idle_cpu(cpu))
7354 return 0;
7355
7356 if (vcpu_is_preempted(cpu))
7357 return 0;
7358
7359 return 1;
7360 }
7361
7362 /**
7363 * idle_task - return the idle task for a given CPU.
7364 * @cpu: the processor in question.
7365 *
7366 * Return: The idle task for the CPU @cpu.
7367 */
idle_task(int cpu)7368 struct task_struct *idle_task(int cpu)
7369 {
7370 return cpu_rq(cpu)->idle;
7371 }
7372
7373 #ifdef CONFIG_SCHED_CORE
sched_core_idle_cpu(int cpu)7374 int sched_core_idle_cpu(int cpu)
7375 {
7376 struct rq *rq = cpu_rq(cpu);
7377
7378 if (sched_core_enabled(rq) && rq->curr == rq->idle)
7379 return 1;
7380
7381 return idle_cpu(cpu);
7382 }
7383
7384 #endif
7385
7386 #ifdef CONFIG_SMP
7387 /*
7388 * This function computes an effective utilization for the given CPU, to be
7389 * used for frequency selection given the linear relation: f = u * f_max.
7390 *
7391 * The scheduler tracks the following metrics:
7392 *
7393 * cpu_util_{cfs,rt,dl,irq}()
7394 * cpu_bw_dl()
7395 *
7396 * Where the cfs,rt and dl util numbers are tracked with the same metric and
7397 * synchronized windows and are thus directly comparable.
7398 *
7399 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7400 * which excludes things like IRQ and steal-time. These latter are then accrued
7401 * in the irq utilization.
7402 *
7403 * The DL bandwidth number otoh is not a measured metric but a value computed
7404 * based on the task model parameters and gives the minimal utilization
7405 * required to meet deadlines.
7406 */
effective_cpu_util(int cpu,unsigned long util_cfs,enum cpu_util_type type,struct task_struct * p)7407 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7408 enum cpu_util_type type,
7409 struct task_struct *p)
7410 {
7411 unsigned long dl_util, util, irq, max;
7412 struct rq *rq = cpu_rq(cpu);
7413
7414 max = arch_scale_cpu_capacity(cpu);
7415
7416 if (!uclamp_is_used() &&
7417 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7418 return max;
7419 }
7420
7421 /*
7422 * Early check to see if IRQ/steal time saturates the CPU, can be
7423 * because of inaccuracies in how we track these -- see
7424 * update_irq_load_avg().
7425 */
7426 irq = cpu_util_irq(rq);
7427 if (unlikely(irq >= max))
7428 return max;
7429
7430 /*
7431 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7432 * CFS tasks and we use the same metric to track the effective
7433 * utilization (PELT windows are synchronized) we can directly add them
7434 * to obtain the CPU's actual utilization.
7435 *
7436 * CFS and RT utilization can be boosted or capped, depending on
7437 * utilization clamp constraints requested by currently RUNNABLE
7438 * tasks.
7439 * When there are no CFS RUNNABLE tasks, clamps are released and
7440 * frequency will be gracefully reduced with the utilization decay.
7441 */
7442 util = util_cfs + cpu_util_rt(rq);
7443 if (type == FREQUENCY_UTIL)
7444 util = uclamp_rq_util_with(rq, util, p);
7445
7446 dl_util = cpu_util_dl(rq);
7447
7448 /*
7449 * For frequency selection we do not make cpu_util_dl() a permanent part
7450 * of this sum because we want to use cpu_bw_dl() later on, but we need
7451 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7452 * that we select f_max when there is no idle time.
7453 *
7454 * NOTE: numerical errors or stop class might cause us to not quite hit
7455 * saturation when we should -- something for later.
7456 */
7457 if (util + dl_util >= max)
7458 return max;
7459
7460 /*
7461 * OTOH, for energy computation we need the estimated running time, so
7462 * include util_dl and ignore dl_bw.
7463 */
7464 if (type == ENERGY_UTIL)
7465 util += dl_util;
7466
7467 /*
7468 * There is still idle time; further improve the number by using the
7469 * irq metric. Because IRQ/steal time is hidden from the task clock we
7470 * need to scale the task numbers:
7471 *
7472 * max - irq
7473 * U' = irq + --------- * U
7474 * max
7475 */
7476 util = scale_irq_capacity(util, irq, max);
7477 util += irq;
7478
7479 /*
7480 * Bandwidth required by DEADLINE must always be granted while, for
7481 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7482 * to gracefully reduce the frequency when no tasks show up for longer
7483 * periods of time.
7484 *
7485 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7486 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7487 * an interface. So, we only do the latter for now.
7488 */
7489 if (type == FREQUENCY_UTIL)
7490 util += cpu_bw_dl(rq);
7491
7492 return min(max, util);
7493 }
7494
sched_cpu_util(int cpu)7495 unsigned long sched_cpu_util(int cpu)
7496 {
7497 return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
7498 }
7499 #endif /* CONFIG_SMP */
7500
7501 /**
7502 * find_process_by_pid - find a process with a matching PID value.
7503 * @pid: the pid in question.
7504 *
7505 * The task of @pid, if found. %NULL otherwise.
7506 */
find_process_by_pid(pid_t pid)7507 static struct task_struct *find_process_by_pid(pid_t pid)
7508 {
7509 return pid ? find_task_by_vpid(pid) : current;
7510 }
7511
7512 /*
7513 * sched_setparam() passes in -1 for its policy, to let the functions
7514 * it calls know not to change it.
7515 */
7516 #define SETPARAM_POLICY -1
7517
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)7518 static void __setscheduler_params(struct task_struct *p,
7519 const struct sched_attr *attr)
7520 {
7521 int policy = attr->sched_policy;
7522
7523 if (policy == SETPARAM_POLICY)
7524 policy = p->policy;
7525
7526 p->policy = policy;
7527
7528 if (dl_policy(policy))
7529 __setparam_dl(p, attr);
7530 else if (fair_policy(policy))
7531 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7532
7533 /*
7534 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7535 * !rt_policy. Always setting this ensures that things like
7536 * getparam()/getattr() don't report silly values for !rt tasks.
7537 */
7538 p->rt_priority = attr->sched_priority;
7539 p->normal_prio = normal_prio(p);
7540 set_load_weight(p, true);
7541 }
7542
7543 /*
7544 * Check the target process has a UID that matches the current process's:
7545 */
check_same_owner(struct task_struct * p)7546 static bool check_same_owner(struct task_struct *p)
7547 {
7548 const struct cred *cred = current_cred(), *pcred;
7549 bool match;
7550
7551 rcu_read_lock();
7552 pcred = __task_cred(p);
7553 match = (uid_eq(cred->euid, pcred->euid) ||
7554 uid_eq(cred->euid, pcred->uid));
7555 rcu_read_unlock();
7556 return match;
7557 }
7558
7559 /*
7560 * Allow unprivileged RT tasks to decrease priority.
7561 * Only issue a capable test if needed and only once to avoid an audit
7562 * event on permitted non-privileged operations:
7563 */
user_check_sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,int policy,int reset_on_fork)7564 static int user_check_sched_setscheduler(struct task_struct *p,
7565 const struct sched_attr *attr,
7566 int policy, int reset_on_fork)
7567 {
7568 if (fair_policy(policy)) {
7569 if (attr->sched_nice < task_nice(p) &&
7570 !is_nice_reduction(p, attr->sched_nice))
7571 goto req_priv;
7572 }
7573
7574 if (rt_policy(policy)) {
7575 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7576
7577 /* Can't set/change the rt policy: */
7578 if (policy != p->policy && !rlim_rtprio)
7579 goto req_priv;
7580
7581 /* Can't increase priority: */
7582 if (attr->sched_priority > p->rt_priority &&
7583 attr->sched_priority > rlim_rtprio)
7584 goto req_priv;
7585 }
7586
7587 /*
7588 * Can't set/change SCHED_DEADLINE policy at all for now
7589 * (safest behavior); in the future we would like to allow
7590 * unprivileged DL tasks to increase their relative deadline
7591 * or reduce their runtime (both ways reducing utilization)
7592 */
7593 if (dl_policy(policy))
7594 goto req_priv;
7595
7596 /*
7597 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7598 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7599 */
7600 if (task_has_idle_policy(p) && !idle_policy(policy)) {
7601 if (!is_nice_reduction(p, task_nice(p)))
7602 goto req_priv;
7603 }
7604
7605 /* Can't change other user's priorities: */
7606 if (!check_same_owner(p))
7607 goto req_priv;
7608
7609 /* Normal users shall not reset the sched_reset_on_fork flag: */
7610 if (p->sched_reset_on_fork && !reset_on_fork)
7611 goto req_priv;
7612
7613 return 0;
7614
7615 req_priv:
7616 if (!capable(CAP_SYS_NICE))
7617 return -EPERM;
7618
7619 return 0;
7620 }
7621
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)7622 static int __sched_setscheduler(struct task_struct *p,
7623 const struct sched_attr *attr,
7624 bool user, bool pi)
7625 {
7626 int oldpolicy = -1, policy = attr->sched_policy;
7627 int retval, oldprio, newprio, queued, running;
7628 const struct sched_class *prev_class;
7629 struct balance_callback *head;
7630 struct rq_flags rf;
7631 int reset_on_fork;
7632 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7633 struct rq *rq;
7634 bool cpuset_locked = false;
7635
7636 /* The pi code expects interrupts enabled */
7637 BUG_ON(pi && in_interrupt());
7638 recheck:
7639 /* Double check policy once rq lock held: */
7640 if (policy < 0) {
7641 reset_on_fork = p->sched_reset_on_fork;
7642 policy = oldpolicy = p->policy;
7643 } else {
7644 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7645
7646 if (!valid_policy(policy))
7647 return -EINVAL;
7648 }
7649
7650 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7651 return -EINVAL;
7652
7653 /*
7654 * Valid priorities for SCHED_FIFO and SCHED_RR are
7655 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7656 * SCHED_BATCH and SCHED_IDLE is 0.
7657 */
7658 if (attr->sched_priority > MAX_RT_PRIO-1)
7659 return -EINVAL;
7660 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7661 (rt_policy(policy) != (attr->sched_priority != 0)))
7662 return -EINVAL;
7663
7664 if (user) {
7665 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7666 if (retval)
7667 return retval;
7668
7669 if (attr->sched_flags & SCHED_FLAG_SUGOV)
7670 return -EINVAL;
7671
7672 retval = security_task_setscheduler(p);
7673 if (retval)
7674 return retval;
7675 }
7676
7677 /* Update task specific "requested" clamps */
7678 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7679 retval = uclamp_validate(p, attr);
7680 if (retval)
7681 return retval;
7682 }
7683
7684 /*
7685 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
7686 * information.
7687 */
7688 if (dl_policy(policy) || dl_policy(p->policy)) {
7689 cpuset_locked = true;
7690 cpuset_lock();
7691 }
7692
7693 /*
7694 * Make sure no PI-waiters arrive (or leave) while we are
7695 * changing the priority of the task:
7696 *
7697 * To be able to change p->policy safely, the appropriate
7698 * runqueue lock must be held.
7699 */
7700 rq = task_rq_lock(p, &rf);
7701 update_rq_clock(rq);
7702
7703 /*
7704 * Changing the policy of the stop threads its a very bad idea:
7705 */
7706 if (p == rq->stop) {
7707 retval = -EINVAL;
7708 goto unlock;
7709 }
7710
7711 /*
7712 * If not changing anything there's no need to proceed further,
7713 * but store a possible modification of reset_on_fork.
7714 */
7715 if (unlikely(policy == p->policy)) {
7716 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7717 goto change;
7718 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7719 goto change;
7720 if (dl_policy(policy) && dl_param_changed(p, attr))
7721 goto change;
7722 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7723 goto change;
7724
7725 p->sched_reset_on_fork = reset_on_fork;
7726 retval = 0;
7727 goto unlock;
7728 }
7729 change:
7730
7731 if (user) {
7732 #ifdef CONFIG_RT_GROUP_SCHED
7733 /*
7734 * Do not allow realtime tasks into groups that have no runtime
7735 * assigned.
7736 */
7737 if (rt_bandwidth_enabled() && rt_policy(policy) &&
7738 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7739 !task_group_is_autogroup(task_group(p))) {
7740 retval = -EPERM;
7741 goto unlock;
7742 }
7743 #endif
7744 #ifdef CONFIG_SMP
7745 if (dl_bandwidth_enabled() && dl_policy(policy) &&
7746 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7747 cpumask_t *span = rq->rd->span;
7748
7749 /*
7750 * Don't allow tasks with an affinity mask smaller than
7751 * the entire root_domain to become SCHED_DEADLINE. We
7752 * will also fail if there's no bandwidth available.
7753 */
7754 if (!cpumask_subset(span, p->cpus_ptr) ||
7755 rq->rd->dl_bw.bw == 0) {
7756 retval = -EPERM;
7757 goto unlock;
7758 }
7759 }
7760 #endif
7761 }
7762
7763 /* Re-check policy now with rq lock held: */
7764 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7765 policy = oldpolicy = -1;
7766 task_rq_unlock(rq, p, &rf);
7767 if (cpuset_locked)
7768 cpuset_unlock();
7769 goto recheck;
7770 }
7771
7772 /*
7773 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7774 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7775 * is available.
7776 */
7777 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7778 retval = -EBUSY;
7779 goto unlock;
7780 }
7781
7782 p->sched_reset_on_fork = reset_on_fork;
7783 oldprio = p->prio;
7784
7785 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7786 if (pi) {
7787 /*
7788 * Take priority boosted tasks into account. If the new
7789 * effective priority is unchanged, we just store the new
7790 * normal parameters and do not touch the scheduler class and
7791 * the runqueue. This will be done when the task deboost
7792 * itself.
7793 */
7794 newprio = rt_effective_prio(p, newprio);
7795 if (newprio == oldprio)
7796 queue_flags &= ~DEQUEUE_MOVE;
7797 }
7798
7799 queued = task_on_rq_queued(p);
7800 running = task_current(rq, p);
7801 if (queued)
7802 dequeue_task(rq, p, queue_flags);
7803 if (running)
7804 put_prev_task(rq, p);
7805
7806 prev_class = p->sched_class;
7807
7808 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7809 __setscheduler_params(p, attr);
7810 __setscheduler_prio(p, newprio);
7811 }
7812 __setscheduler_uclamp(p, attr);
7813
7814 if (queued) {
7815 /*
7816 * We enqueue to tail when the priority of a task is
7817 * increased (user space view).
7818 */
7819 if (oldprio < p->prio)
7820 queue_flags |= ENQUEUE_HEAD;
7821
7822 enqueue_task(rq, p, queue_flags);
7823 }
7824 if (running)
7825 set_next_task(rq, p);
7826
7827 check_class_changed(rq, p, prev_class, oldprio);
7828
7829 /* Avoid rq from going away on us: */
7830 preempt_disable();
7831 head = splice_balance_callbacks(rq);
7832 task_rq_unlock(rq, p, &rf);
7833
7834 if (pi) {
7835 if (cpuset_locked)
7836 cpuset_unlock();
7837 rt_mutex_adjust_pi(p);
7838 }
7839
7840 /* Run balance callbacks after we've adjusted the PI chain: */
7841 balance_callbacks(rq, head);
7842 preempt_enable();
7843
7844 return 0;
7845
7846 unlock:
7847 task_rq_unlock(rq, p, &rf);
7848 if (cpuset_locked)
7849 cpuset_unlock();
7850 return retval;
7851 }
7852
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)7853 static int _sched_setscheduler(struct task_struct *p, int policy,
7854 const struct sched_param *param, bool check)
7855 {
7856 struct sched_attr attr = {
7857 .sched_policy = policy,
7858 .sched_priority = param->sched_priority,
7859 .sched_nice = PRIO_TO_NICE(p->static_prio),
7860 };
7861
7862 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7863 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7864 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7865 policy &= ~SCHED_RESET_ON_FORK;
7866 attr.sched_policy = policy;
7867 }
7868
7869 return __sched_setscheduler(p, &attr, check, true);
7870 }
7871 /**
7872 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7873 * @p: the task in question.
7874 * @policy: new policy.
7875 * @param: structure containing the new RT priority.
7876 *
7877 * Use sched_set_fifo(), read its comment.
7878 *
7879 * Return: 0 on success. An error code otherwise.
7880 *
7881 * NOTE that the task may be already dead.
7882 */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)7883 int sched_setscheduler(struct task_struct *p, int policy,
7884 const struct sched_param *param)
7885 {
7886 return _sched_setscheduler(p, policy, param, true);
7887 }
7888
sched_setattr(struct task_struct * p,const struct sched_attr * attr)7889 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7890 {
7891 return __sched_setscheduler(p, attr, true, true);
7892 }
7893
sched_setattr_nocheck(struct task_struct * p,const struct sched_attr * attr)7894 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7895 {
7896 return __sched_setscheduler(p, attr, false, true);
7897 }
7898 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7899
7900 /**
7901 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7902 * @p: the task in question.
7903 * @policy: new policy.
7904 * @param: structure containing the new RT priority.
7905 *
7906 * Just like sched_setscheduler, only don't bother checking if the
7907 * current context has permission. For example, this is needed in
7908 * stop_machine(): we create temporary high priority worker threads,
7909 * but our caller might not have that capability.
7910 *
7911 * Return: 0 on success. An error code otherwise.
7912 */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)7913 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7914 const struct sched_param *param)
7915 {
7916 return _sched_setscheduler(p, policy, param, false);
7917 }
7918
7919 /*
7920 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7921 * incapable of resource management, which is the one thing an OS really should
7922 * be doing.
7923 *
7924 * This is of course the reason it is limited to privileged users only.
7925 *
7926 * Worse still; it is fundamentally impossible to compose static priority
7927 * workloads. You cannot take two correctly working static prio workloads
7928 * and smash them together and still expect them to work.
7929 *
7930 * For this reason 'all' FIFO tasks the kernel creates are basically at:
7931 *
7932 * MAX_RT_PRIO / 2
7933 *
7934 * The administrator _MUST_ configure the system, the kernel simply doesn't
7935 * know enough information to make a sensible choice.
7936 */
sched_set_fifo(struct task_struct * p)7937 void sched_set_fifo(struct task_struct *p)
7938 {
7939 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7940 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7941 }
7942 EXPORT_SYMBOL_GPL(sched_set_fifo);
7943
7944 /*
7945 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7946 */
sched_set_fifo_low(struct task_struct * p)7947 void sched_set_fifo_low(struct task_struct *p)
7948 {
7949 struct sched_param sp = { .sched_priority = 1 };
7950 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7951 }
7952 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7953
sched_set_normal(struct task_struct * p,int nice)7954 void sched_set_normal(struct task_struct *p, int nice)
7955 {
7956 struct sched_attr attr = {
7957 .sched_policy = SCHED_NORMAL,
7958 .sched_nice = nice,
7959 };
7960 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7961 }
7962 EXPORT_SYMBOL_GPL(sched_set_normal);
7963
7964 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)7965 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7966 {
7967 struct sched_param lparam;
7968 struct task_struct *p;
7969 int retval;
7970
7971 if (!param || pid < 0)
7972 return -EINVAL;
7973 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7974 return -EFAULT;
7975
7976 rcu_read_lock();
7977 retval = -ESRCH;
7978 p = find_process_by_pid(pid);
7979 if (likely(p))
7980 get_task_struct(p);
7981 rcu_read_unlock();
7982
7983 if (likely(p)) {
7984 retval = sched_setscheduler(p, policy, &lparam);
7985 put_task_struct(p);
7986 }
7987
7988 return retval;
7989 }
7990
7991 /*
7992 * Mimics kernel/events/core.c perf_copy_attr().
7993 */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)7994 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7995 {
7996 u32 size;
7997 int ret;
7998
7999 /* Zero the full structure, so that a short copy will be nice: */
8000 memset(attr, 0, sizeof(*attr));
8001
8002 ret = get_user(size, &uattr->size);
8003 if (ret)
8004 return ret;
8005
8006 /* ABI compatibility quirk: */
8007 if (!size)
8008 size = SCHED_ATTR_SIZE_VER0;
8009 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
8010 goto err_size;
8011
8012 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
8013 if (ret) {
8014 if (ret == -E2BIG)
8015 goto err_size;
8016 return ret;
8017 }
8018
8019 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
8020 size < SCHED_ATTR_SIZE_VER1)
8021 return -EINVAL;
8022
8023 /*
8024 * XXX: Do we want to be lenient like existing syscalls; or do we want
8025 * to be strict and return an error on out-of-bounds values?
8026 */
8027 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
8028
8029 return 0;
8030
8031 err_size:
8032 put_user(sizeof(*attr), &uattr->size);
8033 return -E2BIG;
8034 }
8035
get_params(struct task_struct * p,struct sched_attr * attr)8036 static void get_params(struct task_struct *p, struct sched_attr *attr)
8037 {
8038 if (task_has_dl_policy(p))
8039 __getparam_dl(p, attr);
8040 else if (task_has_rt_policy(p))
8041 attr->sched_priority = p->rt_priority;
8042 else
8043 attr->sched_nice = task_nice(p);
8044 }
8045
8046 /**
8047 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
8048 * @pid: the pid in question.
8049 * @policy: new policy.
8050 * @param: structure containing the new RT priority.
8051 *
8052 * Return: 0 on success. An error code otherwise.
8053 */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)8054 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
8055 {
8056 if (policy < 0)
8057 return -EINVAL;
8058
8059 return do_sched_setscheduler(pid, policy, param);
8060 }
8061
8062 /**
8063 * sys_sched_setparam - set/change the RT priority of a thread
8064 * @pid: the pid in question.
8065 * @param: structure containing the new RT priority.
8066 *
8067 * Return: 0 on success. An error code otherwise.
8068 */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)8069 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
8070 {
8071 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
8072 }
8073
8074 /**
8075 * sys_sched_setattr - same as above, but with extended sched_attr
8076 * @pid: the pid in question.
8077 * @uattr: structure containing the extended parameters.
8078 * @flags: for future extension.
8079 */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)8080 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
8081 unsigned int, flags)
8082 {
8083 struct sched_attr attr;
8084 struct task_struct *p;
8085 int retval;
8086
8087 if (!uattr || pid < 0 || flags)
8088 return -EINVAL;
8089
8090 retval = sched_copy_attr(uattr, &attr);
8091 if (retval)
8092 return retval;
8093
8094 if ((int)attr.sched_policy < 0)
8095 return -EINVAL;
8096 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
8097 attr.sched_policy = SETPARAM_POLICY;
8098
8099 rcu_read_lock();
8100 retval = -ESRCH;
8101 p = find_process_by_pid(pid);
8102 if (likely(p))
8103 get_task_struct(p);
8104 rcu_read_unlock();
8105
8106 if (likely(p)) {
8107 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
8108 get_params(p, &attr);
8109 retval = sched_setattr(p, &attr);
8110 put_task_struct(p);
8111 }
8112
8113 return retval;
8114 }
8115
8116 /**
8117 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
8118 * @pid: the pid in question.
8119 *
8120 * Return: On success, the policy of the thread. Otherwise, a negative error
8121 * code.
8122 */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)8123 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
8124 {
8125 struct task_struct *p;
8126 int retval;
8127
8128 if (pid < 0)
8129 return -EINVAL;
8130
8131 retval = -ESRCH;
8132 rcu_read_lock();
8133 p = find_process_by_pid(pid);
8134 if (p) {
8135 retval = security_task_getscheduler(p);
8136 if (!retval)
8137 retval = p->policy
8138 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
8139 }
8140 rcu_read_unlock();
8141 return retval;
8142 }
8143
8144 /**
8145 * sys_sched_getparam - get the RT priority of a thread
8146 * @pid: the pid in question.
8147 * @param: structure containing the RT priority.
8148 *
8149 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
8150 * code.
8151 */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)8152 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
8153 {
8154 struct sched_param lp = { .sched_priority = 0 };
8155 struct task_struct *p;
8156 int retval;
8157
8158 if (!param || pid < 0)
8159 return -EINVAL;
8160
8161 rcu_read_lock();
8162 p = find_process_by_pid(pid);
8163 retval = -ESRCH;
8164 if (!p)
8165 goto out_unlock;
8166
8167 retval = security_task_getscheduler(p);
8168 if (retval)
8169 goto out_unlock;
8170
8171 if (task_has_rt_policy(p))
8172 lp.sched_priority = p->rt_priority;
8173 rcu_read_unlock();
8174
8175 /*
8176 * This one might sleep, we cannot do it with a spinlock held ...
8177 */
8178 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
8179
8180 return retval;
8181
8182 out_unlock:
8183 rcu_read_unlock();
8184 return retval;
8185 }
8186
8187 /*
8188 * Copy the kernel size attribute structure (which might be larger
8189 * than what user-space knows about) to user-space.
8190 *
8191 * Note that all cases are valid: user-space buffer can be larger or
8192 * smaller than the kernel-space buffer. The usual case is that both
8193 * have the same size.
8194 */
8195 static int
sched_attr_copy_to_user(struct sched_attr __user * uattr,struct sched_attr * kattr,unsigned int usize)8196 sched_attr_copy_to_user(struct sched_attr __user *uattr,
8197 struct sched_attr *kattr,
8198 unsigned int usize)
8199 {
8200 unsigned int ksize = sizeof(*kattr);
8201
8202 if (!access_ok(uattr, usize))
8203 return -EFAULT;
8204
8205 /*
8206 * sched_getattr() ABI forwards and backwards compatibility:
8207 *
8208 * If usize == ksize then we just copy everything to user-space and all is good.
8209 *
8210 * If usize < ksize then we only copy as much as user-space has space for,
8211 * this keeps ABI compatibility as well. We skip the rest.
8212 *
8213 * If usize > ksize then user-space is using a newer version of the ABI,
8214 * which part the kernel doesn't know about. Just ignore it - tooling can
8215 * detect the kernel's knowledge of attributes from the attr->size value
8216 * which is set to ksize in this case.
8217 */
8218 kattr->size = min(usize, ksize);
8219
8220 if (copy_to_user(uattr, kattr, kattr->size))
8221 return -EFAULT;
8222
8223 return 0;
8224 }
8225
8226 /**
8227 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8228 * @pid: the pid in question.
8229 * @uattr: structure containing the extended parameters.
8230 * @usize: sizeof(attr) for fwd/bwd comp.
8231 * @flags: for future extension.
8232 */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,usize,unsigned int,flags)8233 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8234 unsigned int, usize, unsigned int, flags)
8235 {
8236 struct sched_attr kattr = { };
8237 struct task_struct *p;
8238 int retval;
8239
8240 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8241 usize < SCHED_ATTR_SIZE_VER0 || flags)
8242 return -EINVAL;
8243
8244 rcu_read_lock();
8245 p = find_process_by_pid(pid);
8246 retval = -ESRCH;
8247 if (!p)
8248 goto out_unlock;
8249
8250 retval = security_task_getscheduler(p);
8251 if (retval)
8252 goto out_unlock;
8253
8254 kattr.sched_policy = p->policy;
8255 if (p->sched_reset_on_fork)
8256 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8257 get_params(p, &kattr);
8258 kattr.sched_flags &= SCHED_FLAG_ALL;
8259
8260 #ifdef CONFIG_UCLAMP_TASK
8261 /*
8262 * This could race with another potential updater, but this is fine
8263 * because it'll correctly read the old or the new value. We don't need
8264 * to guarantee who wins the race as long as it doesn't return garbage.
8265 */
8266 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8267 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8268 #endif
8269
8270 rcu_read_unlock();
8271
8272 return sched_attr_copy_to_user(uattr, &kattr, usize);
8273
8274 out_unlock:
8275 rcu_read_unlock();
8276 return retval;
8277 }
8278
8279 #ifdef CONFIG_SMP
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)8280 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8281 {
8282 int ret = 0;
8283
8284 /*
8285 * If the task isn't a deadline task or admission control is
8286 * disabled then we don't care about affinity changes.
8287 */
8288 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8289 return 0;
8290
8291 /*
8292 * Since bandwidth control happens on root_domain basis,
8293 * if admission test is enabled, we only admit -deadline
8294 * tasks allowed to run on all the CPUs in the task's
8295 * root_domain.
8296 */
8297 rcu_read_lock();
8298 if (!cpumask_subset(task_rq(p)->rd->span, mask))
8299 ret = -EBUSY;
8300 rcu_read_unlock();
8301 return ret;
8302 }
8303 #endif
8304
8305 static int
__sched_setaffinity(struct task_struct * p,struct affinity_context * ctx)8306 __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx)
8307 {
8308 int retval;
8309 cpumask_var_t cpus_allowed, new_mask;
8310
8311 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8312 return -ENOMEM;
8313
8314 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8315 retval = -ENOMEM;
8316 goto out_free_cpus_allowed;
8317 }
8318
8319 cpuset_cpus_allowed(p, cpus_allowed);
8320 cpumask_and(new_mask, ctx->new_mask, cpus_allowed);
8321
8322 ctx->new_mask = new_mask;
8323 ctx->flags |= SCA_CHECK;
8324
8325 retval = dl_task_check_affinity(p, new_mask);
8326 if (retval)
8327 goto out_free_new_mask;
8328
8329 retval = __set_cpus_allowed_ptr(p, ctx);
8330 if (retval)
8331 goto out_free_new_mask;
8332
8333 cpuset_cpus_allowed(p, cpus_allowed);
8334 if (!cpumask_subset(new_mask, cpus_allowed)) {
8335 /*
8336 * We must have raced with a concurrent cpuset update.
8337 * Just reset the cpumask to the cpuset's cpus_allowed.
8338 */
8339 cpumask_copy(new_mask, cpus_allowed);
8340
8341 /*
8342 * If SCA_USER is set, a 2nd call to __set_cpus_allowed_ptr()
8343 * will restore the previous user_cpus_ptr value.
8344 *
8345 * In the unlikely event a previous user_cpus_ptr exists,
8346 * we need to further restrict the mask to what is allowed
8347 * by that old user_cpus_ptr.
8348 */
8349 if (unlikely((ctx->flags & SCA_USER) && ctx->user_mask)) {
8350 bool empty = !cpumask_and(new_mask, new_mask,
8351 ctx->user_mask);
8352
8353 if (WARN_ON_ONCE(empty))
8354 cpumask_copy(new_mask, cpus_allowed);
8355 }
8356 __set_cpus_allowed_ptr(p, ctx);
8357 retval = -EINVAL;
8358 }
8359
8360 out_free_new_mask:
8361 free_cpumask_var(new_mask);
8362 out_free_cpus_allowed:
8363 free_cpumask_var(cpus_allowed);
8364 return retval;
8365 }
8366
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)8367 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8368 {
8369 struct affinity_context ac;
8370 struct cpumask *user_mask;
8371 struct task_struct *p;
8372 int retval;
8373
8374 rcu_read_lock();
8375
8376 p = find_process_by_pid(pid);
8377 if (!p) {
8378 rcu_read_unlock();
8379 return -ESRCH;
8380 }
8381
8382 /* Prevent p going away */
8383 get_task_struct(p);
8384 rcu_read_unlock();
8385
8386 if (p->flags & PF_NO_SETAFFINITY) {
8387 retval = -EINVAL;
8388 goto out_put_task;
8389 }
8390
8391 if (!check_same_owner(p)) {
8392 rcu_read_lock();
8393 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8394 rcu_read_unlock();
8395 retval = -EPERM;
8396 goto out_put_task;
8397 }
8398 rcu_read_unlock();
8399 }
8400
8401 retval = security_task_setscheduler(p);
8402 if (retval)
8403 goto out_put_task;
8404
8405 /*
8406 * With non-SMP configs, user_cpus_ptr/user_mask isn't used and
8407 * alloc_user_cpus_ptr() returns NULL.
8408 */
8409 user_mask = alloc_user_cpus_ptr(NUMA_NO_NODE);
8410 if (user_mask) {
8411 cpumask_copy(user_mask, in_mask);
8412 } else if (IS_ENABLED(CONFIG_SMP)) {
8413 retval = -ENOMEM;
8414 goto out_put_task;
8415 }
8416
8417 ac = (struct affinity_context){
8418 .new_mask = in_mask,
8419 .user_mask = user_mask,
8420 .flags = SCA_USER,
8421 };
8422
8423 retval = __sched_setaffinity(p, &ac);
8424 kfree(ac.user_mask);
8425
8426 out_put_task:
8427 put_task_struct(p);
8428 return retval;
8429 }
8430
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)8431 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8432 struct cpumask *new_mask)
8433 {
8434 if (len < cpumask_size())
8435 cpumask_clear(new_mask);
8436 else if (len > cpumask_size())
8437 len = cpumask_size();
8438
8439 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8440 }
8441
8442 /**
8443 * sys_sched_setaffinity - set the CPU affinity of a process
8444 * @pid: pid of the process
8445 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8446 * @user_mask_ptr: user-space pointer to the new CPU mask
8447 *
8448 * Return: 0 on success. An error code otherwise.
8449 */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)8450 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8451 unsigned long __user *, user_mask_ptr)
8452 {
8453 cpumask_var_t new_mask;
8454 int retval;
8455
8456 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8457 return -ENOMEM;
8458
8459 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8460 if (retval == 0)
8461 retval = sched_setaffinity(pid, new_mask);
8462 free_cpumask_var(new_mask);
8463 return retval;
8464 }
8465
sched_getaffinity(pid_t pid,struct cpumask * mask)8466 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8467 {
8468 struct task_struct *p;
8469 unsigned long flags;
8470 int retval;
8471
8472 rcu_read_lock();
8473
8474 retval = -ESRCH;
8475 p = find_process_by_pid(pid);
8476 if (!p)
8477 goto out_unlock;
8478
8479 retval = security_task_getscheduler(p);
8480 if (retval)
8481 goto out_unlock;
8482
8483 raw_spin_lock_irqsave(&p->pi_lock, flags);
8484 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8485 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8486
8487 out_unlock:
8488 rcu_read_unlock();
8489
8490 return retval;
8491 }
8492
8493 /**
8494 * sys_sched_getaffinity - get the CPU affinity of a process
8495 * @pid: pid of the process
8496 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8497 * @user_mask_ptr: user-space pointer to hold the current CPU mask
8498 *
8499 * Return: size of CPU mask copied to user_mask_ptr on success. An
8500 * error code otherwise.
8501 */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)8502 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8503 unsigned long __user *, user_mask_ptr)
8504 {
8505 int ret;
8506 cpumask_var_t mask;
8507
8508 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8509 return -EINVAL;
8510 if (len & (sizeof(unsigned long)-1))
8511 return -EINVAL;
8512
8513 if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
8514 return -ENOMEM;
8515
8516 ret = sched_getaffinity(pid, mask);
8517 if (ret == 0) {
8518 unsigned int retlen = min(len, cpumask_size());
8519
8520 if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
8521 ret = -EFAULT;
8522 else
8523 ret = retlen;
8524 }
8525 free_cpumask_var(mask);
8526
8527 return ret;
8528 }
8529
do_sched_yield(void)8530 static void do_sched_yield(void)
8531 {
8532 struct rq_flags rf;
8533 struct rq *rq;
8534
8535 rq = this_rq_lock_irq(&rf);
8536
8537 schedstat_inc(rq->yld_count);
8538 current->sched_class->yield_task(rq);
8539
8540 preempt_disable();
8541 rq_unlock_irq(rq, &rf);
8542 sched_preempt_enable_no_resched();
8543
8544 schedule();
8545 }
8546
8547 /**
8548 * sys_sched_yield - yield the current processor to other threads.
8549 *
8550 * This function yields the current CPU to other tasks. If there are no
8551 * other threads running on this CPU then this function will return.
8552 *
8553 * Return: 0.
8554 */
SYSCALL_DEFINE0(sched_yield)8555 SYSCALL_DEFINE0(sched_yield)
8556 {
8557 do_sched_yield();
8558 return 0;
8559 }
8560
8561 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
__cond_resched(void)8562 int __sched __cond_resched(void)
8563 {
8564 if (should_resched(0) && !irqs_disabled()) {
8565 preempt_schedule_common();
8566 return 1;
8567 }
8568 /*
8569 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8570 * whether the current CPU is in an RCU read-side critical section,
8571 * so the tick can report quiescent states even for CPUs looping
8572 * in kernel context. In contrast, in non-preemptible kernels,
8573 * RCU readers leave no in-memory hints, which means that CPU-bound
8574 * processes executing in kernel context might never report an
8575 * RCU quiescent state. Therefore, the following code causes
8576 * cond_resched() to report a quiescent state, but only when RCU
8577 * is in urgent need of one.
8578 */
8579 #ifndef CONFIG_PREEMPT_RCU
8580 rcu_all_qs();
8581 #endif
8582 return 0;
8583 }
8584 EXPORT_SYMBOL(__cond_resched);
8585 #endif
8586
8587 #ifdef CONFIG_PREEMPT_DYNAMIC
8588 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8589 #define cond_resched_dynamic_enabled __cond_resched
8590 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0)
8591 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8592 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8593
8594 #define might_resched_dynamic_enabled __cond_resched
8595 #define might_resched_dynamic_disabled ((void *)&__static_call_return0)
8596 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8597 EXPORT_STATIC_CALL_TRAMP(might_resched);
8598 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8599 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
dynamic_cond_resched(void)8600 int __sched dynamic_cond_resched(void)
8601 {
8602 klp_sched_try_switch();
8603 if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8604 return 0;
8605 return __cond_resched();
8606 }
8607 EXPORT_SYMBOL(dynamic_cond_resched);
8608
8609 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
dynamic_might_resched(void)8610 int __sched dynamic_might_resched(void)
8611 {
8612 if (!static_branch_unlikely(&sk_dynamic_might_resched))
8613 return 0;
8614 return __cond_resched();
8615 }
8616 EXPORT_SYMBOL(dynamic_might_resched);
8617 #endif
8618 #endif
8619
8620 /*
8621 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8622 * call schedule, and on return reacquire the lock.
8623 *
8624 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8625 * operations here to prevent schedule() from being called twice (once via
8626 * spin_unlock(), once by hand).
8627 */
__cond_resched_lock(spinlock_t * lock)8628 int __cond_resched_lock(spinlock_t *lock)
8629 {
8630 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8631 int ret = 0;
8632
8633 lockdep_assert_held(lock);
8634
8635 if (spin_needbreak(lock) || resched) {
8636 spin_unlock(lock);
8637 if (!_cond_resched())
8638 cpu_relax();
8639 ret = 1;
8640 spin_lock(lock);
8641 }
8642 return ret;
8643 }
8644 EXPORT_SYMBOL(__cond_resched_lock);
8645
__cond_resched_rwlock_read(rwlock_t * lock)8646 int __cond_resched_rwlock_read(rwlock_t *lock)
8647 {
8648 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8649 int ret = 0;
8650
8651 lockdep_assert_held_read(lock);
8652
8653 if (rwlock_needbreak(lock) || resched) {
8654 read_unlock(lock);
8655 if (!_cond_resched())
8656 cpu_relax();
8657 ret = 1;
8658 read_lock(lock);
8659 }
8660 return ret;
8661 }
8662 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8663
__cond_resched_rwlock_write(rwlock_t * lock)8664 int __cond_resched_rwlock_write(rwlock_t *lock)
8665 {
8666 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8667 int ret = 0;
8668
8669 lockdep_assert_held_write(lock);
8670
8671 if (rwlock_needbreak(lock) || resched) {
8672 write_unlock(lock);
8673 if (!_cond_resched())
8674 cpu_relax();
8675 ret = 1;
8676 write_lock(lock);
8677 }
8678 return ret;
8679 }
8680 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8681
8682 #ifdef CONFIG_PREEMPT_DYNAMIC
8683
8684 #ifdef CONFIG_GENERIC_ENTRY
8685 #include <linux/entry-common.h>
8686 #endif
8687
8688 /*
8689 * SC:cond_resched
8690 * SC:might_resched
8691 * SC:preempt_schedule
8692 * SC:preempt_schedule_notrace
8693 * SC:irqentry_exit_cond_resched
8694 *
8695 *
8696 * NONE:
8697 * cond_resched <- __cond_resched
8698 * might_resched <- RET0
8699 * preempt_schedule <- NOP
8700 * preempt_schedule_notrace <- NOP
8701 * irqentry_exit_cond_resched <- NOP
8702 *
8703 * VOLUNTARY:
8704 * cond_resched <- __cond_resched
8705 * might_resched <- __cond_resched
8706 * preempt_schedule <- NOP
8707 * preempt_schedule_notrace <- NOP
8708 * irqentry_exit_cond_resched <- NOP
8709 *
8710 * FULL:
8711 * cond_resched <- RET0
8712 * might_resched <- RET0
8713 * preempt_schedule <- preempt_schedule
8714 * preempt_schedule_notrace <- preempt_schedule_notrace
8715 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8716 */
8717
8718 enum {
8719 preempt_dynamic_undefined = -1,
8720 preempt_dynamic_none,
8721 preempt_dynamic_voluntary,
8722 preempt_dynamic_full,
8723 };
8724
8725 int preempt_dynamic_mode = preempt_dynamic_undefined;
8726
sched_dynamic_mode(const char * str)8727 int sched_dynamic_mode(const char *str)
8728 {
8729 if (!strcmp(str, "none"))
8730 return preempt_dynamic_none;
8731
8732 if (!strcmp(str, "voluntary"))
8733 return preempt_dynamic_voluntary;
8734
8735 if (!strcmp(str, "full"))
8736 return preempt_dynamic_full;
8737
8738 return -EINVAL;
8739 }
8740
8741 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8742 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled)
8743 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled)
8744 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8745 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key)
8746 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key)
8747 #else
8748 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8749 #endif
8750
8751 static DEFINE_MUTEX(sched_dynamic_mutex);
8752 static bool klp_override;
8753
__sched_dynamic_update(int mode)8754 static void __sched_dynamic_update(int mode)
8755 {
8756 /*
8757 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8758 * the ZERO state, which is invalid.
8759 */
8760 if (!klp_override)
8761 preempt_dynamic_enable(cond_resched);
8762 preempt_dynamic_enable(might_resched);
8763 preempt_dynamic_enable(preempt_schedule);
8764 preempt_dynamic_enable(preempt_schedule_notrace);
8765 preempt_dynamic_enable(irqentry_exit_cond_resched);
8766
8767 switch (mode) {
8768 case preempt_dynamic_none:
8769 if (!klp_override)
8770 preempt_dynamic_enable(cond_resched);
8771 preempt_dynamic_disable(might_resched);
8772 preempt_dynamic_disable(preempt_schedule);
8773 preempt_dynamic_disable(preempt_schedule_notrace);
8774 preempt_dynamic_disable(irqentry_exit_cond_resched);
8775 if (mode != preempt_dynamic_mode)
8776 pr_info("Dynamic Preempt: none\n");
8777 break;
8778
8779 case preempt_dynamic_voluntary:
8780 if (!klp_override)
8781 preempt_dynamic_enable(cond_resched);
8782 preempt_dynamic_enable(might_resched);
8783 preempt_dynamic_disable(preempt_schedule);
8784 preempt_dynamic_disable(preempt_schedule_notrace);
8785 preempt_dynamic_disable(irqentry_exit_cond_resched);
8786 if (mode != preempt_dynamic_mode)
8787 pr_info("Dynamic Preempt: voluntary\n");
8788 break;
8789
8790 case preempt_dynamic_full:
8791 if (!klp_override)
8792 preempt_dynamic_disable(cond_resched);
8793 preempt_dynamic_disable(might_resched);
8794 preempt_dynamic_enable(preempt_schedule);
8795 preempt_dynamic_enable(preempt_schedule_notrace);
8796 preempt_dynamic_enable(irqentry_exit_cond_resched);
8797 if (mode != preempt_dynamic_mode)
8798 pr_info("Dynamic Preempt: full\n");
8799 break;
8800 }
8801
8802 preempt_dynamic_mode = mode;
8803 }
8804
sched_dynamic_update(int mode)8805 void sched_dynamic_update(int mode)
8806 {
8807 mutex_lock(&sched_dynamic_mutex);
8808 __sched_dynamic_update(mode);
8809 mutex_unlock(&sched_dynamic_mutex);
8810 }
8811
8812 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL
8813
klp_cond_resched(void)8814 static int klp_cond_resched(void)
8815 {
8816 __klp_sched_try_switch();
8817 return __cond_resched();
8818 }
8819
sched_dynamic_klp_enable(void)8820 void sched_dynamic_klp_enable(void)
8821 {
8822 mutex_lock(&sched_dynamic_mutex);
8823
8824 klp_override = true;
8825 static_call_update(cond_resched, klp_cond_resched);
8826
8827 mutex_unlock(&sched_dynamic_mutex);
8828 }
8829
sched_dynamic_klp_disable(void)8830 void sched_dynamic_klp_disable(void)
8831 {
8832 mutex_lock(&sched_dynamic_mutex);
8833
8834 klp_override = false;
8835 __sched_dynamic_update(preempt_dynamic_mode);
8836
8837 mutex_unlock(&sched_dynamic_mutex);
8838 }
8839
8840 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */
8841
setup_preempt_mode(char * str)8842 static int __init setup_preempt_mode(char *str)
8843 {
8844 int mode = sched_dynamic_mode(str);
8845 if (mode < 0) {
8846 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8847 return 0;
8848 }
8849
8850 sched_dynamic_update(mode);
8851 return 1;
8852 }
8853 __setup("preempt=", setup_preempt_mode);
8854
preempt_dynamic_init(void)8855 static void __init preempt_dynamic_init(void)
8856 {
8857 if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8858 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8859 sched_dynamic_update(preempt_dynamic_none);
8860 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8861 sched_dynamic_update(preempt_dynamic_voluntary);
8862 } else {
8863 /* Default static call setting, nothing to do */
8864 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8865 preempt_dynamic_mode = preempt_dynamic_full;
8866 pr_info("Dynamic Preempt: full\n");
8867 }
8868 }
8869 }
8870
8871 #define PREEMPT_MODEL_ACCESSOR(mode) \
8872 bool preempt_model_##mode(void) \
8873 { \
8874 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8875 return preempt_dynamic_mode == preempt_dynamic_##mode; \
8876 } \
8877 EXPORT_SYMBOL_GPL(preempt_model_##mode)
8878
8879 PREEMPT_MODEL_ACCESSOR(none);
8880 PREEMPT_MODEL_ACCESSOR(voluntary);
8881 PREEMPT_MODEL_ACCESSOR(full);
8882
8883 #else /* !CONFIG_PREEMPT_DYNAMIC */
8884
preempt_dynamic_init(void)8885 static inline void preempt_dynamic_init(void) { }
8886
8887 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8888
8889 /**
8890 * yield - yield the current processor to other threads.
8891 *
8892 * Do not ever use this function, there's a 99% chance you're doing it wrong.
8893 *
8894 * The scheduler is at all times free to pick the calling task as the most
8895 * eligible task to run, if removing the yield() call from your code breaks
8896 * it, it's already broken.
8897 *
8898 * Typical broken usage is:
8899 *
8900 * while (!event)
8901 * yield();
8902 *
8903 * where one assumes that yield() will let 'the other' process run that will
8904 * make event true. If the current task is a SCHED_FIFO task that will never
8905 * happen. Never use yield() as a progress guarantee!!
8906 *
8907 * If you want to use yield() to wait for something, use wait_event().
8908 * If you want to use yield() to be 'nice' for others, use cond_resched().
8909 * If you still want to use yield(), do not!
8910 */
yield(void)8911 void __sched yield(void)
8912 {
8913 set_current_state(TASK_RUNNING);
8914 do_sched_yield();
8915 }
8916 EXPORT_SYMBOL(yield);
8917
8918 /**
8919 * yield_to - yield the current processor to another thread in
8920 * your thread group, or accelerate that thread toward the
8921 * processor it's on.
8922 * @p: target task
8923 * @preempt: whether task preemption is allowed or not
8924 *
8925 * It's the caller's job to ensure that the target task struct
8926 * can't go away on us before we can do any checks.
8927 *
8928 * Return:
8929 * true (>0) if we indeed boosted the target task.
8930 * false (0) if we failed to boost the target.
8931 * -ESRCH if there's no task to yield to.
8932 */
yield_to(struct task_struct * p,bool preempt)8933 int __sched yield_to(struct task_struct *p, bool preempt)
8934 {
8935 struct task_struct *curr = current;
8936 struct rq *rq, *p_rq;
8937 unsigned long flags;
8938 int yielded = 0;
8939
8940 local_irq_save(flags);
8941 rq = this_rq();
8942
8943 again:
8944 p_rq = task_rq(p);
8945 /*
8946 * If we're the only runnable task on the rq and target rq also
8947 * has only one task, there's absolutely no point in yielding.
8948 */
8949 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8950 yielded = -ESRCH;
8951 goto out_irq;
8952 }
8953
8954 double_rq_lock(rq, p_rq);
8955 if (task_rq(p) != p_rq) {
8956 double_rq_unlock(rq, p_rq);
8957 goto again;
8958 }
8959
8960 if (!curr->sched_class->yield_to_task)
8961 goto out_unlock;
8962
8963 if (curr->sched_class != p->sched_class)
8964 goto out_unlock;
8965
8966 if (task_on_cpu(p_rq, p) || !task_is_running(p))
8967 goto out_unlock;
8968
8969 yielded = curr->sched_class->yield_to_task(rq, p);
8970 if (yielded) {
8971 schedstat_inc(rq->yld_count);
8972 /*
8973 * Make p's CPU reschedule; pick_next_entity takes care of
8974 * fairness.
8975 */
8976 if (preempt && rq != p_rq)
8977 resched_curr(p_rq);
8978 }
8979
8980 out_unlock:
8981 double_rq_unlock(rq, p_rq);
8982 out_irq:
8983 local_irq_restore(flags);
8984
8985 if (yielded > 0)
8986 schedule();
8987
8988 return yielded;
8989 }
8990 EXPORT_SYMBOL_GPL(yield_to);
8991
io_schedule_prepare(void)8992 int io_schedule_prepare(void)
8993 {
8994 int old_iowait = current->in_iowait;
8995
8996 current->in_iowait = 1;
8997 blk_flush_plug(current->plug, true);
8998 return old_iowait;
8999 }
9000
io_schedule_finish(int token)9001 void io_schedule_finish(int token)
9002 {
9003 current->in_iowait = token;
9004 }
9005
9006 /*
9007 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
9008 * that process accounting knows that this is a task in IO wait state.
9009 */
io_schedule_timeout(long timeout)9010 long __sched io_schedule_timeout(long timeout)
9011 {
9012 int token;
9013 long ret;
9014
9015 token = io_schedule_prepare();
9016 ret = schedule_timeout(timeout);
9017 io_schedule_finish(token);
9018
9019 return ret;
9020 }
9021 EXPORT_SYMBOL(io_schedule_timeout);
9022
io_schedule(void)9023 void __sched io_schedule(void)
9024 {
9025 int token;
9026
9027 token = io_schedule_prepare();
9028 schedule();
9029 io_schedule_finish(token);
9030 }
9031 EXPORT_SYMBOL(io_schedule);
9032
9033 /**
9034 * sys_sched_get_priority_max - return maximum RT priority.
9035 * @policy: scheduling class.
9036 *
9037 * Return: On success, this syscall returns the maximum
9038 * rt_priority that can be used by a given scheduling class.
9039 * On failure, a negative error code is returned.
9040 */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)9041 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
9042 {
9043 int ret = -EINVAL;
9044
9045 switch (policy) {
9046 case SCHED_FIFO:
9047 case SCHED_RR:
9048 ret = MAX_RT_PRIO-1;
9049 break;
9050 case SCHED_DEADLINE:
9051 case SCHED_NORMAL:
9052 case SCHED_BATCH:
9053 case SCHED_IDLE:
9054 ret = 0;
9055 break;
9056 }
9057 return ret;
9058 }
9059
9060 /**
9061 * sys_sched_get_priority_min - return minimum RT priority.
9062 * @policy: scheduling class.
9063 *
9064 * Return: On success, this syscall returns the minimum
9065 * rt_priority that can be used by a given scheduling class.
9066 * On failure, a negative error code is returned.
9067 */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)9068 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
9069 {
9070 int ret = -EINVAL;
9071
9072 switch (policy) {
9073 case SCHED_FIFO:
9074 case SCHED_RR:
9075 ret = 1;
9076 break;
9077 case SCHED_DEADLINE:
9078 case SCHED_NORMAL:
9079 case SCHED_BATCH:
9080 case SCHED_IDLE:
9081 ret = 0;
9082 }
9083 return ret;
9084 }
9085
sched_rr_get_interval(pid_t pid,struct timespec64 * t)9086 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
9087 {
9088 struct task_struct *p;
9089 unsigned int time_slice;
9090 struct rq_flags rf;
9091 struct rq *rq;
9092 int retval;
9093
9094 if (pid < 0)
9095 return -EINVAL;
9096
9097 retval = -ESRCH;
9098 rcu_read_lock();
9099 p = find_process_by_pid(pid);
9100 if (!p)
9101 goto out_unlock;
9102
9103 retval = security_task_getscheduler(p);
9104 if (retval)
9105 goto out_unlock;
9106
9107 rq = task_rq_lock(p, &rf);
9108 time_slice = 0;
9109 if (p->sched_class->get_rr_interval)
9110 time_slice = p->sched_class->get_rr_interval(rq, p);
9111 task_rq_unlock(rq, p, &rf);
9112
9113 rcu_read_unlock();
9114 jiffies_to_timespec64(time_slice, t);
9115 return 0;
9116
9117 out_unlock:
9118 rcu_read_unlock();
9119 return retval;
9120 }
9121
9122 /**
9123 * sys_sched_rr_get_interval - return the default timeslice of a process.
9124 * @pid: pid of the process.
9125 * @interval: userspace pointer to the timeslice value.
9126 *
9127 * this syscall writes the default timeslice value of a given process
9128 * into the user-space timespec buffer. A value of '0' means infinity.
9129 *
9130 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
9131 * an error code.
9132 */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct __kernel_timespec __user *,interval)9133 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
9134 struct __kernel_timespec __user *, interval)
9135 {
9136 struct timespec64 t;
9137 int retval = sched_rr_get_interval(pid, &t);
9138
9139 if (retval == 0)
9140 retval = put_timespec64(&t, interval);
9141
9142 return retval;
9143 }
9144
9145 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(sched_rr_get_interval_time32,pid_t,pid,struct old_timespec32 __user *,interval)9146 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
9147 struct old_timespec32 __user *, interval)
9148 {
9149 struct timespec64 t;
9150 int retval = sched_rr_get_interval(pid, &t);
9151
9152 if (retval == 0)
9153 retval = put_old_timespec32(&t, interval);
9154 return retval;
9155 }
9156 #endif
9157
sched_show_task(struct task_struct * p)9158 void sched_show_task(struct task_struct *p)
9159 {
9160 unsigned long free = 0;
9161 int ppid;
9162
9163 if (!try_get_task_stack(p))
9164 return;
9165
9166 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
9167
9168 if (task_is_running(p))
9169 pr_cont(" running task ");
9170 #ifdef CONFIG_DEBUG_STACK_USAGE
9171 free = stack_not_used(p);
9172 #endif
9173 ppid = 0;
9174 rcu_read_lock();
9175 if (pid_alive(p))
9176 ppid = task_pid_nr(rcu_dereference(p->real_parent));
9177 rcu_read_unlock();
9178 pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
9179 free, task_pid_nr(p), ppid,
9180 read_task_thread_flags(p));
9181
9182 print_worker_info(KERN_INFO, p);
9183 print_stop_info(KERN_INFO, p);
9184 show_stack(p, NULL, KERN_INFO);
9185 put_task_stack(p);
9186 }
9187 EXPORT_SYMBOL_GPL(sched_show_task);
9188
9189 static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)9190 state_filter_match(unsigned long state_filter, struct task_struct *p)
9191 {
9192 unsigned int state = READ_ONCE(p->__state);
9193
9194 /* no filter, everything matches */
9195 if (!state_filter)
9196 return true;
9197
9198 /* filter, but doesn't match */
9199 if (!(state & state_filter))
9200 return false;
9201
9202 /*
9203 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
9204 * TASK_KILLABLE).
9205 */
9206 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
9207 return false;
9208
9209 return true;
9210 }
9211
9212
show_state_filter(unsigned int state_filter)9213 void show_state_filter(unsigned int state_filter)
9214 {
9215 struct task_struct *g, *p;
9216
9217 rcu_read_lock();
9218 for_each_process_thread(g, p) {
9219 /*
9220 * reset the NMI-timeout, listing all files on a slow
9221 * console might take a lot of time:
9222 * Also, reset softlockup watchdogs on all CPUs, because
9223 * another CPU might be blocked waiting for us to process
9224 * an IPI.
9225 */
9226 touch_nmi_watchdog();
9227 touch_all_softlockup_watchdogs();
9228 if (state_filter_match(state_filter, p))
9229 sched_show_task(p);
9230 }
9231
9232 #ifdef CONFIG_SCHED_DEBUG
9233 if (!state_filter)
9234 sysrq_sched_debug_show();
9235 #endif
9236 rcu_read_unlock();
9237 /*
9238 * Only show locks if all tasks are dumped:
9239 */
9240 if (!state_filter)
9241 debug_show_all_locks();
9242 }
9243
9244 /**
9245 * init_idle - set up an idle thread for a given CPU
9246 * @idle: task in question
9247 * @cpu: CPU the idle task belongs to
9248 *
9249 * NOTE: this function does not set the idle thread's NEED_RESCHED
9250 * flag, to make booting more robust.
9251 */
init_idle(struct task_struct * idle,int cpu)9252 void __init init_idle(struct task_struct *idle, int cpu)
9253 {
9254 #ifdef CONFIG_SMP
9255 struct affinity_context ac = (struct affinity_context) {
9256 .new_mask = cpumask_of(cpu),
9257 .flags = 0,
9258 };
9259 #endif
9260 struct rq *rq = cpu_rq(cpu);
9261 unsigned long flags;
9262
9263 raw_spin_lock_irqsave(&idle->pi_lock, flags);
9264 raw_spin_rq_lock(rq);
9265
9266 idle->__state = TASK_RUNNING;
9267 idle->se.exec_start = sched_clock();
9268 /*
9269 * PF_KTHREAD should already be set at this point; regardless, make it
9270 * look like a proper per-CPU kthread.
9271 */
9272 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY;
9273 kthread_set_per_cpu(idle, cpu);
9274
9275 #ifdef CONFIG_SMP
9276 /*
9277 * No validation and serialization required at boot time and for
9278 * setting up the idle tasks of not yet online CPUs.
9279 */
9280 set_cpus_allowed_common(idle, &ac);
9281 #endif
9282 /*
9283 * We're having a chicken and egg problem, even though we are
9284 * holding rq->lock, the CPU isn't yet set to this CPU so the
9285 * lockdep check in task_group() will fail.
9286 *
9287 * Similar case to sched_fork(). / Alternatively we could
9288 * use task_rq_lock() here and obtain the other rq->lock.
9289 *
9290 * Silence PROVE_RCU
9291 */
9292 rcu_read_lock();
9293 __set_task_cpu(idle, cpu);
9294 rcu_read_unlock();
9295
9296 rq->idle = idle;
9297 rcu_assign_pointer(rq->curr, idle);
9298 idle->on_rq = TASK_ON_RQ_QUEUED;
9299 #ifdef CONFIG_SMP
9300 idle->on_cpu = 1;
9301 #endif
9302 raw_spin_rq_unlock(rq);
9303 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
9304
9305 /* Set the preempt count _outside_ the spinlocks! */
9306 init_idle_preempt_count(idle, cpu);
9307
9308 /*
9309 * The idle tasks have their own, simple scheduling class:
9310 */
9311 idle->sched_class = &idle_sched_class;
9312 ftrace_graph_init_idle_task(idle, cpu);
9313 vtime_init_idle(idle, cpu);
9314 #ifdef CONFIG_SMP
9315 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9316 #endif
9317 }
9318
9319 #ifdef CONFIG_SMP
9320
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)9321 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9322 const struct cpumask *trial)
9323 {
9324 int ret = 1;
9325
9326 if (cpumask_empty(cur))
9327 return ret;
9328
9329 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9330
9331 return ret;
9332 }
9333
task_can_attach(struct task_struct * p)9334 int task_can_attach(struct task_struct *p)
9335 {
9336 int ret = 0;
9337
9338 /*
9339 * Kthreads which disallow setaffinity shouldn't be moved
9340 * to a new cpuset; we don't want to change their CPU
9341 * affinity and isolating such threads by their set of
9342 * allowed nodes is unnecessary. Thus, cpusets are not
9343 * applicable for such threads. This prevents checking for
9344 * success of set_cpus_allowed_ptr() on all attached tasks
9345 * before cpus_mask may be changed.
9346 */
9347 if (p->flags & PF_NO_SETAFFINITY)
9348 ret = -EINVAL;
9349
9350 return ret;
9351 }
9352
9353 bool sched_smp_initialized __read_mostly;
9354
9355 #ifdef CONFIG_NUMA_BALANCING
9356 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)9357 int migrate_task_to(struct task_struct *p, int target_cpu)
9358 {
9359 struct migration_arg arg = { p, target_cpu };
9360 int curr_cpu = task_cpu(p);
9361
9362 if (curr_cpu == target_cpu)
9363 return 0;
9364
9365 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9366 return -EINVAL;
9367
9368 /* TODO: This is not properly updating schedstats */
9369
9370 trace_sched_move_numa(p, curr_cpu, target_cpu);
9371 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9372 }
9373
9374 /*
9375 * Requeue a task on a given node and accurately track the number of NUMA
9376 * tasks on the runqueues
9377 */
sched_setnuma(struct task_struct * p,int nid)9378 void sched_setnuma(struct task_struct *p, int nid)
9379 {
9380 bool queued, running;
9381 struct rq_flags rf;
9382 struct rq *rq;
9383
9384 rq = task_rq_lock(p, &rf);
9385 queued = task_on_rq_queued(p);
9386 running = task_current(rq, p);
9387
9388 if (queued)
9389 dequeue_task(rq, p, DEQUEUE_SAVE);
9390 if (running)
9391 put_prev_task(rq, p);
9392
9393 p->numa_preferred_nid = nid;
9394
9395 if (queued)
9396 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9397 if (running)
9398 set_next_task(rq, p);
9399 task_rq_unlock(rq, p, &rf);
9400 }
9401 #endif /* CONFIG_NUMA_BALANCING */
9402
9403 #ifdef CONFIG_HOTPLUG_CPU
9404 /*
9405 * Ensure that the idle task is using init_mm right before its CPU goes
9406 * offline.
9407 */
idle_task_exit(void)9408 void idle_task_exit(void)
9409 {
9410 struct mm_struct *mm = current->active_mm;
9411
9412 BUG_ON(cpu_online(smp_processor_id()));
9413 BUG_ON(current != this_rq()->idle);
9414
9415 if (mm != &init_mm) {
9416 switch_mm(mm, &init_mm, current);
9417 finish_arch_post_lock_switch();
9418 }
9419
9420 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9421 }
9422
__balance_push_cpu_stop(void * arg)9423 static int __balance_push_cpu_stop(void *arg)
9424 {
9425 struct task_struct *p = arg;
9426 struct rq *rq = this_rq();
9427 struct rq_flags rf;
9428 int cpu;
9429
9430 raw_spin_lock_irq(&p->pi_lock);
9431 rq_lock(rq, &rf);
9432
9433 update_rq_clock(rq);
9434
9435 if (task_rq(p) == rq && task_on_rq_queued(p)) {
9436 cpu = select_fallback_rq(rq->cpu, p);
9437 rq = __migrate_task(rq, &rf, p, cpu);
9438 }
9439
9440 rq_unlock(rq, &rf);
9441 raw_spin_unlock_irq(&p->pi_lock);
9442
9443 put_task_struct(p);
9444
9445 return 0;
9446 }
9447
9448 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9449
9450 /*
9451 * Ensure we only run per-cpu kthreads once the CPU goes !active.
9452 *
9453 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9454 * effective when the hotplug motion is down.
9455 */
balance_push(struct rq * rq)9456 static void balance_push(struct rq *rq)
9457 {
9458 struct task_struct *push_task = rq->curr;
9459
9460 lockdep_assert_rq_held(rq);
9461
9462 /*
9463 * Ensure the thing is persistent until balance_push_set(.on = false);
9464 */
9465 rq->balance_callback = &balance_push_callback;
9466
9467 /*
9468 * Only active while going offline and when invoked on the outgoing
9469 * CPU.
9470 */
9471 if (!cpu_dying(rq->cpu) || rq != this_rq())
9472 return;
9473
9474 /*
9475 * Both the cpu-hotplug and stop task are in this case and are
9476 * required to complete the hotplug process.
9477 */
9478 if (kthread_is_per_cpu(push_task) ||
9479 is_migration_disabled(push_task)) {
9480
9481 /*
9482 * If this is the idle task on the outgoing CPU try to wake
9483 * up the hotplug control thread which might wait for the
9484 * last task to vanish. The rcuwait_active() check is
9485 * accurate here because the waiter is pinned on this CPU
9486 * and can't obviously be running in parallel.
9487 *
9488 * On RT kernels this also has to check whether there are
9489 * pinned and scheduled out tasks on the runqueue. They
9490 * need to leave the migrate disabled section first.
9491 */
9492 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9493 rcuwait_active(&rq->hotplug_wait)) {
9494 raw_spin_rq_unlock(rq);
9495 rcuwait_wake_up(&rq->hotplug_wait);
9496 raw_spin_rq_lock(rq);
9497 }
9498 return;
9499 }
9500
9501 get_task_struct(push_task);
9502 /*
9503 * Temporarily drop rq->lock such that we can wake-up the stop task.
9504 * Both preemption and IRQs are still disabled.
9505 */
9506 preempt_disable();
9507 raw_spin_rq_unlock(rq);
9508 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9509 this_cpu_ptr(&push_work));
9510 preempt_enable();
9511 /*
9512 * At this point need_resched() is true and we'll take the loop in
9513 * schedule(). The next pick is obviously going to be the stop task
9514 * which kthread_is_per_cpu() and will push this task away.
9515 */
9516 raw_spin_rq_lock(rq);
9517 }
9518
balance_push_set(int cpu,bool on)9519 static void balance_push_set(int cpu, bool on)
9520 {
9521 struct rq *rq = cpu_rq(cpu);
9522 struct rq_flags rf;
9523
9524 rq_lock_irqsave(rq, &rf);
9525 if (on) {
9526 WARN_ON_ONCE(rq->balance_callback);
9527 rq->balance_callback = &balance_push_callback;
9528 } else if (rq->balance_callback == &balance_push_callback) {
9529 rq->balance_callback = NULL;
9530 }
9531 rq_unlock_irqrestore(rq, &rf);
9532 }
9533
9534 /*
9535 * Invoked from a CPUs hotplug control thread after the CPU has been marked
9536 * inactive. All tasks which are not per CPU kernel threads are either
9537 * pushed off this CPU now via balance_push() or placed on a different CPU
9538 * during wakeup. Wait until the CPU is quiescent.
9539 */
balance_hotplug_wait(void)9540 static void balance_hotplug_wait(void)
9541 {
9542 struct rq *rq = this_rq();
9543
9544 rcuwait_wait_event(&rq->hotplug_wait,
9545 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9546 TASK_UNINTERRUPTIBLE);
9547 }
9548
9549 #else
9550
balance_push(struct rq * rq)9551 static inline void balance_push(struct rq *rq)
9552 {
9553 }
9554
balance_push_set(int cpu,bool on)9555 static inline void balance_push_set(int cpu, bool on)
9556 {
9557 }
9558
balance_hotplug_wait(void)9559 static inline void balance_hotplug_wait(void)
9560 {
9561 }
9562
9563 #endif /* CONFIG_HOTPLUG_CPU */
9564
set_rq_online(struct rq * rq)9565 void set_rq_online(struct rq *rq)
9566 {
9567 if (!rq->online) {
9568 const struct sched_class *class;
9569
9570 cpumask_set_cpu(rq->cpu, rq->rd->online);
9571 rq->online = 1;
9572
9573 for_each_class(class) {
9574 if (class->rq_online)
9575 class->rq_online(rq);
9576 }
9577 }
9578 }
9579
set_rq_offline(struct rq * rq)9580 void set_rq_offline(struct rq *rq)
9581 {
9582 if (rq->online) {
9583 const struct sched_class *class;
9584
9585 update_rq_clock(rq);
9586 for_each_class(class) {
9587 if (class->rq_offline)
9588 class->rq_offline(rq);
9589 }
9590
9591 cpumask_clear_cpu(rq->cpu, rq->rd->online);
9592 rq->online = 0;
9593 }
9594 }
9595
sched_set_rq_online(struct rq * rq,int cpu)9596 static inline void sched_set_rq_online(struct rq *rq, int cpu)
9597 {
9598 struct rq_flags rf;
9599
9600 rq_lock_irqsave(rq, &rf);
9601 if (rq->rd) {
9602 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9603 set_rq_online(rq);
9604 }
9605 rq_unlock_irqrestore(rq, &rf);
9606 }
9607
sched_set_rq_offline(struct rq * rq,int cpu)9608 static inline void sched_set_rq_offline(struct rq *rq, int cpu)
9609 {
9610 struct rq_flags rf;
9611
9612 rq_lock_irqsave(rq, &rf);
9613 if (rq->rd) {
9614 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9615 set_rq_offline(rq);
9616 }
9617 rq_unlock_irqrestore(rq, &rf);
9618 }
9619
9620 /*
9621 * used to mark begin/end of suspend/resume:
9622 */
9623 static int num_cpus_frozen;
9624
9625 /*
9626 * Update cpusets according to cpu_active mask. If cpusets are
9627 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9628 * around partition_sched_domains().
9629 *
9630 * If we come here as part of a suspend/resume, don't touch cpusets because we
9631 * want to restore it back to its original state upon resume anyway.
9632 */
cpuset_cpu_active(void)9633 static void cpuset_cpu_active(void)
9634 {
9635 if (cpuhp_tasks_frozen) {
9636 /*
9637 * num_cpus_frozen tracks how many CPUs are involved in suspend
9638 * resume sequence. As long as this is not the last online
9639 * operation in the resume sequence, just build a single sched
9640 * domain, ignoring cpusets.
9641 */
9642 partition_sched_domains(1, NULL, NULL);
9643 if (--num_cpus_frozen)
9644 return;
9645 /*
9646 * This is the last CPU online operation. So fall through and
9647 * restore the original sched domains by considering the
9648 * cpuset configurations.
9649 */
9650 cpuset_force_rebuild();
9651 }
9652 cpuset_update_active_cpus();
9653 }
9654
cpuset_cpu_inactive(unsigned int cpu)9655 static int cpuset_cpu_inactive(unsigned int cpu)
9656 {
9657 if (!cpuhp_tasks_frozen) {
9658 int ret = dl_bw_check_overflow(cpu);
9659
9660 if (ret)
9661 return ret;
9662 cpuset_update_active_cpus();
9663 } else {
9664 num_cpus_frozen++;
9665 partition_sched_domains(1, NULL, NULL);
9666 }
9667 return 0;
9668 }
9669
sched_smt_present_inc(int cpu)9670 static inline void sched_smt_present_inc(int cpu)
9671 {
9672 #ifdef CONFIG_SCHED_SMT
9673 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9674 static_branch_inc_cpuslocked(&sched_smt_present);
9675 #endif
9676 }
9677
sched_smt_present_dec(int cpu)9678 static inline void sched_smt_present_dec(int cpu)
9679 {
9680 #ifdef CONFIG_SCHED_SMT
9681 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9682 static_branch_dec_cpuslocked(&sched_smt_present);
9683 #endif
9684 }
9685
sched_cpu_activate(unsigned int cpu)9686 int sched_cpu_activate(unsigned int cpu)
9687 {
9688 struct rq *rq = cpu_rq(cpu);
9689
9690 /*
9691 * Clear the balance_push callback and prepare to schedule
9692 * regular tasks.
9693 */
9694 balance_push_set(cpu, false);
9695
9696 /*
9697 * When going up, increment the number of cores with SMT present.
9698 */
9699 sched_smt_present_inc(cpu);
9700 set_cpu_active(cpu, true);
9701
9702 if (sched_smp_initialized) {
9703 sched_update_numa(cpu, true);
9704 sched_domains_numa_masks_set(cpu);
9705 cpuset_cpu_active();
9706 }
9707
9708 /*
9709 * Put the rq online, if not already. This happens:
9710 *
9711 * 1) In the early boot process, because we build the real domains
9712 * after all CPUs have been brought up.
9713 *
9714 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9715 * domains.
9716 */
9717 sched_set_rq_online(rq, cpu);
9718
9719 return 0;
9720 }
9721
sched_cpu_deactivate(unsigned int cpu)9722 int sched_cpu_deactivate(unsigned int cpu)
9723 {
9724 struct rq *rq = cpu_rq(cpu);
9725 int ret;
9726
9727 /*
9728 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9729 * load balancing when not active
9730 */
9731 nohz_balance_exit_idle(rq);
9732
9733 set_cpu_active(cpu, false);
9734
9735 /*
9736 * From this point forward, this CPU will refuse to run any task that
9737 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9738 * push those tasks away until this gets cleared, see
9739 * sched_cpu_dying().
9740 */
9741 balance_push_set(cpu, true);
9742
9743 /*
9744 * We've cleared cpu_active_mask / set balance_push, wait for all
9745 * preempt-disabled and RCU users of this state to go away such that
9746 * all new such users will observe it.
9747 *
9748 * Specifically, we rely on ttwu to no longer target this CPU, see
9749 * ttwu_queue_cond() and is_cpu_allowed().
9750 *
9751 * Do sync before park smpboot threads to take care the rcu boost case.
9752 */
9753 synchronize_rcu();
9754
9755 sched_set_rq_offline(rq, cpu);
9756
9757 /*
9758 * When going down, decrement the number of cores with SMT present.
9759 */
9760 sched_smt_present_dec(cpu);
9761
9762 #ifdef CONFIG_SCHED_SMT
9763 sched_core_cpu_deactivate(cpu);
9764 #endif
9765
9766 if (!sched_smp_initialized)
9767 return 0;
9768
9769 sched_update_numa(cpu, false);
9770 ret = cpuset_cpu_inactive(cpu);
9771 if (ret) {
9772 sched_smt_present_inc(cpu);
9773 sched_set_rq_online(rq, cpu);
9774 balance_push_set(cpu, false);
9775 set_cpu_active(cpu, true);
9776 sched_update_numa(cpu, true);
9777 return ret;
9778 }
9779 sched_domains_numa_masks_clear(cpu);
9780 return 0;
9781 }
9782
sched_rq_cpu_starting(unsigned int cpu)9783 static void sched_rq_cpu_starting(unsigned int cpu)
9784 {
9785 struct rq *rq = cpu_rq(cpu);
9786
9787 rq->calc_load_update = calc_load_update;
9788 update_max_interval();
9789 }
9790
sched_cpu_starting(unsigned int cpu)9791 int sched_cpu_starting(unsigned int cpu)
9792 {
9793 sched_core_cpu_starting(cpu);
9794 sched_rq_cpu_starting(cpu);
9795 sched_tick_start(cpu);
9796 return 0;
9797 }
9798
9799 #ifdef CONFIG_HOTPLUG_CPU
9800
9801 /*
9802 * Invoked immediately before the stopper thread is invoked to bring the
9803 * CPU down completely. At this point all per CPU kthreads except the
9804 * hotplug thread (current) and the stopper thread (inactive) have been
9805 * either parked or have been unbound from the outgoing CPU. Ensure that
9806 * any of those which might be on the way out are gone.
9807 *
9808 * If after this point a bound task is being woken on this CPU then the
9809 * responsible hotplug callback has failed to do it's job.
9810 * sched_cpu_dying() will catch it with the appropriate fireworks.
9811 */
sched_cpu_wait_empty(unsigned int cpu)9812 int sched_cpu_wait_empty(unsigned int cpu)
9813 {
9814 balance_hotplug_wait();
9815 return 0;
9816 }
9817
9818 /*
9819 * Since this CPU is going 'away' for a while, fold any nr_active delta we
9820 * might have. Called from the CPU stopper task after ensuring that the
9821 * stopper is the last running task on the CPU, so nr_active count is
9822 * stable. We need to take the teardown thread which is calling this into
9823 * account, so we hand in adjust = 1 to the load calculation.
9824 *
9825 * Also see the comment "Global load-average calculations".
9826 */
calc_load_migrate(struct rq * rq)9827 static void calc_load_migrate(struct rq *rq)
9828 {
9829 long delta = calc_load_fold_active(rq, 1);
9830
9831 if (delta)
9832 atomic_long_add(delta, &calc_load_tasks);
9833 }
9834
dump_rq_tasks(struct rq * rq,const char * loglvl)9835 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9836 {
9837 struct task_struct *g, *p;
9838 int cpu = cpu_of(rq);
9839
9840 lockdep_assert_rq_held(rq);
9841
9842 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9843 for_each_process_thread(g, p) {
9844 if (task_cpu(p) != cpu)
9845 continue;
9846
9847 if (!task_on_rq_queued(p))
9848 continue;
9849
9850 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9851 }
9852 }
9853
sched_cpu_dying(unsigned int cpu)9854 int sched_cpu_dying(unsigned int cpu)
9855 {
9856 struct rq *rq = cpu_rq(cpu);
9857 struct rq_flags rf;
9858
9859 /* Handle pending wakeups and then migrate everything off */
9860 sched_tick_stop(cpu);
9861
9862 rq_lock_irqsave(rq, &rf);
9863 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9864 WARN(true, "Dying CPU not properly vacated!");
9865 dump_rq_tasks(rq, KERN_WARNING);
9866 }
9867 rq_unlock_irqrestore(rq, &rf);
9868
9869 calc_load_migrate(rq);
9870 update_max_interval();
9871 hrtick_clear(rq);
9872 sched_core_cpu_dying(cpu);
9873 return 0;
9874 }
9875 #endif
9876
sched_init_smp(void)9877 void __init sched_init_smp(void)
9878 {
9879 sched_init_numa(NUMA_NO_NODE);
9880
9881 /*
9882 * There's no userspace yet to cause hotplug operations; hence all the
9883 * CPU masks are stable and all blatant races in the below code cannot
9884 * happen.
9885 */
9886 mutex_lock(&sched_domains_mutex);
9887 sched_init_domains(cpu_active_mask);
9888 mutex_unlock(&sched_domains_mutex);
9889
9890 /* Move init over to a non-isolated CPU */
9891 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9892 BUG();
9893 current->flags &= ~PF_NO_SETAFFINITY;
9894 sched_init_granularity();
9895
9896 init_sched_rt_class();
9897 init_sched_dl_class();
9898
9899 sched_smp_initialized = true;
9900 }
9901
migration_init(void)9902 static int __init migration_init(void)
9903 {
9904 sched_cpu_starting(smp_processor_id());
9905 return 0;
9906 }
9907 early_initcall(migration_init);
9908
9909 #else
sched_init_smp(void)9910 void __init sched_init_smp(void)
9911 {
9912 sched_init_granularity();
9913 }
9914 #endif /* CONFIG_SMP */
9915
in_sched_functions(unsigned long addr)9916 int in_sched_functions(unsigned long addr)
9917 {
9918 return in_lock_functions(addr) ||
9919 (addr >= (unsigned long)__sched_text_start
9920 && addr < (unsigned long)__sched_text_end);
9921 }
9922
9923 #ifdef CONFIG_CGROUP_SCHED
9924 /*
9925 * Default task group.
9926 * Every task in system belongs to this group at bootup.
9927 */
9928 struct task_group root_task_group;
9929 LIST_HEAD(task_groups);
9930
9931 /* Cacheline aligned slab cache for task_group */
9932 static struct kmem_cache *task_group_cache __read_mostly;
9933 #endif
9934
sched_init(void)9935 void __init sched_init(void)
9936 {
9937 unsigned long ptr = 0;
9938 int i;
9939
9940 /* Make sure the linker didn't screw up */
9941 BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9942 &fair_sched_class != &rt_sched_class + 1 ||
9943 &rt_sched_class != &dl_sched_class + 1);
9944 #ifdef CONFIG_SMP
9945 BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9946 #endif
9947
9948 wait_bit_init();
9949
9950 #ifdef CONFIG_FAIR_GROUP_SCHED
9951 ptr += 2 * nr_cpu_ids * sizeof(void **);
9952 #endif
9953 #ifdef CONFIG_RT_GROUP_SCHED
9954 ptr += 2 * nr_cpu_ids * sizeof(void **);
9955 #endif
9956 if (ptr) {
9957 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9958
9959 #ifdef CONFIG_FAIR_GROUP_SCHED
9960 root_task_group.se = (struct sched_entity **)ptr;
9961 ptr += nr_cpu_ids * sizeof(void **);
9962
9963 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9964 ptr += nr_cpu_ids * sizeof(void **);
9965
9966 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9967 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL);
9968 #endif /* CONFIG_FAIR_GROUP_SCHED */
9969 #ifdef CONFIG_RT_GROUP_SCHED
9970 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9971 ptr += nr_cpu_ids * sizeof(void **);
9972
9973 root_task_group.rt_rq = (struct rt_rq **)ptr;
9974 ptr += nr_cpu_ids * sizeof(void **);
9975
9976 #endif /* CONFIG_RT_GROUP_SCHED */
9977 }
9978
9979 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9980
9981 #ifdef CONFIG_SMP
9982 init_defrootdomain();
9983 #endif
9984
9985 #ifdef CONFIG_RT_GROUP_SCHED
9986 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9987 global_rt_period(), global_rt_runtime());
9988 #endif /* CONFIG_RT_GROUP_SCHED */
9989
9990 #ifdef CONFIG_CGROUP_SCHED
9991 task_group_cache = KMEM_CACHE(task_group, 0);
9992
9993 list_add(&root_task_group.list, &task_groups);
9994 INIT_LIST_HEAD(&root_task_group.children);
9995 INIT_LIST_HEAD(&root_task_group.siblings);
9996 autogroup_init(&init_task);
9997 #endif /* CONFIG_CGROUP_SCHED */
9998
9999 for_each_possible_cpu(i) {
10000 struct rq *rq;
10001
10002 rq = cpu_rq(i);
10003 raw_spin_lock_init(&rq->__lock);
10004 rq->nr_running = 0;
10005 rq->calc_load_active = 0;
10006 rq->calc_load_update = jiffies + LOAD_FREQ;
10007 init_cfs_rq(&rq->cfs);
10008 init_rt_rq(&rq->rt);
10009 init_dl_rq(&rq->dl);
10010 #ifdef CONFIG_FAIR_GROUP_SCHED
10011 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
10012 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
10013 /*
10014 * How much CPU bandwidth does root_task_group get?
10015 *
10016 * In case of task-groups formed thr' the cgroup filesystem, it
10017 * gets 100% of the CPU resources in the system. This overall
10018 * system CPU resource is divided among the tasks of
10019 * root_task_group and its child task-groups in a fair manner,
10020 * based on each entity's (task or task-group's) weight
10021 * (se->load.weight).
10022 *
10023 * In other words, if root_task_group has 10 tasks of weight
10024 * 1024) and two child groups A0 and A1 (of weight 1024 each),
10025 * then A0's share of the CPU resource is:
10026 *
10027 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
10028 *
10029 * We achieve this by letting root_task_group's tasks sit
10030 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
10031 */
10032 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
10033 #endif /* CONFIG_FAIR_GROUP_SCHED */
10034
10035 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
10036 #ifdef CONFIG_RT_GROUP_SCHED
10037 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
10038 #endif
10039 #ifdef CONFIG_SMP
10040 rq->sd = NULL;
10041 rq->rd = NULL;
10042 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
10043 rq->balance_callback = &balance_push_callback;
10044 rq->active_balance = 0;
10045 rq->next_balance = jiffies;
10046 rq->push_cpu = 0;
10047 rq->cpu = i;
10048 rq->online = 0;
10049 rq->idle_stamp = 0;
10050 rq->avg_idle = 2*sysctl_sched_migration_cost;
10051 rq->wake_stamp = jiffies;
10052 rq->wake_avg_idle = rq->avg_idle;
10053 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
10054
10055 INIT_LIST_HEAD(&rq->cfs_tasks);
10056
10057 rq_attach_root(rq, &def_root_domain);
10058 #ifdef CONFIG_NO_HZ_COMMON
10059 rq->last_blocked_load_update_tick = jiffies;
10060 atomic_set(&rq->nohz_flags, 0);
10061
10062 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
10063 #endif
10064 #ifdef CONFIG_HOTPLUG_CPU
10065 rcuwait_init(&rq->hotplug_wait);
10066 #endif
10067 #endif /* CONFIG_SMP */
10068 hrtick_rq_init(rq);
10069 atomic_set(&rq->nr_iowait, 0);
10070
10071 #ifdef CONFIG_SCHED_CORE
10072 rq->core = rq;
10073 rq->core_pick = NULL;
10074 rq->core_enabled = 0;
10075 rq->core_tree = RB_ROOT;
10076 rq->core_forceidle_count = 0;
10077 rq->core_forceidle_occupation = 0;
10078 rq->core_forceidle_start = 0;
10079
10080 rq->core_cookie = 0UL;
10081 #endif
10082 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i));
10083 }
10084
10085 set_load_weight(&init_task, false);
10086
10087 /*
10088 * The boot idle thread does lazy MMU switching as well:
10089 */
10090 mmgrab_lazy_tlb(&init_mm);
10091 enter_lazy_tlb(&init_mm, current);
10092
10093 /*
10094 * The idle task doesn't need the kthread struct to function, but it
10095 * is dressed up as a per-CPU kthread and thus needs to play the part
10096 * if we want to avoid special-casing it in code that deals with per-CPU
10097 * kthreads.
10098 */
10099 WARN_ON(!set_kthread_struct(current));
10100
10101 /*
10102 * Make us the idle thread. Technically, schedule() should not be
10103 * called from this thread, however somewhere below it might be,
10104 * but because we are the idle thread, we just pick up running again
10105 * when this runqueue becomes "idle".
10106 */
10107 __sched_fork(0, current);
10108 init_idle(current, smp_processor_id());
10109
10110 calc_load_update = jiffies + LOAD_FREQ;
10111
10112 #ifdef CONFIG_SMP
10113 idle_thread_set_boot_cpu();
10114 balance_push_set(smp_processor_id(), false);
10115 #endif
10116 init_sched_fair_class();
10117
10118 psi_init();
10119
10120 init_uclamp();
10121
10122 preempt_dynamic_init();
10123
10124 scheduler_running = 1;
10125 }
10126
10127 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
10128
__might_sleep(const char * file,int line)10129 void __might_sleep(const char *file, int line)
10130 {
10131 unsigned int state = get_current_state();
10132 /*
10133 * Blocking primitives will set (and therefore destroy) current->state,
10134 * since we will exit with TASK_RUNNING make sure we enter with it,
10135 * otherwise we will destroy state.
10136 */
10137 WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
10138 "do not call blocking ops when !TASK_RUNNING; "
10139 "state=%x set at [<%p>] %pS\n", state,
10140 (void *)current->task_state_change,
10141 (void *)current->task_state_change);
10142
10143 __might_resched(file, line, 0);
10144 }
10145 EXPORT_SYMBOL(__might_sleep);
10146
print_preempt_disable_ip(int preempt_offset,unsigned long ip)10147 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
10148 {
10149 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
10150 return;
10151
10152 if (preempt_count() == preempt_offset)
10153 return;
10154
10155 pr_err("Preemption disabled at:");
10156 print_ip_sym(KERN_ERR, ip);
10157 }
10158
resched_offsets_ok(unsigned int offsets)10159 static inline bool resched_offsets_ok(unsigned int offsets)
10160 {
10161 unsigned int nested = preempt_count();
10162
10163 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
10164
10165 return nested == offsets;
10166 }
10167
__might_resched(const char * file,int line,unsigned int offsets)10168 void __might_resched(const char *file, int line, unsigned int offsets)
10169 {
10170 /* Ratelimiting timestamp: */
10171 static unsigned long prev_jiffy;
10172
10173 unsigned long preempt_disable_ip;
10174
10175 /* WARN_ON_ONCE() by default, no rate limit required: */
10176 rcu_sleep_check();
10177
10178 if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
10179 !is_idle_task(current) && !current->non_block_count) ||
10180 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
10181 oops_in_progress)
10182 return;
10183
10184 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10185 return;
10186 prev_jiffy = jiffies;
10187
10188 /* Save this before calling printk(), since that will clobber it: */
10189 preempt_disable_ip = get_preempt_disable_ip(current);
10190
10191 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
10192 file, line);
10193 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
10194 in_atomic(), irqs_disabled(), current->non_block_count,
10195 current->pid, current->comm);
10196 pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
10197 offsets & MIGHT_RESCHED_PREEMPT_MASK);
10198
10199 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
10200 pr_err("RCU nest depth: %d, expected: %u\n",
10201 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
10202 }
10203
10204 if (task_stack_end_corrupted(current))
10205 pr_emerg("Thread overran stack, or stack corrupted\n");
10206
10207 debug_show_held_locks(current);
10208 if (irqs_disabled())
10209 print_irqtrace_events(current);
10210
10211 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
10212 preempt_disable_ip);
10213
10214 dump_stack();
10215 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10216 }
10217 EXPORT_SYMBOL(__might_resched);
10218
__cant_sleep(const char * file,int line,int preempt_offset)10219 void __cant_sleep(const char *file, int line, int preempt_offset)
10220 {
10221 static unsigned long prev_jiffy;
10222
10223 if (irqs_disabled())
10224 return;
10225
10226 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10227 return;
10228
10229 if (preempt_count() > preempt_offset)
10230 return;
10231
10232 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10233 return;
10234 prev_jiffy = jiffies;
10235
10236 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
10237 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
10238 in_atomic(), irqs_disabled(),
10239 current->pid, current->comm);
10240
10241 debug_show_held_locks(current);
10242 dump_stack();
10243 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10244 }
10245 EXPORT_SYMBOL_GPL(__cant_sleep);
10246
10247 #ifdef CONFIG_SMP
__cant_migrate(const char * file,int line)10248 void __cant_migrate(const char *file, int line)
10249 {
10250 static unsigned long prev_jiffy;
10251
10252 if (irqs_disabled())
10253 return;
10254
10255 if (is_migration_disabled(current))
10256 return;
10257
10258 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
10259 return;
10260
10261 if (preempt_count() > 0)
10262 return;
10263
10264 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
10265 return;
10266 prev_jiffy = jiffies;
10267
10268 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
10269 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
10270 in_atomic(), irqs_disabled(), is_migration_disabled(current),
10271 current->pid, current->comm);
10272
10273 debug_show_held_locks(current);
10274 dump_stack();
10275 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
10276 }
10277 EXPORT_SYMBOL_GPL(__cant_migrate);
10278 #endif
10279 #endif
10280
10281 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)10282 void normalize_rt_tasks(void)
10283 {
10284 struct task_struct *g, *p;
10285 struct sched_attr attr = {
10286 .sched_policy = SCHED_NORMAL,
10287 };
10288
10289 read_lock(&tasklist_lock);
10290 for_each_process_thread(g, p) {
10291 /*
10292 * Only normalize user tasks:
10293 */
10294 if (p->flags & PF_KTHREAD)
10295 continue;
10296
10297 p->se.exec_start = 0;
10298 schedstat_set(p->stats.wait_start, 0);
10299 schedstat_set(p->stats.sleep_start, 0);
10300 schedstat_set(p->stats.block_start, 0);
10301
10302 if (!dl_task(p) && !rt_task(p)) {
10303 /*
10304 * Renice negative nice level userspace
10305 * tasks back to 0:
10306 */
10307 if (task_nice(p) < 0)
10308 set_user_nice(p, 0);
10309 continue;
10310 }
10311
10312 __sched_setscheduler(p, &attr, false, false);
10313 }
10314 read_unlock(&tasklist_lock);
10315 }
10316
10317 #endif /* CONFIG_MAGIC_SYSRQ */
10318
10319 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
10320 /*
10321 * These functions are only useful for the IA64 MCA handling, or kdb.
10322 *
10323 * They can only be called when the whole system has been
10324 * stopped - every CPU needs to be quiescent, and no scheduling
10325 * activity can take place. Using them for anything else would
10326 * be a serious bug, and as a result, they aren't even visible
10327 * under any other configuration.
10328 */
10329
10330 /**
10331 * curr_task - return the current task for a given CPU.
10332 * @cpu: the processor in question.
10333 *
10334 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10335 *
10336 * Return: The current task for @cpu.
10337 */
curr_task(int cpu)10338 struct task_struct *curr_task(int cpu)
10339 {
10340 return cpu_curr(cpu);
10341 }
10342
10343 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
10344
10345 #ifdef CONFIG_IA64
10346 /**
10347 * ia64_set_curr_task - set the current task for a given CPU.
10348 * @cpu: the processor in question.
10349 * @p: the task pointer to set.
10350 *
10351 * Description: This function must only be used when non-maskable interrupts
10352 * are serviced on a separate stack. It allows the architecture to switch the
10353 * notion of the current task on a CPU in a non-blocking manner. This function
10354 * must be called with all CPU's synchronized, and interrupts disabled, the
10355 * and caller must save the original value of the current task (see
10356 * curr_task() above) and restore that value before reenabling interrupts and
10357 * re-starting the system.
10358 *
10359 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10360 */
ia64_set_curr_task(int cpu,struct task_struct * p)10361 void ia64_set_curr_task(int cpu, struct task_struct *p)
10362 {
10363 cpu_curr(cpu) = p;
10364 }
10365
10366 #endif
10367
10368 #ifdef CONFIG_CGROUP_SCHED
10369 /* task_group_lock serializes the addition/removal of task groups */
10370 static DEFINE_SPINLOCK(task_group_lock);
10371
alloc_uclamp_sched_group(struct task_group * tg,struct task_group * parent)10372 static inline void alloc_uclamp_sched_group(struct task_group *tg,
10373 struct task_group *parent)
10374 {
10375 #ifdef CONFIG_UCLAMP_TASK_GROUP
10376 enum uclamp_id clamp_id;
10377
10378 for_each_clamp_id(clamp_id) {
10379 uclamp_se_set(&tg->uclamp_req[clamp_id],
10380 uclamp_none(clamp_id), false);
10381 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10382 }
10383 #endif
10384 }
10385
sched_free_group(struct task_group * tg)10386 static void sched_free_group(struct task_group *tg)
10387 {
10388 free_fair_sched_group(tg);
10389 free_rt_sched_group(tg);
10390 autogroup_free(tg);
10391 kmem_cache_free(task_group_cache, tg);
10392 }
10393
sched_free_group_rcu(struct rcu_head * rcu)10394 static void sched_free_group_rcu(struct rcu_head *rcu)
10395 {
10396 sched_free_group(container_of(rcu, struct task_group, rcu));
10397 }
10398
sched_unregister_group(struct task_group * tg)10399 static void sched_unregister_group(struct task_group *tg)
10400 {
10401 unregister_fair_sched_group(tg);
10402 unregister_rt_sched_group(tg);
10403 /*
10404 * We have to wait for yet another RCU grace period to expire, as
10405 * print_cfs_stats() might run concurrently.
10406 */
10407 call_rcu(&tg->rcu, sched_free_group_rcu);
10408 }
10409
10410 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)10411 struct task_group *sched_create_group(struct task_group *parent)
10412 {
10413 struct task_group *tg;
10414
10415 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10416 if (!tg)
10417 return ERR_PTR(-ENOMEM);
10418
10419 if (!alloc_fair_sched_group(tg, parent))
10420 goto err;
10421
10422 if (!alloc_rt_sched_group(tg, parent))
10423 goto err;
10424
10425 alloc_uclamp_sched_group(tg, parent);
10426
10427 return tg;
10428
10429 err:
10430 sched_free_group(tg);
10431 return ERR_PTR(-ENOMEM);
10432 }
10433
sched_online_group(struct task_group * tg,struct task_group * parent)10434 void sched_online_group(struct task_group *tg, struct task_group *parent)
10435 {
10436 unsigned long flags;
10437
10438 spin_lock_irqsave(&task_group_lock, flags);
10439 list_add_rcu(&tg->list, &task_groups);
10440
10441 /* Root should already exist: */
10442 WARN_ON(!parent);
10443
10444 tg->parent = parent;
10445 INIT_LIST_HEAD(&tg->children);
10446 list_add_rcu(&tg->siblings, &parent->children);
10447 spin_unlock_irqrestore(&task_group_lock, flags);
10448
10449 online_fair_sched_group(tg);
10450 }
10451
10452 /* rcu callback to free various structures associated with a task group */
sched_unregister_group_rcu(struct rcu_head * rhp)10453 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10454 {
10455 /* Now it should be safe to free those cfs_rqs: */
10456 sched_unregister_group(container_of(rhp, struct task_group, rcu));
10457 }
10458
sched_destroy_group(struct task_group * tg)10459 void sched_destroy_group(struct task_group *tg)
10460 {
10461 /* Wait for possible concurrent references to cfs_rqs complete: */
10462 call_rcu(&tg->rcu, sched_unregister_group_rcu);
10463 }
10464
sched_release_group(struct task_group * tg)10465 void sched_release_group(struct task_group *tg)
10466 {
10467 unsigned long flags;
10468
10469 /*
10470 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10471 * sched_cfs_period_timer()).
10472 *
10473 * For this to be effective, we have to wait for all pending users of
10474 * this task group to leave their RCU critical section to ensure no new
10475 * user will see our dying task group any more. Specifically ensure
10476 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10477 *
10478 * We therefore defer calling unregister_fair_sched_group() to
10479 * sched_unregister_group() which is guarantied to get called only after the
10480 * current RCU grace period has expired.
10481 */
10482 spin_lock_irqsave(&task_group_lock, flags);
10483 list_del_rcu(&tg->list);
10484 list_del_rcu(&tg->siblings);
10485 spin_unlock_irqrestore(&task_group_lock, flags);
10486 }
10487
sched_get_task_group(struct task_struct * tsk)10488 static struct task_group *sched_get_task_group(struct task_struct *tsk)
10489 {
10490 struct task_group *tg;
10491
10492 /*
10493 * All callers are synchronized by task_rq_lock(); we do not use RCU
10494 * which is pointless here. Thus, we pass "true" to task_css_check()
10495 * to prevent lockdep warnings.
10496 */
10497 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10498 struct task_group, css);
10499 tg = autogroup_task_group(tsk, tg);
10500
10501 return tg;
10502 }
10503
sched_change_group(struct task_struct * tsk,struct task_group * group)10504 static void sched_change_group(struct task_struct *tsk, struct task_group *group)
10505 {
10506 tsk->sched_task_group = group;
10507
10508 #ifdef CONFIG_FAIR_GROUP_SCHED
10509 if (tsk->sched_class->task_change_group)
10510 tsk->sched_class->task_change_group(tsk);
10511 else
10512 #endif
10513 set_task_rq(tsk, task_cpu(tsk));
10514 }
10515
10516 /*
10517 * Change task's runqueue when it moves between groups.
10518 *
10519 * The caller of this function should have put the task in its new group by
10520 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10521 * its new group.
10522 */
sched_move_task(struct task_struct * tsk)10523 void sched_move_task(struct task_struct *tsk)
10524 {
10525 int queued, running, queue_flags =
10526 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10527 struct task_group *group;
10528 struct rq_flags rf;
10529 struct rq *rq;
10530
10531 rq = task_rq_lock(tsk, &rf);
10532 /*
10533 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous
10534 * group changes.
10535 */
10536 group = sched_get_task_group(tsk);
10537 if (group == tsk->sched_task_group)
10538 goto unlock;
10539
10540 update_rq_clock(rq);
10541
10542 running = task_current(rq, tsk);
10543 queued = task_on_rq_queued(tsk);
10544
10545 if (queued)
10546 dequeue_task(rq, tsk, queue_flags);
10547 if (running)
10548 put_prev_task(rq, tsk);
10549
10550 sched_change_group(tsk, group);
10551
10552 if (queued)
10553 enqueue_task(rq, tsk, queue_flags);
10554 if (running) {
10555 set_next_task(rq, tsk);
10556 /*
10557 * After changing group, the running task may have joined a
10558 * throttled one but it's still the running task. Trigger a
10559 * resched to make sure that task can still run.
10560 */
10561 resched_curr(rq);
10562 }
10563
10564 unlock:
10565 task_rq_unlock(rq, tsk, &rf);
10566 }
10567
css_tg(struct cgroup_subsys_state * css)10568 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10569 {
10570 return css ? container_of(css, struct task_group, css) : NULL;
10571 }
10572
10573 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)10574 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10575 {
10576 struct task_group *parent = css_tg(parent_css);
10577 struct task_group *tg;
10578
10579 if (!parent) {
10580 /* This is early initialization for the top cgroup */
10581 return &root_task_group.css;
10582 }
10583
10584 tg = sched_create_group(parent);
10585 if (IS_ERR(tg))
10586 return ERR_PTR(-ENOMEM);
10587
10588 return &tg->css;
10589 }
10590
10591 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)10592 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10593 {
10594 struct task_group *tg = css_tg(css);
10595 struct task_group *parent = css_tg(css->parent);
10596
10597 if (parent)
10598 sched_online_group(tg, parent);
10599
10600 #ifdef CONFIG_UCLAMP_TASK_GROUP
10601 /* Propagate the effective uclamp value for the new group */
10602 mutex_lock(&uclamp_mutex);
10603 rcu_read_lock();
10604 cpu_util_update_eff(css);
10605 rcu_read_unlock();
10606 mutex_unlock(&uclamp_mutex);
10607 #endif
10608
10609 return 0;
10610 }
10611
cpu_cgroup_css_released(struct cgroup_subsys_state * css)10612 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10613 {
10614 struct task_group *tg = css_tg(css);
10615
10616 sched_release_group(tg);
10617 }
10618
cpu_cgroup_css_free(struct cgroup_subsys_state * css)10619 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10620 {
10621 struct task_group *tg = css_tg(css);
10622
10623 /*
10624 * Relies on the RCU grace period between css_released() and this.
10625 */
10626 sched_unregister_group(tg);
10627 }
10628
10629 #ifdef CONFIG_RT_GROUP_SCHED
cpu_cgroup_can_attach(struct cgroup_taskset * tset)10630 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10631 {
10632 struct task_struct *task;
10633 struct cgroup_subsys_state *css;
10634
10635 cgroup_taskset_for_each(task, css, tset) {
10636 if (!sched_rt_can_attach(css_tg(css), task))
10637 return -EINVAL;
10638 }
10639 return 0;
10640 }
10641 #endif
10642
cpu_cgroup_attach(struct cgroup_taskset * tset)10643 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10644 {
10645 struct task_struct *task;
10646 struct cgroup_subsys_state *css;
10647
10648 cgroup_taskset_for_each(task, css, tset)
10649 sched_move_task(task);
10650 }
10651
10652 #ifdef CONFIG_UCLAMP_TASK_GROUP
cpu_util_update_eff(struct cgroup_subsys_state * css)10653 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10654 {
10655 struct cgroup_subsys_state *top_css = css;
10656 struct uclamp_se *uc_parent = NULL;
10657 struct uclamp_se *uc_se = NULL;
10658 unsigned int eff[UCLAMP_CNT];
10659 enum uclamp_id clamp_id;
10660 unsigned int clamps;
10661
10662 lockdep_assert_held(&uclamp_mutex);
10663 SCHED_WARN_ON(!rcu_read_lock_held());
10664
10665 css_for_each_descendant_pre(css, top_css) {
10666 uc_parent = css_tg(css)->parent
10667 ? css_tg(css)->parent->uclamp : NULL;
10668
10669 for_each_clamp_id(clamp_id) {
10670 /* Assume effective clamps matches requested clamps */
10671 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10672 /* Cap effective clamps with parent's effective clamps */
10673 if (uc_parent &&
10674 eff[clamp_id] > uc_parent[clamp_id].value) {
10675 eff[clamp_id] = uc_parent[clamp_id].value;
10676 }
10677 }
10678 /* Ensure protection is always capped by limit */
10679 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10680
10681 /* Propagate most restrictive effective clamps */
10682 clamps = 0x0;
10683 uc_se = css_tg(css)->uclamp;
10684 for_each_clamp_id(clamp_id) {
10685 if (eff[clamp_id] == uc_se[clamp_id].value)
10686 continue;
10687 uc_se[clamp_id].value = eff[clamp_id];
10688 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10689 clamps |= (0x1 << clamp_id);
10690 }
10691 if (!clamps) {
10692 css = css_rightmost_descendant(css);
10693 continue;
10694 }
10695
10696 /* Immediately update descendants RUNNABLE tasks */
10697 uclamp_update_active_tasks(css);
10698 }
10699 }
10700
10701 /*
10702 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10703 * C expression. Since there is no way to convert a macro argument (N) into a
10704 * character constant, use two levels of macros.
10705 */
10706 #define _POW10(exp) ((unsigned int)1e##exp)
10707 #define POW10(exp) _POW10(exp)
10708
10709 struct uclamp_request {
10710 #define UCLAMP_PERCENT_SHIFT 2
10711 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
10712 s64 percent;
10713 u64 util;
10714 int ret;
10715 };
10716
10717 static inline struct uclamp_request
capacity_from_percent(char * buf)10718 capacity_from_percent(char *buf)
10719 {
10720 struct uclamp_request req = {
10721 .percent = UCLAMP_PERCENT_SCALE,
10722 .util = SCHED_CAPACITY_SCALE,
10723 .ret = 0,
10724 };
10725
10726 buf = strim(buf);
10727 if (strcmp(buf, "max")) {
10728 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10729 &req.percent);
10730 if (req.ret)
10731 return req;
10732 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10733 req.ret = -ERANGE;
10734 return req;
10735 }
10736
10737 req.util = req.percent << SCHED_CAPACITY_SHIFT;
10738 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10739 }
10740
10741 return req;
10742 }
10743
cpu_uclamp_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,enum uclamp_id clamp_id)10744 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10745 size_t nbytes, loff_t off,
10746 enum uclamp_id clamp_id)
10747 {
10748 struct uclamp_request req;
10749 struct task_group *tg;
10750
10751 req = capacity_from_percent(buf);
10752 if (req.ret)
10753 return req.ret;
10754
10755 static_branch_enable(&sched_uclamp_used);
10756
10757 mutex_lock(&uclamp_mutex);
10758 rcu_read_lock();
10759
10760 tg = css_tg(of_css(of));
10761 if (tg->uclamp_req[clamp_id].value != req.util)
10762 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10763
10764 /*
10765 * Because of not recoverable conversion rounding we keep track of the
10766 * exact requested value
10767 */
10768 tg->uclamp_pct[clamp_id] = req.percent;
10769
10770 /* Update effective clamps to track the most restrictive value */
10771 cpu_util_update_eff(of_css(of));
10772
10773 rcu_read_unlock();
10774 mutex_unlock(&uclamp_mutex);
10775
10776 return nbytes;
10777 }
10778
cpu_uclamp_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10779 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10780 char *buf, size_t nbytes,
10781 loff_t off)
10782 {
10783 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10784 }
10785
cpu_uclamp_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10786 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10787 char *buf, size_t nbytes,
10788 loff_t off)
10789 {
10790 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10791 }
10792
cpu_uclamp_print(struct seq_file * sf,enum uclamp_id clamp_id)10793 static inline void cpu_uclamp_print(struct seq_file *sf,
10794 enum uclamp_id clamp_id)
10795 {
10796 struct task_group *tg;
10797 u64 util_clamp;
10798 u64 percent;
10799 u32 rem;
10800
10801 rcu_read_lock();
10802 tg = css_tg(seq_css(sf));
10803 util_clamp = tg->uclamp_req[clamp_id].value;
10804 rcu_read_unlock();
10805
10806 if (util_clamp == SCHED_CAPACITY_SCALE) {
10807 seq_puts(sf, "max\n");
10808 return;
10809 }
10810
10811 percent = tg->uclamp_pct[clamp_id];
10812 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10813 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10814 }
10815
cpu_uclamp_min_show(struct seq_file * sf,void * v)10816 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10817 {
10818 cpu_uclamp_print(sf, UCLAMP_MIN);
10819 return 0;
10820 }
10821
cpu_uclamp_max_show(struct seq_file * sf,void * v)10822 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10823 {
10824 cpu_uclamp_print(sf, UCLAMP_MAX);
10825 return 0;
10826 }
10827 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10828
10829 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)10830 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10831 struct cftype *cftype, u64 shareval)
10832 {
10833 if (shareval > scale_load_down(ULONG_MAX))
10834 shareval = MAX_SHARES;
10835 return sched_group_set_shares(css_tg(css), scale_load(shareval));
10836 }
10837
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10838 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10839 struct cftype *cft)
10840 {
10841 struct task_group *tg = css_tg(css);
10842
10843 return (u64) scale_load_down(tg->shares);
10844 }
10845
10846 #ifdef CONFIG_CFS_BANDWIDTH
10847 static DEFINE_MUTEX(cfs_constraints_mutex);
10848
10849 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10850 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10851 /* More than 203 days if BW_SHIFT equals 20. */
10852 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10853
10854 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10855
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota,u64 burst)10856 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10857 u64 burst)
10858 {
10859 int i, ret = 0, runtime_enabled, runtime_was_enabled;
10860 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10861
10862 if (tg == &root_task_group)
10863 return -EINVAL;
10864
10865 /*
10866 * Ensure we have at some amount of bandwidth every period. This is
10867 * to prevent reaching a state of large arrears when throttled via
10868 * entity_tick() resulting in prolonged exit starvation.
10869 */
10870 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10871 return -EINVAL;
10872
10873 /*
10874 * Likewise, bound things on the other side by preventing insane quota
10875 * periods. This also allows us to normalize in computing quota
10876 * feasibility.
10877 */
10878 if (period > max_cfs_quota_period)
10879 return -EINVAL;
10880
10881 /*
10882 * Bound quota to defend quota against overflow during bandwidth shift.
10883 */
10884 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10885 return -EINVAL;
10886
10887 if (quota != RUNTIME_INF && (burst > quota ||
10888 burst + quota > max_cfs_runtime))
10889 return -EINVAL;
10890
10891 /*
10892 * Prevent race between setting of cfs_rq->runtime_enabled and
10893 * unthrottle_offline_cfs_rqs().
10894 */
10895 guard(cpus_read_lock)();
10896 guard(mutex)(&cfs_constraints_mutex);
10897
10898 ret = __cfs_schedulable(tg, period, quota);
10899 if (ret)
10900 return ret;
10901
10902 runtime_enabled = quota != RUNTIME_INF;
10903 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10904 /*
10905 * If we need to toggle cfs_bandwidth_used, off->on must occur
10906 * before making related changes, and on->off must occur afterwards
10907 */
10908 if (runtime_enabled && !runtime_was_enabled)
10909 cfs_bandwidth_usage_inc();
10910
10911 scoped_guard (raw_spinlock_irq, &cfs_b->lock) {
10912 cfs_b->period = ns_to_ktime(period);
10913 cfs_b->quota = quota;
10914 cfs_b->burst = burst;
10915
10916 __refill_cfs_bandwidth_runtime(cfs_b);
10917
10918 /*
10919 * Restart the period timer (if active) to handle new
10920 * period expiry:
10921 */
10922 if (runtime_enabled)
10923 start_cfs_bandwidth(cfs_b);
10924 }
10925
10926 for_each_online_cpu(i) {
10927 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10928 struct rq *rq = cfs_rq->rq;
10929
10930 guard(rq_lock_irq)(rq);
10931 cfs_rq->runtime_enabled = runtime_enabled;
10932 cfs_rq->runtime_remaining = 0;
10933
10934 if (cfs_rq->throttled)
10935 unthrottle_cfs_rq(cfs_rq);
10936 }
10937
10938 if (runtime_was_enabled && !runtime_enabled)
10939 cfs_bandwidth_usage_dec();
10940
10941 return 0;
10942 }
10943
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)10944 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10945 {
10946 u64 quota, period, burst;
10947
10948 period = ktime_to_ns(tg->cfs_bandwidth.period);
10949 burst = tg->cfs_bandwidth.burst;
10950 if (cfs_quota_us < 0)
10951 quota = RUNTIME_INF;
10952 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10953 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10954 else
10955 return -EINVAL;
10956
10957 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10958 }
10959
tg_get_cfs_quota(struct task_group * tg)10960 static long tg_get_cfs_quota(struct task_group *tg)
10961 {
10962 u64 quota_us;
10963
10964 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10965 return -1;
10966
10967 quota_us = tg->cfs_bandwidth.quota;
10968 do_div(quota_us, NSEC_PER_USEC);
10969
10970 return quota_us;
10971 }
10972
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)10973 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10974 {
10975 u64 quota, period, burst;
10976
10977 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10978 return -EINVAL;
10979
10980 period = (u64)cfs_period_us * NSEC_PER_USEC;
10981 quota = tg->cfs_bandwidth.quota;
10982 burst = tg->cfs_bandwidth.burst;
10983
10984 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10985 }
10986
tg_get_cfs_period(struct task_group * tg)10987 static long tg_get_cfs_period(struct task_group *tg)
10988 {
10989 u64 cfs_period_us;
10990
10991 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10992 do_div(cfs_period_us, NSEC_PER_USEC);
10993
10994 return cfs_period_us;
10995 }
10996
tg_set_cfs_burst(struct task_group * tg,long cfs_burst_us)10997 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10998 {
10999 u64 quota, period, burst;
11000
11001 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
11002 return -EINVAL;
11003
11004 burst = (u64)cfs_burst_us * NSEC_PER_USEC;
11005 period = ktime_to_ns(tg->cfs_bandwidth.period);
11006 quota = tg->cfs_bandwidth.quota;
11007
11008 return tg_set_cfs_bandwidth(tg, period, quota, burst);
11009 }
11010
tg_get_cfs_burst(struct task_group * tg)11011 static long tg_get_cfs_burst(struct task_group *tg)
11012 {
11013 u64 burst_us;
11014
11015 burst_us = tg->cfs_bandwidth.burst;
11016 do_div(burst_us, NSEC_PER_USEC);
11017
11018 return burst_us;
11019 }
11020
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)11021 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
11022 struct cftype *cft)
11023 {
11024 return tg_get_cfs_quota(css_tg(css));
11025 }
11026
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)11027 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
11028 struct cftype *cftype, s64 cfs_quota_us)
11029 {
11030 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
11031 }
11032
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11033 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
11034 struct cftype *cft)
11035 {
11036 return tg_get_cfs_period(css_tg(css));
11037 }
11038
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)11039 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
11040 struct cftype *cftype, u64 cfs_period_us)
11041 {
11042 return tg_set_cfs_period(css_tg(css), cfs_period_us);
11043 }
11044
cpu_cfs_burst_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11045 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
11046 struct cftype *cft)
11047 {
11048 return tg_get_cfs_burst(css_tg(css));
11049 }
11050
cpu_cfs_burst_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_burst_us)11051 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
11052 struct cftype *cftype, u64 cfs_burst_us)
11053 {
11054 return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
11055 }
11056
11057 struct cfs_schedulable_data {
11058 struct task_group *tg;
11059 u64 period, quota;
11060 };
11061
11062 /*
11063 * normalize group quota/period to be quota/max_period
11064 * note: units are usecs
11065 */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)11066 static u64 normalize_cfs_quota(struct task_group *tg,
11067 struct cfs_schedulable_data *d)
11068 {
11069 u64 quota, period;
11070
11071 if (tg == d->tg) {
11072 period = d->period;
11073 quota = d->quota;
11074 } else {
11075 period = tg_get_cfs_period(tg);
11076 quota = tg_get_cfs_quota(tg);
11077 }
11078
11079 /* note: these should typically be equivalent */
11080 if (quota == RUNTIME_INF || quota == -1)
11081 return RUNTIME_INF;
11082
11083 return to_ratio(period, quota);
11084 }
11085
tg_cfs_schedulable_down(struct task_group * tg,void * data)11086 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
11087 {
11088 struct cfs_schedulable_data *d = data;
11089 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11090 s64 quota = 0, parent_quota = -1;
11091
11092 if (!tg->parent) {
11093 quota = RUNTIME_INF;
11094 } else {
11095 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
11096
11097 quota = normalize_cfs_quota(tg, d);
11098 parent_quota = parent_b->hierarchical_quota;
11099
11100 /*
11101 * Ensure max(child_quota) <= parent_quota. On cgroup2,
11102 * always take the non-RUNTIME_INF min. On cgroup1, only
11103 * inherit when no limit is set. In both cases this is used
11104 * by the scheduler to determine if a given CFS task has a
11105 * bandwidth constraint at some higher level.
11106 */
11107 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
11108 if (quota == RUNTIME_INF)
11109 quota = parent_quota;
11110 else if (parent_quota != RUNTIME_INF)
11111 quota = min(quota, parent_quota);
11112 } else {
11113 if (quota == RUNTIME_INF)
11114 quota = parent_quota;
11115 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
11116 return -EINVAL;
11117 }
11118 }
11119 cfs_b->hierarchical_quota = quota;
11120
11121 return 0;
11122 }
11123
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)11124 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
11125 {
11126 int ret;
11127 struct cfs_schedulable_data data = {
11128 .tg = tg,
11129 .period = period,
11130 .quota = quota,
11131 };
11132
11133 if (quota != RUNTIME_INF) {
11134 do_div(data.period, NSEC_PER_USEC);
11135 do_div(data.quota, NSEC_PER_USEC);
11136 }
11137
11138 rcu_read_lock();
11139 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
11140 rcu_read_unlock();
11141
11142 return ret;
11143 }
11144
cpu_cfs_stat_show(struct seq_file * sf,void * v)11145 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
11146 {
11147 struct task_group *tg = css_tg(seq_css(sf));
11148 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11149
11150 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
11151 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
11152 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
11153
11154 if (schedstat_enabled() && tg != &root_task_group) {
11155 struct sched_statistics *stats;
11156 u64 ws = 0;
11157 int i;
11158
11159 for_each_possible_cpu(i) {
11160 stats = __schedstats_from_se(tg->se[i]);
11161 ws += schedstat_val(stats->wait_sum);
11162 }
11163
11164 seq_printf(sf, "wait_sum %llu\n", ws);
11165 }
11166
11167 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
11168 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
11169
11170 return 0;
11171 }
11172
throttled_time_self(struct task_group * tg)11173 static u64 throttled_time_self(struct task_group *tg)
11174 {
11175 int i;
11176 u64 total = 0;
11177
11178 for_each_possible_cpu(i) {
11179 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time);
11180 }
11181
11182 return total;
11183 }
11184
cpu_cfs_local_stat_show(struct seq_file * sf,void * v)11185 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v)
11186 {
11187 struct task_group *tg = css_tg(seq_css(sf));
11188
11189 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg));
11190
11191 return 0;
11192 }
11193 #endif /* CONFIG_CFS_BANDWIDTH */
11194 #endif /* CONFIG_FAIR_GROUP_SCHED */
11195
11196 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)11197 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
11198 struct cftype *cft, s64 val)
11199 {
11200 return sched_group_set_rt_runtime(css_tg(css), val);
11201 }
11202
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)11203 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
11204 struct cftype *cft)
11205 {
11206 return sched_group_rt_runtime(css_tg(css));
11207 }
11208
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)11209 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
11210 struct cftype *cftype, u64 rt_period_us)
11211 {
11212 return sched_group_set_rt_period(css_tg(css), rt_period_us);
11213 }
11214
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)11215 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
11216 struct cftype *cft)
11217 {
11218 return sched_group_rt_period(css_tg(css));
11219 }
11220 #endif /* CONFIG_RT_GROUP_SCHED */
11221
11222 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_idle_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)11223 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
11224 struct cftype *cft)
11225 {
11226 return css_tg(css)->idle;
11227 }
11228
cpu_idle_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 idle)11229 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
11230 struct cftype *cft, s64 idle)
11231 {
11232 return sched_group_set_idle(css_tg(css), idle);
11233 }
11234 #endif
11235
11236 static struct cftype cpu_legacy_files[] = {
11237 #ifdef CONFIG_FAIR_GROUP_SCHED
11238 {
11239 .name = "shares",
11240 .read_u64 = cpu_shares_read_u64,
11241 .write_u64 = cpu_shares_write_u64,
11242 },
11243 {
11244 .name = "idle",
11245 .read_s64 = cpu_idle_read_s64,
11246 .write_s64 = cpu_idle_write_s64,
11247 },
11248 #endif
11249 #ifdef CONFIG_CFS_BANDWIDTH
11250 {
11251 .name = "cfs_quota_us",
11252 .read_s64 = cpu_cfs_quota_read_s64,
11253 .write_s64 = cpu_cfs_quota_write_s64,
11254 },
11255 {
11256 .name = "cfs_period_us",
11257 .read_u64 = cpu_cfs_period_read_u64,
11258 .write_u64 = cpu_cfs_period_write_u64,
11259 },
11260 {
11261 .name = "cfs_burst_us",
11262 .read_u64 = cpu_cfs_burst_read_u64,
11263 .write_u64 = cpu_cfs_burst_write_u64,
11264 },
11265 {
11266 .name = "stat",
11267 .seq_show = cpu_cfs_stat_show,
11268 },
11269 {
11270 .name = "stat.local",
11271 .seq_show = cpu_cfs_local_stat_show,
11272 },
11273 #endif
11274 #ifdef CONFIG_RT_GROUP_SCHED
11275 {
11276 .name = "rt_runtime_us",
11277 .read_s64 = cpu_rt_runtime_read,
11278 .write_s64 = cpu_rt_runtime_write,
11279 },
11280 {
11281 .name = "rt_period_us",
11282 .read_u64 = cpu_rt_period_read_uint,
11283 .write_u64 = cpu_rt_period_write_uint,
11284 },
11285 #endif
11286 #ifdef CONFIG_UCLAMP_TASK_GROUP
11287 {
11288 .name = "uclamp.min",
11289 .flags = CFTYPE_NOT_ON_ROOT,
11290 .seq_show = cpu_uclamp_min_show,
11291 .write = cpu_uclamp_min_write,
11292 },
11293 {
11294 .name = "uclamp.max",
11295 .flags = CFTYPE_NOT_ON_ROOT,
11296 .seq_show = cpu_uclamp_max_show,
11297 .write = cpu_uclamp_max_write,
11298 },
11299 #endif
11300 { } /* Terminate */
11301 };
11302
cpu_extra_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)11303 static int cpu_extra_stat_show(struct seq_file *sf,
11304 struct cgroup_subsys_state *css)
11305 {
11306 #ifdef CONFIG_CFS_BANDWIDTH
11307 {
11308 struct task_group *tg = css_tg(css);
11309 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
11310 u64 throttled_usec, burst_usec;
11311
11312 throttled_usec = cfs_b->throttled_time;
11313 do_div(throttled_usec, NSEC_PER_USEC);
11314 burst_usec = cfs_b->burst_time;
11315 do_div(burst_usec, NSEC_PER_USEC);
11316
11317 seq_printf(sf, "nr_periods %d\n"
11318 "nr_throttled %d\n"
11319 "throttled_usec %llu\n"
11320 "nr_bursts %d\n"
11321 "burst_usec %llu\n",
11322 cfs_b->nr_periods, cfs_b->nr_throttled,
11323 throttled_usec, cfs_b->nr_burst, burst_usec);
11324 }
11325 #endif
11326 return 0;
11327 }
11328
cpu_local_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)11329 static int cpu_local_stat_show(struct seq_file *sf,
11330 struct cgroup_subsys_state *css)
11331 {
11332 #ifdef CONFIG_CFS_BANDWIDTH
11333 {
11334 struct task_group *tg = css_tg(css);
11335 u64 throttled_self_usec;
11336
11337 throttled_self_usec = throttled_time_self(tg);
11338 do_div(throttled_self_usec, NSEC_PER_USEC);
11339
11340 seq_printf(sf, "throttled_usec %llu\n",
11341 throttled_self_usec);
11342 }
11343 #endif
11344 return 0;
11345 }
11346
11347 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_weight_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)11348 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
11349 struct cftype *cft)
11350 {
11351 struct task_group *tg = css_tg(css);
11352 u64 weight = scale_load_down(tg->shares);
11353
11354 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
11355 }
11356
cpu_weight_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 weight)11357 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
11358 struct cftype *cft, u64 weight)
11359 {
11360 /*
11361 * cgroup weight knobs should use the common MIN, DFL and MAX
11362 * values which are 1, 100 and 10000 respectively. While it loses
11363 * a bit of range on both ends, it maps pretty well onto the shares
11364 * value used by scheduler and the round-trip conversions preserve
11365 * the original value over the entire range.
11366 */
11367 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
11368 return -ERANGE;
11369
11370 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11371
11372 return sched_group_set_shares(css_tg(css), scale_load(weight));
11373 }
11374
cpu_weight_nice_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)11375 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11376 struct cftype *cft)
11377 {
11378 unsigned long weight = scale_load_down(css_tg(css)->shares);
11379 int last_delta = INT_MAX;
11380 int prio, delta;
11381
11382 /* find the closest nice value to the current weight */
11383 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11384 delta = abs(sched_prio_to_weight[prio] - weight);
11385 if (delta >= last_delta)
11386 break;
11387 last_delta = delta;
11388 }
11389
11390 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11391 }
11392
cpu_weight_nice_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 nice)11393 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11394 struct cftype *cft, s64 nice)
11395 {
11396 unsigned long weight;
11397 int idx;
11398
11399 if (nice < MIN_NICE || nice > MAX_NICE)
11400 return -ERANGE;
11401
11402 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11403 idx = array_index_nospec(idx, 40);
11404 weight = sched_prio_to_weight[idx];
11405
11406 return sched_group_set_shares(css_tg(css), scale_load(weight));
11407 }
11408 #endif
11409
cpu_period_quota_print(struct seq_file * sf,long period,long quota)11410 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11411 long period, long quota)
11412 {
11413 if (quota < 0)
11414 seq_puts(sf, "max");
11415 else
11416 seq_printf(sf, "%ld", quota);
11417
11418 seq_printf(sf, " %ld\n", period);
11419 }
11420
11421 /* caller should put the current value in *@periodp before calling */
cpu_period_quota_parse(char * buf,u64 * periodp,u64 * quotap)11422 static int __maybe_unused cpu_period_quota_parse(char *buf,
11423 u64 *periodp, u64 *quotap)
11424 {
11425 char tok[21]; /* U64_MAX */
11426
11427 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11428 return -EINVAL;
11429
11430 *periodp *= NSEC_PER_USEC;
11431
11432 if (sscanf(tok, "%llu", quotap))
11433 *quotap *= NSEC_PER_USEC;
11434 else if (!strcmp(tok, "max"))
11435 *quotap = RUNTIME_INF;
11436 else
11437 return -EINVAL;
11438
11439 return 0;
11440 }
11441
11442 #ifdef CONFIG_CFS_BANDWIDTH
cpu_max_show(struct seq_file * sf,void * v)11443 static int cpu_max_show(struct seq_file *sf, void *v)
11444 {
11445 struct task_group *tg = css_tg(seq_css(sf));
11446
11447 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11448 return 0;
11449 }
11450
cpu_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)11451 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11452 char *buf, size_t nbytes, loff_t off)
11453 {
11454 struct task_group *tg = css_tg(of_css(of));
11455 u64 period = tg_get_cfs_period(tg);
11456 u64 burst = tg->cfs_bandwidth.burst;
11457 u64 quota;
11458 int ret;
11459
11460 ret = cpu_period_quota_parse(buf, &period, "a);
11461 if (!ret)
11462 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11463 return ret ?: nbytes;
11464 }
11465 #endif
11466
11467 static struct cftype cpu_files[] = {
11468 #ifdef CONFIG_FAIR_GROUP_SCHED
11469 {
11470 .name = "weight",
11471 .flags = CFTYPE_NOT_ON_ROOT,
11472 .read_u64 = cpu_weight_read_u64,
11473 .write_u64 = cpu_weight_write_u64,
11474 },
11475 {
11476 .name = "weight.nice",
11477 .flags = CFTYPE_NOT_ON_ROOT,
11478 .read_s64 = cpu_weight_nice_read_s64,
11479 .write_s64 = cpu_weight_nice_write_s64,
11480 },
11481 {
11482 .name = "idle",
11483 .flags = CFTYPE_NOT_ON_ROOT,
11484 .read_s64 = cpu_idle_read_s64,
11485 .write_s64 = cpu_idle_write_s64,
11486 },
11487 #endif
11488 #ifdef CONFIG_CFS_BANDWIDTH
11489 {
11490 .name = "max",
11491 .flags = CFTYPE_NOT_ON_ROOT,
11492 .seq_show = cpu_max_show,
11493 .write = cpu_max_write,
11494 },
11495 {
11496 .name = "max.burst",
11497 .flags = CFTYPE_NOT_ON_ROOT,
11498 .read_u64 = cpu_cfs_burst_read_u64,
11499 .write_u64 = cpu_cfs_burst_write_u64,
11500 },
11501 #endif
11502 #ifdef CONFIG_UCLAMP_TASK_GROUP
11503 {
11504 .name = "uclamp.min",
11505 .flags = CFTYPE_NOT_ON_ROOT,
11506 .seq_show = cpu_uclamp_min_show,
11507 .write = cpu_uclamp_min_write,
11508 },
11509 {
11510 .name = "uclamp.max",
11511 .flags = CFTYPE_NOT_ON_ROOT,
11512 .seq_show = cpu_uclamp_max_show,
11513 .write = cpu_uclamp_max_write,
11514 },
11515 #endif
11516 { } /* terminate */
11517 };
11518
11519 struct cgroup_subsys cpu_cgrp_subsys = {
11520 .css_alloc = cpu_cgroup_css_alloc,
11521 .css_online = cpu_cgroup_css_online,
11522 .css_released = cpu_cgroup_css_released,
11523 .css_free = cpu_cgroup_css_free,
11524 .css_extra_stat_show = cpu_extra_stat_show,
11525 .css_local_stat_show = cpu_local_stat_show,
11526 #ifdef CONFIG_RT_GROUP_SCHED
11527 .can_attach = cpu_cgroup_can_attach,
11528 #endif
11529 .attach = cpu_cgroup_attach,
11530 .legacy_cftypes = cpu_legacy_files,
11531 .dfl_cftypes = cpu_files,
11532 .early_init = true,
11533 .threaded = true,
11534 };
11535
11536 #endif /* CONFIG_CGROUP_SCHED */
11537
dump_cpu_task(int cpu)11538 void dump_cpu_task(int cpu)
11539 {
11540 if (cpu == smp_processor_id() && in_hardirq()) {
11541 struct pt_regs *regs;
11542
11543 regs = get_irq_regs();
11544 if (regs) {
11545 show_regs(regs);
11546 return;
11547 }
11548 }
11549
11550 if (trigger_single_cpu_backtrace(cpu))
11551 return;
11552
11553 pr_info("Task dump for CPU %d:\n", cpu);
11554 sched_show_task(cpu_curr(cpu));
11555 }
11556
11557 /*
11558 * Nice levels are multiplicative, with a gentle 10% change for every
11559 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11560 * nice 1, it will get ~10% less CPU time than another CPU-bound task
11561 * that remained on nice 0.
11562 *
11563 * The "10% effect" is relative and cumulative: from _any_ nice level,
11564 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11565 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11566 * If a task goes up by ~10% and another task goes down by ~10% then
11567 * the relative distance between them is ~25%.)
11568 */
11569 const int sched_prio_to_weight[40] = {
11570 /* -20 */ 88761, 71755, 56483, 46273, 36291,
11571 /* -15 */ 29154, 23254, 18705, 14949, 11916,
11572 /* -10 */ 9548, 7620, 6100, 4904, 3906,
11573 /* -5 */ 3121, 2501, 1991, 1586, 1277,
11574 /* 0 */ 1024, 820, 655, 526, 423,
11575 /* 5 */ 335, 272, 215, 172, 137,
11576 /* 10 */ 110, 87, 70, 56, 45,
11577 /* 15 */ 36, 29, 23, 18, 15,
11578 };
11579
11580 /*
11581 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11582 *
11583 * In cases where the weight does not change often, we can use the
11584 * precalculated inverse to speed up arithmetics by turning divisions
11585 * into multiplications:
11586 */
11587 const u32 sched_prio_to_wmult[40] = {
11588 /* -20 */ 48388, 59856, 76040, 92818, 118348,
11589 /* -15 */ 147320, 184698, 229616, 287308, 360437,
11590 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
11591 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
11592 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
11593 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
11594 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
11595 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11596 };
11597
call_trace_sched_update_nr_running(struct rq * rq,int count)11598 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11599 {
11600 trace_sched_update_nr_running_tp(rq, count);
11601 }
11602
11603 #ifdef CONFIG_SCHED_MM_CID
11604
11605 /*
11606 * @cid_lock: Guarantee forward-progress of cid allocation.
11607 *
11608 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock
11609 * is only used when contention is detected by the lock-free allocation so
11610 * forward progress can be guaranteed.
11611 */
11612 DEFINE_RAW_SPINLOCK(cid_lock);
11613
11614 /*
11615 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock.
11616 *
11617 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is
11618 * detected, it is set to 1 to ensure that all newly coming allocations are
11619 * serialized by @cid_lock until the allocation which detected contention
11620 * completes and sets @use_cid_lock back to 0. This guarantees forward progress
11621 * of a cid allocation.
11622 */
11623 int use_cid_lock;
11624
11625 /*
11626 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid
11627 * concurrently with respect to the execution of the source runqueue context
11628 * switch.
11629 *
11630 * There is one basic properties we want to guarantee here:
11631 *
11632 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively
11633 * used by a task. That would lead to concurrent allocation of the cid and
11634 * userspace corruption.
11635 *
11636 * Provide this guarantee by introducing a Dekker memory ordering to guarantee
11637 * that a pair of loads observe at least one of a pair of stores, which can be
11638 * shown as:
11639 *
11640 * X = Y = 0
11641 *
11642 * w[X]=1 w[Y]=1
11643 * MB MB
11644 * r[Y]=y r[X]=x
11645 *
11646 * Which guarantees that x==0 && y==0 is impossible. But rather than using
11647 * values 0 and 1, this algorithm cares about specific state transitions of the
11648 * runqueue current task (as updated by the scheduler context switch), and the
11649 * per-mm/cpu cid value.
11650 *
11651 * Let's introduce task (Y) which has task->mm == mm and task (N) which has
11652 * task->mm != mm for the rest of the discussion. There are two scheduler state
11653 * transitions on context switch we care about:
11654 *
11655 * (TSA) Store to rq->curr with transition from (N) to (Y)
11656 *
11657 * (TSB) Store to rq->curr with transition from (Y) to (N)
11658 *
11659 * On the remote-clear side, there is one transition we care about:
11660 *
11661 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag
11662 *
11663 * There is also a transition to UNSET state which can be performed from all
11664 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which
11665 * guarantees that only a single thread will succeed:
11666 *
11667 * (TMB) cmpxchg to *pcpu_cid to mark UNSET
11668 *
11669 * Just to be clear, what we do _not_ want to happen is a transition to UNSET
11670 * when a thread is actively using the cid (property (1)).
11671 *
11672 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions.
11673 *
11674 * Scenario A) (TSA)+(TMA) (from next task perspective)
11675 *
11676 * CPU0 CPU1
11677 *
11678 * Context switch CS-1 Remote-clear
11679 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA)
11680 * (implied barrier after cmpxchg)
11681 * - switch_mm_cid()
11682 * - memory barrier (see switch_mm_cid()
11683 * comment explaining how this barrier
11684 * is combined with other scheduler
11685 * barriers)
11686 * - mm_cid_get (next)
11687 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr)
11688 *
11689 * This Dekker ensures that either task (Y) is observed by the
11690 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are
11691 * observed.
11692 *
11693 * If task (Y) store is observed by rcu_dereference(), it means that there is
11694 * still an active task on the cpu. Remote-clear will therefore not transition
11695 * to UNSET, which fulfills property (1).
11696 *
11697 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(),
11698 * it will move its state to UNSET, which clears the percpu cid perhaps
11699 * uselessly (which is not an issue for correctness). Because task (Y) is not
11700 * observed, CPU1 can move ahead to set the state to UNSET. Because moving
11701 * state to UNSET is done with a cmpxchg expecting that the old state has the
11702 * LAZY flag set, only one thread will successfully UNSET.
11703 *
11704 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0
11705 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and
11706 * CPU1 will observe task (Y) and do nothing more, which is fine.
11707 *
11708 * What we are effectively preventing with this Dekker is a scenario where
11709 * neither LAZY flag nor store (Y) are observed, which would fail property (1)
11710 * because this would UNSET a cid which is actively used.
11711 */
11712
sched_mm_cid_migrate_from(struct task_struct * t)11713 void sched_mm_cid_migrate_from(struct task_struct *t)
11714 {
11715 t->migrate_from_cpu = task_cpu(t);
11716 }
11717
11718 static
__sched_mm_cid_migrate_from_fetch_cid(struct rq * src_rq,struct task_struct * t,struct mm_cid * src_pcpu_cid)11719 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq,
11720 struct task_struct *t,
11721 struct mm_cid *src_pcpu_cid)
11722 {
11723 struct mm_struct *mm = t->mm;
11724 struct task_struct *src_task;
11725 int src_cid, last_mm_cid;
11726
11727 if (!mm)
11728 return -1;
11729
11730 last_mm_cid = t->last_mm_cid;
11731 /*
11732 * If the migrated task has no last cid, or if the current
11733 * task on src rq uses the cid, it means the source cid does not need
11734 * to be moved to the destination cpu.
11735 */
11736 if (last_mm_cid == -1)
11737 return -1;
11738 src_cid = READ_ONCE(src_pcpu_cid->cid);
11739 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid)
11740 return -1;
11741
11742 /*
11743 * If we observe an active task using the mm on this rq, it means we
11744 * are not the last task to be migrated from this cpu for this mm, so
11745 * there is no need to move src_cid to the destination cpu.
11746 */
11747 rcu_read_lock();
11748 src_task = rcu_dereference(src_rq->curr);
11749 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11750 rcu_read_unlock();
11751 t->last_mm_cid = -1;
11752 return -1;
11753 }
11754 rcu_read_unlock();
11755
11756 return src_cid;
11757 }
11758
11759 static
__sched_mm_cid_migrate_from_try_steal_cid(struct rq * src_rq,struct task_struct * t,struct mm_cid * src_pcpu_cid,int src_cid)11760 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq,
11761 struct task_struct *t,
11762 struct mm_cid *src_pcpu_cid,
11763 int src_cid)
11764 {
11765 struct task_struct *src_task;
11766 struct mm_struct *mm = t->mm;
11767 int lazy_cid;
11768
11769 if (src_cid == -1)
11770 return -1;
11771
11772 /*
11773 * Attempt to clear the source cpu cid to move it to the destination
11774 * cpu.
11775 */
11776 lazy_cid = mm_cid_set_lazy_put(src_cid);
11777 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid))
11778 return -1;
11779
11780 /*
11781 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11782 * rq->curr->mm matches the scheduler barrier in context_switch()
11783 * between store to rq->curr and load of prev and next task's
11784 * per-mm/cpu cid.
11785 *
11786 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11787 * rq->curr->mm_cid_active matches the barrier in
11788 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11789 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11790 * load of per-mm/cpu cid.
11791 */
11792
11793 /*
11794 * If we observe an active task using the mm on this rq after setting
11795 * the lazy-put flag, this task will be responsible for transitioning
11796 * from lazy-put flag set to MM_CID_UNSET.
11797 */
11798 rcu_read_lock();
11799 src_task = rcu_dereference(src_rq->curr);
11800 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) {
11801 rcu_read_unlock();
11802 /*
11803 * We observed an active task for this mm, there is therefore
11804 * no point in moving this cid to the destination cpu.
11805 */
11806 t->last_mm_cid = -1;
11807 return -1;
11808 }
11809 rcu_read_unlock();
11810
11811 /*
11812 * The src_cid is unused, so it can be unset.
11813 */
11814 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11815 return -1;
11816 return src_cid;
11817 }
11818
11819 /*
11820 * Migration to dst cpu. Called with dst_rq lock held.
11821 * Interrupts are disabled, which keeps the window of cid ownership without the
11822 * source rq lock held small.
11823 */
sched_mm_cid_migrate_to(struct rq * dst_rq,struct task_struct * t)11824 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t)
11825 {
11826 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid;
11827 struct mm_struct *mm = t->mm;
11828 int src_cid, dst_cid, src_cpu;
11829 struct rq *src_rq;
11830
11831 lockdep_assert_rq_held(dst_rq);
11832
11833 if (!mm)
11834 return;
11835 src_cpu = t->migrate_from_cpu;
11836 if (src_cpu == -1) {
11837 t->last_mm_cid = -1;
11838 return;
11839 }
11840 /*
11841 * Move the src cid if the dst cid is unset. This keeps id
11842 * allocation closest to 0 in cases where few threads migrate around
11843 * many cpus.
11844 *
11845 * If destination cid is already set, we may have to just clear
11846 * the src cid to ensure compactness in frequent migrations
11847 * scenarios.
11848 *
11849 * It is not useful to clear the src cid when the number of threads is
11850 * greater or equal to the number of allowed cpus, because user-space
11851 * can expect that the number of allowed cids can reach the number of
11852 * allowed cpus.
11853 */
11854 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq));
11855 dst_cid = READ_ONCE(dst_pcpu_cid->cid);
11856 if (!mm_cid_is_unset(dst_cid) &&
11857 atomic_read(&mm->mm_users) >= t->nr_cpus_allowed)
11858 return;
11859 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu);
11860 src_rq = cpu_rq(src_cpu);
11861 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid);
11862 if (src_cid == -1)
11863 return;
11864 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid,
11865 src_cid);
11866 if (src_cid == -1)
11867 return;
11868 if (!mm_cid_is_unset(dst_cid)) {
11869 __mm_cid_put(mm, src_cid);
11870 return;
11871 }
11872 /* Move src_cid to dst cpu. */
11873 mm_cid_snapshot_time(dst_rq, mm);
11874 WRITE_ONCE(dst_pcpu_cid->cid, src_cid);
11875 }
11876
sched_mm_cid_remote_clear(struct mm_struct * mm,struct mm_cid * pcpu_cid,int cpu)11877 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid,
11878 int cpu)
11879 {
11880 struct rq *rq = cpu_rq(cpu);
11881 struct task_struct *t;
11882 unsigned long flags;
11883 int cid, lazy_cid;
11884
11885 cid = READ_ONCE(pcpu_cid->cid);
11886 if (!mm_cid_is_valid(cid))
11887 return;
11888
11889 /*
11890 * Clear the cpu cid if it is set to keep cid allocation compact. If
11891 * there happens to be other tasks left on the source cpu using this
11892 * mm, the next task using this mm will reallocate its cid on context
11893 * switch.
11894 */
11895 lazy_cid = mm_cid_set_lazy_put(cid);
11896 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid))
11897 return;
11898
11899 /*
11900 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11901 * rq->curr->mm matches the scheduler barrier in context_switch()
11902 * between store to rq->curr and load of prev and next task's
11903 * per-mm/cpu cid.
11904 *
11905 * The implicit barrier after cmpxchg per-mm/cpu cid before loading
11906 * rq->curr->mm_cid_active matches the barrier in
11907 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and
11908 * sched_mm_cid_after_execve() between store to t->mm_cid_active and
11909 * load of per-mm/cpu cid.
11910 */
11911
11912 /*
11913 * If we observe an active task using the mm on this rq after setting
11914 * the lazy-put flag, that task will be responsible for transitioning
11915 * from lazy-put flag set to MM_CID_UNSET.
11916 */
11917 rcu_read_lock();
11918 t = rcu_dereference(rq->curr);
11919 if (READ_ONCE(t->mm_cid_active) && t->mm == mm) {
11920 rcu_read_unlock();
11921 return;
11922 }
11923 rcu_read_unlock();
11924
11925 /*
11926 * The cid is unused, so it can be unset.
11927 * Disable interrupts to keep the window of cid ownership without rq
11928 * lock small.
11929 */
11930 local_irq_save(flags);
11931 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET))
11932 __mm_cid_put(mm, cid);
11933 local_irq_restore(flags);
11934 }
11935
sched_mm_cid_remote_clear_old(struct mm_struct * mm,int cpu)11936 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu)
11937 {
11938 struct rq *rq = cpu_rq(cpu);
11939 struct mm_cid *pcpu_cid;
11940 struct task_struct *curr;
11941 u64 rq_clock;
11942
11943 /*
11944 * rq->clock load is racy on 32-bit but one spurious clear once in a
11945 * while is irrelevant.
11946 */
11947 rq_clock = READ_ONCE(rq->clock);
11948 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11949
11950 /*
11951 * In order to take care of infrequently scheduled tasks, bump the time
11952 * snapshot associated with this cid if an active task using the mm is
11953 * observed on this rq.
11954 */
11955 rcu_read_lock();
11956 curr = rcu_dereference(rq->curr);
11957 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) {
11958 WRITE_ONCE(pcpu_cid->time, rq_clock);
11959 rcu_read_unlock();
11960 return;
11961 }
11962 rcu_read_unlock();
11963
11964 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS)
11965 return;
11966 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11967 }
11968
sched_mm_cid_remote_clear_weight(struct mm_struct * mm,int cpu,int weight)11969 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu,
11970 int weight)
11971 {
11972 struct mm_cid *pcpu_cid;
11973 int cid;
11974
11975 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu);
11976 cid = READ_ONCE(pcpu_cid->cid);
11977 if (!mm_cid_is_valid(cid) || cid < weight)
11978 return;
11979 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu);
11980 }
11981
task_mm_cid_work(struct callback_head * work)11982 static void task_mm_cid_work(struct callback_head *work)
11983 {
11984 unsigned long now = jiffies, old_scan, next_scan;
11985 struct task_struct *t = current;
11986 struct cpumask *cidmask;
11987 struct mm_struct *mm;
11988 int weight, cpu;
11989
11990 SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work));
11991
11992 work->next = work; /* Prevent double-add */
11993 if (t->flags & PF_EXITING)
11994 return;
11995 mm = t->mm;
11996 if (!mm)
11997 return;
11998 old_scan = READ_ONCE(mm->mm_cid_next_scan);
11999 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY);
12000 if (!old_scan) {
12001 unsigned long res;
12002
12003 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan);
12004 if (res != old_scan)
12005 old_scan = res;
12006 else
12007 old_scan = next_scan;
12008 }
12009 if (time_before(now, old_scan))
12010 return;
12011 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan))
12012 return;
12013 cidmask = mm_cidmask(mm);
12014 /* Clear cids that were not recently used. */
12015 for_each_possible_cpu(cpu)
12016 sched_mm_cid_remote_clear_old(mm, cpu);
12017 weight = cpumask_weight(cidmask);
12018 /*
12019 * Clear cids that are greater or equal to the cidmask weight to
12020 * recompact it.
12021 */
12022 for_each_possible_cpu(cpu)
12023 sched_mm_cid_remote_clear_weight(mm, cpu, weight);
12024 }
12025
init_sched_mm_cid(struct task_struct * t)12026 void init_sched_mm_cid(struct task_struct *t)
12027 {
12028 struct mm_struct *mm = t->mm;
12029 int mm_users = 0;
12030
12031 if (mm) {
12032 mm_users = atomic_read(&mm->mm_users);
12033 if (mm_users == 1)
12034 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY);
12035 }
12036 t->cid_work.next = &t->cid_work; /* Protect against double add */
12037 init_task_work(&t->cid_work, task_mm_cid_work);
12038 }
12039
task_tick_mm_cid(struct rq * rq,struct task_struct * curr)12040 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr)
12041 {
12042 struct callback_head *work = &curr->cid_work;
12043 unsigned long now = jiffies;
12044
12045 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) ||
12046 work->next != work)
12047 return;
12048 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan)))
12049 return;
12050
12051 /* No page allocation under rq lock */
12052 task_work_add(curr, work, TWA_RESUME | TWAF_NO_ALLOC);
12053 }
12054
sched_mm_cid_exit_signals(struct task_struct * t)12055 void sched_mm_cid_exit_signals(struct task_struct *t)
12056 {
12057 struct mm_struct *mm = t->mm;
12058 struct rq_flags rf;
12059 struct rq *rq;
12060
12061 if (!mm)
12062 return;
12063
12064 preempt_disable();
12065 rq = this_rq();
12066 rq_lock_irqsave(rq, &rf);
12067 preempt_enable_no_resched(); /* holding spinlock */
12068 WRITE_ONCE(t->mm_cid_active, 0);
12069 /*
12070 * Store t->mm_cid_active before loading per-mm/cpu cid.
12071 * Matches barrier in sched_mm_cid_remote_clear_old().
12072 */
12073 smp_mb();
12074 mm_cid_put(mm);
12075 t->last_mm_cid = t->mm_cid = -1;
12076 rq_unlock_irqrestore(rq, &rf);
12077 }
12078
sched_mm_cid_before_execve(struct task_struct * t)12079 void sched_mm_cid_before_execve(struct task_struct *t)
12080 {
12081 struct mm_struct *mm = t->mm;
12082 struct rq_flags rf;
12083 struct rq *rq;
12084
12085 if (!mm)
12086 return;
12087
12088 preempt_disable();
12089 rq = this_rq();
12090 rq_lock_irqsave(rq, &rf);
12091 preempt_enable_no_resched(); /* holding spinlock */
12092 WRITE_ONCE(t->mm_cid_active, 0);
12093 /*
12094 * Store t->mm_cid_active before loading per-mm/cpu cid.
12095 * Matches barrier in sched_mm_cid_remote_clear_old().
12096 */
12097 smp_mb();
12098 mm_cid_put(mm);
12099 t->last_mm_cid = t->mm_cid = -1;
12100 rq_unlock_irqrestore(rq, &rf);
12101 }
12102
sched_mm_cid_after_execve(struct task_struct * t)12103 void sched_mm_cid_after_execve(struct task_struct *t)
12104 {
12105 struct mm_struct *mm = t->mm;
12106 struct rq_flags rf;
12107 struct rq *rq;
12108
12109 if (!mm)
12110 return;
12111
12112 preempt_disable();
12113 rq = this_rq();
12114 rq_lock_irqsave(rq, &rf);
12115 preempt_enable_no_resched(); /* holding spinlock */
12116 WRITE_ONCE(t->mm_cid_active, 1);
12117 /*
12118 * Store t->mm_cid_active before loading per-mm/cpu cid.
12119 * Matches barrier in sched_mm_cid_remote_clear_old().
12120 */
12121 smp_mb();
12122 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, mm);
12123 rq_unlock_irqrestore(rq, &rf);
12124 rseq_set_notify_resume(t);
12125 }
12126
sched_mm_cid_fork(struct task_struct * t)12127 void sched_mm_cid_fork(struct task_struct *t)
12128 {
12129 WARN_ON_ONCE(!t->mm || t->mm_cid != -1);
12130 t->mm_cid_active = 1;
12131 }
12132 #endif
12133