xref: /openbmc/linux/drivers/acpi/acpi_pad.c (revision 68a8e457)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * acpi_pad.c ACPI Processor Aggregator Driver
4  *
5  * Copyright (c) 2009, Intel Corporation.
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/cpumask.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/kthread.h>
14 #include <uapi/linux/sched/types.h>
15 #include <linux/freezer.h>
16 #include <linux/cpu.h>
17 #include <linux/tick.h>
18 #include <linux/slab.h>
19 #include <linux/acpi.h>
20 #include <linux/perf_event.h>
21 #include <asm/mwait.h>
22 #include <xen/xen.h>
23 
24 #define ACPI_PROCESSOR_AGGREGATOR_CLASS	"acpi_pad"
25 #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
26 #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
27 static DEFINE_MUTEX(isolated_cpus_lock);
28 static DEFINE_MUTEX(round_robin_lock);
29 
30 static unsigned long power_saving_mwait_eax;
31 
32 static unsigned char tsc_detected_unstable;
33 static unsigned char tsc_marked_unstable;
34 
power_saving_mwait_init(void)35 static void power_saving_mwait_init(void)
36 {
37 	unsigned int eax, ebx, ecx, edx;
38 	unsigned int highest_cstate = 0;
39 	unsigned int highest_subcstate = 0;
40 	int i;
41 
42 	if (!boot_cpu_has(X86_FEATURE_MWAIT))
43 		return;
44 	if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
45 		return;
46 
47 	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
48 
49 	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
50 	    !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
51 		return;
52 
53 	edx >>= MWAIT_SUBSTATE_SIZE;
54 	for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
55 		if (edx & MWAIT_SUBSTATE_MASK) {
56 			highest_cstate = i;
57 			highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
58 		}
59 	}
60 	power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
61 		(highest_subcstate - 1);
62 
63 #if defined(CONFIG_X86)
64 	switch (boot_cpu_data.x86_vendor) {
65 	case X86_VENDOR_HYGON:
66 	case X86_VENDOR_AMD:
67 	case X86_VENDOR_INTEL:
68 	case X86_VENDOR_ZHAOXIN:
69 	case X86_VENDOR_CENTAUR:
70 		/*
71 		 * AMD Fam10h TSC will tick in all
72 		 * C/P/S0/S1 states when this bit is set.
73 		 */
74 		if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
75 			tsc_detected_unstable = 1;
76 		break;
77 	default:
78 		/* TSC could halt in idle */
79 		tsc_detected_unstable = 1;
80 	}
81 #endif
82 }
83 
84 static unsigned long cpu_weight[NR_CPUS];
85 static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
86 static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
round_robin_cpu(unsigned int tsk_index)87 static void round_robin_cpu(unsigned int tsk_index)
88 {
89 	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
90 	cpumask_var_t tmp;
91 	int cpu;
92 	unsigned long min_weight = -1;
93 	unsigned long preferred_cpu;
94 
95 	if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
96 		return;
97 
98 	mutex_lock(&round_robin_lock);
99 	cpumask_clear(tmp);
100 	for_each_cpu(cpu, pad_busy_cpus)
101 		cpumask_or(tmp, tmp, topology_sibling_cpumask(cpu));
102 	cpumask_andnot(tmp, cpu_online_mask, tmp);
103 	/* avoid HT sibilings if possible */
104 	if (cpumask_empty(tmp))
105 		cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
106 	if (cpumask_empty(tmp)) {
107 		mutex_unlock(&round_robin_lock);
108 		free_cpumask_var(tmp);
109 		return;
110 	}
111 	for_each_cpu(cpu, tmp) {
112 		if (cpu_weight[cpu] < min_weight) {
113 			min_weight = cpu_weight[cpu];
114 			preferred_cpu = cpu;
115 		}
116 	}
117 
118 	if (tsk_in_cpu[tsk_index] != -1)
119 		cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
120 	tsk_in_cpu[tsk_index] = preferred_cpu;
121 	cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
122 	cpu_weight[preferred_cpu]++;
123 	mutex_unlock(&round_robin_lock);
124 
125 	set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
126 
127 	free_cpumask_var(tmp);
128 }
129 
exit_round_robin(unsigned int tsk_index)130 static void exit_round_robin(unsigned int tsk_index)
131 {
132 	struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
133 
134 	if (tsk_in_cpu[tsk_index] != -1) {
135 		cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
136 		tsk_in_cpu[tsk_index] = -1;
137 	}
138 }
139 
140 static unsigned int idle_pct = 5; /* percentage */
141 static unsigned int round_robin_time = 1; /* second */
power_saving_thread(void * data)142 static int power_saving_thread(void *data)
143 {
144 	int do_sleep;
145 	unsigned int tsk_index = (unsigned long)data;
146 	u64 last_jiffies = 0;
147 
148 	sched_set_fifo_low(current);
149 
150 	while (!kthread_should_stop()) {
151 		unsigned long expire_time;
152 
153 		/* round robin to cpus */
154 		expire_time = last_jiffies + round_robin_time * HZ;
155 		if (time_before(expire_time, jiffies)) {
156 			last_jiffies = jiffies;
157 			round_robin_cpu(tsk_index);
158 		}
159 
160 		do_sleep = 0;
161 
162 		expire_time = jiffies + HZ * (100 - idle_pct) / 100;
163 
164 		while (!need_resched()) {
165 			if (tsc_detected_unstable && !tsc_marked_unstable) {
166 				/* TSC could halt in idle, so notify users */
167 				mark_tsc_unstable("TSC halts in idle");
168 				tsc_marked_unstable = 1;
169 			}
170 			local_irq_disable();
171 
172 			perf_lopwr_cb(true);
173 
174 			tick_broadcast_enable();
175 			tick_broadcast_enter();
176 			stop_critical_timings();
177 
178 			mwait_idle_with_hints(power_saving_mwait_eax, 1);
179 
180 			start_critical_timings();
181 			tick_broadcast_exit();
182 
183 			perf_lopwr_cb(false);
184 
185 			local_irq_enable();
186 
187 			if (time_before(expire_time, jiffies)) {
188 				do_sleep = 1;
189 				break;
190 			}
191 		}
192 
193 		/*
194 		 * current sched_rt has threshold for rt task running time.
195 		 * When a rt task uses 95% CPU time, the rt thread will be
196 		 * scheduled out for 5% CPU time to not starve other tasks. But
197 		 * the mechanism only works when all CPUs have RT task running,
198 		 * as if one CPU hasn't RT task, RT task from other CPUs will
199 		 * borrow CPU time from this CPU and cause RT task use > 95%
200 		 * CPU time. To make 'avoid starvation' work, takes a nap here.
201 		 */
202 		if (unlikely(do_sleep))
203 			schedule_timeout_killable(HZ * idle_pct / 100);
204 
205 		/* If an external event has set the need_resched flag, then
206 		 * we need to deal with it, or this loop will continue to
207 		 * spin without calling __mwait().
208 		 */
209 		if (unlikely(need_resched()))
210 			schedule();
211 	}
212 
213 	exit_round_robin(tsk_index);
214 	return 0;
215 }
216 
217 static struct task_struct *ps_tsks[NR_CPUS];
218 static unsigned int ps_tsk_num;
create_power_saving_task(void)219 static int create_power_saving_task(void)
220 {
221 	int rc;
222 
223 	ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
224 		(void *)(unsigned long)ps_tsk_num,
225 		"acpi_pad/%d", ps_tsk_num);
226 
227 	if (IS_ERR(ps_tsks[ps_tsk_num])) {
228 		rc = PTR_ERR(ps_tsks[ps_tsk_num]);
229 		ps_tsks[ps_tsk_num] = NULL;
230 	} else {
231 		rc = 0;
232 		ps_tsk_num++;
233 	}
234 
235 	return rc;
236 }
237 
destroy_power_saving_task(void)238 static void destroy_power_saving_task(void)
239 {
240 	if (ps_tsk_num > 0) {
241 		ps_tsk_num--;
242 		kthread_stop(ps_tsks[ps_tsk_num]);
243 		ps_tsks[ps_tsk_num] = NULL;
244 	}
245 }
246 
set_power_saving_task_num(unsigned int num)247 static void set_power_saving_task_num(unsigned int num)
248 {
249 	if (num > ps_tsk_num) {
250 		while (ps_tsk_num < num) {
251 			if (create_power_saving_task())
252 				return;
253 		}
254 	} else if (num < ps_tsk_num) {
255 		while (ps_tsk_num > num)
256 			destroy_power_saving_task();
257 	}
258 }
259 
acpi_pad_idle_cpus(unsigned int num_cpus)260 static void acpi_pad_idle_cpus(unsigned int num_cpus)
261 {
262 	cpus_read_lock();
263 
264 	num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
265 	set_power_saving_task_num(num_cpus);
266 
267 	cpus_read_unlock();
268 }
269 
acpi_pad_idle_cpus_num(void)270 static uint32_t acpi_pad_idle_cpus_num(void)
271 {
272 	return ps_tsk_num;
273 }
274 
rrtime_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)275 static ssize_t rrtime_store(struct device *dev,
276 	struct device_attribute *attr, const char *buf, size_t count)
277 {
278 	unsigned long num;
279 
280 	if (kstrtoul(buf, 0, &num))
281 		return -EINVAL;
282 	if (num < 1 || num >= 100)
283 		return -EINVAL;
284 	mutex_lock(&isolated_cpus_lock);
285 	round_robin_time = num;
286 	mutex_unlock(&isolated_cpus_lock);
287 	return count;
288 }
289 
rrtime_show(struct device * dev,struct device_attribute * attr,char * buf)290 static ssize_t rrtime_show(struct device *dev,
291 	struct device_attribute *attr, char *buf)
292 {
293 	return sysfs_emit(buf, "%d\n", round_robin_time);
294 }
295 static DEVICE_ATTR_RW(rrtime);
296 
idlepct_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)297 static ssize_t idlepct_store(struct device *dev,
298 	struct device_attribute *attr, const char *buf, size_t count)
299 {
300 	unsigned long num;
301 
302 	if (kstrtoul(buf, 0, &num))
303 		return -EINVAL;
304 	if (num < 1 || num >= 100)
305 		return -EINVAL;
306 	mutex_lock(&isolated_cpus_lock);
307 	idle_pct = num;
308 	mutex_unlock(&isolated_cpus_lock);
309 	return count;
310 }
311 
idlepct_show(struct device * dev,struct device_attribute * attr,char * buf)312 static ssize_t idlepct_show(struct device *dev,
313 	struct device_attribute *attr, char *buf)
314 {
315 	return sysfs_emit(buf, "%d\n", idle_pct);
316 }
317 static DEVICE_ATTR_RW(idlepct);
318 
idlecpus_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)319 static ssize_t idlecpus_store(struct device *dev,
320 	struct device_attribute *attr, const char *buf, size_t count)
321 {
322 	unsigned long num;
323 
324 	if (kstrtoul(buf, 0, &num))
325 		return -EINVAL;
326 	mutex_lock(&isolated_cpus_lock);
327 	acpi_pad_idle_cpus(num);
328 	mutex_unlock(&isolated_cpus_lock);
329 	return count;
330 }
331 
idlecpus_show(struct device * dev,struct device_attribute * attr,char * buf)332 static ssize_t idlecpus_show(struct device *dev,
333 	struct device_attribute *attr, char *buf)
334 {
335 	return cpumap_print_to_pagebuf(false, buf,
336 				       to_cpumask(pad_busy_cpus_bits));
337 }
338 
339 static DEVICE_ATTR_RW(idlecpus);
340 
acpi_pad_add_sysfs(struct acpi_device * device)341 static int acpi_pad_add_sysfs(struct acpi_device *device)
342 {
343 	int result;
344 
345 	result = device_create_file(&device->dev, &dev_attr_idlecpus);
346 	if (result)
347 		return -ENODEV;
348 	result = device_create_file(&device->dev, &dev_attr_idlepct);
349 	if (result) {
350 		device_remove_file(&device->dev, &dev_attr_idlecpus);
351 		return -ENODEV;
352 	}
353 	result = device_create_file(&device->dev, &dev_attr_rrtime);
354 	if (result) {
355 		device_remove_file(&device->dev, &dev_attr_idlecpus);
356 		device_remove_file(&device->dev, &dev_attr_idlepct);
357 		return -ENODEV;
358 	}
359 	return 0;
360 }
361 
acpi_pad_remove_sysfs(struct acpi_device * device)362 static void acpi_pad_remove_sysfs(struct acpi_device *device)
363 {
364 	device_remove_file(&device->dev, &dev_attr_idlecpus);
365 	device_remove_file(&device->dev, &dev_attr_idlepct);
366 	device_remove_file(&device->dev, &dev_attr_rrtime);
367 }
368 
369 /*
370  * Query firmware how many CPUs should be idle
371  * return -1 on failure
372  */
acpi_pad_pur(acpi_handle handle)373 static int acpi_pad_pur(acpi_handle handle)
374 {
375 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
376 	union acpi_object *package;
377 	int num = -1;
378 
379 	if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
380 		return num;
381 
382 	if (!buffer.length || !buffer.pointer)
383 		return num;
384 
385 	package = buffer.pointer;
386 
387 	if (package->type == ACPI_TYPE_PACKAGE &&
388 		package->package.count == 2 &&
389 		package->package.elements[0].integer.value == 1) /* rev 1 */
390 
391 		num = package->package.elements[1].integer.value;
392 
393 	kfree(buffer.pointer);
394 	return num;
395 }
396 
acpi_pad_handle_notify(acpi_handle handle)397 static void acpi_pad_handle_notify(acpi_handle handle)
398 {
399 	int num_cpus;
400 	uint32_t idle_cpus;
401 	struct acpi_buffer param = {
402 		.length = 4,
403 		.pointer = (void *)&idle_cpus,
404 	};
405 
406 	mutex_lock(&isolated_cpus_lock);
407 	num_cpus = acpi_pad_pur(handle);
408 	if (num_cpus < 0) {
409 		mutex_unlock(&isolated_cpus_lock);
410 		return;
411 	}
412 	acpi_pad_idle_cpus(num_cpus);
413 	idle_cpus = acpi_pad_idle_cpus_num();
414 	acpi_evaluate_ost(handle, ACPI_PROCESSOR_AGGREGATOR_NOTIFY, 0, &param);
415 	mutex_unlock(&isolated_cpus_lock);
416 }
417 
acpi_pad_notify(acpi_handle handle,u32 event,void * data)418 static void acpi_pad_notify(acpi_handle handle, u32 event,
419 	void *data)
420 {
421 	struct acpi_device *device = data;
422 
423 	switch (event) {
424 	case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
425 		acpi_pad_handle_notify(handle);
426 		acpi_bus_generate_netlink_event(device->pnp.device_class,
427 			dev_name(&device->dev), event, 0);
428 		break;
429 	default:
430 		pr_warn("Unsupported event [0x%x]\n", event);
431 		break;
432 	}
433 }
434 
acpi_pad_add(struct acpi_device * device)435 static int acpi_pad_add(struct acpi_device *device)
436 {
437 	acpi_status status;
438 
439 	strcpy(acpi_device_name(device), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
440 	strcpy(acpi_device_class(device), ACPI_PROCESSOR_AGGREGATOR_CLASS);
441 
442 	if (acpi_pad_add_sysfs(device))
443 		return -ENODEV;
444 
445 	status = acpi_install_notify_handler(device->handle,
446 		ACPI_DEVICE_NOTIFY, acpi_pad_notify, device);
447 	if (ACPI_FAILURE(status)) {
448 		acpi_pad_remove_sysfs(device);
449 		return -ENODEV;
450 	}
451 
452 	return 0;
453 }
454 
acpi_pad_remove(struct acpi_device * device)455 static void acpi_pad_remove(struct acpi_device *device)
456 {
457 	mutex_lock(&isolated_cpus_lock);
458 	acpi_pad_idle_cpus(0);
459 	mutex_unlock(&isolated_cpus_lock);
460 
461 	acpi_remove_notify_handler(device->handle,
462 		ACPI_DEVICE_NOTIFY, acpi_pad_notify);
463 	acpi_pad_remove_sysfs(device);
464 }
465 
466 static const struct acpi_device_id pad_device_ids[] = {
467 	{"ACPI000C", 0},
468 	{"", 0},
469 };
470 MODULE_DEVICE_TABLE(acpi, pad_device_ids);
471 
472 static struct acpi_driver acpi_pad_driver = {
473 	.name = "processor_aggregator",
474 	.class = ACPI_PROCESSOR_AGGREGATOR_CLASS,
475 	.ids = pad_device_ids,
476 	.ops = {
477 		.add = acpi_pad_add,
478 		.remove = acpi_pad_remove,
479 	},
480 };
481 
acpi_pad_init(void)482 static int __init acpi_pad_init(void)
483 {
484 	/* Xen ACPI PAD is used when running as Xen Dom0. */
485 	if (xen_initial_domain())
486 		return -ENODEV;
487 
488 	power_saving_mwait_init();
489 	if (power_saving_mwait_eax == 0)
490 		return -EINVAL;
491 
492 	return acpi_bus_register_driver(&acpi_pad_driver);
493 }
494 
acpi_pad_exit(void)495 static void __exit acpi_pad_exit(void)
496 {
497 	acpi_bus_unregister_driver(&acpi_pad_driver);
498 }
499 
500 module_init(acpi_pad_init);
501 module_exit(acpi_pad_exit);
502 MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
503 MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
504 MODULE_LICENSE("GPL");
505