1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2007-2017 Nicira, Inc.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/skbuff.h>
9 #include <linux/in.h>
10 #include <linux/ip.h>
11 #include <linux/openvswitch.h>
12 #include <linux/sctp.h>
13 #include <linux/tcp.h>
14 #include <linux/udp.h>
15 #include <linux/in6.h>
16 #include <linux/if_arp.h>
17 #include <linux/if_vlan.h>
18
19 #include <net/dst.h>
20 #include <net/gso.h>
21 #include <net/ip.h>
22 #include <net/ipv6.h>
23 #include <net/ip6_fib.h>
24 #include <net/checksum.h>
25 #include <net/dsfield.h>
26 #include <net/mpls.h>
27 #include <net/sctp/checksum.h>
28
29 #include "datapath.h"
30 #include "drop.h"
31 #include "flow.h"
32 #include "conntrack.h"
33 #include "vport.h"
34 #include "flow_netlink.h"
35 #include "openvswitch_trace.h"
36
37 struct deferred_action {
38 struct sk_buff *skb;
39 const struct nlattr *actions;
40 int actions_len;
41
42 /* Store pkt_key clone when creating deferred action. */
43 struct sw_flow_key pkt_key;
44 };
45
46 #define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
47 struct ovs_frag_data {
48 unsigned long dst;
49 struct vport *vport;
50 struct ovs_skb_cb cb;
51 __be16 inner_protocol;
52 u16 network_offset; /* valid only for MPLS */
53 u16 vlan_tci;
54 __be16 vlan_proto;
55 unsigned int l2_len;
56 u8 mac_proto;
57 u8 l2_data[MAX_L2_LEN];
58 };
59
60 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
61
62 #define DEFERRED_ACTION_FIFO_SIZE 10
63 #define OVS_RECURSION_LIMIT 5
64 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
65 struct action_fifo {
66 int head;
67 int tail;
68 /* Deferred action fifo queue storage. */
69 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
70 };
71
72 struct action_flow_keys {
73 struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
74 };
75
76 static struct action_fifo __percpu *action_fifos;
77 static struct action_flow_keys __percpu *flow_keys;
78 static DEFINE_PER_CPU(int, exec_actions_level);
79
80 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
81 * space. Return NULL if out of key spaces.
82 */
clone_key(const struct sw_flow_key * key_)83 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
84 {
85 struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
86 int level = this_cpu_read(exec_actions_level);
87 struct sw_flow_key *key = NULL;
88
89 if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
90 key = &keys->key[level - 1];
91 *key = *key_;
92 }
93
94 return key;
95 }
96
action_fifo_init(struct action_fifo * fifo)97 static void action_fifo_init(struct action_fifo *fifo)
98 {
99 fifo->head = 0;
100 fifo->tail = 0;
101 }
102
action_fifo_is_empty(const struct action_fifo * fifo)103 static bool action_fifo_is_empty(const struct action_fifo *fifo)
104 {
105 return (fifo->head == fifo->tail);
106 }
107
action_fifo_get(struct action_fifo * fifo)108 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
109 {
110 if (action_fifo_is_empty(fifo))
111 return NULL;
112
113 return &fifo->fifo[fifo->tail++];
114 }
115
action_fifo_put(struct action_fifo * fifo)116 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
117 {
118 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
119 return NULL;
120
121 return &fifo->fifo[fifo->head++];
122 }
123
124 /* Return true if fifo is not full */
add_deferred_actions(struct sk_buff * skb,const struct sw_flow_key * key,const struct nlattr * actions,const int actions_len)125 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
126 const struct sw_flow_key *key,
127 const struct nlattr *actions,
128 const int actions_len)
129 {
130 struct action_fifo *fifo;
131 struct deferred_action *da;
132
133 fifo = this_cpu_ptr(action_fifos);
134 da = action_fifo_put(fifo);
135 if (da) {
136 da->skb = skb;
137 da->actions = actions;
138 da->actions_len = actions_len;
139 da->pkt_key = *key;
140 }
141
142 return da;
143 }
144
invalidate_flow_key(struct sw_flow_key * key)145 static void invalidate_flow_key(struct sw_flow_key *key)
146 {
147 key->mac_proto |= SW_FLOW_KEY_INVALID;
148 }
149
is_flow_key_valid(const struct sw_flow_key * key)150 static bool is_flow_key_valid(const struct sw_flow_key *key)
151 {
152 return !(key->mac_proto & SW_FLOW_KEY_INVALID);
153 }
154
155 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
156 struct sw_flow_key *key,
157 u32 recirc_id,
158 const struct nlattr *actions, int len,
159 bool last, bool clone_flow_key);
160
161 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
162 struct sw_flow_key *key,
163 const struct nlattr *attr, int len);
164
push_mpls(struct sk_buff * skb,struct sw_flow_key * key,__be32 mpls_lse,__be16 mpls_ethertype,__u16 mac_len)165 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
166 __be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len)
167 {
168 int err;
169
170 err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len);
171 if (err)
172 return err;
173
174 if (!mac_len)
175 key->mac_proto = MAC_PROTO_NONE;
176
177 invalidate_flow_key(key);
178 return 0;
179 }
180
pop_mpls(struct sk_buff * skb,struct sw_flow_key * key,const __be16 ethertype)181 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
182 const __be16 ethertype)
183 {
184 int err;
185
186 err = skb_mpls_pop(skb, ethertype, skb->mac_len,
187 ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
188 if (err)
189 return err;
190
191 if (ethertype == htons(ETH_P_TEB))
192 key->mac_proto = MAC_PROTO_ETHERNET;
193
194 invalidate_flow_key(key);
195 return 0;
196 }
197
set_mpls(struct sk_buff * skb,struct sw_flow_key * flow_key,const __be32 * mpls_lse,const __be32 * mask)198 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
199 const __be32 *mpls_lse, const __be32 *mask)
200 {
201 struct mpls_shim_hdr *stack;
202 __be32 lse;
203 int err;
204
205 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
206 return -ENOMEM;
207
208 stack = mpls_hdr(skb);
209 lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
210 err = skb_mpls_update_lse(skb, lse);
211 if (err)
212 return err;
213
214 flow_key->mpls.lse[0] = lse;
215 return 0;
216 }
217
pop_vlan(struct sk_buff * skb,struct sw_flow_key * key)218 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
219 {
220 int err;
221
222 err = skb_vlan_pop(skb);
223 if (skb_vlan_tag_present(skb)) {
224 invalidate_flow_key(key);
225 } else {
226 key->eth.vlan.tci = 0;
227 key->eth.vlan.tpid = 0;
228 }
229 return err;
230 }
231
push_vlan(struct sk_buff * skb,struct sw_flow_key * key,const struct ovs_action_push_vlan * vlan)232 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
233 const struct ovs_action_push_vlan *vlan)
234 {
235 if (skb_vlan_tag_present(skb)) {
236 invalidate_flow_key(key);
237 } else {
238 key->eth.vlan.tci = vlan->vlan_tci;
239 key->eth.vlan.tpid = vlan->vlan_tpid;
240 }
241 return skb_vlan_push(skb, vlan->vlan_tpid,
242 ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
243 }
244
245 /* 'src' is already properly masked. */
ether_addr_copy_masked(u8 * dst_,const u8 * src_,const u8 * mask_)246 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
247 {
248 u16 *dst = (u16 *)dst_;
249 const u16 *src = (const u16 *)src_;
250 const u16 *mask = (const u16 *)mask_;
251
252 OVS_SET_MASKED(dst[0], src[0], mask[0]);
253 OVS_SET_MASKED(dst[1], src[1], mask[1]);
254 OVS_SET_MASKED(dst[2], src[2], mask[2]);
255 }
256
set_eth_addr(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_ethernet * key,const struct ovs_key_ethernet * mask)257 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
258 const struct ovs_key_ethernet *key,
259 const struct ovs_key_ethernet *mask)
260 {
261 int err;
262
263 err = skb_ensure_writable(skb, ETH_HLEN);
264 if (unlikely(err))
265 return err;
266
267 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
268
269 ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
270 mask->eth_src);
271 ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
272 mask->eth_dst);
273
274 skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
275
276 ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
277 ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
278 return 0;
279 }
280
281 /* pop_eth does not support VLAN packets as this action is never called
282 * for them.
283 */
pop_eth(struct sk_buff * skb,struct sw_flow_key * key)284 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
285 {
286 int err;
287
288 err = skb_eth_pop(skb);
289 if (err)
290 return err;
291
292 /* safe right before invalidate_flow_key */
293 key->mac_proto = MAC_PROTO_NONE;
294 invalidate_flow_key(key);
295 return 0;
296 }
297
push_eth(struct sk_buff * skb,struct sw_flow_key * key,const struct ovs_action_push_eth * ethh)298 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
299 const struct ovs_action_push_eth *ethh)
300 {
301 int err;
302
303 err = skb_eth_push(skb, ethh->addresses.eth_dst,
304 ethh->addresses.eth_src);
305 if (err)
306 return err;
307
308 /* safe right before invalidate_flow_key */
309 key->mac_proto = MAC_PROTO_ETHERNET;
310 invalidate_flow_key(key);
311 return 0;
312 }
313
push_nsh(struct sk_buff * skb,struct sw_flow_key * key,const struct nshhdr * nh)314 static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key,
315 const struct nshhdr *nh)
316 {
317 int err;
318
319 err = nsh_push(skb, nh);
320 if (err)
321 return err;
322
323 /* safe right before invalidate_flow_key */
324 key->mac_proto = MAC_PROTO_NONE;
325 invalidate_flow_key(key);
326 return 0;
327 }
328
pop_nsh(struct sk_buff * skb,struct sw_flow_key * key)329 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
330 {
331 int err;
332
333 err = nsh_pop(skb);
334 if (err)
335 return err;
336
337 /* safe right before invalidate_flow_key */
338 if (skb->protocol == htons(ETH_P_TEB))
339 key->mac_proto = MAC_PROTO_ETHERNET;
340 else
341 key->mac_proto = MAC_PROTO_NONE;
342 invalidate_flow_key(key);
343 return 0;
344 }
345
update_ip_l4_checksum(struct sk_buff * skb,struct iphdr * nh,__be32 addr,__be32 new_addr)346 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
347 __be32 addr, __be32 new_addr)
348 {
349 int transport_len = skb->len - skb_transport_offset(skb);
350
351 if (nh->frag_off & htons(IP_OFFSET))
352 return;
353
354 if (nh->protocol == IPPROTO_TCP) {
355 if (likely(transport_len >= sizeof(struct tcphdr)))
356 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
357 addr, new_addr, true);
358 } else if (nh->protocol == IPPROTO_UDP) {
359 if (likely(transport_len >= sizeof(struct udphdr))) {
360 struct udphdr *uh = udp_hdr(skb);
361
362 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
363 inet_proto_csum_replace4(&uh->check, skb,
364 addr, new_addr, true);
365 if (!uh->check)
366 uh->check = CSUM_MANGLED_0;
367 }
368 }
369 }
370 }
371
set_ip_addr(struct sk_buff * skb,struct iphdr * nh,__be32 * addr,__be32 new_addr)372 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
373 __be32 *addr, __be32 new_addr)
374 {
375 update_ip_l4_checksum(skb, nh, *addr, new_addr);
376 csum_replace4(&nh->check, *addr, new_addr);
377 skb_clear_hash(skb);
378 ovs_ct_clear(skb, NULL);
379 *addr = new_addr;
380 }
381
update_ipv6_checksum(struct sk_buff * skb,u8 l4_proto,__be32 addr[4],const __be32 new_addr[4])382 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
383 __be32 addr[4], const __be32 new_addr[4])
384 {
385 int transport_len = skb->len - skb_transport_offset(skb);
386
387 if (l4_proto == NEXTHDR_TCP) {
388 if (likely(transport_len >= sizeof(struct tcphdr)))
389 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
390 addr, new_addr, true);
391 } else if (l4_proto == NEXTHDR_UDP) {
392 if (likely(transport_len >= sizeof(struct udphdr))) {
393 struct udphdr *uh = udp_hdr(skb);
394
395 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
396 inet_proto_csum_replace16(&uh->check, skb,
397 addr, new_addr, true);
398 if (!uh->check)
399 uh->check = CSUM_MANGLED_0;
400 }
401 }
402 } else if (l4_proto == NEXTHDR_ICMP) {
403 if (likely(transport_len >= sizeof(struct icmp6hdr)))
404 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
405 skb, addr, new_addr, true);
406 }
407 }
408
mask_ipv6_addr(const __be32 old[4],const __be32 addr[4],const __be32 mask[4],__be32 masked[4])409 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
410 const __be32 mask[4], __be32 masked[4])
411 {
412 masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
413 masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
414 masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
415 masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
416 }
417
set_ipv6_addr(struct sk_buff * skb,u8 l4_proto,__be32 addr[4],const __be32 new_addr[4],bool recalculate_csum)418 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
419 __be32 addr[4], const __be32 new_addr[4],
420 bool recalculate_csum)
421 {
422 if (recalculate_csum)
423 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
424
425 skb_clear_hash(skb);
426 ovs_ct_clear(skb, NULL);
427 memcpy(addr, new_addr, sizeof(__be32[4]));
428 }
429
set_ipv6_dsfield(struct sk_buff * skb,struct ipv6hdr * nh,u8 ipv6_tclass,u8 mask)430 static void set_ipv6_dsfield(struct sk_buff *skb, struct ipv6hdr *nh, u8 ipv6_tclass, u8 mask)
431 {
432 u8 old_ipv6_tclass = ipv6_get_dsfield(nh);
433
434 ipv6_tclass = OVS_MASKED(old_ipv6_tclass, ipv6_tclass, mask);
435
436 if (skb->ip_summed == CHECKSUM_COMPLETE)
437 csum_replace(&skb->csum, (__force __wsum)(old_ipv6_tclass << 12),
438 (__force __wsum)(ipv6_tclass << 12));
439
440 ipv6_change_dsfield(nh, ~mask, ipv6_tclass);
441 }
442
set_ipv6_fl(struct sk_buff * skb,struct ipv6hdr * nh,u32 fl,u32 mask)443 static void set_ipv6_fl(struct sk_buff *skb, struct ipv6hdr *nh, u32 fl, u32 mask)
444 {
445 u32 ofl;
446
447 ofl = nh->flow_lbl[0] << 16 | nh->flow_lbl[1] << 8 | nh->flow_lbl[2];
448 fl = OVS_MASKED(ofl, fl, mask);
449
450 /* Bits 21-24 are always unmasked, so this retains their values. */
451 nh->flow_lbl[0] = (u8)(fl >> 16);
452 nh->flow_lbl[1] = (u8)(fl >> 8);
453 nh->flow_lbl[2] = (u8)fl;
454
455 if (skb->ip_summed == CHECKSUM_COMPLETE)
456 csum_replace(&skb->csum, (__force __wsum)htonl(ofl), (__force __wsum)htonl(fl));
457 }
458
set_ipv6_ttl(struct sk_buff * skb,struct ipv6hdr * nh,u8 new_ttl,u8 mask)459 static void set_ipv6_ttl(struct sk_buff *skb, struct ipv6hdr *nh, u8 new_ttl, u8 mask)
460 {
461 new_ttl = OVS_MASKED(nh->hop_limit, new_ttl, mask);
462
463 if (skb->ip_summed == CHECKSUM_COMPLETE)
464 csum_replace(&skb->csum, (__force __wsum)(nh->hop_limit << 8),
465 (__force __wsum)(new_ttl << 8));
466 nh->hop_limit = new_ttl;
467 }
468
set_ip_ttl(struct sk_buff * skb,struct iphdr * nh,u8 new_ttl,u8 mask)469 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
470 u8 mask)
471 {
472 new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
473
474 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
475 nh->ttl = new_ttl;
476 }
477
set_ipv4(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_ipv4 * key,const struct ovs_key_ipv4 * mask)478 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
479 const struct ovs_key_ipv4 *key,
480 const struct ovs_key_ipv4 *mask)
481 {
482 struct iphdr *nh;
483 __be32 new_addr;
484 int err;
485
486 err = skb_ensure_writable(skb, skb_network_offset(skb) +
487 sizeof(struct iphdr));
488 if (unlikely(err))
489 return err;
490
491 nh = ip_hdr(skb);
492
493 /* Setting an IP addresses is typically only a side effect of
494 * matching on them in the current userspace implementation, so it
495 * makes sense to check if the value actually changed.
496 */
497 if (mask->ipv4_src) {
498 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
499
500 if (unlikely(new_addr != nh->saddr)) {
501 set_ip_addr(skb, nh, &nh->saddr, new_addr);
502 flow_key->ipv4.addr.src = new_addr;
503 }
504 }
505 if (mask->ipv4_dst) {
506 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
507
508 if (unlikely(new_addr != nh->daddr)) {
509 set_ip_addr(skb, nh, &nh->daddr, new_addr);
510 flow_key->ipv4.addr.dst = new_addr;
511 }
512 }
513 if (mask->ipv4_tos) {
514 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
515 flow_key->ip.tos = nh->tos;
516 }
517 if (mask->ipv4_ttl) {
518 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
519 flow_key->ip.ttl = nh->ttl;
520 }
521
522 return 0;
523 }
524
is_ipv6_mask_nonzero(const __be32 addr[4])525 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
526 {
527 return !!(addr[0] | addr[1] | addr[2] | addr[3]);
528 }
529
set_ipv6(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_ipv6 * key,const struct ovs_key_ipv6 * mask)530 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
531 const struct ovs_key_ipv6 *key,
532 const struct ovs_key_ipv6 *mask)
533 {
534 struct ipv6hdr *nh;
535 int err;
536
537 err = skb_ensure_writable(skb, skb_network_offset(skb) +
538 sizeof(struct ipv6hdr));
539 if (unlikely(err))
540 return err;
541
542 nh = ipv6_hdr(skb);
543
544 /* Setting an IP addresses is typically only a side effect of
545 * matching on them in the current userspace implementation, so it
546 * makes sense to check if the value actually changed.
547 */
548 if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
549 __be32 *saddr = (__be32 *)&nh->saddr;
550 __be32 masked[4];
551
552 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
553
554 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
555 set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
556 true);
557 memcpy(&flow_key->ipv6.addr.src, masked,
558 sizeof(flow_key->ipv6.addr.src));
559 }
560 }
561 if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
562 unsigned int offset = 0;
563 int flags = IP6_FH_F_SKIP_RH;
564 bool recalc_csum = true;
565 __be32 *daddr = (__be32 *)&nh->daddr;
566 __be32 masked[4];
567
568 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
569
570 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
571 if (ipv6_ext_hdr(nh->nexthdr))
572 recalc_csum = (ipv6_find_hdr(skb, &offset,
573 NEXTHDR_ROUTING,
574 NULL, &flags)
575 != NEXTHDR_ROUTING);
576
577 set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
578 recalc_csum);
579 memcpy(&flow_key->ipv6.addr.dst, masked,
580 sizeof(flow_key->ipv6.addr.dst));
581 }
582 }
583 if (mask->ipv6_tclass) {
584 set_ipv6_dsfield(skb, nh, key->ipv6_tclass, mask->ipv6_tclass);
585 flow_key->ip.tos = ipv6_get_dsfield(nh);
586 }
587 if (mask->ipv6_label) {
588 set_ipv6_fl(skb, nh, ntohl(key->ipv6_label),
589 ntohl(mask->ipv6_label));
590 flow_key->ipv6.label =
591 *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
592 }
593 if (mask->ipv6_hlimit) {
594 set_ipv6_ttl(skb, nh, key->ipv6_hlimit, mask->ipv6_hlimit);
595 flow_key->ip.ttl = nh->hop_limit;
596 }
597 return 0;
598 }
599
set_nsh(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct nlattr * a)600 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
601 const struct nlattr *a)
602 {
603 struct nshhdr *nh;
604 size_t length;
605 int err;
606 u8 flags;
607 u8 ttl;
608 int i;
609
610 struct ovs_key_nsh key;
611 struct ovs_key_nsh mask;
612
613 err = nsh_key_from_nlattr(a, &key, &mask);
614 if (err)
615 return err;
616
617 /* Make sure the NSH base header is there */
618 if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
619 return -ENOMEM;
620
621 nh = nsh_hdr(skb);
622 length = nsh_hdr_len(nh);
623
624 /* Make sure the whole NSH header is there */
625 err = skb_ensure_writable(skb, skb_network_offset(skb) +
626 length);
627 if (unlikely(err))
628 return err;
629
630 nh = nsh_hdr(skb);
631 skb_postpull_rcsum(skb, nh, length);
632 flags = nsh_get_flags(nh);
633 flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
634 flow_key->nsh.base.flags = flags;
635 ttl = nsh_get_ttl(nh);
636 ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
637 flow_key->nsh.base.ttl = ttl;
638 nsh_set_flags_and_ttl(nh, flags, ttl);
639 nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
640 mask.base.path_hdr);
641 flow_key->nsh.base.path_hdr = nh->path_hdr;
642 switch (nh->mdtype) {
643 case NSH_M_TYPE1:
644 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
645 nh->md1.context[i] =
646 OVS_MASKED(nh->md1.context[i], key.context[i],
647 mask.context[i]);
648 }
649 memcpy(flow_key->nsh.context, nh->md1.context,
650 sizeof(nh->md1.context));
651 break;
652 case NSH_M_TYPE2:
653 memset(flow_key->nsh.context, 0,
654 sizeof(flow_key->nsh.context));
655 break;
656 default:
657 return -EINVAL;
658 }
659 skb_postpush_rcsum(skb, nh, length);
660 return 0;
661 }
662
663 /* Must follow skb_ensure_writable() since that can move the skb data. */
set_tp_port(struct sk_buff * skb,__be16 * port,__be16 new_port,__sum16 * check)664 static void set_tp_port(struct sk_buff *skb, __be16 *port,
665 __be16 new_port, __sum16 *check)
666 {
667 ovs_ct_clear(skb, NULL);
668 inet_proto_csum_replace2(check, skb, *port, new_port, false);
669 *port = new_port;
670 }
671
set_udp(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_udp * key,const struct ovs_key_udp * mask)672 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
673 const struct ovs_key_udp *key,
674 const struct ovs_key_udp *mask)
675 {
676 struct udphdr *uh;
677 __be16 src, dst;
678 int err;
679
680 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
681 sizeof(struct udphdr));
682 if (unlikely(err))
683 return err;
684
685 uh = udp_hdr(skb);
686 /* Either of the masks is non-zero, so do not bother checking them. */
687 src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
688 dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
689
690 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
691 if (likely(src != uh->source)) {
692 set_tp_port(skb, &uh->source, src, &uh->check);
693 flow_key->tp.src = src;
694 }
695 if (likely(dst != uh->dest)) {
696 set_tp_port(skb, &uh->dest, dst, &uh->check);
697 flow_key->tp.dst = dst;
698 }
699
700 if (unlikely(!uh->check))
701 uh->check = CSUM_MANGLED_0;
702 } else {
703 uh->source = src;
704 uh->dest = dst;
705 flow_key->tp.src = src;
706 flow_key->tp.dst = dst;
707 ovs_ct_clear(skb, NULL);
708 }
709
710 skb_clear_hash(skb);
711
712 return 0;
713 }
714
set_tcp(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_tcp * key,const struct ovs_key_tcp * mask)715 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
716 const struct ovs_key_tcp *key,
717 const struct ovs_key_tcp *mask)
718 {
719 struct tcphdr *th;
720 __be16 src, dst;
721 int err;
722
723 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
724 sizeof(struct tcphdr));
725 if (unlikely(err))
726 return err;
727
728 th = tcp_hdr(skb);
729 src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
730 if (likely(src != th->source)) {
731 set_tp_port(skb, &th->source, src, &th->check);
732 flow_key->tp.src = src;
733 }
734 dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
735 if (likely(dst != th->dest)) {
736 set_tp_port(skb, &th->dest, dst, &th->check);
737 flow_key->tp.dst = dst;
738 }
739 skb_clear_hash(skb);
740
741 return 0;
742 }
743
set_sctp(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct ovs_key_sctp * key,const struct ovs_key_sctp * mask)744 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
745 const struct ovs_key_sctp *key,
746 const struct ovs_key_sctp *mask)
747 {
748 unsigned int sctphoff = skb_transport_offset(skb);
749 struct sctphdr *sh;
750 __le32 old_correct_csum, new_csum, old_csum;
751 int err;
752
753 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
754 if (unlikely(err))
755 return err;
756
757 sh = sctp_hdr(skb);
758 old_csum = sh->checksum;
759 old_correct_csum = sctp_compute_cksum(skb, sctphoff);
760
761 sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
762 sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
763
764 new_csum = sctp_compute_cksum(skb, sctphoff);
765
766 /* Carry any checksum errors through. */
767 sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
768
769 skb_clear_hash(skb);
770 ovs_ct_clear(skb, NULL);
771
772 flow_key->tp.src = sh->source;
773 flow_key->tp.dst = sh->dest;
774
775 return 0;
776 }
777
ovs_vport_output(struct net * net,struct sock * sk,struct sk_buff * skb)778 static int ovs_vport_output(struct net *net, struct sock *sk,
779 struct sk_buff *skb)
780 {
781 struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
782 struct vport *vport = data->vport;
783
784 if (skb_cow_head(skb, data->l2_len) < 0) {
785 kfree_skb_reason(skb, SKB_DROP_REASON_NOMEM);
786 return -ENOMEM;
787 }
788
789 __skb_dst_copy(skb, data->dst);
790 *OVS_CB(skb) = data->cb;
791 skb->inner_protocol = data->inner_protocol;
792 if (data->vlan_tci & VLAN_CFI_MASK)
793 __vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
794 else
795 __vlan_hwaccel_clear_tag(skb);
796
797 /* Reconstruct the MAC header. */
798 skb_push(skb, data->l2_len);
799 memcpy(skb->data, &data->l2_data, data->l2_len);
800 skb_postpush_rcsum(skb, skb->data, data->l2_len);
801 skb_reset_mac_header(skb);
802
803 if (eth_p_mpls(skb->protocol)) {
804 skb->inner_network_header = skb->network_header;
805 skb_set_network_header(skb, data->network_offset);
806 skb_reset_mac_len(skb);
807 }
808
809 ovs_vport_send(vport, skb, data->mac_proto);
810 return 0;
811 }
812
813 static unsigned int
ovs_dst_get_mtu(const struct dst_entry * dst)814 ovs_dst_get_mtu(const struct dst_entry *dst)
815 {
816 return dst->dev->mtu;
817 }
818
819 static struct dst_ops ovs_dst_ops = {
820 .family = AF_UNSPEC,
821 .mtu = ovs_dst_get_mtu,
822 };
823
824 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
825 * ovs_vport_output(), which is called once per fragmented packet.
826 */
prepare_frag(struct vport * vport,struct sk_buff * skb,u16 orig_network_offset,u8 mac_proto)827 static void prepare_frag(struct vport *vport, struct sk_buff *skb,
828 u16 orig_network_offset, u8 mac_proto)
829 {
830 unsigned int hlen = skb_network_offset(skb);
831 struct ovs_frag_data *data;
832
833 data = this_cpu_ptr(&ovs_frag_data_storage);
834 data->dst = skb->_skb_refdst;
835 data->vport = vport;
836 data->cb = *OVS_CB(skb);
837 data->inner_protocol = skb->inner_protocol;
838 data->network_offset = orig_network_offset;
839 if (skb_vlan_tag_present(skb))
840 data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
841 else
842 data->vlan_tci = 0;
843 data->vlan_proto = skb->vlan_proto;
844 data->mac_proto = mac_proto;
845 data->l2_len = hlen;
846 memcpy(&data->l2_data, skb->data, hlen);
847
848 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
849 skb_pull(skb, hlen);
850 }
851
ovs_fragment(struct net * net,struct vport * vport,struct sk_buff * skb,u16 mru,struct sw_flow_key * key)852 static void ovs_fragment(struct net *net, struct vport *vport,
853 struct sk_buff *skb, u16 mru,
854 struct sw_flow_key *key)
855 {
856 enum ovs_drop_reason reason;
857 u16 orig_network_offset = 0;
858
859 if (eth_p_mpls(skb->protocol)) {
860 orig_network_offset = skb_network_offset(skb);
861 skb->network_header = skb->inner_network_header;
862 }
863
864 if (skb_network_offset(skb) > MAX_L2_LEN) {
865 OVS_NLERR(1, "L2 header too long to fragment");
866 reason = OVS_DROP_FRAG_L2_TOO_LONG;
867 goto err;
868 }
869
870 if (key->eth.type == htons(ETH_P_IP)) {
871 struct rtable ovs_rt = { 0 };
872 unsigned long orig_dst;
873
874 prepare_frag(vport, skb, orig_network_offset,
875 ovs_key_mac_proto(key));
876 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
877 DST_OBSOLETE_NONE, DST_NOCOUNT);
878 ovs_rt.dst.dev = vport->dev;
879
880 orig_dst = skb->_skb_refdst;
881 skb_dst_set_noref(skb, &ovs_rt.dst);
882 IPCB(skb)->frag_max_size = mru;
883
884 ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
885 refdst_drop(orig_dst);
886 } else if (key->eth.type == htons(ETH_P_IPV6)) {
887 unsigned long orig_dst;
888 struct rt6_info ovs_rt;
889
890 prepare_frag(vport, skb, orig_network_offset,
891 ovs_key_mac_proto(key));
892 memset(&ovs_rt, 0, sizeof(ovs_rt));
893 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
894 DST_OBSOLETE_NONE, DST_NOCOUNT);
895 ovs_rt.dst.dev = vport->dev;
896
897 orig_dst = skb->_skb_refdst;
898 skb_dst_set_noref(skb, &ovs_rt.dst);
899 IP6CB(skb)->frag_max_size = mru;
900
901 ipv6_stub->ipv6_fragment(net, skb->sk, skb, ovs_vport_output);
902 refdst_drop(orig_dst);
903 } else {
904 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
905 ovs_vport_name(vport), ntohs(key->eth.type), mru,
906 vport->dev->mtu);
907 reason = OVS_DROP_FRAG_INVALID_PROTO;
908 goto err;
909 }
910
911 return;
912 err:
913 ovs_kfree_skb_reason(skb, reason);
914 }
915
do_output(struct datapath * dp,struct sk_buff * skb,int out_port,struct sw_flow_key * key)916 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
917 struct sw_flow_key *key)
918 {
919 struct vport *vport = ovs_vport_rcu(dp, out_port);
920
921 if (likely(vport && netif_carrier_ok(vport->dev))) {
922 u16 mru = OVS_CB(skb)->mru;
923 u32 cutlen = OVS_CB(skb)->cutlen;
924
925 if (unlikely(cutlen > 0)) {
926 if (skb->len - cutlen > ovs_mac_header_len(key))
927 pskb_trim(skb, skb->len - cutlen);
928 else
929 pskb_trim(skb, ovs_mac_header_len(key));
930 }
931
932 /* Need to set the pkt_type to involve the routing layer. The
933 * packet movement through the OVS datapath doesn't generally
934 * use routing, but this is needed for tunnel cases.
935 */
936 skb->pkt_type = PACKET_OUTGOING;
937
938 if (likely(!mru ||
939 (skb->len <= mru + vport->dev->hard_header_len))) {
940 ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
941 } else if (mru <= vport->dev->mtu) {
942 struct net *net = read_pnet(&dp->net);
943
944 ovs_fragment(net, vport, skb, mru, key);
945 } else {
946 kfree_skb_reason(skb, SKB_DROP_REASON_PKT_TOO_BIG);
947 }
948 } else {
949 kfree_skb_reason(skb, SKB_DROP_REASON_DEV_READY);
950 }
951 }
952
output_userspace(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,const struct nlattr * actions,int actions_len,uint32_t cutlen)953 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
954 struct sw_flow_key *key, const struct nlattr *attr,
955 const struct nlattr *actions, int actions_len,
956 uint32_t cutlen)
957 {
958 struct dp_upcall_info upcall;
959 const struct nlattr *a;
960 int rem;
961
962 memset(&upcall, 0, sizeof(upcall));
963 upcall.cmd = OVS_PACKET_CMD_ACTION;
964 upcall.mru = OVS_CB(skb)->mru;
965
966 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
967 a = nla_next(a, &rem)) {
968 switch (nla_type(a)) {
969 case OVS_USERSPACE_ATTR_USERDATA:
970 upcall.userdata = a;
971 break;
972
973 case OVS_USERSPACE_ATTR_PID:
974 if (dp->user_features &
975 OVS_DP_F_DISPATCH_UPCALL_PER_CPU)
976 upcall.portid =
977 ovs_dp_get_upcall_portid(dp,
978 smp_processor_id());
979 else
980 upcall.portid = nla_get_u32(a);
981 break;
982
983 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
984 /* Get out tunnel info. */
985 struct vport *vport;
986
987 vport = ovs_vport_rcu(dp, nla_get_u32(a));
988 if (vport) {
989 int err;
990
991 err = dev_fill_metadata_dst(vport->dev, skb);
992 if (!err)
993 upcall.egress_tun_info = skb_tunnel_info(skb);
994 }
995
996 break;
997 }
998
999 case OVS_USERSPACE_ATTR_ACTIONS: {
1000 /* Include actions. */
1001 upcall.actions = actions;
1002 upcall.actions_len = actions_len;
1003 break;
1004 }
1005
1006 } /* End of switch. */
1007 }
1008
1009 return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
1010 }
1011
dec_ttl_exception_handler(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr)1012 static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb,
1013 struct sw_flow_key *key,
1014 const struct nlattr *attr)
1015 {
1016 /* The first attribute is always 'OVS_DEC_TTL_ATTR_ACTION'. */
1017 struct nlattr *actions = nla_data(attr);
1018
1019 if (nla_len(actions))
1020 return clone_execute(dp, skb, key, 0, nla_data(actions),
1021 nla_len(actions), true, false);
1022
1023 ovs_kfree_skb_reason(skb, OVS_DROP_IP_TTL);
1024 return 0;
1025 }
1026
1027 /* When 'last' is true, sample() should always consume the 'skb'.
1028 * Otherwise, sample() should keep 'skb' intact regardless what
1029 * actions are executed within sample().
1030 */
sample(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,bool last)1031 static int sample(struct datapath *dp, struct sk_buff *skb,
1032 struct sw_flow_key *key, const struct nlattr *attr,
1033 bool last)
1034 {
1035 struct nlattr *actions;
1036 struct nlattr *sample_arg;
1037 int rem = nla_len(attr);
1038 const struct sample_arg *arg;
1039 bool clone_flow_key;
1040
1041 /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
1042 sample_arg = nla_data(attr);
1043 arg = nla_data(sample_arg);
1044 actions = nla_next(sample_arg, &rem);
1045
1046 if ((arg->probability != U32_MAX) &&
1047 (!arg->probability || get_random_u32() > arg->probability)) {
1048 if (last)
1049 ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
1050 return 0;
1051 }
1052
1053 clone_flow_key = !arg->exec;
1054 return clone_execute(dp, skb, key, 0, actions, rem, last,
1055 clone_flow_key);
1056 }
1057
1058 /* When 'last' is true, clone() should always consume the 'skb'.
1059 * Otherwise, clone() should keep 'skb' intact regardless what
1060 * actions are executed within clone().
1061 */
clone(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,bool last)1062 static int clone(struct datapath *dp, struct sk_buff *skb,
1063 struct sw_flow_key *key, const struct nlattr *attr,
1064 bool last)
1065 {
1066 struct nlattr *actions;
1067 struct nlattr *clone_arg;
1068 int rem = nla_len(attr);
1069 bool dont_clone_flow_key;
1070
1071 /* The first action is always 'OVS_CLONE_ATTR_EXEC'. */
1072 clone_arg = nla_data(attr);
1073 dont_clone_flow_key = nla_get_u32(clone_arg);
1074 actions = nla_next(clone_arg, &rem);
1075
1076 return clone_execute(dp, skb, key, 0, actions, rem, last,
1077 !dont_clone_flow_key);
1078 }
1079
execute_hash(struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr)1080 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1081 const struct nlattr *attr)
1082 {
1083 struct ovs_action_hash *hash_act = nla_data(attr);
1084 u32 hash = 0;
1085
1086 if (hash_act->hash_alg == OVS_HASH_ALG_L4) {
1087 /* OVS_HASH_ALG_L4 hasing type. */
1088 hash = skb_get_hash(skb);
1089 } else if (hash_act->hash_alg == OVS_HASH_ALG_SYM_L4) {
1090 /* OVS_HASH_ALG_SYM_L4 hashing type. NOTE: this doesn't
1091 * extend past an encapsulated header.
1092 */
1093 hash = __skb_get_hash_symmetric(skb);
1094 }
1095
1096 hash = jhash_1word(hash, hash_act->hash_basis);
1097 if (!hash)
1098 hash = 0x1;
1099
1100 key->ovs_flow_hash = hash;
1101 }
1102
execute_set_action(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct nlattr * a)1103 static int execute_set_action(struct sk_buff *skb,
1104 struct sw_flow_key *flow_key,
1105 const struct nlattr *a)
1106 {
1107 /* Only tunnel set execution is supported without a mask. */
1108 if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1109 struct ovs_tunnel_info *tun = nla_data(a);
1110
1111 skb_dst_drop(skb);
1112 dst_hold((struct dst_entry *)tun->tun_dst);
1113 skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1114 return 0;
1115 }
1116
1117 return -EINVAL;
1118 }
1119
1120 /* Mask is at the midpoint of the data. */
1121 #define get_mask(a, type) ((const type)nla_data(a) + 1)
1122
execute_masked_set_action(struct sk_buff * skb,struct sw_flow_key * flow_key,const struct nlattr * a)1123 static int execute_masked_set_action(struct sk_buff *skb,
1124 struct sw_flow_key *flow_key,
1125 const struct nlattr *a)
1126 {
1127 int err = 0;
1128
1129 switch (nla_type(a)) {
1130 case OVS_KEY_ATTR_PRIORITY:
1131 OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1132 *get_mask(a, u32 *));
1133 flow_key->phy.priority = skb->priority;
1134 break;
1135
1136 case OVS_KEY_ATTR_SKB_MARK:
1137 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1138 flow_key->phy.skb_mark = skb->mark;
1139 break;
1140
1141 case OVS_KEY_ATTR_TUNNEL_INFO:
1142 /* Masked data not supported for tunnel. */
1143 err = -EINVAL;
1144 break;
1145
1146 case OVS_KEY_ATTR_ETHERNET:
1147 err = set_eth_addr(skb, flow_key, nla_data(a),
1148 get_mask(a, struct ovs_key_ethernet *));
1149 break;
1150
1151 case OVS_KEY_ATTR_NSH:
1152 err = set_nsh(skb, flow_key, a);
1153 break;
1154
1155 case OVS_KEY_ATTR_IPV4:
1156 err = set_ipv4(skb, flow_key, nla_data(a),
1157 get_mask(a, struct ovs_key_ipv4 *));
1158 break;
1159
1160 case OVS_KEY_ATTR_IPV6:
1161 err = set_ipv6(skb, flow_key, nla_data(a),
1162 get_mask(a, struct ovs_key_ipv6 *));
1163 break;
1164
1165 case OVS_KEY_ATTR_TCP:
1166 err = set_tcp(skb, flow_key, nla_data(a),
1167 get_mask(a, struct ovs_key_tcp *));
1168 break;
1169
1170 case OVS_KEY_ATTR_UDP:
1171 err = set_udp(skb, flow_key, nla_data(a),
1172 get_mask(a, struct ovs_key_udp *));
1173 break;
1174
1175 case OVS_KEY_ATTR_SCTP:
1176 err = set_sctp(skb, flow_key, nla_data(a),
1177 get_mask(a, struct ovs_key_sctp *));
1178 break;
1179
1180 case OVS_KEY_ATTR_MPLS:
1181 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1182 __be32 *));
1183 break;
1184
1185 case OVS_KEY_ATTR_CT_STATE:
1186 case OVS_KEY_ATTR_CT_ZONE:
1187 case OVS_KEY_ATTR_CT_MARK:
1188 case OVS_KEY_ATTR_CT_LABELS:
1189 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1190 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1191 err = -EINVAL;
1192 break;
1193 }
1194
1195 return err;
1196 }
1197
execute_recirc(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * a,bool last)1198 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1199 struct sw_flow_key *key,
1200 const struct nlattr *a, bool last)
1201 {
1202 u32 recirc_id;
1203
1204 if (!is_flow_key_valid(key)) {
1205 int err;
1206
1207 err = ovs_flow_key_update(skb, key);
1208 if (err)
1209 return err;
1210 }
1211 BUG_ON(!is_flow_key_valid(key));
1212
1213 recirc_id = nla_get_u32(a);
1214 return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1215 }
1216
execute_check_pkt_len(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,bool last)1217 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1218 struct sw_flow_key *key,
1219 const struct nlattr *attr, bool last)
1220 {
1221 struct ovs_skb_cb *ovs_cb = OVS_CB(skb);
1222 const struct nlattr *actions, *cpl_arg;
1223 int len, max_len, rem = nla_len(attr);
1224 const struct check_pkt_len_arg *arg;
1225 bool clone_flow_key;
1226
1227 /* The first netlink attribute in 'attr' is always
1228 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1229 */
1230 cpl_arg = nla_data(attr);
1231 arg = nla_data(cpl_arg);
1232
1233 len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len;
1234 max_len = arg->pkt_len;
1235
1236 if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) ||
1237 len <= max_len) {
1238 /* Second netlink attribute in 'attr' is always
1239 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1240 */
1241 actions = nla_next(cpl_arg, &rem);
1242 clone_flow_key = !arg->exec_for_lesser_equal;
1243 } else {
1244 /* Third netlink attribute in 'attr' is always
1245 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1246 */
1247 actions = nla_next(cpl_arg, &rem);
1248 actions = nla_next(actions, &rem);
1249 clone_flow_key = !arg->exec_for_greater;
1250 }
1251
1252 return clone_execute(dp, skb, key, 0, nla_data(actions),
1253 nla_len(actions), last, clone_flow_key);
1254 }
1255
execute_dec_ttl(struct sk_buff * skb,struct sw_flow_key * key)1256 static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key)
1257 {
1258 int err;
1259
1260 if (skb->protocol == htons(ETH_P_IPV6)) {
1261 struct ipv6hdr *nh;
1262
1263 err = skb_ensure_writable(skb, skb_network_offset(skb) +
1264 sizeof(*nh));
1265 if (unlikely(err))
1266 return err;
1267
1268 nh = ipv6_hdr(skb);
1269
1270 if (nh->hop_limit <= 1)
1271 return -EHOSTUNREACH;
1272
1273 key->ip.ttl = --nh->hop_limit;
1274 } else if (skb->protocol == htons(ETH_P_IP)) {
1275 struct iphdr *nh;
1276 u8 old_ttl;
1277
1278 err = skb_ensure_writable(skb, skb_network_offset(skb) +
1279 sizeof(*nh));
1280 if (unlikely(err))
1281 return err;
1282
1283 nh = ip_hdr(skb);
1284 if (nh->ttl <= 1)
1285 return -EHOSTUNREACH;
1286
1287 old_ttl = nh->ttl--;
1288 csum_replace2(&nh->check, htons(old_ttl << 8),
1289 htons(nh->ttl << 8));
1290 key->ip.ttl = nh->ttl;
1291 }
1292 return 0;
1293 }
1294
1295 /* Execute a list of actions against 'skb'. */
do_execute_actions(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,const struct nlattr * attr,int len)1296 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1297 struct sw_flow_key *key,
1298 const struct nlattr *attr, int len)
1299 {
1300 const struct nlattr *a;
1301 int rem;
1302
1303 for (a = attr, rem = len; rem > 0;
1304 a = nla_next(a, &rem)) {
1305 int err = 0;
1306
1307 if (trace_ovs_do_execute_action_enabled())
1308 trace_ovs_do_execute_action(dp, skb, key, a, rem);
1309
1310 /* Actions that rightfully have to consume the skb should do it
1311 * and return directly.
1312 */
1313 switch (nla_type(a)) {
1314 case OVS_ACTION_ATTR_OUTPUT: {
1315 int port = nla_get_u32(a);
1316 struct sk_buff *clone;
1317
1318 /* Every output action needs a separate clone
1319 * of 'skb', In case the output action is the
1320 * last action, cloning can be avoided.
1321 */
1322 if (nla_is_last(a, rem)) {
1323 do_output(dp, skb, port, key);
1324 /* 'skb' has been used for output.
1325 */
1326 return 0;
1327 }
1328
1329 clone = skb_clone(skb, GFP_ATOMIC);
1330 if (clone)
1331 do_output(dp, clone, port, key);
1332 OVS_CB(skb)->cutlen = 0;
1333 break;
1334 }
1335
1336 case OVS_ACTION_ATTR_TRUNC: {
1337 struct ovs_action_trunc *trunc = nla_data(a);
1338
1339 if (skb->len > trunc->max_len)
1340 OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1341 break;
1342 }
1343
1344 case OVS_ACTION_ATTR_USERSPACE:
1345 output_userspace(dp, skb, key, a, attr,
1346 len, OVS_CB(skb)->cutlen);
1347 OVS_CB(skb)->cutlen = 0;
1348 if (nla_is_last(a, rem)) {
1349 consume_skb(skb);
1350 return 0;
1351 }
1352 break;
1353
1354 case OVS_ACTION_ATTR_HASH:
1355 execute_hash(skb, key, a);
1356 break;
1357
1358 case OVS_ACTION_ATTR_PUSH_MPLS: {
1359 struct ovs_action_push_mpls *mpls = nla_data(a);
1360
1361 err = push_mpls(skb, key, mpls->mpls_lse,
1362 mpls->mpls_ethertype, skb->mac_len);
1363 break;
1364 }
1365 case OVS_ACTION_ATTR_ADD_MPLS: {
1366 struct ovs_action_add_mpls *mpls = nla_data(a);
1367 __u16 mac_len = 0;
1368
1369 if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK)
1370 mac_len = skb->mac_len;
1371
1372 err = push_mpls(skb, key, mpls->mpls_lse,
1373 mpls->mpls_ethertype, mac_len);
1374 break;
1375 }
1376 case OVS_ACTION_ATTR_POP_MPLS:
1377 err = pop_mpls(skb, key, nla_get_be16(a));
1378 break;
1379
1380 case OVS_ACTION_ATTR_PUSH_VLAN:
1381 err = push_vlan(skb, key, nla_data(a));
1382 break;
1383
1384 case OVS_ACTION_ATTR_POP_VLAN:
1385 err = pop_vlan(skb, key);
1386 break;
1387
1388 case OVS_ACTION_ATTR_RECIRC: {
1389 bool last = nla_is_last(a, rem);
1390
1391 err = execute_recirc(dp, skb, key, a, last);
1392 if (last) {
1393 /* If this is the last action, the skb has
1394 * been consumed or freed.
1395 * Return immediately.
1396 */
1397 return err;
1398 }
1399 break;
1400 }
1401
1402 case OVS_ACTION_ATTR_SET:
1403 err = execute_set_action(skb, key, nla_data(a));
1404 break;
1405
1406 case OVS_ACTION_ATTR_SET_MASKED:
1407 case OVS_ACTION_ATTR_SET_TO_MASKED:
1408 err = execute_masked_set_action(skb, key, nla_data(a));
1409 break;
1410
1411 case OVS_ACTION_ATTR_SAMPLE: {
1412 bool last = nla_is_last(a, rem);
1413
1414 err = sample(dp, skb, key, a, last);
1415 if (last)
1416 return err;
1417
1418 break;
1419 }
1420
1421 case OVS_ACTION_ATTR_CT:
1422 if (!is_flow_key_valid(key)) {
1423 err = ovs_flow_key_update(skb, key);
1424 if (err)
1425 return err;
1426 }
1427
1428 err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1429 nla_data(a));
1430
1431 /* Hide stolen IP fragments from user space. */
1432 if (err)
1433 return err == -EINPROGRESS ? 0 : err;
1434 break;
1435
1436 case OVS_ACTION_ATTR_CT_CLEAR:
1437 err = ovs_ct_clear(skb, key);
1438 break;
1439
1440 case OVS_ACTION_ATTR_PUSH_ETH:
1441 err = push_eth(skb, key, nla_data(a));
1442 break;
1443
1444 case OVS_ACTION_ATTR_POP_ETH:
1445 err = pop_eth(skb, key);
1446 break;
1447
1448 case OVS_ACTION_ATTR_PUSH_NSH: {
1449 u8 buffer[NSH_HDR_MAX_LEN];
1450 struct nshhdr *nh = (struct nshhdr *)buffer;
1451
1452 err = nsh_hdr_from_nlattr(nla_data(a), nh,
1453 NSH_HDR_MAX_LEN);
1454 if (unlikely(err))
1455 break;
1456 err = push_nsh(skb, key, nh);
1457 break;
1458 }
1459
1460 case OVS_ACTION_ATTR_POP_NSH:
1461 err = pop_nsh(skb, key);
1462 break;
1463
1464 case OVS_ACTION_ATTR_METER:
1465 if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1466 ovs_kfree_skb_reason(skb, OVS_DROP_METER);
1467 return 0;
1468 }
1469 break;
1470
1471 case OVS_ACTION_ATTR_CLONE: {
1472 bool last = nla_is_last(a, rem);
1473
1474 err = clone(dp, skb, key, a, last);
1475 if (last)
1476 return err;
1477
1478 break;
1479 }
1480
1481 case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1482 bool last = nla_is_last(a, rem);
1483
1484 err = execute_check_pkt_len(dp, skb, key, a, last);
1485 if (last)
1486 return err;
1487
1488 break;
1489 }
1490
1491 case OVS_ACTION_ATTR_DEC_TTL:
1492 err = execute_dec_ttl(skb, key);
1493 if (err == -EHOSTUNREACH)
1494 return dec_ttl_exception_handler(dp, skb,
1495 key, a);
1496 break;
1497
1498 case OVS_ACTION_ATTR_DROP: {
1499 enum ovs_drop_reason reason = nla_get_u32(a)
1500 ? OVS_DROP_EXPLICIT_WITH_ERROR
1501 : OVS_DROP_EXPLICIT;
1502
1503 ovs_kfree_skb_reason(skb, reason);
1504 return 0;
1505 }
1506 }
1507
1508 if (unlikely(err)) {
1509 ovs_kfree_skb_reason(skb, OVS_DROP_ACTION_ERROR);
1510 return err;
1511 }
1512 }
1513
1514 ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
1515 return 0;
1516 }
1517
1518 /* Execute the actions on the clone of the packet. The effect of the
1519 * execution does not affect the original 'skb' nor the original 'key'.
1520 *
1521 * The execution may be deferred in case the actions can not be executed
1522 * immediately.
1523 */
clone_execute(struct datapath * dp,struct sk_buff * skb,struct sw_flow_key * key,u32 recirc_id,const struct nlattr * actions,int len,bool last,bool clone_flow_key)1524 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1525 struct sw_flow_key *key, u32 recirc_id,
1526 const struct nlattr *actions, int len,
1527 bool last, bool clone_flow_key)
1528 {
1529 struct deferred_action *da;
1530 struct sw_flow_key *clone;
1531
1532 skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1533 if (!skb) {
1534 /* Out of memory, skip this action.
1535 */
1536 return 0;
1537 }
1538
1539 /* When clone_flow_key is false, the 'key' will not be change
1540 * by the actions, then the 'key' can be used directly.
1541 * Otherwise, try to clone key from the next recursion level of
1542 * 'flow_keys'. If clone is successful, execute the actions
1543 * without deferring.
1544 */
1545 clone = clone_flow_key ? clone_key(key) : key;
1546 if (clone) {
1547 int err = 0;
1548
1549 if (actions) { /* Sample action */
1550 if (clone_flow_key)
1551 __this_cpu_inc(exec_actions_level);
1552
1553 err = do_execute_actions(dp, skb, clone,
1554 actions, len);
1555
1556 if (clone_flow_key)
1557 __this_cpu_dec(exec_actions_level);
1558 } else { /* Recirc action */
1559 clone->recirc_id = recirc_id;
1560 ovs_dp_process_packet(skb, clone);
1561 }
1562 return err;
1563 }
1564
1565 /* Out of 'flow_keys' space. Defer actions */
1566 da = add_deferred_actions(skb, key, actions, len);
1567 if (da) {
1568 if (!actions) { /* Recirc action */
1569 key = &da->pkt_key;
1570 key->recirc_id = recirc_id;
1571 }
1572 } else {
1573 /* Out of per CPU action FIFO space. Drop the 'skb' and
1574 * log an error.
1575 */
1576 ovs_kfree_skb_reason(skb, OVS_DROP_DEFERRED_LIMIT);
1577
1578 if (net_ratelimit()) {
1579 if (actions) { /* Sample action */
1580 pr_warn("%s: deferred action limit reached, drop sample action\n",
1581 ovs_dp_name(dp));
1582 } else { /* Recirc action */
1583 pr_warn("%s: deferred action limit reached, drop recirc action (recirc_id=%#x)\n",
1584 ovs_dp_name(dp), recirc_id);
1585 }
1586 }
1587 }
1588 return 0;
1589 }
1590
process_deferred_actions(struct datapath * dp)1591 static void process_deferred_actions(struct datapath *dp)
1592 {
1593 struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1594
1595 /* Do not touch the FIFO in case there is no deferred actions. */
1596 if (action_fifo_is_empty(fifo))
1597 return;
1598
1599 /* Finishing executing all deferred actions. */
1600 do {
1601 struct deferred_action *da = action_fifo_get(fifo);
1602 struct sk_buff *skb = da->skb;
1603 struct sw_flow_key *key = &da->pkt_key;
1604 const struct nlattr *actions = da->actions;
1605 int actions_len = da->actions_len;
1606
1607 if (actions)
1608 do_execute_actions(dp, skb, key, actions, actions_len);
1609 else
1610 ovs_dp_process_packet(skb, key);
1611 } while (!action_fifo_is_empty(fifo));
1612
1613 /* Reset FIFO for the next packet. */
1614 action_fifo_init(fifo);
1615 }
1616
1617 /* Execute a list of actions against 'skb'. */
ovs_execute_actions(struct datapath * dp,struct sk_buff * skb,const struct sw_flow_actions * acts,struct sw_flow_key * key)1618 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1619 const struct sw_flow_actions *acts,
1620 struct sw_flow_key *key)
1621 {
1622 int err, level;
1623
1624 level = __this_cpu_inc_return(exec_actions_level);
1625 if (unlikely(level > OVS_RECURSION_LIMIT)) {
1626 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1627 ovs_dp_name(dp));
1628 ovs_kfree_skb_reason(skb, OVS_DROP_RECURSION_LIMIT);
1629 err = -ENETDOWN;
1630 goto out;
1631 }
1632
1633 OVS_CB(skb)->acts_origlen = acts->orig_len;
1634 err = do_execute_actions(dp, skb, key,
1635 acts->actions, acts->actions_len);
1636
1637 if (level == 1)
1638 process_deferred_actions(dp);
1639
1640 out:
1641 __this_cpu_dec(exec_actions_level);
1642 return err;
1643 }
1644
action_fifos_init(void)1645 int action_fifos_init(void)
1646 {
1647 action_fifos = alloc_percpu(struct action_fifo);
1648 if (!action_fifos)
1649 return -ENOMEM;
1650
1651 flow_keys = alloc_percpu(struct action_flow_keys);
1652 if (!flow_keys) {
1653 free_percpu(action_fifos);
1654 return -ENOMEM;
1655 }
1656
1657 return 0;
1658 }
1659
action_fifos_exit(void)1660 void action_fifos_exit(void)
1661 {
1662 free_percpu(action_fifos);
1663 free_percpu(flow_keys);
1664 }
1665