xref: /openbmc/u-boot/drivers/ddr/altera/sequencer.c (revision 83d290c56fab2d38cd1ab4c4cc7099559c1d5046)
1  // SPDX-License-Identifier: BSD-3-Clause
2  /*
3   * Copyright Altera Corporation (C) 2012-2015
4   */
5  
6  #include <common.h>
7  #include <asm/io.h>
8  #include <asm/arch/sdram.h>
9  #include <errno.h>
10  #include "sequencer.h"
11  
12  static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
13  	(struct socfpga_sdr_rw_load_manager *)
14  		(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
15  static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
16  	(struct socfpga_sdr_rw_load_jump_manager *)
17  		(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
18  static struct socfpga_sdr_reg_file *sdr_reg_file =
19  	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
20  static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
21  	(struct socfpga_sdr_scc_mgr *)
22  		(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
23  static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
24  	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
25  static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
26  	(struct socfpga_phy_mgr_cfg *)
27  		(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
28  static struct socfpga_data_mgr *data_mgr =
29  	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
30  static struct socfpga_sdr_ctrl *sdr_ctrl =
31  	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;
32  
33  const struct socfpga_sdram_rw_mgr_config *rwcfg;
34  const struct socfpga_sdram_io_config *iocfg;
35  const struct socfpga_sdram_misc_config *misccfg;
36  
37  #define DELTA_D		1
38  
39  /*
40   * In order to reduce ROM size, most of the selectable calibration steps are
41   * decided at compile time based on the user's calibration mode selection,
42   * as captured by the STATIC_CALIB_STEPS selection below.
43   *
44   * However, to support simulation-time selection of fast simulation mode, where
45   * we skip everything except the bare minimum, we need a few of the steps to
46   * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
47   * check, which is based on the rtl-supplied value, or we dynamically compute
48   * the value to use based on the dynamically-chosen calibration mode
49   */
50  
51  #define DLEVEL 0
52  #define STATIC_IN_RTL_SIM 0
53  #define STATIC_SKIP_DELAY_LOOPS 0
54  
55  #define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
56  	STATIC_SKIP_DELAY_LOOPS)
57  
58  /* calibration steps requested by the rtl */
59  static u16 dyn_calib_steps;
60  
61  /*
62   * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
63   * instead of static, we use boolean logic to select between
64   * non-skip and skip values
65   *
66   * The mask is set to include all bits when not-skipping, but is
67   * zero when skipping
68   */
69  
70  static u16 skip_delay_mask;	/* mask off bits when skipping/not-skipping */
71  
72  #define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
73  	((non_skip_value) & skip_delay_mask)
74  
75  static struct gbl_type *gbl;
76  static struct param_type *param;
77  
set_failing_group_stage(u32 group,u32 stage,u32 substage)78  static void set_failing_group_stage(u32 group, u32 stage,
79  	u32 substage)
80  {
81  	/*
82  	 * Only set the global stage if there was not been any other
83  	 * failing group
84  	 */
85  	if (gbl->error_stage == CAL_STAGE_NIL)	{
86  		gbl->error_substage = substage;
87  		gbl->error_stage = stage;
88  		gbl->error_group = group;
89  	}
90  }
91  
reg_file_set_group(u16 set_group)92  static void reg_file_set_group(u16 set_group)
93  {
94  	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
95  }
96  
reg_file_set_stage(u8 set_stage)97  static void reg_file_set_stage(u8 set_stage)
98  {
99  	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
100  }
101  
reg_file_set_sub_stage(u8 set_sub_stage)102  static void reg_file_set_sub_stage(u8 set_sub_stage)
103  {
104  	set_sub_stage &= 0xff;
105  	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
106  }
107  
108  /**
109   * phy_mgr_initialize() - Initialize PHY Manager
110   *
111   * Initialize PHY Manager.
112   */
phy_mgr_initialize(void)113  static void phy_mgr_initialize(void)
114  {
115  	u32 ratio;
116  
117  	debug("%s:%d\n", __func__, __LINE__);
118  	/* Calibration has control over path to memory */
119  	/*
120  	 * In Hard PHY this is a 2-bit control:
121  	 * 0: AFI Mux Select
122  	 * 1: DDIO Mux Select
123  	 */
124  	writel(0x3, &phy_mgr_cfg->mux_sel);
125  
126  	/* USER memory clock is not stable we begin initialization  */
127  	writel(0, &phy_mgr_cfg->reset_mem_stbl);
128  
129  	/* USER calibration status all set to zero */
130  	writel(0, &phy_mgr_cfg->cal_status);
131  
132  	writel(0, &phy_mgr_cfg->cal_debug_info);
133  
134  	/* Init params only if we do NOT skip calibration. */
135  	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
136  		return;
137  
138  	ratio = rwcfg->mem_dq_per_read_dqs /
139  		rwcfg->mem_virtual_groups_per_read_dqs;
140  	param->read_correct_mask_vg = (1 << ratio) - 1;
141  	param->write_correct_mask_vg = (1 << ratio) - 1;
142  	param->read_correct_mask = (1 << rwcfg->mem_dq_per_read_dqs) - 1;
143  	param->write_correct_mask = (1 << rwcfg->mem_dq_per_write_dqs) - 1;
144  }
145  
146  /**
147   * set_rank_and_odt_mask() - Set Rank and ODT mask
148   * @rank:	Rank mask
149   * @odt_mode:	ODT mode, OFF or READ_WRITE
150   *
151   * Set Rank and ODT mask (On-Die Termination).
152   */
set_rank_and_odt_mask(const u32 rank,const u32 odt_mode)153  static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
154  {
155  	u32 odt_mask_0 = 0;
156  	u32 odt_mask_1 = 0;
157  	u32 cs_and_odt_mask;
158  
159  	if (odt_mode == RW_MGR_ODT_MODE_OFF) {
160  		odt_mask_0 = 0x0;
161  		odt_mask_1 = 0x0;
162  	} else {	/* RW_MGR_ODT_MODE_READ_WRITE */
163  		switch (rwcfg->mem_number_of_ranks) {
164  		case 1:	/* 1 Rank */
165  			/* Read: ODT = 0 ; Write: ODT = 1 */
166  			odt_mask_0 = 0x0;
167  			odt_mask_1 = 0x1;
168  			break;
169  		case 2:	/* 2 Ranks */
170  			if (rwcfg->mem_number_of_cs_per_dimm == 1) {
171  				/*
172  				 * - Dual-Slot , Single-Rank (1 CS per DIMM)
173  				 *   OR
174  				 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
175  				 *
176  				 * Since MEM_NUMBER_OF_RANKS is 2, they
177  				 * are both single rank with 2 CS each
178  				 * (special for RDIMM).
179  				 *
180  				 * Read: Turn on ODT on the opposite rank
181  				 * Write: Turn on ODT on all ranks
182  				 */
183  				odt_mask_0 = 0x3 & ~(1 << rank);
184  				odt_mask_1 = 0x3;
185  			} else {
186  				/*
187  				 * - Single-Slot , Dual-Rank (2 CS per DIMM)
188  				 *
189  				 * Read: Turn on ODT off on all ranks
190  				 * Write: Turn on ODT on active rank
191  				 */
192  				odt_mask_0 = 0x0;
193  				odt_mask_1 = 0x3 & (1 << rank);
194  			}
195  			break;
196  		case 4:	/* 4 Ranks */
197  			/* Read:
198  			 * ----------+-----------------------+
199  			 *           |         ODT           |
200  			 * Read From +-----------------------+
201  			 *   Rank    |  3  |  2  |  1  |  0  |
202  			 * ----------+-----+-----+-----+-----+
203  			 *     0     |  0  |  1  |  0  |  0  |
204  			 *     1     |  1  |  0  |  0  |  0  |
205  			 *     2     |  0  |  0  |  0  |  1  |
206  			 *     3     |  0  |  0  |  1  |  0  |
207  			 * ----------+-----+-----+-----+-----+
208  			 *
209  			 * Write:
210  			 * ----------+-----------------------+
211  			 *           |         ODT           |
212  			 * Write To  +-----------------------+
213  			 *   Rank    |  3  |  2  |  1  |  0  |
214  			 * ----------+-----+-----+-----+-----+
215  			 *     0     |  0  |  1  |  0  |  1  |
216  			 *     1     |  1  |  0  |  1  |  0  |
217  			 *     2     |  0  |  1  |  0  |  1  |
218  			 *     3     |  1  |  0  |  1  |  0  |
219  			 * ----------+-----+-----+-----+-----+
220  			 */
221  			switch (rank) {
222  			case 0:
223  				odt_mask_0 = 0x4;
224  				odt_mask_1 = 0x5;
225  				break;
226  			case 1:
227  				odt_mask_0 = 0x8;
228  				odt_mask_1 = 0xA;
229  				break;
230  			case 2:
231  				odt_mask_0 = 0x1;
232  				odt_mask_1 = 0x5;
233  				break;
234  			case 3:
235  				odt_mask_0 = 0x2;
236  				odt_mask_1 = 0xA;
237  				break;
238  			}
239  			break;
240  		}
241  	}
242  
243  	cs_and_odt_mask = (0xFF & ~(1 << rank)) |
244  			  ((0xFF & odt_mask_0) << 8) |
245  			  ((0xFF & odt_mask_1) << 16);
246  	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
247  				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
248  }
249  
250  /**
251   * scc_mgr_set() - Set SCC Manager register
252   * @off:	Base offset in SCC Manager space
253   * @grp:	Read/Write group
254   * @val:	Value to be set
255   *
256   * This function sets the SCC Manager (Scan Chain Control Manager) register.
257   */
scc_mgr_set(u32 off,u32 grp,u32 val)258  static void scc_mgr_set(u32 off, u32 grp, u32 val)
259  {
260  	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
261  }
262  
263  /**
264   * scc_mgr_initialize() - Initialize SCC Manager registers
265   *
266   * Initialize SCC Manager registers.
267   */
scc_mgr_initialize(void)268  static void scc_mgr_initialize(void)
269  {
270  	/*
271  	 * Clear register file for HPS. 16 (2^4) is the size of the
272  	 * full register file in the scc mgr:
273  	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
274  	 *                             MEM_IF_READ_DQS_WIDTH - 1);
275  	 */
276  	int i;
277  
278  	for (i = 0; i < 16; i++) {
279  		debug_cond(DLEVEL >= 1, "%s:%d: Clearing SCC RFILE index %u\n",
280  			   __func__, __LINE__, i);
281  		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, i, 0);
282  	}
283  }
284  
scc_mgr_set_dqdqs_output_phase(u32 write_group,u32 phase)285  static void scc_mgr_set_dqdqs_output_phase(u32 write_group, u32 phase)
286  {
287  	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
288  }
289  
scc_mgr_set_dqs_bus_in_delay(u32 read_group,u32 delay)290  static void scc_mgr_set_dqs_bus_in_delay(u32 read_group, u32 delay)
291  {
292  	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
293  }
294  
scc_mgr_set_dqs_en_phase(u32 read_group,u32 phase)295  static void scc_mgr_set_dqs_en_phase(u32 read_group, u32 phase)
296  {
297  	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
298  }
299  
scc_mgr_set_dqs_en_delay(u32 read_group,u32 delay)300  static void scc_mgr_set_dqs_en_delay(u32 read_group, u32 delay)
301  {
302  	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
303  }
304  
scc_mgr_set_dq_in_delay(u32 dq_in_group,u32 delay)305  static void scc_mgr_set_dq_in_delay(u32 dq_in_group, u32 delay)
306  {
307  	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
308  }
309  
scc_mgr_set_dqs_io_in_delay(u32 delay)310  static void scc_mgr_set_dqs_io_in_delay(u32 delay)
311  {
312  	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs,
313  		    delay);
314  }
315  
scc_mgr_set_dm_in_delay(u32 dm,u32 delay)316  static void scc_mgr_set_dm_in_delay(u32 dm, u32 delay)
317  {
318  	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET,
319  		    rwcfg->mem_dq_per_write_dqs + 1 + dm,
320  		    delay);
321  }
322  
scc_mgr_set_dq_out1_delay(u32 dq_in_group,u32 delay)323  static void scc_mgr_set_dq_out1_delay(u32 dq_in_group, u32 delay)
324  {
325  	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
326  }
327  
scc_mgr_set_dqs_out1_delay(u32 delay)328  static void scc_mgr_set_dqs_out1_delay(u32 delay)
329  {
330  	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs,
331  		    delay);
332  }
333  
scc_mgr_set_dm_out1_delay(u32 dm,u32 delay)334  static void scc_mgr_set_dm_out1_delay(u32 dm, u32 delay)
335  {
336  	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
337  		    rwcfg->mem_dq_per_write_dqs + 1 + dm,
338  		    delay);
339  }
340  
341  /* load up dqs config settings */
scc_mgr_load_dqs(u32 dqs)342  static void scc_mgr_load_dqs(u32 dqs)
343  {
344  	writel(dqs, &sdr_scc_mgr->dqs_ena);
345  }
346  
347  /* load up dqs io config settings */
scc_mgr_load_dqs_io(void)348  static void scc_mgr_load_dqs_io(void)
349  {
350  	writel(0, &sdr_scc_mgr->dqs_io_ena);
351  }
352  
353  /* load up dq config settings */
scc_mgr_load_dq(u32 dq_in_group)354  static void scc_mgr_load_dq(u32 dq_in_group)
355  {
356  	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
357  }
358  
359  /* load up dm config settings */
scc_mgr_load_dm(u32 dm)360  static void scc_mgr_load_dm(u32 dm)
361  {
362  	writel(dm, &sdr_scc_mgr->dm_ena);
363  }
364  
365  /**
366   * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
367   * @off:	Base offset in SCC Manager space
368   * @grp:	Read/Write group
369   * @val:	Value to be set
370   * @update:	If non-zero, trigger SCC Manager update for all ranks
371   *
372   * This function sets the SCC Manager (Scan Chain Control Manager) register
373   * and optionally triggers the SCC update for all ranks.
374   */
scc_mgr_set_all_ranks(const u32 off,const u32 grp,const u32 val,const int update)375  static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
376  				  const int update)
377  {
378  	u32 r;
379  
380  	for (r = 0; r < rwcfg->mem_number_of_ranks;
381  	     r += NUM_RANKS_PER_SHADOW_REG) {
382  		scc_mgr_set(off, grp, val);
383  
384  		if (update || (r == 0)) {
385  			writel(grp, &sdr_scc_mgr->dqs_ena);
386  			writel(0, &sdr_scc_mgr->update);
387  		}
388  	}
389  }
390  
scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group,u32 phase)391  static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
392  {
393  	/*
394  	 * USER although the h/w doesn't support different phases per
395  	 * shadow register, for simplicity our scc manager modeling
396  	 * keeps different phase settings per shadow reg, and it's
397  	 * important for us to keep them in sync to match h/w.
398  	 * for efficiency, the scan chain update should occur only
399  	 * once to sr0.
400  	 */
401  	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
402  			      read_group, phase, 0);
403  }
404  
scc_mgr_set_dqdqs_output_phase_all_ranks(u32 write_group,u32 phase)405  static void scc_mgr_set_dqdqs_output_phase_all_ranks(u32 write_group,
406  						     u32 phase)
407  {
408  	/*
409  	 * USER although the h/w doesn't support different phases per
410  	 * shadow register, for simplicity our scc manager modeling
411  	 * keeps different phase settings per shadow reg, and it's
412  	 * important for us to keep them in sync to match h/w.
413  	 * for efficiency, the scan chain update should occur only
414  	 * once to sr0.
415  	 */
416  	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
417  			      write_group, phase, 0);
418  }
419  
scc_mgr_set_dqs_en_delay_all_ranks(u32 read_group,u32 delay)420  static void scc_mgr_set_dqs_en_delay_all_ranks(u32 read_group,
421  					       u32 delay)
422  {
423  	/*
424  	 * In shadow register mode, the T11 settings are stored in
425  	 * registers in the core, which are updated by the DQS_ENA
426  	 * signals. Not issuing the SCC_MGR_UPD command allows us to
427  	 * save lots of rank switching overhead, by calling
428  	 * select_shadow_regs_for_update with update_scan_chains
429  	 * set to 0.
430  	 */
431  	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
432  			      read_group, delay, 1);
433  }
434  
435  /**
436   * scc_mgr_set_oct_out1_delay() - Set OCT output delay
437   * @write_group:	Write group
438   * @delay:		Delay value
439   *
440   * This function sets the OCT output delay in SCC manager.
441   */
scc_mgr_set_oct_out1_delay(const u32 write_group,const u32 delay)442  static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
443  {
444  	const int ratio = rwcfg->mem_if_read_dqs_width /
445  			  rwcfg->mem_if_write_dqs_width;
446  	const int base = write_group * ratio;
447  	int i;
448  	/*
449  	 * Load the setting in the SCC manager
450  	 * Although OCT affects only write data, the OCT delay is controlled
451  	 * by the DQS logic block which is instantiated once per read group.
452  	 * For protocols where a write group consists of multiple read groups,
453  	 * the setting must be set multiple times.
454  	 */
455  	for (i = 0; i < ratio; i++)
456  		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
457  }
458  
459  /**
460   * scc_mgr_set_hhp_extras() - Set HHP extras.
461   *
462   * Load the fixed setting in the SCC manager HHP extras.
463   */
scc_mgr_set_hhp_extras(void)464  static void scc_mgr_set_hhp_extras(void)
465  {
466  	/*
467  	 * Load the fixed setting in the SCC manager
468  	 * bits: 0:0 = 1'b1	- DQS bypass
469  	 * bits: 1:1 = 1'b1	- DQ bypass
470  	 * bits: 4:2 = 3'b001	- rfifo_mode
471  	 * bits: 6:5 = 2'b01	- rfifo clock_select
472  	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
473  	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
474  	 */
475  	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
476  			  (1 << 2) | (1 << 1) | (1 << 0);
477  	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
478  			 SCC_MGR_HHP_GLOBALS_OFFSET |
479  			 SCC_MGR_HHP_EXTRAS_OFFSET;
480  
481  	debug_cond(DLEVEL >= 1, "%s:%d Setting HHP Extras\n",
482  		   __func__, __LINE__);
483  	writel(value, addr);
484  	debug_cond(DLEVEL >= 1, "%s:%d Done Setting HHP Extras\n",
485  		   __func__, __LINE__);
486  }
487  
488  /**
489   * scc_mgr_zero_all() - Zero all DQS config
490   *
491   * Zero all DQS config.
492   */
scc_mgr_zero_all(void)493  static void scc_mgr_zero_all(void)
494  {
495  	int i, r;
496  
497  	/*
498  	 * USER Zero all DQS config settings, across all groups and all
499  	 * shadow registers
500  	 */
501  	for (r = 0; r < rwcfg->mem_number_of_ranks;
502  	     r += NUM_RANKS_PER_SHADOW_REG) {
503  		for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
504  			/*
505  			 * The phases actually don't exist on a per-rank basis,
506  			 * but there's no harm updating them several times, so
507  			 * let's keep the code simple.
508  			 */
509  			scc_mgr_set_dqs_bus_in_delay(i, iocfg->dqs_in_reserve);
510  			scc_mgr_set_dqs_en_phase(i, 0);
511  			scc_mgr_set_dqs_en_delay(i, 0);
512  		}
513  
514  		for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) {
515  			scc_mgr_set_dqdqs_output_phase(i, 0);
516  			/* Arria V/Cyclone V don't have out2. */
517  			scc_mgr_set_oct_out1_delay(i, iocfg->dqs_out_reserve);
518  		}
519  	}
520  
521  	/* Multicast to all DQS group enables. */
522  	writel(0xff, &sdr_scc_mgr->dqs_ena);
523  	writel(0, &sdr_scc_mgr->update);
524  }
525  
526  /**
527   * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
528   * @write_group:	Write group
529   *
530   * Set bypass mode and trigger SCC update.
531   */
scc_set_bypass_mode(const u32 write_group)532  static void scc_set_bypass_mode(const u32 write_group)
533  {
534  	/* Multicast to all DQ enables. */
535  	writel(0xff, &sdr_scc_mgr->dq_ena);
536  	writel(0xff, &sdr_scc_mgr->dm_ena);
537  
538  	/* Update current DQS IO enable. */
539  	writel(0, &sdr_scc_mgr->dqs_io_ena);
540  
541  	/* Update the DQS logic. */
542  	writel(write_group, &sdr_scc_mgr->dqs_ena);
543  
544  	/* Hit update. */
545  	writel(0, &sdr_scc_mgr->update);
546  }
547  
548  /**
549   * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
550   * @write_group:	Write group
551   *
552   * Load DQS settings for Write Group, do not trigger SCC update.
553   */
scc_mgr_load_dqs_for_write_group(const u32 write_group)554  static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
555  {
556  	const int ratio = rwcfg->mem_if_read_dqs_width /
557  			  rwcfg->mem_if_write_dqs_width;
558  	const int base = write_group * ratio;
559  	int i;
560  	/*
561  	 * Load the setting in the SCC manager
562  	 * Although OCT affects only write data, the OCT delay is controlled
563  	 * by the DQS logic block which is instantiated once per read group.
564  	 * For protocols where a write group consists of multiple read groups,
565  	 * the setting must be set multiple times.
566  	 */
567  	for (i = 0; i < ratio; i++)
568  		writel(base + i, &sdr_scc_mgr->dqs_ena);
569  }
570  
571  /**
572   * scc_mgr_zero_group() - Zero all configs for a group
573   *
574   * Zero DQ, DM, DQS and OCT configs for a group.
575   */
scc_mgr_zero_group(const u32 write_group,const int out_only)576  static void scc_mgr_zero_group(const u32 write_group, const int out_only)
577  {
578  	int i, r;
579  
580  	for (r = 0; r < rwcfg->mem_number_of_ranks;
581  	     r += NUM_RANKS_PER_SHADOW_REG) {
582  		/* Zero all DQ config settings. */
583  		for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
584  			scc_mgr_set_dq_out1_delay(i, 0);
585  			if (!out_only)
586  				scc_mgr_set_dq_in_delay(i, 0);
587  		}
588  
589  		/* Multicast to all DQ enables. */
590  		writel(0xff, &sdr_scc_mgr->dq_ena);
591  
592  		/* Zero all DM config settings. */
593  		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
594  			if (!out_only)
595  				scc_mgr_set_dm_in_delay(i, 0);
596  			scc_mgr_set_dm_out1_delay(i, 0);
597  		}
598  
599  		/* Multicast to all DM enables. */
600  		writel(0xff, &sdr_scc_mgr->dm_ena);
601  
602  		/* Zero all DQS IO settings. */
603  		if (!out_only)
604  			scc_mgr_set_dqs_io_in_delay(0);
605  
606  		/* Arria V/Cyclone V don't have out2. */
607  		scc_mgr_set_dqs_out1_delay(iocfg->dqs_out_reserve);
608  		scc_mgr_set_oct_out1_delay(write_group, iocfg->dqs_out_reserve);
609  		scc_mgr_load_dqs_for_write_group(write_group);
610  
611  		/* Multicast to all DQS IO enables (only 1 in total). */
612  		writel(0, &sdr_scc_mgr->dqs_io_ena);
613  
614  		/* Hit update to zero everything. */
615  		writel(0, &sdr_scc_mgr->update);
616  	}
617  }
618  
619  /*
620   * apply and load a particular input delay for the DQ pins in a group
621   * group_bgn is the index of the first dq pin (in the write group)
622   */
scc_mgr_apply_group_dq_in_delay(u32 group_bgn,u32 delay)623  static void scc_mgr_apply_group_dq_in_delay(u32 group_bgn, u32 delay)
624  {
625  	u32 i, p;
626  
627  	for (i = 0, p = group_bgn; i < rwcfg->mem_dq_per_read_dqs; i++, p++) {
628  		scc_mgr_set_dq_in_delay(p, delay);
629  		scc_mgr_load_dq(p);
630  	}
631  }
632  
633  /**
634   * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
635   * @delay:		Delay value
636   *
637   * Apply and load a particular output delay for the DQ pins in a group.
638   */
scc_mgr_apply_group_dq_out1_delay(const u32 delay)639  static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
640  {
641  	int i;
642  
643  	for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
644  		scc_mgr_set_dq_out1_delay(i, delay);
645  		scc_mgr_load_dq(i);
646  	}
647  }
648  
649  /* apply and load a particular output delay for the DM pins in a group */
scc_mgr_apply_group_dm_out1_delay(u32 delay1)650  static void scc_mgr_apply_group_dm_out1_delay(u32 delay1)
651  {
652  	u32 i;
653  
654  	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
655  		scc_mgr_set_dm_out1_delay(i, delay1);
656  		scc_mgr_load_dm(i);
657  	}
658  }
659  
660  
661  /* apply and load delay on both DQS and OCT out1 */
scc_mgr_apply_group_dqs_io_and_oct_out1(u32 write_group,u32 delay)662  static void scc_mgr_apply_group_dqs_io_and_oct_out1(u32 write_group,
663  						    u32 delay)
664  {
665  	scc_mgr_set_dqs_out1_delay(delay);
666  	scc_mgr_load_dqs_io();
667  
668  	scc_mgr_set_oct_out1_delay(write_group, delay);
669  	scc_mgr_load_dqs_for_write_group(write_group);
670  }
671  
672  /**
673   * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
674   * @write_group:	Write group
675   * @delay:		Delay value
676   *
677   * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
678   */
scc_mgr_apply_group_all_out_delay_add(const u32 write_group,const u32 delay)679  static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
680  						  const u32 delay)
681  {
682  	u32 i, new_delay;
683  
684  	/* DQ shift */
685  	for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++)
686  		scc_mgr_load_dq(i);
687  
688  	/* DM shift */
689  	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
690  		scc_mgr_load_dm(i);
691  
692  	/* DQS shift */
693  	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
694  	if (new_delay > iocfg->io_out2_delay_max) {
695  		debug_cond(DLEVEL >= 1,
696  			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
697  			   __func__, __LINE__, write_group, delay, new_delay,
698  			   iocfg->io_out2_delay_max,
699  			   new_delay - iocfg->io_out2_delay_max);
700  		new_delay -= iocfg->io_out2_delay_max;
701  		scc_mgr_set_dqs_out1_delay(new_delay);
702  	}
703  
704  	scc_mgr_load_dqs_io();
705  
706  	/* OCT shift */
707  	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
708  	if (new_delay > iocfg->io_out2_delay_max) {
709  		debug_cond(DLEVEL >= 1,
710  			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
711  			   __func__, __LINE__, write_group, delay,
712  			   new_delay, iocfg->io_out2_delay_max,
713  			   new_delay - iocfg->io_out2_delay_max);
714  		new_delay -= iocfg->io_out2_delay_max;
715  		scc_mgr_set_oct_out1_delay(write_group, new_delay);
716  	}
717  
718  	scc_mgr_load_dqs_for_write_group(write_group);
719  }
720  
721  /**
722   * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
723   * @write_group:	Write group
724   * @delay:		Delay value
725   *
726   * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
727   */
728  static void
scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,const u32 delay)729  scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
730  						const u32 delay)
731  {
732  	int r;
733  
734  	for (r = 0; r < rwcfg->mem_number_of_ranks;
735  	     r += NUM_RANKS_PER_SHADOW_REG) {
736  		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
737  		writel(0, &sdr_scc_mgr->update);
738  	}
739  }
740  
741  /**
742   * set_jump_as_return() - Return instruction optimization
743   *
744   * Optimization used to recover some slots in ddr3 inst_rom could be
745   * applied to other protocols if we wanted to
746   */
set_jump_as_return(void)747  static void set_jump_as_return(void)
748  {
749  	/*
750  	 * To save space, we replace return with jump to special shared
751  	 * RETURN instruction so we set the counter to large value so that
752  	 * we always jump.
753  	 */
754  	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
755  	writel(rwcfg->rreturn, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
756  }
757  
758  /**
759   * delay_for_n_mem_clocks() - Delay for N memory clocks
760   * @clocks:	Length of the delay
761   *
762   * Delay for N memory clocks.
763   */
delay_for_n_mem_clocks(const u32 clocks)764  static void delay_for_n_mem_clocks(const u32 clocks)
765  {
766  	u32 afi_clocks;
767  	u16 c_loop;
768  	u8 inner;
769  	u8 outer;
770  
771  	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);
772  
773  	/* Scale (rounding up) to get afi clocks. */
774  	afi_clocks = DIV_ROUND_UP(clocks, misccfg->afi_rate_ratio);
775  	if (afi_clocks)	/* Temporary underflow protection */
776  		afi_clocks--;
777  
778  	/*
779  	 * Note, we don't bother accounting for being off a little
780  	 * bit because of a few extra instructions in outer loops.
781  	 * Note, the loops have a test at the end, and do the test
782  	 * before the decrement, and so always perform the loop
783  	 * 1 time more than the counter value
784  	 */
785  	c_loop = afi_clocks >> 16;
786  	outer = c_loop ? 0xff : (afi_clocks >> 8);
787  	inner = outer ? 0xff : afi_clocks;
788  
789  	/*
790  	 * rom instructions are structured as follows:
791  	 *
792  	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
793  	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
794  	 *                return
795  	 *
796  	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
797  	 * TARGET_B is set to IDLE_LOOP2 as well
798  	 *
799  	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
800  	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
801  	 *
802  	 * a little confusing, but it helps save precious space in the inst_rom
803  	 * and sequencer rom and keeps the delays more accurate and reduces
804  	 * overhead
805  	 */
806  	if (afi_clocks < 0x100) {
807  		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
808  		       &sdr_rw_load_mgr_regs->load_cntr1);
809  
810  		writel(rwcfg->idle_loop1,
811  		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
812  
813  		writel(rwcfg->idle_loop1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
814  					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
815  	} else {
816  		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
817  		       &sdr_rw_load_mgr_regs->load_cntr0);
818  
819  		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
820  		       &sdr_rw_load_mgr_regs->load_cntr1);
821  
822  		writel(rwcfg->idle_loop2,
823  		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
824  
825  		writel(rwcfg->idle_loop2,
826  		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
827  
828  		do {
829  			writel(rwcfg->idle_loop2,
830  			       SDR_PHYGRP_RWMGRGRP_ADDRESS |
831  			       RW_MGR_RUN_SINGLE_GROUP_OFFSET);
832  		} while (c_loop-- != 0);
833  	}
834  	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
835  }
836  
837  /**
838   * rw_mgr_mem_init_load_regs() - Load instruction registers
839   * @cntr0:	Counter 0 value
840   * @cntr1:	Counter 1 value
841   * @cntr2:	Counter 2 value
842   * @jump:	Jump instruction value
843   *
844   * Load instruction registers.
845   */
rw_mgr_mem_init_load_regs(u32 cntr0,u32 cntr1,u32 cntr2,u32 jump)846  static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
847  {
848  	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
849  			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;
850  
851  	/* Load counters */
852  	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
853  	       &sdr_rw_load_mgr_regs->load_cntr0);
854  	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
855  	       &sdr_rw_load_mgr_regs->load_cntr1);
856  	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
857  	       &sdr_rw_load_mgr_regs->load_cntr2);
858  
859  	/* Load jump address */
860  	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
861  	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
862  	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
863  
864  	/* Execute count instruction */
865  	writel(jump, grpaddr);
866  }
867  
868  /**
869   * rw_mgr_mem_load_user() - Load user calibration values
870   * @fin1:	Final instruction 1
871   * @fin2:	Final instruction 2
872   * @precharge:	If 1, precharge the banks at the end
873   *
874   * Load user calibration values and optionally precharge the banks.
875   */
rw_mgr_mem_load_user(const u32 fin1,const u32 fin2,const int precharge)876  static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
877  				 const int precharge)
878  {
879  	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
880  		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
881  	u32 r;
882  
883  	for (r = 0; r < rwcfg->mem_number_of_ranks; r++) {
884  		/* set rank */
885  		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
886  
887  		/* precharge all banks ... */
888  		if (precharge)
889  			writel(rwcfg->precharge_all, grpaddr);
890  
891  		/*
892  		 * USER Use Mirror-ed commands for odd ranks if address
893  		 * mirrorring is on
894  		 */
895  		if ((rwcfg->mem_address_mirroring >> r) & 0x1) {
896  			set_jump_as_return();
897  			writel(rwcfg->mrs2_mirr, grpaddr);
898  			delay_for_n_mem_clocks(4);
899  			set_jump_as_return();
900  			writel(rwcfg->mrs3_mirr, grpaddr);
901  			delay_for_n_mem_clocks(4);
902  			set_jump_as_return();
903  			writel(rwcfg->mrs1_mirr, grpaddr);
904  			delay_for_n_mem_clocks(4);
905  			set_jump_as_return();
906  			writel(fin1, grpaddr);
907  		} else {
908  			set_jump_as_return();
909  			writel(rwcfg->mrs2, grpaddr);
910  			delay_for_n_mem_clocks(4);
911  			set_jump_as_return();
912  			writel(rwcfg->mrs3, grpaddr);
913  			delay_for_n_mem_clocks(4);
914  			set_jump_as_return();
915  			writel(rwcfg->mrs1, grpaddr);
916  			set_jump_as_return();
917  			writel(fin2, grpaddr);
918  		}
919  
920  		if (precharge)
921  			continue;
922  
923  		set_jump_as_return();
924  		writel(rwcfg->zqcl, grpaddr);
925  
926  		/* tZQinit = tDLLK = 512 ck cycles */
927  		delay_for_n_mem_clocks(512);
928  	}
929  }
930  
931  /**
932   * rw_mgr_mem_initialize() - Initialize RW Manager
933   *
934   * Initialize RW Manager.
935   */
rw_mgr_mem_initialize(void)936  static void rw_mgr_mem_initialize(void)
937  {
938  	debug("%s:%d\n", __func__, __LINE__);
939  
940  	/* The reset / cke part of initialization is broadcasted to all ranks */
941  	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
942  				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
943  
944  	/*
945  	 * Here's how you load register for a loop
946  	 * Counters are located @ 0x800
947  	 * Jump address are located @ 0xC00
948  	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
949  	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
950  	 * I know this ain't pretty, but Avalon bus throws away the 2 least
951  	 * significant bits
952  	 */
953  
954  	/* Start with memory RESET activated */
955  
956  	/* tINIT = 200us */
957  
958  	/*
959  	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
960  	 * If a and b are the number of iteration in 2 nested loops
961  	 * it takes the following number of cycles to complete the operation:
962  	 * number_of_cycles = ((2 + n) * a + 2) * b
963  	 * where n is the number of instruction in the inner loop
964  	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
965  	 * b = 6A
966  	 */
967  	rw_mgr_mem_init_load_regs(misccfg->tinit_cntr0_val,
968  				  misccfg->tinit_cntr1_val,
969  				  misccfg->tinit_cntr2_val,
970  				  rwcfg->init_reset_0_cke_0);
971  
972  	/* Indicate that memory is stable. */
973  	writel(1, &phy_mgr_cfg->reset_mem_stbl);
974  
975  	/*
976  	 * transition the RESET to high
977  	 * Wait for 500us
978  	 */
979  
980  	/*
981  	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
982  	 * If a and b are the number of iteration in 2 nested loops
983  	 * it takes the following number of cycles to complete the operation
984  	 * number_of_cycles = ((2 + n) * a + 2) * b
985  	 * where n is the number of instruction in the inner loop
986  	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
987  	 * b = FF
988  	 */
989  	rw_mgr_mem_init_load_regs(misccfg->treset_cntr0_val,
990  				  misccfg->treset_cntr1_val,
991  				  misccfg->treset_cntr2_val,
992  				  rwcfg->init_reset_1_cke_0);
993  
994  	/* Bring up clock enable. */
995  
996  	/* tXRP < 250 ck cycles */
997  	delay_for_n_mem_clocks(250);
998  
999  	rw_mgr_mem_load_user(rwcfg->mrs0_dll_reset_mirr, rwcfg->mrs0_dll_reset,
1000  			     0);
1001  }
1002  
1003  /**
1004   * rw_mgr_mem_handoff() - Hand off the memory to user
1005   *
1006   * At the end of calibration we have to program the user settings in
1007   * and hand off the memory to the user.
1008   */
rw_mgr_mem_handoff(void)1009  static void rw_mgr_mem_handoff(void)
1010  {
1011  	rw_mgr_mem_load_user(rwcfg->mrs0_user_mirr, rwcfg->mrs0_user, 1);
1012  	/*
1013  	 * Need to wait tMOD (12CK or 15ns) time before issuing other
1014  	 * commands, but we will have plenty of NIOS cycles before actual
1015  	 * handoff so its okay.
1016  	 */
1017  }
1018  
1019  /**
1020   * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command
1021   * @group:	Write Group
1022   * @use_dm:	Use DM
1023   *
1024   * Issue write test command. Two variants are provided, one that just tests
1025   * a write pattern and another that tests datamask functionality.
1026   */
rw_mgr_mem_calibrate_write_test_issue(u32 group,u32 test_dm)1027  static void rw_mgr_mem_calibrate_write_test_issue(u32 group,
1028  						  u32 test_dm)
1029  {
1030  	const u32 quick_write_mode =
1031  		(STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) &&
1032  		misccfg->enable_super_quick_calibration;
1033  	u32 mcc_instruction;
1034  	u32 rw_wl_nop_cycles;
1035  
1036  	/*
1037  	 * Set counter and jump addresses for the right
1038  	 * number of NOP cycles.
1039  	 * The number of supported NOP cycles can range from -1 to infinity
1040  	 * Three different cases are handled:
1041  	 *
1042  	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
1043  	 *    mechanism will be used to insert the right number of NOPs
1044  	 *
1045  	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
1046  	 *    issuing the write command will jump straight to the
1047  	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
1048  	 *    data (for RLD), skipping
1049  	 *    the NOP micro-instruction all together
1050  	 *
1051  	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
1052  	 *    turned on in the same micro-instruction that issues the write
1053  	 *    command. Then we need
1054  	 *    to directly jump to the micro-instruction that sends out the data
1055  	 *
1056  	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
1057  	 *       (2 and 3). One jump-counter (0) is used to perform multiple
1058  	 *       write-read operations.
1059  	 *       one counter left to issue this command in "multiple-group" mode
1060  	 */
1061  
1062  	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
1063  
1064  	if (rw_wl_nop_cycles == -1) {
1065  		/*
1066  		 * CNTR 2 - We want to execute the special write operation that
1067  		 * turns on DQS right away and then skip directly to the
1068  		 * instruction that sends out the data. We set the counter to a
1069  		 * large number so that the jump is always taken.
1070  		 */
1071  		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1072  
1073  		/* CNTR 3 - Not used */
1074  		if (test_dm) {
1075  			mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0_wl_1;
1076  			writel(rwcfg->lfsr_wr_rd_dm_bank_0_data,
1077  			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1078  			writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop,
1079  			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1080  		} else {
1081  			mcc_instruction = rwcfg->lfsr_wr_rd_bank_0_wl_1;
1082  			writel(rwcfg->lfsr_wr_rd_bank_0_data,
1083  			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1084  			writel(rwcfg->lfsr_wr_rd_bank_0_nop,
1085  			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1086  		}
1087  	} else if (rw_wl_nop_cycles == 0) {
1088  		/*
1089  		 * CNTR 2 - We want to skip the NOP operation and go straight
1090  		 * to the DQS enable instruction. We set the counter to a large
1091  		 * number so that the jump is always taken.
1092  		 */
1093  		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);
1094  
1095  		/* CNTR 3 - Not used */
1096  		if (test_dm) {
1097  			mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0;
1098  			writel(rwcfg->lfsr_wr_rd_dm_bank_0_dqs,
1099  			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1100  		} else {
1101  			mcc_instruction = rwcfg->lfsr_wr_rd_bank_0;
1102  			writel(rwcfg->lfsr_wr_rd_bank_0_dqs,
1103  			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1104  		}
1105  	} else {
1106  		/*
1107  		 * CNTR 2 - In this case we want to execute the next instruction
1108  		 * and NOT take the jump. So we set the counter to 0. The jump
1109  		 * address doesn't count.
1110  		 */
1111  		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
1112  		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1113  
1114  		/*
1115  		 * CNTR 3 - Set the nop counter to the number of cycles we
1116  		 * need to loop for, minus 1.
1117  		 */
1118  		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
1119  		if (test_dm) {
1120  			mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0;
1121  			writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop,
1122  			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1123  		} else {
1124  			mcc_instruction = rwcfg->lfsr_wr_rd_bank_0;
1125  			writel(rwcfg->lfsr_wr_rd_bank_0_nop,
1126  			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1127  		}
1128  	}
1129  
1130  	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1131  		  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1132  
1133  	if (quick_write_mode)
1134  		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
1135  	else
1136  		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);
1137  
1138  	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1139  
1140  	/*
1141  	 * CNTR 1 - This is used to ensure enough time elapses
1142  	 * for read data to come back.
1143  	 */
1144  	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);
1145  
1146  	if (test_dm) {
1147  		writel(rwcfg->lfsr_wr_rd_dm_bank_0_wait,
1148  		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1149  	} else {
1150  		writel(rwcfg->lfsr_wr_rd_bank_0_wait,
1151  		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1152  	}
1153  
1154  	writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS |
1155  				RW_MGR_RUN_SINGLE_GROUP_OFFSET) +
1156  				(group << 2));
1157  }
1158  
1159  /**
1160   * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass
1161   * @rank_bgn:		Rank number
1162   * @write_group:	Write Group
1163   * @use_dm:		Use DM
1164   * @all_correct:	All bits must be correct in the mask
1165   * @bit_chk:		Resulting bit mask after the test
1166   * @all_ranks:		Test all ranks
1167   *
1168   * Test writes, can check for a single bit pass or multiple bit pass.
1169   */
1170  static int
rw_mgr_mem_calibrate_write_test(const u32 rank_bgn,const u32 write_group,const u32 use_dm,const u32 all_correct,u32 * bit_chk,const u32 all_ranks)1171  rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group,
1172  				const u32 use_dm, const u32 all_correct,
1173  				u32 *bit_chk, const u32 all_ranks)
1174  {
1175  	const u32 rank_end = all_ranks ?
1176  				rwcfg->mem_number_of_ranks :
1177  				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1178  	const u32 shift_ratio = rwcfg->mem_dq_per_write_dqs /
1179  				rwcfg->mem_virtual_groups_per_write_dqs;
1180  	const u32 correct_mask_vg = param->write_correct_mask_vg;
1181  
1182  	u32 tmp_bit_chk, base_rw_mgr;
1183  	int vg, r;
1184  
1185  	*bit_chk = param->write_correct_mask;
1186  
1187  	for (r = rank_bgn; r < rank_end; r++) {
1188  		/* Set rank */
1189  		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1190  
1191  		tmp_bit_chk = 0;
1192  		for (vg = rwcfg->mem_virtual_groups_per_write_dqs - 1;
1193  		     vg >= 0; vg--) {
1194  			/* Reset the FIFOs to get pointers to known state. */
1195  			writel(0, &phy_mgr_cmd->fifo_reset);
1196  
1197  			rw_mgr_mem_calibrate_write_test_issue(
1198  				write_group *
1199  				rwcfg->mem_virtual_groups_per_write_dqs + vg,
1200  				use_dm);
1201  
1202  			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1203  			tmp_bit_chk <<= shift_ratio;
1204  			tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
1205  		}
1206  
1207  		*bit_chk &= tmp_bit_chk;
1208  	}
1209  
1210  	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1211  	if (all_correct) {
1212  		debug_cond(DLEVEL >= 2,
1213  			   "write_test(%u,%u,ALL) : %u == %u => %i\n",
1214  			   write_group, use_dm, *bit_chk,
1215  			   param->write_correct_mask,
1216  			   *bit_chk == param->write_correct_mask);
1217  		return *bit_chk == param->write_correct_mask;
1218  	} else {
1219  		debug_cond(DLEVEL >= 2,
1220  			   "write_test(%u,%u,ONE) : %u != %i => %i\n",
1221  			   write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
1222  		return *bit_chk != 0x00;
1223  	}
1224  }
1225  
1226  /**
1227   * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
1228   * @rank_bgn:	Rank number
1229   * @group:	Read/Write Group
1230   * @all_ranks:	Test all ranks
1231   *
1232   * Performs a guaranteed read on the patterns we are going to use during a
1233   * read test to ensure memory works.
1234   */
1235  static int
rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn,const u32 group,const u32 all_ranks)1236  rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
1237  					const u32 all_ranks)
1238  {
1239  	const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1240  			 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1241  	const u32 addr_offset =
1242  			 (group * rwcfg->mem_virtual_groups_per_read_dqs) << 2;
1243  	const u32 rank_end = all_ranks ?
1244  				rwcfg->mem_number_of_ranks :
1245  				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1246  	const u32 shift_ratio = rwcfg->mem_dq_per_read_dqs /
1247  				rwcfg->mem_virtual_groups_per_read_dqs;
1248  	const u32 correct_mask_vg = param->read_correct_mask_vg;
1249  
1250  	u32 tmp_bit_chk, base_rw_mgr, bit_chk;
1251  	int vg, r;
1252  	int ret = 0;
1253  
1254  	bit_chk = param->read_correct_mask;
1255  
1256  	for (r = rank_bgn; r < rank_end; r++) {
1257  		/* Set rank */
1258  		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1259  
1260  		/* Load up a constant bursts of read commands */
1261  		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1262  		writel(rwcfg->guaranteed_read,
1263  		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1264  
1265  		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1266  		writel(rwcfg->guaranteed_read_cont,
1267  		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1268  
1269  		tmp_bit_chk = 0;
1270  		for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1;
1271  		     vg >= 0; vg--) {
1272  			/* Reset the FIFOs to get pointers to known state. */
1273  			writel(0, &phy_mgr_cmd->fifo_reset);
1274  			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1275  				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1276  			writel(rwcfg->guaranteed_read,
1277  			       addr + addr_offset + (vg << 2));
1278  
1279  			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1280  			tmp_bit_chk <<= shift_ratio;
1281  			tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
1282  		}
1283  
1284  		bit_chk &= tmp_bit_chk;
1285  	}
1286  
1287  	writel(rwcfg->clear_dqs_enable, addr + (group << 2));
1288  
1289  	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1290  
1291  	if (bit_chk != param->read_correct_mask)
1292  		ret = -EIO;
1293  
1294  	debug_cond(DLEVEL >= 1,
1295  		   "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
1296  		   __func__, __LINE__, group, bit_chk,
1297  		   param->read_correct_mask, ret);
1298  
1299  	return ret;
1300  }
1301  
1302  /**
1303   * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
1304   * @rank_bgn:	Rank number
1305   * @all_ranks:	Test all ranks
1306   *
1307   * Load up the patterns we are going to use during a read test.
1308   */
rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,const int all_ranks)1309  static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
1310  						    const int all_ranks)
1311  {
1312  	const u32 rank_end = all_ranks ?
1313  			rwcfg->mem_number_of_ranks :
1314  			(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1315  	u32 r;
1316  
1317  	debug("%s:%d\n", __func__, __LINE__);
1318  
1319  	for (r = rank_bgn; r < rank_end; r++) {
1320  		/* set rank */
1321  		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1322  
1323  		/* Load up a constant bursts */
1324  		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
1325  
1326  		writel(rwcfg->guaranteed_write_wait0,
1327  		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1328  
1329  		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
1330  
1331  		writel(rwcfg->guaranteed_write_wait1,
1332  		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1333  
1334  		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);
1335  
1336  		writel(rwcfg->guaranteed_write_wait2,
1337  		       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1338  
1339  		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);
1340  
1341  		writel(rwcfg->guaranteed_write_wait3,
1342  		       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1343  
1344  		writel(rwcfg->guaranteed_write, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1345  						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
1346  	}
1347  
1348  	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1349  }
1350  
1351  /**
1352   * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
1353   * @rank_bgn:		Rank number
1354   * @group:		Read/Write group
1355   * @num_tries:		Number of retries of the test
1356   * @all_correct:	All bits must be correct in the mask
1357   * @bit_chk:		Resulting bit mask after the test
1358   * @all_groups:		Test all R/W groups
1359   * @all_ranks:		Test all ranks
1360   *
1361   * Try a read and see if it returns correct data back. Test has dummy reads
1362   * inserted into the mix used to align DQS enable. Test has more thorough
1363   * checks than the regular read test.
1364   */
1365  static int
rw_mgr_mem_calibrate_read_test(const u32 rank_bgn,const u32 group,const u32 num_tries,const u32 all_correct,u32 * bit_chk,const u32 all_groups,const u32 all_ranks)1366  rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
1367  			       const u32 num_tries, const u32 all_correct,
1368  			       u32 *bit_chk,
1369  			       const u32 all_groups, const u32 all_ranks)
1370  {
1371  	const u32 rank_end = all_ranks ? rwcfg->mem_number_of_ranks :
1372  		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
1373  	const u32 quick_read_mode =
1374  		((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
1375  		 misccfg->enable_super_quick_calibration);
1376  	u32 correct_mask_vg = param->read_correct_mask_vg;
1377  	u32 tmp_bit_chk;
1378  	u32 base_rw_mgr;
1379  	u32 addr;
1380  
1381  	int r, vg, ret;
1382  
1383  	*bit_chk = param->read_correct_mask;
1384  
1385  	for (r = rank_bgn; r < rank_end; r++) {
1386  		/* set rank */
1387  		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
1388  
1389  		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);
1390  
1391  		writel(rwcfg->read_b2b_wait1,
1392  		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
1393  
1394  		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
1395  		writel(rwcfg->read_b2b_wait2,
1396  		       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
1397  
1398  		if (quick_read_mode)
1399  			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
1400  			/* need at least two (1+1) reads to capture failures */
1401  		else if (all_groups)
1402  			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
1403  		else
1404  			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);
1405  
1406  		writel(rwcfg->read_b2b,
1407  		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
1408  		if (all_groups)
1409  			writel(rwcfg->mem_if_read_dqs_width *
1410  			       rwcfg->mem_virtual_groups_per_read_dqs - 1,
1411  			       &sdr_rw_load_mgr_regs->load_cntr3);
1412  		else
1413  			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);
1414  
1415  		writel(rwcfg->read_b2b,
1416  		       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
1417  
1418  		tmp_bit_chk = 0;
1419  		for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1; vg >= 0;
1420  		     vg--) {
1421  			/* Reset the FIFOs to get pointers to known state. */
1422  			writel(0, &phy_mgr_cmd->fifo_reset);
1423  			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
1424  				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
1425  
1426  			if (all_groups) {
1427  				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1428  				       RW_MGR_RUN_ALL_GROUPS_OFFSET;
1429  			} else {
1430  				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
1431  				       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1432  			}
1433  
1434  			writel(rwcfg->read_b2b, addr +
1435  			       ((group *
1436  				 rwcfg->mem_virtual_groups_per_read_dqs +
1437  				 vg) << 2));
1438  
1439  			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
1440  			tmp_bit_chk <<= rwcfg->mem_dq_per_read_dqs /
1441  					rwcfg->mem_virtual_groups_per_read_dqs;
1442  			tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
1443  		}
1444  
1445  		*bit_chk &= tmp_bit_chk;
1446  	}
1447  
1448  	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
1449  	writel(rwcfg->clear_dqs_enable, addr + (group << 2));
1450  
1451  	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
1452  
1453  	if (all_correct) {
1454  		ret = (*bit_chk == param->read_correct_mask);
1455  		debug_cond(DLEVEL >= 2,
1456  			   "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
1457  			   __func__, __LINE__, group, all_groups, *bit_chk,
1458  			   param->read_correct_mask, ret);
1459  	} else	{
1460  		ret = (*bit_chk != 0x00);
1461  		debug_cond(DLEVEL >= 2,
1462  			   "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
1463  			   __func__, __LINE__, group, all_groups, *bit_chk,
1464  			   0, ret);
1465  	}
1466  
1467  	return ret;
1468  }
1469  
1470  /**
1471   * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
1472   * @grp:		Read/Write group
1473   * @num_tries:		Number of retries of the test
1474   * @all_correct:	All bits must be correct in the mask
1475   * @all_groups:		Test all R/W groups
1476   *
1477   * Perform a READ test across all memory ranks.
1478   */
1479  static int
rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp,const u32 num_tries,const u32 all_correct,const u32 all_groups)1480  rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
1481  					 const u32 all_correct,
1482  					 const u32 all_groups)
1483  {
1484  	u32 bit_chk;
1485  	return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
1486  					      &bit_chk, all_groups, 1);
1487  }
1488  
1489  /**
1490   * rw_mgr_incr_vfifo() - Increase VFIFO value
1491   * @grp:	Read/Write group
1492   *
1493   * Increase VFIFO value.
1494   */
rw_mgr_incr_vfifo(const u32 grp)1495  static void rw_mgr_incr_vfifo(const u32 grp)
1496  {
1497  	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
1498  }
1499  
1500  /**
1501   * rw_mgr_decr_vfifo() - Decrease VFIFO value
1502   * @grp:	Read/Write group
1503   *
1504   * Decrease VFIFO value.
1505   */
rw_mgr_decr_vfifo(const u32 grp)1506  static void rw_mgr_decr_vfifo(const u32 grp)
1507  {
1508  	u32 i;
1509  
1510  	for (i = 0; i < misccfg->read_valid_fifo_size - 1; i++)
1511  		rw_mgr_incr_vfifo(grp);
1512  }
1513  
1514  /**
1515   * find_vfifo_failing_read() - Push VFIFO to get a failing read
1516   * @grp:	Read/Write group
1517   *
1518   * Push VFIFO until a failing read happens.
1519   */
find_vfifo_failing_read(const u32 grp)1520  static int find_vfifo_failing_read(const u32 grp)
1521  {
1522  	u32 v, ret, fail_cnt = 0;
1523  
1524  	for (v = 0; v < misccfg->read_valid_fifo_size; v++) {
1525  		debug_cond(DLEVEL >= 2, "%s:%d: vfifo %u\n",
1526  			   __func__, __LINE__, v);
1527  		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1528  						PASS_ONE_BIT, 0);
1529  		if (!ret) {
1530  			fail_cnt++;
1531  
1532  			if (fail_cnt == 2)
1533  				return v;
1534  		}
1535  
1536  		/* Fiddle with FIFO. */
1537  		rw_mgr_incr_vfifo(grp);
1538  	}
1539  
1540  	/* No failing read found! Something must have gone wrong. */
1541  	debug_cond(DLEVEL >= 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
1542  	return 0;
1543  }
1544  
1545  /**
1546   * sdr_find_phase_delay() - Find DQS enable phase or delay
1547   * @working:	If 1, look for working phase/delay, if 0, look for non-working
1548   * @delay:	If 1, look for delay, if 0, look for phase
1549   * @grp:	Read/Write group
1550   * @work:	Working window position
1551   * @work_inc:	Working window increment
1552   * @pd:		DQS Phase/Delay Iterator
1553   *
1554   * Find working or non-working DQS enable phase setting.
1555   */
sdr_find_phase_delay(int working,int delay,const u32 grp,u32 * work,const u32 work_inc,u32 * pd)1556  static int sdr_find_phase_delay(int working, int delay, const u32 grp,
1557  				u32 *work, const u32 work_inc, u32 *pd)
1558  {
1559  	const u32 max = delay ? iocfg->dqs_en_delay_max :
1560  				iocfg->dqs_en_phase_max;
1561  	u32 ret;
1562  
1563  	for (; *pd <= max; (*pd)++) {
1564  		if (delay)
1565  			scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
1566  		else
1567  			scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);
1568  
1569  		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1570  					PASS_ONE_BIT, 0);
1571  		if (!working)
1572  			ret = !ret;
1573  
1574  		if (ret)
1575  			return 0;
1576  
1577  		if (work)
1578  			*work += work_inc;
1579  	}
1580  
1581  	return -EINVAL;
1582  }
1583  /**
1584   * sdr_find_phase() - Find DQS enable phase
1585   * @working:	If 1, look for working phase, if 0, look for non-working phase
1586   * @grp:	Read/Write group
1587   * @work:	Working window position
1588   * @i:		Iterator
1589   * @p:		DQS Phase Iterator
1590   *
1591   * Find working or non-working DQS enable phase setting.
1592   */
sdr_find_phase(int working,const u32 grp,u32 * work,u32 * i,u32 * p)1593  static int sdr_find_phase(int working, const u32 grp, u32 *work,
1594  			  u32 *i, u32 *p)
1595  {
1596  	const u32 end = misccfg->read_valid_fifo_size + (working ? 0 : 1);
1597  	int ret;
1598  
1599  	for (; *i < end; (*i)++) {
1600  		if (working)
1601  			*p = 0;
1602  
1603  		ret = sdr_find_phase_delay(working, 0, grp, work,
1604  					   iocfg->delay_per_opa_tap, p);
1605  		if (!ret)
1606  			return 0;
1607  
1608  		if (*p > iocfg->dqs_en_phase_max) {
1609  			/* Fiddle with FIFO. */
1610  			rw_mgr_incr_vfifo(grp);
1611  			if (!working)
1612  				*p = 0;
1613  		}
1614  	}
1615  
1616  	return -EINVAL;
1617  }
1618  
1619  /**
1620   * sdr_working_phase() - Find working DQS enable phase
1621   * @grp:	Read/Write group
1622   * @work_bgn:	Working window start position
1623   * @d:		dtaps output value
1624   * @p:		DQS Phase Iterator
1625   * @i:		Iterator
1626   *
1627   * Find working DQS enable phase setting.
1628   */
sdr_working_phase(const u32 grp,u32 * work_bgn,u32 * d,u32 * p,u32 * i)1629  static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
1630  			     u32 *p, u32 *i)
1631  {
1632  	const u32 dtaps_per_ptap = iocfg->delay_per_opa_tap /
1633  				   iocfg->delay_per_dqs_en_dchain_tap;
1634  	int ret;
1635  
1636  	*work_bgn = 0;
1637  
1638  	for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
1639  		*i = 0;
1640  		scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
1641  		ret = sdr_find_phase(1, grp, work_bgn, i, p);
1642  		if (!ret)
1643  			return 0;
1644  		*work_bgn += iocfg->delay_per_dqs_en_dchain_tap;
1645  	}
1646  
1647  	/* Cannot find working solution */
1648  	debug_cond(DLEVEL >= 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
1649  		   __func__, __LINE__);
1650  	return -EINVAL;
1651  }
1652  
1653  /**
1654   * sdr_backup_phase() - Find DQS enable backup phase
1655   * @grp:	Read/Write group
1656   * @work_bgn:	Working window start position
1657   * @p:		DQS Phase Iterator
1658   *
1659   * Find DQS enable backup phase setting.
1660   */
sdr_backup_phase(const u32 grp,u32 * work_bgn,u32 * p)1661  static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
1662  {
1663  	u32 tmp_delay, d;
1664  	int ret;
1665  
1666  	/* Special case code for backing up a phase */
1667  	if (*p == 0) {
1668  		*p = iocfg->dqs_en_phase_max;
1669  		rw_mgr_decr_vfifo(grp);
1670  	} else {
1671  		(*p)--;
1672  	}
1673  	tmp_delay = *work_bgn - iocfg->delay_per_opa_tap;
1674  	scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);
1675  
1676  	for (d = 0; d <= iocfg->dqs_en_delay_max && tmp_delay < *work_bgn;
1677  	     d++) {
1678  		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1679  
1680  		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1681  					PASS_ONE_BIT, 0);
1682  		if (ret) {
1683  			*work_bgn = tmp_delay;
1684  			break;
1685  		}
1686  
1687  		tmp_delay += iocfg->delay_per_dqs_en_dchain_tap;
1688  	}
1689  
1690  	/* Restore VFIFO to old state before we decremented it (if needed). */
1691  	(*p)++;
1692  	if (*p > iocfg->dqs_en_phase_max) {
1693  		*p = 0;
1694  		rw_mgr_incr_vfifo(grp);
1695  	}
1696  
1697  	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1698  }
1699  
1700  /**
1701   * sdr_nonworking_phase() - Find non-working DQS enable phase
1702   * @grp:	Read/Write group
1703   * @work_end:	Working window end position
1704   * @p:		DQS Phase Iterator
1705   * @i:		Iterator
1706   *
1707   * Find non-working DQS enable phase setting.
1708   */
sdr_nonworking_phase(const u32 grp,u32 * work_end,u32 * p,u32 * i)1709  static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
1710  {
1711  	int ret;
1712  
1713  	(*p)++;
1714  	*work_end += iocfg->delay_per_opa_tap;
1715  	if (*p > iocfg->dqs_en_phase_max) {
1716  		/* Fiddle with FIFO. */
1717  		*p = 0;
1718  		rw_mgr_incr_vfifo(grp);
1719  	}
1720  
1721  	ret = sdr_find_phase(0, grp, work_end, i, p);
1722  	if (ret) {
1723  		/* Cannot see edge of failing read. */
1724  		debug_cond(DLEVEL >= 2, "%s:%d: end: failed\n",
1725  			   __func__, __LINE__);
1726  	}
1727  
1728  	return ret;
1729  }
1730  
1731  /**
1732   * sdr_find_window_center() - Find center of the working DQS window.
1733   * @grp:	Read/Write group
1734   * @work_bgn:	First working settings
1735   * @work_end:	Last working settings
1736   *
1737   * Find center of the working DQS enable window.
1738   */
sdr_find_window_center(const u32 grp,const u32 work_bgn,const u32 work_end)1739  static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
1740  				  const u32 work_end)
1741  {
1742  	u32 work_mid;
1743  	int tmp_delay = 0;
1744  	int i, p, d;
1745  
1746  	work_mid = (work_bgn + work_end) / 2;
1747  
1748  	debug_cond(DLEVEL >= 2, "work_bgn=%d work_end=%d work_mid=%d\n",
1749  		   work_bgn, work_end, work_mid);
1750  	/* Get the middle delay to be less than a VFIFO delay */
1751  	tmp_delay = (iocfg->dqs_en_phase_max + 1) * iocfg->delay_per_opa_tap;
1752  
1753  	debug_cond(DLEVEL >= 2, "vfifo ptap delay %d\n", tmp_delay);
1754  	work_mid %= tmp_delay;
1755  	debug_cond(DLEVEL >= 2, "new work_mid %d\n", work_mid);
1756  
1757  	tmp_delay = rounddown(work_mid, iocfg->delay_per_opa_tap);
1758  	if (tmp_delay > iocfg->dqs_en_phase_max * iocfg->delay_per_opa_tap)
1759  		tmp_delay = iocfg->dqs_en_phase_max * iocfg->delay_per_opa_tap;
1760  	p = tmp_delay / iocfg->delay_per_opa_tap;
1761  
1762  	debug_cond(DLEVEL >= 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);
1763  
1764  	d = DIV_ROUND_UP(work_mid - tmp_delay,
1765  			 iocfg->delay_per_dqs_en_dchain_tap);
1766  	if (d > iocfg->dqs_en_delay_max)
1767  		d = iocfg->dqs_en_delay_max;
1768  	tmp_delay += d * iocfg->delay_per_dqs_en_dchain_tap;
1769  
1770  	debug_cond(DLEVEL >= 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);
1771  
1772  	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1773  	scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
1774  
1775  	/*
1776  	 * push vfifo until we can successfully calibrate. We can do this
1777  	 * because the largest possible margin in 1 VFIFO cycle.
1778  	 */
1779  	for (i = 0; i < misccfg->read_valid_fifo_size; i++) {
1780  		debug_cond(DLEVEL >= 2, "find_dqs_en_phase: center\n");
1781  		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
1782  							     PASS_ONE_BIT,
1783  							     0)) {
1784  			debug_cond(DLEVEL >= 2,
1785  				   "%s:%d center: found: ptap=%u dtap=%u\n",
1786  				   __func__, __LINE__, p, d);
1787  			return 0;
1788  		}
1789  
1790  		/* Fiddle with FIFO. */
1791  		rw_mgr_incr_vfifo(grp);
1792  	}
1793  
1794  	debug_cond(DLEVEL >= 2, "%s:%d center: failed.\n",
1795  		   __func__, __LINE__);
1796  	return -EINVAL;
1797  }
1798  
1799  /**
1800   * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
1801   * @grp:	Read/Write Group
1802   *
1803   * Find a good DQS enable to use.
1804   */
rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)1805  static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
1806  {
1807  	u32 d, p, i;
1808  	u32 dtaps_per_ptap;
1809  	u32 work_bgn, work_end;
1810  	u32 found_passing_read, found_failing_read = 0, initial_failing_dtap;
1811  	int ret;
1812  
1813  	debug("%s:%d %u\n", __func__, __LINE__, grp);
1814  
1815  	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
1816  
1817  	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
1818  	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
1819  
1820  	/* Step 0: Determine number of delay taps for each phase tap. */
1821  	dtaps_per_ptap = iocfg->delay_per_opa_tap /
1822  			 iocfg->delay_per_dqs_en_dchain_tap;
1823  
1824  	/* Step 1: First push vfifo until we get a failing read. */
1825  	find_vfifo_failing_read(grp);
1826  
1827  	/* Step 2: Find first working phase, increment in ptaps. */
1828  	work_bgn = 0;
1829  	ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
1830  	if (ret)
1831  		return ret;
1832  
1833  	work_end = work_bgn;
1834  
1835  	/*
1836  	 * If d is 0 then the working window covers a phase tap and we can
1837  	 * follow the old procedure. Otherwise, we've found the beginning
1838  	 * and we need to increment the dtaps until we find the end.
1839  	 */
1840  	if (d == 0) {
1841  		/*
1842  		 * Step 3a: If we have room, back off by one and
1843  		 *          increment in dtaps.
1844  		 */
1845  		sdr_backup_phase(grp, &work_bgn, &p);
1846  
1847  		/*
1848  		 * Step 4a: go forward from working phase to non working
1849  		 * phase, increment in ptaps.
1850  		 */
1851  		ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
1852  		if (ret)
1853  			return ret;
1854  
1855  		/* Step 5a: Back off one from last, increment in dtaps. */
1856  
1857  		/* Special case code for backing up a phase */
1858  		if (p == 0) {
1859  			p = iocfg->dqs_en_phase_max;
1860  			rw_mgr_decr_vfifo(grp);
1861  		} else {
1862  			p = p - 1;
1863  		}
1864  
1865  		work_end -= iocfg->delay_per_opa_tap;
1866  		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1867  
1868  		d = 0;
1869  
1870  		debug_cond(DLEVEL >= 2, "%s:%d p: ptap=%u\n",
1871  			   __func__, __LINE__, p);
1872  	}
1873  
1874  	/* The dtap increment to find the failing edge is done here. */
1875  	sdr_find_phase_delay(0, 1, grp, &work_end,
1876  			     iocfg->delay_per_dqs_en_dchain_tap, &d);
1877  
1878  	/* Go back to working dtap */
1879  	if (d != 0)
1880  		work_end -= iocfg->delay_per_dqs_en_dchain_tap;
1881  
1882  	debug_cond(DLEVEL >= 2,
1883  		   "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
1884  		   __func__, __LINE__, p, d - 1, work_end);
1885  
1886  	if (work_end < work_bgn) {
1887  		/* nil range */
1888  		debug_cond(DLEVEL >= 2, "%s:%d end-2: failed\n",
1889  			   __func__, __LINE__);
1890  		return -EINVAL;
1891  	}
1892  
1893  	debug_cond(DLEVEL >= 2, "%s:%d found range [%u,%u]\n",
1894  		   __func__, __LINE__, work_bgn, work_end);
1895  
1896  	/*
1897  	 * We need to calculate the number of dtaps that equal a ptap.
1898  	 * To do that we'll back up a ptap and re-find the edge of the
1899  	 * window using dtaps
1900  	 */
1901  	debug_cond(DLEVEL >= 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
1902  		   __func__, __LINE__);
1903  
1904  	/* Special case code for backing up a phase */
1905  	if (p == 0) {
1906  		p = iocfg->dqs_en_phase_max;
1907  		rw_mgr_decr_vfifo(grp);
1908  		debug_cond(DLEVEL >= 2, "%s:%d backedup cycle/phase: p=%u\n",
1909  			   __func__, __LINE__, p);
1910  	} else {
1911  		p = p - 1;
1912  		debug_cond(DLEVEL >= 2, "%s:%d backedup phase only: p=%u",
1913  			   __func__, __LINE__, p);
1914  	}
1915  
1916  	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
1917  
1918  	/*
1919  	 * Increase dtap until we first see a passing read (in case the
1920  	 * window is smaller than a ptap), and then a failing read to
1921  	 * mark the edge of the window again.
1922  	 */
1923  
1924  	/* Find a passing read. */
1925  	debug_cond(DLEVEL >= 2, "%s:%d find passing read\n",
1926  		   __func__, __LINE__);
1927  
1928  	initial_failing_dtap = d;
1929  
1930  	found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
1931  	if (found_passing_read) {
1932  		/* Find a failing read. */
1933  		debug_cond(DLEVEL >= 2, "%s:%d find failing read\n",
1934  			   __func__, __LINE__);
1935  		d++;
1936  		found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
1937  							   &d);
1938  	} else {
1939  		debug_cond(DLEVEL >= 1,
1940  			   "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
1941  			   __func__, __LINE__);
1942  	}
1943  
1944  	/*
1945  	 * The dynamically calculated dtaps_per_ptap is only valid if we
1946  	 * found a passing/failing read. If we didn't, it means d hit the max
1947  	 * (iocfg->dqs_en_delay_max). Otherwise, dtaps_per_ptap retains its
1948  	 * statically calculated value.
1949  	 */
1950  	if (found_passing_read && found_failing_read)
1951  		dtaps_per_ptap = d - initial_failing_dtap;
1952  
1953  	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
1954  	debug_cond(DLEVEL >= 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
1955  		   __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);
1956  
1957  	/* Step 6: Find the centre of the window. */
1958  	ret = sdr_find_window_center(grp, work_bgn, work_end);
1959  
1960  	return ret;
1961  }
1962  
1963  /**
1964   * search_stop_check() - Check if the detected edge is valid
1965   * @write:		Perform read (Stage 2) or write (Stage 3) calibration
1966   * @d:			DQS delay
1967   * @rank_bgn:		Rank number
1968   * @write_group:	Write Group
1969   * @read_group:		Read Group
1970   * @bit_chk:		Resulting bit mask after the test
1971   * @sticky_bit_chk:	Resulting sticky bit mask after the test
1972   * @use_read_test:	Perform read test
1973   *
1974   * Test if the found edge is valid.
1975   */
search_stop_check(const int write,const int d,const int rank_bgn,const u32 write_group,const u32 read_group,u32 * bit_chk,u32 * sticky_bit_chk,const u32 use_read_test)1976  static u32 search_stop_check(const int write, const int d, const int rank_bgn,
1977  			     const u32 write_group, const u32 read_group,
1978  			     u32 *bit_chk, u32 *sticky_bit_chk,
1979  			     const u32 use_read_test)
1980  {
1981  	const u32 ratio = rwcfg->mem_if_read_dqs_width /
1982  			  rwcfg->mem_if_write_dqs_width;
1983  	const u32 correct_mask = write ? param->write_correct_mask :
1984  					 param->read_correct_mask;
1985  	const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
1986  				    rwcfg->mem_dq_per_read_dqs;
1987  	u32 ret;
1988  	/*
1989  	 * Stop searching when the read test doesn't pass AND when
1990  	 * we've seen a passing read on every bit.
1991  	 */
1992  	if (write) {			/* WRITE-ONLY */
1993  		ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
1994  							 0, PASS_ONE_BIT,
1995  							 bit_chk, 0);
1996  	} else if (use_read_test) {	/* READ-ONLY */
1997  		ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
1998  							NUM_READ_PB_TESTS,
1999  							PASS_ONE_BIT, bit_chk,
2000  							0, 0);
2001  	} else {			/* READ-ONLY */
2002  		rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
2003  						PASS_ONE_BIT, bit_chk, 0);
2004  		*bit_chk = *bit_chk >> (per_dqs *
2005  			(read_group - (write_group * ratio)));
2006  		ret = (*bit_chk == 0);
2007  	}
2008  	*sticky_bit_chk = *sticky_bit_chk | *bit_chk;
2009  	ret = ret && (*sticky_bit_chk == correct_mask);
2010  	debug_cond(DLEVEL >= 2,
2011  		   "%s:%d center(left): dtap=%u => %u == %u && %u",
2012  		   __func__, __LINE__, d,
2013  		   *sticky_bit_chk, correct_mask, ret);
2014  	return ret;
2015  }
2016  
2017  /**
2018   * search_left_edge() - Find left edge of DQ/DQS working phase
2019   * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2020   * @rank_bgn:		Rank number
2021   * @write_group:	Write Group
2022   * @read_group:		Read Group
2023   * @test_bgn:		Rank number to begin the test
2024   * @sticky_bit_chk:	Resulting sticky bit mask after the test
2025   * @left_edge:		Left edge of the DQ/DQS phase
2026   * @right_edge:		Right edge of the DQ/DQS phase
2027   * @use_read_test:	Perform read test
2028   *
2029   * Find left edge of DQ/DQS working phase.
2030   */
search_left_edge(const int write,const int rank_bgn,const u32 write_group,const u32 read_group,const u32 test_bgn,u32 * sticky_bit_chk,int * left_edge,int * right_edge,const u32 use_read_test)2031  static void search_left_edge(const int write, const int rank_bgn,
2032  	const u32 write_group, const u32 read_group, const u32 test_bgn,
2033  	u32 *sticky_bit_chk,
2034  	int *left_edge, int *right_edge, const u32 use_read_test)
2035  {
2036  	const u32 delay_max = write ? iocfg->io_out1_delay_max :
2037  				      iocfg->io_in_delay_max;
2038  	const u32 dqs_max = write ? iocfg->io_out1_delay_max :
2039  				    iocfg->dqs_in_delay_max;
2040  	const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2041  				    rwcfg->mem_dq_per_read_dqs;
2042  	u32 stop, bit_chk;
2043  	int i, d;
2044  
2045  	for (d = 0; d <= dqs_max; d++) {
2046  		if (write)
2047  			scc_mgr_apply_group_dq_out1_delay(d);
2048  		else
2049  			scc_mgr_apply_group_dq_in_delay(test_bgn, d);
2050  
2051  		writel(0, &sdr_scc_mgr->update);
2052  
2053  		stop = search_stop_check(write, d, rank_bgn, write_group,
2054  					 read_group, &bit_chk, sticky_bit_chk,
2055  					 use_read_test);
2056  		if (stop == 1)
2057  			break;
2058  
2059  		/* stop != 1 */
2060  		for (i = 0; i < per_dqs; i++) {
2061  			if (bit_chk & 1) {
2062  				/*
2063  				 * Remember a passing test as
2064  				 * the left_edge.
2065  				 */
2066  				left_edge[i] = d;
2067  			} else {
2068  				/*
2069  				 * If a left edge has not been seen
2070  				 * yet, then a future passing test
2071  				 * will mark this edge as the right
2072  				 * edge.
2073  				 */
2074  				if (left_edge[i] == delay_max + 1)
2075  					right_edge[i] = -(d + 1);
2076  			}
2077  			bit_chk >>= 1;
2078  		}
2079  	}
2080  
2081  	/* Reset DQ delay chains to 0 */
2082  	if (write)
2083  		scc_mgr_apply_group_dq_out1_delay(0);
2084  	else
2085  		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2086  
2087  	*sticky_bit_chk = 0;
2088  	for (i = per_dqs - 1; i >= 0; i--) {
2089  		debug_cond(DLEVEL >= 2,
2090  			   "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
2091  			   __func__, __LINE__, i, left_edge[i],
2092  			   i, right_edge[i]);
2093  
2094  		/*
2095  		 * Check for cases where we haven't found the left edge,
2096  		 * which makes our assignment of the the right edge invalid.
2097  		 * Reset it to the illegal value.
2098  		 */
2099  		if ((left_edge[i] == delay_max + 1) &&
2100  		    (right_edge[i] != delay_max + 1)) {
2101  			right_edge[i] = delay_max + 1;
2102  			debug_cond(DLEVEL >= 2,
2103  				   "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
2104  				   __func__, __LINE__, i, right_edge[i]);
2105  		}
2106  
2107  		/*
2108  		 * Reset sticky bit
2109  		 * READ: except for bits where we have seen both
2110  		 *       the left and right edge.
2111  		 * WRITE: except for bits where we have seen the
2112  		 *        left edge.
2113  		 */
2114  		*sticky_bit_chk <<= 1;
2115  		if (write) {
2116  			if (left_edge[i] != delay_max + 1)
2117  				*sticky_bit_chk |= 1;
2118  		} else {
2119  			if ((left_edge[i] != delay_max + 1) &&
2120  			    (right_edge[i] != delay_max + 1))
2121  				*sticky_bit_chk |= 1;
2122  		}
2123  	}
2124  }
2125  
2126  /**
2127   * search_right_edge() - Find right edge of DQ/DQS working phase
2128   * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2129   * @rank_bgn:		Rank number
2130   * @write_group:	Write Group
2131   * @read_group:		Read Group
2132   * @start_dqs:		DQS start phase
2133   * @start_dqs_en:	DQS enable start phase
2134   * @sticky_bit_chk:	Resulting sticky bit mask after the test
2135   * @left_edge:		Left edge of the DQ/DQS phase
2136   * @right_edge:		Right edge of the DQ/DQS phase
2137   * @use_read_test:	Perform read test
2138   *
2139   * Find right edge of DQ/DQS working phase.
2140   */
search_right_edge(const int write,const int rank_bgn,const u32 write_group,const u32 read_group,const int start_dqs,const int start_dqs_en,u32 * sticky_bit_chk,int * left_edge,int * right_edge,const u32 use_read_test)2141  static int search_right_edge(const int write, const int rank_bgn,
2142  	const u32 write_group, const u32 read_group,
2143  	const int start_dqs, const int start_dqs_en,
2144  	u32 *sticky_bit_chk,
2145  	int *left_edge, int *right_edge, const u32 use_read_test)
2146  {
2147  	const u32 delay_max = write ? iocfg->io_out1_delay_max :
2148  				      iocfg->io_in_delay_max;
2149  	const u32 dqs_max = write ? iocfg->io_out1_delay_max :
2150  				    iocfg->dqs_in_delay_max;
2151  	const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2152  				    rwcfg->mem_dq_per_read_dqs;
2153  	u32 stop, bit_chk;
2154  	int i, d;
2155  
2156  	for (d = 0; d <= dqs_max - start_dqs; d++) {
2157  		if (write) {	/* WRITE-ONLY */
2158  			scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2159  								d + start_dqs);
2160  		} else {	/* READ-ONLY */
2161  			scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
2162  			if (iocfg->shift_dqs_en_when_shift_dqs) {
2163  				u32 delay = d + start_dqs_en;
2164  				if (delay > iocfg->dqs_en_delay_max)
2165  					delay = iocfg->dqs_en_delay_max;
2166  				scc_mgr_set_dqs_en_delay(read_group, delay);
2167  			}
2168  			scc_mgr_load_dqs(read_group);
2169  		}
2170  
2171  		writel(0, &sdr_scc_mgr->update);
2172  
2173  		stop = search_stop_check(write, d, rank_bgn, write_group,
2174  					 read_group, &bit_chk, sticky_bit_chk,
2175  					 use_read_test);
2176  		if (stop == 1) {
2177  			if (write && (d == 0)) {	/* WRITE-ONLY */
2178  				for (i = 0; i < rwcfg->mem_dq_per_write_dqs;
2179  				     i++) {
2180  					/*
2181  					 * d = 0 failed, but it passed when
2182  					 * testing the left edge, so it must be
2183  					 * marginal, set it to -1
2184  					 */
2185  					if (right_edge[i] == delay_max + 1 &&
2186  					    left_edge[i] != delay_max + 1)
2187  						right_edge[i] = -1;
2188  				}
2189  			}
2190  			break;
2191  		}
2192  
2193  		/* stop != 1 */
2194  		for (i = 0; i < per_dqs; i++) {
2195  			if (bit_chk & 1) {
2196  				/*
2197  				 * Remember a passing test as
2198  				 * the right_edge.
2199  				 */
2200  				right_edge[i] = d;
2201  			} else {
2202  				if (d != 0) {
2203  					/*
2204  					 * If a right edge has not
2205  					 * been seen yet, then a future
2206  					 * passing test will mark this
2207  					 * edge as the left edge.
2208  					 */
2209  					if (right_edge[i] == delay_max + 1)
2210  						left_edge[i] = -(d + 1);
2211  				} else {
2212  					/*
2213  					 * d = 0 failed, but it passed
2214  					 * when testing the left edge,
2215  					 * so it must be marginal, set
2216  					 * it to -1
2217  					 */
2218  					if (right_edge[i] == delay_max + 1 &&
2219  					    left_edge[i] != delay_max + 1)
2220  						right_edge[i] = -1;
2221  					/*
2222  					 * If a right edge has not been
2223  					 * seen yet, then a future
2224  					 * passing test will mark this
2225  					 * edge as the left edge.
2226  					 */
2227  					else if (right_edge[i] == delay_max + 1)
2228  						left_edge[i] = -(d + 1);
2229  				}
2230  			}
2231  
2232  			debug_cond(DLEVEL >= 2, "%s:%d center[r,d=%u]: ",
2233  				   __func__, __LINE__, d);
2234  			debug_cond(DLEVEL >= 2,
2235  				   "bit_chk_test=%i left_edge[%u]: %d ",
2236  				   bit_chk & 1, i, left_edge[i]);
2237  			debug_cond(DLEVEL >= 2, "right_edge[%u]: %d\n", i,
2238  				   right_edge[i]);
2239  			bit_chk >>= 1;
2240  		}
2241  	}
2242  
2243  	/* Check that all bits have a window */
2244  	for (i = 0; i < per_dqs; i++) {
2245  		debug_cond(DLEVEL >= 2,
2246  			   "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
2247  			   __func__, __LINE__, i, left_edge[i],
2248  			   i, right_edge[i]);
2249  		if ((left_edge[i] == dqs_max + 1) ||
2250  		    (right_edge[i] == dqs_max + 1))
2251  			return i + 1;	/* FIXME: If we fail, retval > 0 */
2252  	}
2253  
2254  	return 0;
2255  }
2256  
2257  /**
2258   * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
2259   * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2260   * @left_edge:		Left edge of the DQ/DQS phase
2261   * @right_edge:		Right edge of the DQ/DQS phase
2262   * @mid_min:		Best DQ/DQS phase middle setting
2263   *
2264   * Find index and value of the middle of the DQ/DQS working phase.
2265   */
get_window_mid_index(const int write,int * left_edge,int * right_edge,int * mid_min)2266  static int get_window_mid_index(const int write, int *left_edge,
2267  				int *right_edge, int *mid_min)
2268  {
2269  	const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2270  				    rwcfg->mem_dq_per_read_dqs;
2271  	int i, mid, min_index;
2272  
2273  	/* Find middle of window for each DQ bit */
2274  	*mid_min = left_edge[0] - right_edge[0];
2275  	min_index = 0;
2276  	for (i = 1; i < per_dqs; i++) {
2277  		mid = left_edge[i] - right_edge[i];
2278  		if (mid < *mid_min) {
2279  			*mid_min = mid;
2280  			min_index = i;
2281  		}
2282  	}
2283  
2284  	/*
2285  	 * -mid_min/2 represents the amount that we need to move DQS.
2286  	 * If mid_min is odd and positive we'll need to add one to make
2287  	 * sure the rounding in further calculations is correct (always
2288  	 * bias to the right), so just add 1 for all positive values.
2289  	 */
2290  	if (*mid_min > 0)
2291  		(*mid_min)++;
2292  	*mid_min = *mid_min / 2;
2293  
2294  	debug_cond(DLEVEL >= 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
2295  		   __func__, __LINE__, *mid_min, min_index);
2296  	return min_index;
2297  }
2298  
2299  /**
2300   * center_dq_windows() - Center the DQ/DQS windows
2301   * @write:		Perform read (Stage 2) or write (Stage 3) calibration
2302   * @left_edge:		Left edge of the DQ/DQS phase
2303   * @right_edge:		Right edge of the DQ/DQS phase
2304   * @mid_min:		Adjusted DQ/DQS phase middle setting
2305   * @orig_mid_min:	Original DQ/DQS phase middle setting
2306   * @min_index:		DQ/DQS phase middle setting index
2307   * @test_bgn:		Rank number to begin the test
2308   * @dq_margin:		Amount of shift for the DQ
2309   * @dqs_margin:		Amount of shift for the DQS
2310   *
2311   * Align the DQ/DQS windows in each group.
2312   */
center_dq_windows(const int write,int * left_edge,int * right_edge,const int mid_min,const int orig_mid_min,const int min_index,const int test_bgn,int * dq_margin,int * dqs_margin)2313  static void center_dq_windows(const int write, int *left_edge, int *right_edge,
2314  			      const int mid_min, const int orig_mid_min,
2315  			      const int min_index, const int test_bgn,
2316  			      int *dq_margin, int *dqs_margin)
2317  {
2318  	const s32 delay_max = write ? iocfg->io_out1_delay_max :
2319  				      iocfg->io_in_delay_max;
2320  	const s32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
2321  				    rwcfg->mem_dq_per_read_dqs;
2322  	const s32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
2323  				      SCC_MGR_IO_IN_DELAY_OFFSET;
2324  	const s32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;
2325  
2326  	s32 temp_dq_io_delay1;
2327  	int shift_dq, i, p;
2328  
2329  	/* Initialize data for export structures */
2330  	*dqs_margin = delay_max + 1;
2331  	*dq_margin  = delay_max + 1;
2332  
2333  	/* add delay to bring centre of all DQ windows to the same "level" */
2334  	for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
2335  		/* Use values before divide by 2 to reduce round off error */
2336  		shift_dq = (left_edge[i] - right_edge[i] -
2337  			(left_edge[min_index] - right_edge[min_index]))/2  +
2338  			(orig_mid_min - mid_min);
2339  
2340  		debug_cond(DLEVEL >= 2,
2341  			   "vfifo_center: before: shift_dq[%u]=%d\n",
2342  			   i, shift_dq);
2343  
2344  		temp_dq_io_delay1 = readl(addr + (i << 2));
2345  
2346  		if (shift_dq + temp_dq_io_delay1 > delay_max)
2347  			shift_dq = delay_max - temp_dq_io_delay1;
2348  		else if (shift_dq + temp_dq_io_delay1 < 0)
2349  			shift_dq = -temp_dq_io_delay1;
2350  
2351  		debug_cond(DLEVEL >= 2,
2352  			   "vfifo_center: after: shift_dq[%u]=%d\n",
2353  			   i, shift_dq);
2354  
2355  		if (write)
2356  			scc_mgr_set_dq_out1_delay(i,
2357  						  temp_dq_io_delay1 + shift_dq);
2358  		else
2359  			scc_mgr_set_dq_in_delay(p,
2360  						temp_dq_io_delay1 + shift_dq);
2361  
2362  		scc_mgr_load_dq(p);
2363  
2364  		debug_cond(DLEVEL >= 2,
2365  			   "vfifo_center: margin[%u]=[%d,%d]\n", i,
2366  			   left_edge[i] - shift_dq + (-mid_min),
2367  			   right_edge[i] + shift_dq - (-mid_min));
2368  
2369  		/* To determine values for export structures */
2370  		if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
2371  			*dq_margin = left_edge[i] - shift_dq + (-mid_min);
2372  
2373  		if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
2374  			*dqs_margin = right_edge[i] + shift_dq - (-mid_min);
2375  	}
2376  }
2377  
2378  /**
2379   * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
2380   * @rank_bgn:		Rank number
2381   * @rw_group:		Read/Write Group
2382   * @test_bgn:		Rank at which the test begins
2383   * @use_read_test:	Perform a read test
2384   * @update_fom:		Update FOM
2385   *
2386   * Per-bit deskew DQ and centering.
2387   */
rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn,const u32 rw_group,const u32 test_bgn,const int use_read_test,const int update_fom)2388  static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn,
2389  			const u32 rw_group, const u32 test_bgn,
2390  			const int use_read_test, const int update_fom)
2391  {
2392  	const u32 addr =
2393  		SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
2394  		(rw_group << 2);
2395  	/*
2396  	 * Store these as signed since there are comparisons with
2397  	 * signed numbers.
2398  	 */
2399  	u32 sticky_bit_chk;
2400  	int32_t left_edge[rwcfg->mem_dq_per_read_dqs];
2401  	int32_t right_edge[rwcfg->mem_dq_per_read_dqs];
2402  	int32_t orig_mid_min, mid_min;
2403  	int32_t new_dqs, start_dqs, start_dqs_en = 0, final_dqs_en;
2404  	int32_t dq_margin, dqs_margin;
2405  	int i, min_index;
2406  	int ret;
2407  
2408  	debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);
2409  
2410  	start_dqs = readl(addr);
2411  	if (iocfg->shift_dqs_en_when_shift_dqs)
2412  		start_dqs_en = readl(addr - iocfg->dqs_en_delay_offset);
2413  
2414  	/* set the left and right edge of each bit to an illegal value */
2415  	/* use (iocfg->io_in_delay_max + 1) as an illegal value */
2416  	sticky_bit_chk = 0;
2417  	for (i = 0; i < rwcfg->mem_dq_per_read_dqs; i++) {
2418  		left_edge[i]  = iocfg->io_in_delay_max + 1;
2419  		right_edge[i] = iocfg->io_in_delay_max + 1;
2420  	}
2421  
2422  	/* Search for the left edge of the window for each bit */
2423  	search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn,
2424  			 &sticky_bit_chk,
2425  			 left_edge, right_edge, use_read_test);
2426  
2427  
2428  	/* Search for the right edge of the window for each bit */
2429  	ret = search_right_edge(0, rank_bgn, rw_group, rw_group,
2430  				start_dqs, start_dqs_en,
2431  				&sticky_bit_chk,
2432  				left_edge, right_edge, use_read_test);
2433  	if (ret) {
2434  		/*
2435  		 * Restore delay chain settings before letting the loop
2436  		 * in rw_mgr_mem_calibrate_vfifo to retry different
2437  		 * dqs/ck relationships.
2438  		 */
2439  		scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
2440  		if (iocfg->shift_dqs_en_when_shift_dqs)
2441  			scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);
2442  
2443  		scc_mgr_load_dqs(rw_group);
2444  		writel(0, &sdr_scc_mgr->update);
2445  
2446  		debug_cond(DLEVEL >= 1,
2447  			   "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
2448  			   __func__, __LINE__, i, left_edge[i], right_edge[i]);
2449  		if (use_read_test) {
2450  			set_failing_group_stage(rw_group *
2451  				rwcfg->mem_dq_per_read_dqs + i,
2452  				CAL_STAGE_VFIFO,
2453  				CAL_SUBSTAGE_VFIFO_CENTER);
2454  		} else {
2455  			set_failing_group_stage(rw_group *
2456  				rwcfg->mem_dq_per_read_dqs + i,
2457  				CAL_STAGE_VFIFO_AFTER_WRITES,
2458  				CAL_SUBSTAGE_VFIFO_CENTER);
2459  		}
2460  		return -EIO;
2461  	}
2462  
2463  	min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min);
2464  
2465  	/* Determine the amount we can change DQS (which is -mid_min) */
2466  	orig_mid_min = mid_min;
2467  	new_dqs = start_dqs - mid_min;
2468  	if (new_dqs > iocfg->dqs_in_delay_max)
2469  		new_dqs = iocfg->dqs_in_delay_max;
2470  	else if (new_dqs < 0)
2471  		new_dqs = 0;
2472  
2473  	mid_min = start_dqs - new_dqs;
2474  	debug_cond(DLEVEL >= 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
2475  		   mid_min, new_dqs);
2476  
2477  	if (iocfg->shift_dqs_en_when_shift_dqs) {
2478  		if (start_dqs_en - mid_min > iocfg->dqs_en_delay_max)
2479  			mid_min += start_dqs_en - mid_min -
2480  				   iocfg->dqs_en_delay_max;
2481  		else if (start_dqs_en - mid_min < 0)
2482  			mid_min += start_dqs_en - mid_min;
2483  	}
2484  	new_dqs = start_dqs - mid_min;
2485  
2486  	debug_cond(DLEVEL >= 1,
2487  		   "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
2488  		   start_dqs,
2489  		   iocfg->shift_dqs_en_when_shift_dqs ? start_dqs_en : -1,
2490  		   new_dqs, mid_min);
2491  
2492  	/* Add delay to bring centre of all DQ windows to the same "level". */
2493  	center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min,
2494  			  min_index, test_bgn, &dq_margin, &dqs_margin);
2495  
2496  	/* Move DQS-en */
2497  	if (iocfg->shift_dqs_en_when_shift_dqs) {
2498  		final_dqs_en = start_dqs_en - mid_min;
2499  		scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
2500  		scc_mgr_load_dqs(rw_group);
2501  	}
2502  
2503  	/* Move DQS */
2504  	scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
2505  	scc_mgr_load_dqs(rw_group);
2506  	debug_cond(DLEVEL >= 2,
2507  		   "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
2508  		   __func__, __LINE__, dq_margin, dqs_margin);
2509  
2510  	/*
2511  	 * Do not remove this line as it makes sure all of our decisions
2512  	 * have been applied. Apply the update bit.
2513  	 */
2514  	writel(0, &sdr_scc_mgr->update);
2515  
2516  	if ((dq_margin < 0) || (dqs_margin < 0))
2517  		return -EINVAL;
2518  
2519  	return 0;
2520  }
2521  
2522  /**
2523   * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
2524   * @rw_group:	Read/Write Group
2525   * @phase:	DQ/DQS phase
2526   *
2527   * Because initially no communication ca be reliably performed with the memory
2528   * device, the sequencer uses a guaranteed write mechanism to write data into
2529   * the memory device.
2530   */
rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,const u32 phase)2531  static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
2532  						 const u32 phase)
2533  {
2534  	int ret;
2535  
2536  	/* Set a particular DQ/DQS phase. */
2537  	scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);
2538  
2539  	debug_cond(DLEVEL >= 1, "%s:%d guaranteed write: g=%u p=%u\n",
2540  		   __func__, __LINE__, rw_group, phase);
2541  
2542  	/*
2543  	 * Altera EMI_RM 2015.05.04 :: Figure 1-25
2544  	 * Load up the patterns used by read calibration using the
2545  	 * current DQDQS phase.
2546  	 */
2547  	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2548  
2549  	if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
2550  		return 0;
2551  
2552  	/*
2553  	 * Altera EMI_RM 2015.05.04 :: Figure 1-26
2554  	 * Back-to-Back reads of the patterns used for calibration.
2555  	 */
2556  	ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
2557  	if (ret)
2558  		debug_cond(DLEVEL >= 1,
2559  			   "%s:%d Guaranteed read test failed: g=%u p=%u\n",
2560  			   __func__, __LINE__, rw_group, phase);
2561  	return ret;
2562  }
2563  
2564  /**
2565   * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
2566   * @rw_group:	Read/Write Group
2567   * @test_bgn:	Rank at which the test begins
2568   *
2569   * DQS enable calibration ensures reliable capture of the DQ signal without
2570   * glitches on the DQS line.
2571   */
rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,const u32 test_bgn)2572  static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
2573  						       const u32 test_bgn)
2574  {
2575  	/*
2576  	 * Altera EMI_RM 2015.05.04 :: Figure 1-27
2577  	 * DQS and DQS Eanble Signal Relationships.
2578  	 */
2579  
2580  	/* We start at zero, so have one less dq to devide among */
2581  	const u32 delay_step = iocfg->io_in_delay_max /
2582  			       (rwcfg->mem_dq_per_read_dqs - 1);
2583  	int ret;
2584  	u32 i, p, d, r;
2585  
2586  	debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);
2587  
2588  	/* Try different dq_in_delays since the DQ path is shorter than DQS. */
2589  	for (r = 0; r < rwcfg->mem_number_of_ranks;
2590  	     r += NUM_RANKS_PER_SHADOW_REG) {
2591  		for (i = 0, p = test_bgn, d = 0;
2592  		     i < rwcfg->mem_dq_per_read_dqs;
2593  		     i++, p++, d += delay_step) {
2594  			debug_cond(DLEVEL >= 1,
2595  				   "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
2596  				   __func__, __LINE__, rw_group, r, i, p, d);
2597  
2598  			scc_mgr_set_dq_in_delay(p, d);
2599  			scc_mgr_load_dq(p);
2600  		}
2601  
2602  		writel(0, &sdr_scc_mgr->update);
2603  	}
2604  
2605  	/*
2606  	 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
2607  	 * dq_in_delay values
2608  	 */
2609  	ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);
2610  
2611  	debug_cond(DLEVEL >= 1,
2612  		   "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
2613  		   __func__, __LINE__, rw_group, !ret);
2614  
2615  	for (r = 0; r < rwcfg->mem_number_of_ranks;
2616  	     r += NUM_RANKS_PER_SHADOW_REG) {
2617  		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
2618  		writel(0, &sdr_scc_mgr->update);
2619  	}
2620  
2621  	return ret;
2622  }
2623  
2624  /**
2625   * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
2626   * @rw_group:		Read/Write Group
2627   * @test_bgn:		Rank at which the test begins
2628   * @use_read_test:	Perform a read test
2629   * @update_fom:		Update FOM
2630   *
2631   * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
2632   * within a group.
2633   */
2634  static int
rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group,const u32 test_bgn,const int use_read_test,const int update_fom)2635  rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
2636  				      const int use_read_test,
2637  				      const int update_fom)
2638  
2639  {
2640  	int ret, grp_calibrated;
2641  	u32 rank_bgn, sr;
2642  
2643  	/*
2644  	 * Altera EMI_RM 2015.05.04 :: Figure 1-28
2645  	 * Read per-bit deskew can be done on a per shadow register basis.
2646  	 */
2647  	grp_calibrated = 1;
2648  	for (rank_bgn = 0, sr = 0;
2649  	     rank_bgn < rwcfg->mem_number_of_ranks;
2650  	     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
2651  		ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
2652  							test_bgn,
2653  							use_read_test,
2654  							update_fom);
2655  		if (!ret)
2656  			continue;
2657  
2658  		grp_calibrated = 0;
2659  	}
2660  
2661  	if (!grp_calibrated)
2662  		return -EIO;
2663  
2664  	return 0;
2665  }
2666  
2667  /**
2668   * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
2669   * @rw_group:		Read/Write Group
2670   * @test_bgn:		Rank at which the test begins
2671   *
2672   * Stage 1: Calibrate the read valid prediction FIFO.
2673   *
2674   * This function implements UniPHY calibration Stage 1, as explained in
2675   * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2676   *
2677   * - read valid prediction will consist of finding:
2678   *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
2679   *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
2680   *  - we also do a per-bit deskew on the DQ lines.
2681   */
rw_mgr_mem_calibrate_vfifo(const u32 rw_group,const u32 test_bgn)2682  static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
2683  {
2684  	u32 p, d;
2685  	u32 dtaps_per_ptap;
2686  	u32 failed_substage;
2687  
2688  	int ret;
2689  
2690  	debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);
2691  
2692  	/* Update info for sims */
2693  	reg_file_set_group(rw_group);
2694  	reg_file_set_stage(CAL_STAGE_VFIFO);
2695  	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
2696  
2697  	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
2698  
2699  	/* USER Determine number of delay taps for each phase tap. */
2700  	dtaps_per_ptap = DIV_ROUND_UP(iocfg->delay_per_opa_tap,
2701  				      iocfg->delay_per_dqs_en_dchain_tap) - 1;
2702  
2703  	for (d = 0; d <= dtaps_per_ptap; d += 2) {
2704  		/*
2705  		 * In RLDRAMX we may be messing the delay of pins in
2706  		 * the same write rw_group but outside of the current read
2707  		 * the rw_group, but that's ok because we haven't calibrated
2708  		 * output side yet.
2709  		 */
2710  		if (d > 0) {
2711  			scc_mgr_apply_group_all_out_delay_add_all_ranks(
2712  								rw_group, d);
2713  		}
2714  
2715  		for (p = 0; p <= iocfg->dqdqs_out_phase_max; p++) {
2716  			/* 1) Guaranteed Write */
2717  			ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
2718  			if (ret)
2719  				break;
2720  
2721  			/* 2) DQS Enable Calibration */
2722  			ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
2723  									  test_bgn);
2724  			if (ret) {
2725  				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
2726  				continue;
2727  			}
2728  
2729  			/* 3) Centering DQ/DQS */
2730  			/*
2731  			 * If doing read after write calibration, do not update
2732  			 * FOM now. Do it then.
2733  			 */
2734  			ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
2735  								test_bgn, 1, 0);
2736  			if (ret) {
2737  				failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
2738  				continue;
2739  			}
2740  
2741  			/* All done. */
2742  			goto cal_done_ok;
2743  		}
2744  	}
2745  
2746  	/* Calibration Stage 1 failed. */
2747  	set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
2748  	return 0;
2749  
2750  	/* Calibration Stage 1 completed OK. */
2751  cal_done_ok:
2752  	/*
2753  	 * Reset the delay chains back to zero if they have moved > 1
2754  	 * (check for > 1 because loop will increase d even when pass in
2755  	 * first case).
2756  	 */
2757  	if (d > 2)
2758  		scc_mgr_zero_group(rw_group, 1);
2759  
2760  	return 1;
2761  }
2762  
2763  /**
2764   * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering.
2765   * @rw_group:		Read/Write Group
2766   * @test_bgn:		Rank at which the test begins
2767   *
2768   * Stage 3: DQ/DQS Centering.
2769   *
2770   * This function implements UniPHY calibration Stage 3, as explained in
2771   * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2772   */
rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group,const u32 test_bgn)2773  static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group,
2774  					  const u32 test_bgn)
2775  {
2776  	int ret;
2777  
2778  	debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn);
2779  
2780  	/* Update info for sims. */
2781  	reg_file_set_group(rw_group);
2782  	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
2783  	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
2784  
2785  	ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1);
2786  	if (ret)
2787  		set_failing_group_stage(rw_group,
2788  					CAL_STAGE_VFIFO_AFTER_WRITES,
2789  					CAL_SUBSTAGE_VFIFO_CENTER);
2790  	return ret;
2791  }
2792  
2793  /**
2794   * rw_mgr_mem_calibrate_lfifo() - Minimize latency
2795   *
2796   * Stage 4: Minimize latency.
2797   *
2798   * This function implements UniPHY calibration Stage 4, as explained in
2799   * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
2800   * Calibrate LFIFO to find smallest read latency.
2801   */
rw_mgr_mem_calibrate_lfifo(void)2802  static u32 rw_mgr_mem_calibrate_lfifo(void)
2803  {
2804  	int found_one = 0;
2805  
2806  	debug("%s:%d\n", __func__, __LINE__);
2807  
2808  	/* Update info for sims. */
2809  	reg_file_set_stage(CAL_STAGE_LFIFO);
2810  	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
2811  
2812  	/* Load up the patterns used by read calibration for all ranks */
2813  	rw_mgr_mem_calibrate_read_load_patterns(0, 1);
2814  
2815  	do {
2816  		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2817  		debug_cond(DLEVEL >= 2, "%s:%d lfifo: read_lat=%u",
2818  			   __func__, __LINE__, gbl->curr_read_lat);
2819  
2820  		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS,
2821  							      PASS_ALL_BITS, 1))
2822  			break;
2823  
2824  		found_one = 1;
2825  		/*
2826  		 * Reduce read latency and see if things are
2827  		 * working correctly.
2828  		 */
2829  		gbl->curr_read_lat--;
2830  	} while (gbl->curr_read_lat > 0);
2831  
2832  	/* Reset the fifos to get pointers to known state. */
2833  	writel(0, &phy_mgr_cmd->fifo_reset);
2834  
2835  	if (found_one) {
2836  		/* Add a fudge factor to the read latency that was determined */
2837  		gbl->curr_read_lat += 2;
2838  		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
2839  		debug_cond(DLEVEL >= 2,
2840  			   "%s:%d lfifo: success: using read_lat=%u\n",
2841  			   __func__, __LINE__, gbl->curr_read_lat);
2842  	} else {
2843  		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
2844  					CAL_SUBSTAGE_READ_LATENCY);
2845  
2846  		debug_cond(DLEVEL >= 2,
2847  			   "%s:%d lfifo: failed at initial read_lat=%u\n",
2848  			   __func__, __LINE__, gbl->curr_read_lat);
2849  	}
2850  
2851  	return found_one;
2852  }
2853  
2854  /**
2855   * search_window() - Search for the/part of the window with DM/DQS shift
2856   * @search_dm:		If 1, search for the DM shift, if 0, search for DQS shift
2857   * @rank_bgn:		Rank number
2858   * @write_group:	Write Group
2859   * @bgn_curr:		Current window begin
2860   * @end_curr:		Current window end
2861   * @bgn_best:		Current best window begin
2862   * @end_best:		Current best window end
2863   * @win_best:		Size of the best window
2864   * @new_dqs:		New DQS value (only applicable if search_dm = 0).
2865   *
2866   * Search for the/part of the window with DM/DQS shift.
2867   */
search_window(const int search_dm,const u32 rank_bgn,const u32 write_group,int * bgn_curr,int * end_curr,int * bgn_best,int * end_best,int * win_best,int new_dqs)2868  static void search_window(const int search_dm,
2869  			  const u32 rank_bgn, const u32 write_group,
2870  			  int *bgn_curr, int *end_curr, int *bgn_best,
2871  			  int *end_best, int *win_best, int new_dqs)
2872  {
2873  	u32 bit_chk;
2874  	const int max = iocfg->io_out1_delay_max - new_dqs;
2875  	int d, di;
2876  
2877  	/* Search for the/part of the window with DM/DQS shift. */
2878  	for (di = max; di >= 0; di -= DELTA_D) {
2879  		if (search_dm) {
2880  			d = di;
2881  			scc_mgr_apply_group_dm_out1_delay(d);
2882  		} else {
2883  			/* For DQS, we go from 0...max */
2884  			d = max - di;
2885  			/*
2886  			 * Note: This only shifts DQS, so are we limiting
2887  			 *       ourselves to width of DQ unnecessarily.
2888  			 */
2889  			scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
2890  								d + new_dqs);
2891  		}
2892  
2893  		writel(0, &sdr_scc_mgr->update);
2894  
2895  		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
2896  						    PASS_ALL_BITS, &bit_chk,
2897  						    0)) {
2898  			/* Set current end of the window. */
2899  			*end_curr = search_dm ? -d : d;
2900  
2901  			/*
2902  			 * If a starting edge of our window has not been seen
2903  			 * this is our current start of the DM window.
2904  			 */
2905  			if (*bgn_curr == iocfg->io_out1_delay_max + 1)
2906  				*bgn_curr = search_dm ? -d : d;
2907  
2908  			/*
2909  			 * If current window is bigger than best seen.
2910  			 * Set best seen to be current window.
2911  			 */
2912  			if ((*end_curr - *bgn_curr + 1) > *win_best) {
2913  				*win_best = *end_curr - *bgn_curr + 1;
2914  				*bgn_best = *bgn_curr;
2915  				*end_best = *end_curr;
2916  			}
2917  		} else {
2918  			/* We just saw a failing test. Reset temp edge. */
2919  			*bgn_curr = iocfg->io_out1_delay_max + 1;
2920  			*end_curr = iocfg->io_out1_delay_max + 1;
2921  
2922  			/* Early exit is only applicable to DQS. */
2923  			if (search_dm)
2924  				continue;
2925  
2926  			/*
2927  			 * Early exit optimization: if the remaining delay
2928  			 * chain space is less than already seen largest
2929  			 * window we can exit.
2930  			 */
2931  			if (*win_best - 1 > iocfg->io_out1_delay_max - new_dqs - d)
2932  				break;
2933  		}
2934  	}
2935  }
2936  
2937  /*
2938   * rw_mgr_mem_calibrate_writes_center() - Center all windows
2939   * @rank_bgn:		Rank number
2940   * @write_group:	Write group
2941   * @test_bgn:		Rank at which the test begins
2942   *
2943   * Center all windows. Do per-bit-deskew to possibly increase size of
2944   * certain windows.
2945   */
2946  static int
rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn,const u32 write_group,const u32 test_bgn)2947  rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group,
2948  				   const u32 test_bgn)
2949  {
2950  	int i;
2951  	u32 sticky_bit_chk;
2952  	u32 min_index;
2953  	int left_edge[rwcfg->mem_dq_per_write_dqs];
2954  	int right_edge[rwcfg->mem_dq_per_write_dqs];
2955  	int mid;
2956  	int mid_min, orig_mid_min;
2957  	int new_dqs, start_dqs;
2958  	int dq_margin, dqs_margin, dm_margin;
2959  	int bgn_curr = iocfg->io_out1_delay_max + 1;
2960  	int end_curr = iocfg->io_out1_delay_max + 1;
2961  	int bgn_best = iocfg->io_out1_delay_max + 1;
2962  	int end_best = iocfg->io_out1_delay_max + 1;
2963  	int win_best = 0;
2964  
2965  	int ret;
2966  
2967  	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);
2968  
2969  	dm_margin = 0;
2970  
2971  	start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
2972  			  SCC_MGR_IO_OUT1_DELAY_OFFSET) +
2973  			  (rwcfg->mem_dq_per_write_dqs << 2));
2974  
2975  	/* Per-bit deskew. */
2976  
2977  	/*
2978  	 * Set the left and right edge of each bit to an illegal value.
2979  	 * Use (iocfg->io_out1_delay_max + 1) as an illegal value.
2980  	 */
2981  	sticky_bit_chk = 0;
2982  	for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
2983  		left_edge[i]  = iocfg->io_out1_delay_max + 1;
2984  		right_edge[i] = iocfg->io_out1_delay_max + 1;
2985  	}
2986  
2987  	/* Search for the left edge of the window for each bit. */
2988  	search_left_edge(1, rank_bgn, write_group, 0, test_bgn,
2989  			 &sticky_bit_chk,
2990  			 left_edge, right_edge, 0);
2991  
2992  	/* Search for the right edge of the window for each bit. */
2993  	ret = search_right_edge(1, rank_bgn, write_group, 0,
2994  				start_dqs, 0,
2995  				&sticky_bit_chk,
2996  				left_edge, right_edge, 0);
2997  	if (ret) {
2998  		set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES,
2999  					CAL_SUBSTAGE_WRITES_CENTER);
3000  		return -EINVAL;
3001  	}
3002  
3003  	min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min);
3004  
3005  	/* Determine the amount we can change DQS (which is -mid_min). */
3006  	orig_mid_min = mid_min;
3007  	new_dqs = start_dqs;
3008  	mid_min = 0;
3009  	debug_cond(DLEVEL >= 1,
3010  		   "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
3011  		   __func__, __LINE__, start_dqs, new_dqs, mid_min);
3012  
3013  	/* Add delay to bring centre of all DQ windows to the same "level". */
3014  	center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min,
3015  			  min_index, 0, &dq_margin, &dqs_margin);
3016  
3017  	/* Move DQS */
3018  	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3019  	writel(0, &sdr_scc_mgr->update);
3020  
3021  	/* Centre DM */
3022  	debug_cond(DLEVEL >= 2, "%s:%d write_center: DM\n", __func__, __LINE__);
3023  
3024  	/*
3025  	 * Set the left and right edge of each bit to an illegal value.
3026  	 * Use (iocfg->io_out1_delay_max + 1) as an illegal value.
3027  	 */
3028  	left_edge[0]  = iocfg->io_out1_delay_max + 1;
3029  	right_edge[0] = iocfg->io_out1_delay_max + 1;
3030  
3031  	/* Search for the/part of the window with DM shift. */
3032  	search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr,
3033  		      &bgn_best, &end_best, &win_best, 0);
3034  
3035  	/* Reset DM delay chains to 0. */
3036  	scc_mgr_apply_group_dm_out1_delay(0);
3037  
3038  	/*
3039  	 * Check to see if the current window nudges up aganist 0 delay.
3040  	 * If so we need to continue the search by shifting DQS otherwise DQS
3041  	 * search begins as a new search.
3042  	 */
3043  	if (end_curr != 0) {
3044  		bgn_curr = iocfg->io_out1_delay_max + 1;
3045  		end_curr = iocfg->io_out1_delay_max + 1;
3046  	}
3047  
3048  	/* Search for the/part of the window with DQS shifts. */
3049  	search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr,
3050  		      &bgn_best, &end_best, &win_best, new_dqs);
3051  
3052  	/* Assign left and right edge for cal and reporting. */
3053  	left_edge[0] = -1 * bgn_best;
3054  	right_edge[0] = end_best;
3055  
3056  	debug_cond(DLEVEL >= 2, "%s:%d dm_calib: left=%d right=%d\n",
3057  		   __func__, __LINE__, left_edge[0], right_edge[0]);
3058  
3059  	/* Move DQS (back to orig). */
3060  	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
3061  
3062  	/* Move DM */
3063  
3064  	/* Find middle of window for the DM bit. */
3065  	mid = (left_edge[0] - right_edge[0]) / 2;
3066  
3067  	/* Only move right, since we are not moving DQS/DQ. */
3068  	if (mid < 0)
3069  		mid = 0;
3070  
3071  	/* dm_marign should fail if we never find a window. */
3072  	if (win_best == 0)
3073  		dm_margin = -1;
3074  	else
3075  		dm_margin = left_edge[0] - mid;
3076  
3077  	scc_mgr_apply_group_dm_out1_delay(mid);
3078  	writel(0, &sdr_scc_mgr->update);
3079  
3080  	debug_cond(DLEVEL >= 2,
3081  		   "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
3082  		   __func__, __LINE__, left_edge[0], right_edge[0],
3083  		   mid, dm_margin);
3084  	/* Export values. */
3085  	gbl->fom_out += dq_margin + dqs_margin;
3086  
3087  	debug_cond(DLEVEL >= 2,
3088  		   "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
3089  		   __func__, __LINE__, dq_margin, dqs_margin, dm_margin);
3090  
3091  	/*
3092  	 * Do not remove this line as it makes sure all of our
3093  	 * decisions have been applied.
3094  	 */
3095  	writel(0, &sdr_scc_mgr->update);
3096  
3097  	if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
3098  		return -EINVAL;
3099  
3100  	return 0;
3101  }
3102  
3103  /**
3104   * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
3105   * @rank_bgn:		Rank number
3106   * @group:		Read/Write Group
3107   * @test_bgn:		Rank at which the test begins
3108   *
3109   * Stage 2: Write Calibration Part One.
3110   *
3111   * This function implements UniPHY calibration Stage 2, as explained in
3112   * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
3113   */
rw_mgr_mem_calibrate_writes(const u32 rank_bgn,const u32 group,const u32 test_bgn)3114  static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group,
3115  				       const u32 test_bgn)
3116  {
3117  	int ret;
3118  
3119  	/* Update info for sims */
3120  	debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);
3121  
3122  	reg_file_set_group(group);
3123  	reg_file_set_stage(CAL_STAGE_WRITES);
3124  	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
3125  
3126  	ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn);
3127  	if (ret)
3128  		set_failing_group_stage(group, CAL_STAGE_WRITES,
3129  					CAL_SUBSTAGE_WRITES_CENTER);
3130  
3131  	return ret;
3132  }
3133  
3134  /**
3135   * mem_precharge_and_activate() - Precharge all banks and activate
3136   *
3137   * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
3138   */
mem_precharge_and_activate(void)3139  static void mem_precharge_and_activate(void)
3140  {
3141  	int r;
3142  
3143  	for (r = 0; r < rwcfg->mem_number_of_ranks; r++) {
3144  		/* Set rank. */
3145  		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
3146  
3147  		/* Precharge all banks. */
3148  		writel(rwcfg->precharge_all, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3149  					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3150  
3151  		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
3152  		writel(rwcfg->activate_0_and_1_wait1,
3153  		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
3154  
3155  		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
3156  		writel(rwcfg->activate_0_and_1_wait2,
3157  		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
3158  
3159  		/* Activate rows. */
3160  		writel(rwcfg->activate_0_and_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
3161  						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
3162  	}
3163  }
3164  
3165  /**
3166   * mem_init_latency() - Configure memory RLAT and WLAT settings
3167   *
3168   * Configure memory RLAT and WLAT parameters.
3169   */
mem_init_latency(void)3170  static void mem_init_latency(void)
3171  {
3172  	/*
3173  	 * For AV/CV, LFIFO is hardened and always runs at full rate
3174  	 * so max latency in AFI clocks, used here, is correspondingly
3175  	 * smaller.
3176  	 */
3177  	const u32 max_latency = (1 << misccfg->max_latency_count_width) - 1;
3178  	u32 rlat, wlat;
3179  
3180  	debug("%s:%d\n", __func__, __LINE__);
3181  
3182  	/*
3183  	 * Read in write latency.
3184  	 * WL for Hard PHY does not include additive latency.
3185  	 */
3186  	wlat = readl(&data_mgr->t_wl_add);
3187  	wlat += readl(&data_mgr->mem_t_add);
3188  
3189  	gbl->rw_wl_nop_cycles = wlat - 1;
3190  
3191  	/* Read in readl latency. */
3192  	rlat = readl(&data_mgr->t_rl_add);
3193  
3194  	/* Set a pretty high read latency initially. */
3195  	gbl->curr_read_lat = rlat + 16;
3196  	if (gbl->curr_read_lat > max_latency)
3197  		gbl->curr_read_lat = max_latency;
3198  
3199  	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3200  
3201  	/* Advertise write latency. */
3202  	writel(wlat, &phy_mgr_cfg->afi_wlat);
3203  }
3204  
3205  /**
3206   * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
3207   *
3208   * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
3209   */
mem_skip_calibrate(void)3210  static void mem_skip_calibrate(void)
3211  {
3212  	u32 vfifo_offset;
3213  	u32 i, j, r;
3214  
3215  	debug("%s:%d\n", __func__, __LINE__);
3216  	/* Need to update every shadow register set used by the interface */
3217  	for (r = 0; r < rwcfg->mem_number_of_ranks;
3218  	     r += NUM_RANKS_PER_SHADOW_REG) {
3219  		/*
3220  		 * Set output phase alignment settings appropriate for
3221  		 * skip calibration.
3222  		 */
3223  		for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3224  			scc_mgr_set_dqs_en_phase(i, 0);
3225  			if (iocfg->dll_chain_length == 6)
3226  				scc_mgr_set_dqdqs_output_phase(i, 6);
3227  			else
3228  				scc_mgr_set_dqdqs_output_phase(i, 7);
3229  			/*
3230  			 * Case:33398
3231  			 *
3232  			 * Write data arrives to the I/O two cycles before write
3233  			 * latency is reached (720 deg).
3234  			 *   -> due to bit-slip in a/c bus
3235  			 *   -> to allow board skew where dqs is longer than ck
3236  			 *      -> how often can this happen!?
3237  			 *      -> can claim back some ptaps for high freq
3238  			 *       support if we can relax this, but i digress...
3239  			 *
3240  			 * The write_clk leads mem_ck by 90 deg
3241  			 * The minimum ptap of the OPA is 180 deg
3242  			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
3243  			 * The write_clk is always delayed by 2 ptaps
3244  			 *
3245  			 * Hence, to make DQS aligned to CK, we need to delay
3246  			 * DQS by:
3247  			 *    (720 - 90 - 180 - 2) *
3248  			 *      (360 / iocfg->dll_chain_length)
3249  			 *
3250  			 * Dividing the above by (360 / iocfg->dll_chain_length)
3251  			 * gives us the number of ptaps, which simplies to:
3252  			 *
3253  			 *    (1.25 * iocfg->dll_chain_length - 2)
3254  			 */
3255  			scc_mgr_set_dqdqs_output_phase(i,
3256  				       ((125 * iocfg->dll_chain_length) / 100) - 2);
3257  		}
3258  		writel(0xff, &sdr_scc_mgr->dqs_ena);
3259  		writel(0xff, &sdr_scc_mgr->dqs_io_ena);
3260  
3261  		for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) {
3262  			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3263  				  SCC_MGR_GROUP_COUNTER_OFFSET);
3264  		}
3265  		writel(0xff, &sdr_scc_mgr->dq_ena);
3266  		writel(0xff, &sdr_scc_mgr->dm_ena);
3267  		writel(0, &sdr_scc_mgr->update);
3268  	}
3269  
3270  	/* Compensate for simulation model behaviour */
3271  	for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3272  		scc_mgr_set_dqs_bus_in_delay(i, 10);
3273  		scc_mgr_load_dqs(i);
3274  	}
3275  	writel(0, &sdr_scc_mgr->update);
3276  
3277  	/*
3278  	 * ArriaV has hard FIFOs that can only be initialized by incrementing
3279  	 * in sequencer.
3280  	 */
3281  	vfifo_offset = misccfg->calib_vfifo_offset;
3282  	for (j = 0; j < vfifo_offset; j++)
3283  		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
3284  	writel(0, &phy_mgr_cmd->fifo_reset);
3285  
3286  	/*
3287  	 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
3288  	 * setting from generation-time constant.
3289  	 */
3290  	gbl->curr_read_lat = misccfg->calib_lfifo_offset;
3291  	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
3292  }
3293  
3294  /**
3295   * mem_calibrate() - Memory calibration entry point.
3296   *
3297   * Perform memory calibration.
3298   */
mem_calibrate(void)3299  static u32 mem_calibrate(void)
3300  {
3301  	u32 i;
3302  	u32 rank_bgn, sr;
3303  	u32 write_group, write_test_bgn;
3304  	u32 read_group, read_test_bgn;
3305  	u32 run_groups, current_run;
3306  	u32 failing_groups = 0;
3307  	u32 group_failed = 0;
3308  
3309  	const u32 rwdqs_ratio = rwcfg->mem_if_read_dqs_width /
3310  				rwcfg->mem_if_write_dqs_width;
3311  
3312  	debug("%s:%d\n", __func__, __LINE__);
3313  
3314  	/* Initialize the data settings */
3315  	gbl->error_substage = CAL_SUBSTAGE_NIL;
3316  	gbl->error_stage = CAL_STAGE_NIL;
3317  	gbl->error_group = 0xff;
3318  	gbl->fom_in = 0;
3319  	gbl->fom_out = 0;
3320  
3321  	/* Initialize WLAT and RLAT. */
3322  	mem_init_latency();
3323  
3324  	/* Initialize bit slips. */
3325  	mem_precharge_and_activate();
3326  
3327  	for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
3328  		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
3329  			  SCC_MGR_GROUP_COUNTER_OFFSET);
3330  		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
3331  		if (i == 0)
3332  			scc_mgr_set_hhp_extras();
3333  
3334  		scc_set_bypass_mode(i);
3335  	}
3336  
3337  	/* Calibration is skipped. */
3338  	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
3339  		/*
3340  		 * Set VFIFO and LFIFO to instant-on settings in skip
3341  		 * calibration mode.
3342  		 */
3343  		mem_skip_calibrate();
3344  
3345  		/*
3346  		 * Do not remove this line as it makes sure all of our
3347  		 * decisions have been applied.
3348  		 */
3349  		writel(0, &sdr_scc_mgr->update);
3350  		return 1;
3351  	}
3352  
3353  	/* Calibration is not skipped. */
3354  	for (i = 0; i < NUM_CALIB_REPEAT; i++) {
3355  		/*
3356  		 * Zero all delay chain/phase settings for all
3357  		 * groups and all shadow register sets.
3358  		 */
3359  		scc_mgr_zero_all();
3360  
3361  		run_groups = ~0;
3362  
3363  		for (write_group = 0, write_test_bgn = 0; write_group
3364  			< rwcfg->mem_if_write_dqs_width; write_group++,
3365  			write_test_bgn += rwcfg->mem_dq_per_write_dqs) {
3366  			/* Initialize the group failure */
3367  			group_failed = 0;
3368  
3369  			current_run = run_groups & ((1 <<
3370  				RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
3371  			run_groups = run_groups >>
3372  				RW_MGR_NUM_DQS_PER_WRITE_GROUP;
3373  
3374  			if (current_run == 0)
3375  				continue;
3376  
3377  			writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
3378  					    SCC_MGR_GROUP_COUNTER_OFFSET);
3379  			scc_mgr_zero_group(write_group, 0);
3380  
3381  			for (read_group = write_group * rwdqs_ratio,
3382  			     read_test_bgn = 0;
3383  			     read_group < (write_group + 1) * rwdqs_ratio;
3384  			     read_group++,
3385  			     read_test_bgn += rwcfg->mem_dq_per_read_dqs) {
3386  				if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
3387  					continue;
3388  
3389  				/* Calibrate the VFIFO */
3390  				if (rw_mgr_mem_calibrate_vfifo(read_group,
3391  							       read_test_bgn))
3392  					continue;
3393  
3394  				if (!(gbl->phy_debug_mode_flags &
3395  				      PHY_DEBUG_SWEEP_ALL_GROUPS))
3396  					return 0;
3397  
3398  				/* The group failed, we're done. */
3399  				goto grp_failed;
3400  			}
3401  
3402  			/* Calibrate the output side */
3403  			for (rank_bgn = 0, sr = 0;
3404  			     rank_bgn < rwcfg->mem_number_of_ranks;
3405  			     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
3406  				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3407  					continue;
3408  
3409  				/* Not needed in quick mode! */
3410  				if (STATIC_CALIB_STEPS &
3411  				    CALIB_SKIP_DELAY_SWEEPS)
3412  					continue;
3413  
3414  				/* Calibrate WRITEs */
3415  				if (!rw_mgr_mem_calibrate_writes(rank_bgn,
3416  								 write_group,
3417  								 write_test_bgn))
3418  					continue;
3419  
3420  				group_failed = 1;
3421  				if (!(gbl->phy_debug_mode_flags &
3422  				      PHY_DEBUG_SWEEP_ALL_GROUPS))
3423  					return 0;
3424  			}
3425  
3426  			/* Some group failed, we're done. */
3427  			if (group_failed)
3428  				goto grp_failed;
3429  
3430  			for (read_group = write_group * rwdqs_ratio,
3431  			     read_test_bgn = 0;
3432  			     read_group < (write_group + 1) * rwdqs_ratio;
3433  			     read_group++,
3434  			     read_test_bgn += rwcfg->mem_dq_per_read_dqs) {
3435  				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
3436  					continue;
3437  
3438  				if (!rw_mgr_mem_calibrate_vfifo_end(read_group,
3439  								    read_test_bgn))
3440  					continue;
3441  
3442  				if (!(gbl->phy_debug_mode_flags &
3443  				      PHY_DEBUG_SWEEP_ALL_GROUPS))
3444  					return 0;
3445  
3446  				/* The group failed, we're done. */
3447  				goto grp_failed;
3448  			}
3449  
3450  			/* No group failed, continue as usual. */
3451  			continue;
3452  
3453  grp_failed:		/* A group failed, increment the counter. */
3454  			failing_groups++;
3455  		}
3456  
3457  		/*
3458  		 * USER If there are any failing groups then report
3459  		 * the failure.
3460  		 */
3461  		if (failing_groups != 0)
3462  			return 0;
3463  
3464  		if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
3465  			continue;
3466  
3467  		/* Calibrate the LFIFO */
3468  		if (!rw_mgr_mem_calibrate_lfifo())
3469  			return 0;
3470  	}
3471  
3472  	/*
3473  	 * Do not remove this line as it makes sure all of our decisions
3474  	 * have been applied.
3475  	 */
3476  	writel(0, &sdr_scc_mgr->update);
3477  	return 1;
3478  }
3479  
3480  /**
3481   * run_mem_calibrate() - Perform memory calibration
3482   *
3483   * This function triggers the entire memory calibration procedure.
3484   */
run_mem_calibrate(void)3485  static int run_mem_calibrate(void)
3486  {
3487  	int pass;
3488  	u32 ctrl_cfg;
3489  
3490  	debug("%s:%d\n", __func__, __LINE__);
3491  
3492  	/* Reset pass/fail status shown on afi_cal_success/fail */
3493  	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);
3494  
3495  	/* Stop tracking manager. */
3496  	ctrl_cfg = readl(&sdr_ctrl->ctrl_cfg);
3497  	writel(ctrl_cfg & ~SDR_CTRLGRP_CTRLCFG_DQSTRKEN_MASK,
3498  	       &sdr_ctrl->ctrl_cfg);
3499  
3500  	phy_mgr_initialize();
3501  	rw_mgr_mem_initialize();
3502  
3503  	/* Perform the actual memory calibration. */
3504  	pass = mem_calibrate();
3505  
3506  	mem_precharge_and_activate();
3507  	writel(0, &phy_mgr_cmd->fifo_reset);
3508  
3509  	/* Handoff. */
3510  	rw_mgr_mem_handoff();
3511  	/*
3512  	 * In Hard PHY this is a 2-bit control:
3513  	 * 0: AFI Mux Select
3514  	 * 1: DDIO Mux Select
3515  	 */
3516  	writel(0x2, &phy_mgr_cfg->mux_sel);
3517  
3518  	/* Start tracking manager. */
3519  	writel(ctrl_cfg, &sdr_ctrl->ctrl_cfg);
3520  
3521  	return pass;
3522  }
3523  
3524  /**
3525   * debug_mem_calibrate() - Report result of memory calibration
3526   * @pass:	Value indicating whether calibration passed or failed
3527   *
3528   * This function reports the results of the memory calibration
3529   * and writes debug information into the register file.
3530   */
debug_mem_calibrate(int pass)3531  static void debug_mem_calibrate(int pass)
3532  {
3533  	u32 debug_info;
3534  
3535  	if (pass) {
3536  		debug("%s: CALIBRATION PASSED\n", __FILE__);
3537  
3538  		gbl->fom_in /= 2;
3539  		gbl->fom_out /= 2;
3540  
3541  		if (gbl->fom_in > 0xff)
3542  			gbl->fom_in = 0xff;
3543  
3544  		if (gbl->fom_out > 0xff)
3545  			gbl->fom_out = 0xff;
3546  
3547  		/* Update the FOM in the register file */
3548  		debug_info = gbl->fom_in;
3549  		debug_info |= gbl->fom_out << 8;
3550  		writel(debug_info, &sdr_reg_file->fom);
3551  
3552  		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3553  		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
3554  	} else {
3555  		debug("%s: CALIBRATION FAILED\n", __FILE__);
3556  
3557  		debug_info = gbl->error_stage;
3558  		debug_info |= gbl->error_substage << 8;
3559  		debug_info |= gbl->error_group << 16;
3560  
3561  		writel(debug_info, &sdr_reg_file->failing_stage);
3562  		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
3563  		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);
3564  
3565  		/* Update the failing group/stage in the register file */
3566  		debug_info = gbl->error_stage;
3567  		debug_info |= gbl->error_substage << 8;
3568  		debug_info |= gbl->error_group << 16;
3569  		writel(debug_info, &sdr_reg_file->failing_stage);
3570  	}
3571  
3572  	debug("%s: Calibration complete\n", __FILE__);
3573  }
3574  
3575  /**
3576   * hc_initialize_rom_data() - Initialize ROM data
3577   *
3578   * Initialize ROM data.
3579   */
hc_initialize_rom_data(void)3580  static void hc_initialize_rom_data(void)
3581  {
3582  	unsigned int nelem = 0;
3583  	const u32 *rom_init;
3584  	u32 i, addr;
3585  
3586  	socfpga_get_seq_inst_init(&rom_init, &nelem);
3587  	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
3588  	for (i = 0; i < nelem; i++)
3589  		writel(rom_init[i], addr + (i << 2));
3590  
3591  	socfpga_get_seq_ac_init(&rom_init, &nelem);
3592  	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
3593  	for (i = 0; i < nelem; i++)
3594  		writel(rom_init[i], addr + (i << 2));
3595  }
3596  
3597  /**
3598   * initialize_reg_file() - Initialize SDR register file
3599   *
3600   * Initialize SDR register file.
3601   */
initialize_reg_file(void)3602  static void initialize_reg_file(void)
3603  {
3604  	/* Initialize the register file with the correct data */
3605  	writel(misccfg->reg_file_init_seq_signature, &sdr_reg_file->signature);
3606  	writel(0, &sdr_reg_file->debug_data_addr);
3607  	writel(0, &sdr_reg_file->cur_stage);
3608  	writel(0, &sdr_reg_file->fom);
3609  	writel(0, &sdr_reg_file->failing_stage);
3610  	writel(0, &sdr_reg_file->debug1);
3611  	writel(0, &sdr_reg_file->debug2);
3612  }
3613  
3614  /**
3615   * initialize_hps_phy() - Initialize HPS PHY
3616   *
3617   * Initialize HPS PHY.
3618   */
initialize_hps_phy(void)3619  static void initialize_hps_phy(void)
3620  {
3621  	u32 reg;
3622  	/*
3623  	 * Tracking also gets configured here because it's in the
3624  	 * same register.
3625  	 */
3626  	u32 trk_sample_count = 7500;
3627  	u32 trk_long_idle_sample_count = (10 << 16) | 100;
3628  	/*
3629  	 * Format is number of outer loops in the 16 MSB, sample
3630  	 * count in 16 LSB.
3631  	 */
3632  
3633  	reg = 0;
3634  	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
3635  	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
3636  	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
3637  	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
3638  	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
3639  	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
3640  	/*
3641  	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
3642  	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
3643  	 */
3644  	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
3645  	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
3646  		trk_sample_count);
3647  	writel(reg, &sdr_ctrl->phy_ctrl0);
3648  
3649  	reg = 0;
3650  	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
3651  		trk_sample_count >>
3652  		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
3653  	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
3654  		trk_long_idle_sample_count);
3655  	writel(reg, &sdr_ctrl->phy_ctrl1);
3656  
3657  	reg = 0;
3658  	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
3659  		trk_long_idle_sample_count >>
3660  		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
3661  	writel(reg, &sdr_ctrl->phy_ctrl2);
3662  }
3663  
3664  /**
3665   * initialize_tracking() - Initialize tracking
3666   *
3667   * Initialize the register file with usable initial data.
3668   */
initialize_tracking(void)3669  static void initialize_tracking(void)
3670  {
3671  	/*
3672  	 * Initialize the register file with the correct data.
3673  	 * Compute usable version of value in case we skip full
3674  	 * computation later.
3675  	 */
3676  	writel(DIV_ROUND_UP(iocfg->delay_per_opa_tap,
3677  			    iocfg->delay_per_dchain_tap) - 1,
3678  	       &sdr_reg_file->dtaps_per_ptap);
3679  
3680  	/* trk_sample_count */
3681  	writel(7500, &sdr_reg_file->trk_sample_count);
3682  
3683  	/* longidle outer loop [15:0] */
3684  	writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);
3685  
3686  	/*
3687  	 * longidle sample count [31:24]
3688  	 * trfc, worst case of 933Mhz 4Gb [23:16]
3689  	 * trcd, worst case [15:8]
3690  	 * vfifo wait [7:0]
3691  	 */
3692  	writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
3693  	       &sdr_reg_file->delays);
3694  
3695  	/* mux delay */
3696  	writel((rwcfg->idle << 24) | (rwcfg->activate_1 << 16) |
3697  	       (rwcfg->sgle_read << 8) | (rwcfg->precharge_all << 0),
3698  	       &sdr_reg_file->trk_rw_mgr_addr);
3699  
3700  	writel(rwcfg->mem_if_read_dqs_width,
3701  	       &sdr_reg_file->trk_read_dqs_width);
3702  
3703  	/* trefi [7:0] */
3704  	writel((rwcfg->refresh_all << 24) | (1000 << 0),
3705  	       &sdr_reg_file->trk_rfsh);
3706  }
3707  
sdram_calibration_full(void)3708  int sdram_calibration_full(void)
3709  {
3710  	struct param_type my_param;
3711  	struct gbl_type my_gbl;
3712  	u32 pass;
3713  
3714  	memset(&my_param, 0, sizeof(my_param));
3715  	memset(&my_gbl, 0, sizeof(my_gbl));
3716  
3717  	param = &my_param;
3718  	gbl = &my_gbl;
3719  
3720  	rwcfg = socfpga_get_sdram_rwmgr_config();
3721  	iocfg = socfpga_get_sdram_io_config();
3722  	misccfg = socfpga_get_sdram_misc_config();
3723  
3724  	/* Set the calibration enabled by default */
3725  	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
3726  	/*
3727  	 * Only sweep all groups (regardless of fail state) by default
3728  	 * Set enabled read test by default.
3729  	 */
3730  #if DISABLE_GUARANTEED_READ
3731  	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
3732  #endif
3733  	/* Initialize the register file */
3734  	initialize_reg_file();
3735  
3736  	/* Initialize any PHY CSR */
3737  	initialize_hps_phy();
3738  
3739  	scc_mgr_initialize();
3740  
3741  	initialize_tracking();
3742  
3743  	debug("%s: Preparing to start memory calibration\n", __FILE__);
3744  
3745  	debug("%s:%d\n", __func__, __LINE__);
3746  	debug_cond(DLEVEL >= 1,
3747  		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
3748  		   rwcfg->mem_number_of_ranks, rwcfg->mem_number_of_cs_per_dimm,
3749  		   rwcfg->mem_dq_per_read_dqs, rwcfg->mem_dq_per_write_dqs,
3750  		   rwcfg->mem_virtual_groups_per_read_dqs,
3751  		   rwcfg->mem_virtual_groups_per_write_dqs);
3752  	debug_cond(DLEVEL >= 1,
3753  		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
3754  		   rwcfg->mem_if_read_dqs_width, rwcfg->mem_if_write_dqs_width,
3755  		   rwcfg->mem_data_width, rwcfg->mem_data_mask_width,
3756  		   iocfg->delay_per_opa_tap, iocfg->delay_per_dchain_tap);
3757  	debug_cond(DLEVEL >= 1, "dtap_dqsen_delay=%u, dll=%u",
3758  		   iocfg->delay_per_dqs_en_dchain_tap, iocfg->dll_chain_length);
3759  	debug_cond(DLEVEL >= 1,
3760  		   "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
3761  		   iocfg->dqs_en_phase_max, iocfg->dqdqs_out_phase_max,
3762  		   iocfg->dqs_en_delay_max, iocfg->dqs_in_delay_max);
3763  	debug_cond(DLEVEL >= 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
3764  		   iocfg->io_in_delay_max, iocfg->io_out1_delay_max,
3765  		   iocfg->io_out2_delay_max);
3766  	debug_cond(DLEVEL >= 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
3767  		   iocfg->dqs_in_reserve, iocfg->dqs_out_reserve);
3768  
3769  	hc_initialize_rom_data();
3770  
3771  	/* update info for sims */
3772  	reg_file_set_stage(CAL_STAGE_NIL);
3773  	reg_file_set_group(0);
3774  
3775  	/*
3776  	 * Load global needed for those actions that require
3777  	 * some dynamic calibration support.
3778  	 */
3779  	dyn_calib_steps = STATIC_CALIB_STEPS;
3780  	/*
3781  	 * Load global to allow dynamic selection of delay loop settings
3782  	 * based on calibration mode.
3783  	 */
3784  	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
3785  		skip_delay_mask = 0xff;
3786  	else
3787  		skip_delay_mask = 0x0;
3788  
3789  	pass = run_mem_calibrate();
3790  	debug_mem_calibrate(pass);
3791  	return pass;
3792  }
3793