1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 HiSilicon Limited. */
3
4 #include <crypto/aes.h>
5 #include <crypto/aead.h>
6 #include <crypto/algapi.h>
7 #include <crypto/authenc.h>
8 #include <crypto/des.h>
9 #include <crypto/hash.h>
10 #include <crypto/internal/aead.h>
11 #include <crypto/internal/des.h>
12 #include <crypto/sha1.h>
13 #include <crypto/sha2.h>
14 #include <crypto/skcipher.h>
15 #include <crypto/xts.h>
16 #include <linux/crypto.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/idr.h>
19
20 #include "sec.h"
21 #include "sec_crypto.h"
22
23 #define SEC_PRIORITY 4001
24 #define SEC_XTS_MIN_KEY_SIZE (2 * AES_MIN_KEY_SIZE)
25 #define SEC_XTS_MID_KEY_SIZE (3 * AES_MIN_KEY_SIZE)
26 #define SEC_XTS_MAX_KEY_SIZE (2 * AES_MAX_KEY_SIZE)
27 #define SEC_DES3_2KEY_SIZE (2 * DES_KEY_SIZE)
28 #define SEC_DES3_3KEY_SIZE (3 * DES_KEY_SIZE)
29
30 /* SEC sqe(bd) bit operational relative MACRO */
31 #define SEC_DE_OFFSET 1
32 #define SEC_CIPHER_OFFSET 4
33 #define SEC_SCENE_OFFSET 3
34 #define SEC_DST_SGL_OFFSET 2
35 #define SEC_SRC_SGL_OFFSET 7
36 #define SEC_CKEY_OFFSET 9
37 #define SEC_CMODE_OFFSET 12
38 #define SEC_AKEY_OFFSET 5
39 #define SEC_AEAD_ALG_OFFSET 11
40 #define SEC_AUTH_OFFSET 6
41
42 #define SEC_DE_OFFSET_V3 9
43 #define SEC_SCENE_OFFSET_V3 5
44 #define SEC_CKEY_OFFSET_V3 13
45 #define SEC_CTR_CNT_OFFSET 25
46 #define SEC_CTR_CNT_ROLLOVER 2
47 #define SEC_SRC_SGL_OFFSET_V3 11
48 #define SEC_DST_SGL_OFFSET_V3 14
49 #define SEC_CALG_OFFSET_V3 4
50 #define SEC_AKEY_OFFSET_V3 9
51 #define SEC_MAC_OFFSET_V3 4
52 #define SEC_AUTH_ALG_OFFSET_V3 15
53 #define SEC_CIPHER_AUTH_V3 0xbf
54 #define SEC_AUTH_CIPHER_V3 0x40
55 #define SEC_FLAG_OFFSET 7
56 #define SEC_FLAG_MASK 0x0780
57 #define SEC_TYPE_MASK 0x0F
58 #define SEC_DONE_MASK 0x0001
59 #define SEC_ICV_MASK 0x000E
60
61 #define SEC_TOTAL_IV_SZ(depth) (SEC_IV_SIZE * (depth))
62 #define SEC_SGL_SGE_NR 128
63 #define SEC_CIPHER_AUTH 0xfe
64 #define SEC_AUTH_CIPHER 0x1
65 #define SEC_MAX_MAC_LEN 64
66 #define SEC_MAX_AAD_LEN 65535
67 #define SEC_MAX_CCM_AAD_LEN 65279
68 #define SEC_TOTAL_MAC_SZ(depth) (SEC_MAX_MAC_LEN * (depth))
69
70 #define SEC_PBUF_SZ 512
71 #define SEC_PBUF_IV_OFFSET SEC_PBUF_SZ
72 #define SEC_PBUF_MAC_OFFSET (SEC_PBUF_SZ + SEC_IV_SIZE)
73 #define SEC_PBUF_PKG (SEC_PBUF_SZ + SEC_IV_SIZE + \
74 SEC_MAX_MAC_LEN * 2)
75 #define SEC_PBUF_NUM (PAGE_SIZE / SEC_PBUF_PKG)
76 #define SEC_PBUF_PAGE_NUM(depth) ((depth) / SEC_PBUF_NUM)
77 #define SEC_PBUF_LEFT_SZ(depth) (SEC_PBUF_PKG * ((depth) - \
78 SEC_PBUF_PAGE_NUM(depth) * SEC_PBUF_NUM))
79 #define SEC_TOTAL_PBUF_SZ(depth) (PAGE_SIZE * SEC_PBUF_PAGE_NUM(depth) + \
80 SEC_PBUF_LEFT_SZ(depth))
81
82 #define SEC_SQE_CFLAG 2
83 #define SEC_SQE_AEAD_FLAG 3
84 #define SEC_SQE_DONE 0x1
85 #define SEC_ICV_ERR 0x2
86 #define MAC_LEN_MASK 0x1U
87 #define MAX_INPUT_DATA_LEN 0xFFFE00
88 #define BITS_MASK 0xFF
89 #define WORD_MASK 0x3
90 #define BYTE_BITS 0x8
91 #define BYTES_TO_WORDS(bcount) ((bcount) >> 2)
92 #define SEC_XTS_NAME_SZ 0x3
93 #define IV_CM_CAL_NUM 2
94 #define IV_CL_MASK 0x7
95 #define IV_CL_MIN 2
96 #define IV_CL_MID 4
97 #define IV_CL_MAX 8
98 #define IV_FLAGS_OFFSET 0x6
99 #define IV_CM_OFFSET 0x3
100 #define IV_LAST_BYTE1 1
101 #define IV_LAST_BYTE2 2
102 #define IV_LAST_BYTE_MASK 0xFF
103 #define IV_CTR_INIT 0x1
104 #define IV_BYTE_OFFSET 0x8
105
106 struct sec_skcipher {
107 u64 alg_msk;
108 struct skcipher_alg alg;
109 };
110
111 struct sec_aead {
112 u64 alg_msk;
113 struct aead_alg alg;
114 };
115
116 /* Get an en/de-cipher queue cyclically to balance load over queues of TFM */
sec_alloc_queue_id(struct sec_ctx * ctx,struct sec_req * req)117 static inline int sec_alloc_queue_id(struct sec_ctx *ctx, struct sec_req *req)
118 {
119 if (req->c_req.encrypt)
120 return (u32)atomic_inc_return(&ctx->enc_qcyclic) %
121 ctx->hlf_q_num;
122
123 return (u32)atomic_inc_return(&ctx->dec_qcyclic) % ctx->hlf_q_num +
124 ctx->hlf_q_num;
125 }
126
sec_free_queue_id(struct sec_ctx * ctx,struct sec_req * req)127 static inline void sec_free_queue_id(struct sec_ctx *ctx, struct sec_req *req)
128 {
129 if (req->c_req.encrypt)
130 atomic_dec(&ctx->enc_qcyclic);
131 else
132 atomic_dec(&ctx->dec_qcyclic);
133 }
134
sec_alloc_req_id(struct sec_req * req,struct sec_qp_ctx * qp_ctx)135 static int sec_alloc_req_id(struct sec_req *req, struct sec_qp_ctx *qp_ctx)
136 {
137 int req_id;
138
139 spin_lock_bh(&qp_ctx->req_lock);
140 req_id = idr_alloc_cyclic(&qp_ctx->req_idr, NULL, 0, qp_ctx->qp->sq_depth, GFP_ATOMIC);
141 spin_unlock_bh(&qp_ctx->req_lock);
142 if (unlikely(req_id < 0)) {
143 dev_err(req->ctx->dev, "alloc req id fail!\n");
144 return req_id;
145 }
146
147 req->qp_ctx = qp_ctx;
148 qp_ctx->req_list[req_id] = req;
149
150 return req_id;
151 }
152
sec_free_req_id(struct sec_req * req)153 static void sec_free_req_id(struct sec_req *req)
154 {
155 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
156 int req_id = req->req_id;
157
158 if (unlikely(req_id < 0 || req_id >= qp_ctx->qp->sq_depth)) {
159 dev_err(req->ctx->dev, "free request id invalid!\n");
160 return;
161 }
162
163 qp_ctx->req_list[req_id] = NULL;
164 req->qp_ctx = NULL;
165
166 spin_lock_bh(&qp_ctx->req_lock);
167 idr_remove(&qp_ctx->req_idr, req_id);
168 spin_unlock_bh(&qp_ctx->req_lock);
169 }
170
pre_parse_finished_bd(struct bd_status * status,void * resp)171 static u8 pre_parse_finished_bd(struct bd_status *status, void *resp)
172 {
173 struct sec_sqe *bd = resp;
174
175 status->done = le16_to_cpu(bd->type2.done_flag) & SEC_DONE_MASK;
176 status->icv = (le16_to_cpu(bd->type2.done_flag) & SEC_ICV_MASK) >> 1;
177 status->flag = (le16_to_cpu(bd->type2.done_flag) &
178 SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
179 status->tag = le16_to_cpu(bd->type2.tag);
180 status->err_type = bd->type2.error_type;
181
182 return bd->type_cipher_auth & SEC_TYPE_MASK;
183 }
184
pre_parse_finished_bd3(struct bd_status * status,void * resp)185 static u8 pre_parse_finished_bd3(struct bd_status *status, void *resp)
186 {
187 struct sec_sqe3 *bd3 = resp;
188
189 status->done = le16_to_cpu(bd3->done_flag) & SEC_DONE_MASK;
190 status->icv = (le16_to_cpu(bd3->done_flag) & SEC_ICV_MASK) >> 1;
191 status->flag = (le16_to_cpu(bd3->done_flag) &
192 SEC_FLAG_MASK) >> SEC_FLAG_OFFSET;
193 status->tag = le64_to_cpu(bd3->tag);
194 status->err_type = bd3->error_type;
195
196 return le32_to_cpu(bd3->bd_param) & SEC_TYPE_MASK;
197 }
198
sec_cb_status_check(struct sec_req * req,struct bd_status * status)199 static int sec_cb_status_check(struct sec_req *req,
200 struct bd_status *status)
201 {
202 struct sec_ctx *ctx = req->ctx;
203
204 if (unlikely(req->err_type || status->done != SEC_SQE_DONE)) {
205 dev_err_ratelimited(ctx->dev, "err_type[%d], done[%u]\n",
206 req->err_type, status->done);
207 return -EIO;
208 }
209
210 if (unlikely(ctx->alg_type == SEC_SKCIPHER)) {
211 if (unlikely(status->flag != SEC_SQE_CFLAG)) {
212 dev_err_ratelimited(ctx->dev, "flag[%u]\n",
213 status->flag);
214 return -EIO;
215 }
216 } else if (unlikely(ctx->alg_type == SEC_AEAD)) {
217 if (unlikely(status->flag != SEC_SQE_AEAD_FLAG ||
218 status->icv == SEC_ICV_ERR)) {
219 dev_err_ratelimited(ctx->dev,
220 "flag[%u], icv[%u]\n",
221 status->flag, status->icv);
222 return -EBADMSG;
223 }
224 }
225
226 return 0;
227 }
228
sec_req_cb(struct hisi_qp * qp,void * resp)229 static void sec_req_cb(struct hisi_qp *qp, void *resp)
230 {
231 struct sec_qp_ctx *qp_ctx = qp->qp_ctx;
232 struct sec_dfx *dfx = &qp_ctx->ctx->sec->debug.dfx;
233 u8 type_supported = qp_ctx->ctx->type_supported;
234 struct bd_status status;
235 struct sec_ctx *ctx;
236 struct sec_req *req;
237 int err;
238 u8 type;
239
240 if (type_supported == SEC_BD_TYPE2) {
241 type = pre_parse_finished_bd(&status, resp);
242 req = qp_ctx->req_list[status.tag];
243 } else {
244 type = pre_parse_finished_bd3(&status, resp);
245 req = (void *)(uintptr_t)status.tag;
246 }
247
248 if (unlikely(type != type_supported)) {
249 atomic64_inc(&dfx->err_bd_cnt);
250 pr_err("err bd type [%u]\n", type);
251 return;
252 }
253
254 if (unlikely(!req)) {
255 atomic64_inc(&dfx->invalid_req_cnt);
256 atomic_inc(&qp->qp_status.used);
257 return;
258 }
259
260 req->err_type = status.err_type;
261 ctx = req->ctx;
262 err = sec_cb_status_check(req, &status);
263 if (err)
264 atomic64_inc(&dfx->done_flag_cnt);
265
266 atomic64_inc(&dfx->recv_cnt);
267
268 ctx->req_op->buf_unmap(ctx, req);
269
270 ctx->req_op->callback(ctx, req, err);
271 }
272
sec_bd_send(struct sec_ctx * ctx,struct sec_req * req)273 static int sec_bd_send(struct sec_ctx *ctx, struct sec_req *req)
274 {
275 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
276 int ret;
277
278 if (ctx->fake_req_limit <=
279 atomic_read(&qp_ctx->qp->qp_status.used) &&
280 !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG))
281 return -EBUSY;
282
283 spin_lock_bh(&qp_ctx->req_lock);
284 ret = hisi_qp_send(qp_ctx->qp, &req->sec_sqe);
285 if (ctx->fake_req_limit <=
286 atomic_read(&qp_ctx->qp->qp_status.used) && !ret) {
287 list_add_tail(&req->backlog_head, &qp_ctx->backlog);
288 atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
289 atomic64_inc(&ctx->sec->debug.dfx.send_busy_cnt);
290 spin_unlock_bh(&qp_ctx->req_lock);
291 return -EBUSY;
292 }
293 spin_unlock_bh(&qp_ctx->req_lock);
294
295 if (unlikely(ret == -EBUSY))
296 return -ENOBUFS;
297
298 if (likely(!ret)) {
299 ret = -EINPROGRESS;
300 atomic64_inc(&ctx->sec->debug.dfx.send_cnt);
301 }
302
303 return ret;
304 }
305
306 /* Get DMA memory resources */
sec_alloc_civ_resource(struct device * dev,struct sec_alg_res * res)307 static int sec_alloc_civ_resource(struct device *dev, struct sec_alg_res *res)
308 {
309 u16 q_depth = res->depth;
310 int i;
311
312 res->c_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth),
313 &res->c_ivin_dma, GFP_KERNEL);
314 if (!res->c_ivin)
315 return -ENOMEM;
316
317 for (i = 1; i < q_depth; i++) {
318 res[i].c_ivin_dma = res->c_ivin_dma + i * SEC_IV_SIZE;
319 res[i].c_ivin = res->c_ivin + i * SEC_IV_SIZE;
320 }
321
322 return 0;
323 }
324
sec_free_civ_resource(struct device * dev,struct sec_alg_res * res)325 static void sec_free_civ_resource(struct device *dev, struct sec_alg_res *res)
326 {
327 if (res->c_ivin)
328 dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth),
329 res->c_ivin, res->c_ivin_dma);
330 }
331
sec_alloc_aiv_resource(struct device * dev,struct sec_alg_res * res)332 static int sec_alloc_aiv_resource(struct device *dev, struct sec_alg_res *res)
333 {
334 u16 q_depth = res->depth;
335 int i;
336
337 res->a_ivin = dma_alloc_coherent(dev, SEC_TOTAL_IV_SZ(q_depth),
338 &res->a_ivin_dma, GFP_KERNEL);
339 if (!res->a_ivin)
340 return -ENOMEM;
341
342 for (i = 1; i < q_depth; i++) {
343 res[i].a_ivin_dma = res->a_ivin_dma + i * SEC_IV_SIZE;
344 res[i].a_ivin = res->a_ivin + i * SEC_IV_SIZE;
345 }
346
347 return 0;
348 }
349
sec_free_aiv_resource(struct device * dev,struct sec_alg_res * res)350 static void sec_free_aiv_resource(struct device *dev, struct sec_alg_res *res)
351 {
352 if (res->a_ivin)
353 dma_free_coherent(dev, SEC_TOTAL_IV_SZ(res->depth),
354 res->a_ivin, res->a_ivin_dma);
355 }
356
sec_alloc_mac_resource(struct device * dev,struct sec_alg_res * res)357 static int sec_alloc_mac_resource(struct device *dev, struct sec_alg_res *res)
358 {
359 u16 q_depth = res->depth;
360 int i;
361
362 res->out_mac = dma_alloc_coherent(dev, SEC_TOTAL_MAC_SZ(q_depth) << 1,
363 &res->out_mac_dma, GFP_KERNEL);
364 if (!res->out_mac)
365 return -ENOMEM;
366
367 for (i = 1; i < q_depth; i++) {
368 res[i].out_mac_dma = res->out_mac_dma +
369 i * (SEC_MAX_MAC_LEN << 1);
370 res[i].out_mac = res->out_mac + i * (SEC_MAX_MAC_LEN << 1);
371 }
372
373 return 0;
374 }
375
sec_free_mac_resource(struct device * dev,struct sec_alg_res * res)376 static void sec_free_mac_resource(struct device *dev, struct sec_alg_res *res)
377 {
378 if (res->out_mac)
379 dma_free_coherent(dev, SEC_TOTAL_MAC_SZ(res->depth) << 1,
380 res->out_mac, res->out_mac_dma);
381 }
382
sec_free_pbuf_resource(struct device * dev,struct sec_alg_res * res)383 static void sec_free_pbuf_resource(struct device *dev, struct sec_alg_res *res)
384 {
385 if (res->pbuf)
386 dma_free_coherent(dev, SEC_TOTAL_PBUF_SZ(res->depth),
387 res->pbuf, res->pbuf_dma);
388 }
389
390 /*
391 * To improve performance, pbuffer is used for
392 * small packets (< 512Bytes) as IOMMU translation using.
393 */
sec_alloc_pbuf_resource(struct device * dev,struct sec_alg_res * res)394 static int sec_alloc_pbuf_resource(struct device *dev, struct sec_alg_res *res)
395 {
396 u16 q_depth = res->depth;
397 int size = SEC_PBUF_PAGE_NUM(q_depth);
398 int pbuf_page_offset;
399 int i, j, k;
400
401 res->pbuf = dma_alloc_coherent(dev, SEC_TOTAL_PBUF_SZ(q_depth),
402 &res->pbuf_dma, GFP_KERNEL);
403 if (!res->pbuf)
404 return -ENOMEM;
405
406 /*
407 * SEC_PBUF_PKG contains data pbuf, iv and
408 * out_mac : <SEC_PBUF|SEC_IV|SEC_MAC>
409 * Every PAGE contains six SEC_PBUF_PKG
410 * The sec_qp_ctx contains QM_Q_DEPTH numbers of SEC_PBUF_PKG
411 * So we need SEC_PBUF_PAGE_NUM numbers of PAGE
412 * for the SEC_TOTAL_PBUF_SZ
413 */
414 for (i = 0; i <= size; i++) {
415 pbuf_page_offset = PAGE_SIZE * i;
416 for (j = 0; j < SEC_PBUF_NUM; j++) {
417 k = i * SEC_PBUF_NUM + j;
418 if (k == q_depth)
419 break;
420 res[k].pbuf = res->pbuf +
421 j * SEC_PBUF_PKG + pbuf_page_offset;
422 res[k].pbuf_dma = res->pbuf_dma +
423 j * SEC_PBUF_PKG + pbuf_page_offset;
424 }
425 }
426
427 return 0;
428 }
429
sec_alg_resource_alloc(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)430 static int sec_alg_resource_alloc(struct sec_ctx *ctx,
431 struct sec_qp_ctx *qp_ctx)
432 {
433 struct sec_alg_res *res = qp_ctx->res;
434 struct device *dev = ctx->dev;
435 int ret;
436
437 ret = sec_alloc_civ_resource(dev, res);
438 if (ret)
439 return ret;
440
441 if (ctx->alg_type == SEC_AEAD) {
442 ret = sec_alloc_aiv_resource(dev, res);
443 if (ret)
444 goto alloc_aiv_fail;
445
446 ret = sec_alloc_mac_resource(dev, res);
447 if (ret)
448 goto alloc_mac_fail;
449 }
450 if (ctx->pbuf_supported) {
451 ret = sec_alloc_pbuf_resource(dev, res);
452 if (ret) {
453 dev_err(dev, "fail to alloc pbuf dma resource!\n");
454 goto alloc_pbuf_fail;
455 }
456 }
457
458 return 0;
459
460 alloc_pbuf_fail:
461 if (ctx->alg_type == SEC_AEAD)
462 sec_free_mac_resource(dev, qp_ctx->res);
463 alloc_mac_fail:
464 if (ctx->alg_type == SEC_AEAD)
465 sec_free_aiv_resource(dev, res);
466 alloc_aiv_fail:
467 sec_free_civ_resource(dev, res);
468 return ret;
469 }
470
sec_alg_resource_free(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)471 static void sec_alg_resource_free(struct sec_ctx *ctx,
472 struct sec_qp_ctx *qp_ctx)
473 {
474 struct device *dev = ctx->dev;
475
476 sec_free_civ_resource(dev, qp_ctx->res);
477
478 if (ctx->pbuf_supported)
479 sec_free_pbuf_resource(dev, qp_ctx->res);
480 if (ctx->alg_type == SEC_AEAD) {
481 sec_free_mac_resource(dev, qp_ctx->res);
482 sec_free_aiv_resource(dev, qp_ctx->res);
483 }
484 }
485
sec_alloc_qp_ctx_resource(struct hisi_qm * qm,struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)486 static int sec_alloc_qp_ctx_resource(struct hisi_qm *qm, struct sec_ctx *ctx,
487 struct sec_qp_ctx *qp_ctx)
488 {
489 u16 q_depth = qp_ctx->qp->sq_depth;
490 struct device *dev = ctx->dev;
491 int ret = -ENOMEM;
492
493 qp_ctx->req_list = kcalloc(q_depth, sizeof(struct sec_req *), GFP_KERNEL);
494 if (!qp_ctx->req_list)
495 return ret;
496
497 qp_ctx->res = kcalloc(q_depth, sizeof(struct sec_alg_res), GFP_KERNEL);
498 if (!qp_ctx->res)
499 goto err_free_req_list;
500 qp_ctx->res->depth = q_depth;
501
502 qp_ctx->c_in_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR);
503 if (IS_ERR(qp_ctx->c_in_pool)) {
504 dev_err(dev, "fail to create sgl pool for input!\n");
505 goto err_free_res;
506 }
507
508 qp_ctx->c_out_pool = hisi_acc_create_sgl_pool(dev, q_depth, SEC_SGL_SGE_NR);
509 if (IS_ERR(qp_ctx->c_out_pool)) {
510 dev_err(dev, "fail to create sgl pool for output!\n");
511 goto err_free_c_in_pool;
512 }
513
514 ret = sec_alg_resource_alloc(ctx, qp_ctx);
515 if (ret)
516 goto err_free_c_out_pool;
517
518 return 0;
519
520 err_free_c_out_pool:
521 hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
522 err_free_c_in_pool:
523 hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
524 err_free_res:
525 kfree(qp_ctx->res);
526 err_free_req_list:
527 kfree(qp_ctx->req_list);
528 return ret;
529 }
530
sec_free_qp_ctx_resource(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)531 static void sec_free_qp_ctx_resource(struct sec_ctx *ctx, struct sec_qp_ctx *qp_ctx)
532 {
533 struct device *dev = ctx->dev;
534
535 sec_alg_resource_free(ctx, qp_ctx);
536 hisi_acc_free_sgl_pool(dev, qp_ctx->c_out_pool);
537 hisi_acc_free_sgl_pool(dev, qp_ctx->c_in_pool);
538 kfree(qp_ctx->res);
539 kfree(qp_ctx->req_list);
540 }
541
sec_create_qp_ctx(struct hisi_qm * qm,struct sec_ctx * ctx,int qp_ctx_id,int alg_type)542 static int sec_create_qp_ctx(struct hisi_qm *qm, struct sec_ctx *ctx,
543 int qp_ctx_id, int alg_type)
544 {
545 struct sec_qp_ctx *qp_ctx;
546 struct hisi_qp *qp;
547 int ret;
548
549 qp_ctx = &ctx->qp_ctx[qp_ctx_id];
550 qp = ctx->qps[qp_ctx_id];
551 qp->req_type = 0;
552 qp->qp_ctx = qp_ctx;
553 qp_ctx->qp = qp;
554 qp_ctx->ctx = ctx;
555
556 qp->req_cb = sec_req_cb;
557
558 spin_lock_init(&qp_ctx->req_lock);
559 idr_init(&qp_ctx->req_idr);
560 INIT_LIST_HEAD(&qp_ctx->backlog);
561
562 ret = sec_alloc_qp_ctx_resource(qm, ctx, qp_ctx);
563 if (ret)
564 goto err_destroy_idr;
565
566 ret = hisi_qm_start_qp(qp, 0);
567 if (ret < 0)
568 goto err_resource_free;
569
570 return 0;
571
572 err_resource_free:
573 sec_free_qp_ctx_resource(ctx, qp_ctx);
574 err_destroy_idr:
575 idr_destroy(&qp_ctx->req_idr);
576 return ret;
577 }
578
sec_release_qp_ctx(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)579 static void sec_release_qp_ctx(struct sec_ctx *ctx,
580 struct sec_qp_ctx *qp_ctx)
581 {
582 hisi_qm_stop_qp(qp_ctx->qp);
583 sec_free_qp_ctx_resource(ctx, qp_ctx);
584 idr_destroy(&qp_ctx->req_idr);
585 }
586
sec_ctx_base_init(struct sec_ctx * ctx)587 static int sec_ctx_base_init(struct sec_ctx *ctx)
588 {
589 struct sec_dev *sec;
590 int i, ret;
591
592 ctx->qps = sec_create_qps();
593 if (!ctx->qps) {
594 pr_err("Can not create sec qps!\n");
595 return -ENODEV;
596 }
597
598 sec = container_of(ctx->qps[0]->qm, struct sec_dev, qm);
599 ctx->sec = sec;
600 ctx->dev = &sec->qm.pdev->dev;
601 ctx->hlf_q_num = sec->ctx_q_num >> 1;
602
603 ctx->pbuf_supported = ctx->sec->iommu_used;
604
605 /* Half of queue depth is taken as fake requests limit in the queue. */
606 ctx->fake_req_limit = ctx->qps[0]->sq_depth >> 1;
607 ctx->qp_ctx = kcalloc(sec->ctx_q_num, sizeof(struct sec_qp_ctx),
608 GFP_KERNEL);
609 if (!ctx->qp_ctx) {
610 ret = -ENOMEM;
611 goto err_destroy_qps;
612 }
613
614 for (i = 0; i < sec->ctx_q_num; i++) {
615 ret = sec_create_qp_ctx(&sec->qm, ctx, i, 0);
616 if (ret)
617 goto err_sec_release_qp_ctx;
618 }
619
620 return 0;
621
622 err_sec_release_qp_ctx:
623 for (i = i - 1; i >= 0; i--)
624 sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
625 kfree(ctx->qp_ctx);
626 err_destroy_qps:
627 sec_destroy_qps(ctx->qps, sec->ctx_q_num);
628 return ret;
629 }
630
sec_ctx_base_uninit(struct sec_ctx * ctx)631 static void sec_ctx_base_uninit(struct sec_ctx *ctx)
632 {
633 int i;
634
635 for (i = 0; i < ctx->sec->ctx_q_num; i++)
636 sec_release_qp_ctx(ctx, &ctx->qp_ctx[i]);
637
638 sec_destroy_qps(ctx->qps, ctx->sec->ctx_q_num);
639 kfree(ctx->qp_ctx);
640 }
641
sec_cipher_init(struct sec_ctx * ctx)642 static int sec_cipher_init(struct sec_ctx *ctx)
643 {
644 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
645
646 c_ctx->c_key = dma_alloc_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
647 &c_ctx->c_key_dma, GFP_KERNEL);
648 if (!c_ctx->c_key)
649 return -ENOMEM;
650
651 return 0;
652 }
653
sec_cipher_uninit(struct sec_ctx * ctx)654 static void sec_cipher_uninit(struct sec_ctx *ctx)
655 {
656 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
657
658 memzero_explicit(c_ctx->c_key, SEC_MAX_KEY_SIZE);
659 dma_free_coherent(ctx->dev, SEC_MAX_KEY_SIZE,
660 c_ctx->c_key, c_ctx->c_key_dma);
661 }
662
sec_auth_init(struct sec_ctx * ctx)663 static int sec_auth_init(struct sec_ctx *ctx)
664 {
665 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
666
667 a_ctx->a_key = dma_alloc_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
668 &a_ctx->a_key_dma, GFP_KERNEL);
669 if (!a_ctx->a_key)
670 return -ENOMEM;
671
672 return 0;
673 }
674
sec_auth_uninit(struct sec_ctx * ctx)675 static void sec_auth_uninit(struct sec_ctx *ctx)
676 {
677 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
678
679 memzero_explicit(a_ctx->a_key, SEC_MAX_AKEY_SIZE);
680 dma_free_coherent(ctx->dev, SEC_MAX_AKEY_SIZE,
681 a_ctx->a_key, a_ctx->a_key_dma);
682 }
683
sec_skcipher_fbtfm_init(struct crypto_skcipher * tfm)684 static int sec_skcipher_fbtfm_init(struct crypto_skcipher *tfm)
685 {
686 const char *alg = crypto_tfm_alg_name(&tfm->base);
687 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
688 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
689
690 c_ctx->fallback = false;
691
692 c_ctx->fbtfm = crypto_alloc_sync_skcipher(alg, 0,
693 CRYPTO_ALG_NEED_FALLBACK);
694 if (IS_ERR(c_ctx->fbtfm)) {
695 pr_err("failed to alloc fallback tfm for %s!\n", alg);
696 return PTR_ERR(c_ctx->fbtfm);
697 }
698
699 return 0;
700 }
701
sec_skcipher_init(struct crypto_skcipher * tfm)702 static int sec_skcipher_init(struct crypto_skcipher *tfm)
703 {
704 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
705 int ret;
706
707 ctx->alg_type = SEC_SKCIPHER;
708 crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_req));
709 ctx->c_ctx.ivsize = crypto_skcipher_ivsize(tfm);
710 if (ctx->c_ctx.ivsize > SEC_IV_SIZE) {
711 pr_err("get error skcipher iv size!\n");
712 return -EINVAL;
713 }
714
715 ret = sec_ctx_base_init(ctx);
716 if (ret)
717 return ret;
718
719 ret = sec_cipher_init(ctx);
720 if (ret)
721 goto err_cipher_init;
722
723 ret = sec_skcipher_fbtfm_init(tfm);
724 if (ret)
725 goto err_fbtfm_init;
726
727 return 0;
728
729 err_fbtfm_init:
730 sec_cipher_uninit(ctx);
731 err_cipher_init:
732 sec_ctx_base_uninit(ctx);
733 return ret;
734 }
735
sec_skcipher_uninit(struct crypto_skcipher * tfm)736 static void sec_skcipher_uninit(struct crypto_skcipher *tfm)
737 {
738 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
739
740 if (ctx->c_ctx.fbtfm)
741 crypto_free_sync_skcipher(ctx->c_ctx.fbtfm);
742
743 sec_cipher_uninit(ctx);
744 sec_ctx_base_uninit(ctx);
745 }
746
sec_skcipher_3des_setkey(struct crypto_skcipher * tfm,const u8 * key,const u32 keylen,const enum sec_cmode c_mode)747 static int sec_skcipher_3des_setkey(struct crypto_skcipher *tfm, const u8 *key,
748 const u32 keylen,
749 const enum sec_cmode c_mode)
750 {
751 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
752 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
753 int ret;
754
755 ret = verify_skcipher_des3_key(tfm, key);
756 if (ret)
757 return ret;
758
759 switch (keylen) {
760 case SEC_DES3_2KEY_SIZE:
761 c_ctx->c_key_len = SEC_CKEY_3DES_2KEY;
762 break;
763 case SEC_DES3_3KEY_SIZE:
764 c_ctx->c_key_len = SEC_CKEY_3DES_3KEY;
765 break;
766 default:
767 return -EINVAL;
768 }
769
770 return 0;
771 }
772
sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx * c_ctx,const u32 keylen,const enum sec_cmode c_mode)773 static int sec_skcipher_aes_sm4_setkey(struct sec_cipher_ctx *c_ctx,
774 const u32 keylen,
775 const enum sec_cmode c_mode)
776 {
777 if (c_mode == SEC_CMODE_XTS) {
778 switch (keylen) {
779 case SEC_XTS_MIN_KEY_SIZE:
780 c_ctx->c_key_len = SEC_CKEY_128BIT;
781 break;
782 case SEC_XTS_MID_KEY_SIZE:
783 c_ctx->fallback = true;
784 break;
785 case SEC_XTS_MAX_KEY_SIZE:
786 c_ctx->c_key_len = SEC_CKEY_256BIT;
787 break;
788 default:
789 pr_err("hisi_sec2: xts mode key error!\n");
790 return -EINVAL;
791 }
792 } else {
793 if (c_ctx->c_alg == SEC_CALG_SM4 &&
794 keylen != AES_KEYSIZE_128) {
795 pr_err("hisi_sec2: sm4 key error!\n");
796 return -EINVAL;
797 } else {
798 switch (keylen) {
799 case AES_KEYSIZE_128:
800 c_ctx->c_key_len = SEC_CKEY_128BIT;
801 break;
802 case AES_KEYSIZE_192:
803 c_ctx->c_key_len = SEC_CKEY_192BIT;
804 break;
805 case AES_KEYSIZE_256:
806 c_ctx->c_key_len = SEC_CKEY_256BIT;
807 break;
808 default:
809 pr_err("hisi_sec2: aes key error!\n");
810 return -EINVAL;
811 }
812 }
813 }
814
815 return 0;
816 }
817
sec_skcipher_setkey(struct crypto_skcipher * tfm,const u8 * key,const u32 keylen,const enum sec_calg c_alg,const enum sec_cmode c_mode)818 static int sec_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key,
819 const u32 keylen, const enum sec_calg c_alg,
820 const enum sec_cmode c_mode)
821 {
822 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
823 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
824 struct device *dev = ctx->dev;
825 int ret;
826
827 if (c_mode == SEC_CMODE_XTS) {
828 ret = xts_verify_key(tfm, key, keylen);
829 if (ret) {
830 dev_err(dev, "xts mode key err!\n");
831 return ret;
832 }
833 }
834
835 c_ctx->c_alg = c_alg;
836 c_ctx->c_mode = c_mode;
837
838 switch (c_alg) {
839 case SEC_CALG_3DES:
840 ret = sec_skcipher_3des_setkey(tfm, key, keylen, c_mode);
841 break;
842 case SEC_CALG_AES:
843 case SEC_CALG_SM4:
844 ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
845 break;
846 default:
847 dev_err(dev, "sec c_alg err!\n");
848 return -EINVAL;
849 }
850
851 if (ret) {
852 dev_err(dev, "set sec key err!\n");
853 return ret;
854 }
855
856 memcpy(c_ctx->c_key, key, keylen);
857 if (c_ctx->fbtfm) {
858 ret = crypto_sync_skcipher_setkey(c_ctx->fbtfm, key, keylen);
859 if (ret) {
860 dev_err(dev, "failed to set fallback skcipher key!\n");
861 return ret;
862 }
863 }
864 return 0;
865 }
866
867 #define GEN_SEC_SETKEY_FUNC(name, c_alg, c_mode) \
868 static int sec_setkey_##name(struct crypto_skcipher *tfm, const u8 *key,\
869 u32 keylen) \
870 { \
871 return sec_skcipher_setkey(tfm, key, keylen, c_alg, c_mode); \
872 }
873
GEN_SEC_SETKEY_FUNC(aes_ecb,SEC_CALG_AES,SEC_CMODE_ECB)874 GEN_SEC_SETKEY_FUNC(aes_ecb, SEC_CALG_AES, SEC_CMODE_ECB)
875 GEN_SEC_SETKEY_FUNC(aes_cbc, SEC_CALG_AES, SEC_CMODE_CBC)
876 GEN_SEC_SETKEY_FUNC(aes_xts, SEC_CALG_AES, SEC_CMODE_XTS)
877 GEN_SEC_SETKEY_FUNC(aes_ofb, SEC_CALG_AES, SEC_CMODE_OFB)
878 GEN_SEC_SETKEY_FUNC(aes_cfb, SEC_CALG_AES, SEC_CMODE_CFB)
879 GEN_SEC_SETKEY_FUNC(aes_ctr, SEC_CALG_AES, SEC_CMODE_CTR)
880 GEN_SEC_SETKEY_FUNC(3des_ecb, SEC_CALG_3DES, SEC_CMODE_ECB)
881 GEN_SEC_SETKEY_FUNC(3des_cbc, SEC_CALG_3DES, SEC_CMODE_CBC)
882 GEN_SEC_SETKEY_FUNC(sm4_xts, SEC_CALG_SM4, SEC_CMODE_XTS)
883 GEN_SEC_SETKEY_FUNC(sm4_cbc, SEC_CALG_SM4, SEC_CMODE_CBC)
884 GEN_SEC_SETKEY_FUNC(sm4_ofb, SEC_CALG_SM4, SEC_CMODE_OFB)
885 GEN_SEC_SETKEY_FUNC(sm4_cfb, SEC_CALG_SM4, SEC_CMODE_CFB)
886 GEN_SEC_SETKEY_FUNC(sm4_ctr, SEC_CALG_SM4, SEC_CMODE_CTR)
887
888 static int sec_cipher_pbuf_map(struct sec_ctx *ctx, struct sec_req *req,
889 struct scatterlist *src)
890 {
891 struct sec_aead_req *a_req = &req->aead_req;
892 struct aead_request *aead_req = a_req->aead_req;
893 struct sec_cipher_req *c_req = &req->c_req;
894 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
895 struct device *dev = ctx->dev;
896 int copy_size, pbuf_length;
897 int req_id = req->req_id;
898 struct crypto_aead *tfm;
899 size_t authsize;
900 u8 *mac_offset;
901
902 if (ctx->alg_type == SEC_AEAD)
903 copy_size = aead_req->cryptlen + aead_req->assoclen;
904 else
905 copy_size = c_req->c_len;
906
907 pbuf_length = sg_copy_to_buffer(src, sg_nents(src),
908 qp_ctx->res[req_id].pbuf, copy_size);
909 if (unlikely(pbuf_length != copy_size)) {
910 dev_err(dev, "copy src data to pbuf error!\n");
911 return -EINVAL;
912 }
913 if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
914 tfm = crypto_aead_reqtfm(aead_req);
915 authsize = crypto_aead_authsize(tfm);
916 mac_offset = qp_ctx->res[req_id].pbuf + copy_size - authsize;
917 memcpy(a_req->out_mac, mac_offset, authsize);
918 }
919
920 req->in_dma = qp_ctx->res[req_id].pbuf_dma;
921 c_req->c_out_dma = req->in_dma;
922
923 return 0;
924 }
925
sec_cipher_pbuf_unmap(struct sec_ctx * ctx,struct sec_req * req,struct scatterlist * dst)926 static void sec_cipher_pbuf_unmap(struct sec_ctx *ctx, struct sec_req *req,
927 struct scatterlist *dst)
928 {
929 struct aead_request *aead_req = req->aead_req.aead_req;
930 struct sec_cipher_req *c_req = &req->c_req;
931 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
932 int copy_size, pbuf_length;
933 int req_id = req->req_id;
934
935 if (ctx->alg_type == SEC_AEAD)
936 copy_size = c_req->c_len + aead_req->assoclen;
937 else
938 copy_size = c_req->c_len;
939
940 pbuf_length = sg_copy_from_buffer(dst, sg_nents(dst),
941 qp_ctx->res[req_id].pbuf, copy_size);
942 if (unlikely(pbuf_length != copy_size))
943 dev_err(ctx->dev, "copy pbuf data to dst error!\n");
944 }
945
sec_aead_mac_init(struct sec_aead_req * req)946 static int sec_aead_mac_init(struct sec_aead_req *req)
947 {
948 struct aead_request *aead_req = req->aead_req;
949 struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
950 size_t authsize = crypto_aead_authsize(tfm);
951 struct scatterlist *sgl = aead_req->src;
952 u8 *mac_out = req->out_mac;
953 size_t copy_size;
954 off_t skip_size;
955
956 /* Copy input mac */
957 skip_size = aead_req->assoclen + aead_req->cryptlen - authsize;
958 copy_size = sg_pcopy_to_buffer(sgl, sg_nents(sgl), mac_out, authsize, skip_size);
959 if (unlikely(copy_size != authsize))
960 return -EINVAL;
961
962 return 0;
963 }
964
sec_cipher_map(struct sec_ctx * ctx,struct sec_req * req,struct scatterlist * src,struct scatterlist * dst)965 static int sec_cipher_map(struct sec_ctx *ctx, struct sec_req *req,
966 struct scatterlist *src, struct scatterlist *dst)
967 {
968 struct sec_cipher_req *c_req = &req->c_req;
969 struct sec_aead_req *a_req = &req->aead_req;
970 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
971 struct sec_alg_res *res = &qp_ctx->res[req->req_id];
972 struct device *dev = ctx->dev;
973 int ret;
974
975 if (req->use_pbuf) {
976 c_req->c_ivin = res->pbuf + SEC_PBUF_IV_OFFSET;
977 c_req->c_ivin_dma = res->pbuf_dma + SEC_PBUF_IV_OFFSET;
978 if (ctx->alg_type == SEC_AEAD) {
979 a_req->a_ivin = res->a_ivin;
980 a_req->a_ivin_dma = res->a_ivin_dma;
981 a_req->out_mac = res->pbuf + SEC_PBUF_MAC_OFFSET;
982 a_req->out_mac_dma = res->pbuf_dma +
983 SEC_PBUF_MAC_OFFSET;
984 }
985 ret = sec_cipher_pbuf_map(ctx, req, src);
986
987 return ret;
988 }
989 c_req->c_ivin = res->c_ivin;
990 c_req->c_ivin_dma = res->c_ivin_dma;
991 if (ctx->alg_type == SEC_AEAD) {
992 a_req->a_ivin = res->a_ivin;
993 a_req->a_ivin_dma = res->a_ivin_dma;
994 a_req->out_mac = res->out_mac;
995 a_req->out_mac_dma = res->out_mac_dma;
996 }
997
998 req->in = hisi_acc_sg_buf_map_to_hw_sgl(dev, src,
999 qp_ctx->c_in_pool,
1000 req->req_id,
1001 &req->in_dma);
1002 if (IS_ERR(req->in)) {
1003 dev_err(dev, "fail to dma map input sgl buffers!\n");
1004 return PTR_ERR(req->in);
1005 }
1006
1007 if (!c_req->encrypt && ctx->alg_type == SEC_AEAD) {
1008 ret = sec_aead_mac_init(a_req);
1009 if (unlikely(ret)) {
1010 dev_err(dev, "fail to init mac data for ICV!\n");
1011 return ret;
1012 }
1013 }
1014
1015 if (dst == src) {
1016 c_req->c_out = req->in;
1017 c_req->c_out_dma = req->in_dma;
1018 } else {
1019 c_req->c_out = hisi_acc_sg_buf_map_to_hw_sgl(dev, dst,
1020 qp_ctx->c_out_pool,
1021 req->req_id,
1022 &c_req->c_out_dma);
1023
1024 if (IS_ERR(c_req->c_out)) {
1025 dev_err(dev, "fail to dma map output sgl buffers!\n");
1026 hisi_acc_sg_buf_unmap(dev, src, req->in);
1027 return PTR_ERR(c_req->c_out);
1028 }
1029 }
1030
1031 return 0;
1032 }
1033
sec_cipher_unmap(struct sec_ctx * ctx,struct sec_req * req,struct scatterlist * src,struct scatterlist * dst)1034 static void sec_cipher_unmap(struct sec_ctx *ctx, struct sec_req *req,
1035 struct scatterlist *src, struct scatterlist *dst)
1036 {
1037 struct sec_cipher_req *c_req = &req->c_req;
1038 struct device *dev = ctx->dev;
1039
1040 if (req->use_pbuf) {
1041 sec_cipher_pbuf_unmap(ctx, req, dst);
1042 } else {
1043 if (dst != src)
1044 hisi_acc_sg_buf_unmap(dev, src, req->in);
1045
1046 hisi_acc_sg_buf_unmap(dev, dst, c_req->c_out);
1047 }
1048 }
1049
sec_skcipher_sgl_map(struct sec_ctx * ctx,struct sec_req * req)1050 static int sec_skcipher_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
1051 {
1052 struct skcipher_request *sq = req->c_req.sk_req;
1053
1054 return sec_cipher_map(ctx, req, sq->src, sq->dst);
1055 }
1056
sec_skcipher_sgl_unmap(struct sec_ctx * ctx,struct sec_req * req)1057 static void sec_skcipher_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
1058 {
1059 struct skcipher_request *sq = req->c_req.sk_req;
1060
1061 sec_cipher_unmap(ctx, req, sq->src, sq->dst);
1062 }
1063
sec_aead_aes_set_key(struct sec_cipher_ctx * c_ctx,struct crypto_authenc_keys * keys)1064 static int sec_aead_aes_set_key(struct sec_cipher_ctx *c_ctx,
1065 struct crypto_authenc_keys *keys)
1066 {
1067 switch (keys->enckeylen) {
1068 case AES_KEYSIZE_128:
1069 c_ctx->c_key_len = SEC_CKEY_128BIT;
1070 break;
1071 case AES_KEYSIZE_192:
1072 c_ctx->c_key_len = SEC_CKEY_192BIT;
1073 break;
1074 case AES_KEYSIZE_256:
1075 c_ctx->c_key_len = SEC_CKEY_256BIT;
1076 break;
1077 default:
1078 pr_err("hisi_sec2: aead aes key error!\n");
1079 return -EINVAL;
1080 }
1081 memcpy(c_ctx->c_key, keys->enckey, keys->enckeylen);
1082
1083 return 0;
1084 }
1085
sec_aead_auth_set_key(struct sec_auth_ctx * ctx,struct crypto_authenc_keys * keys)1086 static int sec_aead_auth_set_key(struct sec_auth_ctx *ctx,
1087 struct crypto_authenc_keys *keys)
1088 {
1089 struct crypto_shash *hash_tfm = ctx->hash_tfm;
1090 int blocksize, digestsize, ret;
1091
1092 blocksize = crypto_shash_blocksize(hash_tfm);
1093 digestsize = crypto_shash_digestsize(hash_tfm);
1094 if (keys->authkeylen > blocksize) {
1095 ret = crypto_shash_tfm_digest(hash_tfm, keys->authkey,
1096 keys->authkeylen, ctx->a_key);
1097 if (ret) {
1098 pr_err("hisi_sec2: aead auth digest error!\n");
1099 return -EINVAL;
1100 }
1101 ctx->a_key_len = digestsize;
1102 } else {
1103 if (keys->authkeylen)
1104 memcpy(ctx->a_key, keys->authkey, keys->authkeylen);
1105 ctx->a_key_len = keys->authkeylen;
1106 }
1107
1108 return 0;
1109 }
1110
sec_aead_setauthsize(struct crypto_aead * aead,unsigned int authsize)1111 static int sec_aead_setauthsize(struct crypto_aead *aead, unsigned int authsize)
1112 {
1113 struct crypto_tfm *tfm = crypto_aead_tfm(aead);
1114 struct sec_ctx *ctx = crypto_tfm_ctx(tfm);
1115 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1116
1117 return crypto_aead_setauthsize(a_ctx->fallback_aead_tfm, authsize);
1118 }
1119
sec_aead_fallback_setkey(struct sec_auth_ctx * a_ctx,struct crypto_aead * tfm,const u8 * key,unsigned int keylen)1120 static int sec_aead_fallback_setkey(struct sec_auth_ctx *a_ctx,
1121 struct crypto_aead *tfm, const u8 *key,
1122 unsigned int keylen)
1123 {
1124 crypto_aead_clear_flags(a_ctx->fallback_aead_tfm, CRYPTO_TFM_REQ_MASK);
1125 crypto_aead_set_flags(a_ctx->fallback_aead_tfm,
1126 crypto_aead_get_flags(tfm) & CRYPTO_TFM_REQ_MASK);
1127 return crypto_aead_setkey(a_ctx->fallback_aead_tfm, key, keylen);
1128 }
1129
sec_aead_setkey(struct crypto_aead * tfm,const u8 * key,const u32 keylen,const enum sec_hash_alg a_alg,const enum sec_calg c_alg,const enum sec_cmode c_mode)1130 static int sec_aead_setkey(struct crypto_aead *tfm, const u8 *key,
1131 const u32 keylen, const enum sec_hash_alg a_alg,
1132 const enum sec_calg c_alg,
1133 const enum sec_cmode c_mode)
1134 {
1135 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1136 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1137 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1138 struct device *dev = ctx->dev;
1139 struct crypto_authenc_keys keys;
1140 int ret;
1141
1142 ctx->a_ctx.a_alg = a_alg;
1143 ctx->c_ctx.c_alg = c_alg;
1144 c_ctx->c_mode = c_mode;
1145
1146 if (c_mode == SEC_CMODE_CCM || c_mode == SEC_CMODE_GCM) {
1147 ret = sec_skcipher_aes_sm4_setkey(c_ctx, keylen, c_mode);
1148 if (ret) {
1149 dev_err(dev, "set sec aes ccm cipher key err!\n");
1150 return ret;
1151 }
1152 memcpy(c_ctx->c_key, key, keylen);
1153
1154 return sec_aead_fallback_setkey(a_ctx, tfm, key, keylen);
1155 }
1156
1157 ret = crypto_authenc_extractkeys(&keys, key, keylen);
1158 if (ret) {
1159 dev_err(dev, "sec extract aead keys err!\n");
1160 goto bad_key;
1161 }
1162
1163 ret = sec_aead_aes_set_key(c_ctx, &keys);
1164 if (ret) {
1165 dev_err(dev, "set sec cipher key err!\n");
1166 goto bad_key;
1167 }
1168
1169 ret = sec_aead_auth_set_key(&ctx->a_ctx, &keys);
1170 if (ret) {
1171 dev_err(dev, "set sec auth key err!\n");
1172 goto bad_key;
1173 }
1174
1175 ret = sec_aead_fallback_setkey(a_ctx, tfm, key, keylen);
1176 if (ret) {
1177 dev_err(dev, "set sec fallback key err!\n");
1178 goto bad_key;
1179 }
1180
1181 return 0;
1182
1183 bad_key:
1184 memzero_explicit(&keys, sizeof(struct crypto_authenc_keys));
1185 return ret;
1186 }
1187
1188
1189 #define GEN_SEC_AEAD_SETKEY_FUNC(name, aalg, calg, cmode) \
1190 static int sec_setkey_##name(struct crypto_aead *tfm, const u8 *key, u32 keylen) \
1191 { \
1192 return sec_aead_setkey(tfm, key, keylen, aalg, calg, cmode); \
1193 }
1194
GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1,SEC_A_HMAC_SHA1,SEC_CALG_AES,SEC_CMODE_CBC)1195 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha1, SEC_A_HMAC_SHA1, SEC_CALG_AES, SEC_CMODE_CBC)
1196 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha256, SEC_A_HMAC_SHA256, SEC_CALG_AES, SEC_CMODE_CBC)
1197 GEN_SEC_AEAD_SETKEY_FUNC(aes_cbc_sha512, SEC_A_HMAC_SHA512, SEC_CALG_AES, SEC_CMODE_CBC)
1198 GEN_SEC_AEAD_SETKEY_FUNC(aes_ccm, 0, SEC_CALG_AES, SEC_CMODE_CCM)
1199 GEN_SEC_AEAD_SETKEY_FUNC(aes_gcm, 0, SEC_CALG_AES, SEC_CMODE_GCM)
1200 GEN_SEC_AEAD_SETKEY_FUNC(sm4_ccm, 0, SEC_CALG_SM4, SEC_CMODE_CCM)
1201 GEN_SEC_AEAD_SETKEY_FUNC(sm4_gcm, 0, SEC_CALG_SM4, SEC_CMODE_GCM)
1202
1203 static int sec_aead_sgl_map(struct sec_ctx *ctx, struct sec_req *req)
1204 {
1205 struct aead_request *aq = req->aead_req.aead_req;
1206
1207 return sec_cipher_map(ctx, req, aq->src, aq->dst);
1208 }
1209
sec_aead_sgl_unmap(struct sec_ctx * ctx,struct sec_req * req)1210 static void sec_aead_sgl_unmap(struct sec_ctx *ctx, struct sec_req *req)
1211 {
1212 struct aead_request *aq = req->aead_req.aead_req;
1213
1214 sec_cipher_unmap(ctx, req, aq->src, aq->dst);
1215 }
1216
sec_request_transfer(struct sec_ctx * ctx,struct sec_req * req)1217 static int sec_request_transfer(struct sec_ctx *ctx, struct sec_req *req)
1218 {
1219 int ret;
1220
1221 ret = ctx->req_op->buf_map(ctx, req);
1222 if (unlikely(ret))
1223 return ret;
1224
1225 ctx->req_op->do_transfer(ctx, req);
1226
1227 ret = ctx->req_op->bd_fill(ctx, req);
1228 if (unlikely(ret))
1229 goto unmap_req_buf;
1230
1231 return ret;
1232
1233 unmap_req_buf:
1234 ctx->req_op->buf_unmap(ctx, req);
1235 return ret;
1236 }
1237
sec_request_untransfer(struct sec_ctx * ctx,struct sec_req * req)1238 static void sec_request_untransfer(struct sec_ctx *ctx, struct sec_req *req)
1239 {
1240 ctx->req_op->buf_unmap(ctx, req);
1241 }
1242
sec_skcipher_copy_iv(struct sec_ctx * ctx,struct sec_req * req)1243 static void sec_skcipher_copy_iv(struct sec_ctx *ctx, struct sec_req *req)
1244 {
1245 struct skcipher_request *sk_req = req->c_req.sk_req;
1246 struct sec_cipher_req *c_req = &req->c_req;
1247
1248 memcpy(c_req->c_ivin, sk_req->iv, ctx->c_ctx.ivsize);
1249 }
1250
sec_skcipher_bd_fill(struct sec_ctx * ctx,struct sec_req * req)1251 static int sec_skcipher_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
1252 {
1253 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1254 struct sec_cipher_req *c_req = &req->c_req;
1255 struct sec_sqe *sec_sqe = &req->sec_sqe;
1256 u8 scene, sa_type, da_type;
1257 u8 bd_type, cipher;
1258 u8 de = 0;
1259
1260 memset(sec_sqe, 0, sizeof(struct sec_sqe));
1261
1262 sec_sqe->type2.c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
1263 sec_sqe->type2.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1264 sec_sqe->type2.data_src_addr = cpu_to_le64(req->in_dma);
1265 sec_sqe->type2.data_dst_addr = cpu_to_le64(c_req->c_out_dma);
1266
1267 sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_mode) <<
1268 SEC_CMODE_OFFSET);
1269 sec_sqe->type2.c_alg = c_ctx->c_alg;
1270 sec_sqe->type2.icvw_kmode |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
1271 SEC_CKEY_OFFSET);
1272
1273 bd_type = SEC_BD_TYPE2;
1274 if (c_req->encrypt)
1275 cipher = SEC_CIPHER_ENC << SEC_CIPHER_OFFSET;
1276 else
1277 cipher = SEC_CIPHER_DEC << SEC_CIPHER_OFFSET;
1278 sec_sqe->type_cipher_auth = bd_type | cipher;
1279
1280 /* Set destination and source address type */
1281 if (req->use_pbuf) {
1282 sa_type = SEC_PBUF << SEC_SRC_SGL_OFFSET;
1283 da_type = SEC_PBUF << SEC_DST_SGL_OFFSET;
1284 } else {
1285 sa_type = SEC_SGL << SEC_SRC_SGL_OFFSET;
1286 da_type = SEC_SGL << SEC_DST_SGL_OFFSET;
1287 }
1288
1289 sec_sqe->sdm_addr_type |= da_type;
1290 scene = SEC_COMM_SCENE << SEC_SCENE_OFFSET;
1291 if (req->in_dma != c_req->c_out_dma)
1292 de = 0x1 << SEC_DE_OFFSET;
1293
1294 sec_sqe->sds_sa_type = (de | scene | sa_type);
1295
1296 sec_sqe->type2.clen_ivhlen |= cpu_to_le32(c_req->c_len);
1297 sec_sqe->type2.tag = cpu_to_le16((u16)req->req_id);
1298
1299 return 0;
1300 }
1301
sec_skcipher_bd_fill_v3(struct sec_ctx * ctx,struct sec_req * req)1302 static int sec_skcipher_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
1303 {
1304 struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
1305 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
1306 struct sec_cipher_req *c_req = &req->c_req;
1307 u32 bd_param = 0;
1308 u16 cipher;
1309
1310 memset(sec_sqe3, 0, sizeof(struct sec_sqe3));
1311
1312 sec_sqe3->c_key_addr = cpu_to_le64(c_ctx->c_key_dma);
1313 sec_sqe3->no_scene.c_ivin_addr = cpu_to_le64(c_req->c_ivin_dma);
1314 sec_sqe3->data_src_addr = cpu_to_le64(req->in_dma);
1315 sec_sqe3->data_dst_addr = cpu_to_le64(c_req->c_out_dma);
1316
1317 sec_sqe3->c_mode_alg = ((u8)c_ctx->c_alg << SEC_CALG_OFFSET_V3) |
1318 c_ctx->c_mode;
1319 sec_sqe3->c_icv_key |= cpu_to_le16(((u16)c_ctx->c_key_len) <<
1320 SEC_CKEY_OFFSET_V3);
1321
1322 if (c_req->encrypt)
1323 cipher = SEC_CIPHER_ENC;
1324 else
1325 cipher = SEC_CIPHER_DEC;
1326 sec_sqe3->c_icv_key |= cpu_to_le16(cipher);
1327
1328 /* Set the CTR counter mode is 128bit rollover */
1329 sec_sqe3->auth_mac_key = cpu_to_le32((u32)SEC_CTR_CNT_ROLLOVER <<
1330 SEC_CTR_CNT_OFFSET);
1331
1332 if (req->use_pbuf) {
1333 bd_param |= SEC_PBUF << SEC_SRC_SGL_OFFSET_V3;
1334 bd_param |= SEC_PBUF << SEC_DST_SGL_OFFSET_V3;
1335 } else {
1336 bd_param |= SEC_SGL << SEC_SRC_SGL_OFFSET_V3;
1337 bd_param |= SEC_SGL << SEC_DST_SGL_OFFSET_V3;
1338 }
1339
1340 bd_param |= SEC_COMM_SCENE << SEC_SCENE_OFFSET_V3;
1341 if (req->in_dma != c_req->c_out_dma)
1342 bd_param |= 0x1 << SEC_DE_OFFSET_V3;
1343
1344 bd_param |= SEC_BD_TYPE3;
1345 sec_sqe3->bd_param = cpu_to_le32(bd_param);
1346
1347 sec_sqe3->c_len_ivin |= cpu_to_le32(c_req->c_len);
1348 sec_sqe3->tag = cpu_to_le64(req);
1349
1350 return 0;
1351 }
1352
1353 /* increment counter (128-bit int) */
ctr_iv_inc(__u8 * counter,__u8 bits,__u32 nums)1354 static void ctr_iv_inc(__u8 *counter, __u8 bits, __u32 nums)
1355 {
1356 do {
1357 --bits;
1358 nums += counter[bits];
1359 counter[bits] = nums & BITS_MASK;
1360 nums >>= BYTE_BITS;
1361 } while (bits && nums);
1362 }
1363
sec_update_iv(struct sec_req * req,enum sec_alg_type alg_type)1364 static void sec_update_iv(struct sec_req *req, enum sec_alg_type alg_type)
1365 {
1366 struct aead_request *aead_req = req->aead_req.aead_req;
1367 struct skcipher_request *sk_req = req->c_req.sk_req;
1368 u32 iv_size = req->ctx->c_ctx.ivsize;
1369 struct scatterlist *sgl;
1370 unsigned int cryptlen;
1371 size_t sz;
1372 u8 *iv;
1373
1374 if (req->c_req.encrypt)
1375 sgl = alg_type == SEC_SKCIPHER ? sk_req->dst : aead_req->dst;
1376 else
1377 sgl = alg_type == SEC_SKCIPHER ? sk_req->src : aead_req->src;
1378
1379 if (alg_type == SEC_SKCIPHER) {
1380 iv = sk_req->iv;
1381 cryptlen = sk_req->cryptlen;
1382 } else {
1383 iv = aead_req->iv;
1384 cryptlen = aead_req->cryptlen;
1385 }
1386
1387 if (req->ctx->c_ctx.c_mode == SEC_CMODE_CBC) {
1388 sz = sg_pcopy_to_buffer(sgl, sg_nents(sgl), iv, iv_size,
1389 cryptlen - iv_size);
1390 if (unlikely(sz != iv_size))
1391 dev_err(req->ctx->dev, "copy output iv error!\n");
1392 } else {
1393 sz = cryptlen / iv_size;
1394 if (cryptlen % iv_size)
1395 sz += 1;
1396 ctr_iv_inc(iv, iv_size, sz);
1397 }
1398 }
1399
sec_back_req_clear(struct sec_ctx * ctx,struct sec_qp_ctx * qp_ctx)1400 static struct sec_req *sec_back_req_clear(struct sec_ctx *ctx,
1401 struct sec_qp_ctx *qp_ctx)
1402 {
1403 struct sec_req *backlog_req = NULL;
1404
1405 spin_lock_bh(&qp_ctx->req_lock);
1406 if (ctx->fake_req_limit >=
1407 atomic_read(&qp_ctx->qp->qp_status.used) &&
1408 !list_empty(&qp_ctx->backlog)) {
1409 backlog_req = list_first_entry(&qp_ctx->backlog,
1410 typeof(*backlog_req), backlog_head);
1411 list_del(&backlog_req->backlog_head);
1412 }
1413 spin_unlock_bh(&qp_ctx->req_lock);
1414
1415 return backlog_req;
1416 }
1417
sec_skcipher_callback(struct sec_ctx * ctx,struct sec_req * req,int err)1418 static void sec_skcipher_callback(struct sec_ctx *ctx, struct sec_req *req,
1419 int err)
1420 {
1421 struct skcipher_request *sk_req = req->c_req.sk_req;
1422 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1423 struct skcipher_request *backlog_sk_req;
1424 struct sec_req *backlog_req;
1425
1426 sec_free_req_id(req);
1427
1428 /* IV output at encrypto of CBC/CTR mode */
1429 if (!err && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
1430 ctx->c_ctx.c_mode == SEC_CMODE_CTR) && req->c_req.encrypt)
1431 sec_update_iv(req, SEC_SKCIPHER);
1432
1433 while (1) {
1434 backlog_req = sec_back_req_clear(ctx, qp_ctx);
1435 if (!backlog_req)
1436 break;
1437
1438 backlog_sk_req = backlog_req->c_req.sk_req;
1439 skcipher_request_complete(backlog_sk_req, -EINPROGRESS);
1440 atomic64_inc(&ctx->sec->debug.dfx.recv_busy_cnt);
1441 }
1442
1443 skcipher_request_complete(sk_req, err);
1444 }
1445
set_aead_auth_iv(struct sec_ctx * ctx,struct sec_req * req)1446 static void set_aead_auth_iv(struct sec_ctx *ctx, struct sec_req *req)
1447 {
1448 struct aead_request *aead_req = req->aead_req.aead_req;
1449 struct crypto_aead *tfm = crypto_aead_reqtfm(aead_req);
1450 size_t authsize = crypto_aead_authsize(tfm);
1451 struct sec_aead_req *a_req = &req->aead_req;
1452 struct sec_cipher_req *c_req = &req->c_req;
1453 u32 data_size = aead_req->cryptlen;
1454 u8 flage = 0;
1455 u8 cm, cl;
1456
1457 /* the specification has been checked in aead_iv_demension_check() */
1458 cl = c_req->c_ivin[0] + 1;
1459 c_req->c_ivin[ctx->c_ctx.ivsize - cl] = 0x00;
1460 memset(&c_req->c_ivin[ctx->c_ctx.ivsize - cl], 0, cl);
1461 c_req->c_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] = IV_CTR_INIT;
1462
1463 /* the last 3bit is L' */
1464 flage |= c_req->c_ivin[0] & IV_CL_MASK;
1465
1466 /* the M' is bit3~bit5, the Flags is bit6 */
1467 cm = (authsize - IV_CM_CAL_NUM) / IV_CM_CAL_NUM;
1468 flage |= cm << IV_CM_OFFSET;
1469 if (aead_req->assoclen)
1470 flage |= 0x01 << IV_FLAGS_OFFSET;
1471
1472 memcpy(a_req->a_ivin, c_req->c_ivin, ctx->c_ctx.ivsize);
1473 a_req->a_ivin[0] = flage;
1474
1475 /*
1476 * the last 32bit is counter's initial number,
1477 * but the nonce uses the first 16bit
1478 * the tail 16bit fill with the cipher length
1479 */
1480 if (!c_req->encrypt)
1481 data_size = aead_req->cryptlen - authsize;
1482
1483 a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE1] =
1484 data_size & IV_LAST_BYTE_MASK;
1485 data_size >>= IV_BYTE_OFFSET;
1486 a_req->a_ivin[ctx->c_ctx.ivsize - IV_LAST_BYTE2] =
1487 data_size & IV_LAST_BYTE_MASK;
1488 }
1489
sec_aead_set_iv(struct sec_ctx * ctx,struct sec_req * req)1490 static void sec_aead_set_iv(struct sec_ctx *ctx, struct sec_req *req)
1491 {
1492 struct aead_request *aead_req = req->aead_req.aead_req;
1493 struct sec_aead_req *a_req = &req->aead_req;
1494 struct sec_cipher_req *c_req = &req->c_req;
1495
1496 memcpy(c_req->c_ivin, aead_req->iv, ctx->c_ctx.ivsize);
1497
1498 if (ctx->c_ctx.c_mode == SEC_CMODE_CCM) {
1499 /*
1500 * CCM 16Byte Cipher_IV: {1B_Flage,13B_IV,2B_counter},
1501 * the counter must set to 0x01
1502 * CCM 16Byte Auth_IV: {1B_AFlage,13B_IV,2B_Ptext_length}
1503 */
1504 set_aead_auth_iv(ctx, req);
1505 } else if (ctx->c_ctx.c_mode == SEC_CMODE_GCM) {
1506 /* GCM 12Byte Cipher_IV == Auth_IV */
1507 memcpy(a_req->a_ivin, c_req->c_ivin, SEC_AIV_SIZE);
1508 }
1509 }
1510
sec_auth_bd_fill_xcm(struct sec_auth_ctx * ctx,int dir,struct sec_req * req,struct sec_sqe * sec_sqe)1511 static void sec_auth_bd_fill_xcm(struct sec_auth_ctx *ctx, int dir,
1512 struct sec_req *req, struct sec_sqe *sec_sqe)
1513 {
1514 struct sec_aead_req *a_req = &req->aead_req;
1515 struct aead_request *aq = a_req->aead_req;
1516 struct crypto_aead *tfm = crypto_aead_reqtfm(aq);
1517 size_t authsize = crypto_aead_authsize(tfm);
1518
1519 /* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
1520 sec_sqe->type2.icvw_kmode |= cpu_to_le16((u16)authsize);
1521
1522 /* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
1523 sec_sqe->type2.a_key_addr = sec_sqe->type2.c_key_addr;
1524 sec_sqe->type2.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
1525 sec_sqe->type_cipher_auth |= SEC_NO_AUTH << SEC_AUTH_OFFSET;
1526
1527 if (dir)
1528 sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
1529 else
1530 sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
1531
1532 sec_sqe->type2.alen_ivllen = cpu_to_le32(aq->assoclen);
1533 sec_sqe->type2.auth_src_offset = cpu_to_le16(0x0);
1534 sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1535
1536 sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1537 }
1538
sec_auth_bd_fill_xcm_v3(struct sec_auth_ctx * ctx,int dir,struct sec_req * req,struct sec_sqe3 * sqe3)1539 static void sec_auth_bd_fill_xcm_v3(struct sec_auth_ctx *ctx, int dir,
1540 struct sec_req *req, struct sec_sqe3 *sqe3)
1541 {
1542 struct sec_aead_req *a_req = &req->aead_req;
1543 struct aead_request *aq = a_req->aead_req;
1544 struct crypto_aead *tfm = crypto_aead_reqtfm(aq);
1545 size_t authsize = crypto_aead_authsize(tfm);
1546
1547 /* C_ICV_Len is MAC size, 0x4 ~ 0x10 */
1548 sqe3->c_icv_key |= cpu_to_le16((u16)authsize << SEC_MAC_OFFSET_V3);
1549
1550 /* mode set to CCM/GCM, don't set {A_Alg, AKey_Len, MAC_Len} */
1551 sqe3->a_key_addr = sqe3->c_key_addr;
1552 sqe3->auth_ivin.a_ivin_addr = cpu_to_le64(a_req->a_ivin_dma);
1553 sqe3->auth_mac_key |= SEC_NO_AUTH;
1554
1555 if (dir)
1556 sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
1557 else
1558 sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
1559
1560 sqe3->a_len_key = cpu_to_le32(aq->assoclen);
1561 sqe3->auth_src_offset = cpu_to_le16(0x0);
1562 sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1563 sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
1564 }
1565
sec_auth_bd_fill_ex(struct sec_auth_ctx * ctx,int dir,struct sec_req * req,struct sec_sqe * sec_sqe)1566 static void sec_auth_bd_fill_ex(struct sec_auth_ctx *ctx, int dir,
1567 struct sec_req *req, struct sec_sqe *sec_sqe)
1568 {
1569 struct sec_aead_req *a_req = &req->aead_req;
1570 struct sec_cipher_req *c_req = &req->c_req;
1571 struct aead_request *aq = a_req->aead_req;
1572 struct crypto_aead *tfm = crypto_aead_reqtfm(aq);
1573 size_t authsize = crypto_aead_authsize(tfm);
1574
1575 sec_sqe->type2.a_key_addr = cpu_to_le64(ctx->a_key_dma);
1576
1577 sec_sqe->type2.mac_key_alg = cpu_to_le32(BYTES_TO_WORDS(authsize));
1578
1579 sec_sqe->type2.mac_key_alg |=
1580 cpu_to_le32((u32)BYTES_TO_WORDS(ctx->a_key_len) << SEC_AKEY_OFFSET);
1581
1582 sec_sqe->type2.mac_key_alg |=
1583 cpu_to_le32((u32)(ctx->a_alg) << SEC_AEAD_ALG_OFFSET);
1584
1585 if (dir) {
1586 sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE1 << SEC_AUTH_OFFSET;
1587 sec_sqe->sds_sa_type &= SEC_CIPHER_AUTH;
1588 } else {
1589 sec_sqe->type_cipher_auth |= SEC_AUTH_TYPE2 << SEC_AUTH_OFFSET;
1590 sec_sqe->sds_sa_type |= SEC_AUTH_CIPHER;
1591 }
1592 sec_sqe->type2.alen_ivllen = cpu_to_le32(c_req->c_len + aq->assoclen);
1593
1594 sec_sqe->type2.cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1595
1596 sec_sqe->type2.mac_addr = cpu_to_le64(a_req->out_mac_dma);
1597 }
1598
sec_aead_bd_fill(struct sec_ctx * ctx,struct sec_req * req)1599 static int sec_aead_bd_fill(struct sec_ctx *ctx, struct sec_req *req)
1600 {
1601 struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1602 struct sec_sqe *sec_sqe = &req->sec_sqe;
1603 int ret;
1604
1605 ret = sec_skcipher_bd_fill(ctx, req);
1606 if (unlikely(ret)) {
1607 dev_err(ctx->dev, "skcipher bd fill is error!\n");
1608 return ret;
1609 }
1610
1611 if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
1612 ctx->c_ctx.c_mode == SEC_CMODE_GCM)
1613 sec_auth_bd_fill_xcm(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1614 else
1615 sec_auth_bd_fill_ex(auth_ctx, req->c_req.encrypt, req, sec_sqe);
1616
1617 return 0;
1618 }
1619
sec_auth_bd_fill_ex_v3(struct sec_auth_ctx * ctx,int dir,struct sec_req * req,struct sec_sqe3 * sqe3)1620 static void sec_auth_bd_fill_ex_v3(struct sec_auth_ctx *ctx, int dir,
1621 struct sec_req *req, struct sec_sqe3 *sqe3)
1622 {
1623 struct sec_aead_req *a_req = &req->aead_req;
1624 struct sec_cipher_req *c_req = &req->c_req;
1625 struct aead_request *aq = a_req->aead_req;
1626 struct crypto_aead *tfm = crypto_aead_reqtfm(aq);
1627 size_t authsize = crypto_aead_authsize(tfm);
1628
1629 sqe3->a_key_addr = cpu_to_le64(ctx->a_key_dma);
1630
1631 sqe3->auth_mac_key |=
1632 cpu_to_le32(BYTES_TO_WORDS(authsize) << SEC_MAC_OFFSET_V3);
1633
1634 sqe3->auth_mac_key |=
1635 cpu_to_le32((u32)BYTES_TO_WORDS(ctx->a_key_len) << SEC_AKEY_OFFSET_V3);
1636
1637 sqe3->auth_mac_key |=
1638 cpu_to_le32((u32)(ctx->a_alg) << SEC_AUTH_ALG_OFFSET_V3);
1639
1640 if (dir) {
1641 sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE1);
1642 sqe3->huk_iv_seq &= SEC_CIPHER_AUTH_V3;
1643 } else {
1644 sqe3->auth_mac_key |= cpu_to_le32((u32)SEC_AUTH_TYPE2);
1645 sqe3->huk_iv_seq |= SEC_AUTH_CIPHER_V3;
1646 }
1647 sqe3->a_len_key = cpu_to_le32(c_req->c_len + aq->assoclen);
1648
1649 sqe3->cipher_src_offset = cpu_to_le16((u16)aq->assoclen);
1650
1651 sqe3->mac_addr = cpu_to_le64(a_req->out_mac_dma);
1652 }
1653
sec_aead_bd_fill_v3(struct sec_ctx * ctx,struct sec_req * req)1654 static int sec_aead_bd_fill_v3(struct sec_ctx *ctx, struct sec_req *req)
1655 {
1656 struct sec_auth_ctx *auth_ctx = &ctx->a_ctx;
1657 struct sec_sqe3 *sec_sqe3 = &req->sec_sqe3;
1658 int ret;
1659
1660 ret = sec_skcipher_bd_fill_v3(ctx, req);
1661 if (unlikely(ret)) {
1662 dev_err(ctx->dev, "skcipher bd3 fill is error!\n");
1663 return ret;
1664 }
1665
1666 if (ctx->c_ctx.c_mode == SEC_CMODE_CCM ||
1667 ctx->c_ctx.c_mode == SEC_CMODE_GCM)
1668 sec_auth_bd_fill_xcm_v3(auth_ctx, req->c_req.encrypt,
1669 req, sec_sqe3);
1670 else
1671 sec_auth_bd_fill_ex_v3(auth_ctx, req->c_req.encrypt,
1672 req, sec_sqe3);
1673
1674 return 0;
1675 }
1676
sec_aead_callback(struct sec_ctx * c,struct sec_req * req,int err)1677 static void sec_aead_callback(struct sec_ctx *c, struct sec_req *req, int err)
1678 {
1679 struct aead_request *a_req = req->aead_req.aead_req;
1680 struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
1681 size_t authsize = crypto_aead_authsize(tfm);
1682 struct sec_aead_req *aead_req = &req->aead_req;
1683 struct sec_cipher_req *c_req = &req->c_req;
1684 struct sec_qp_ctx *qp_ctx = req->qp_ctx;
1685 struct aead_request *backlog_aead_req;
1686 struct sec_req *backlog_req;
1687 size_t sz;
1688
1689 if (!err && c->c_ctx.c_mode == SEC_CMODE_CBC && c_req->encrypt)
1690 sec_update_iv(req, SEC_AEAD);
1691
1692 /* Copy output mac */
1693 if (!err && c_req->encrypt) {
1694 struct scatterlist *sgl = a_req->dst;
1695
1696 sz = sg_pcopy_from_buffer(sgl, sg_nents(sgl), aead_req->out_mac,
1697 authsize, a_req->cryptlen + a_req->assoclen);
1698 if (unlikely(sz != authsize)) {
1699 dev_err(c->dev, "copy out mac err!\n");
1700 err = -EINVAL;
1701 }
1702 }
1703
1704 sec_free_req_id(req);
1705
1706 while (1) {
1707 backlog_req = sec_back_req_clear(c, qp_ctx);
1708 if (!backlog_req)
1709 break;
1710
1711 backlog_aead_req = backlog_req->aead_req.aead_req;
1712 aead_request_complete(backlog_aead_req, -EINPROGRESS);
1713 atomic64_inc(&c->sec->debug.dfx.recv_busy_cnt);
1714 }
1715
1716 aead_request_complete(a_req, err);
1717 }
1718
sec_request_uninit(struct sec_ctx * ctx,struct sec_req * req)1719 static void sec_request_uninit(struct sec_ctx *ctx, struct sec_req *req)
1720 {
1721 sec_free_req_id(req);
1722 sec_free_queue_id(ctx, req);
1723 }
1724
sec_request_init(struct sec_ctx * ctx,struct sec_req * req)1725 static int sec_request_init(struct sec_ctx *ctx, struct sec_req *req)
1726 {
1727 struct sec_qp_ctx *qp_ctx;
1728 int queue_id;
1729
1730 /* To load balance */
1731 queue_id = sec_alloc_queue_id(ctx, req);
1732 qp_ctx = &ctx->qp_ctx[queue_id];
1733
1734 req->req_id = sec_alloc_req_id(req, qp_ctx);
1735 if (unlikely(req->req_id < 0)) {
1736 sec_free_queue_id(ctx, req);
1737 return req->req_id;
1738 }
1739
1740 return 0;
1741 }
1742
sec_process(struct sec_ctx * ctx,struct sec_req * req)1743 static int sec_process(struct sec_ctx *ctx, struct sec_req *req)
1744 {
1745 struct sec_cipher_req *c_req = &req->c_req;
1746 int ret;
1747
1748 ret = sec_request_init(ctx, req);
1749 if (unlikely(ret))
1750 return ret;
1751
1752 ret = sec_request_transfer(ctx, req);
1753 if (unlikely(ret))
1754 goto err_uninit_req;
1755
1756 /* Output IV as decrypto */
1757 if (!req->c_req.encrypt && (ctx->c_ctx.c_mode == SEC_CMODE_CBC ||
1758 ctx->c_ctx.c_mode == SEC_CMODE_CTR))
1759 sec_update_iv(req, ctx->alg_type);
1760
1761 ret = ctx->req_op->bd_send(ctx, req);
1762 if (unlikely((ret != -EBUSY && ret != -EINPROGRESS) ||
1763 (ret == -EBUSY && !(req->flag & CRYPTO_TFM_REQ_MAY_BACKLOG)))) {
1764 dev_err_ratelimited(ctx->dev, "send sec request failed!\n");
1765 goto err_send_req;
1766 }
1767
1768 return ret;
1769
1770 err_send_req:
1771 /* As failing, restore the IV from user */
1772 if (ctx->c_ctx.c_mode == SEC_CMODE_CBC && !req->c_req.encrypt) {
1773 if (ctx->alg_type == SEC_SKCIPHER)
1774 memcpy(req->c_req.sk_req->iv, c_req->c_ivin,
1775 ctx->c_ctx.ivsize);
1776 else
1777 memcpy(req->aead_req.aead_req->iv, c_req->c_ivin,
1778 ctx->c_ctx.ivsize);
1779 }
1780
1781 sec_request_untransfer(ctx, req);
1782 err_uninit_req:
1783 sec_request_uninit(ctx, req);
1784 return ret;
1785 }
1786
1787 static const struct sec_req_op sec_skcipher_req_ops = {
1788 .buf_map = sec_skcipher_sgl_map,
1789 .buf_unmap = sec_skcipher_sgl_unmap,
1790 .do_transfer = sec_skcipher_copy_iv,
1791 .bd_fill = sec_skcipher_bd_fill,
1792 .bd_send = sec_bd_send,
1793 .callback = sec_skcipher_callback,
1794 .process = sec_process,
1795 };
1796
1797 static const struct sec_req_op sec_aead_req_ops = {
1798 .buf_map = sec_aead_sgl_map,
1799 .buf_unmap = sec_aead_sgl_unmap,
1800 .do_transfer = sec_aead_set_iv,
1801 .bd_fill = sec_aead_bd_fill,
1802 .bd_send = sec_bd_send,
1803 .callback = sec_aead_callback,
1804 .process = sec_process,
1805 };
1806
1807 static const struct sec_req_op sec_skcipher_req_ops_v3 = {
1808 .buf_map = sec_skcipher_sgl_map,
1809 .buf_unmap = sec_skcipher_sgl_unmap,
1810 .do_transfer = sec_skcipher_copy_iv,
1811 .bd_fill = sec_skcipher_bd_fill_v3,
1812 .bd_send = sec_bd_send,
1813 .callback = sec_skcipher_callback,
1814 .process = sec_process,
1815 };
1816
1817 static const struct sec_req_op sec_aead_req_ops_v3 = {
1818 .buf_map = sec_aead_sgl_map,
1819 .buf_unmap = sec_aead_sgl_unmap,
1820 .do_transfer = sec_aead_set_iv,
1821 .bd_fill = sec_aead_bd_fill_v3,
1822 .bd_send = sec_bd_send,
1823 .callback = sec_aead_callback,
1824 .process = sec_process,
1825 };
1826
sec_skcipher_ctx_init(struct crypto_skcipher * tfm)1827 static int sec_skcipher_ctx_init(struct crypto_skcipher *tfm)
1828 {
1829 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
1830 int ret;
1831
1832 ret = sec_skcipher_init(tfm);
1833 if (ret)
1834 return ret;
1835
1836 if (ctx->sec->qm.ver < QM_HW_V3) {
1837 ctx->type_supported = SEC_BD_TYPE2;
1838 ctx->req_op = &sec_skcipher_req_ops;
1839 } else {
1840 ctx->type_supported = SEC_BD_TYPE3;
1841 ctx->req_op = &sec_skcipher_req_ops_v3;
1842 }
1843
1844 return ret;
1845 }
1846
sec_skcipher_ctx_exit(struct crypto_skcipher * tfm)1847 static void sec_skcipher_ctx_exit(struct crypto_skcipher *tfm)
1848 {
1849 sec_skcipher_uninit(tfm);
1850 }
1851
sec_aead_init(struct crypto_aead * tfm)1852 static int sec_aead_init(struct crypto_aead *tfm)
1853 {
1854 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1855 int ret;
1856
1857 crypto_aead_set_reqsize(tfm, sizeof(struct sec_req));
1858 ctx->alg_type = SEC_AEAD;
1859 ctx->c_ctx.ivsize = crypto_aead_ivsize(tfm);
1860 if (ctx->c_ctx.ivsize < SEC_AIV_SIZE ||
1861 ctx->c_ctx.ivsize > SEC_IV_SIZE) {
1862 pr_err("get error aead iv size!\n");
1863 return -EINVAL;
1864 }
1865
1866 ret = sec_ctx_base_init(ctx);
1867 if (ret)
1868 return ret;
1869 if (ctx->sec->qm.ver < QM_HW_V3) {
1870 ctx->type_supported = SEC_BD_TYPE2;
1871 ctx->req_op = &sec_aead_req_ops;
1872 } else {
1873 ctx->type_supported = SEC_BD_TYPE3;
1874 ctx->req_op = &sec_aead_req_ops_v3;
1875 }
1876
1877 ret = sec_auth_init(ctx);
1878 if (ret)
1879 goto err_auth_init;
1880
1881 ret = sec_cipher_init(ctx);
1882 if (ret)
1883 goto err_cipher_init;
1884
1885 return ret;
1886
1887 err_cipher_init:
1888 sec_auth_uninit(ctx);
1889 err_auth_init:
1890 sec_ctx_base_uninit(ctx);
1891 return ret;
1892 }
1893
sec_aead_exit(struct crypto_aead * tfm)1894 static void sec_aead_exit(struct crypto_aead *tfm)
1895 {
1896 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1897
1898 sec_cipher_uninit(ctx);
1899 sec_auth_uninit(ctx);
1900 sec_ctx_base_uninit(ctx);
1901 }
1902
sec_aead_ctx_init(struct crypto_aead * tfm,const char * hash_name)1903 static int sec_aead_ctx_init(struct crypto_aead *tfm, const char *hash_name)
1904 {
1905 struct aead_alg *alg = crypto_aead_alg(tfm);
1906 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1907 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1908 const char *aead_name = alg->base.cra_name;
1909 int ret;
1910
1911 ret = sec_aead_init(tfm);
1912 if (ret) {
1913 pr_err("hisi_sec2: aead init error!\n");
1914 return ret;
1915 }
1916
1917 a_ctx->hash_tfm = crypto_alloc_shash(hash_name, 0, 0);
1918 if (IS_ERR(a_ctx->hash_tfm)) {
1919 dev_err(ctx->dev, "aead alloc shash error!\n");
1920 sec_aead_exit(tfm);
1921 return PTR_ERR(a_ctx->hash_tfm);
1922 }
1923
1924 a_ctx->fallback_aead_tfm = crypto_alloc_aead(aead_name, 0,
1925 CRYPTO_ALG_NEED_FALLBACK | CRYPTO_ALG_ASYNC);
1926 if (IS_ERR(a_ctx->fallback_aead_tfm)) {
1927 dev_err(ctx->dev, "aead driver alloc fallback tfm error!\n");
1928 crypto_free_shash(ctx->a_ctx.hash_tfm);
1929 sec_aead_exit(tfm);
1930 return PTR_ERR(a_ctx->fallback_aead_tfm);
1931 }
1932
1933 return 0;
1934 }
1935
sec_aead_ctx_exit(struct crypto_aead * tfm)1936 static void sec_aead_ctx_exit(struct crypto_aead *tfm)
1937 {
1938 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1939
1940 crypto_free_aead(ctx->a_ctx.fallback_aead_tfm);
1941 crypto_free_shash(ctx->a_ctx.hash_tfm);
1942 sec_aead_exit(tfm);
1943 }
1944
sec_aead_xcm_ctx_init(struct crypto_aead * tfm)1945 static int sec_aead_xcm_ctx_init(struct crypto_aead *tfm)
1946 {
1947 struct aead_alg *alg = crypto_aead_alg(tfm);
1948 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1949 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
1950 const char *aead_name = alg->base.cra_name;
1951 int ret;
1952
1953 ret = sec_aead_init(tfm);
1954 if (ret) {
1955 dev_err(ctx->dev, "hisi_sec2: aead xcm init error!\n");
1956 return ret;
1957 }
1958
1959 a_ctx->fallback_aead_tfm = crypto_alloc_aead(aead_name, 0,
1960 CRYPTO_ALG_NEED_FALLBACK |
1961 CRYPTO_ALG_ASYNC);
1962 if (IS_ERR(a_ctx->fallback_aead_tfm)) {
1963 dev_err(ctx->dev, "aead driver alloc fallback tfm error!\n");
1964 sec_aead_exit(tfm);
1965 return PTR_ERR(a_ctx->fallback_aead_tfm);
1966 }
1967
1968 return 0;
1969 }
1970
sec_aead_xcm_ctx_exit(struct crypto_aead * tfm)1971 static void sec_aead_xcm_ctx_exit(struct crypto_aead *tfm)
1972 {
1973 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
1974
1975 crypto_free_aead(ctx->a_ctx.fallback_aead_tfm);
1976 sec_aead_exit(tfm);
1977 }
1978
sec_aead_sha1_ctx_init(struct crypto_aead * tfm)1979 static int sec_aead_sha1_ctx_init(struct crypto_aead *tfm)
1980 {
1981 return sec_aead_ctx_init(tfm, "sha1");
1982 }
1983
sec_aead_sha256_ctx_init(struct crypto_aead * tfm)1984 static int sec_aead_sha256_ctx_init(struct crypto_aead *tfm)
1985 {
1986 return sec_aead_ctx_init(tfm, "sha256");
1987 }
1988
sec_aead_sha512_ctx_init(struct crypto_aead * tfm)1989 static int sec_aead_sha512_ctx_init(struct crypto_aead *tfm)
1990 {
1991 return sec_aead_ctx_init(tfm, "sha512");
1992 }
1993
sec_skcipher_cryptlen_check(struct sec_ctx * ctx,struct sec_req * sreq)1994 static int sec_skcipher_cryptlen_check(struct sec_ctx *ctx, struct sec_req *sreq)
1995 {
1996 u32 cryptlen = sreq->c_req.sk_req->cryptlen;
1997 struct device *dev = ctx->dev;
1998 u8 c_mode = ctx->c_ctx.c_mode;
1999 int ret = 0;
2000
2001 switch (c_mode) {
2002 case SEC_CMODE_XTS:
2003 if (unlikely(cryptlen < AES_BLOCK_SIZE)) {
2004 dev_err(dev, "skcipher XTS mode input length error!\n");
2005 ret = -EINVAL;
2006 }
2007 break;
2008 case SEC_CMODE_ECB:
2009 case SEC_CMODE_CBC:
2010 if (unlikely(cryptlen & (AES_BLOCK_SIZE - 1))) {
2011 dev_err(dev, "skcipher AES input length error!\n");
2012 ret = -EINVAL;
2013 }
2014 break;
2015 case SEC_CMODE_CFB:
2016 case SEC_CMODE_OFB:
2017 case SEC_CMODE_CTR:
2018 break;
2019 default:
2020 ret = -EINVAL;
2021 }
2022
2023 return ret;
2024 }
2025
sec_skcipher_param_check(struct sec_ctx * ctx,struct sec_req * sreq,bool * need_fallback)2026 static int sec_skcipher_param_check(struct sec_ctx *ctx,
2027 struct sec_req *sreq, bool *need_fallback)
2028 {
2029 struct skcipher_request *sk_req = sreq->c_req.sk_req;
2030 struct device *dev = ctx->dev;
2031 u8 c_alg = ctx->c_ctx.c_alg;
2032
2033 if (unlikely(!sk_req->src || !sk_req->dst)) {
2034 dev_err(dev, "skcipher input param error!\n");
2035 return -EINVAL;
2036 }
2037
2038 if (sk_req->cryptlen > MAX_INPUT_DATA_LEN)
2039 *need_fallback = true;
2040
2041 sreq->c_req.c_len = sk_req->cryptlen;
2042
2043 if (ctx->pbuf_supported && sk_req->cryptlen <= SEC_PBUF_SZ)
2044 sreq->use_pbuf = true;
2045 else
2046 sreq->use_pbuf = false;
2047
2048 if (c_alg == SEC_CALG_3DES) {
2049 if (unlikely(sk_req->cryptlen & (DES3_EDE_BLOCK_SIZE - 1))) {
2050 dev_err(dev, "skcipher 3des input length error!\n");
2051 return -EINVAL;
2052 }
2053 return 0;
2054 } else if (c_alg == SEC_CALG_AES || c_alg == SEC_CALG_SM4) {
2055 return sec_skcipher_cryptlen_check(ctx, sreq);
2056 }
2057
2058 dev_err(dev, "skcipher algorithm error!\n");
2059
2060 return -EINVAL;
2061 }
2062
sec_skcipher_soft_crypto(struct sec_ctx * ctx,struct skcipher_request * sreq,bool encrypt)2063 static int sec_skcipher_soft_crypto(struct sec_ctx *ctx,
2064 struct skcipher_request *sreq, bool encrypt)
2065 {
2066 struct sec_cipher_ctx *c_ctx = &ctx->c_ctx;
2067 SYNC_SKCIPHER_REQUEST_ON_STACK(subreq, c_ctx->fbtfm);
2068 struct device *dev = ctx->dev;
2069 int ret;
2070
2071 if (!c_ctx->fbtfm) {
2072 dev_err_ratelimited(dev, "the soft tfm isn't supported in the current system.\n");
2073 return -EINVAL;
2074 }
2075
2076 skcipher_request_set_sync_tfm(subreq, c_ctx->fbtfm);
2077
2078 /* software need sync mode to do crypto */
2079 skcipher_request_set_callback(subreq, sreq->base.flags,
2080 NULL, NULL);
2081 skcipher_request_set_crypt(subreq, sreq->src, sreq->dst,
2082 sreq->cryptlen, sreq->iv);
2083 if (encrypt)
2084 ret = crypto_skcipher_encrypt(subreq);
2085 else
2086 ret = crypto_skcipher_decrypt(subreq);
2087
2088 skcipher_request_zero(subreq);
2089
2090 return ret;
2091 }
2092
sec_skcipher_crypto(struct skcipher_request * sk_req,bool encrypt)2093 static int sec_skcipher_crypto(struct skcipher_request *sk_req, bool encrypt)
2094 {
2095 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(sk_req);
2096 struct sec_req *req = skcipher_request_ctx(sk_req);
2097 struct sec_ctx *ctx = crypto_skcipher_ctx(tfm);
2098 bool need_fallback = false;
2099 int ret;
2100
2101 if (!sk_req->cryptlen) {
2102 if (ctx->c_ctx.c_mode == SEC_CMODE_XTS)
2103 return -EINVAL;
2104 return 0;
2105 }
2106
2107 req->flag = sk_req->base.flags;
2108 req->c_req.sk_req = sk_req;
2109 req->c_req.encrypt = encrypt;
2110 req->ctx = ctx;
2111
2112 ret = sec_skcipher_param_check(ctx, req, &need_fallback);
2113 if (unlikely(ret))
2114 return -EINVAL;
2115
2116 if (unlikely(ctx->c_ctx.fallback || need_fallback))
2117 return sec_skcipher_soft_crypto(ctx, sk_req, encrypt);
2118
2119 return ctx->req_op->process(ctx, req);
2120 }
2121
sec_skcipher_encrypt(struct skcipher_request * sk_req)2122 static int sec_skcipher_encrypt(struct skcipher_request *sk_req)
2123 {
2124 return sec_skcipher_crypto(sk_req, true);
2125 }
2126
sec_skcipher_decrypt(struct skcipher_request * sk_req)2127 static int sec_skcipher_decrypt(struct skcipher_request *sk_req)
2128 {
2129 return sec_skcipher_crypto(sk_req, false);
2130 }
2131
2132 #define SEC_SKCIPHER_GEN_ALG(sec_cra_name, sec_set_key, sec_min_key_size, \
2133 sec_max_key_size, ctx_init, ctx_exit, blk_size, iv_size)\
2134 {\
2135 .base = {\
2136 .cra_name = sec_cra_name,\
2137 .cra_driver_name = "hisi_sec_"sec_cra_name,\
2138 .cra_priority = SEC_PRIORITY,\
2139 .cra_flags = CRYPTO_ALG_ASYNC |\
2140 CRYPTO_ALG_NEED_FALLBACK,\
2141 .cra_blocksize = blk_size,\
2142 .cra_ctxsize = sizeof(struct sec_ctx),\
2143 .cra_module = THIS_MODULE,\
2144 },\
2145 .init = ctx_init,\
2146 .exit = ctx_exit,\
2147 .setkey = sec_set_key,\
2148 .decrypt = sec_skcipher_decrypt,\
2149 .encrypt = sec_skcipher_encrypt,\
2150 .min_keysize = sec_min_key_size,\
2151 .max_keysize = sec_max_key_size,\
2152 .ivsize = iv_size,\
2153 }
2154
2155 #define SEC_SKCIPHER_ALG(name, key_func, min_key_size, \
2156 max_key_size, blk_size, iv_size) \
2157 SEC_SKCIPHER_GEN_ALG(name, key_func, min_key_size, max_key_size, \
2158 sec_skcipher_ctx_init, sec_skcipher_ctx_exit, blk_size, iv_size)
2159
2160 static struct sec_skcipher sec_skciphers[] = {
2161 {
2162 .alg_msk = BIT(0),
2163 .alg = SEC_SKCIPHER_ALG("ecb(aes)", sec_setkey_aes_ecb, AES_MIN_KEY_SIZE,
2164 AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, 0),
2165 },
2166 {
2167 .alg_msk = BIT(1),
2168 .alg = SEC_SKCIPHER_ALG("cbc(aes)", sec_setkey_aes_cbc, AES_MIN_KEY_SIZE,
2169 AES_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2170 },
2171 {
2172 .alg_msk = BIT(2),
2173 .alg = SEC_SKCIPHER_ALG("ctr(aes)", sec_setkey_aes_ctr, AES_MIN_KEY_SIZE,
2174 AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2175 },
2176 {
2177 .alg_msk = BIT(3),
2178 .alg = SEC_SKCIPHER_ALG("xts(aes)", sec_setkey_aes_xts, SEC_XTS_MIN_KEY_SIZE,
2179 SEC_XTS_MAX_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2180 },
2181 {
2182 .alg_msk = BIT(4),
2183 .alg = SEC_SKCIPHER_ALG("ofb(aes)", sec_setkey_aes_ofb, AES_MIN_KEY_SIZE,
2184 AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2185 },
2186 {
2187 .alg_msk = BIT(5),
2188 .alg = SEC_SKCIPHER_ALG("cfb(aes)", sec_setkey_aes_cfb, AES_MIN_KEY_SIZE,
2189 AES_MAX_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2190 },
2191 {
2192 .alg_msk = BIT(12),
2193 .alg = SEC_SKCIPHER_ALG("cbc(sm4)", sec_setkey_sm4_cbc, AES_MIN_KEY_SIZE,
2194 AES_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2195 },
2196 {
2197 .alg_msk = BIT(13),
2198 .alg = SEC_SKCIPHER_ALG("ctr(sm4)", sec_setkey_sm4_ctr, AES_MIN_KEY_SIZE,
2199 AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2200 },
2201 {
2202 .alg_msk = BIT(14),
2203 .alg = SEC_SKCIPHER_ALG("xts(sm4)", sec_setkey_sm4_xts, SEC_XTS_MIN_KEY_SIZE,
2204 SEC_XTS_MIN_KEY_SIZE, AES_BLOCK_SIZE, AES_BLOCK_SIZE),
2205 },
2206 {
2207 .alg_msk = BIT(15),
2208 .alg = SEC_SKCIPHER_ALG("ofb(sm4)", sec_setkey_sm4_ofb, AES_MIN_KEY_SIZE,
2209 AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2210 },
2211 {
2212 .alg_msk = BIT(16),
2213 .alg = SEC_SKCIPHER_ALG("cfb(sm4)", sec_setkey_sm4_cfb, AES_MIN_KEY_SIZE,
2214 AES_MIN_KEY_SIZE, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE),
2215 },
2216 {
2217 .alg_msk = BIT(23),
2218 .alg = SEC_SKCIPHER_ALG("ecb(des3_ede)", sec_setkey_3des_ecb, SEC_DES3_3KEY_SIZE,
2219 SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE, 0),
2220 },
2221 {
2222 .alg_msk = BIT(24),
2223 .alg = SEC_SKCIPHER_ALG("cbc(des3_ede)", sec_setkey_3des_cbc, SEC_DES3_3KEY_SIZE,
2224 SEC_DES3_3KEY_SIZE, DES3_EDE_BLOCK_SIZE,
2225 DES3_EDE_BLOCK_SIZE),
2226 },
2227 };
2228
aead_iv_demension_check(struct aead_request * aead_req)2229 static int aead_iv_demension_check(struct aead_request *aead_req)
2230 {
2231 u8 cl;
2232
2233 cl = aead_req->iv[0] + 1;
2234 if (cl < IV_CL_MIN || cl > IV_CL_MAX)
2235 return -EINVAL;
2236
2237 if (cl < IV_CL_MID && aead_req->cryptlen >> (BYTE_BITS * cl))
2238 return -EOVERFLOW;
2239
2240 return 0;
2241 }
2242
sec_aead_spec_check(struct sec_ctx * ctx,struct sec_req * sreq)2243 static int sec_aead_spec_check(struct sec_ctx *ctx, struct sec_req *sreq)
2244 {
2245 struct aead_request *req = sreq->aead_req.aead_req;
2246 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2247 size_t sz = crypto_aead_authsize(tfm);
2248 u8 c_mode = ctx->c_ctx.c_mode;
2249 int ret;
2250
2251 if (unlikely(ctx->sec->qm.ver == QM_HW_V2 && !sreq->c_req.c_len))
2252 return -EINVAL;
2253
2254 if (unlikely(req->cryptlen + req->assoclen > MAX_INPUT_DATA_LEN ||
2255 req->assoclen > SEC_MAX_AAD_LEN))
2256 return -EINVAL;
2257
2258 if (c_mode == SEC_CMODE_CCM) {
2259 if (unlikely(req->assoclen > SEC_MAX_CCM_AAD_LEN))
2260 return -EINVAL;
2261
2262 ret = aead_iv_demension_check(req);
2263 if (unlikely(ret))
2264 return -EINVAL;
2265 } else if (c_mode == SEC_CMODE_CBC) {
2266 if (unlikely(sz & WORD_MASK))
2267 return -EINVAL;
2268 if (unlikely(ctx->a_ctx.a_key_len & WORD_MASK))
2269 return -EINVAL;
2270 }
2271
2272 return 0;
2273 }
2274
sec_aead_param_check(struct sec_ctx * ctx,struct sec_req * sreq,bool * need_fallback)2275 static int sec_aead_param_check(struct sec_ctx *ctx, struct sec_req *sreq, bool *need_fallback)
2276 {
2277 struct aead_request *req = sreq->aead_req.aead_req;
2278 struct device *dev = ctx->dev;
2279 u8 c_alg = ctx->c_ctx.c_alg;
2280
2281 if (unlikely(!req->src || !req->dst)) {
2282 dev_err(dev, "aead input param error!\n");
2283 return -EINVAL;
2284 }
2285
2286 if (unlikely(ctx->c_ctx.c_mode == SEC_CMODE_CBC &&
2287 sreq->c_req.c_len & (AES_BLOCK_SIZE - 1))) {
2288 dev_err(dev, "aead cbc mode input data length error!\n");
2289 return -EINVAL;
2290 }
2291
2292 /* Support AES or SM4 */
2293 if (unlikely(c_alg != SEC_CALG_AES && c_alg != SEC_CALG_SM4)) {
2294 dev_err(dev, "aead crypto alg error!\n");
2295 return -EINVAL;
2296 }
2297
2298 if (unlikely(sec_aead_spec_check(ctx, sreq))) {
2299 *need_fallback = true;
2300 return -EINVAL;
2301 }
2302
2303 if (ctx->pbuf_supported && (req->cryptlen + req->assoclen) <=
2304 SEC_PBUF_SZ)
2305 sreq->use_pbuf = true;
2306 else
2307 sreq->use_pbuf = false;
2308
2309 return 0;
2310 }
2311
sec_aead_soft_crypto(struct sec_ctx * ctx,struct aead_request * aead_req,bool encrypt)2312 static int sec_aead_soft_crypto(struct sec_ctx *ctx,
2313 struct aead_request *aead_req,
2314 bool encrypt)
2315 {
2316 struct sec_auth_ctx *a_ctx = &ctx->a_ctx;
2317 struct aead_request *subreq;
2318 int ret;
2319
2320 subreq = aead_request_alloc(a_ctx->fallback_aead_tfm, GFP_KERNEL);
2321 if (!subreq)
2322 return -ENOMEM;
2323
2324 aead_request_set_tfm(subreq, a_ctx->fallback_aead_tfm);
2325 aead_request_set_callback(subreq, aead_req->base.flags,
2326 aead_req->base.complete, aead_req->base.data);
2327 aead_request_set_crypt(subreq, aead_req->src, aead_req->dst,
2328 aead_req->cryptlen, aead_req->iv);
2329 aead_request_set_ad(subreq, aead_req->assoclen);
2330
2331 if (encrypt)
2332 ret = crypto_aead_encrypt(subreq);
2333 else
2334 ret = crypto_aead_decrypt(subreq);
2335 aead_request_free(subreq);
2336
2337 return ret;
2338 }
2339
sec_aead_crypto(struct aead_request * a_req,bool encrypt)2340 static int sec_aead_crypto(struct aead_request *a_req, bool encrypt)
2341 {
2342 struct crypto_aead *tfm = crypto_aead_reqtfm(a_req);
2343 struct sec_req *req = aead_request_ctx(a_req);
2344 struct sec_ctx *ctx = crypto_aead_ctx(tfm);
2345 size_t sz = crypto_aead_authsize(tfm);
2346 bool need_fallback = false;
2347 int ret;
2348
2349 req->flag = a_req->base.flags;
2350 req->aead_req.aead_req = a_req;
2351 req->c_req.encrypt = encrypt;
2352 req->ctx = ctx;
2353 req->c_req.c_len = a_req->cryptlen - (req->c_req.encrypt ? 0 : sz);
2354
2355 ret = sec_aead_param_check(ctx, req, &need_fallback);
2356 if (unlikely(ret)) {
2357 if (need_fallback)
2358 return sec_aead_soft_crypto(ctx, a_req, encrypt);
2359 return -EINVAL;
2360 }
2361
2362 return ctx->req_op->process(ctx, req);
2363 }
2364
sec_aead_encrypt(struct aead_request * a_req)2365 static int sec_aead_encrypt(struct aead_request *a_req)
2366 {
2367 return sec_aead_crypto(a_req, true);
2368 }
2369
sec_aead_decrypt(struct aead_request * a_req)2370 static int sec_aead_decrypt(struct aead_request *a_req)
2371 {
2372 return sec_aead_crypto(a_req, false);
2373 }
2374
2375 #define SEC_AEAD_ALG(sec_cra_name, sec_set_key, ctx_init,\
2376 ctx_exit, blk_size, iv_size, max_authsize)\
2377 {\
2378 .base = {\
2379 .cra_name = sec_cra_name,\
2380 .cra_driver_name = "hisi_sec_"sec_cra_name,\
2381 .cra_priority = SEC_PRIORITY,\
2382 .cra_flags = CRYPTO_ALG_ASYNC |\
2383 CRYPTO_ALG_NEED_FALLBACK,\
2384 .cra_blocksize = blk_size,\
2385 .cra_ctxsize = sizeof(struct sec_ctx),\
2386 .cra_module = THIS_MODULE,\
2387 },\
2388 .init = ctx_init,\
2389 .exit = ctx_exit,\
2390 .setkey = sec_set_key,\
2391 .setauthsize = sec_aead_setauthsize,\
2392 .decrypt = sec_aead_decrypt,\
2393 .encrypt = sec_aead_encrypt,\
2394 .ivsize = iv_size,\
2395 .maxauthsize = max_authsize,\
2396 }
2397
2398 static struct sec_aead sec_aeads[] = {
2399 {
2400 .alg_msk = BIT(6),
2401 .alg = SEC_AEAD_ALG("ccm(aes)", sec_setkey_aes_ccm, sec_aead_xcm_ctx_init,
2402 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE,
2403 AES_BLOCK_SIZE),
2404 },
2405 {
2406 .alg_msk = BIT(7),
2407 .alg = SEC_AEAD_ALG("gcm(aes)", sec_setkey_aes_gcm, sec_aead_xcm_ctx_init,
2408 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE,
2409 AES_BLOCK_SIZE),
2410 },
2411 {
2412 .alg_msk = BIT(17),
2413 .alg = SEC_AEAD_ALG("ccm(sm4)", sec_setkey_sm4_ccm, sec_aead_xcm_ctx_init,
2414 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, AES_BLOCK_SIZE,
2415 AES_BLOCK_SIZE),
2416 },
2417 {
2418 .alg_msk = BIT(18),
2419 .alg = SEC_AEAD_ALG("gcm(sm4)", sec_setkey_sm4_gcm, sec_aead_xcm_ctx_init,
2420 sec_aead_xcm_ctx_exit, SEC_MIN_BLOCK_SZ, SEC_AIV_SIZE,
2421 AES_BLOCK_SIZE),
2422 },
2423 {
2424 .alg_msk = BIT(43),
2425 .alg = SEC_AEAD_ALG("authenc(hmac(sha1),cbc(aes))", sec_setkey_aes_cbc_sha1,
2426 sec_aead_sha1_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
2427 AES_BLOCK_SIZE, SHA1_DIGEST_SIZE),
2428 },
2429 {
2430 .alg_msk = BIT(44),
2431 .alg = SEC_AEAD_ALG("authenc(hmac(sha256),cbc(aes))", sec_setkey_aes_cbc_sha256,
2432 sec_aead_sha256_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
2433 AES_BLOCK_SIZE, SHA256_DIGEST_SIZE),
2434 },
2435 {
2436 .alg_msk = BIT(45),
2437 .alg = SEC_AEAD_ALG("authenc(hmac(sha512),cbc(aes))", sec_setkey_aes_cbc_sha512,
2438 sec_aead_sha512_ctx_init, sec_aead_ctx_exit, AES_BLOCK_SIZE,
2439 AES_BLOCK_SIZE, SHA512_DIGEST_SIZE),
2440 },
2441 };
2442
sec_unregister_skcipher(u64 alg_mask,int end)2443 static void sec_unregister_skcipher(u64 alg_mask, int end)
2444 {
2445 int i;
2446
2447 for (i = 0; i < end; i++)
2448 if (sec_skciphers[i].alg_msk & alg_mask)
2449 crypto_unregister_skcipher(&sec_skciphers[i].alg);
2450 }
2451
sec_register_skcipher(u64 alg_mask)2452 static int sec_register_skcipher(u64 alg_mask)
2453 {
2454 int i, ret, count;
2455
2456 count = ARRAY_SIZE(sec_skciphers);
2457
2458 for (i = 0; i < count; i++) {
2459 if (!(sec_skciphers[i].alg_msk & alg_mask))
2460 continue;
2461
2462 ret = crypto_register_skcipher(&sec_skciphers[i].alg);
2463 if (ret)
2464 goto err;
2465 }
2466
2467 return 0;
2468
2469 err:
2470 sec_unregister_skcipher(alg_mask, i);
2471
2472 return ret;
2473 }
2474
sec_unregister_aead(u64 alg_mask,int end)2475 static void sec_unregister_aead(u64 alg_mask, int end)
2476 {
2477 int i;
2478
2479 for (i = 0; i < end; i++)
2480 if (sec_aeads[i].alg_msk & alg_mask)
2481 crypto_unregister_aead(&sec_aeads[i].alg);
2482 }
2483
sec_register_aead(u64 alg_mask)2484 static int sec_register_aead(u64 alg_mask)
2485 {
2486 int i, ret, count;
2487
2488 count = ARRAY_SIZE(sec_aeads);
2489
2490 for (i = 0; i < count; i++) {
2491 if (!(sec_aeads[i].alg_msk & alg_mask))
2492 continue;
2493
2494 ret = crypto_register_aead(&sec_aeads[i].alg);
2495 if (ret)
2496 goto err;
2497 }
2498
2499 return 0;
2500
2501 err:
2502 sec_unregister_aead(alg_mask, i);
2503
2504 return ret;
2505 }
2506
sec_register_to_crypto(struct hisi_qm * qm)2507 int sec_register_to_crypto(struct hisi_qm *qm)
2508 {
2509 u64 alg_mask;
2510 int ret = 0;
2511
2512 alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH_IDX,
2513 SEC_DRV_ALG_BITMAP_LOW_IDX);
2514
2515
2516 ret = sec_register_skcipher(alg_mask);
2517 if (ret)
2518 return ret;
2519
2520 ret = sec_register_aead(alg_mask);
2521 if (ret)
2522 sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers));
2523
2524 return ret;
2525 }
2526
sec_unregister_from_crypto(struct hisi_qm * qm)2527 void sec_unregister_from_crypto(struct hisi_qm *qm)
2528 {
2529 u64 alg_mask;
2530
2531 alg_mask = sec_get_alg_bitmap(qm, SEC_DRV_ALG_BITMAP_HIGH_IDX,
2532 SEC_DRV_ALG_BITMAP_LOW_IDX);
2533
2534 sec_unregister_aead(alg_mask, ARRAY_SIZE(sec_aeads));
2535 sec_unregister_skcipher(alg_mask, ARRAY_SIZE(sec_skciphers));
2536 }
2537