xref: /openbmc/linux/drivers/soundwire/bus.c (revision 4d75f5c664195b970e1cd2fd25b65b5eff257a0a)
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 // Copyright(c) 2015-17 Intel Corporation.
3 
4 #include <linux/acpi.h>
5 #include <linux/delay.h>
6 #include <linux/mod_devicetable.h>
7 #include <linux/pm_runtime.h>
8 #include <linux/soundwire/sdw_registers.h>
9 #include <linux/soundwire/sdw.h>
10 #include <linux/soundwire/sdw_type.h>
11 #include "bus.h"
12 #include "irq.h"
13 #include "sysfs_local.h"
14 
15 static DEFINE_IDA(sdw_bus_ida);
16 
sdw_get_id(struct sdw_bus * bus)17 static int sdw_get_id(struct sdw_bus *bus)
18 {
19 	int rc = ida_alloc(&sdw_bus_ida, GFP_KERNEL);
20 
21 	if (rc < 0)
22 		return rc;
23 
24 	bus->id = rc;
25 
26 	if (bus->controller_id == -1)
27 		bus->controller_id = rc;
28 
29 	return 0;
30 }
31 
32 /**
33  * sdw_bus_master_add() - add a bus Master instance
34  * @bus: bus instance
35  * @parent: parent device
36  * @fwnode: firmware node handle
37  *
38  * Initializes the bus instance, read properties and create child
39  * devices.
40  */
sdw_bus_master_add(struct sdw_bus * bus,struct device * parent,struct fwnode_handle * fwnode)41 int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent,
42 		       struct fwnode_handle *fwnode)
43 {
44 	struct sdw_master_prop *prop = NULL;
45 	int ret;
46 
47 	if (!parent) {
48 		pr_err("SoundWire parent device is not set\n");
49 		return -ENODEV;
50 	}
51 
52 	ret = sdw_get_id(bus);
53 	if (ret < 0) {
54 		dev_err(parent, "Failed to get bus id\n");
55 		return ret;
56 	}
57 
58 	ret = sdw_master_device_add(bus, parent, fwnode);
59 	if (ret < 0) {
60 		dev_err(parent, "Failed to add master device at link %d\n",
61 			bus->link_id);
62 		return ret;
63 	}
64 
65 	if (!bus->ops) {
66 		dev_err(bus->dev, "SoundWire Bus ops are not set\n");
67 		return -EINVAL;
68 	}
69 
70 	if (!bus->compute_params) {
71 		dev_err(bus->dev,
72 			"Bandwidth allocation not configured, compute_params no set\n");
73 		return -EINVAL;
74 	}
75 
76 	/*
77 	 * Give each bus_lock and msg_lock a unique key so that lockdep won't
78 	 * trigger a deadlock warning when the locks of several buses are
79 	 * grabbed during configuration of a multi-bus stream.
80 	 */
81 	lockdep_register_key(&bus->msg_lock_key);
82 	__mutex_init(&bus->msg_lock, "msg_lock", &bus->msg_lock_key);
83 
84 	lockdep_register_key(&bus->bus_lock_key);
85 	__mutex_init(&bus->bus_lock, "bus_lock", &bus->bus_lock_key);
86 
87 	INIT_LIST_HEAD(&bus->slaves);
88 	INIT_LIST_HEAD(&bus->m_rt_list);
89 
90 	/*
91 	 * Initialize multi_link flag
92 	 */
93 	bus->multi_link = false;
94 	if (bus->ops->read_prop) {
95 		ret = bus->ops->read_prop(bus);
96 		if (ret < 0) {
97 			dev_err(bus->dev,
98 				"Bus read properties failed:%d\n", ret);
99 			return ret;
100 		}
101 	}
102 
103 	sdw_bus_debugfs_init(bus);
104 
105 	/*
106 	 * Device numbers in SoundWire are 0 through 15. Enumeration device
107 	 * number (0), Broadcast device number (15), Group numbers (12 and
108 	 * 13) and Master device number (14) are not used for assignment so
109 	 * mask these and other higher bits.
110 	 */
111 
112 	/* Set higher order bits */
113 	*bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM);
114 
115 	/* Set enumuration device number and broadcast device number */
116 	set_bit(SDW_ENUM_DEV_NUM, bus->assigned);
117 	set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned);
118 
119 	/* Set group device numbers and master device number */
120 	set_bit(SDW_GROUP12_DEV_NUM, bus->assigned);
121 	set_bit(SDW_GROUP13_DEV_NUM, bus->assigned);
122 	set_bit(SDW_MASTER_DEV_NUM, bus->assigned);
123 
124 	ret = sdw_irq_create(bus, fwnode);
125 	if (ret)
126 		return ret;
127 
128 	/*
129 	 * SDW is an enumerable bus, but devices can be powered off. So,
130 	 * they won't be able to report as present.
131 	 *
132 	 * Create Slave devices based on Slaves described in
133 	 * the respective firmware (ACPI/DT)
134 	 */
135 	if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev))
136 		ret = sdw_acpi_find_slaves(bus);
137 	else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node)
138 		ret = sdw_of_find_slaves(bus);
139 	else
140 		ret = -ENOTSUPP; /* No ACPI/DT so error out */
141 
142 	if (ret < 0) {
143 		dev_err(bus->dev, "Finding slaves failed:%d\n", ret);
144 		sdw_irq_delete(bus);
145 		return ret;
146 	}
147 
148 	/*
149 	 * Initialize clock values based on Master properties. The max
150 	 * frequency is read from max_clk_freq property. Current assumption
151 	 * is that the bus will start at highest clock frequency when
152 	 * powered on.
153 	 *
154 	 * Default active bank will be 0 as out of reset the Slaves have
155 	 * to start with bank 0 (Table 40 of Spec)
156 	 */
157 	prop = &bus->prop;
158 	bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR;
159 	bus->params.curr_dr_freq = bus->params.max_dr_freq;
160 	bus->params.curr_bank = SDW_BANK0;
161 	bus->params.next_bank = SDW_BANK1;
162 
163 	return 0;
164 }
165 EXPORT_SYMBOL(sdw_bus_master_add);
166 
sdw_delete_slave(struct device * dev,void * data)167 static int sdw_delete_slave(struct device *dev, void *data)
168 {
169 	struct sdw_slave *slave = dev_to_sdw_dev(dev);
170 	struct sdw_bus *bus = slave->bus;
171 
172 	pm_runtime_disable(dev);
173 
174 	sdw_slave_debugfs_exit(slave);
175 
176 	mutex_lock(&bus->bus_lock);
177 
178 	if (slave->dev_num) { /* clear dev_num if assigned */
179 		clear_bit(slave->dev_num, bus->assigned);
180 		if (bus->ops && bus->ops->put_device_num)
181 			bus->ops->put_device_num(bus, slave);
182 	}
183 	list_del_init(&slave->node);
184 	mutex_unlock(&bus->bus_lock);
185 
186 	device_unregister(dev);
187 	return 0;
188 }
189 
190 /**
191  * sdw_bus_master_delete() - delete the bus master instance
192  * @bus: bus to be deleted
193  *
194  * Remove the instance, delete the child devices.
195  */
sdw_bus_master_delete(struct sdw_bus * bus)196 void sdw_bus_master_delete(struct sdw_bus *bus)
197 {
198 	device_for_each_child(bus->dev, NULL, sdw_delete_slave);
199 
200 	sdw_irq_delete(bus);
201 
202 	sdw_master_device_del(bus);
203 
204 	sdw_bus_debugfs_exit(bus);
205 	lockdep_unregister_key(&bus->bus_lock_key);
206 	lockdep_unregister_key(&bus->msg_lock_key);
207 	ida_free(&sdw_bus_ida, bus->id);
208 }
209 EXPORT_SYMBOL(sdw_bus_master_delete);
210 
211 /*
212  * SDW IO Calls
213  */
214 
find_response_code(enum sdw_command_response resp)215 static inline int find_response_code(enum sdw_command_response resp)
216 {
217 	switch (resp) {
218 	case SDW_CMD_OK:
219 		return 0;
220 
221 	case SDW_CMD_IGNORED:
222 		return -ENODATA;
223 
224 	case SDW_CMD_TIMEOUT:
225 		return -ETIMEDOUT;
226 
227 	default:
228 		return -EIO;
229 	}
230 }
231 
do_transfer(struct sdw_bus * bus,struct sdw_msg * msg)232 static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
233 {
234 	int retry = bus->prop.err_threshold;
235 	enum sdw_command_response resp;
236 	int ret = 0, i;
237 
238 	for (i = 0; i <= retry; i++) {
239 		resp = bus->ops->xfer_msg(bus, msg);
240 		ret = find_response_code(resp);
241 
242 		/* if cmd is ok or ignored return */
243 		if (ret == 0 || ret == -ENODATA)
244 			return ret;
245 	}
246 
247 	return ret;
248 }
249 
do_transfer_defer(struct sdw_bus * bus,struct sdw_msg * msg)250 static inline int do_transfer_defer(struct sdw_bus *bus,
251 				    struct sdw_msg *msg)
252 {
253 	struct sdw_defer *defer = &bus->defer_msg;
254 	int retry = bus->prop.err_threshold;
255 	enum sdw_command_response resp;
256 	int ret = 0, i;
257 
258 	defer->msg = msg;
259 	defer->length = msg->len;
260 	init_completion(&defer->complete);
261 
262 	for (i = 0; i <= retry; i++) {
263 		resp = bus->ops->xfer_msg_defer(bus);
264 		ret = find_response_code(resp);
265 		/* if cmd is ok or ignored return */
266 		if (ret == 0 || ret == -ENODATA)
267 			return ret;
268 	}
269 
270 	return ret;
271 }
272 
sdw_transfer_unlocked(struct sdw_bus * bus,struct sdw_msg * msg)273 static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg)
274 {
275 	int ret;
276 
277 	ret = do_transfer(bus, msg);
278 	if (ret != 0 && ret != -ENODATA)
279 		dev_err(bus->dev, "trf on Slave %d failed:%d %s addr %x count %d\n",
280 			msg->dev_num, ret,
281 			(msg->flags & SDW_MSG_FLAG_WRITE) ? "write" : "read",
282 			msg->addr, msg->len);
283 
284 	return ret;
285 }
286 
287 /**
288  * sdw_transfer() - Synchronous transfer message to a SDW Slave device
289  * @bus: SDW bus
290  * @msg: SDW message to be xfered
291  */
sdw_transfer(struct sdw_bus * bus,struct sdw_msg * msg)292 int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
293 {
294 	int ret;
295 
296 	mutex_lock(&bus->msg_lock);
297 
298 	ret = sdw_transfer_unlocked(bus, msg);
299 
300 	mutex_unlock(&bus->msg_lock);
301 
302 	return ret;
303 }
304 
305 /**
306  * sdw_show_ping_status() - Direct report of PING status, to be used by Peripheral drivers
307  * @bus: SDW bus
308  * @sync_delay: Delay before reading status
309  */
sdw_show_ping_status(struct sdw_bus * bus,bool sync_delay)310 void sdw_show_ping_status(struct sdw_bus *bus, bool sync_delay)
311 {
312 	u32 status;
313 
314 	if (!bus->ops->read_ping_status)
315 		return;
316 
317 	/*
318 	 * wait for peripheral to sync if desired. 10-15ms should be more than
319 	 * enough in most cases.
320 	 */
321 	if (sync_delay)
322 		usleep_range(10000, 15000);
323 
324 	mutex_lock(&bus->msg_lock);
325 
326 	status = bus->ops->read_ping_status(bus);
327 
328 	mutex_unlock(&bus->msg_lock);
329 
330 	if (!status)
331 		dev_warn(bus->dev, "%s: no peripherals attached\n", __func__);
332 	else
333 		dev_dbg(bus->dev, "PING status: %#x\n", status);
334 }
335 EXPORT_SYMBOL(sdw_show_ping_status);
336 
337 /**
338  * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device
339  * @bus: SDW bus
340  * @msg: SDW message to be xfered
341  *
342  * Caller needs to hold the msg_lock lock while calling this
343  */
sdw_transfer_defer(struct sdw_bus * bus,struct sdw_msg * msg)344 int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg)
345 {
346 	int ret;
347 
348 	if (!bus->ops->xfer_msg_defer)
349 		return -ENOTSUPP;
350 
351 	ret = do_transfer_defer(bus, msg);
352 	if (ret != 0 && ret != -ENODATA)
353 		dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n",
354 			msg->dev_num, ret);
355 
356 	return ret;
357 }
358 
sdw_fill_msg(struct sdw_msg * msg,struct sdw_slave * slave,u32 addr,size_t count,u16 dev_num,u8 flags,u8 * buf)359 int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave,
360 		 u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf)
361 {
362 	memset(msg, 0, sizeof(*msg));
363 	msg->addr = addr; /* addr is 16 bit and truncated here */
364 	msg->len = count;
365 	msg->dev_num = dev_num;
366 	msg->flags = flags;
367 	msg->buf = buf;
368 
369 	if (addr < SDW_REG_NO_PAGE) /* no paging area */
370 		return 0;
371 
372 	if (addr >= SDW_REG_MAX) { /* illegal addr */
373 		pr_err("SDW: Invalid address %x passed\n", addr);
374 		return -EINVAL;
375 	}
376 
377 	if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */
378 		if (slave && !slave->prop.paging_support)
379 			return 0;
380 		/* no need for else as that will fall-through to paging */
381 	}
382 
383 	/* paging mandatory */
384 	if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) {
385 		pr_err("SDW: Invalid device for paging :%d\n", dev_num);
386 		return -EINVAL;
387 	}
388 
389 	if (!slave) {
390 		pr_err("SDW: No slave for paging addr\n");
391 		return -EINVAL;
392 	}
393 
394 	if (!slave->prop.paging_support) {
395 		dev_err(&slave->dev,
396 			"address %x needs paging but no support\n", addr);
397 		return -EINVAL;
398 	}
399 
400 	msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr);
401 	msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr);
402 	msg->addr |= BIT(15);
403 	msg->page = true;
404 
405 	return 0;
406 }
407 
408 /*
409  * Read/Write IO functions.
410  */
411 
sdw_ntransfer_no_pm(struct sdw_slave * slave,u32 addr,u8 flags,size_t count,u8 * val)412 static int sdw_ntransfer_no_pm(struct sdw_slave *slave, u32 addr, u8 flags,
413 			       size_t count, u8 *val)
414 {
415 	struct sdw_msg msg;
416 	size_t size;
417 	int ret;
418 
419 	while (count) {
420 		// Only handle bytes up to next page boundary
421 		size = min_t(size_t, count, (SDW_REGADDR + 1) - (addr & SDW_REGADDR));
422 
423 		ret = sdw_fill_msg(&msg, slave, addr, size, slave->dev_num, flags, val);
424 		if (ret < 0)
425 			return ret;
426 
427 		ret = sdw_transfer(slave->bus, &msg);
428 		if (ret < 0 && !slave->is_mockup_device)
429 			return ret;
430 
431 		addr += size;
432 		val += size;
433 		count -= size;
434 	}
435 
436 	return 0;
437 }
438 
439 /**
440  * sdw_nread_no_pm() - Read "n" contiguous SDW Slave registers with no PM
441  * @slave: SDW Slave
442  * @addr: Register address
443  * @count: length
444  * @val: Buffer for values to be read
445  *
446  * Note that if the message crosses a page boundary each page will be
447  * transferred under a separate invocation of the msg_lock.
448  */
sdw_nread_no_pm(struct sdw_slave * slave,u32 addr,size_t count,u8 * val)449 int sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
450 {
451 	return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_READ, count, val);
452 }
453 EXPORT_SYMBOL(sdw_nread_no_pm);
454 
455 /**
456  * sdw_nwrite_no_pm() - Write "n" contiguous SDW Slave registers with no PM
457  * @slave: SDW Slave
458  * @addr: Register address
459  * @count: length
460  * @val: Buffer for values to be written
461  *
462  * Note that if the message crosses a page boundary each page will be
463  * transferred under a separate invocation of the msg_lock.
464  */
sdw_nwrite_no_pm(struct sdw_slave * slave,u32 addr,size_t count,const u8 * val)465 int sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
466 {
467 	return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_WRITE, count, (u8 *)val);
468 }
469 EXPORT_SYMBOL(sdw_nwrite_no_pm);
470 
471 /**
472  * sdw_write_no_pm() - Write a SDW Slave register with no PM
473  * @slave: SDW Slave
474  * @addr: Register address
475  * @value: Register value
476  */
sdw_write_no_pm(struct sdw_slave * slave,u32 addr,u8 value)477 int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value)
478 {
479 	return sdw_nwrite_no_pm(slave, addr, 1, &value);
480 }
481 EXPORT_SYMBOL(sdw_write_no_pm);
482 
483 static int
sdw_bread_no_pm(struct sdw_bus * bus,u16 dev_num,u32 addr)484 sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr)
485 {
486 	struct sdw_msg msg;
487 	u8 buf;
488 	int ret;
489 
490 	ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
491 			   SDW_MSG_FLAG_READ, &buf);
492 	if (ret < 0)
493 		return ret;
494 
495 	ret = sdw_transfer(bus, &msg);
496 	if (ret < 0)
497 		return ret;
498 
499 	return buf;
500 }
501 
502 static int
sdw_bwrite_no_pm(struct sdw_bus * bus,u16 dev_num,u32 addr,u8 value)503 sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
504 {
505 	struct sdw_msg msg;
506 	int ret;
507 
508 	ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
509 			   SDW_MSG_FLAG_WRITE, &value);
510 	if (ret < 0)
511 		return ret;
512 
513 	return sdw_transfer(bus, &msg);
514 }
515 
sdw_bread_no_pm_unlocked(struct sdw_bus * bus,u16 dev_num,u32 addr)516 int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr)
517 {
518 	struct sdw_msg msg;
519 	u8 buf;
520 	int ret;
521 
522 	ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
523 			   SDW_MSG_FLAG_READ, &buf);
524 	if (ret < 0)
525 		return ret;
526 
527 	ret = sdw_transfer_unlocked(bus, &msg);
528 	if (ret < 0)
529 		return ret;
530 
531 	return buf;
532 }
533 EXPORT_SYMBOL(sdw_bread_no_pm_unlocked);
534 
sdw_bwrite_no_pm_unlocked(struct sdw_bus * bus,u16 dev_num,u32 addr,u8 value)535 int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
536 {
537 	struct sdw_msg msg;
538 	int ret;
539 
540 	ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
541 			   SDW_MSG_FLAG_WRITE, &value);
542 	if (ret < 0)
543 		return ret;
544 
545 	return sdw_transfer_unlocked(bus, &msg);
546 }
547 EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked);
548 
549 /**
550  * sdw_read_no_pm() - Read a SDW Slave register with no PM
551  * @slave: SDW Slave
552  * @addr: Register address
553  */
sdw_read_no_pm(struct sdw_slave * slave,u32 addr)554 int sdw_read_no_pm(struct sdw_slave *slave, u32 addr)
555 {
556 	u8 buf;
557 	int ret;
558 
559 	ret = sdw_nread_no_pm(slave, addr, 1, &buf);
560 	if (ret < 0)
561 		return ret;
562 	else
563 		return buf;
564 }
565 EXPORT_SYMBOL(sdw_read_no_pm);
566 
sdw_update_no_pm(struct sdw_slave * slave,u32 addr,u8 mask,u8 val)567 int sdw_update_no_pm(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
568 {
569 	int tmp;
570 
571 	tmp = sdw_read_no_pm(slave, addr);
572 	if (tmp < 0)
573 		return tmp;
574 
575 	tmp = (tmp & ~mask) | val;
576 	return sdw_write_no_pm(slave, addr, tmp);
577 }
578 EXPORT_SYMBOL(sdw_update_no_pm);
579 
580 /* Read-Modify-Write Slave register */
sdw_update(struct sdw_slave * slave,u32 addr,u8 mask,u8 val)581 int sdw_update(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
582 {
583 	int tmp;
584 
585 	tmp = sdw_read(slave, addr);
586 	if (tmp < 0)
587 		return tmp;
588 
589 	tmp = (tmp & ~mask) | val;
590 	return sdw_write(slave, addr, tmp);
591 }
592 EXPORT_SYMBOL(sdw_update);
593 
594 /**
595  * sdw_nread() - Read "n" contiguous SDW Slave registers
596  * @slave: SDW Slave
597  * @addr: Register address
598  * @count: length
599  * @val: Buffer for values to be read
600  *
601  * This version of the function will take a PM reference to the slave
602  * device.
603  * Note that if the message crosses a page boundary each page will be
604  * transferred under a separate invocation of the msg_lock.
605  */
sdw_nread(struct sdw_slave * slave,u32 addr,size_t count,u8 * val)606 int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
607 {
608 	int ret;
609 
610 	ret = pm_runtime_get_sync(&slave->dev);
611 	if (ret < 0 && ret != -EACCES) {
612 		pm_runtime_put_noidle(&slave->dev);
613 		return ret;
614 	}
615 
616 	ret = sdw_nread_no_pm(slave, addr, count, val);
617 
618 	pm_runtime_mark_last_busy(&slave->dev);
619 	pm_runtime_put(&slave->dev);
620 
621 	return ret;
622 }
623 EXPORT_SYMBOL(sdw_nread);
624 
625 /**
626  * sdw_nwrite() - Write "n" contiguous SDW Slave registers
627  * @slave: SDW Slave
628  * @addr: Register address
629  * @count: length
630  * @val: Buffer for values to be written
631  *
632  * This version of the function will take a PM reference to the slave
633  * device.
634  * Note that if the message crosses a page boundary each page will be
635  * transferred under a separate invocation of the msg_lock.
636  */
sdw_nwrite(struct sdw_slave * slave,u32 addr,size_t count,const u8 * val)637 int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
638 {
639 	int ret;
640 
641 	ret = pm_runtime_get_sync(&slave->dev);
642 	if (ret < 0 && ret != -EACCES) {
643 		pm_runtime_put_noidle(&slave->dev);
644 		return ret;
645 	}
646 
647 	ret = sdw_nwrite_no_pm(slave, addr, count, val);
648 
649 	pm_runtime_mark_last_busy(&slave->dev);
650 	pm_runtime_put(&slave->dev);
651 
652 	return ret;
653 }
654 EXPORT_SYMBOL(sdw_nwrite);
655 
656 /**
657  * sdw_read() - Read a SDW Slave register
658  * @slave: SDW Slave
659  * @addr: Register address
660  *
661  * This version of the function will take a PM reference to the slave
662  * device.
663  */
sdw_read(struct sdw_slave * slave,u32 addr)664 int sdw_read(struct sdw_slave *slave, u32 addr)
665 {
666 	u8 buf;
667 	int ret;
668 
669 	ret = sdw_nread(slave, addr, 1, &buf);
670 	if (ret < 0)
671 		return ret;
672 
673 	return buf;
674 }
675 EXPORT_SYMBOL(sdw_read);
676 
677 /**
678  * sdw_write() - Write a SDW Slave register
679  * @slave: SDW Slave
680  * @addr: Register address
681  * @value: Register value
682  *
683  * This version of the function will take a PM reference to the slave
684  * device.
685  */
sdw_write(struct sdw_slave * slave,u32 addr,u8 value)686 int sdw_write(struct sdw_slave *slave, u32 addr, u8 value)
687 {
688 	return sdw_nwrite(slave, addr, 1, &value);
689 }
690 EXPORT_SYMBOL(sdw_write);
691 
692 /*
693  * SDW alert handling
694  */
695 
696 /* called with bus_lock held */
sdw_get_slave(struct sdw_bus * bus,int i)697 static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i)
698 {
699 	struct sdw_slave *slave;
700 
701 	list_for_each_entry(slave, &bus->slaves, node) {
702 		if (slave->dev_num == i)
703 			return slave;
704 	}
705 
706 	return NULL;
707 }
708 
sdw_compare_devid(struct sdw_slave * slave,struct sdw_slave_id id)709 int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id)
710 {
711 	if (slave->id.mfg_id != id.mfg_id ||
712 	    slave->id.part_id != id.part_id ||
713 	    slave->id.class_id != id.class_id ||
714 	    (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID &&
715 	     slave->id.unique_id != id.unique_id))
716 		return -ENODEV;
717 
718 	return 0;
719 }
720 EXPORT_SYMBOL(sdw_compare_devid);
721 
722 /* called with bus_lock held */
sdw_get_device_num(struct sdw_slave * slave)723 static int sdw_get_device_num(struct sdw_slave *slave)
724 {
725 	struct sdw_bus *bus = slave->bus;
726 	int bit;
727 
728 	if (bus->ops && bus->ops->get_device_num) {
729 		bit = bus->ops->get_device_num(bus, slave);
730 		if (bit < 0)
731 			goto err;
732 	} else {
733 		bit = find_first_zero_bit(bus->assigned, SDW_MAX_DEVICES);
734 		if (bit == SDW_MAX_DEVICES) {
735 			bit = -ENODEV;
736 			goto err;
737 		}
738 	}
739 
740 	/*
741 	 * Do not update dev_num in Slave data structure here,
742 	 * Update once program dev_num is successful
743 	 */
744 	set_bit(bit, bus->assigned);
745 
746 err:
747 	return bit;
748 }
749 
sdw_assign_device_num(struct sdw_slave * slave)750 static int sdw_assign_device_num(struct sdw_slave *slave)
751 {
752 	struct sdw_bus *bus = slave->bus;
753 	int ret, dev_num;
754 	bool new_device = false;
755 
756 	/* check first if device number is assigned, if so reuse that */
757 	if (!slave->dev_num) {
758 		if (!slave->dev_num_sticky) {
759 			mutex_lock(&slave->bus->bus_lock);
760 			dev_num = sdw_get_device_num(slave);
761 			mutex_unlock(&slave->bus->bus_lock);
762 			if (dev_num < 0) {
763 				dev_err(bus->dev, "Get dev_num failed: %d\n",
764 					dev_num);
765 				return dev_num;
766 			}
767 			slave->dev_num = dev_num;
768 			slave->dev_num_sticky = dev_num;
769 			new_device = true;
770 		} else {
771 			slave->dev_num = slave->dev_num_sticky;
772 		}
773 	}
774 
775 	if (!new_device)
776 		dev_dbg(bus->dev,
777 			"Slave already registered, reusing dev_num:%d\n",
778 			slave->dev_num);
779 
780 	/* Clear the slave->dev_num to transfer message on device 0 */
781 	dev_num = slave->dev_num;
782 	slave->dev_num = 0;
783 
784 	ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, dev_num);
785 	if (ret < 0) {
786 		dev_err(bus->dev, "Program device_num %d failed: %d\n",
787 			dev_num, ret);
788 		return ret;
789 	}
790 
791 	/* After xfer of msg, restore dev_num */
792 	slave->dev_num = slave->dev_num_sticky;
793 
794 	if (bus->ops && bus->ops->new_peripheral_assigned)
795 		bus->ops->new_peripheral_assigned(bus, slave, dev_num);
796 
797 	return 0;
798 }
799 
sdw_extract_slave_id(struct sdw_bus * bus,u64 addr,struct sdw_slave_id * id)800 void sdw_extract_slave_id(struct sdw_bus *bus,
801 			  u64 addr, struct sdw_slave_id *id)
802 {
803 	dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr);
804 
805 	id->sdw_version = SDW_VERSION(addr);
806 	id->unique_id = SDW_UNIQUE_ID(addr);
807 	id->mfg_id = SDW_MFG_ID(addr);
808 	id->part_id = SDW_PART_ID(addr);
809 	id->class_id = SDW_CLASS_ID(addr);
810 
811 	dev_dbg(bus->dev,
812 		"SDW Slave class_id 0x%02x, mfg_id 0x%04x, part_id 0x%04x, unique_id 0x%x, version 0x%x\n",
813 		id->class_id, id->mfg_id, id->part_id, id->unique_id, id->sdw_version);
814 }
815 EXPORT_SYMBOL(sdw_extract_slave_id);
816 
sdw_program_device_num(struct sdw_bus * bus,bool * programmed)817 static int sdw_program_device_num(struct sdw_bus *bus, bool *programmed)
818 {
819 	u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0};
820 	struct sdw_slave *slave, *_s;
821 	struct sdw_slave_id id;
822 	struct sdw_msg msg;
823 	bool found;
824 	int count = 0, ret;
825 	u64 addr;
826 
827 	*programmed = false;
828 
829 	/* No Slave, so use raw xfer api */
830 	ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0,
831 			   SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf);
832 	if (ret < 0)
833 		return ret;
834 
835 	do {
836 		ret = sdw_transfer(bus, &msg);
837 		if (ret == -ENODATA) { /* end of device id reads */
838 			dev_dbg(bus->dev, "No more devices to enumerate\n");
839 			ret = 0;
840 			break;
841 		}
842 		if (ret < 0) {
843 			dev_err(bus->dev, "DEVID read fail:%d\n", ret);
844 			break;
845 		}
846 
847 		/*
848 		 * Construct the addr and extract. Cast the higher shift
849 		 * bits to avoid truncation due to size limit.
850 		 */
851 		addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) |
852 			((u64)buf[2] << 24) | ((u64)buf[1] << 32) |
853 			((u64)buf[0] << 40);
854 
855 		sdw_extract_slave_id(bus, addr, &id);
856 
857 		found = false;
858 		/* Now compare with entries */
859 		list_for_each_entry_safe(slave, _s, &bus->slaves, node) {
860 			if (sdw_compare_devid(slave, id) == 0) {
861 				found = true;
862 
863 				/*
864 				 * To prevent skipping state-machine stages don't
865 				 * program a device until we've seen it UNATTACH.
866 				 * Must return here because no other device on #0
867 				 * can be detected until this one has been
868 				 * assigned a device ID.
869 				 */
870 				if (slave->status != SDW_SLAVE_UNATTACHED)
871 					return 0;
872 
873 				/*
874 				 * Assign a new dev_num to this Slave and
875 				 * not mark it present. It will be marked
876 				 * present after it reports ATTACHED on new
877 				 * dev_num
878 				 */
879 				ret = sdw_assign_device_num(slave);
880 				if (ret < 0) {
881 					dev_err(bus->dev,
882 						"Assign dev_num failed:%d\n",
883 						ret);
884 					return ret;
885 				}
886 
887 				*programmed = true;
888 
889 				break;
890 			}
891 		}
892 
893 		if (!found) {
894 			/* TODO: Park this device in Group 13 */
895 
896 			/*
897 			 * add Slave device even if there is no platform
898 			 * firmware description. There will be no driver probe
899 			 * but the user/integration will be able to see the
900 			 * device, enumeration status and device number in sysfs
901 			 */
902 			sdw_slave_add(bus, &id, NULL);
903 
904 			dev_err(bus->dev, "Slave Entry not found\n");
905 		}
906 
907 		count++;
908 
909 		/*
910 		 * Check till error out or retry (count) exhausts.
911 		 * Device can drop off and rejoin during enumeration
912 		 * so count till twice the bound.
913 		 */
914 
915 	} while (ret == 0 && count < (SDW_MAX_DEVICES * 2));
916 
917 	return ret;
918 }
919 
sdw_modify_slave_status(struct sdw_slave * slave,enum sdw_slave_status status)920 static void sdw_modify_slave_status(struct sdw_slave *slave,
921 				    enum sdw_slave_status status)
922 {
923 	struct sdw_bus *bus = slave->bus;
924 
925 	mutex_lock(&bus->bus_lock);
926 
927 	dev_vdbg(bus->dev,
928 		 "changing status slave %d status %d new status %d\n",
929 		 slave->dev_num, slave->status, status);
930 
931 	if (status == SDW_SLAVE_UNATTACHED) {
932 		dev_dbg(&slave->dev,
933 			"initializing enumeration and init completion for Slave %d\n",
934 			slave->dev_num);
935 
936 		reinit_completion(&slave->enumeration_complete);
937 		reinit_completion(&slave->initialization_complete);
938 
939 	} else if ((status == SDW_SLAVE_ATTACHED) &&
940 		   (slave->status == SDW_SLAVE_UNATTACHED)) {
941 		dev_dbg(&slave->dev,
942 			"signaling enumeration completion for Slave %d\n",
943 			slave->dev_num);
944 
945 		complete_all(&slave->enumeration_complete);
946 	}
947 	slave->status = status;
948 	mutex_unlock(&bus->bus_lock);
949 }
950 
sdw_slave_clk_stop_callback(struct sdw_slave * slave,enum sdw_clk_stop_mode mode,enum sdw_clk_stop_type type)951 static int sdw_slave_clk_stop_callback(struct sdw_slave *slave,
952 				       enum sdw_clk_stop_mode mode,
953 				       enum sdw_clk_stop_type type)
954 {
955 	int ret = 0;
956 
957 	mutex_lock(&slave->sdw_dev_lock);
958 
959 	if (slave->probed)  {
960 		struct device *dev = &slave->dev;
961 		struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
962 
963 		if (drv->ops && drv->ops->clk_stop)
964 			ret = drv->ops->clk_stop(slave, mode, type);
965 	}
966 
967 	mutex_unlock(&slave->sdw_dev_lock);
968 
969 	return ret;
970 }
971 
sdw_slave_clk_stop_prepare(struct sdw_slave * slave,enum sdw_clk_stop_mode mode,bool prepare)972 static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave,
973 				      enum sdw_clk_stop_mode mode,
974 				      bool prepare)
975 {
976 	bool wake_en;
977 	u32 val = 0;
978 	int ret;
979 
980 	wake_en = slave->prop.wake_capable;
981 
982 	if (prepare) {
983 		val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP;
984 
985 		if (mode == SDW_CLK_STOP_MODE1)
986 			val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1;
987 
988 		if (wake_en)
989 			val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN;
990 	} else {
991 		ret = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL);
992 		if (ret < 0) {
993 			if (ret != -ENODATA)
994 				dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL read failed:%d\n", ret);
995 			return ret;
996 		}
997 		val = ret;
998 		val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP);
999 	}
1000 
1001 	ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val);
1002 
1003 	if (ret < 0 && ret != -ENODATA)
1004 		dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL write failed:%d\n", ret);
1005 
1006 	return ret;
1007 }
1008 
sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus * bus,u16 dev_num)1009 static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num)
1010 {
1011 	int retry = bus->clk_stop_timeout;
1012 	int val;
1013 
1014 	do {
1015 		val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT);
1016 		if (val < 0) {
1017 			if (val != -ENODATA)
1018 				dev_err(bus->dev, "SDW_SCP_STAT bread failed:%d\n", val);
1019 			return val;
1020 		}
1021 		val &= SDW_SCP_STAT_CLK_STP_NF;
1022 		if (!val) {
1023 			dev_dbg(bus->dev, "clock stop prep/de-prep done slave:%d\n",
1024 				dev_num);
1025 			return 0;
1026 		}
1027 
1028 		usleep_range(1000, 1500);
1029 		retry--;
1030 	} while (retry);
1031 
1032 	dev_err(bus->dev, "clock stop prep/de-prep failed slave:%d\n",
1033 		dev_num);
1034 
1035 	return -ETIMEDOUT;
1036 }
1037 
1038 /**
1039  * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop
1040  *
1041  * @bus: SDW bus instance
1042  *
1043  * Query Slave for clock stop mode and prepare for that mode.
1044  */
sdw_bus_prep_clk_stop(struct sdw_bus * bus)1045 int sdw_bus_prep_clk_stop(struct sdw_bus *bus)
1046 {
1047 	bool simple_clk_stop = true;
1048 	struct sdw_slave *slave;
1049 	bool is_slave = false;
1050 	int ret = 0;
1051 
1052 	/*
1053 	 * In order to save on transition time, prepare
1054 	 * each Slave and then wait for all Slave(s) to be
1055 	 * prepared for clock stop.
1056 	 * If one of the Slave devices has lost sync and
1057 	 * replies with Command Ignored/-ENODATA, we continue
1058 	 * the loop
1059 	 */
1060 	list_for_each_entry(slave, &bus->slaves, node) {
1061 		if (!slave->dev_num)
1062 			continue;
1063 
1064 		if (slave->status != SDW_SLAVE_ATTACHED &&
1065 		    slave->status != SDW_SLAVE_ALERT)
1066 			continue;
1067 
1068 		/* Identify if Slave(s) are available on Bus */
1069 		is_slave = true;
1070 
1071 		ret = sdw_slave_clk_stop_callback(slave,
1072 						  SDW_CLK_STOP_MODE0,
1073 						  SDW_CLK_PRE_PREPARE);
1074 		if (ret < 0 && ret != -ENODATA) {
1075 			dev_err(&slave->dev, "clock stop pre-prepare cb failed:%d\n", ret);
1076 			return ret;
1077 		}
1078 
1079 		/* Only prepare a Slave device if needed */
1080 		if (!slave->prop.simple_clk_stop_capable) {
1081 			simple_clk_stop = false;
1082 
1083 			ret = sdw_slave_clk_stop_prepare(slave,
1084 							 SDW_CLK_STOP_MODE0,
1085 							 true);
1086 			if (ret < 0 && ret != -ENODATA) {
1087 				dev_err(&slave->dev, "clock stop prepare failed:%d\n", ret);
1088 				return ret;
1089 			}
1090 		}
1091 	}
1092 
1093 	/* Skip remaining clock stop preparation if no Slave is attached */
1094 	if (!is_slave)
1095 		return 0;
1096 
1097 	/*
1098 	 * Don't wait for all Slaves to be ready if they follow the simple
1099 	 * state machine
1100 	 */
1101 	if (!simple_clk_stop) {
1102 		ret = sdw_bus_wait_for_clk_prep_deprep(bus,
1103 						       SDW_BROADCAST_DEV_NUM);
1104 		/*
1105 		 * if there are no Slave devices present and the reply is
1106 		 * Command_Ignored/-ENODATA, we don't need to continue with the
1107 		 * flow and can just return here. The error code is not modified
1108 		 * and its handling left as an exercise for the caller.
1109 		 */
1110 		if (ret < 0)
1111 			return ret;
1112 	}
1113 
1114 	/* Inform slaves that prep is done */
1115 	list_for_each_entry(slave, &bus->slaves, node) {
1116 		if (!slave->dev_num)
1117 			continue;
1118 
1119 		if (slave->status != SDW_SLAVE_ATTACHED &&
1120 		    slave->status != SDW_SLAVE_ALERT)
1121 			continue;
1122 
1123 		ret = sdw_slave_clk_stop_callback(slave,
1124 						  SDW_CLK_STOP_MODE0,
1125 						  SDW_CLK_POST_PREPARE);
1126 
1127 		if (ret < 0 && ret != -ENODATA) {
1128 			dev_err(&slave->dev, "clock stop post-prepare cb failed:%d\n", ret);
1129 			return ret;
1130 		}
1131 	}
1132 
1133 	return 0;
1134 }
1135 EXPORT_SYMBOL(sdw_bus_prep_clk_stop);
1136 
1137 /**
1138  * sdw_bus_clk_stop: stop bus clock
1139  *
1140  * @bus: SDW bus instance
1141  *
1142  * After preparing the Slaves for clock stop, stop the clock by broadcasting
1143  * write to SCP_CTRL register.
1144  */
sdw_bus_clk_stop(struct sdw_bus * bus)1145 int sdw_bus_clk_stop(struct sdw_bus *bus)
1146 {
1147 	int ret;
1148 
1149 	/*
1150 	 * broadcast clock stop now, attached Slaves will ACK this,
1151 	 * unattached will ignore
1152 	 */
1153 	ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM,
1154 			       SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW);
1155 	if (ret < 0) {
1156 		if (ret != -ENODATA)
1157 			dev_err(bus->dev, "ClockStopNow Broadcast msg failed %d\n", ret);
1158 		return ret;
1159 	}
1160 
1161 	return 0;
1162 }
1163 EXPORT_SYMBOL(sdw_bus_clk_stop);
1164 
1165 /**
1166  * sdw_bus_exit_clk_stop: Exit clock stop mode
1167  *
1168  * @bus: SDW bus instance
1169  *
1170  * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves
1171  * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate
1172  * back.
1173  */
sdw_bus_exit_clk_stop(struct sdw_bus * bus)1174 int sdw_bus_exit_clk_stop(struct sdw_bus *bus)
1175 {
1176 	bool simple_clk_stop = true;
1177 	struct sdw_slave *slave;
1178 	bool is_slave = false;
1179 	int ret;
1180 
1181 	/*
1182 	 * In order to save on transition time, de-prepare
1183 	 * each Slave and then wait for all Slave(s) to be
1184 	 * de-prepared after clock resume.
1185 	 */
1186 	list_for_each_entry(slave, &bus->slaves, node) {
1187 		if (!slave->dev_num)
1188 			continue;
1189 
1190 		if (slave->status != SDW_SLAVE_ATTACHED &&
1191 		    slave->status != SDW_SLAVE_ALERT)
1192 			continue;
1193 
1194 		/* Identify if Slave(s) are available on Bus */
1195 		is_slave = true;
1196 
1197 		ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1198 						  SDW_CLK_PRE_DEPREPARE);
1199 		if (ret < 0)
1200 			dev_warn(&slave->dev, "clock stop pre-deprepare cb failed:%d\n", ret);
1201 
1202 		/* Only de-prepare a Slave device if needed */
1203 		if (!slave->prop.simple_clk_stop_capable) {
1204 			simple_clk_stop = false;
1205 
1206 			ret = sdw_slave_clk_stop_prepare(slave, SDW_CLK_STOP_MODE0,
1207 							 false);
1208 
1209 			if (ret < 0)
1210 				dev_warn(&slave->dev, "clock stop deprepare failed:%d\n", ret);
1211 		}
1212 	}
1213 
1214 	/* Skip remaining clock stop de-preparation if no Slave is attached */
1215 	if (!is_slave)
1216 		return 0;
1217 
1218 	/*
1219 	 * Don't wait for all Slaves to be ready if they follow the simple
1220 	 * state machine
1221 	 */
1222 	if (!simple_clk_stop) {
1223 		ret = sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM);
1224 		if (ret < 0)
1225 			dev_warn(bus->dev, "clock stop deprepare wait failed:%d\n", ret);
1226 	}
1227 
1228 	list_for_each_entry(slave, &bus->slaves, node) {
1229 		if (!slave->dev_num)
1230 			continue;
1231 
1232 		if (slave->status != SDW_SLAVE_ATTACHED &&
1233 		    slave->status != SDW_SLAVE_ALERT)
1234 			continue;
1235 
1236 		ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1237 						  SDW_CLK_POST_DEPREPARE);
1238 		if (ret < 0)
1239 			dev_warn(&slave->dev, "clock stop post-deprepare cb failed:%d\n", ret);
1240 	}
1241 
1242 	return 0;
1243 }
1244 EXPORT_SYMBOL(sdw_bus_exit_clk_stop);
1245 
sdw_configure_dpn_intr(struct sdw_slave * slave,int port,bool enable,int mask)1246 int sdw_configure_dpn_intr(struct sdw_slave *slave,
1247 			   int port, bool enable, int mask)
1248 {
1249 	u32 addr;
1250 	int ret;
1251 	u8 val = 0;
1252 
1253 	if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) {
1254 		dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n",
1255 			enable ? "on" : "off");
1256 		mask |= SDW_DPN_INT_TEST_FAIL;
1257 	}
1258 
1259 	addr = SDW_DPN_INTMASK(port);
1260 
1261 	/* Set/Clear port ready interrupt mask */
1262 	if (enable) {
1263 		val |= mask;
1264 		val |= SDW_DPN_INT_PORT_READY;
1265 	} else {
1266 		val &= ~(mask);
1267 		val &= ~SDW_DPN_INT_PORT_READY;
1268 	}
1269 
1270 	ret = sdw_update_no_pm(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val);
1271 	if (ret < 0)
1272 		dev_err(&slave->dev,
1273 			"SDW_DPN_INTMASK write failed:%d\n", val);
1274 
1275 	return ret;
1276 }
1277 
sdw_slave_set_frequency(struct sdw_slave * slave)1278 static int sdw_slave_set_frequency(struct sdw_slave *slave)
1279 {
1280 	u32 mclk_freq = slave->bus->prop.mclk_freq;
1281 	u32 curr_freq = slave->bus->params.curr_dr_freq >> 1;
1282 	unsigned int scale;
1283 	u8 scale_index;
1284 	u8 base;
1285 	int ret;
1286 
1287 	/*
1288 	 * frequency base and scale registers are required for SDCA
1289 	 * devices. They may also be used for 1.2+/non-SDCA devices.
1290 	 * Driver can set the property, we will need a DisCo property
1291 	 * to discover this case from platform firmware.
1292 	 */
1293 	if (!slave->id.class_id && !slave->prop.clock_reg_supported)
1294 		return 0;
1295 
1296 	if (!mclk_freq) {
1297 		dev_err(&slave->dev,
1298 			"no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n");
1299 		return -EINVAL;
1300 	}
1301 
1302 	/*
1303 	 * map base frequency using Table 89 of SoundWire 1.2 spec.
1304 	 * The order of the tests just follows the specification, this
1305 	 * is not a selection between possible values or a search for
1306 	 * the best value but just a mapping.  Only one case per platform
1307 	 * is relevant.
1308 	 * Some BIOS have inconsistent values for mclk_freq but a
1309 	 * correct root so we force the mclk_freq to avoid variations.
1310 	 */
1311 	if (!(19200000 % mclk_freq)) {
1312 		mclk_freq = 19200000;
1313 		base = SDW_SCP_BASE_CLOCK_19200000_HZ;
1314 	} else if (!(24000000 % mclk_freq)) {
1315 		mclk_freq = 24000000;
1316 		base = SDW_SCP_BASE_CLOCK_24000000_HZ;
1317 	} else if (!(24576000 % mclk_freq)) {
1318 		mclk_freq = 24576000;
1319 		base = SDW_SCP_BASE_CLOCK_24576000_HZ;
1320 	} else if (!(22579200 % mclk_freq)) {
1321 		mclk_freq = 22579200;
1322 		base = SDW_SCP_BASE_CLOCK_22579200_HZ;
1323 	} else if (!(32000000 % mclk_freq)) {
1324 		mclk_freq = 32000000;
1325 		base = SDW_SCP_BASE_CLOCK_32000000_HZ;
1326 	} else {
1327 		dev_err(&slave->dev,
1328 			"Unsupported clock base, mclk %d\n",
1329 			mclk_freq);
1330 		return -EINVAL;
1331 	}
1332 
1333 	if (mclk_freq % curr_freq) {
1334 		dev_err(&slave->dev,
1335 			"mclk %d is not multiple of bus curr_freq %d\n",
1336 			mclk_freq, curr_freq);
1337 		return -EINVAL;
1338 	}
1339 
1340 	scale = mclk_freq / curr_freq;
1341 
1342 	/*
1343 	 * map scale to Table 90 of SoundWire 1.2 spec - and check
1344 	 * that the scale is a power of two and maximum 64
1345 	 */
1346 	scale_index = ilog2(scale);
1347 
1348 	if (BIT(scale_index) != scale || scale_index > 6) {
1349 		dev_err(&slave->dev,
1350 			"No match found for scale %d, bus mclk %d curr_freq %d\n",
1351 			scale, mclk_freq, curr_freq);
1352 		return -EINVAL;
1353 	}
1354 	scale_index++;
1355 
1356 	ret = sdw_write_no_pm(slave, SDW_SCP_BUS_CLOCK_BASE, base);
1357 	if (ret < 0) {
1358 		dev_err(&slave->dev,
1359 			"SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret);
1360 		return ret;
1361 	}
1362 
1363 	/* initialize scale for both banks */
1364 	ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index);
1365 	if (ret < 0) {
1366 		dev_err(&slave->dev,
1367 			"SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret);
1368 		return ret;
1369 	}
1370 	ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index);
1371 	if (ret < 0)
1372 		dev_err(&slave->dev,
1373 			"SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret);
1374 
1375 	dev_dbg(&slave->dev,
1376 		"Configured bus base %d, scale %d, mclk %d, curr_freq %d\n",
1377 		base, scale_index, mclk_freq, curr_freq);
1378 
1379 	return ret;
1380 }
1381 
sdw_initialize_slave(struct sdw_slave * slave)1382 static int sdw_initialize_slave(struct sdw_slave *slave)
1383 {
1384 	struct sdw_slave_prop *prop = &slave->prop;
1385 	int status;
1386 	int ret;
1387 	u8 val;
1388 
1389 	ret = sdw_slave_set_frequency(slave);
1390 	if (ret < 0)
1391 		return ret;
1392 
1393 	if (slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH) {
1394 		/* Clear bus clash interrupt before enabling interrupt mask */
1395 		status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1396 		if (status < 0) {
1397 			dev_err(&slave->dev,
1398 				"SDW_SCP_INT1 (BUS_CLASH) read failed:%d\n", status);
1399 			return status;
1400 		}
1401 		if (status & SDW_SCP_INT1_BUS_CLASH) {
1402 			dev_warn(&slave->dev, "Bus clash detected before INT mask is enabled\n");
1403 			ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_BUS_CLASH);
1404 			if (ret < 0) {
1405 				dev_err(&slave->dev,
1406 					"SDW_SCP_INT1 (BUS_CLASH) write failed:%d\n", ret);
1407 				return ret;
1408 			}
1409 		}
1410 	}
1411 	if ((slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY) &&
1412 	    !(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY)) {
1413 		/* Clear parity interrupt before enabling interrupt mask */
1414 		status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1415 		if (status < 0) {
1416 			dev_err(&slave->dev,
1417 				"SDW_SCP_INT1 (PARITY) read failed:%d\n", status);
1418 			return status;
1419 		}
1420 		if (status & SDW_SCP_INT1_PARITY) {
1421 			dev_warn(&slave->dev, "PARITY error detected before INT mask is enabled\n");
1422 			ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_PARITY);
1423 			if (ret < 0) {
1424 				dev_err(&slave->dev,
1425 					"SDW_SCP_INT1 (PARITY) write failed:%d\n", ret);
1426 				return ret;
1427 			}
1428 		}
1429 	}
1430 
1431 	/*
1432 	 * Set SCP_INT1_MASK register, typically bus clash and
1433 	 * implementation-defined interrupt mask. The Parity detection
1434 	 * may not always be correct on startup so its use is
1435 	 * device-dependent, it might e.g. only be enabled in
1436 	 * steady-state after a couple of frames.
1437 	 */
1438 	val = slave->prop.scp_int1_mask;
1439 
1440 	/* Enable SCP interrupts */
1441 	ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1, val, val);
1442 	if (ret < 0) {
1443 		dev_err(&slave->dev,
1444 			"SDW_SCP_INTMASK1 write failed:%d\n", ret);
1445 		return ret;
1446 	}
1447 
1448 	/* No need to continue if DP0 is not present */
1449 	if (!slave->prop.dp0_prop)
1450 		return 0;
1451 
1452 	/* Enable DP0 interrupts */
1453 	val = prop->dp0_prop->imp_def_interrupts;
1454 	val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE;
1455 
1456 	ret = sdw_update_no_pm(slave, SDW_DP0_INTMASK, val, val);
1457 	if (ret < 0)
1458 		dev_err(&slave->dev,
1459 			"SDW_DP0_INTMASK read failed:%d\n", ret);
1460 	return ret;
1461 }
1462 
sdw_handle_dp0_interrupt(struct sdw_slave * slave,u8 * slave_status)1463 static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status)
1464 {
1465 	u8 clear, impl_int_mask;
1466 	int status, status2, ret, count = 0;
1467 
1468 	status = sdw_read_no_pm(slave, SDW_DP0_INT);
1469 	if (status < 0) {
1470 		dev_err(&slave->dev,
1471 			"SDW_DP0_INT read failed:%d\n", status);
1472 		return status;
1473 	}
1474 
1475 	do {
1476 		clear = status & ~SDW_DP0_INTERRUPTS;
1477 
1478 		if (status & SDW_DP0_INT_TEST_FAIL) {
1479 			dev_err(&slave->dev, "Test fail for port 0\n");
1480 			clear |= SDW_DP0_INT_TEST_FAIL;
1481 		}
1482 
1483 		/*
1484 		 * Assumption: PORT_READY interrupt will be received only for
1485 		 * ports implementing Channel Prepare state machine (CP_SM)
1486 		 */
1487 
1488 		if (status & SDW_DP0_INT_PORT_READY) {
1489 			complete(&slave->port_ready[0]);
1490 			clear |= SDW_DP0_INT_PORT_READY;
1491 		}
1492 
1493 		if (status & SDW_DP0_INT_BRA_FAILURE) {
1494 			dev_err(&slave->dev, "BRA failed\n");
1495 			clear |= SDW_DP0_INT_BRA_FAILURE;
1496 		}
1497 
1498 		impl_int_mask = SDW_DP0_INT_IMPDEF1 |
1499 			SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3;
1500 
1501 		if (status & impl_int_mask) {
1502 			clear |= impl_int_mask;
1503 			*slave_status = clear;
1504 		}
1505 
1506 		/* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */
1507 		ret = sdw_write_no_pm(slave, SDW_DP0_INT, clear);
1508 		if (ret < 0) {
1509 			dev_err(&slave->dev,
1510 				"SDW_DP0_INT write failed:%d\n", ret);
1511 			return ret;
1512 		}
1513 
1514 		/* Read DP0 interrupt again */
1515 		status2 = sdw_read_no_pm(slave, SDW_DP0_INT);
1516 		if (status2 < 0) {
1517 			dev_err(&slave->dev,
1518 				"SDW_DP0_INT read failed:%d\n", status2);
1519 			return status2;
1520 		}
1521 		/* filter to limit loop to interrupts identified in the first status read */
1522 		status &= status2;
1523 
1524 		count++;
1525 
1526 		/* we can get alerts while processing so keep retrying */
1527 	} while ((status & SDW_DP0_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1528 
1529 	if (count == SDW_READ_INTR_CLEAR_RETRY)
1530 		dev_warn(&slave->dev, "Reached MAX_RETRY on DP0 read\n");
1531 
1532 	return ret;
1533 }
1534 
sdw_handle_port_interrupt(struct sdw_slave * slave,int port,u8 * slave_status)1535 static int sdw_handle_port_interrupt(struct sdw_slave *slave,
1536 				     int port, u8 *slave_status)
1537 {
1538 	u8 clear, impl_int_mask;
1539 	int status, status2, ret, count = 0;
1540 	u32 addr;
1541 
1542 	if (port == 0)
1543 		return sdw_handle_dp0_interrupt(slave, slave_status);
1544 
1545 	addr = SDW_DPN_INT(port);
1546 	status = sdw_read_no_pm(slave, addr);
1547 	if (status < 0) {
1548 		dev_err(&slave->dev,
1549 			"SDW_DPN_INT read failed:%d\n", status);
1550 
1551 		return status;
1552 	}
1553 
1554 	do {
1555 		clear = status & ~SDW_DPN_INTERRUPTS;
1556 
1557 		if (status & SDW_DPN_INT_TEST_FAIL) {
1558 			dev_err(&slave->dev, "Test fail for port:%d\n", port);
1559 			clear |= SDW_DPN_INT_TEST_FAIL;
1560 		}
1561 
1562 		/*
1563 		 * Assumption: PORT_READY interrupt will be received only
1564 		 * for ports implementing CP_SM.
1565 		 */
1566 		if (status & SDW_DPN_INT_PORT_READY) {
1567 			complete(&slave->port_ready[port]);
1568 			clear |= SDW_DPN_INT_PORT_READY;
1569 		}
1570 
1571 		impl_int_mask = SDW_DPN_INT_IMPDEF1 |
1572 			SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3;
1573 
1574 		if (status & impl_int_mask) {
1575 			clear |= impl_int_mask;
1576 			*slave_status = clear;
1577 		}
1578 
1579 		/* clear the interrupt but don't touch reserved fields */
1580 		ret = sdw_write_no_pm(slave, addr, clear);
1581 		if (ret < 0) {
1582 			dev_err(&slave->dev,
1583 				"SDW_DPN_INT write failed:%d\n", ret);
1584 			return ret;
1585 		}
1586 
1587 		/* Read DPN interrupt again */
1588 		status2 = sdw_read_no_pm(slave, addr);
1589 		if (status2 < 0) {
1590 			dev_err(&slave->dev,
1591 				"SDW_DPN_INT read failed:%d\n", status2);
1592 			return status2;
1593 		}
1594 		/* filter to limit loop to interrupts identified in the first status read */
1595 		status &= status2;
1596 
1597 		count++;
1598 
1599 		/* we can get alerts while processing so keep retrying */
1600 	} while ((status & SDW_DPN_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1601 
1602 	if (count == SDW_READ_INTR_CLEAR_RETRY)
1603 		dev_warn(&slave->dev, "Reached MAX_RETRY on port read");
1604 
1605 	return ret;
1606 }
1607 
sdw_handle_slave_alerts(struct sdw_slave * slave)1608 static int sdw_handle_slave_alerts(struct sdw_slave *slave)
1609 {
1610 	struct sdw_slave_intr_status slave_intr;
1611 	u8 clear = 0, bit, port_status[15] = {0};
1612 	int port_num, stat, ret, count = 0;
1613 	unsigned long port;
1614 	bool slave_notify;
1615 	u8 sdca_cascade = 0;
1616 	u8 buf, buf2[2];
1617 	bool parity_check;
1618 	bool parity_quirk;
1619 
1620 	sdw_modify_slave_status(slave, SDW_SLAVE_ALERT);
1621 
1622 	ret = pm_runtime_get_sync(&slave->dev);
1623 	if (ret < 0 && ret != -EACCES) {
1624 		dev_err(&slave->dev, "Failed to resume device: %d\n", ret);
1625 		pm_runtime_put_noidle(&slave->dev);
1626 		return ret;
1627 	}
1628 
1629 	/* Read Intstat 1, Intstat 2 and Intstat 3 registers */
1630 	ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1631 	if (ret < 0) {
1632 		dev_err(&slave->dev,
1633 			"SDW_SCP_INT1 read failed:%d\n", ret);
1634 		goto io_err;
1635 	}
1636 	buf = ret;
1637 
1638 	ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1639 	if (ret < 0) {
1640 		dev_err(&slave->dev,
1641 			"SDW_SCP_INT2/3 read failed:%d\n", ret);
1642 		goto io_err;
1643 	}
1644 
1645 	if (slave->id.class_id) {
1646 		ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1647 		if (ret < 0) {
1648 			dev_err(&slave->dev,
1649 				"SDW_DP0_INT read failed:%d\n", ret);
1650 			goto io_err;
1651 		}
1652 		sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1653 	}
1654 
1655 	do {
1656 		slave_notify = false;
1657 
1658 		/*
1659 		 * Check parity, bus clash and Slave (impl defined)
1660 		 * interrupt
1661 		 */
1662 		if (buf & SDW_SCP_INT1_PARITY) {
1663 			parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY;
1664 			parity_quirk = !slave->first_interrupt_done &&
1665 				(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY);
1666 
1667 			if (parity_check && !parity_quirk)
1668 				dev_err(&slave->dev, "Parity error detected\n");
1669 			clear |= SDW_SCP_INT1_PARITY;
1670 		}
1671 
1672 		if (buf & SDW_SCP_INT1_BUS_CLASH) {
1673 			if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH)
1674 				dev_err(&slave->dev, "Bus clash detected\n");
1675 			clear |= SDW_SCP_INT1_BUS_CLASH;
1676 		}
1677 
1678 		/*
1679 		 * When bus clash or parity errors are detected, such errors
1680 		 * are unlikely to be recoverable errors.
1681 		 * TODO: In such scenario, reset bus. Make this configurable
1682 		 * via sysfs property with bus reset being the default.
1683 		 */
1684 
1685 		if (buf & SDW_SCP_INT1_IMPL_DEF) {
1686 			if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) {
1687 				dev_dbg(&slave->dev, "Slave impl defined interrupt\n");
1688 				slave_notify = true;
1689 			}
1690 			clear |= SDW_SCP_INT1_IMPL_DEF;
1691 		}
1692 
1693 		/* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */
1694 		if (sdca_cascade)
1695 			slave_notify = true;
1696 
1697 		/* Check port 0 - 3 interrupts */
1698 		port = buf & SDW_SCP_INT1_PORT0_3;
1699 
1700 		/* To get port number corresponding to bits, shift it */
1701 		port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port);
1702 		for_each_set_bit(bit, &port, 8) {
1703 			sdw_handle_port_interrupt(slave, bit,
1704 						  &port_status[bit]);
1705 		}
1706 
1707 		/* Check if cascade 2 interrupt is present */
1708 		if (buf & SDW_SCP_INT1_SCP2_CASCADE) {
1709 			port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10;
1710 			for_each_set_bit(bit, &port, 8) {
1711 				/* scp2 ports start from 4 */
1712 				port_num = bit + 4;
1713 				sdw_handle_port_interrupt(slave,
1714 						port_num,
1715 						&port_status[port_num]);
1716 			}
1717 		}
1718 
1719 		/* now check last cascade */
1720 		if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) {
1721 			port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14;
1722 			for_each_set_bit(bit, &port, 8) {
1723 				/* scp3 ports start from 11 */
1724 				port_num = bit + 11;
1725 				sdw_handle_port_interrupt(slave,
1726 						port_num,
1727 						&port_status[port_num]);
1728 			}
1729 		}
1730 
1731 		/* Update the Slave driver */
1732 		if (slave_notify) {
1733 			mutex_lock(&slave->sdw_dev_lock);
1734 
1735 			if (slave->probed) {
1736 				struct device *dev = &slave->dev;
1737 				struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1738 
1739 				if (slave->prop.use_domain_irq && slave->irq)
1740 					handle_nested_irq(slave->irq);
1741 
1742 				if (drv->ops && drv->ops->interrupt_callback) {
1743 					slave_intr.sdca_cascade = sdca_cascade;
1744 					slave_intr.control_port = clear;
1745 					memcpy(slave_intr.port, &port_status,
1746 					       sizeof(slave_intr.port));
1747 
1748 					drv->ops->interrupt_callback(slave, &slave_intr);
1749 				}
1750 			}
1751 
1752 			mutex_unlock(&slave->sdw_dev_lock);
1753 		}
1754 
1755 		/* Ack interrupt */
1756 		ret = sdw_write_no_pm(slave, SDW_SCP_INT1, clear);
1757 		if (ret < 0) {
1758 			dev_err(&slave->dev,
1759 				"SDW_SCP_INT1 write failed:%d\n", ret);
1760 			goto io_err;
1761 		}
1762 
1763 		/* at this point all initial interrupt sources were handled */
1764 		slave->first_interrupt_done = true;
1765 
1766 		/*
1767 		 * Read status again to ensure no new interrupts arrived
1768 		 * while servicing interrupts.
1769 		 */
1770 		ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1771 		if (ret < 0) {
1772 			dev_err(&slave->dev,
1773 				"SDW_SCP_INT1 recheck read failed:%d\n", ret);
1774 			goto io_err;
1775 		}
1776 		buf = ret;
1777 
1778 		ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1779 		if (ret < 0) {
1780 			dev_err(&slave->dev,
1781 				"SDW_SCP_INT2/3 recheck read failed:%d\n", ret);
1782 			goto io_err;
1783 		}
1784 
1785 		if (slave->id.class_id) {
1786 			ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1787 			if (ret < 0) {
1788 				dev_err(&slave->dev,
1789 					"SDW_DP0_INT recheck read failed:%d\n", ret);
1790 				goto io_err;
1791 			}
1792 			sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1793 		}
1794 
1795 		/*
1796 		 * Make sure no interrupts are pending
1797 		 */
1798 		stat = buf || buf2[0] || buf2[1] || sdca_cascade;
1799 
1800 		/*
1801 		 * Exit loop if Slave is continuously in ALERT state even
1802 		 * after servicing the interrupt multiple times.
1803 		 */
1804 		count++;
1805 
1806 		/* we can get alerts while processing so keep retrying */
1807 	} while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
1808 
1809 	if (count == SDW_READ_INTR_CLEAR_RETRY)
1810 		dev_warn(&slave->dev, "Reached MAX_RETRY on alert read\n");
1811 
1812 io_err:
1813 	pm_runtime_mark_last_busy(&slave->dev);
1814 	pm_runtime_put_autosuspend(&slave->dev);
1815 
1816 	return ret;
1817 }
1818 
sdw_update_slave_status(struct sdw_slave * slave,enum sdw_slave_status status)1819 static int sdw_update_slave_status(struct sdw_slave *slave,
1820 				   enum sdw_slave_status status)
1821 {
1822 	int ret = 0;
1823 
1824 	mutex_lock(&slave->sdw_dev_lock);
1825 
1826 	if (slave->probed) {
1827 		struct device *dev = &slave->dev;
1828 		struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1829 
1830 		if (drv->ops && drv->ops->update_status)
1831 			ret = drv->ops->update_status(slave, status);
1832 	}
1833 
1834 	mutex_unlock(&slave->sdw_dev_lock);
1835 
1836 	return ret;
1837 }
1838 
1839 /**
1840  * sdw_handle_slave_status() - Handle Slave status
1841  * @bus: SDW bus instance
1842  * @status: Status for all Slave(s)
1843  */
sdw_handle_slave_status(struct sdw_bus * bus,enum sdw_slave_status status[])1844 int sdw_handle_slave_status(struct sdw_bus *bus,
1845 			    enum sdw_slave_status status[])
1846 {
1847 	enum sdw_slave_status prev_status;
1848 	struct sdw_slave *slave;
1849 	bool attached_initializing, id_programmed;
1850 	int i, ret = 0;
1851 
1852 	/* first check if any Slaves fell off the bus */
1853 	for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1854 		mutex_lock(&bus->bus_lock);
1855 		if (test_bit(i, bus->assigned) == false) {
1856 			mutex_unlock(&bus->bus_lock);
1857 			continue;
1858 		}
1859 		mutex_unlock(&bus->bus_lock);
1860 
1861 		slave = sdw_get_slave(bus, i);
1862 		if (!slave)
1863 			continue;
1864 
1865 		if (status[i] == SDW_SLAVE_UNATTACHED &&
1866 		    slave->status != SDW_SLAVE_UNATTACHED) {
1867 			dev_warn(&slave->dev, "Slave %d state check1: UNATTACHED, status was %d\n",
1868 				 i, slave->status);
1869 			sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1870 
1871 			/* Ensure driver knows that peripheral unattached */
1872 			ret = sdw_update_slave_status(slave, status[i]);
1873 			if (ret < 0)
1874 				dev_warn(&slave->dev, "Update Slave status failed:%d\n", ret);
1875 		}
1876 	}
1877 
1878 	if (status[0] == SDW_SLAVE_ATTACHED) {
1879 		dev_dbg(bus->dev, "Slave attached, programming device number\n");
1880 
1881 		/*
1882 		 * Programming a device number will have side effects,
1883 		 * so we deal with other devices at a later time.
1884 		 * This relies on those devices reporting ATTACHED, which will
1885 		 * trigger another call to this function. This will only
1886 		 * happen if at least one device ID was programmed.
1887 		 * Error returns from sdw_program_device_num() are currently
1888 		 * ignored because there's no useful recovery that can be done.
1889 		 * Returning the error here could result in the current status
1890 		 * of other devices not being handled, because if no device IDs
1891 		 * were programmed there's nothing to guarantee a status change
1892 		 * to trigger another call to this function.
1893 		 */
1894 		sdw_program_device_num(bus, &id_programmed);
1895 		if (id_programmed)
1896 			return 0;
1897 	}
1898 
1899 	/* Continue to check other slave statuses */
1900 	for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1901 		mutex_lock(&bus->bus_lock);
1902 		if (test_bit(i, bus->assigned) == false) {
1903 			mutex_unlock(&bus->bus_lock);
1904 			continue;
1905 		}
1906 		mutex_unlock(&bus->bus_lock);
1907 
1908 		slave = sdw_get_slave(bus, i);
1909 		if (!slave)
1910 			continue;
1911 
1912 		attached_initializing = false;
1913 
1914 		switch (status[i]) {
1915 		case SDW_SLAVE_UNATTACHED:
1916 			if (slave->status == SDW_SLAVE_UNATTACHED)
1917 				break;
1918 
1919 			dev_warn(&slave->dev, "Slave %d state check2: UNATTACHED, status was %d\n",
1920 				 i, slave->status);
1921 
1922 			sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1923 			break;
1924 
1925 		case SDW_SLAVE_ALERT:
1926 			ret = sdw_handle_slave_alerts(slave);
1927 			if (ret < 0)
1928 				dev_err(&slave->dev,
1929 					"Slave %d alert handling failed: %d\n",
1930 					i, ret);
1931 			break;
1932 
1933 		case SDW_SLAVE_ATTACHED:
1934 			if (slave->status == SDW_SLAVE_ATTACHED)
1935 				break;
1936 
1937 			prev_status = slave->status;
1938 			sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED);
1939 
1940 			if (prev_status == SDW_SLAVE_ALERT)
1941 				break;
1942 
1943 			attached_initializing = true;
1944 
1945 			ret = sdw_initialize_slave(slave);
1946 			if (ret < 0)
1947 				dev_err(&slave->dev,
1948 					"Slave %d initialization failed: %d\n",
1949 					i, ret);
1950 
1951 			break;
1952 
1953 		default:
1954 			dev_err(&slave->dev, "Invalid slave %d status:%d\n",
1955 				i, status[i]);
1956 			break;
1957 		}
1958 
1959 		ret = sdw_update_slave_status(slave, status[i]);
1960 		if (ret < 0)
1961 			dev_err(&slave->dev,
1962 				"Update Slave status failed:%d\n", ret);
1963 		if (attached_initializing) {
1964 			dev_dbg(&slave->dev,
1965 				"signaling initialization completion for Slave %d\n",
1966 				slave->dev_num);
1967 
1968 			complete_all(&slave->initialization_complete);
1969 
1970 			/*
1971 			 * If the manager became pm_runtime active, the peripherals will be
1972 			 * restarted and attach, but their pm_runtime status may remain
1973 			 * suspended. If the 'update_slave_status' callback initiates
1974 			 * any sort of deferred processing, this processing would not be
1975 			 * cancelled on pm_runtime suspend.
1976 			 * To avoid such zombie states, we queue a request to resume.
1977 			 * This would be a no-op in case the peripheral was being resumed
1978 			 * by e.g. the ALSA/ASoC framework.
1979 			 */
1980 			pm_request_resume(&slave->dev);
1981 		}
1982 	}
1983 
1984 	return ret;
1985 }
1986 EXPORT_SYMBOL(sdw_handle_slave_status);
1987 
sdw_clear_slave_status(struct sdw_bus * bus,u32 request)1988 void sdw_clear_slave_status(struct sdw_bus *bus, u32 request)
1989 {
1990 	struct sdw_slave *slave;
1991 	int i;
1992 
1993 	/* Check all non-zero devices */
1994 	for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1995 		mutex_lock(&bus->bus_lock);
1996 		if (test_bit(i, bus->assigned) == false) {
1997 			mutex_unlock(&bus->bus_lock);
1998 			continue;
1999 		}
2000 		mutex_unlock(&bus->bus_lock);
2001 
2002 		slave = sdw_get_slave(bus, i);
2003 		if (!slave)
2004 			continue;
2005 
2006 		if (slave->status != SDW_SLAVE_UNATTACHED) {
2007 			sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
2008 			slave->first_interrupt_done = false;
2009 			sdw_update_slave_status(slave, SDW_SLAVE_UNATTACHED);
2010 		}
2011 
2012 		/* keep track of request, used in pm_runtime resume */
2013 		slave->unattach_request = request;
2014 	}
2015 }
2016 EXPORT_SYMBOL(sdw_clear_slave_status);
2017