1 // SPDX-License-Identifier: Apache-2.0
2 // SPDX-FileCopyrightText: Copyright 2017 Google Inc
3
4 #include "config.h"
5
6 #include "dbuspassive.hpp"
7
8 #include "conf.hpp"
9 #include "dbushelper_interface.hpp"
10 #include "dbuspassiveredundancy.hpp"
11 #include "dbusutil.hpp"
12 #include "failsafeloggers/failsafe_logger_utility.hpp"
13 #include "interfaces.hpp"
14 #include "util.hpp"
15
16 #include <systemd/sd-bus.h>
17
18 #include <sdbusplus/bus.hpp>
19 #include <sdbusplus/message.hpp>
20 #include <xyz/openbmc_project/Sensor/Threshold/Critical/common.hpp>
21 #include <xyz/openbmc_project/Sensor/Threshold/Warning/common.hpp>
22 #include <xyz/openbmc_project/Sensor/Value/client.hpp>
23 #include <xyz/openbmc_project/State/Decorator/Availability/common.hpp>
24 #include <xyz/openbmc_project/State/Decorator/OperationalStatus/common.hpp>
25
26 #include <chrono>
27 #include <cmath>
28 #include <cstdint>
29 #include <exception>
30 #include <limits>
31 #include <map>
32 #include <memory>
33 #include <mutex>
34 #include <set>
35 #include <string>
36 #include <utility>
37 #include <variant>
38
39 #include "failsafeloggers/failsafe_logger.cpp"
40
41 using SensorValue = sdbusplus::common::xyz::openbmc_project::sensor::Value;
42 using SensorThresholdWarning =
43 sdbusplus::common::xyz::openbmc_project::sensor::threshold::Warning;
44 using SensorThresholdCritical =
45 sdbusplus::common::xyz::openbmc_project::sensor::threshold::Critical;
46 using StateDecoratorAvailability =
47 sdbusplus::common::xyz::openbmc_project::state::decorator::Availability;
48 using StateDecoratorOperationalStatus = sdbusplus::common::xyz::
49 openbmc_project::state::decorator::OperationalStatus;
50
51 namespace pid_control
52 {
53
createDbusPassive(sdbusplus::bus_t & bus,const std::string & type,const std::string & id,std::unique_ptr<DbusHelperInterface> helper,const conf::SensorConfig * info,const std::shared_ptr<DbusPassiveRedundancy> & redundancy)54 std::unique_ptr<ReadInterface> DbusPassive::createDbusPassive(
55 sdbusplus::bus_t& bus, const std::string& type, const std::string& id,
56 std::unique_ptr<DbusHelperInterface> helper, const conf::SensorConfig* info,
57 const std::shared_ptr<DbusPassiveRedundancy>& redundancy)
58 {
59 if (helper == nullptr)
60 {
61 return nullptr;
62 }
63 if (!validType(type))
64 {
65 return nullptr;
66 }
67
68 /* Need to get the scale and initial value */
69 /* service == busname */
70 std::string path;
71 if (info->readPath.empty())
72 {
73 path = getSensorPath(type, id);
74 }
75 else
76 {
77 path = info->readPath;
78 }
79
80 SensorProperties settings;
81 bool failed;
82 bool objectMissing = false;
83 std::string service;
84
85 try
86 {
87 service = helper->getService(SensorValue::interface, path);
88 }
89 catch (const std::exception& e)
90 {
91 #ifndef HANDLE_MISSING_OBJECT_PATHS
92 return nullptr;
93 #else
94 // CASE1: The sensor is not on DBus, but as it is not in the
95 // MissingIsAcceptable list, the sensor should be built with a failed
96 // state to send the zone to failsafe mode. Everything will recover if
97 // all important sensors are back to DBus. swampd will be informed
98 // through InterfacesAdded signals and the sensors will be built again.
99
100 // CASE2: The sensor is on D-Bus (getService succeeds) but getProperties
101 // fails (e.g., D-Bus error or property fetch failure). In this case,
102 // handle-missing-object-paths does not apply. The sensor build fails,
103 // and the control loop will keep restarting until getProperties
104 // succeeds.
105
106 // Only CASE1 may send the zone to failsafe mode if the sensor is not
107 // in MissingIsAcceptable. CASE2 results in continuous restart until
108 // recovery.
109
110 failed = true;
111 objectMissing = true;
112 settings.value = std::numeric_limits<double>::quiet_NaN();
113 settings.unit = getSensorUnit(type);
114 settings.available = false;
115 settings.unavailableAsFailed = true;
116 if (info->ignoreDbusMinMax)
117 {
118 settings.min = 0;
119 settings.max = 0;
120 }
121 std::cerr << "DbusPassive: Sensor " << path
122 << " is missing from D-Bus, build this sensor as failed\n";
123 return std::make_unique<DbusPassive>(
124 bus, type, id, std::move(helper), settings, failed, objectMissing,
125 path, redundancy);
126 #endif
127 }
128
129 try
130 {
131 helper->getProperties(service, path, &settings);
132 failed = helper->thresholdsAsserted(service, path);
133 }
134 catch (const std::exception& e)
135 {
136 return nullptr;
137 }
138
139 /* if these values are zero, they're ignored. */
140 if (info->ignoreDbusMinMax)
141 {
142 settings.min = 0;
143 settings.max = 0;
144 }
145
146 settings.unavailableAsFailed = info->unavailableAsFailed;
147
148 return std::make_unique<DbusPassive>(
149 bus, type, id, std::move(helper), settings, failed, objectMissing, path,
150 redundancy);
151 }
152
DbusPassive(sdbusplus::bus_t & bus,const std::string & type,const std::string & id,std::unique_ptr<DbusHelperInterface> helper,const SensorProperties & settings,bool failed,bool objectMissing,const std::string & path,const std::shared_ptr<DbusPassiveRedundancy> & redundancy)153 DbusPassive::DbusPassive(
154 sdbusplus::bus_t& bus, const std::string& type, const std::string& id,
155 std::unique_ptr<DbusHelperInterface> helper,
156 const SensorProperties& settings, bool failed, bool objectMissing,
157 const std::string& path,
158 const std::shared_ptr<DbusPassiveRedundancy>& redundancy) :
159 ReadInterface(), _signal(bus, getMatch(path), dbusHandleSignal, this),
160 _id(id), _helper(std::move(helper)), _failed(failed),
161 _objectMissing(objectMissing), path(path), redundancy(redundancy)
162
163 {
164 _scale = settings.scale;
165 _min = settings.min * std::pow(10.0, _scale);
166 _max = settings.max * std::pow(10.0, _scale);
167 _available = settings.available;
168 _unavailableAsFailed = settings.unavailableAsFailed;
169
170 // Cache this type knowledge, to avoid repeated string comparison
171 _typeMargin = (type == "margin");
172 _typeFan = (type == "fan");
173
174 // Force value to be stored, otherwise member would be uninitialized
175 updateValue(settings.value, true);
176 }
177
read(void)178 ReadReturn DbusPassive::read(void)
179 {
180 std::lock_guard<std::mutex> guard(_lock);
181
182 ReadReturn r = {_value, _updated, _unscaled};
183
184 return r;
185 }
186
setValue(double value,double unscaled)187 void DbusPassive::setValue(double value, double unscaled)
188 {
189 std::lock_guard<std::mutex> guard(_lock);
190
191 _value = value;
192 _unscaled = unscaled;
193 _updated = std::chrono::high_resolution_clock::now();
194 }
195
setValue(double value)196 void DbusPassive::setValue(double value)
197 {
198 // First param is scaled, second param is unscaled, assume same here
199 setValue(value, value);
200 }
201
getFailed(void) const202 bool DbusPassive::getFailed(void) const
203 {
204 if (redundancy)
205 {
206 const std::set<std::string>& failures = redundancy->getFailed();
207 if (failures.find(path) != failures.end())
208 {
209 outputFailsafeLogWithSensor(_id, true, _id,
210 "The sensor path is marked redundant.");
211 return true;
212 }
213 }
214
215 /*
216 * If handle-missing-object-paths is enabled, and the expected D-Bus object
217 * path is not exported, this sensor is created to represent that condition.
218 * Indicate this sensor has failed so the zone enters failSafe mode.
219 */
220 if (_objectMissing)
221 {
222 outputFailsafeLogWithSensor(_id, true, _id,
223 "The sensor D-Bus object is missing.");
224 return true;
225 }
226
227 /*
228 * Unavailable thermal sensors, who are not present or
229 * power-state-not-matching, should not trigger the failSafe mode. For
230 * example, when a system stays at a powered-off state, its CPU Temp
231 * sensors will be unavailable, these unavailable sensors should not be
232 * treated as failed and trigger failSafe.
233 * This is important for systems whose Fans are always on.
234 */
235 if (!_typeFan && !_available && !_unavailableAsFailed)
236 {
237 return false;
238 }
239
240 // If a reading has came in,
241 // but its value bad in some way (determined by sensor type),
242 // indicate this sensor has failed,
243 // until another value comes in that is no longer bad.
244 // This is different from the overall _failed flag,
245 // which is set and cleared by other causes.
246 if (_badReading)
247 {
248 outputFailsafeLogWithSensor(_id, true, _id,
249 "The sensor has bad readings.");
250 return true;
251 }
252
253 // If a reading has came in, and it is not a bad reading,
254 // but it indicates there is no more thermal margin left,
255 // that is bad, something is wrong with the PID loops,
256 // they are not cooling the system, enable failsafe mode also.
257 if (_marginHot)
258 {
259 outputFailsafeLogWithSensor(_id, true, _id,
260 "The sensor has no thermal margin left.");
261 return true;
262 }
263
264 if (_failed)
265 {
266 outputFailsafeLogWithSensor(
267 _id, true, _id, "The sensor has failed with a critical issue.");
268 return true;
269 }
270
271 if (!_available)
272 {
273 outputFailsafeLogWithSensor(_id, true, _id,
274 "The sensor is unavailable.");
275 return true;
276 }
277
278 if (!_functional)
279 {
280 outputFailsafeLogWithSensor(_id, true, _id,
281 "The sensor is not functional.");
282 return true;
283 }
284
285 outputFailsafeLogWithSensor(_id, false, _id, "The sensor has recovered.");
286
287 return false;
288 }
289
getFailReason(void) const290 std::string DbusPassive::getFailReason(void) const
291 {
292 if (_objectMissing)
293 {
294 return "Sensor D-Bus object missing";
295 }
296 if (_badReading)
297 {
298 return "Sensor reading bad";
299 }
300 if (_marginHot)
301 {
302 return "Margin hot";
303 }
304 if (_failed)
305 {
306 return "Sensor threshold asserted";
307 }
308 if (!_available)
309 {
310 return "Sensor unavailable";
311 }
312 if (!_functional)
313 {
314 return "Sensor not functional";
315 }
316 return "Unknown";
317 }
318
setFailed(bool value)319 void DbusPassive::setFailed(bool value)
320 {
321 _failed = value;
322 }
323
setFunctional(bool value)324 void DbusPassive::setFunctional(bool value)
325 {
326 _functional = value;
327 }
328
setAvailable(bool value)329 void DbusPassive::setAvailable(bool value)
330 {
331 _available = value;
332 }
333
getScale(void)334 int64_t DbusPassive::getScale(void)
335 {
336 return _scale;
337 }
338
getID(void)339 std::string DbusPassive::getID(void)
340 {
341 return _id;
342 }
343
getMax(void)344 double DbusPassive::getMax(void)
345 {
346 return _max;
347 }
348
getMin(void)349 double DbusPassive::getMin(void)
350 {
351 return _min;
352 }
353
updateValue(double value,bool force)354 void DbusPassive::updateValue(double value, bool force)
355 {
356 _badReading = false;
357
358 // Do not let a NAN, or other floating-point oddity, be used to update
359 // the value, as that indicates the sensor has no valid reading.
360 if (!(std::isfinite(value)))
361 {
362 _badReading = true;
363
364 // Do not continue with a bad reading, unless caller forcing
365 if (!force)
366 {
367 return;
368 }
369 }
370
371 value *= std::pow(10.0, _scale);
372
373 auto unscaled = value;
374 scaleSensorReading(_min, _max, value);
375
376 if (_typeMargin)
377 {
378 _marginHot = false;
379
380 // Unlike an absolute temperature sensor,
381 // where 0 degrees C is a good reading,
382 // a value received of 0 (or negative) margin is worrisome,
383 // and should be flagged.
384 // Either it indicates margin not calculated properly,
385 // or somebody forgot to set the margin-zero setpoint,
386 // or the system is really overheating that much.
387 // This is a different condition from _failed
388 // and _badReading, so it merits its own flag.
389 // The sensor has not failed, the reading is good, but the zone
390 // still needs to know that it should go to failsafe mode.
391 if (unscaled <= 0.0)
392 {
393 _marginHot = true;
394 }
395 }
396
397 setValue(value, unscaled);
398 }
399
handleSensorValue(sdbusplus::message_t & msg,DbusPassive * owner)400 int handleSensorValue(sdbusplus::message_t& msg, DbusPassive* owner)
401 {
402 std::string msgSensor;
403 std::map<std::string, std::variant<int64_t, double, bool>> msgData;
404
405 msg.read(msgSensor, msgData);
406
407 if (msgSensor == SensorValue::interface)
408 {
409 auto valPropMap = msgData.find(SensorValue::property_names::value);
410 if (valPropMap != msgData.end())
411 {
412 double value =
413 std::visit(VariantToDoubleVisitor(), valPropMap->second);
414
415 owner->updateValue(value, false);
416 }
417 }
418 else if (msgSensor == SensorThresholdCritical::interface)
419 {
420 auto criticalAlarmLow = msgData.find(
421 SensorThresholdCritical::property_names::critical_alarm_low);
422 auto criticalAlarmHigh = msgData.find(
423 SensorThresholdCritical::property_names::critical_alarm_high);
424 if (criticalAlarmHigh == msgData.end() &&
425 criticalAlarmLow == msgData.end())
426 {
427 return 0;
428 }
429
430 bool asserted = false;
431 if (criticalAlarmLow != msgData.end())
432 {
433 asserted = std::get<bool>(criticalAlarmLow->second);
434 }
435
436 // checking both as in theory you could de-assert one threshold and
437 // assert the other at the same moment
438 if (!asserted && criticalAlarmHigh != msgData.end())
439 {
440 asserted = std::get<bool>(criticalAlarmHigh->second);
441 }
442 owner->setFailed(asserted);
443 }
444 #ifdef UNC_FAILSAFE
445 else if (msgSensor == SensorThresholdWarning::interface)
446 {
447 auto warningAlarmHigh = msgData.find(
448 SensorThresholdWarning::property_names::warning_alarm_high);
449 if (warningAlarmHigh == msgData.end())
450 {
451 return 0;
452 }
453
454 bool asserted = false;
455 if (warningAlarmHigh != msgData.end())
456 {
457 asserted = std::get<bool>(warningAlarmHigh->second);
458 }
459 owner->setFailed(asserted);
460 }
461 #endif
462 else if (msgSensor == StateDecoratorAvailability::interface)
463 {
464 auto available =
465 msgData.find(StateDecoratorAvailability::property_names::available);
466 if (available == msgData.end())
467 {
468 return 0;
469 }
470 bool asserted = std::get<bool>(available->second);
471 owner->setAvailable(asserted);
472 if (!asserted)
473 {
474 // A thermal controller will continue its PID calculation and not
475 // trigger a 'failsafe' when some inputs are unavailable.
476 // So, forced to clear the value here to prevent a historical
477 // value to participate in a latter PID calculation.
478 owner->updateValue(std::numeric_limits<double>::quiet_NaN(), true);
479 }
480 }
481 else if (msgSensor == StateDecoratorOperationalStatus::interface)
482 {
483 auto functional = msgData.find(
484 StateDecoratorOperationalStatus::property_names::functional);
485 if (functional == msgData.end())
486 {
487 return 0;
488 }
489 bool asserted = std::get<bool>(functional->second);
490 owner->setFunctional(asserted);
491 }
492
493 return 0;
494 }
495
dbusHandleSignal(sd_bus_message * msg,void * usrData,sd_bus_error * err)496 int dbusHandleSignal(sd_bus_message* msg, void* usrData,
497 [[maybe_unused]] sd_bus_error* err)
498 {
499 auto sdbpMsg = sdbusplus::message_t(msg);
500 DbusPassive* obj = static_cast<DbusPassive*>(usrData);
501
502 return handleSensorValue(sdbpMsg, obj);
503 }
504
505 } // namespace pid_control
506