1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 #include <linux/usb.h>
12 #include <linux/overflow.h>
13 #include <linux/pci.h>
14 #include <linux/slab.h>
15 #include <linux/dmapool.h>
16 #include <linux/dma-mapping.h>
17
18 #include "xhci.h"
19 #include "xhci-trace.h"
20 #include "xhci-debugfs.h"
21
22 /*
23 * Allocates a generic ring segment from the ring pool, sets the dma address,
24 * initializes the segment to zero, and sets the private next pointer to NULL.
25 *
26 * Section 4.11.1.1:
27 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
28 */
xhci_segment_alloc(struct xhci_hcd * xhci,unsigned int cycle_state,unsigned int max_packet,unsigned int num,gfp_t flags)29 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
30 unsigned int cycle_state,
31 unsigned int max_packet,
32 unsigned int num,
33 gfp_t flags)
34 {
35 struct xhci_segment *seg;
36 dma_addr_t dma;
37 int i;
38 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
39
40 seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
41 if (!seg)
42 return NULL;
43
44 seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
45 if (!seg->trbs) {
46 kfree(seg);
47 return NULL;
48 }
49
50 if (max_packet) {
51 seg->bounce_buf = kzalloc_node(max_packet, flags,
52 dev_to_node(dev));
53 if (!seg->bounce_buf) {
54 dma_pool_free(xhci->segment_pool, seg->trbs, dma);
55 kfree(seg);
56 return NULL;
57 }
58 }
59 /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
60 if (cycle_state == 0) {
61 for (i = 0; i < TRBS_PER_SEGMENT; i++)
62 seg->trbs[i].link.control = cpu_to_le32(TRB_CYCLE);
63 }
64 seg->num = num;
65 seg->dma = dma;
66 seg->next = NULL;
67
68 return seg;
69 }
70
xhci_segment_free(struct xhci_hcd * xhci,struct xhci_segment * seg)71 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
72 {
73 if (seg->trbs) {
74 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
75 seg->trbs = NULL;
76 }
77 kfree(seg->bounce_buf);
78 kfree(seg);
79 }
80
xhci_free_segments_for_ring(struct xhci_hcd * xhci,struct xhci_segment * first)81 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
82 struct xhci_segment *first)
83 {
84 struct xhci_segment *seg;
85
86 seg = first->next;
87 while (seg != first) {
88 struct xhci_segment *next = seg->next;
89 xhci_segment_free(xhci, seg);
90 seg = next;
91 }
92 xhci_segment_free(xhci, first);
93 }
94
95 /*
96 * Make the prev segment point to the next segment.
97 *
98 * Change the last TRB in the prev segment to be a Link TRB which points to the
99 * DMA address of the next segment. The caller needs to set any Link TRB
100 * related flags, such as End TRB, Toggle Cycle, and no snoop.
101 */
xhci_link_segments(struct xhci_segment * prev,struct xhci_segment * next,enum xhci_ring_type type,bool chain_links)102 static void xhci_link_segments(struct xhci_segment *prev,
103 struct xhci_segment *next,
104 enum xhci_ring_type type, bool chain_links)
105 {
106 u32 val;
107
108 if (!prev || !next)
109 return;
110 prev->next = next;
111 if (type != TYPE_EVENT) {
112 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
113 cpu_to_le64(next->dma);
114
115 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
116 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
117 val &= ~TRB_TYPE_BITMASK;
118 val |= TRB_TYPE(TRB_LINK);
119 if (chain_links)
120 val |= TRB_CHAIN;
121 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
122 }
123 }
124
125 /*
126 * Link the ring to the new segments.
127 * Set Toggle Cycle for the new ring if needed.
128 */
xhci_link_rings(struct xhci_hcd * xhci,struct xhci_ring * ring,struct xhci_segment * first,struct xhci_segment * last,unsigned int num_segs)129 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
130 struct xhci_segment *first, struct xhci_segment *last,
131 unsigned int num_segs)
132 {
133 struct xhci_segment *next;
134 bool chain_links;
135
136 if (!ring || !first || !last)
137 return;
138
139 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
140 chain_links = !!(xhci_link_trb_quirk(xhci) ||
141 (ring->type == TYPE_ISOC &&
142 (xhci->quirks & XHCI_AMD_0x96_HOST)));
143
144 next = ring->enq_seg->next;
145 xhci_link_segments(ring->enq_seg, first, ring->type, chain_links);
146 xhci_link_segments(last, next, ring->type, chain_links);
147 ring->num_segs += num_segs;
148
149 if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
150 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
151 &= ~cpu_to_le32(LINK_TOGGLE);
152 last->trbs[TRBS_PER_SEGMENT-1].link.control
153 |= cpu_to_le32(LINK_TOGGLE);
154 ring->last_seg = last;
155 }
156 }
157
158 /*
159 * We need a radix tree for mapping physical addresses of TRBs to which stream
160 * ID they belong to. We need to do this because the host controller won't tell
161 * us which stream ring the TRB came from. We could store the stream ID in an
162 * event data TRB, but that doesn't help us for the cancellation case, since the
163 * endpoint may stop before it reaches that event data TRB.
164 *
165 * The radix tree maps the upper portion of the TRB DMA address to a ring
166 * segment that has the same upper portion of DMA addresses. For example, say I
167 * have segments of size 1KB, that are always 1KB aligned. A segment may
168 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
169 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
170 * pass the radix tree a key to get the right stream ID:
171 *
172 * 0x10c90fff >> 10 = 0x43243
173 * 0x10c912c0 >> 10 = 0x43244
174 * 0x10c91400 >> 10 = 0x43245
175 *
176 * Obviously, only those TRBs with DMA addresses that are within the segment
177 * will make the radix tree return the stream ID for that ring.
178 *
179 * Caveats for the radix tree:
180 *
181 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
182 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
183 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
184 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
185 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
186 * extended systems (where the DMA address can be bigger than 32-bits),
187 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
188 */
xhci_insert_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * seg,gfp_t mem_flags)189 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
190 struct xhci_ring *ring,
191 struct xhci_segment *seg,
192 gfp_t mem_flags)
193 {
194 unsigned long key;
195 int ret;
196
197 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
198 /* Skip any segments that were already added. */
199 if (radix_tree_lookup(trb_address_map, key))
200 return 0;
201
202 ret = radix_tree_maybe_preload(mem_flags);
203 if (ret)
204 return ret;
205 ret = radix_tree_insert(trb_address_map,
206 key, ring);
207 radix_tree_preload_end();
208 return ret;
209 }
210
xhci_remove_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_segment * seg)211 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
212 struct xhci_segment *seg)
213 {
214 unsigned long key;
215
216 key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
217 if (radix_tree_lookup(trb_address_map, key))
218 radix_tree_delete(trb_address_map, key);
219 }
220
xhci_update_stream_segment_mapping(struct radix_tree_root * trb_address_map,struct xhci_ring * ring,struct xhci_segment * first_seg,struct xhci_segment * last_seg,gfp_t mem_flags)221 static int xhci_update_stream_segment_mapping(
222 struct radix_tree_root *trb_address_map,
223 struct xhci_ring *ring,
224 struct xhci_segment *first_seg,
225 struct xhci_segment *last_seg,
226 gfp_t mem_flags)
227 {
228 struct xhci_segment *seg;
229 struct xhci_segment *failed_seg;
230 int ret;
231
232 if (WARN_ON_ONCE(trb_address_map == NULL))
233 return 0;
234
235 seg = first_seg;
236 do {
237 ret = xhci_insert_segment_mapping(trb_address_map,
238 ring, seg, mem_flags);
239 if (ret)
240 goto remove_streams;
241 if (seg == last_seg)
242 return 0;
243 seg = seg->next;
244 } while (seg != first_seg);
245
246 return 0;
247
248 remove_streams:
249 failed_seg = seg;
250 seg = first_seg;
251 do {
252 xhci_remove_segment_mapping(trb_address_map, seg);
253 if (seg == failed_seg)
254 return ret;
255 seg = seg->next;
256 } while (seg != first_seg);
257
258 return ret;
259 }
260
xhci_remove_stream_mapping(struct xhci_ring * ring)261 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
262 {
263 struct xhci_segment *seg;
264
265 if (WARN_ON_ONCE(ring->trb_address_map == NULL))
266 return;
267
268 seg = ring->first_seg;
269 do {
270 xhci_remove_segment_mapping(ring->trb_address_map, seg);
271 seg = seg->next;
272 } while (seg != ring->first_seg);
273 }
274
xhci_update_stream_mapping(struct xhci_ring * ring,gfp_t mem_flags)275 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
276 {
277 return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
278 ring->first_seg, ring->last_seg, mem_flags);
279 }
280
281 /* XXX: Do we need the hcd structure in all these functions? */
xhci_ring_free(struct xhci_hcd * xhci,struct xhci_ring * ring)282 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
283 {
284 if (!ring)
285 return;
286
287 trace_xhci_ring_free(ring);
288
289 if (ring->first_seg) {
290 if (ring->type == TYPE_STREAM)
291 xhci_remove_stream_mapping(ring);
292 xhci_free_segments_for_ring(xhci, ring->first_seg);
293 }
294
295 kfree(ring);
296 }
297
xhci_initialize_ring_info(struct xhci_ring * ring,unsigned int cycle_state)298 void xhci_initialize_ring_info(struct xhci_ring *ring,
299 unsigned int cycle_state)
300 {
301 /* The ring is empty, so the enqueue pointer == dequeue pointer */
302 ring->enqueue = ring->first_seg->trbs;
303 ring->enq_seg = ring->first_seg;
304 ring->dequeue = ring->enqueue;
305 ring->deq_seg = ring->first_seg;
306 /* The ring is initialized to 0. The producer must write 1 to the cycle
307 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
308 * compare CCS to the cycle bit to check ownership, so CCS = 1.
309 *
310 * New rings are initialized with cycle state equal to 1; if we are
311 * handling ring expansion, set the cycle state equal to the old ring.
312 */
313 ring->cycle_state = cycle_state;
314
315 /*
316 * Each segment has a link TRB, and leave an extra TRB for SW
317 * accounting purpose
318 */
319 ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
320 }
321 EXPORT_SYMBOL_GPL(xhci_initialize_ring_info);
322
323 /* Allocate segments and link them for a ring */
xhci_alloc_segments_for_ring(struct xhci_hcd * xhci,struct xhci_segment ** first,struct xhci_segment ** last,unsigned int num_segs,unsigned int cycle_state,enum xhci_ring_type type,unsigned int max_packet,gfp_t flags)324 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
325 struct xhci_segment **first, struct xhci_segment **last,
326 unsigned int num_segs, unsigned int cycle_state,
327 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
328 {
329 struct xhci_segment *prev;
330 unsigned int num = 0;
331 bool chain_links;
332
333 /* Set chain bit for 0.95 hosts, and for isoc rings on AMD 0.96 host */
334 chain_links = !!(xhci_link_trb_quirk(xhci) ||
335 (type == TYPE_ISOC &&
336 (xhci->quirks & XHCI_AMD_0x96_HOST)));
337
338 prev = xhci_segment_alloc(xhci, cycle_state, max_packet, num, flags);
339 if (!prev)
340 return -ENOMEM;
341 num++;
342
343 *first = prev;
344 while (num < num_segs) {
345 struct xhci_segment *next;
346
347 next = xhci_segment_alloc(xhci, cycle_state, max_packet, num,
348 flags);
349 if (!next) {
350 prev = *first;
351 while (prev) {
352 next = prev->next;
353 xhci_segment_free(xhci, prev);
354 prev = next;
355 }
356 return -ENOMEM;
357 }
358 xhci_link_segments(prev, next, type, chain_links);
359
360 prev = next;
361 num++;
362 }
363 xhci_link_segments(prev, *first, type, chain_links);
364 *last = prev;
365
366 return 0;
367 }
368
369 /*
370 * Create a new ring with zero or more segments.
371 *
372 * Link each segment together into a ring.
373 * Set the end flag and the cycle toggle bit on the last segment.
374 * See section 4.9.1 and figures 15 and 16.
375 */
xhci_ring_alloc(struct xhci_hcd * xhci,unsigned int num_segs,unsigned int cycle_state,enum xhci_ring_type type,unsigned int max_packet,gfp_t flags)376 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
377 unsigned int num_segs, unsigned int cycle_state,
378 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
379 {
380 struct xhci_ring *ring;
381 int ret;
382 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
383
384 ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
385 if (!ring)
386 return NULL;
387
388 ring->num_segs = num_segs;
389 ring->bounce_buf_len = max_packet;
390 INIT_LIST_HEAD(&ring->td_list);
391 ring->type = type;
392 if (num_segs == 0)
393 return ring;
394
395 ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
396 &ring->last_seg, num_segs, cycle_state, type,
397 max_packet, flags);
398 if (ret)
399 goto fail;
400
401 /* Only event ring does not use link TRB */
402 if (type != TYPE_EVENT) {
403 /* See section 4.9.2.1 and 6.4.4.1 */
404 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
405 cpu_to_le32(LINK_TOGGLE);
406 }
407 xhci_initialize_ring_info(ring, cycle_state);
408 trace_xhci_ring_alloc(ring);
409 return ring;
410
411 fail:
412 kfree(ring);
413 return NULL;
414 }
415
xhci_free_endpoint_ring(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,unsigned int ep_index)416 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
417 struct xhci_virt_device *virt_dev,
418 unsigned int ep_index)
419 {
420 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
421 virt_dev->eps[ep_index].ring = NULL;
422 }
423
424 /*
425 * Expand an existing ring.
426 * Allocate a new ring which has same segment numbers and link the two rings.
427 */
xhci_ring_expansion(struct xhci_hcd * xhci,struct xhci_ring * ring,unsigned int num_new_segs,gfp_t flags)428 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
429 unsigned int num_new_segs, gfp_t flags)
430 {
431 struct xhci_segment *first;
432 struct xhci_segment *last;
433 int ret;
434
435 ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
436 num_new_segs, ring->cycle_state, ring->type,
437 ring->bounce_buf_len, flags);
438 if (ret)
439 return -ENOMEM;
440
441 if (ring->type == TYPE_STREAM)
442 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
443 ring, first, last, flags);
444 if (ret) {
445 struct xhci_segment *next;
446 do {
447 next = first->next;
448 xhci_segment_free(xhci, first);
449 if (first == last)
450 break;
451 first = next;
452 } while (true);
453 return ret;
454 }
455
456 xhci_link_rings(xhci, ring, first, last, num_new_segs);
457 trace_xhci_ring_expansion(ring);
458 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
459 "ring expansion succeed, now has %d segments",
460 ring->num_segs);
461
462 return 0;
463 }
464
xhci_alloc_container_ctx(struct xhci_hcd * xhci,int type,gfp_t flags)465 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
466 int type, gfp_t flags)
467 {
468 struct xhci_container_ctx *ctx;
469 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
470
471 if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
472 return NULL;
473
474 ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
475 if (!ctx)
476 return NULL;
477
478 ctx->type = type;
479 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
480 if (type == XHCI_CTX_TYPE_INPUT)
481 ctx->size += CTX_SIZE(xhci->hcc_params);
482
483 ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
484 if (!ctx->bytes) {
485 kfree(ctx);
486 return NULL;
487 }
488 return ctx;
489 }
490
xhci_free_container_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)491 void xhci_free_container_ctx(struct xhci_hcd *xhci,
492 struct xhci_container_ctx *ctx)
493 {
494 if (!ctx)
495 return;
496 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
497 kfree(ctx);
498 }
499
xhci_get_input_control_ctx(struct xhci_container_ctx * ctx)500 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
501 struct xhci_container_ctx *ctx)
502 {
503 if (ctx->type != XHCI_CTX_TYPE_INPUT)
504 return NULL;
505
506 return (struct xhci_input_control_ctx *)ctx->bytes;
507 }
508
xhci_get_slot_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx)509 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
510 struct xhci_container_ctx *ctx)
511 {
512 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
513 return (struct xhci_slot_ctx *)ctx->bytes;
514
515 return (struct xhci_slot_ctx *)
516 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
517 }
518
xhci_get_ep_ctx(struct xhci_hcd * xhci,struct xhci_container_ctx * ctx,unsigned int ep_index)519 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
520 struct xhci_container_ctx *ctx,
521 unsigned int ep_index)
522 {
523 /* increment ep index by offset of start of ep ctx array */
524 ep_index++;
525 if (ctx->type == XHCI_CTX_TYPE_INPUT)
526 ep_index++;
527
528 return (struct xhci_ep_ctx *)
529 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
530 }
531 EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
532
533 /***************** Streams structures manipulation *************************/
534
xhci_free_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,struct xhci_stream_ctx * stream_ctx,dma_addr_t dma)535 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
536 unsigned int num_stream_ctxs,
537 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
538 {
539 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
540 size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
541
542 if (size > MEDIUM_STREAM_ARRAY_SIZE)
543 dma_free_coherent(dev, size, stream_ctx, dma);
544 else if (size > SMALL_STREAM_ARRAY_SIZE)
545 dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma);
546 else
547 dma_pool_free(xhci->small_streams_pool, stream_ctx, dma);
548 }
549
550 /*
551 * The stream context array for each endpoint with bulk streams enabled can
552 * vary in size, based on:
553 * - how many streams the endpoint supports,
554 * - the maximum primary stream array size the host controller supports,
555 * - and how many streams the device driver asks for.
556 *
557 * The stream context array must be a power of 2, and can be as small as
558 * 64 bytes or as large as 1MB.
559 */
xhci_alloc_stream_ctx(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,dma_addr_t * dma,gfp_t mem_flags)560 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
561 unsigned int num_stream_ctxs, dma_addr_t *dma,
562 gfp_t mem_flags)
563 {
564 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
565 size_t size = size_mul(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
566
567 if (size > MEDIUM_STREAM_ARRAY_SIZE)
568 return dma_alloc_coherent(dev, size, dma, mem_flags);
569 if (size > SMALL_STREAM_ARRAY_SIZE)
570 return dma_pool_zalloc(xhci->medium_streams_pool, mem_flags, dma);
571 else
572 return dma_pool_zalloc(xhci->small_streams_pool, mem_flags, dma);
573 }
574
xhci_dma_to_transfer_ring(struct xhci_virt_ep * ep,u64 address)575 struct xhci_ring *xhci_dma_to_transfer_ring(
576 struct xhci_virt_ep *ep,
577 u64 address)
578 {
579 if (ep->ep_state & EP_HAS_STREAMS)
580 return radix_tree_lookup(&ep->stream_info->trb_address_map,
581 address >> TRB_SEGMENT_SHIFT);
582 return ep->ring;
583 }
584
585 /*
586 * Change an endpoint's internal structure so it supports stream IDs. The
587 * number of requested streams includes stream 0, which cannot be used by device
588 * drivers.
589 *
590 * The number of stream contexts in the stream context array may be bigger than
591 * the number of streams the driver wants to use. This is because the number of
592 * stream context array entries must be a power of two.
593 */
xhci_alloc_stream_info(struct xhci_hcd * xhci,unsigned int num_stream_ctxs,unsigned int num_streams,unsigned int max_packet,gfp_t mem_flags)594 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
595 unsigned int num_stream_ctxs,
596 unsigned int num_streams,
597 unsigned int max_packet, gfp_t mem_flags)
598 {
599 struct xhci_stream_info *stream_info;
600 u32 cur_stream;
601 struct xhci_ring *cur_ring;
602 u64 addr;
603 int ret;
604 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
605
606 xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n",
607 num_streams, num_stream_ctxs);
608 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
609 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
610 return NULL;
611 }
612 xhci->cmd_ring_reserved_trbs++;
613
614 stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
615 dev_to_node(dev));
616 if (!stream_info)
617 goto cleanup_trbs;
618
619 stream_info->num_streams = num_streams;
620 stream_info->num_stream_ctxs = num_stream_ctxs;
621
622 /* Initialize the array of virtual pointers to stream rings. */
623 stream_info->stream_rings = kcalloc_node(
624 num_streams, sizeof(struct xhci_ring *), mem_flags,
625 dev_to_node(dev));
626 if (!stream_info->stream_rings)
627 goto cleanup_info;
628
629 /* Initialize the array of DMA addresses for stream rings for the HW. */
630 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
631 num_stream_ctxs, &stream_info->ctx_array_dma,
632 mem_flags);
633 if (!stream_info->stream_ctx_array)
634 goto cleanup_ring_array;
635
636 /* Allocate everything needed to free the stream rings later */
637 stream_info->free_streams_command =
638 xhci_alloc_command_with_ctx(xhci, true, mem_flags);
639 if (!stream_info->free_streams_command)
640 goto cleanup_ctx;
641
642 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
643
644 /* Allocate rings for all the streams that the driver will use,
645 * and add their segment DMA addresses to the radix tree.
646 * Stream 0 is reserved.
647 */
648
649 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
650 stream_info->stream_rings[cur_stream] =
651 xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
652 mem_flags);
653 cur_ring = stream_info->stream_rings[cur_stream];
654 if (!cur_ring)
655 goto cleanup_rings;
656 cur_ring->stream_id = cur_stream;
657 cur_ring->trb_address_map = &stream_info->trb_address_map;
658 /* Set deq ptr, cycle bit, and stream context type */
659 addr = cur_ring->first_seg->dma |
660 SCT_FOR_CTX(SCT_PRI_TR) |
661 cur_ring->cycle_state;
662 stream_info->stream_ctx_array[cur_stream].stream_ring =
663 cpu_to_le64(addr);
664 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr);
665
666 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
667 if (ret) {
668 xhci_ring_free(xhci, cur_ring);
669 stream_info->stream_rings[cur_stream] = NULL;
670 goto cleanup_rings;
671 }
672 }
673 /* Leave the other unused stream ring pointers in the stream context
674 * array initialized to zero. This will cause the xHC to give us an
675 * error if the device asks for a stream ID we don't have setup (if it
676 * was any other way, the host controller would assume the ring is
677 * "empty" and wait forever for data to be queued to that stream ID).
678 */
679
680 return stream_info;
681
682 cleanup_rings:
683 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
684 cur_ring = stream_info->stream_rings[cur_stream];
685 if (cur_ring) {
686 xhci_ring_free(xhci, cur_ring);
687 stream_info->stream_rings[cur_stream] = NULL;
688 }
689 }
690 xhci_free_command(xhci, stream_info->free_streams_command);
691 cleanup_ctx:
692 xhci_free_stream_ctx(xhci,
693 stream_info->num_stream_ctxs,
694 stream_info->stream_ctx_array,
695 stream_info->ctx_array_dma);
696 cleanup_ring_array:
697 kfree(stream_info->stream_rings);
698 cleanup_info:
699 kfree(stream_info);
700 cleanup_trbs:
701 xhci->cmd_ring_reserved_trbs--;
702 return NULL;
703 }
704 /*
705 * Sets the MaxPStreams field and the Linear Stream Array field.
706 * Sets the dequeue pointer to the stream context array.
707 */
xhci_setup_streams_ep_input_ctx(struct xhci_hcd * xhci,struct xhci_ep_ctx * ep_ctx,struct xhci_stream_info * stream_info)708 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
709 struct xhci_ep_ctx *ep_ctx,
710 struct xhci_stream_info *stream_info)
711 {
712 u32 max_primary_streams;
713 /* MaxPStreams is the number of stream context array entries, not the
714 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
715 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
716 */
717 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
718 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
719 "Setting number of stream ctx array entries to %u",
720 1 << (max_primary_streams + 1));
721 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
722 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
723 | EP_HAS_LSA);
724 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
725 }
726
727 /*
728 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
729 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
730 * not at the beginning of the ring).
731 */
xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx * ep_ctx,struct xhci_virt_ep * ep)732 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
733 struct xhci_virt_ep *ep)
734 {
735 dma_addr_t addr;
736 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
737 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
738 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
739 }
740
741 /* Frees all stream contexts associated with the endpoint,
742 *
743 * Caller should fix the endpoint context streams fields.
744 */
xhci_free_stream_info(struct xhci_hcd * xhci,struct xhci_stream_info * stream_info)745 void xhci_free_stream_info(struct xhci_hcd *xhci,
746 struct xhci_stream_info *stream_info)
747 {
748 int cur_stream;
749 struct xhci_ring *cur_ring;
750
751 if (!stream_info)
752 return;
753
754 for (cur_stream = 1; cur_stream < stream_info->num_streams;
755 cur_stream++) {
756 cur_ring = stream_info->stream_rings[cur_stream];
757 if (cur_ring) {
758 xhci_ring_free(xhci, cur_ring);
759 stream_info->stream_rings[cur_stream] = NULL;
760 }
761 }
762 xhci_free_command(xhci, stream_info->free_streams_command);
763 xhci->cmd_ring_reserved_trbs--;
764 if (stream_info->stream_ctx_array)
765 xhci_free_stream_ctx(xhci,
766 stream_info->num_stream_ctxs,
767 stream_info->stream_ctx_array,
768 stream_info->ctx_array_dma);
769
770 kfree(stream_info->stream_rings);
771 kfree(stream_info);
772 }
773
774
775 /***************** Device context manipulation *************************/
776
xhci_free_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int slot_id)777 static void xhci_free_tt_info(struct xhci_hcd *xhci,
778 struct xhci_virt_device *virt_dev,
779 int slot_id)
780 {
781 struct list_head *tt_list_head;
782 struct xhci_tt_bw_info *tt_info, *next;
783 bool slot_found = false;
784
785 /* If the device never made it past the Set Address stage,
786 * it may not have the real_port set correctly.
787 */
788 if (virt_dev->real_port == 0 ||
789 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
790 xhci_dbg(xhci, "Bad real port.\n");
791 return;
792 }
793
794 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
795 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
796 /* Multi-TT hubs will have more than one entry */
797 if (tt_info->slot_id == slot_id) {
798 slot_found = true;
799 list_del(&tt_info->tt_list);
800 kfree(tt_info);
801 } else if (slot_found) {
802 break;
803 }
804 }
805 }
806
xhci_alloc_tt_info(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)807 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
808 struct xhci_virt_device *virt_dev,
809 struct usb_device *hdev,
810 struct usb_tt *tt, gfp_t mem_flags)
811 {
812 struct xhci_tt_bw_info *tt_info;
813 unsigned int num_ports;
814 int i, j;
815 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
816
817 if (!tt->multi)
818 num_ports = 1;
819 else
820 num_ports = hdev->maxchild;
821
822 for (i = 0; i < num_ports; i++, tt_info++) {
823 struct xhci_interval_bw_table *bw_table;
824
825 tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
826 dev_to_node(dev));
827 if (!tt_info)
828 goto free_tts;
829 INIT_LIST_HEAD(&tt_info->tt_list);
830 list_add(&tt_info->tt_list,
831 &xhci->rh_bw[virt_dev->real_port - 1].tts);
832 tt_info->slot_id = virt_dev->udev->slot_id;
833 if (tt->multi)
834 tt_info->ttport = i+1;
835 bw_table = &tt_info->bw_table;
836 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
837 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
838 }
839 return 0;
840
841 free_tts:
842 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
843 return -ENOMEM;
844 }
845
846
847 /* All the xhci_tds in the ring's TD list should be freed at this point.
848 * Should be called with xhci->lock held if there is any chance the TT lists
849 * will be manipulated by the configure endpoint, allocate device, or update
850 * hub functions while this function is removing the TT entries from the list.
851 */
xhci_free_virt_device(struct xhci_hcd * xhci,int slot_id)852 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
853 {
854 struct xhci_virt_device *dev;
855 int i;
856 int old_active_eps = 0;
857
858 /* Slot ID 0 is reserved */
859 if (slot_id == 0 || !xhci->devs[slot_id])
860 return;
861
862 dev = xhci->devs[slot_id];
863
864 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
865 if (!dev)
866 return;
867
868 trace_xhci_free_virt_device(dev);
869
870 if (dev->tt_info)
871 old_active_eps = dev->tt_info->active_eps;
872
873 for (i = 0; i < 31; i++) {
874 if (dev->eps[i].ring)
875 xhci_ring_free(xhci, dev->eps[i].ring);
876 if (dev->eps[i].stream_info)
877 xhci_free_stream_info(xhci,
878 dev->eps[i].stream_info);
879 /*
880 * Endpoints are normally deleted from the bandwidth list when
881 * endpoints are dropped, before device is freed.
882 * If host is dying or being removed then endpoints aren't
883 * dropped cleanly, so delete the endpoint from list here.
884 * Only applicable for hosts with software bandwidth checking.
885 */
886
887 if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
888 list_del_init(&dev->eps[i].bw_endpoint_list);
889 xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
890 slot_id, i);
891 }
892 }
893 /* If this is a hub, free the TT(s) from the TT list */
894 xhci_free_tt_info(xhci, dev, slot_id);
895 /* If necessary, update the number of active TTs on this root port */
896 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
897
898 if (dev->in_ctx)
899 xhci_free_container_ctx(xhci, dev->in_ctx);
900 if (dev->out_ctx)
901 xhci_free_container_ctx(xhci, dev->out_ctx);
902
903 if (dev->udev && dev->udev->slot_id)
904 dev->udev->slot_id = 0;
905 kfree(xhci->devs[slot_id]);
906 xhci->devs[slot_id] = NULL;
907 }
908
909 /*
910 * Free a virt_device structure.
911 * If the virt_device added a tt_info (a hub) and has children pointing to
912 * that tt_info, then free the child first. Recursive.
913 * We can't rely on udev at this point to find child-parent relationships.
914 */
xhci_free_virt_devices_depth_first(struct xhci_hcd * xhci,int slot_id)915 static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
916 {
917 struct xhci_virt_device *vdev;
918 struct list_head *tt_list_head;
919 struct xhci_tt_bw_info *tt_info, *next;
920 int i;
921
922 vdev = xhci->devs[slot_id];
923 if (!vdev)
924 return;
925
926 if (vdev->real_port == 0 ||
927 vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
928 xhci_dbg(xhci, "Bad vdev->real_port.\n");
929 goto out;
930 }
931
932 tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
933 list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
934 /* is this a hub device that added a tt_info to the tts list */
935 if (tt_info->slot_id == slot_id) {
936 /* are any devices using this tt_info? */
937 for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
938 vdev = xhci->devs[i];
939 if (vdev && (vdev->tt_info == tt_info))
940 xhci_free_virt_devices_depth_first(
941 xhci, i);
942 }
943 }
944 }
945 out:
946 /* we are now at a leaf device */
947 xhci_debugfs_remove_slot(xhci, slot_id);
948 xhci_free_virt_device(xhci, slot_id);
949 }
950
xhci_alloc_virt_device(struct xhci_hcd * xhci,int slot_id,struct usb_device * udev,gfp_t flags)951 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
952 struct usb_device *udev, gfp_t flags)
953 {
954 struct xhci_virt_device *dev;
955 int i;
956
957 /* Slot ID 0 is reserved */
958 if (slot_id == 0 || xhci->devs[slot_id]) {
959 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
960 return 0;
961 }
962
963 dev = kzalloc(sizeof(*dev), flags);
964 if (!dev)
965 return 0;
966
967 dev->slot_id = slot_id;
968
969 /* Allocate the (output) device context that will be used in the HC. */
970 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
971 if (!dev->out_ctx)
972 goto fail;
973
974 xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma);
975
976 /* Allocate the (input) device context for address device command */
977 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
978 if (!dev->in_ctx)
979 goto fail;
980
981 xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma);
982
983 /* Initialize the cancellation and bandwidth list for each ep */
984 for (i = 0; i < 31; i++) {
985 dev->eps[i].ep_index = i;
986 dev->eps[i].vdev = dev;
987 dev->eps[i].xhci = xhci;
988 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
989 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
990 }
991
992 /* Allocate endpoint 0 ring */
993 dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
994 if (!dev->eps[0].ring)
995 goto fail;
996
997 dev->udev = udev;
998
999 /* Point to output device context in dcbaa. */
1000 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1001 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1002 slot_id,
1003 &xhci->dcbaa->dev_context_ptrs[slot_id],
1004 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1005
1006 trace_xhci_alloc_virt_device(dev);
1007
1008 xhci->devs[slot_id] = dev;
1009
1010 return 1;
1011 fail:
1012
1013 if (dev->in_ctx)
1014 xhci_free_container_ctx(xhci, dev->in_ctx);
1015 if (dev->out_ctx)
1016 xhci_free_container_ctx(xhci, dev->out_ctx);
1017 kfree(dev);
1018
1019 return 0;
1020 }
1021
xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd * xhci,struct usb_device * udev)1022 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1023 struct usb_device *udev)
1024 {
1025 struct xhci_virt_device *virt_dev;
1026 struct xhci_ep_ctx *ep0_ctx;
1027 struct xhci_ring *ep_ring;
1028
1029 virt_dev = xhci->devs[udev->slot_id];
1030 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1031 ep_ring = virt_dev->eps[0].ring;
1032 /*
1033 * FIXME we don't keep track of the dequeue pointer very well after a
1034 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1035 * host to our enqueue pointer. This should only be called after a
1036 * configured device has reset, so all control transfers should have
1037 * been completed or cancelled before the reset.
1038 */
1039 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1040 ep_ring->enqueue)
1041 | ep_ring->cycle_state);
1042 }
1043
1044 /*
1045 * The xHCI roothub may have ports of differing speeds in any order in the port
1046 * status registers.
1047 *
1048 * The xHCI hardware wants to know the roothub port number that the USB device
1049 * is attached to (or the roothub port its ancestor hub is attached to). All we
1050 * know is the index of that port under either the USB 2.0 or the USB 3.0
1051 * roothub, but that doesn't give us the real index into the HW port status
1052 * registers. Call xhci_find_raw_port_number() to get real index.
1053 */
xhci_find_real_port_number(struct xhci_hcd * xhci,struct usb_device * udev)1054 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1055 struct usb_device *udev)
1056 {
1057 struct usb_device *top_dev;
1058 struct usb_hcd *hcd;
1059
1060 if (udev->speed >= USB_SPEED_SUPER)
1061 hcd = xhci_get_usb3_hcd(xhci);
1062 else
1063 hcd = xhci->main_hcd;
1064
1065 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1066 top_dev = top_dev->parent)
1067 /* Found device below root hub */;
1068
1069 return xhci_find_raw_port_number(hcd, top_dev->portnum);
1070 }
1071
1072 /* Setup an xHCI virtual device for a Set Address command */
xhci_setup_addressable_virt_dev(struct xhci_hcd * xhci,struct usb_device * udev)1073 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1074 {
1075 struct xhci_virt_device *dev;
1076 struct xhci_ep_ctx *ep0_ctx;
1077 struct xhci_slot_ctx *slot_ctx;
1078 u32 port_num;
1079 u32 max_packets;
1080 struct usb_device *top_dev;
1081
1082 dev = xhci->devs[udev->slot_id];
1083 /* Slot ID 0 is reserved */
1084 if (udev->slot_id == 0 || !dev) {
1085 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1086 udev->slot_id);
1087 return -EINVAL;
1088 }
1089 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1090 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1091
1092 /* 3) Only the control endpoint is valid - one endpoint context */
1093 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1094 switch (udev->speed) {
1095 case USB_SPEED_SUPER_PLUS:
1096 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1097 max_packets = MAX_PACKET(512);
1098 break;
1099 case USB_SPEED_SUPER:
1100 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1101 max_packets = MAX_PACKET(512);
1102 break;
1103 case USB_SPEED_HIGH:
1104 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1105 max_packets = MAX_PACKET(64);
1106 break;
1107 /* USB core guesses at a 64-byte max packet first for FS devices */
1108 case USB_SPEED_FULL:
1109 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1110 max_packets = MAX_PACKET(64);
1111 break;
1112 case USB_SPEED_LOW:
1113 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1114 max_packets = MAX_PACKET(8);
1115 break;
1116 default:
1117 /* Speed was set earlier, this shouldn't happen. */
1118 return -EINVAL;
1119 }
1120 /* Find the root hub port this device is under */
1121 port_num = xhci_find_real_port_number(xhci, udev);
1122 if (!port_num)
1123 return -EINVAL;
1124 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1125 /* Set the port number in the virtual_device to the faked port number */
1126 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1127 top_dev = top_dev->parent)
1128 /* Found device below root hub */;
1129 dev->fake_port = top_dev->portnum;
1130 dev->real_port = port_num;
1131 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1132 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1133
1134 /* Find the right bandwidth table that this device will be a part of.
1135 * If this is a full speed device attached directly to a root port (or a
1136 * decendent of one), it counts as a primary bandwidth domain, not a
1137 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1138 * will never be created for the HS root hub.
1139 */
1140 if (!udev->tt || !udev->tt->hub->parent) {
1141 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1142 } else {
1143 struct xhci_root_port_bw_info *rh_bw;
1144 struct xhci_tt_bw_info *tt_bw;
1145
1146 rh_bw = &xhci->rh_bw[port_num - 1];
1147 /* Find the right TT. */
1148 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1149 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1150 continue;
1151
1152 if (!dev->udev->tt->multi ||
1153 (udev->tt->multi &&
1154 tt_bw->ttport == dev->udev->ttport)) {
1155 dev->bw_table = &tt_bw->bw_table;
1156 dev->tt_info = tt_bw;
1157 break;
1158 }
1159 }
1160 if (!dev->tt_info)
1161 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1162 }
1163
1164 /* Is this a LS/FS device under an external HS hub? */
1165 if (udev->tt && udev->tt->hub->parent) {
1166 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1167 (udev->ttport << 8));
1168 if (udev->tt->multi)
1169 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1170 }
1171 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1172 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1173
1174 /* Step 4 - ring already allocated */
1175 /* Step 5 */
1176 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1177
1178 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1179 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1180 max_packets);
1181
1182 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1183 dev->eps[0].ring->cycle_state);
1184
1185 trace_xhci_setup_addressable_virt_device(dev);
1186
1187 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1188
1189 return 0;
1190 }
1191
1192 /*
1193 * Convert interval expressed as 2^(bInterval - 1) == interval into
1194 * straight exponent value 2^n == interval.
1195 *
1196 */
xhci_parse_exponent_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1197 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1198 struct usb_host_endpoint *ep)
1199 {
1200 unsigned int interval;
1201
1202 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1203 if (interval != ep->desc.bInterval - 1)
1204 dev_warn(&udev->dev,
1205 "ep %#x - rounding interval to %d %sframes\n",
1206 ep->desc.bEndpointAddress,
1207 1 << interval,
1208 udev->speed == USB_SPEED_FULL ? "" : "micro");
1209
1210 if (udev->speed == USB_SPEED_FULL) {
1211 /*
1212 * Full speed isoc endpoints specify interval in frames,
1213 * not microframes. We are using microframes everywhere,
1214 * so adjust accordingly.
1215 */
1216 interval += 3; /* 1 frame = 2^3 uframes */
1217 }
1218
1219 return interval;
1220 }
1221
1222 /*
1223 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1224 * microframes, rounded down to nearest power of 2.
1225 */
xhci_microframes_to_exponent(struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int desc_interval,unsigned int min_exponent,unsigned int max_exponent)1226 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1227 struct usb_host_endpoint *ep, unsigned int desc_interval,
1228 unsigned int min_exponent, unsigned int max_exponent)
1229 {
1230 unsigned int interval;
1231
1232 interval = fls(desc_interval) - 1;
1233 interval = clamp_val(interval, min_exponent, max_exponent);
1234 if ((1 << interval) != desc_interval)
1235 dev_dbg(&udev->dev,
1236 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1237 ep->desc.bEndpointAddress,
1238 1 << interval,
1239 desc_interval);
1240
1241 return interval;
1242 }
1243
xhci_parse_microframe_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1244 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1245 struct usb_host_endpoint *ep)
1246 {
1247 if (ep->desc.bInterval == 0)
1248 return 0;
1249 return xhci_microframes_to_exponent(udev, ep,
1250 ep->desc.bInterval, 0, 15);
1251 }
1252
1253
xhci_parse_frame_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1254 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1255 struct usb_host_endpoint *ep)
1256 {
1257 return xhci_microframes_to_exponent(udev, ep,
1258 ep->desc.bInterval * 8, 3, 10);
1259 }
1260
1261 /* Return the polling or NAK interval.
1262 *
1263 * The polling interval is expressed in "microframes". If xHCI's Interval field
1264 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1265 *
1266 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1267 * is set to 0.
1268 */
xhci_get_endpoint_interval(struct usb_device * udev,struct usb_host_endpoint * ep)1269 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1270 struct usb_host_endpoint *ep)
1271 {
1272 unsigned int interval = 0;
1273
1274 switch (udev->speed) {
1275 case USB_SPEED_HIGH:
1276 /* Max NAK rate */
1277 if (usb_endpoint_xfer_control(&ep->desc) ||
1278 usb_endpoint_xfer_bulk(&ep->desc)) {
1279 interval = xhci_parse_microframe_interval(udev, ep);
1280 break;
1281 }
1282 fallthrough; /* SS and HS isoc/int have same decoding */
1283
1284 case USB_SPEED_SUPER_PLUS:
1285 case USB_SPEED_SUPER:
1286 if (usb_endpoint_xfer_int(&ep->desc) ||
1287 usb_endpoint_xfer_isoc(&ep->desc)) {
1288 interval = xhci_parse_exponent_interval(udev, ep);
1289 }
1290 break;
1291
1292 case USB_SPEED_FULL:
1293 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1294 interval = xhci_parse_exponent_interval(udev, ep);
1295 break;
1296 }
1297 /*
1298 * Fall through for interrupt endpoint interval decoding
1299 * since it uses the same rules as low speed interrupt
1300 * endpoints.
1301 */
1302 fallthrough;
1303
1304 case USB_SPEED_LOW:
1305 if (usb_endpoint_xfer_int(&ep->desc) ||
1306 usb_endpoint_xfer_isoc(&ep->desc)) {
1307
1308 interval = xhci_parse_frame_interval(udev, ep);
1309 }
1310 break;
1311
1312 default:
1313 BUG();
1314 }
1315 return interval;
1316 }
1317
1318 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1319 * High speed endpoint descriptors can define "the number of additional
1320 * transaction opportunities per microframe", but that goes in the Max Burst
1321 * endpoint context field.
1322 */
xhci_get_endpoint_mult(struct usb_device * udev,struct usb_host_endpoint * ep)1323 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1324 struct usb_host_endpoint *ep)
1325 {
1326 if (udev->speed < USB_SPEED_SUPER ||
1327 !usb_endpoint_xfer_isoc(&ep->desc))
1328 return 0;
1329 return ep->ss_ep_comp.bmAttributes;
1330 }
1331
xhci_get_endpoint_max_burst(struct usb_device * udev,struct usb_host_endpoint * ep)1332 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1333 struct usb_host_endpoint *ep)
1334 {
1335 /* Super speed and Plus have max burst in ep companion desc */
1336 if (udev->speed >= USB_SPEED_SUPER)
1337 return ep->ss_ep_comp.bMaxBurst;
1338
1339 if (udev->speed == USB_SPEED_HIGH &&
1340 (usb_endpoint_xfer_isoc(&ep->desc) ||
1341 usb_endpoint_xfer_int(&ep->desc)))
1342 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1343
1344 return 0;
1345 }
1346
xhci_get_endpoint_type(struct usb_host_endpoint * ep)1347 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1348 {
1349 int in;
1350
1351 in = usb_endpoint_dir_in(&ep->desc);
1352
1353 switch (usb_endpoint_type(&ep->desc)) {
1354 case USB_ENDPOINT_XFER_CONTROL:
1355 return CTRL_EP;
1356 case USB_ENDPOINT_XFER_BULK:
1357 return in ? BULK_IN_EP : BULK_OUT_EP;
1358 case USB_ENDPOINT_XFER_ISOC:
1359 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1360 case USB_ENDPOINT_XFER_INT:
1361 return in ? INT_IN_EP : INT_OUT_EP;
1362 }
1363 return 0;
1364 }
1365
1366 /* Return the maximum endpoint service interval time (ESIT) payload.
1367 * Basically, this is the maxpacket size, multiplied by the burst size
1368 * and mult size.
1369 */
xhci_get_max_esit_payload(struct usb_device * udev,struct usb_host_endpoint * ep)1370 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1371 struct usb_host_endpoint *ep)
1372 {
1373 int max_burst;
1374 int max_packet;
1375
1376 /* Only applies for interrupt or isochronous endpoints */
1377 if (usb_endpoint_xfer_control(&ep->desc) ||
1378 usb_endpoint_xfer_bulk(&ep->desc))
1379 return 0;
1380
1381 /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1382 if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1383 USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1384 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1385
1386 /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1387 if (udev->speed >= USB_SPEED_SUPER)
1388 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1389
1390 max_packet = usb_endpoint_maxp(&ep->desc);
1391 max_burst = usb_endpoint_maxp_mult(&ep->desc);
1392 /* A 0 in max burst means 1 transfer per ESIT */
1393 return max_packet * max_burst;
1394 }
1395
1396 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1397 * Drivers will have to call usb_alloc_streams() to do that.
1398 */
xhci_endpoint_init(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_device * udev,struct usb_host_endpoint * ep,gfp_t mem_flags)1399 int xhci_endpoint_init(struct xhci_hcd *xhci,
1400 struct xhci_virt_device *virt_dev,
1401 struct usb_device *udev,
1402 struct usb_host_endpoint *ep,
1403 gfp_t mem_flags)
1404 {
1405 unsigned int ep_index;
1406 struct xhci_ep_ctx *ep_ctx;
1407 struct xhci_ring *ep_ring;
1408 unsigned int max_packet;
1409 enum xhci_ring_type ring_type;
1410 u32 max_esit_payload;
1411 u32 endpoint_type;
1412 unsigned int max_burst;
1413 unsigned int interval;
1414 unsigned int mult;
1415 unsigned int avg_trb_len;
1416 unsigned int err_count = 0;
1417
1418 ep_index = xhci_get_endpoint_index(&ep->desc);
1419 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1420
1421 endpoint_type = xhci_get_endpoint_type(ep);
1422 if (!endpoint_type)
1423 return -EINVAL;
1424
1425 ring_type = usb_endpoint_type(&ep->desc);
1426
1427 /*
1428 * Get values to fill the endpoint context, mostly from ep descriptor.
1429 * The average TRB buffer lengt for bulk endpoints is unclear as we
1430 * have no clue on scatter gather list entry size. For Isoc and Int,
1431 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1432 */
1433 max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1434 interval = xhci_get_endpoint_interval(udev, ep);
1435
1436 /* Periodic endpoint bInterval limit quirk */
1437 if (usb_endpoint_xfer_int(&ep->desc) ||
1438 usb_endpoint_xfer_isoc(&ep->desc)) {
1439 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1440 udev->speed >= USB_SPEED_HIGH &&
1441 interval >= 7) {
1442 interval = 6;
1443 }
1444 }
1445
1446 mult = xhci_get_endpoint_mult(udev, ep);
1447 max_packet = usb_endpoint_maxp(&ep->desc);
1448 max_burst = xhci_get_endpoint_max_burst(udev, ep);
1449 avg_trb_len = max_esit_payload;
1450
1451 /* FIXME dig Mult and streams info out of ep companion desc */
1452
1453 /* Allow 3 retries for everything but isoc, set CErr = 3 */
1454 if (!usb_endpoint_xfer_isoc(&ep->desc))
1455 err_count = 3;
1456 /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1457 if (usb_endpoint_xfer_bulk(&ep->desc)) {
1458 if (udev->speed == USB_SPEED_HIGH)
1459 max_packet = 512;
1460 if (udev->speed == USB_SPEED_FULL) {
1461 max_packet = rounddown_pow_of_two(max_packet);
1462 max_packet = clamp_val(max_packet, 8, 64);
1463 }
1464 }
1465 /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1466 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1467 avg_trb_len = 8;
1468 /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1469 if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1470 mult = 0;
1471
1472 /* Set up the endpoint ring */
1473 virt_dev->eps[ep_index].new_ring =
1474 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1475 if (!virt_dev->eps[ep_index].new_ring)
1476 return -ENOMEM;
1477
1478 virt_dev->eps[ep_index].skip = false;
1479 ep_ring = virt_dev->eps[ep_index].new_ring;
1480
1481 /* Fill the endpoint context */
1482 ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1483 EP_INTERVAL(interval) |
1484 EP_MULT(mult));
1485 ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1486 MAX_PACKET(max_packet) |
1487 MAX_BURST(max_burst) |
1488 ERROR_COUNT(err_count));
1489 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1490 ep_ring->cycle_state);
1491
1492 ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1493 EP_AVG_TRB_LENGTH(avg_trb_len));
1494
1495 return 0;
1496 }
1497
xhci_endpoint_zero(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct usb_host_endpoint * ep)1498 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1499 struct xhci_virt_device *virt_dev,
1500 struct usb_host_endpoint *ep)
1501 {
1502 unsigned int ep_index;
1503 struct xhci_ep_ctx *ep_ctx;
1504
1505 ep_index = xhci_get_endpoint_index(&ep->desc);
1506 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1507
1508 ep_ctx->ep_info = 0;
1509 ep_ctx->ep_info2 = 0;
1510 ep_ctx->deq = 0;
1511 ep_ctx->tx_info = 0;
1512 /* Don't free the endpoint ring until the set interface or configuration
1513 * request succeeds.
1514 */
1515 }
1516
xhci_clear_endpoint_bw_info(struct xhci_bw_info * bw_info)1517 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1518 {
1519 bw_info->ep_interval = 0;
1520 bw_info->mult = 0;
1521 bw_info->num_packets = 0;
1522 bw_info->max_packet_size = 0;
1523 bw_info->type = 0;
1524 bw_info->max_esit_payload = 0;
1525 }
1526
xhci_update_bw_info(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_input_control_ctx * ctrl_ctx,struct xhci_virt_device * virt_dev)1527 void xhci_update_bw_info(struct xhci_hcd *xhci,
1528 struct xhci_container_ctx *in_ctx,
1529 struct xhci_input_control_ctx *ctrl_ctx,
1530 struct xhci_virt_device *virt_dev)
1531 {
1532 struct xhci_bw_info *bw_info;
1533 struct xhci_ep_ctx *ep_ctx;
1534 unsigned int ep_type;
1535 int i;
1536
1537 for (i = 1; i < 31; i++) {
1538 bw_info = &virt_dev->eps[i].bw_info;
1539
1540 /* We can't tell what endpoint type is being dropped, but
1541 * unconditionally clearing the bandwidth info for non-periodic
1542 * endpoints should be harmless because the info will never be
1543 * set in the first place.
1544 */
1545 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1546 /* Dropped endpoint */
1547 xhci_clear_endpoint_bw_info(bw_info);
1548 continue;
1549 }
1550
1551 if (EP_IS_ADDED(ctrl_ctx, i)) {
1552 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1553 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1554
1555 /* Ignore non-periodic endpoints */
1556 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1557 ep_type != ISOC_IN_EP &&
1558 ep_type != INT_IN_EP)
1559 continue;
1560
1561 /* Added or changed endpoint */
1562 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1563 le32_to_cpu(ep_ctx->ep_info));
1564 /* Number of packets and mult are zero-based in the
1565 * input context, but we want one-based for the
1566 * interval table.
1567 */
1568 bw_info->mult = CTX_TO_EP_MULT(
1569 le32_to_cpu(ep_ctx->ep_info)) + 1;
1570 bw_info->num_packets = CTX_TO_MAX_BURST(
1571 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1572 bw_info->max_packet_size = MAX_PACKET_DECODED(
1573 le32_to_cpu(ep_ctx->ep_info2));
1574 bw_info->type = ep_type;
1575 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1576 le32_to_cpu(ep_ctx->tx_info));
1577 }
1578 }
1579 }
1580
1581 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1582 * Useful when you want to change one particular aspect of the endpoint and then
1583 * issue a configure endpoint command.
1584 */
xhci_endpoint_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,unsigned int ep_index)1585 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1586 struct xhci_container_ctx *in_ctx,
1587 struct xhci_container_ctx *out_ctx,
1588 unsigned int ep_index)
1589 {
1590 struct xhci_ep_ctx *out_ep_ctx;
1591 struct xhci_ep_ctx *in_ep_ctx;
1592
1593 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1594 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1595
1596 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1597 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1598 in_ep_ctx->deq = out_ep_ctx->deq;
1599 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1600 if (xhci->quirks & XHCI_MTK_HOST) {
1601 in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1602 in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1603 }
1604 }
1605
1606 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1607 * Useful when you want to change one particular aspect of the endpoint and then
1608 * issue a configure endpoint command. Only the context entries field matters,
1609 * but we'll copy the whole thing anyway.
1610 */
xhci_slot_copy(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx)1611 void xhci_slot_copy(struct xhci_hcd *xhci,
1612 struct xhci_container_ctx *in_ctx,
1613 struct xhci_container_ctx *out_ctx)
1614 {
1615 struct xhci_slot_ctx *in_slot_ctx;
1616 struct xhci_slot_ctx *out_slot_ctx;
1617
1618 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1619 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1620
1621 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1622 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1623 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1624 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1625 }
1626
1627 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
scratchpad_alloc(struct xhci_hcd * xhci,gfp_t flags)1628 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1629 {
1630 int i;
1631 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1632 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1633
1634 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1635 "Allocating %d scratchpad buffers", num_sp);
1636
1637 if (!num_sp)
1638 return 0;
1639
1640 xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1641 dev_to_node(dev));
1642 if (!xhci->scratchpad)
1643 goto fail_sp;
1644
1645 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1646 size_mul(sizeof(u64), num_sp),
1647 &xhci->scratchpad->sp_dma, flags);
1648 if (!xhci->scratchpad->sp_array)
1649 goto fail_sp2;
1650
1651 xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1652 flags, dev_to_node(dev));
1653 if (!xhci->scratchpad->sp_buffers)
1654 goto fail_sp3;
1655
1656 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1657 for (i = 0; i < num_sp; i++) {
1658 dma_addr_t dma;
1659 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1660 flags);
1661 if (!buf)
1662 goto fail_sp4;
1663
1664 xhci->scratchpad->sp_array[i] = dma;
1665 xhci->scratchpad->sp_buffers[i] = buf;
1666 }
1667
1668 return 0;
1669
1670 fail_sp4:
1671 while (i--)
1672 dma_free_coherent(dev, xhci->page_size,
1673 xhci->scratchpad->sp_buffers[i],
1674 xhci->scratchpad->sp_array[i]);
1675
1676 kfree(xhci->scratchpad->sp_buffers);
1677
1678 fail_sp3:
1679 dma_free_coherent(dev, num_sp * sizeof(u64),
1680 xhci->scratchpad->sp_array,
1681 xhci->scratchpad->sp_dma);
1682
1683 fail_sp2:
1684 kfree(xhci->scratchpad);
1685 xhci->scratchpad = NULL;
1686
1687 fail_sp:
1688 return -ENOMEM;
1689 }
1690
scratchpad_free(struct xhci_hcd * xhci)1691 static void scratchpad_free(struct xhci_hcd *xhci)
1692 {
1693 int num_sp;
1694 int i;
1695 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1696
1697 if (!xhci->scratchpad)
1698 return;
1699
1700 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1701
1702 for (i = 0; i < num_sp; i++) {
1703 dma_free_coherent(dev, xhci->page_size,
1704 xhci->scratchpad->sp_buffers[i],
1705 xhci->scratchpad->sp_array[i]);
1706 }
1707 kfree(xhci->scratchpad->sp_buffers);
1708 dma_free_coherent(dev, num_sp * sizeof(u64),
1709 xhci->scratchpad->sp_array,
1710 xhci->scratchpad->sp_dma);
1711 kfree(xhci->scratchpad);
1712 xhci->scratchpad = NULL;
1713 }
1714
xhci_alloc_command(struct xhci_hcd * xhci,bool allocate_completion,gfp_t mem_flags)1715 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1716 bool allocate_completion, gfp_t mem_flags)
1717 {
1718 struct xhci_command *command;
1719 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1720
1721 command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1722 if (!command)
1723 return NULL;
1724
1725 if (allocate_completion) {
1726 command->completion =
1727 kzalloc_node(sizeof(struct completion), mem_flags,
1728 dev_to_node(dev));
1729 if (!command->completion) {
1730 kfree(command);
1731 return NULL;
1732 }
1733 init_completion(command->completion);
1734 }
1735
1736 command->status = 0;
1737 /* set default timeout to 5000 ms */
1738 command->timeout_ms = XHCI_CMD_DEFAULT_TIMEOUT;
1739 INIT_LIST_HEAD(&command->cmd_list);
1740 return command;
1741 }
1742
xhci_alloc_command_with_ctx(struct xhci_hcd * xhci,bool allocate_completion,gfp_t mem_flags)1743 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1744 bool allocate_completion, gfp_t mem_flags)
1745 {
1746 struct xhci_command *command;
1747
1748 command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1749 if (!command)
1750 return NULL;
1751
1752 command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1753 mem_flags);
1754 if (!command->in_ctx) {
1755 kfree(command->completion);
1756 kfree(command);
1757 return NULL;
1758 }
1759 return command;
1760 }
1761
xhci_urb_free_priv(struct urb_priv * urb_priv)1762 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1763 {
1764 kfree(urb_priv);
1765 }
1766
xhci_free_command(struct xhci_hcd * xhci,struct xhci_command * command)1767 void xhci_free_command(struct xhci_hcd *xhci,
1768 struct xhci_command *command)
1769 {
1770 xhci_free_container_ctx(xhci,
1771 command->in_ctx);
1772 kfree(command->completion);
1773 kfree(command);
1774 }
1775
xhci_alloc_erst(struct xhci_hcd * xhci,struct xhci_ring * evt_ring,struct xhci_erst * erst,gfp_t flags)1776 int xhci_alloc_erst(struct xhci_hcd *xhci,
1777 struct xhci_ring *evt_ring,
1778 struct xhci_erst *erst,
1779 gfp_t flags)
1780 {
1781 size_t size;
1782 unsigned int val;
1783 struct xhci_segment *seg;
1784 struct xhci_erst_entry *entry;
1785
1786 size = size_mul(sizeof(struct xhci_erst_entry), evt_ring->num_segs);
1787 erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1788 size, &erst->erst_dma_addr, flags);
1789 if (!erst->entries)
1790 return -ENOMEM;
1791
1792 erst->num_entries = evt_ring->num_segs;
1793
1794 seg = evt_ring->first_seg;
1795 for (val = 0; val < evt_ring->num_segs; val++) {
1796 entry = &erst->entries[val];
1797 entry->seg_addr = cpu_to_le64(seg->dma);
1798 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1799 entry->rsvd = 0;
1800 seg = seg->next;
1801 }
1802
1803 return 0;
1804 }
1805
1806 static void
xhci_remove_interrupter(struct xhci_hcd * xhci,struct xhci_interrupter * ir)1807 xhci_remove_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1808 {
1809 u32 tmp;
1810
1811 if (!ir)
1812 return;
1813
1814 /*
1815 * Clean out interrupter registers except ERSTBA. Clearing either the
1816 * low or high 32 bits of ERSTBA immediately causes the controller to
1817 * dereference the partially cleared 64 bit address, causing IOMMU error.
1818 */
1819 if (ir->ir_set) {
1820 tmp = readl(&ir->ir_set->erst_size);
1821 tmp &= ERST_SIZE_MASK;
1822 writel(tmp, &ir->ir_set->erst_size);
1823
1824 xhci_write_64(xhci, ERST_EHB, &ir->ir_set->erst_dequeue);
1825 }
1826 }
1827
1828 static void
xhci_free_interrupter(struct xhci_hcd * xhci,struct xhci_interrupter * ir)1829 xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1830 {
1831 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1832 size_t erst_size;
1833
1834 if (!ir)
1835 return;
1836
1837 erst_size = sizeof(struct xhci_erst_entry) * ir->erst.num_entries;
1838 if (ir->erst.entries)
1839 dma_free_coherent(dev, erst_size,
1840 ir->erst.entries,
1841 ir->erst.erst_dma_addr);
1842 ir->erst.entries = NULL;
1843
1844 /* free interrupter event ring */
1845 if (ir->event_ring)
1846 xhci_ring_free(xhci, ir->event_ring);
1847
1848 ir->event_ring = NULL;
1849
1850 kfree(ir);
1851 }
1852
xhci_remove_secondary_interrupter(struct usb_hcd * hcd,struct xhci_interrupter * ir)1853 void xhci_remove_secondary_interrupter(struct usb_hcd *hcd, struct xhci_interrupter *ir)
1854 {
1855 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1856 unsigned int intr_num;
1857
1858 spin_lock_irq(&xhci->lock);
1859
1860 /* interrupter 0 is primary interrupter, don't touch it */
1861 if (!ir || !ir->intr_num || ir->intr_num >= xhci->max_interrupters) {
1862 xhci_dbg(xhci, "Invalid secondary interrupter, can't remove\n");
1863 spin_unlock_irq(&xhci->lock);
1864 return;
1865 }
1866
1867 intr_num = ir->intr_num;
1868
1869 xhci_remove_interrupter(xhci, ir);
1870 xhci->interrupters[intr_num] = NULL;
1871
1872 spin_unlock_irq(&xhci->lock);
1873
1874 xhci_free_interrupter(xhci, ir);
1875 }
1876 EXPORT_SYMBOL_GPL(xhci_remove_secondary_interrupter);
1877
xhci_mem_cleanup(struct xhci_hcd * xhci)1878 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1879 {
1880 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1881 int i, j, num_ports;
1882
1883 cancel_delayed_work_sync(&xhci->cmd_timer);
1884
1885 for (i = 0; xhci->interrupters && i < xhci->max_interrupters; i++) {
1886 if (xhci->interrupters[i]) {
1887 xhci_remove_interrupter(xhci, xhci->interrupters[i]);
1888 xhci_free_interrupter(xhci, xhci->interrupters[i]);
1889 xhci->interrupters[i] = NULL;
1890 }
1891 }
1892 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed interrupters");
1893
1894 if (xhci->cmd_ring)
1895 xhci_ring_free(xhci, xhci->cmd_ring);
1896 xhci->cmd_ring = NULL;
1897 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1898 xhci_cleanup_command_queue(xhci);
1899
1900 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1901 for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1902 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1903 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1904 struct list_head *ep = &bwt->interval_bw[j].endpoints;
1905 while (!list_empty(ep))
1906 list_del_init(ep->next);
1907 }
1908 }
1909
1910 for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1911 xhci_free_virt_devices_depth_first(xhci, i);
1912
1913 dma_pool_destroy(xhci->segment_pool);
1914 xhci->segment_pool = NULL;
1915 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1916
1917 dma_pool_destroy(xhci->device_pool);
1918 xhci->device_pool = NULL;
1919 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1920
1921 dma_pool_destroy(xhci->small_streams_pool);
1922 xhci->small_streams_pool = NULL;
1923 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1924 "Freed small stream array pool");
1925
1926 dma_pool_destroy(xhci->medium_streams_pool);
1927 xhci->medium_streams_pool = NULL;
1928 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1929 "Freed medium stream array pool");
1930
1931 if (xhci->dcbaa)
1932 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1933 xhci->dcbaa, xhci->dcbaa->dma);
1934 xhci->dcbaa = NULL;
1935
1936 scratchpad_free(xhci);
1937
1938 if (!xhci->rh_bw)
1939 goto no_bw;
1940
1941 for (i = 0; i < num_ports; i++) {
1942 struct xhci_tt_bw_info *tt, *n;
1943 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1944 list_del(&tt->tt_list);
1945 kfree(tt);
1946 }
1947 }
1948
1949 no_bw:
1950 xhci->cmd_ring_reserved_trbs = 0;
1951 xhci->usb2_rhub.num_ports = 0;
1952 xhci->usb3_rhub.num_ports = 0;
1953 xhci->num_active_eps = 0;
1954 kfree(xhci->usb2_rhub.ports);
1955 kfree(xhci->usb3_rhub.ports);
1956 kfree(xhci->hw_ports);
1957 kfree(xhci->rh_bw);
1958 kfree(xhci->ext_caps);
1959 for (i = 0; i < xhci->num_port_caps; i++)
1960 kfree(xhci->port_caps[i].psi);
1961 kfree(xhci->port_caps);
1962 kfree(xhci->interrupters);
1963 xhci->num_port_caps = 0;
1964
1965 xhci->usb2_rhub.ports = NULL;
1966 xhci->usb3_rhub.ports = NULL;
1967 xhci->hw_ports = NULL;
1968 xhci->rh_bw = NULL;
1969 xhci->ext_caps = NULL;
1970 xhci->port_caps = NULL;
1971 xhci->interrupters = NULL;
1972
1973 xhci->page_size = 0;
1974 xhci->page_shift = 0;
1975 xhci->usb2_rhub.bus_state.bus_suspended = 0;
1976 xhci->usb3_rhub.bus_state.bus_suspended = 0;
1977 }
1978
xhci_set_hc_event_deq(struct xhci_hcd * xhci,struct xhci_interrupter * ir)1979 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1980 {
1981 dma_addr_t deq;
1982
1983 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg,
1984 ir->event_ring->dequeue);
1985 if (!deq)
1986 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n");
1987 /* Update HC event ring dequeue pointer */
1988 /* Don't clear the EHB bit (which is RW1C) because
1989 * there might be more events to service.
1990 */
1991 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1992 "// Write event ring dequeue pointer, preserving EHB bit");
1993 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK),
1994 &ir->ir_set->erst_dequeue);
1995 }
1996
xhci_add_in_port(struct xhci_hcd * xhci,unsigned int num_ports,__le32 __iomem * addr,int max_caps)1997 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1998 __le32 __iomem *addr, int max_caps)
1999 {
2000 u32 temp, port_offset, port_count;
2001 int i;
2002 u8 major_revision, minor_revision, tmp_minor_revision;
2003 struct xhci_hub *rhub;
2004 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2005 struct xhci_port_cap *port_cap;
2006
2007 temp = readl(addr);
2008 major_revision = XHCI_EXT_PORT_MAJOR(temp);
2009 minor_revision = XHCI_EXT_PORT_MINOR(temp);
2010
2011 if (major_revision == 0x03) {
2012 rhub = &xhci->usb3_rhub;
2013 /*
2014 * Some hosts incorrectly use sub-minor version for minor
2015 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2016 * for bcdUSB 0x310). Since there is no USB release with sub
2017 * minor version 0x301 to 0x309, we can assume that they are
2018 * incorrect and fix it here.
2019 */
2020 if (minor_revision > 0x00 && minor_revision < 0x10)
2021 minor_revision <<= 4;
2022 /*
2023 * Some zhaoxin's xHCI controller that follow usb3.1 spec
2024 * but only support Gen1.
2025 */
2026 if (xhci->quirks & XHCI_ZHAOXIN_HOST) {
2027 tmp_minor_revision = minor_revision;
2028 minor_revision = 0;
2029 }
2030
2031 } else if (major_revision <= 0x02) {
2032 rhub = &xhci->usb2_rhub;
2033 } else {
2034 xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n",
2035 addr, major_revision);
2036 /* Ignoring port protocol we can't understand. FIXME */
2037 return;
2038 }
2039
2040 /* Port offset and count in the third dword, see section 7.2 */
2041 temp = readl(addr + 2);
2042 port_offset = XHCI_EXT_PORT_OFF(temp);
2043 port_count = XHCI_EXT_PORT_COUNT(temp);
2044 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2045 "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x",
2046 addr, port_offset, port_count, major_revision);
2047 /* Port count includes the current port offset */
2048 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2049 /* WTF? "Valid values are ‘1’ to MaxPorts" */
2050 return;
2051
2052 port_cap = &xhci->port_caps[xhci->num_port_caps++];
2053 if (xhci->num_port_caps > max_caps)
2054 return;
2055
2056 port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2057
2058 if (port_cap->psi_count) {
2059 port_cap->psi = kcalloc_node(port_cap->psi_count,
2060 sizeof(*port_cap->psi),
2061 GFP_KERNEL, dev_to_node(dev));
2062 if (!port_cap->psi)
2063 port_cap->psi_count = 0;
2064
2065 port_cap->psi_uid_count++;
2066 for (i = 0; i < port_cap->psi_count; i++) {
2067 port_cap->psi[i] = readl(addr + 4 + i);
2068
2069 /* count unique ID values, two consecutive entries can
2070 * have the same ID if link is assymetric
2071 */
2072 if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2073 XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2074 port_cap->psi_uid_count++;
2075
2076 if (xhci->quirks & XHCI_ZHAOXIN_HOST &&
2077 major_revision == 0x03 &&
2078 XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5)
2079 minor_revision = tmp_minor_revision;
2080
2081 xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2082 XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2083 XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2084 XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2085 XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2086 XHCI_EXT_PORT_LP(port_cap->psi[i]),
2087 XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2088 }
2089 }
2090
2091 rhub->maj_rev = major_revision;
2092
2093 if (rhub->min_rev < minor_revision)
2094 rhub->min_rev = minor_revision;
2095
2096 port_cap->maj_rev = major_revision;
2097 port_cap->min_rev = minor_revision;
2098
2099 /* cache usb2 port capabilities */
2100 if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2101 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2102
2103 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2104 (temp & XHCI_HLC)) {
2105 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2106 "xHCI 1.0: support USB2 hardware lpm");
2107 xhci->hw_lpm_support = 1;
2108 }
2109
2110 port_offset--;
2111 for (i = port_offset; i < (port_offset + port_count); i++) {
2112 struct xhci_port *hw_port = &xhci->hw_ports[i];
2113 /* Duplicate entry. Ignore the port if the revisions differ. */
2114 if (hw_port->rhub) {
2115 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i);
2116 xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n",
2117 hw_port->rhub->maj_rev, major_revision);
2118 /* Only adjust the roothub port counts if we haven't
2119 * found a similar duplicate.
2120 */
2121 if (hw_port->rhub != rhub &&
2122 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2123 hw_port->rhub->num_ports--;
2124 hw_port->hcd_portnum = DUPLICATE_ENTRY;
2125 }
2126 continue;
2127 }
2128 hw_port->rhub = rhub;
2129 hw_port->port_cap = port_cap;
2130 rhub->num_ports++;
2131 }
2132 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2133 }
2134
xhci_create_rhub_port_array(struct xhci_hcd * xhci,struct xhci_hub * rhub,gfp_t flags)2135 static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2136 struct xhci_hub *rhub, gfp_t flags)
2137 {
2138 int port_index = 0;
2139 int i;
2140 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2141
2142 if (!rhub->num_ports)
2143 return;
2144 rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2145 flags, dev_to_node(dev));
2146 if (!rhub->ports)
2147 return;
2148
2149 for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2150 if (xhci->hw_ports[i].rhub != rhub ||
2151 xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2152 continue;
2153 xhci->hw_ports[i].hcd_portnum = port_index;
2154 rhub->ports[port_index] = &xhci->hw_ports[i];
2155 port_index++;
2156 if (port_index == rhub->num_ports)
2157 break;
2158 }
2159 }
2160
2161 /*
2162 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2163 * specify what speeds each port is supposed to be. We can't count on the port
2164 * speed bits in the PORTSC register being correct until a device is connected,
2165 * but we need to set up the two fake roothubs with the correct number of USB
2166 * 3.0 and USB 2.0 ports at host controller initialization time.
2167 */
xhci_setup_port_arrays(struct xhci_hcd * xhci,gfp_t flags)2168 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2169 {
2170 void __iomem *base;
2171 u32 offset;
2172 unsigned int num_ports;
2173 int i, j;
2174 int cap_count = 0;
2175 u32 cap_start;
2176 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2177
2178 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2179 xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2180 flags, dev_to_node(dev));
2181 if (!xhci->hw_ports)
2182 return -ENOMEM;
2183
2184 for (i = 0; i < num_ports; i++) {
2185 xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2186 NUM_PORT_REGS * i;
2187 xhci->hw_ports[i].hw_portnum = i;
2188
2189 init_completion(&xhci->hw_ports[i].rexit_done);
2190 init_completion(&xhci->hw_ports[i].u3exit_done);
2191 }
2192
2193 xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2194 dev_to_node(dev));
2195 if (!xhci->rh_bw)
2196 return -ENOMEM;
2197 for (i = 0; i < num_ports; i++) {
2198 struct xhci_interval_bw_table *bw_table;
2199
2200 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2201 bw_table = &xhci->rh_bw[i].bw_table;
2202 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2203 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2204 }
2205 base = &xhci->cap_regs->hc_capbase;
2206
2207 cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2208 if (!cap_start) {
2209 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2210 return -ENODEV;
2211 }
2212
2213 offset = cap_start;
2214 /* count extended protocol capability entries for later caching */
2215 while (offset) {
2216 cap_count++;
2217 offset = xhci_find_next_ext_cap(base, offset,
2218 XHCI_EXT_CAPS_PROTOCOL);
2219 }
2220
2221 xhci->ext_caps = kcalloc_node(cap_count, sizeof(*xhci->ext_caps),
2222 flags, dev_to_node(dev));
2223 if (!xhci->ext_caps)
2224 return -ENOMEM;
2225
2226 xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2227 flags, dev_to_node(dev));
2228 if (!xhci->port_caps)
2229 return -ENOMEM;
2230
2231 offset = cap_start;
2232
2233 while (offset) {
2234 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2235 if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2236 num_ports)
2237 break;
2238 offset = xhci_find_next_ext_cap(base, offset,
2239 XHCI_EXT_CAPS_PROTOCOL);
2240 }
2241 if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
2242 xhci_warn(xhci, "No ports on the roothubs?\n");
2243 return -ENODEV;
2244 }
2245 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2246 "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2247 xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2248
2249 /* Place limits on the number of roothub ports so that the hub
2250 * descriptors aren't longer than the USB core will allocate.
2251 */
2252 if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2253 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2254 "Limiting USB 3.0 roothub ports to %u.",
2255 USB_SS_MAXPORTS);
2256 xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2257 }
2258 if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2259 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2260 "Limiting USB 2.0 roothub ports to %u.",
2261 USB_MAXCHILDREN);
2262 xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2263 }
2264
2265 if (!xhci->usb2_rhub.num_ports)
2266 xhci_info(xhci, "USB2 root hub has no ports\n");
2267
2268 if (!xhci->usb3_rhub.num_ports)
2269 xhci_info(xhci, "USB3 root hub has no ports\n");
2270
2271 xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2272 xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2273
2274 return 0;
2275 }
2276
2277 static struct xhci_interrupter *
xhci_alloc_interrupter(struct xhci_hcd * xhci,unsigned int segs,gfp_t flags)2278 xhci_alloc_interrupter(struct xhci_hcd *xhci, unsigned int segs, gfp_t flags)
2279 {
2280 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2281 struct xhci_interrupter *ir;
2282 unsigned int max_segs;
2283 int ret;
2284
2285 if (!segs)
2286 segs = ERST_DEFAULT_SEGS;
2287
2288 max_segs = BIT(HCS_ERST_MAX(xhci->hcs_params2));
2289 segs = min(segs, max_segs);
2290
2291 ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev));
2292 if (!ir)
2293 return NULL;
2294
2295 ir->event_ring = xhci_ring_alloc(xhci, segs, 1, TYPE_EVENT, 0, flags);
2296 if (!ir->event_ring) {
2297 xhci_warn(xhci, "Failed to allocate interrupter event ring\n");
2298 kfree(ir);
2299 return NULL;
2300 }
2301
2302 ret = xhci_alloc_erst(xhci, ir->event_ring, &ir->erst, flags);
2303 if (ret) {
2304 xhci_warn(xhci, "Failed to allocate interrupter erst\n");
2305 xhci_ring_free(xhci, ir->event_ring);
2306 kfree(ir);
2307 return NULL;
2308 }
2309
2310 return ir;
2311 }
2312
2313 static int
xhci_add_interrupter(struct xhci_hcd * xhci,struct xhci_interrupter * ir,unsigned int intr_num)2314 xhci_add_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir,
2315 unsigned int intr_num)
2316 {
2317 u64 erst_base;
2318 u32 erst_size;
2319
2320 if (intr_num > xhci->max_interrupters) {
2321 xhci_warn(xhci, "Can't add interrupter %d, max interrupters %d\n",
2322 intr_num, xhci->max_interrupters);
2323 return -EINVAL;
2324 }
2325
2326 if (xhci->interrupters[intr_num]) {
2327 xhci_warn(xhci, "Interrupter %d\n already set up", intr_num);
2328 return -EINVAL;
2329 }
2330
2331 xhci->interrupters[intr_num] = ir;
2332 ir->intr_num = intr_num;
2333 ir->ir_set = &xhci->run_regs->ir_set[intr_num];
2334
2335 /* set ERST count with the number of entries in the segment table */
2336 erst_size = readl(&ir->ir_set->erst_size);
2337 erst_size &= ERST_SIZE_MASK;
2338 erst_size |= ir->event_ring->num_segs;
2339 writel(erst_size, &ir->ir_set->erst_size);
2340
2341 erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
2342 erst_base &= ERST_BASE_RSVDP;
2343 erst_base |= ir->erst.erst_dma_addr & ~ERST_BASE_RSVDP;
2344 if (xhci->quirks & XHCI_WRITE_64_HI_LO)
2345 hi_lo_writeq(erst_base, &ir->ir_set->erst_base);
2346 else
2347 xhci_write_64(xhci, erst_base, &ir->ir_set->erst_base);
2348
2349 /* Set the event ring dequeue address of this interrupter */
2350 xhci_set_hc_event_deq(xhci, ir);
2351
2352 return 0;
2353 }
2354
2355 struct xhci_interrupter *
xhci_create_secondary_interrupter(struct usb_hcd * hcd,unsigned int segs,u32 imod_interval)2356 xhci_create_secondary_interrupter(struct usb_hcd *hcd, unsigned int segs,
2357 u32 imod_interval)
2358 {
2359 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2360 struct xhci_interrupter *ir;
2361 unsigned int i;
2362 int err = -ENOSPC;
2363
2364 if (!xhci->interrupters || xhci->max_interrupters <= 1)
2365 return NULL;
2366
2367 ir = xhci_alloc_interrupter(xhci, segs, GFP_KERNEL);
2368 if (!ir)
2369 return NULL;
2370
2371 spin_lock_irq(&xhci->lock);
2372
2373 /* Find available secondary interrupter, interrupter 0 is reserved for primary */
2374 for (i = 1; i < xhci->max_interrupters; i++) {
2375 if (xhci->interrupters[i] == NULL) {
2376 err = xhci_add_interrupter(xhci, ir, i);
2377 break;
2378 }
2379 }
2380
2381 spin_unlock_irq(&xhci->lock);
2382
2383 if (err) {
2384 xhci_warn(xhci, "Failed to add secondary interrupter, max interrupters %d\n",
2385 xhci->max_interrupters);
2386 xhci_free_interrupter(xhci, ir);
2387 return NULL;
2388 }
2389
2390 err = xhci_set_interrupter_moderation(ir, imod_interval);
2391 if (err)
2392 xhci_warn(xhci, "Failed to set interrupter %d moderation to %uns\n",
2393 i, imod_interval);
2394
2395 xhci_dbg(xhci, "Add secondary interrupter %d, max interrupters %d\n",
2396 i, xhci->max_interrupters);
2397
2398 return ir;
2399 }
2400 EXPORT_SYMBOL_GPL(xhci_create_secondary_interrupter);
2401
xhci_mem_init(struct xhci_hcd * xhci,gfp_t flags)2402 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2403 {
2404 struct xhci_interrupter *ir;
2405 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2406 dma_addr_t dma;
2407 unsigned int val, val2;
2408 u64 val_64;
2409 u32 page_size, temp;
2410 int i;
2411
2412 INIT_LIST_HEAD(&xhci->cmd_list);
2413
2414 /* init command timeout work */
2415 INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2416 init_completion(&xhci->cmd_ring_stop_completion);
2417
2418 page_size = readl(&xhci->op_regs->page_size);
2419 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2420 "Supported page size register = 0x%x", page_size);
2421 val = ffs(page_size) - 1;
2422 if (val < 16)
2423 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2424 "Supported page size of %iK", (1 << (val + 12)) / 1024);
2425 else
2426 xhci_warn(xhci, "WARN: no supported page size\n");
2427 /* Use 4K pages, since that's common and the minimum the HC supports */
2428 xhci->page_shift = 12;
2429 xhci->page_size = 1 << xhci->page_shift;
2430 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2431 "HCD page size set to %iK", xhci->page_size / 1024);
2432
2433 /*
2434 * Program the Number of Device Slots Enabled field in the CONFIG
2435 * register with the max value of slots the HC can handle.
2436 */
2437 val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2438 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2439 "// xHC can handle at most %d device slots.", val);
2440 val2 = readl(&xhci->op_regs->config_reg);
2441 val |= (val2 & ~HCS_SLOTS_MASK);
2442 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2443 "// Setting Max device slots reg = 0x%x.", val);
2444 writel(val, &xhci->op_regs->config_reg);
2445
2446 /*
2447 * xHCI section 5.4.6 - Device Context array must be
2448 * "physically contiguous and 64-byte (cache line) aligned".
2449 */
2450 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2451 flags);
2452 if (!xhci->dcbaa)
2453 goto fail;
2454 xhci->dcbaa->dma = dma;
2455 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2456 "// Device context base array address = 0x%pad (DMA), %p (virt)",
2457 &xhci->dcbaa->dma, xhci->dcbaa);
2458 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2459
2460 /*
2461 * Initialize the ring segment pool. The ring must be a contiguous
2462 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2463 * however, the command ring segment needs 64-byte aligned segments
2464 * and our use of dma addresses in the trb_address_map radix tree needs
2465 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2466 */
2467 if (xhci->quirks & XHCI_TRB_OVERFETCH)
2468 /* Buggy HC prefetches beyond segment bounds - allocate dummy space at the end */
2469 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2470 TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2);
2471 else
2472 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2473 TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2474
2475 /* See Table 46 and Note on Figure 55 */
2476 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2477 2112, 64, xhci->page_size);
2478 if (!xhci->segment_pool || !xhci->device_pool)
2479 goto fail;
2480
2481 /* Linear stream context arrays don't have any boundary restrictions,
2482 * and only need to be 16-byte aligned.
2483 */
2484 xhci->small_streams_pool =
2485 dma_pool_create("xHCI 256 byte stream ctx arrays",
2486 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2487 xhci->medium_streams_pool =
2488 dma_pool_create("xHCI 1KB stream ctx arrays",
2489 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2490 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2491 * will be allocated with dma_alloc_coherent()
2492 */
2493
2494 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2495 goto fail;
2496
2497 /* Set up the command ring to have one segments for now. */
2498 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2499 if (!xhci->cmd_ring)
2500 goto fail;
2501 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2502 "Allocated command ring at %p", xhci->cmd_ring);
2503 xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%pad",
2504 &xhci->cmd_ring->first_seg->dma);
2505
2506 /* Set the address in the Command Ring Control register */
2507 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2508 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2509 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2510 xhci->cmd_ring->cycle_state;
2511 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2512 "// Setting command ring address to 0x%016llx", val_64);
2513 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2514
2515 /* Reserve one command ring TRB for disabling LPM.
2516 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2517 * disabling LPM, we only need to reserve one TRB for all devices.
2518 */
2519 xhci->cmd_ring_reserved_trbs++;
2520
2521 val = readl(&xhci->cap_regs->db_off);
2522 val &= DBOFF_MASK;
2523 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2524 "// Doorbell array is located at offset 0x%x from cap regs base addr",
2525 val);
2526 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2527
2528 /* Allocate and set up primary interrupter 0 with an event ring. */
2529 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2530 "Allocating primary event ring");
2531 xhci->interrupters = kcalloc_node(xhci->max_interrupters, sizeof(*xhci->interrupters),
2532 flags, dev_to_node(dev));
2533
2534 ir = xhci_alloc_interrupter(xhci, 0, flags);
2535 if (!ir)
2536 goto fail;
2537
2538 if (xhci_add_interrupter(xhci, ir, 0))
2539 goto fail;
2540
2541 xhci->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
2542
2543 /*
2544 * XXX: Might need to set the Interrupter Moderation Register to
2545 * something other than the default (~1ms minimum between interrupts).
2546 * See section 5.5.1.2.
2547 */
2548 for (i = 0; i < MAX_HC_SLOTS; i++)
2549 xhci->devs[i] = NULL;
2550
2551 if (scratchpad_alloc(xhci, flags))
2552 goto fail;
2553 if (xhci_setup_port_arrays(xhci, flags))
2554 goto fail;
2555
2556 /* Enable USB 3.0 device notifications for function remote wake, which
2557 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2558 * U3 (device suspend).
2559 */
2560 temp = readl(&xhci->op_regs->dev_notification);
2561 temp &= ~DEV_NOTE_MASK;
2562 temp |= DEV_NOTE_FWAKE;
2563 writel(temp, &xhci->op_regs->dev_notification);
2564
2565 return 0;
2566
2567 fail:
2568 xhci_halt(xhci);
2569 xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2570 xhci_mem_cleanup(xhci);
2571 return -ENOMEM;
2572 }
2573