1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * System Control and Management Interface (SCMI) Message Protocol driver
4 *
5 * SCMI Message Protocol is used between the System Control Processor(SCP)
6 * and the Application Processors(AP). The Message Handling Unit(MHU)
7 * provides a mechanism for inter-processor communication between SCP's
8 * Cortex M3 and AP.
9 *
10 * SCP offers control and management of the core/cluster power states,
11 * various power domain DVFS including the core/cluster, certain system
12 * clocks configuration, thermal sensors and many others.
13 *
14 * Copyright (C) 2018-2021 ARM Ltd.
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/bitmap.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/export.h>
23 #include <linux/idr.h>
24 #include <linux/io.h>
25 #include <linux/io-64-nonatomic-hi-lo.h>
26 #include <linux/kernel.h>
27 #include <linux/ktime.h>
28 #include <linux/hashtable.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/of.h>
32 #include <linux/platform_device.h>
33 #include <linux/processor.h>
34 #include <linux/refcount.h>
35 #include <linux/slab.h>
36
37 #include "common.h"
38 #include "notify.h"
39
40 #include "raw_mode.h"
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/scmi.h>
44
45 static DEFINE_IDA(scmi_id);
46
47 static DEFINE_IDR(scmi_protocols);
48 static DEFINE_SPINLOCK(protocol_lock);
49
50 /* List of all SCMI devices active in system */
51 static LIST_HEAD(scmi_list);
52 /* Protection for the entire list */
53 static DEFINE_MUTEX(scmi_list_mutex);
54 /* Track the unique id for the transfers for debug & profiling purpose */
55 static atomic_t transfer_last_id;
56
57 static struct dentry *scmi_top_dentry;
58
59 /**
60 * struct scmi_xfers_info - Structure to manage transfer information
61 *
62 * @xfer_alloc_table: Bitmap table for allocated messages.
63 * Index of this bitmap table is also used for message
64 * sequence identifier.
65 * @xfer_lock: Protection for message allocation
66 * @max_msg: Maximum number of messages that can be pending
67 * @free_xfers: A free list for available to use xfers. It is initialized with
68 * a number of xfers equal to the maximum allowed in-flight
69 * messages.
70 * @pending_xfers: An hashtable, indexed by msg_hdr.seq, used to keep all the
71 * currently in-flight messages.
72 */
73 struct scmi_xfers_info {
74 unsigned long *xfer_alloc_table;
75 spinlock_t xfer_lock;
76 int max_msg;
77 struct hlist_head free_xfers;
78 DECLARE_HASHTABLE(pending_xfers, SCMI_PENDING_XFERS_HT_ORDER_SZ);
79 };
80
81 /**
82 * struct scmi_protocol_instance - Describe an initialized protocol instance.
83 * @handle: Reference to the SCMI handle associated to this protocol instance.
84 * @proto: A reference to the protocol descriptor.
85 * @gid: A reference for per-protocol devres management.
86 * @users: A refcount to track effective users of this protocol.
87 * @priv: Reference for optional protocol private data.
88 * @ph: An embedded protocol handle that will be passed down to protocol
89 * initialization code to identify this instance.
90 *
91 * Each protocol is initialized independently once for each SCMI platform in
92 * which is defined by DT and implemented by the SCMI server fw.
93 */
94 struct scmi_protocol_instance {
95 const struct scmi_handle *handle;
96 const struct scmi_protocol *proto;
97 void *gid;
98 refcount_t users;
99 void *priv;
100 struct scmi_protocol_handle ph;
101 };
102
103 #define ph_to_pi(h) container_of(h, struct scmi_protocol_instance, ph)
104
105 /**
106 * struct scmi_debug_info - Debug common info
107 * @top_dentry: A reference to the top debugfs dentry
108 * @name: Name of this SCMI instance
109 * @type: Type of this SCMI instance
110 * @is_atomic: Flag to state if the transport of this instance is atomic
111 */
112 struct scmi_debug_info {
113 struct dentry *top_dentry;
114 const char *name;
115 const char *type;
116 bool is_atomic;
117 };
118
119 /**
120 * struct scmi_info - Structure representing a SCMI instance
121 *
122 * @id: A sequence number starting from zero identifying this instance
123 * @dev: Device pointer
124 * @desc: SoC description for this instance
125 * @version: SCMI revision information containing protocol version,
126 * implementation version and (sub-)vendor identification.
127 * @handle: Instance of SCMI handle to send to clients
128 * @tx_minfo: Universal Transmit Message management info
129 * @rx_minfo: Universal Receive Message management info
130 * @tx_idr: IDR object to map protocol id to Tx channel info pointer
131 * @rx_idr: IDR object to map protocol id to Rx channel info pointer
132 * @protocols: IDR for protocols' instance descriptors initialized for
133 * this SCMI instance: populated on protocol's first attempted
134 * usage.
135 * @protocols_mtx: A mutex to protect protocols instances initialization.
136 * @protocols_imp: List of protocols implemented, currently maximum of
137 * scmi_revision_info.num_protocols elements allocated by the
138 * base protocol
139 * @active_protocols: IDR storing device_nodes for protocols actually defined
140 * in the DT and confirmed as implemented by fw.
141 * @atomic_threshold: Optional system wide DT-configured threshold, expressed
142 * in microseconds, for atomic operations.
143 * Only SCMI synchronous commands reported by the platform
144 * to have an execution latency lesser-equal to the threshold
145 * should be considered for atomic mode operation: such
146 * decision is finally left up to the SCMI drivers.
147 * @notify_priv: Pointer to private data structure specific to notifications.
148 * @node: List head
149 * @users: Number of users of this instance
150 * @bus_nb: A notifier to listen for device bind/unbind on the scmi bus
151 * @dev_req_nb: A notifier to listen for device request/unrequest on the scmi
152 * bus
153 * @devreq_mtx: A mutex to serialize device creation for this SCMI instance
154 * @dbg: A pointer to debugfs related data (if any)
155 * @raw: An opaque reference handle used by SCMI Raw mode.
156 */
157 struct scmi_info {
158 int id;
159 struct device *dev;
160 const struct scmi_desc *desc;
161 struct scmi_revision_info version;
162 struct scmi_handle handle;
163 struct scmi_xfers_info tx_minfo;
164 struct scmi_xfers_info rx_minfo;
165 struct idr tx_idr;
166 struct idr rx_idr;
167 struct idr protocols;
168 /* Ensure mutual exclusive access to protocols instance array */
169 struct mutex protocols_mtx;
170 u8 *protocols_imp;
171 struct idr active_protocols;
172 unsigned int atomic_threshold;
173 void *notify_priv;
174 struct list_head node;
175 int users;
176 struct notifier_block bus_nb;
177 struct notifier_block dev_req_nb;
178 /* Serialize device creation process for this instance */
179 struct mutex devreq_mtx;
180 struct scmi_debug_info *dbg;
181 void *raw;
182 };
183
184 #define handle_to_scmi_info(h) container_of(h, struct scmi_info, handle)
185 #define bus_nb_to_scmi_info(nb) container_of(nb, struct scmi_info, bus_nb)
186 #define req_nb_to_scmi_info(nb) container_of(nb, struct scmi_info, dev_req_nb)
187
scmi_protocol_get(int protocol_id)188 static const struct scmi_protocol *scmi_protocol_get(int protocol_id)
189 {
190 const struct scmi_protocol *proto;
191
192 proto = idr_find(&scmi_protocols, protocol_id);
193 if (!proto || !try_module_get(proto->owner)) {
194 pr_warn("SCMI Protocol 0x%x not found!\n", protocol_id);
195 return NULL;
196 }
197
198 pr_debug("Found SCMI Protocol 0x%x\n", protocol_id);
199
200 return proto;
201 }
202
scmi_protocol_put(int protocol_id)203 static void scmi_protocol_put(int protocol_id)
204 {
205 const struct scmi_protocol *proto;
206
207 proto = idr_find(&scmi_protocols, protocol_id);
208 if (proto)
209 module_put(proto->owner);
210 }
211
scmi_protocol_register(const struct scmi_protocol * proto)212 int scmi_protocol_register(const struct scmi_protocol *proto)
213 {
214 int ret;
215
216 if (!proto) {
217 pr_err("invalid protocol\n");
218 return -EINVAL;
219 }
220
221 if (!proto->instance_init) {
222 pr_err("missing init for protocol 0x%x\n", proto->id);
223 return -EINVAL;
224 }
225
226 spin_lock(&protocol_lock);
227 ret = idr_alloc(&scmi_protocols, (void *)proto,
228 proto->id, proto->id + 1, GFP_ATOMIC);
229 spin_unlock(&protocol_lock);
230 if (ret != proto->id) {
231 pr_err("unable to allocate SCMI idr slot for 0x%x - err %d\n",
232 proto->id, ret);
233 return ret;
234 }
235
236 pr_debug("Registered SCMI Protocol 0x%x\n", proto->id);
237
238 return 0;
239 }
240 EXPORT_SYMBOL_GPL(scmi_protocol_register);
241
scmi_protocol_unregister(const struct scmi_protocol * proto)242 void scmi_protocol_unregister(const struct scmi_protocol *proto)
243 {
244 spin_lock(&protocol_lock);
245 idr_remove(&scmi_protocols, proto->id);
246 spin_unlock(&protocol_lock);
247
248 pr_debug("Unregistered SCMI Protocol 0x%x\n", proto->id);
249 }
250 EXPORT_SYMBOL_GPL(scmi_protocol_unregister);
251
252 /**
253 * scmi_create_protocol_devices - Create devices for all pending requests for
254 * this SCMI instance.
255 *
256 * @np: The device node describing the protocol
257 * @info: The SCMI instance descriptor
258 * @prot_id: The protocol ID
259 * @name: The optional name of the device to be created: if not provided this
260 * call will lead to the creation of all the devices currently requested
261 * for the specified protocol.
262 */
scmi_create_protocol_devices(struct device_node * np,struct scmi_info * info,int prot_id,const char * name)263 static void scmi_create_protocol_devices(struct device_node *np,
264 struct scmi_info *info,
265 int prot_id, const char *name)
266 {
267 struct scmi_device *sdev;
268
269 mutex_lock(&info->devreq_mtx);
270 sdev = scmi_device_create(np, info->dev, prot_id, name);
271 if (name && !sdev)
272 dev_err(info->dev,
273 "failed to create device for protocol 0x%X (%s)\n",
274 prot_id, name);
275 mutex_unlock(&info->devreq_mtx);
276 }
277
scmi_destroy_protocol_devices(struct scmi_info * info,int prot_id,const char * name)278 static void scmi_destroy_protocol_devices(struct scmi_info *info,
279 int prot_id, const char *name)
280 {
281 mutex_lock(&info->devreq_mtx);
282 scmi_device_destroy(info->dev, prot_id, name);
283 mutex_unlock(&info->devreq_mtx);
284 }
285
scmi_notification_instance_data_set(const struct scmi_handle * handle,void * priv)286 void scmi_notification_instance_data_set(const struct scmi_handle *handle,
287 void *priv)
288 {
289 struct scmi_info *info = handle_to_scmi_info(handle);
290
291 info->notify_priv = priv;
292 /* Ensure updated protocol private date are visible */
293 smp_wmb();
294 }
295
scmi_notification_instance_data_get(const struct scmi_handle * handle)296 void *scmi_notification_instance_data_get(const struct scmi_handle *handle)
297 {
298 struct scmi_info *info = handle_to_scmi_info(handle);
299
300 /* Ensure protocols_private_data has been updated */
301 smp_rmb();
302 return info->notify_priv;
303 }
304
305 /**
306 * scmi_xfer_token_set - Reserve and set new token for the xfer at hand
307 *
308 * @minfo: Pointer to Tx/Rx Message management info based on channel type
309 * @xfer: The xfer to act upon
310 *
311 * Pick the next unused monotonically increasing token and set it into
312 * xfer->hdr.seq: picking a monotonically increasing value avoids immediate
313 * reuse of freshly completed or timed-out xfers, thus mitigating the risk
314 * of incorrect association of a late and expired xfer with a live in-flight
315 * transaction, both happening to re-use the same token identifier.
316 *
317 * Since platform is NOT required to answer our request in-order we should
318 * account for a few rare but possible scenarios:
319 *
320 * - exactly 'next_token' may be NOT available so pick xfer_id >= next_token
321 * using find_next_zero_bit() starting from candidate next_token bit
322 *
323 * - all tokens ahead upto (MSG_TOKEN_ID_MASK - 1) are used in-flight but we
324 * are plenty of free tokens at start, so try a second pass using
325 * find_next_zero_bit() and starting from 0.
326 *
327 * X = used in-flight
328 *
329 * Normal
330 * ------
331 *
332 * |- xfer_id picked
333 * -----------+----------------------------------------------------------
334 * | | |X|X|X| | | | | | ... ... ... ... ... ... ... ... ... ... ...|X|X|
335 * ----------------------------------------------------------------------
336 * ^
337 * |- next_token
338 *
339 * Out-of-order pending at start
340 * -----------------------------
341 *
342 * |- xfer_id picked, last_token fixed
343 * -----+----------------------------------------------------------------
344 * |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... ... ...|X| |
345 * ----------------------------------------------------------------------
346 * ^
347 * |- next_token
348 *
349 *
350 * Out-of-order pending at end
351 * ---------------------------
352 *
353 * |- xfer_id picked, last_token fixed
354 * -----+----------------------------------------------------------------
355 * |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... |X|X|X||X|X|
356 * ----------------------------------------------------------------------
357 * ^
358 * |- next_token
359 *
360 * Context: Assumes to be called with @xfer_lock already acquired.
361 *
362 * Return: 0 on Success or error
363 */
scmi_xfer_token_set(struct scmi_xfers_info * minfo,struct scmi_xfer * xfer)364 static int scmi_xfer_token_set(struct scmi_xfers_info *minfo,
365 struct scmi_xfer *xfer)
366 {
367 unsigned long xfer_id, next_token;
368
369 /*
370 * Pick a candidate monotonic token in range [0, MSG_TOKEN_MAX - 1]
371 * using the pre-allocated transfer_id as a base.
372 * Note that the global transfer_id is shared across all message types
373 * so there could be holes in the allocated set of monotonic sequence
374 * numbers, but that is going to limit the effectiveness of the
375 * mitigation only in very rare limit conditions.
376 */
377 next_token = (xfer->transfer_id & (MSG_TOKEN_MAX - 1));
378
379 /* Pick the next available xfer_id >= next_token */
380 xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
381 MSG_TOKEN_MAX, next_token);
382 if (xfer_id == MSG_TOKEN_MAX) {
383 /*
384 * After heavily out-of-order responses, there are no free
385 * tokens ahead, but only at start of xfer_alloc_table so
386 * try again from the beginning.
387 */
388 xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
389 MSG_TOKEN_MAX, 0);
390 /*
391 * Something is wrong if we got here since there can be a
392 * maximum number of (MSG_TOKEN_MAX - 1) in-flight messages
393 * but we have not found any free token [0, MSG_TOKEN_MAX - 1].
394 */
395 if (WARN_ON_ONCE(xfer_id == MSG_TOKEN_MAX))
396 return -ENOMEM;
397 }
398
399 /* Update +/- last_token accordingly if we skipped some hole */
400 if (xfer_id != next_token)
401 atomic_add((int)(xfer_id - next_token), &transfer_last_id);
402
403 xfer->hdr.seq = (u16)xfer_id;
404
405 return 0;
406 }
407
408 /**
409 * scmi_xfer_token_clear - Release the token
410 *
411 * @minfo: Pointer to Tx/Rx Message management info based on channel type
412 * @xfer: The xfer to act upon
413 */
scmi_xfer_token_clear(struct scmi_xfers_info * minfo,struct scmi_xfer * xfer)414 static inline void scmi_xfer_token_clear(struct scmi_xfers_info *minfo,
415 struct scmi_xfer *xfer)
416 {
417 clear_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
418 }
419
420 /**
421 * scmi_xfer_inflight_register_unlocked - Register the xfer as in-flight
422 *
423 * @xfer: The xfer to register
424 * @minfo: Pointer to Tx/Rx Message management info based on channel type
425 *
426 * Note that this helper assumes that the xfer to be registered as in-flight
427 * had been built using an xfer sequence number which still corresponds to a
428 * free slot in the xfer_alloc_table.
429 *
430 * Context: Assumes to be called with @xfer_lock already acquired.
431 */
432 static inline void
scmi_xfer_inflight_register_unlocked(struct scmi_xfer * xfer,struct scmi_xfers_info * minfo)433 scmi_xfer_inflight_register_unlocked(struct scmi_xfer *xfer,
434 struct scmi_xfers_info *minfo)
435 {
436 /* Set in-flight */
437 set_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
438 hash_add(minfo->pending_xfers, &xfer->node, xfer->hdr.seq);
439 xfer->pending = true;
440 }
441
442 /**
443 * scmi_xfer_inflight_register - Try to register an xfer as in-flight
444 *
445 * @xfer: The xfer to register
446 * @minfo: Pointer to Tx/Rx Message management info based on channel type
447 *
448 * Note that this helper does NOT assume anything about the sequence number
449 * that was baked into the provided xfer, so it checks at first if it can
450 * be mapped to a free slot and fails with an error if another xfer with the
451 * same sequence number is currently still registered as in-flight.
452 *
453 * Return: 0 on Success or -EBUSY if sequence number embedded in the xfer
454 * could not rbe mapped to a free slot in the xfer_alloc_table.
455 */
scmi_xfer_inflight_register(struct scmi_xfer * xfer,struct scmi_xfers_info * minfo)456 static int scmi_xfer_inflight_register(struct scmi_xfer *xfer,
457 struct scmi_xfers_info *minfo)
458 {
459 int ret = 0;
460 unsigned long flags;
461
462 spin_lock_irqsave(&minfo->xfer_lock, flags);
463 if (!test_bit(xfer->hdr.seq, minfo->xfer_alloc_table))
464 scmi_xfer_inflight_register_unlocked(xfer, minfo);
465 else
466 ret = -EBUSY;
467 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
468
469 return ret;
470 }
471
472 /**
473 * scmi_xfer_raw_inflight_register - An helper to register the given xfer as in
474 * flight on the TX channel, if possible.
475 *
476 * @handle: Pointer to SCMI entity handle
477 * @xfer: The xfer to register
478 *
479 * Return: 0 on Success, error otherwise
480 */
scmi_xfer_raw_inflight_register(const struct scmi_handle * handle,struct scmi_xfer * xfer)481 int scmi_xfer_raw_inflight_register(const struct scmi_handle *handle,
482 struct scmi_xfer *xfer)
483 {
484 struct scmi_info *info = handle_to_scmi_info(handle);
485
486 return scmi_xfer_inflight_register(xfer, &info->tx_minfo);
487 }
488
489 /**
490 * scmi_xfer_pending_set - Pick a proper sequence number and mark the xfer
491 * as pending in-flight
492 *
493 * @xfer: The xfer to act upon
494 * @minfo: Pointer to Tx/Rx Message management info based on channel type
495 *
496 * Return: 0 on Success or error otherwise
497 */
scmi_xfer_pending_set(struct scmi_xfer * xfer,struct scmi_xfers_info * minfo)498 static inline int scmi_xfer_pending_set(struct scmi_xfer *xfer,
499 struct scmi_xfers_info *minfo)
500 {
501 int ret;
502 unsigned long flags;
503
504 spin_lock_irqsave(&minfo->xfer_lock, flags);
505 /* Set a new monotonic token as the xfer sequence number */
506 ret = scmi_xfer_token_set(minfo, xfer);
507 if (!ret)
508 scmi_xfer_inflight_register_unlocked(xfer, minfo);
509 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
510
511 return ret;
512 }
513
514 /**
515 * scmi_xfer_get() - Allocate one message
516 *
517 * @handle: Pointer to SCMI entity handle
518 * @minfo: Pointer to Tx/Rx Message management info based on channel type
519 *
520 * Helper function which is used by various message functions that are
521 * exposed to clients of this driver for allocating a message traffic event.
522 *
523 * Picks an xfer from the free list @free_xfers (if any available) and perform
524 * a basic initialization.
525 *
526 * Note that, at this point, still no sequence number is assigned to the
527 * allocated xfer, nor it is registered as a pending transaction.
528 *
529 * The successfully initialized xfer is refcounted.
530 *
531 * Context: Holds @xfer_lock while manipulating @free_xfers.
532 *
533 * Return: An initialized xfer if all went fine, else pointer error.
534 */
scmi_xfer_get(const struct scmi_handle * handle,struct scmi_xfers_info * minfo)535 static struct scmi_xfer *scmi_xfer_get(const struct scmi_handle *handle,
536 struct scmi_xfers_info *minfo)
537 {
538 unsigned long flags;
539 struct scmi_xfer *xfer;
540
541 spin_lock_irqsave(&minfo->xfer_lock, flags);
542 if (hlist_empty(&minfo->free_xfers)) {
543 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
544 return ERR_PTR(-ENOMEM);
545 }
546
547 /* grab an xfer from the free_list */
548 xfer = hlist_entry(minfo->free_xfers.first, struct scmi_xfer, node);
549 hlist_del_init(&xfer->node);
550
551 /*
552 * Allocate transfer_id early so that can be used also as base for
553 * monotonic sequence number generation if needed.
554 */
555 xfer->transfer_id = atomic_inc_return(&transfer_last_id);
556
557 refcount_set(&xfer->users, 1);
558 atomic_set(&xfer->busy, SCMI_XFER_FREE);
559 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
560
561 return xfer;
562 }
563
564 /**
565 * scmi_xfer_raw_get - Helper to get a bare free xfer from the TX channel
566 *
567 * @handle: Pointer to SCMI entity handle
568 *
569 * Note that xfer is taken from the TX channel structures.
570 *
571 * Return: A valid xfer on Success, or an error-pointer otherwise
572 */
scmi_xfer_raw_get(const struct scmi_handle * handle)573 struct scmi_xfer *scmi_xfer_raw_get(const struct scmi_handle *handle)
574 {
575 struct scmi_xfer *xfer;
576 struct scmi_info *info = handle_to_scmi_info(handle);
577
578 xfer = scmi_xfer_get(handle, &info->tx_minfo);
579 if (!IS_ERR(xfer))
580 xfer->flags |= SCMI_XFER_FLAG_IS_RAW;
581
582 return xfer;
583 }
584
585 /**
586 * scmi_xfer_raw_channel_get - Helper to get a reference to the proper channel
587 * to use for a specific protocol_id Raw transaction.
588 *
589 * @handle: Pointer to SCMI entity handle
590 * @protocol_id: Identifier of the protocol
591 *
592 * Note that in a regular SCMI stack, usually, a protocol has to be defined in
593 * the DT to have an associated channel and be usable; but in Raw mode any
594 * protocol in range is allowed, re-using the Base channel, so as to enable
595 * fuzzing on any protocol without the need of a fully compiled DT.
596 *
597 * Return: A reference to the channel to use, or an ERR_PTR
598 */
599 struct scmi_chan_info *
scmi_xfer_raw_channel_get(const struct scmi_handle * handle,u8 protocol_id)600 scmi_xfer_raw_channel_get(const struct scmi_handle *handle, u8 protocol_id)
601 {
602 struct scmi_chan_info *cinfo;
603 struct scmi_info *info = handle_to_scmi_info(handle);
604
605 cinfo = idr_find(&info->tx_idr, protocol_id);
606 if (!cinfo) {
607 if (protocol_id == SCMI_PROTOCOL_BASE)
608 return ERR_PTR(-EINVAL);
609 /* Use Base channel for protocols not defined for DT */
610 cinfo = idr_find(&info->tx_idr, SCMI_PROTOCOL_BASE);
611 if (!cinfo)
612 return ERR_PTR(-EINVAL);
613 dev_warn_once(handle->dev,
614 "Using Base channel for protocol 0x%X\n",
615 protocol_id);
616 }
617
618 return cinfo;
619 }
620
621 /**
622 * __scmi_xfer_put() - Release a message
623 *
624 * @minfo: Pointer to Tx/Rx Message management info based on channel type
625 * @xfer: message that was reserved by scmi_xfer_get
626 *
627 * After refcount check, possibly release an xfer, clearing the token slot,
628 * removing xfer from @pending_xfers and putting it back into free_xfers.
629 *
630 * This holds a spinlock to maintain integrity of internal data structures.
631 */
632 static void
__scmi_xfer_put(struct scmi_xfers_info * minfo,struct scmi_xfer * xfer)633 __scmi_xfer_put(struct scmi_xfers_info *minfo, struct scmi_xfer *xfer)
634 {
635 unsigned long flags;
636
637 spin_lock_irqsave(&minfo->xfer_lock, flags);
638 if (refcount_dec_and_test(&xfer->users)) {
639 if (xfer->pending) {
640 scmi_xfer_token_clear(minfo, xfer);
641 hash_del(&xfer->node);
642 xfer->pending = false;
643 }
644 hlist_add_head(&xfer->node, &minfo->free_xfers);
645 }
646 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
647 }
648
649 /**
650 * scmi_xfer_raw_put - Release an xfer that was taken by @scmi_xfer_raw_get
651 *
652 * @handle: Pointer to SCMI entity handle
653 * @xfer: A reference to the xfer to put
654 *
655 * Note that as with other xfer_put() handlers the xfer is really effectively
656 * released only if there are no more users on the system.
657 */
scmi_xfer_raw_put(const struct scmi_handle * handle,struct scmi_xfer * xfer)658 void scmi_xfer_raw_put(const struct scmi_handle *handle, struct scmi_xfer *xfer)
659 {
660 struct scmi_info *info = handle_to_scmi_info(handle);
661
662 xfer->flags &= ~SCMI_XFER_FLAG_IS_RAW;
663 xfer->flags &= ~SCMI_XFER_FLAG_CHAN_SET;
664 return __scmi_xfer_put(&info->tx_minfo, xfer);
665 }
666
667 /**
668 * scmi_xfer_lookup_unlocked - Helper to lookup an xfer_id
669 *
670 * @minfo: Pointer to Tx/Rx Message management info based on channel type
671 * @xfer_id: Token ID to lookup in @pending_xfers
672 *
673 * Refcounting is untouched.
674 *
675 * Context: Assumes to be called with @xfer_lock already acquired.
676 *
677 * Return: A valid xfer on Success or error otherwise
678 */
679 static struct scmi_xfer *
scmi_xfer_lookup_unlocked(struct scmi_xfers_info * minfo,u16 xfer_id)680 scmi_xfer_lookup_unlocked(struct scmi_xfers_info *minfo, u16 xfer_id)
681 {
682 struct scmi_xfer *xfer = NULL;
683
684 if (test_bit(xfer_id, minfo->xfer_alloc_table))
685 xfer = XFER_FIND(minfo->pending_xfers, xfer_id);
686
687 return xfer ?: ERR_PTR(-EINVAL);
688 }
689
690 /**
691 * scmi_msg_response_validate - Validate message type against state of related
692 * xfer
693 *
694 * @cinfo: A reference to the channel descriptor.
695 * @msg_type: Message type to check
696 * @xfer: A reference to the xfer to validate against @msg_type
697 *
698 * This function checks if @msg_type is congruent with the current state of
699 * a pending @xfer; if an asynchronous delayed response is received before the
700 * related synchronous response (Out-of-Order Delayed Response) the missing
701 * synchronous response is assumed to be OK and completed, carrying on with the
702 * Delayed Response: this is done to address the case in which the underlying
703 * SCMI transport can deliver such out-of-order responses.
704 *
705 * Context: Assumes to be called with xfer->lock already acquired.
706 *
707 * Return: 0 on Success, error otherwise
708 */
scmi_msg_response_validate(struct scmi_chan_info * cinfo,u8 msg_type,struct scmi_xfer * xfer)709 static inline int scmi_msg_response_validate(struct scmi_chan_info *cinfo,
710 u8 msg_type,
711 struct scmi_xfer *xfer)
712 {
713 /*
714 * Even if a response was indeed expected on this slot at this point,
715 * a buggy platform could wrongly reply feeding us an unexpected
716 * delayed response we're not prepared to handle: bail-out safely
717 * blaming firmware.
718 */
719 if (msg_type == MSG_TYPE_DELAYED_RESP && !xfer->async_done) {
720 dev_err(cinfo->dev,
721 "Delayed Response for %d not expected! Buggy F/W ?\n",
722 xfer->hdr.seq);
723 return -EINVAL;
724 }
725
726 switch (xfer->state) {
727 case SCMI_XFER_SENT_OK:
728 if (msg_type == MSG_TYPE_DELAYED_RESP) {
729 /*
730 * Delayed Response expected but delivered earlier.
731 * Assume message RESPONSE was OK and skip state.
732 */
733 xfer->hdr.status = SCMI_SUCCESS;
734 xfer->state = SCMI_XFER_RESP_OK;
735 complete(&xfer->done);
736 dev_warn(cinfo->dev,
737 "Received valid OoO Delayed Response for %d\n",
738 xfer->hdr.seq);
739 }
740 break;
741 case SCMI_XFER_RESP_OK:
742 if (msg_type != MSG_TYPE_DELAYED_RESP)
743 return -EINVAL;
744 break;
745 case SCMI_XFER_DRESP_OK:
746 /* No further message expected once in SCMI_XFER_DRESP_OK */
747 return -EINVAL;
748 }
749
750 return 0;
751 }
752
753 /**
754 * scmi_xfer_state_update - Update xfer state
755 *
756 * @xfer: A reference to the xfer to update
757 * @msg_type: Type of message being processed.
758 *
759 * Note that this message is assumed to have been already successfully validated
760 * by @scmi_msg_response_validate(), so here we just update the state.
761 *
762 * Context: Assumes to be called on an xfer exclusively acquired using the
763 * busy flag.
764 */
scmi_xfer_state_update(struct scmi_xfer * xfer,u8 msg_type)765 static inline void scmi_xfer_state_update(struct scmi_xfer *xfer, u8 msg_type)
766 {
767 xfer->hdr.type = msg_type;
768
769 /* Unknown command types were already discarded earlier */
770 if (xfer->hdr.type == MSG_TYPE_COMMAND)
771 xfer->state = SCMI_XFER_RESP_OK;
772 else
773 xfer->state = SCMI_XFER_DRESP_OK;
774 }
775
scmi_xfer_acquired(struct scmi_xfer * xfer)776 static bool scmi_xfer_acquired(struct scmi_xfer *xfer)
777 {
778 int ret;
779
780 ret = atomic_cmpxchg(&xfer->busy, SCMI_XFER_FREE, SCMI_XFER_BUSY);
781
782 return ret == SCMI_XFER_FREE;
783 }
784
785 /**
786 * scmi_xfer_command_acquire - Helper to lookup and acquire a command xfer
787 *
788 * @cinfo: A reference to the channel descriptor.
789 * @msg_hdr: A message header to use as lookup key
790 *
791 * When a valid xfer is found for the sequence number embedded in the provided
792 * msg_hdr, reference counting is properly updated and exclusive access to this
793 * xfer is granted till released with @scmi_xfer_command_release.
794 *
795 * Return: A valid @xfer on Success or error otherwise.
796 */
797 static inline struct scmi_xfer *
scmi_xfer_command_acquire(struct scmi_chan_info * cinfo,u32 msg_hdr)798 scmi_xfer_command_acquire(struct scmi_chan_info *cinfo, u32 msg_hdr)
799 {
800 int ret;
801 unsigned long flags;
802 struct scmi_xfer *xfer;
803 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
804 struct scmi_xfers_info *minfo = &info->tx_minfo;
805 u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
806 u16 xfer_id = MSG_XTRACT_TOKEN(msg_hdr);
807
808 /* Are we even expecting this? */
809 spin_lock_irqsave(&minfo->xfer_lock, flags);
810 xfer = scmi_xfer_lookup_unlocked(minfo, xfer_id);
811 if (IS_ERR(xfer)) {
812 dev_err(cinfo->dev,
813 "Message for %d type %d is not expected!\n",
814 xfer_id, msg_type);
815 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
816 return xfer;
817 }
818 refcount_inc(&xfer->users);
819 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
820
821 spin_lock_irqsave(&xfer->lock, flags);
822 ret = scmi_msg_response_validate(cinfo, msg_type, xfer);
823 /*
824 * If a pending xfer was found which was also in a congruent state with
825 * the received message, acquire exclusive access to it setting the busy
826 * flag.
827 * Spins only on the rare limit condition of concurrent reception of
828 * RESP and DRESP for the same xfer.
829 */
830 if (!ret) {
831 spin_until_cond(scmi_xfer_acquired(xfer));
832 scmi_xfer_state_update(xfer, msg_type);
833 }
834 spin_unlock_irqrestore(&xfer->lock, flags);
835
836 if (ret) {
837 dev_err(cinfo->dev,
838 "Invalid message type:%d for %d - HDR:0x%X state:%d\n",
839 msg_type, xfer_id, msg_hdr, xfer->state);
840 /* On error the refcount incremented above has to be dropped */
841 __scmi_xfer_put(minfo, xfer);
842 xfer = ERR_PTR(-EINVAL);
843 }
844
845 return xfer;
846 }
847
scmi_xfer_command_release(struct scmi_info * info,struct scmi_xfer * xfer)848 static inline void scmi_xfer_command_release(struct scmi_info *info,
849 struct scmi_xfer *xfer)
850 {
851 atomic_set(&xfer->busy, SCMI_XFER_FREE);
852 __scmi_xfer_put(&info->tx_minfo, xfer);
853 }
854
scmi_clear_channel(struct scmi_info * info,struct scmi_chan_info * cinfo)855 static inline void scmi_clear_channel(struct scmi_info *info,
856 struct scmi_chan_info *cinfo)
857 {
858 if (!cinfo->is_p2a) {
859 dev_warn(cinfo->dev, "Invalid clear on A2P channel !\n");
860 return;
861 }
862
863 if (info->desc->ops->clear_channel)
864 info->desc->ops->clear_channel(cinfo);
865 }
866
scmi_handle_notification(struct scmi_chan_info * cinfo,u32 msg_hdr,void * priv)867 static void scmi_handle_notification(struct scmi_chan_info *cinfo,
868 u32 msg_hdr, void *priv)
869 {
870 struct scmi_xfer *xfer;
871 struct device *dev = cinfo->dev;
872 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
873 struct scmi_xfers_info *minfo = &info->rx_minfo;
874 ktime_t ts;
875
876 ts = ktime_get_boottime();
877 xfer = scmi_xfer_get(cinfo->handle, minfo);
878 if (IS_ERR(xfer)) {
879 dev_err(dev, "failed to get free message slot (%ld)\n",
880 PTR_ERR(xfer));
881 scmi_clear_channel(info, cinfo);
882 return;
883 }
884
885 unpack_scmi_header(msg_hdr, &xfer->hdr);
886 if (priv)
887 /* Ensure order between xfer->priv store and following ops */
888 smp_store_mb(xfer->priv, priv);
889 info->desc->ops->fetch_notification(cinfo, info->desc->max_msg_size,
890 xfer);
891
892 trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
893 xfer->hdr.id, "NOTI", xfer->hdr.seq,
894 xfer->hdr.status, xfer->rx.buf, xfer->rx.len);
895
896 scmi_notify(cinfo->handle, xfer->hdr.protocol_id,
897 xfer->hdr.id, xfer->rx.buf, xfer->rx.len, ts);
898
899 trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
900 xfer->hdr.protocol_id, xfer->hdr.seq,
901 MSG_TYPE_NOTIFICATION);
902
903 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
904 xfer->hdr.seq = MSG_XTRACT_TOKEN(msg_hdr);
905 scmi_raw_message_report(info->raw, xfer, SCMI_RAW_NOTIF_QUEUE,
906 cinfo->id);
907 }
908
909 __scmi_xfer_put(minfo, xfer);
910
911 scmi_clear_channel(info, cinfo);
912 }
913
scmi_handle_response(struct scmi_chan_info * cinfo,u32 msg_hdr,void * priv)914 static void scmi_handle_response(struct scmi_chan_info *cinfo,
915 u32 msg_hdr, void *priv)
916 {
917 struct scmi_xfer *xfer;
918 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
919
920 xfer = scmi_xfer_command_acquire(cinfo, msg_hdr);
921 if (IS_ERR(xfer)) {
922 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
923 scmi_raw_error_report(info->raw, cinfo, msg_hdr, priv);
924
925 if (MSG_XTRACT_TYPE(msg_hdr) == MSG_TYPE_DELAYED_RESP)
926 scmi_clear_channel(info, cinfo);
927 return;
928 }
929
930 /* rx.len could be shrunk in the sync do_xfer, so reset to maxsz */
931 if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP)
932 xfer->rx.len = info->desc->max_msg_size;
933
934 if (priv)
935 /* Ensure order between xfer->priv store and following ops */
936 smp_store_mb(xfer->priv, priv);
937 info->desc->ops->fetch_response(cinfo, xfer);
938
939 trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
940 xfer->hdr.id,
941 xfer->hdr.type == MSG_TYPE_DELAYED_RESP ?
942 (!SCMI_XFER_IS_RAW(xfer) ? "DLYD" : "dlyd") :
943 (!SCMI_XFER_IS_RAW(xfer) ? "RESP" : "resp"),
944 xfer->hdr.seq, xfer->hdr.status,
945 xfer->rx.buf, xfer->rx.len);
946
947 trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
948 xfer->hdr.protocol_id, xfer->hdr.seq,
949 xfer->hdr.type);
950
951 if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) {
952 scmi_clear_channel(info, cinfo);
953 complete(xfer->async_done);
954 } else {
955 complete(&xfer->done);
956 }
957
958 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
959 /*
960 * When in polling mode avoid to queue the Raw xfer on the IRQ
961 * RX path since it will be already queued at the end of the TX
962 * poll loop.
963 */
964 if (!xfer->hdr.poll_completion)
965 scmi_raw_message_report(info->raw, xfer,
966 SCMI_RAW_REPLY_QUEUE,
967 cinfo->id);
968 }
969
970 scmi_xfer_command_release(info, xfer);
971 }
972
973 /**
974 * scmi_rx_callback() - callback for receiving messages
975 *
976 * @cinfo: SCMI channel info
977 * @msg_hdr: Message header
978 * @priv: Transport specific private data.
979 *
980 * Processes one received message to appropriate transfer information and
981 * signals completion of the transfer.
982 *
983 * NOTE: This function will be invoked in IRQ context, hence should be
984 * as optimal as possible.
985 */
scmi_rx_callback(struct scmi_chan_info * cinfo,u32 msg_hdr,void * priv)986 void scmi_rx_callback(struct scmi_chan_info *cinfo, u32 msg_hdr, void *priv)
987 {
988 u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
989
990 switch (msg_type) {
991 case MSG_TYPE_NOTIFICATION:
992 scmi_handle_notification(cinfo, msg_hdr, priv);
993 break;
994 case MSG_TYPE_COMMAND:
995 case MSG_TYPE_DELAYED_RESP:
996 scmi_handle_response(cinfo, msg_hdr, priv);
997 break;
998 default:
999 WARN_ONCE(1, "received unknown msg_type:%d\n", msg_type);
1000 break;
1001 }
1002 }
1003
1004 /**
1005 * xfer_put() - Release a transmit message
1006 *
1007 * @ph: Pointer to SCMI protocol handle
1008 * @xfer: message that was reserved by xfer_get_init
1009 */
xfer_put(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)1010 static void xfer_put(const struct scmi_protocol_handle *ph,
1011 struct scmi_xfer *xfer)
1012 {
1013 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1014 struct scmi_info *info = handle_to_scmi_info(pi->handle);
1015
1016 __scmi_xfer_put(&info->tx_minfo, xfer);
1017 }
1018
scmi_xfer_done_no_timeout(struct scmi_chan_info * cinfo,struct scmi_xfer * xfer,ktime_t stop)1019 static bool scmi_xfer_done_no_timeout(struct scmi_chan_info *cinfo,
1020 struct scmi_xfer *xfer, ktime_t stop)
1021 {
1022 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1023
1024 /*
1025 * Poll also on xfer->done so that polling can be forcibly terminated
1026 * in case of out-of-order receptions of delayed responses
1027 */
1028 return info->desc->ops->poll_done(cinfo, xfer) ||
1029 try_wait_for_completion(&xfer->done) ||
1030 ktime_after(ktime_get(), stop);
1031 }
1032
scmi_wait_for_reply(struct device * dev,const struct scmi_desc * desc,struct scmi_chan_info * cinfo,struct scmi_xfer * xfer,unsigned int timeout_ms)1033 static int scmi_wait_for_reply(struct device *dev, const struct scmi_desc *desc,
1034 struct scmi_chan_info *cinfo,
1035 struct scmi_xfer *xfer, unsigned int timeout_ms)
1036 {
1037 int ret = 0;
1038
1039 if (xfer->hdr.poll_completion) {
1040 /*
1041 * Real polling is needed only if transport has NOT declared
1042 * itself to support synchronous commands replies.
1043 */
1044 if (!desc->sync_cmds_completed_on_ret) {
1045 /*
1046 * Poll on xfer using transport provided .poll_done();
1047 * assumes no completion interrupt was available.
1048 */
1049 ktime_t stop = ktime_add_ms(ktime_get(), timeout_ms);
1050
1051 spin_until_cond(scmi_xfer_done_no_timeout(cinfo,
1052 xfer, stop));
1053 if (ktime_after(ktime_get(), stop)) {
1054 dev_err(dev,
1055 "timed out in resp(caller: %pS) - polling\n",
1056 (void *)_RET_IP_);
1057 ret = -ETIMEDOUT;
1058 }
1059 }
1060
1061 if (!ret) {
1062 unsigned long flags;
1063 struct scmi_info *info =
1064 handle_to_scmi_info(cinfo->handle);
1065
1066 /*
1067 * Do not fetch_response if an out-of-order delayed
1068 * response is being processed.
1069 */
1070 spin_lock_irqsave(&xfer->lock, flags);
1071 if (xfer->state == SCMI_XFER_SENT_OK) {
1072 desc->ops->fetch_response(cinfo, xfer);
1073 xfer->state = SCMI_XFER_RESP_OK;
1074 }
1075 spin_unlock_irqrestore(&xfer->lock, flags);
1076
1077 /* Trace polled replies. */
1078 trace_scmi_msg_dump(info->id, cinfo->id,
1079 xfer->hdr.protocol_id, xfer->hdr.id,
1080 !SCMI_XFER_IS_RAW(xfer) ?
1081 "RESP" : "resp",
1082 xfer->hdr.seq, xfer->hdr.status,
1083 xfer->rx.buf, xfer->rx.len);
1084
1085 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
1086 struct scmi_info *info =
1087 handle_to_scmi_info(cinfo->handle);
1088
1089 scmi_raw_message_report(info->raw, xfer,
1090 SCMI_RAW_REPLY_QUEUE,
1091 cinfo->id);
1092 }
1093 }
1094 } else {
1095 /* And we wait for the response. */
1096 if (!wait_for_completion_timeout(&xfer->done,
1097 msecs_to_jiffies(timeout_ms))) {
1098 dev_err(dev, "timed out in resp(caller: %pS)\n",
1099 (void *)_RET_IP_);
1100 ret = -ETIMEDOUT;
1101 }
1102 }
1103
1104 return ret;
1105 }
1106
1107 /**
1108 * scmi_wait_for_message_response - An helper to group all the possible ways of
1109 * waiting for a synchronous message response.
1110 *
1111 * @cinfo: SCMI channel info
1112 * @xfer: Reference to the transfer being waited for.
1113 *
1114 * Chooses waiting strategy (sleep-waiting vs busy-waiting) depending on
1115 * configuration flags like xfer->hdr.poll_completion.
1116 *
1117 * Return: 0 on Success, error otherwise.
1118 */
scmi_wait_for_message_response(struct scmi_chan_info * cinfo,struct scmi_xfer * xfer)1119 static int scmi_wait_for_message_response(struct scmi_chan_info *cinfo,
1120 struct scmi_xfer *xfer)
1121 {
1122 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1123 struct device *dev = info->dev;
1124
1125 trace_scmi_xfer_response_wait(xfer->transfer_id, xfer->hdr.id,
1126 xfer->hdr.protocol_id, xfer->hdr.seq,
1127 info->desc->max_rx_timeout_ms,
1128 xfer->hdr.poll_completion);
1129
1130 return scmi_wait_for_reply(dev, info->desc, cinfo, xfer,
1131 info->desc->max_rx_timeout_ms);
1132 }
1133
1134 /**
1135 * scmi_xfer_raw_wait_for_message_response - An helper to wait for a message
1136 * reply to an xfer raw request on a specific channel for the required timeout.
1137 *
1138 * @cinfo: SCMI channel info
1139 * @xfer: Reference to the transfer being waited for.
1140 * @timeout_ms: The maximum timeout in milliseconds
1141 *
1142 * Return: 0 on Success, error otherwise.
1143 */
scmi_xfer_raw_wait_for_message_response(struct scmi_chan_info * cinfo,struct scmi_xfer * xfer,unsigned int timeout_ms)1144 int scmi_xfer_raw_wait_for_message_response(struct scmi_chan_info *cinfo,
1145 struct scmi_xfer *xfer,
1146 unsigned int timeout_ms)
1147 {
1148 int ret;
1149 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1150 struct device *dev = info->dev;
1151
1152 ret = scmi_wait_for_reply(dev, info->desc, cinfo, xfer, timeout_ms);
1153 if (ret)
1154 dev_dbg(dev, "timed out in RAW response - HDR:%08X\n",
1155 pack_scmi_header(&xfer->hdr));
1156
1157 return ret;
1158 }
1159
1160 /**
1161 * do_xfer() - Do one transfer
1162 *
1163 * @ph: Pointer to SCMI protocol handle
1164 * @xfer: Transfer to initiate and wait for response
1165 *
1166 * Return: -ETIMEDOUT in case of no response, if transmit error,
1167 * return corresponding error, else if all goes well,
1168 * return 0.
1169 */
do_xfer(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)1170 static int do_xfer(const struct scmi_protocol_handle *ph,
1171 struct scmi_xfer *xfer)
1172 {
1173 int ret;
1174 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1175 struct scmi_info *info = handle_to_scmi_info(pi->handle);
1176 struct device *dev = info->dev;
1177 struct scmi_chan_info *cinfo;
1178
1179 /* Check for polling request on custom command xfers at first */
1180 if (xfer->hdr.poll_completion &&
1181 !is_transport_polling_capable(info->desc)) {
1182 dev_warn_once(dev,
1183 "Polling mode is not supported by transport.\n");
1184 return -EINVAL;
1185 }
1186
1187 cinfo = idr_find(&info->tx_idr, pi->proto->id);
1188 if (unlikely(!cinfo))
1189 return -EINVAL;
1190
1191 /* True ONLY if also supported by transport. */
1192 if (is_polling_enabled(cinfo, info->desc))
1193 xfer->hdr.poll_completion = true;
1194
1195 /*
1196 * Initialise protocol id now from protocol handle to avoid it being
1197 * overridden by mistake (or malice) by the protocol code mangling with
1198 * the scmi_xfer structure prior to this.
1199 */
1200 xfer->hdr.protocol_id = pi->proto->id;
1201 reinit_completion(&xfer->done);
1202
1203 trace_scmi_xfer_begin(xfer->transfer_id, xfer->hdr.id,
1204 xfer->hdr.protocol_id, xfer->hdr.seq,
1205 xfer->hdr.poll_completion);
1206
1207 /* Clear any stale status */
1208 xfer->hdr.status = SCMI_SUCCESS;
1209 xfer->state = SCMI_XFER_SENT_OK;
1210 /*
1211 * Even though spinlocking is not needed here since no race is possible
1212 * on xfer->state due to the monotonically increasing tokens allocation,
1213 * we must anyway ensure xfer->state initialization is not re-ordered
1214 * after the .send_message() to be sure that on the RX path an early
1215 * ISR calling scmi_rx_callback() cannot see an old stale xfer->state.
1216 */
1217 smp_mb();
1218
1219 ret = info->desc->ops->send_message(cinfo, xfer);
1220 if (ret < 0) {
1221 dev_dbg(dev, "Failed to send message %d\n", ret);
1222 return ret;
1223 }
1224
1225 trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
1226 xfer->hdr.id, "CMND", xfer->hdr.seq,
1227 xfer->hdr.status, xfer->tx.buf, xfer->tx.len);
1228
1229 ret = scmi_wait_for_message_response(cinfo, xfer);
1230 if (!ret && xfer->hdr.status)
1231 ret = scmi_to_linux_errno(xfer->hdr.status);
1232
1233 if (info->desc->ops->mark_txdone)
1234 info->desc->ops->mark_txdone(cinfo, ret, xfer);
1235
1236 trace_scmi_xfer_end(xfer->transfer_id, xfer->hdr.id,
1237 xfer->hdr.protocol_id, xfer->hdr.seq, ret);
1238
1239 return ret;
1240 }
1241
reset_rx_to_maxsz(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)1242 static void reset_rx_to_maxsz(const struct scmi_protocol_handle *ph,
1243 struct scmi_xfer *xfer)
1244 {
1245 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1246 struct scmi_info *info = handle_to_scmi_info(pi->handle);
1247
1248 xfer->rx.len = info->desc->max_msg_size;
1249 }
1250
1251 /**
1252 * do_xfer_with_response() - Do one transfer and wait until the delayed
1253 * response is received
1254 *
1255 * @ph: Pointer to SCMI protocol handle
1256 * @xfer: Transfer to initiate and wait for response
1257 *
1258 * Using asynchronous commands in atomic/polling mode should be avoided since
1259 * it could cause long busy-waiting here, so ignore polling for the delayed
1260 * response and WARN if it was requested for this command transaction since
1261 * upper layers should refrain from issuing such kind of requests.
1262 *
1263 * The only other option would have been to refrain from using any asynchronous
1264 * command even if made available, when an atomic transport is detected, and
1265 * instead forcibly use the synchronous version (thing that can be easily
1266 * attained at the protocol layer), but this would also have led to longer
1267 * stalls of the channel for synchronous commands and possibly timeouts.
1268 * (in other words there is usually a good reason if a platform provides an
1269 * asynchronous version of a command and we should prefer to use it...just not
1270 * when using atomic/polling mode)
1271 *
1272 * Return: -ETIMEDOUT in case of no delayed response, if transmit error,
1273 * return corresponding error, else if all goes well, return 0.
1274 */
do_xfer_with_response(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)1275 static int do_xfer_with_response(const struct scmi_protocol_handle *ph,
1276 struct scmi_xfer *xfer)
1277 {
1278 int ret, timeout = msecs_to_jiffies(SCMI_MAX_RESPONSE_TIMEOUT);
1279 DECLARE_COMPLETION_ONSTACK(async_response);
1280
1281 xfer->async_done = &async_response;
1282
1283 /*
1284 * Delayed responses should not be polled, so an async command should
1285 * not have been used when requiring an atomic/poll context; WARN and
1286 * perform instead a sleeping wait.
1287 * (Note Async + IgnoreDelayedResponses are sent via do_xfer)
1288 */
1289 WARN_ON_ONCE(xfer->hdr.poll_completion);
1290
1291 ret = do_xfer(ph, xfer);
1292 if (!ret) {
1293 if (!wait_for_completion_timeout(xfer->async_done, timeout)) {
1294 dev_err(ph->dev,
1295 "timed out in delayed resp(caller: %pS)\n",
1296 (void *)_RET_IP_);
1297 ret = -ETIMEDOUT;
1298 } else if (xfer->hdr.status) {
1299 ret = scmi_to_linux_errno(xfer->hdr.status);
1300 }
1301 }
1302
1303 xfer->async_done = NULL;
1304 return ret;
1305 }
1306
1307 /**
1308 * xfer_get_init() - Allocate and initialise one message for transmit
1309 *
1310 * @ph: Pointer to SCMI protocol handle
1311 * @msg_id: Message identifier
1312 * @tx_size: transmit message size
1313 * @rx_size: receive message size
1314 * @p: pointer to the allocated and initialised message
1315 *
1316 * This function allocates the message using @scmi_xfer_get and
1317 * initialise the header.
1318 *
1319 * Return: 0 if all went fine with @p pointing to message, else
1320 * corresponding error.
1321 */
xfer_get_init(const struct scmi_protocol_handle * ph,u8 msg_id,size_t tx_size,size_t rx_size,struct scmi_xfer ** p)1322 static int xfer_get_init(const struct scmi_protocol_handle *ph,
1323 u8 msg_id, size_t tx_size, size_t rx_size,
1324 struct scmi_xfer **p)
1325 {
1326 int ret;
1327 struct scmi_xfer *xfer;
1328 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1329 struct scmi_info *info = handle_to_scmi_info(pi->handle);
1330 struct scmi_xfers_info *minfo = &info->tx_minfo;
1331 struct device *dev = info->dev;
1332
1333 /* Ensure we have sane transfer sizes */
1334 if (rx_size > info->desc->max_msg_size ||
1335 tx_size > info->desc->max_msg_size)
1336 return -ERANGE;
1337
1338 xfer = scmi_xfer_get(pi->handle, minfo);
1339 if (IS_ERR(xfer)) {
1340 ret = PTR_ERR(xfer);
1341 dev_err(dev, "failed to get free message slot(%d)\n", ret);
1342 return ret;
1343 }
1344
1345 /* Pick a sequence number and register this xfer as in-flight */
1346 ret = scmi_xfer_pending_set(xfer, minfo);
1347 if (ret) {
1348 dev_err(pi->handle->dev,
1349 "Failed to get monotonic token %d\n", ret);
1350 __scmi_xfer_put(minfo, xfer);
1351 return ret;
1352 }
1353
1354 xfer->tx.len = tx_size;
1355 xfer->rx.len = rx_size ? : info->desc->max_msg_size;
1356 xfer->hdr.type = MSG_TYPE_COMMAND;
1357 xfer->hdr.id = msg_id;
1358 xfer->hdr.poll_completion = false;
1359
1360 *p = xfer;
1361
1362 return 0;
1363 }
1364
1365 /**
1366 * version_get() - command to get the revision of the SCMI entity
1367 *
1368 * @ph: Pointer to SCMI protocol handle
1369 * @version: Holds returned version of protocol.
1370 *
1371 * Updates the SCMI information in the internal data structure.
1372 *
1373 * Return: 0 if all went fine, else return appropriate error.
1374 */
version_get(const struct scmi_protocol_handle * ph,u32 * version)1375 static int version_get(const struct scmi_protocol_handle *ph, u32 *version)
1376 {
1377 int ret;
1378 __le32 *rev_info;
1379 struct scmi_xfer *t;
1380
1381 ret = xfer_get_init(ph, PROTOCOL_VERSION, 0, sizeof(*version), &t);
1382 if (ret)
1383 return ret;
1384
1385 ret = do_xfer(ph, t);
1386 if (!ret) {
1387 rev_info = t->rx.buf;
1388 *version = le32_to_cpu(*rev_info);
1389 }
1390
1391 xfer_put(ph, t);
1392 return ret;
1393 }
1394
1395 /**
1396 * scmi_set_protocol_priv - Set protocol specific data at init time
1397 *
1398 * @ph: A reference to the protocol handle.
1399 * @priv: The private data to set.
1400 *
1401 * Return: 0 on Success
1402 */
scmi_set_protocol_priv(const struct scmi_protocol_handle * ph,void * priv)1403 static int scmi_set_protocol_priv(const struct scmi_protocol_handle *ph,
1404 void *priv)
1405 {
1406 struct scmi_protocol_instance *pi = ph_to_pi(ph);
1407
1408 pi->priv = priv;
1409
1410 return 0;
1411 }
1412
1413 /**
1414 * scmi_get_protocol_priv - Set protocol specific data at init time
1415 *
1416 * @ph: A reference to the protocol handle.
1417 *
1418 * Return: Protocol private data if any was set.
1419 */
scmi_get_protocol_priv(const struct scmi_protocol_handle * ph)1420 static void *scmi_get_protocol_priv(const struct scmi_protocol_handle *ph)
1421 {
1422 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1423
1424 return pi->priv;
1425 }
1426
1427 static const struct scmi_xfer_ops xfer_ops = {
1428 .version_get = version_get,
1429 .xfer_get_init = xfer_get_init,
1430 .reset_rx_to_maxsz = reset_rx_to_maxsz,
1431 .do_xfer = do_xfer,
1432 .do_xfer_with_response = do_xfer_with_response,
1433 .xfer_put = xfer_put,
1434 };
1435
1436 struct scmi_msg_resp_domain_name_get {
1437 __le32 flags;
1438 u8 name[SCMI_MAX_STR_SIZE];
1439 };
1440
1441 /**
1442 * scmi_common_extended_name_get - Common helper to get extended resources name
1443 * @ph: A protocol handle reference.
1444 * @cmd_id: The specific command ID to use.
1445 * @res_id: The specific resource ID to use.
1446 * @name: A pointer to the preallocated area where the retrieved name will be
1447 * stored as a NULL terminated string.
1448 * @len: The len in bytes of the @name char array.
1449 *
1450 * Return: 0 on Succcess
1451 */
scmi_common_extended_name_get(const struct scmi_protocol_handle * ph,u8 cmd_id,u32 res_id,char * name,size_t len)1452 static int scmi_common_extended_name_get(const struct scmi_protocol_handle *ph,
1453 u8 cmd_id, u32 res_id, char *name,
1454 size_t len)
1455 {
1456 int ret;
1457 struct scmi_xfer *t;
1458 struct scmi_msg_resp_domain_name_get *resp;
1459
1460 ret = ph->xops->xfer_get_init(ph, cmd_id, sizeof(res_id),
1461 sizeof(*resp), &t);
1462 if (ret)
1463 goto out;
1464
1465 put_unaligned_le32(res_id, t->tx.buf);
1466 resp = t->rx.buf;
1467
1468 ret = ph->xops->do_xfer(ph, t);
1469 if (!ret)
1470 strscpy(name, resp->name, len);
1471
1472 ph->xops->xfer_put(ph, t);
1473 out:
1474 if (ret)
1475 dev_warn(ph->dev,
1476 "Failed to get extended name - id:%u (ret:%d). Using %s\n",
1477 res_id, ret, name);
1478 return ret;
1479 }
1480
1481 /**
1482 * struct scmi_iterator - Iterator descriptor
1483 * @msg: A reference to the message TX buffer; filled by @prepare_message with
1484 * a proper custom command payload for each multi-part command request.
1485 * @resp: A reference to the response RX buffer; used by @update_state and
1486 * @process_response to parse the multi-part replies.
1487 * @t: A reference to the underlying xfer initialized and used transparently by
1488 * the iterator internal routines.
1489 * @ph: A reference to the associated protocol handle to be used.
1490 * @ops: A reference to the custom provided iterator operations.
1491 * @state: The current iterator state; used and updated in turn by the iterators
1492 * internal routines and by the caller-provided @scmi_iterator_ops.
1493 * @priv: A reference to optional private data as provided by the caller and
1494 * passed back to the @@scmi_iterator_ops.
1495 */
1496 struct scmi_iterator {
1497 void *msg;
1498 void *resp;
1499 struct scmi_xfer *t;
1500 const struct scmi_protocol_handle *ph;
1501 struct scmi_iterator_ops *ops;
1502 struct scmi_iterator_state state;
1503 void *priv;
1504 };
1505
scmi_iterator_init(const struct scmi_protocol_handle * ph,struct scmi_iterator_ops * ops,unsigned int max_resources,u8 msg_id,size_t tx_size,void * priv)1506 static void *scmi_iterator_init(const struct scmi_protocol_handle *ph,
1507 struct scmi_iterator_ops *ops,
1508 unsigned int max_resources, u8 msg_id,
1509 size_t tx_size, void *priv)
1510 {
1511 int ret;
1512 struct scmi_iterator *i;
1513
1514 i = devm_kzalloc(ph->dev, sizeof(*i), GFP_KERNEL);
1515 if (!i)
1516 return ERR_PTR(-ENOMEM);
1517
1518 i->ph = ph;
1519 i->ops = ops;
1520 i->priv = priv;
1521
1522 ret = ph->xops->xfer_get_init(ph, msg_id, tx_size, 0, &i->t);
1523 if (ret) {
1524 devm_kfree(ph->dev, i);
1525 return ERR_PTR(ret);
1526 }
1527
1528 i->state.max_resources = max_resources;
1529 i->msg = i->t->tx.buf;
1530 i->resp = i->t->rx.buf;
1531
1532 return i;
1533 }
1534
scmi_iterator_run(void * iter)1535 static int scmi_iterator_run(void *iter)
1536 {
1537 int ret = -EINVAL;
1538 struct scmi_iterator_ops *iops;
1539 const struct scmi_protocol_handle *ph;
1540 struct scmi_iterator_state *st;
1541 struct scmi_iterator *i = iter;
1542
1543 if (!i || !i->ops || !i->ph)
1544 return ret;
1545
1546 iops = i->ops;
1547 ph = i->ph;
1548 st = &i->state;
1549
1550 do {
1551 iops->prepare_message(i->msg, st->desc_index, i->priv);
1552 ret = ph->xops->do_xfer(ph, i->t);
1553 if (ret)
1554 break;
1555
1556 st->rx_len = i->t->rx.len;
1557 ret = iops->update_state(st, i->resp, i->priv);
1558 if (ret)
1559 break;
1560
1561 if (st->num_returned > st->max_resources - st->desc_index) {
1562 dev_err(ph->dev,
1563 "No. of resources can't exceed %d\n",
1564 st->max_resources);
1565 ret = -EINVAL;
1566 break;
1567 }
1568
1569 for (st->loop_idx = 0; st->loop_idx < st->num_returned;
1570 st->loop_idx++) {
1571 ret = iops->process_response(ph, i->resp, st, i->priv);
1572 if (ret)
1573 goto out;
1574 }
1575
1576 st->desc_index += st->num_returned;
1577 ph->xops->reset_rx_to_maxsz(ph, i->t);
1578 /*
1579 * check for both returned and remaining to avoid infinite
1580 * loop due to buggy firmware
1581 */
1582 } while (st->num_returned && st->num_remaining);
1583
1584 out:
1585 /* Finalize and destroy iterator */
1586 ph->xops->xfer_put(ph, i->t);
1587 devm_kfree(ph->dev, i);
1588
1589 return ret;
1590 }
1591
1592 struct scmi_msg_get_fc_info {
1593 __le32 domain;
1594 __le32 message_id;
1595 };
1596
1597 struct scmi_msg_resp_desc_fc {
1598 __le32 attr;
1599 #define SUPPORTS_DOORBELL(x) ((x) & BIT(0))
1600 #define DOORBELL_REG_WIDTH(x) FIELD_GET(GENMASK(2, 1), (x))
1601 __le32 rate_limit;
1602 __le32 chan_addr_low;
1603 __le32 chan_addr_high;
1604 __le32 chan_size;
1605 __le32 db_addr_low;
1606 __le32 db_addr_high;
1607 __le32 db_set_lmask;
1608 __le32 db_set_hmask;
1609 __le32 db_preserve_lmask;
1610 __le32 db_preserve_hmask;
1611 };
1612
1613 static void
scmi_common_fastchannel_init(const struct scmi_protocol_handle * ph,u8 describe_id,u32 message_id,u32 valid_size,u32 domain,void __iomem ** p_addr,struct scmi_fc_db_info ** p_db)1614 scmi_common_fastchannel_init(const struct scmi_protocol_handle *ph,
1615 u8 describe_id, u32 message_id, u32 valid_size,
1616 u32 domain, void __iomem **p_addr,
1617 struct scmi_fc_db_info **p_db)
1618 {
1619 int ret;
1620 u32 flags;
1621 u64 phys_addr;
1622 u8 size;
1623 void __iomem *addr;
1624 struct scmi_xfer *t;
1625 struct scmi_fc_db_info *db = NULL;
1626 struct scmi_msg_get_fc_info *info;
1627 struct scmi_msg_resp_desc_fc *resp;
1628 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1629
1630 if (!p_addr) {
1631 ret = -EINVAL;
1632 goto err_out;
1633 }
1634
1635 ret = ph->xops->xfer_get_init(ph, describe_id,
1636 sizeof(*info), sizeof(*resp), &t);
1637 if (ret)
1638 goto err_out;
1639
1640 info = t->tx.buf;
1641 info->domain = cpu_to_le32(domain);
1642 info->message_id = cpu_to_le32(message_id);
1643
1644 /*
1645 * Bail out on error leaving fc_info addresses zeroed; this includes
1646 * the case in which the requested domain/message_id does NOT support
1647 * fastchannels at all.
1648 */
1649 ret = ph->xops->do_xfer(ph, t);
1650 if (ret)
1651 goto err_xfer;
1652
1653 resp = t->rx.buf;
1654 flags = le32_to_cpu(resp->attr);
1655 size = le32_to_cpu(resp->chan_size);
1656 if (size != valid_size) {
1657 ret = -EINVAL;
1658 goto err_xfer;
1659 }
1660
1661 phys_addr = le32_to_cpu(resp->chan_addr_low);
1662 phys_addr |= (u64)le32_to_cpu(resp->chan_addr_high) << 32;
1663 addr = devm_ioremap(ph->dev, phys_addr, size);
1664 if (!addr) {
1665 ret = -EADDRNOTAVAIL;
1666 goto err_xfer;
1667 }
1668
1669 *p_addr = addr;
1670
1671 if (p_db && SUPPORTS_DOORBELL(flags)) {
1672 db = devm_kzalloc(ph->dev, sizeof(*db), GFP_KERNEL);
1673 if (!db) {
1674 ret = -ENOMEM;
1675 goto err_db;
1676 }
1677
1678 size = 1 << DOORBELL_REG_WIDTH(flags);
1679 phys_addr = le32_to_cpu(resp->db_addr_low);
1680 phys_addr |= (u64)le32_to_cpu(resp->db_addr_high) << 32;
1681 addr = devm_ioremap(ph->dev, phys_addr, size);
1682 if (!addr) {
1683 ret = -EADDRNOTAVAIL;
1684 goto err_db_mem;
1685 }
1686
1687 db->addr = addr;
1688 db->width = size;
1689 db->set = le32_to_cpu(resp->db_set_lmask);
1690 db->set |= (u64)le32_to_cpu(resp->db_set_hmask) << 32;
1691 db->mask = le32_to_cpu(resp->db_preserve_lmask);
1692 db->mask |= (u64)le32_to_cpu(resp->db_preserve_hmask) << 32;
1693
1694 *p_db = db;
1695 }
1696
1697 ph->xops->xfer_put(ph, t);
1698
1699 dev_dbg(ph->dev,
1700 "Using valid FC for protocol %X [MSG_ID:%u / RES_ID:%u]\n",
1701 pi->proto->id, message_id, domain);
1702
1703 return;
1704
1705 err_db_mem:
1706 devm_kfree(ph->dev, db);
1707
1708 err_db:
1709 *p_addr = NULL;
1710
1711 err_xfer:
1712 ph->xops->xfer_put(ph, t);
1713
1714 err_out:
1715 dev_warn(ph->dev,
1716 "Failed to get FC for protocol %X [MSG_ID:%u / RES_ID:%u] - ret:%d. Using regular messaging.\n",
1717 pi->proto->id, message_id, domain, ret);
1718 }
1719
1720 #define SCMI_PROTO_FC_RING_DB(w) \
1721 do { \
1722 u##w val = 0; \
1723 \
1724 if (db->mask) \
1725 val = ioread##w(db->addr) & db->mask; \
1726 iowrite##w((u##w)db->set | val, db->addr); \
1727 } while (0)
1728
scmi_common_fastchannel_db_ring(struct scmi_fc_db_info * db)1729 static void scmi_common_fastchannel_db_ring(struct scmi_fc_db_info *db)
1730 {
1731 if (!db || !db->addr)
1732 return;
1733
1734 if (db->width == 1)
1735 SCMI_PROTO_FC_RING_DB(8);
1736 else if (db->width == 2)
1737 SCMI_PROTO_FC_RING_DB(16);
1738 else if (db->width == 4)
1739 SCMI_PROTO_FC_RING_DB(32);
1740 else /* db->width == 8 */
1741 #ifdef CONFIG_64BIT
1742 SCMI_PROTO_FC_RING_DB(64);
1743 #else
1744 {
1745 u64 val = 0;
1746
1747 if (db->mask)
1748 val = ioread64_hi_lo(db->addr) & db->mask;
1749 iowrite64_hi_lo(db->set | val, db->addr);
1750 }
1751 #endif
1752 }
1753
1754 static const struct scmi_proto_helpers_ops helpers_ops = {
1755 .extended_name_get = scmi_common_extended_name_get,
1756 .iter_response_init = scmi_iterator_init,
1757 .iter_response_run = scmi_iterator_run,
1758 .fastchannel_init = scmi_common_fastchannel_init,
1759 .fastchannel_db_ring = scmi_common_fastchannel_db_ring,
1760 };
1761
1762 /**
1763 * scmi_revision_area_get - Retrieve version memory area.
1764 *
1765 * @ph: A reference to the protocol handle.
1766 *
1767 * A helper to grab the version memory area reference during SCMI Base protocol
1768 * initialization.
1769 *
1770 * Return: A reference to the version memory area associated to the SCMI
1771 * instance underlying this protocol handle.
1772 */
1773 struct scmi_revision_info *
scmi_revision_area_get(const struct scmi_protocol_handle * ph)1774 scmi_revision_area_get(const struct scmi_protocol_handle *ph)
1775 {
1776 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1777
1778 return pi->handle->version;
1779 }
1780
1781 /**
1782 * scmi_alloc_init_protocol_instance - Allocate and initialize a protocol
1783 * instance descriptor.
1784 * @info: The reference to the related SCMI instance.
1785 * @proto: The protocol descriptor.
1786 *
1787 * Allocate a new protocol instance descriptor, using the provided @proto
1788 * description, against the specified SCMI instance @info, and initialize it;
1789 * all resources management is handled via a dedicated per-protocol devres
1790 * group.
1791 *
1792 * Context: Assumes to be called with @protocols_mtx already acquired.
1793 * Return: A reference to a freshly allocated and initialized protocol instance
1794 * or ERR_PTR on failure. On failure the @proto reference is at first
1795 * put using @scmi_protocol_put() before releasing all the devres group.
1796 */
1797 static struct scmi_protocol_instance *
scmi_alloc_init_protocol_instance(struct scmi_info * info,const struct scmi_protocol * proto)1798 scmi_alloc_init_protocol_instance(struct scmi_info *info,
1799 const struct scmi_protocol *proto)
1800 {
1801 int ret = -ENOMEM;
1802 void *gid;
1803 struct scmi_protocol_instance *pi;
1804 const struct scmi_handle *handle = &info->handle;
1805
1806 /* Protocol specific devres group */
1807 gid = devres_open_group(handle->dev, NULL, GFP_KERNEL);
1808 if (!gid) {
1809 scmi_protocol_put(proto->id);
1810 goto out;
1811 }
1812
1813 pi = devm_kzalloc(handle->dev, sizeof(*pi), GFP_KERNEL);
1814 if (!pi)
1815 goto clean;
1816
1817 pi->gid = gid;
1818 pi->proto = proto;
1819 pi->handle = handle;
1820 pi->ph.dev = handle->dev;
1821 pi->ph.xops = &xfer_ops;
1822 pi->ph.hops = &helpers_ops;
1823 pi->ph.set_priv = scmi_set_protocol_priv;
1824 pi->ph.get_priv = scmi_get_protocol_priv;
1825 refcount_set(&pi->users, 1);
1826 /* proto->init is assured NON NULL by scmi_protocol_register */
1827 ret = pi->proto->instance_init(&pi->ph);
1828 if (ret)
1829 goto clean;
1830
1831 ret = idr_alloc(&info->protocols, pi, proto->id, proto->id + 1,
1832 GFP_KERNEL);
1833 if (ret != proto->id)
1834 goto clean;
1835
1836 /*
1837 * Warn but ignore events registration errors since we do not want
1838 * to skip whole protocols if their notifications are messed up.
1839 */
1840 if (pi->proto->events) {
1841 ret = scmi_register_protocol_events(handle, pi->proto->id,
1842 &pi->ph,
1843 pi->proto->events);
1844 if (ret)
1845 dev_warn(handle->dev,
1846 "Protocol:%X - Events Registration Failed - err:%d\n",
1847 pi->proto->id, ret);
1848 }
1849
1850 devres_close_group(handle->dev, pi->gid);
1851 dev_dbg(handle->dev, "Initialized protocol: 0x%X\n", pi->proto->id);
1852
1853 return pi;
1854
1855 clean:
1856 /* Take care to put the protocol module's owner before releasing all */
1857 scmi_protocol_put(proto->id);
1858 devres_release_group(handle->dev, gid);
1859 out:
1860 return ERR_PTR(ret);
1861 }
1862
1863 /**
1864 * scmi_get_protocol_instance - Protocol initialization helper.
1865 * @handle: A reference to the SCMI platform instance.
1866 * @protocol_id: The protocol being requested.
1867 *
1868 * In case the required protocol has never been requested before for this
1869 * instance, allocate and initialize all the needed structures while handling
1870 * resource allocation with a dedicated per-protocol devres subgroup.
1871 *
1872 * Return: A reference to an initialized protocol instance or error on failure:
1873 * in particular returns -EPROBE_DEFER when the desired protocol could
1874 * NOT be found.
1875 */
1876 static struct scmi_protocol_instance * __must_check
scmi_get_protocol_instance(const struct scmi_handle * handle,u8 protocol_id)1877 scmi_get_protocol_instance(const struct scmi_handle *handle, u8 protocol_id)
1878 {
1879 struct scmi_protocol_instance *pi;
1880 struct scmi_info *info = handle_to_scmi_info(handle);
1881
1882 mutex_lock(&info->protocols_mtx);
1883 pi = idr_find(&info->protocols, protocol_id);
1884
1885 if (pi) {
1886 refcount_inc(&pi->users);
1887 } else {
1888 const struct scmi_protocol *proto;
1889
1890 /* Fails if protocol not registered on bus */
1891 proto = scmi_protocol_get(protocol_id);
1892 if (proto)
1893 pi = scmi_alloc_init_protocol_instance(info, proto);
1894 else
1895 pi = ERR_PTR(-EPROBE_DEFER);
1896 }
1897 mutex_unlock(&info->protocols_mtx);
1898
1899 return pi;
1900 }
1901
1902 /**
1903 * scmi_protocol_acquire - Protocol acquire
1904 * @handle: A reference to the SCMI platform instance.
1905 * @protocol_id: The protocol being requested.
1906 *
1907 * Register a new user for the requested protocol on the specified SCMI
1908 * platform instance, possibly triggering its initialization on first user.
1909 *
1910 * Return: 0 if protocol was acquired successfully.
1911 */
scmi_protocol_acquire(const struct scmi_handle * handle,u8 protocol_id)1912 int scmi_protocol_acquire(const struct scmi_handle *handle, u8 protocol_id)
1913 {
1914 return PTR_ERR_OR_ZERO(scmi_get_protocol_instance(handle, protocol_id));
1915 }
1916
1917 /**
1918 * scmi_protocol_release - Protocol de-initialization helper.
1919 * @handle: A reference to the SCMI platform instance.
1920 * @protocol_id: The protocol being requested.
1921 *
1922 * Remove one user for the specified protocol and triggers de-initialization
1923 * and resources de-allocation once the last user has gone.
1924 */
scmi_protocol_release(const struct scmi_handle * handle,u8 protocol_id)1925 void scmi_protocol_release(const struct scmi_handle *handle, u8 protocol_id)
1926 {
1927 struct scmi_info *info = handle_to_scmi_info(handle);
1928 struct scmi_protocol_instance *pi;
1929
1930 mutex_lock(&info->protocols_mtx);
1931 pi = idr_find(&info->protocols, protocol_id);
1932 if (WARN_ON(!pi))
1933 goto out;
1934
1935 if (refcount_dec_and_test(&pi->users)) {
1936 void *gid = pi->gid;
1937
1938 if (pi->proto->events)
1939 scmi_deregister_protocol_events(handle, protocol_id);
1940
1941 if (pi->proto->instance_deinit)
1942 pi->proto->instance_deinit(&pi->ph);
1943
1944 idr_remove(&info->protocols, protocol_id);
1945
1946 scmi_protocol_put(protocol_id);
1947
1948 devres_release_group(handle->dev, gid);
1949 dev_dbg(handle->dev, "De-Initialized protocol: 0x%X\n",
1950 protocol_id);
1951 }
1952
1953 out:
1954 mutex_unlock(&info->protocols_mtx);
1955 }
1956
scmi_setup_protocol_implemented(const struct scmi_protocol_handle * ph,u8 * prot_imp)1957 void scmi_setup_protocol_implemented(const struct scmi_protocol_handle *ph,
1958 u8 *prot_imp)
1959 {
1960 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1961 struct scmi_info *info = handle_to_scmi_info(pi->handle);
1962
1963 info->protocols_imp = prot_imp;
1964 }
1965
1966 static bool
scmi_is_protocol_implemented(const struct scmi_handle * handle,u8 prot_id)1967 scmi_is_protocol_implemented(const struct scmi_handle *handle, u8 prot_id)
1968 {
1969 int i;
1970 struct scmi_info *info = handle_to_scmi_info(handle);
1971 struct scmi_revision_info *rev = handle->version;
1972
1973 if (!info->protocols_imp)
1974 return false;
1975
1976 for (i = 0; i < rev->num_protocols; i++)
1977 if (info->protocols_imp[i] == prot_id)
1978 return true;
1979 return false;
1980 }
1981
1982 struct scmi_protocol_devres {
1983 const struct scmi_handle *handle;
1984 u8 protocol_id;
1985 };
1986
scmi_devm_release_protocol(struct device * dev,void * res)1987 static void scmi_devm_release_protocol(struct device *dev, void *res)
1988 {
1989 struct scmi_protocol_devres *dres = res;
1990
1991 scmi_protocol_release(dres->handle, dres->protocol_id);
1992 }
1993
1994 static struct scmi_protocol_instance __must_check *
scmi_devres_protocol_instance_get(struct scmi_device * sdev,u8 protocol_id)1995 scmi_devres_protocol_instance_get(struct scmi_device *sdev, u8 protocol_id)
1996 {
1997 struct scmi_protocol_instance *pi;
1998 struct scmi_protocol_devres *dres;
1999
2000 dres = devres_alloc(scmi_devm_release_protocol,
2001 sizeof(*dres), GFP_KERNEL);
2002 if (!dres)
2003 return ERR_PTR(-ENOMEM);
2004
2005 pi = scmi_get_protocol_instance(sdev->handle, protocol_id);
2006 if (IS_ERR(pi)) {
2007 devres_free(dres);
2008 return pi;
2009 }
2010
2011 dres->handle = sdev->handle;
2012 dres->protocol_id = protocol_id;
2013 devres_add(&sdev->dev, dres);
2014
2015 return pi;
2016 }
2017
2018 /**
2019 * scmi_devm_protocol_get - Devres managed get protocol operations and handle
2020 * @sdev: A reference to an scmi_device whose embedded struct device is to
2021 * be used for devres accounting.
2022 * @protocol_id: The protocol being requested.
2023 * @ph: A pointer reference used to pass back the associated protocol handle.
2024 *
2025 * Get hold of a protocol accounting for its usage, eventually triggering its
2026 * initialization, and returning the protocol specific operations and related
2027 * protocol handle which will be used as first argument in most of the
2028 * protocols operations methods.
2029 * Being a devres based managed method, protocol hold will be automatically
2030 * released, and possibly de-initialized on last user, once the SCMI driver
2031 * owning the scmi_device is unbound from it.
2032 *
2033 * Return: A reference to the requested protocol operations or error.
2034 * Must be checked for errors by caller.
2035 */
2036 static const void __must_check *
scmi_devm_protocol_get(struct scmi_device * sdev,u8 protocol_id,struct scmi_protocol_handle ** ph)2037 scmi_devm_protocol_get(struct scmi_device *sdev, u8 protocol_id,
2038 struct scmi_protocol_handle **ph)
2039 {
2040 struct scmi_protocol_instance *pi;
2041
2042 if (!ph)
2043 return ERR_PTR(-EINVAL);
2044
2045 pi = scmi_devres_protocol_instance_get(sdev, protocol_id);
2046 if (IS_ERR(pi))
2047 return pi;
2048
2049 *ph = &pi->ph;
2050
2051 return pi->proto->ops;
2052 }
2053
2054 /**
2055 * scmi_devm_protocol_acquire - Devres managed helper to get hold of a protocol
2056 * @sdev: A reference to an scmi_device whose embedded struct device is to
2057 * be used for devres accounting.
2058 * @protocol_id: The protocol being requested.
2059 *
2060 * Get hold of a protocol accounting for its usage, possibly triggering its
2061 * initialization but without getting access to its protocol specific operations
2062 * and handle.
2063 *
2064 * Being a devres based managed method, protocol hold will be automatically
2065 * released, and possibly de-initialized on last user, once the SCMI driver
2066 * owning the scmi_device is unbound from it.
2067 *
2068 * Return: 0 on SUCCESS
2069 */
scmi_devm_protocol_acquire(struct scmi_device * sdev,u8 protocol_id)2070 static int __must_check scmi_devm_protocol_acquire(struct scmi_device *sdev,
2071 u8 protocol_id)
2072 {
2073 struct scmi_protocol_instance *pi;
2074
2075 pi = scmi_devres_protocol_instance_get(sdev, protocol_id);
2076 if (IS_ERR(pi))
2077 return PTR_ERR(pi);
2078
2079 return 0;
2080 }
2081
scmi_devm_protocol_match(struct device * dev,void * res,void * data)2082 static int scmi_devm_protocol_match(struct device *dev, void *res, void *data)
2083 {
2084 struct scmi_protocol_devres *dres = res;
2085
2086 if (WARN_ON(!dres || !data))
2087 return 0;
2088
2089 return dres->protocol_id == *((u8 *)data);
2090 }
2091
2092 /**
2093 * scmi_devm_protocol_put - Devres managed put protocol operations and handle
2094 * @sdev: A reference to an scmi_device whose embedded struct device is to
2095 * be used for devres accounting.
2096 * @protocol_id: The protocol being requested.
2097 *
2098 * Explicitly release a protocol hold previously obtained calling the above
2099 * @scmi_devm_protocol_get.
2100 */
scmi_devm_protocol_put(struct scmi_device * sdev,u8 protocol_id)2101 static void scmi_devm_protocol_put(struct scmi_device *sdev, u8 protocol_id)
2102 {
2103 int ret;
2104
2105 ret = devres_release(&sdev->dev, scmi_devm_release_protocol,
2106 scmi_devm_protocol_match, &protocol_id);
2107 WARN_ON(ret);
2108 }
2109
2110 /**
2111 * scmi_is_transport_atomic - Method to check if underlying transport for an
2112 * SCMI instance is configured as atomic.
2113 *
2114 * @handle: A reference to the SCMI platform instance.
2115 * @atomic_threshold: An optional return value for the system wide currently
2116 * configured threshold for atomic operations.
2117 *
2118 * Return: True if transport is configured as atomic
2119 */
scmi_is_transport_atomic(const struct scmi_handle * handle,unsigned int * atomic_threshold)2120 static bool scmi_is_transport_atomic(const struct scmi_handle *handle,
2121 unsigned int *atomic_threshold)
2122 {
2123 bool ret;
2124 struct scmi_info *info = handle_to_scmi_info(handle);
2125
2126 ret = info->desc->atomic_enabled &&
2127 is_transport_polling_capable(info->desc);
2128 if (ret && atomic_threshold)
2129 *atomic_threshold = info->atomic_threshold;
2130
2131 return ret;
2132 }
2133
2134 /**
2135 * scmi_handle_get() - Get the SCMI handle for a device
2136 *
2137 * @dev: pointer to device for which we want SCMI handle
2138 *
2139 * NOTE: The function does not track individual clients of the framework
2140 * and is expected to be maintained by caller of SCMI protocol library.
2141 * scmi_handle_put must be balanced with successful scmi_handle_get
2142 *
2143 * Return: pointer to handle if successful, NULL on error
2144 */
scmi_handle_get(struct device * dev)2145 static struct scmi_handle *scmi_handle_get(struct device *dev)
2146 {
2147 struct list_head *p;
2148 struct scmi_info *info;
2149 struct scmi_handle *handle = NULL;
2150
2151 mutex_lock(&scmi_list_mutex);
2152 list_for_each(p, &scmi_list) {
2153 info = list_entry(p, struct scmi_info, node);
2154 if (dev->parent == info->dev) {
2155 info->users++;
2156 handle = &info->handle;
2157 break;
2158 }
2159 }
2160 mutex_unlock(&scmi_list_mutex);
2161
2162 return handle;
2163 }
2164
2165 /**
2166 * scmi_handle_put() - Release the handle acquired by scmi_handle_get
2167 *
2168 * @handle: handle acquired by scmi_handle_get
2169 *
2170 * NOTE: The function does not track individual clients of the framework
2171 * and is expected to be maintained by caller of SCMI protocol library.
2172 * scmi_handle_put must be balanced with successful scmi_handle_get
2173 *
2174 * Return: 0 is successfully released
2175 * if null was passed, it returns -EINVAL;
2176 */
scmi_handle_put(const struct scmi_handle * handle)2177 static int scmi_handle_put(const struct scmi_handle *handle)
2178 {
2179 struct scmi_info *info;
2180
2181 if (!handle)
2182 return -EINVAL;
2183
2184 info = handle_to_scmi_info(handle);
2185 mutex_lock(&scmi_list_mutex);
2186 if (!WARN_ON(!info->users))
2187 info->users--;
2188 mutex_unlock(&scmi_list_mutex);
2189
2190 return 0;
2191 }
2192
scmi_device_link_add(struct device * consumer,struct device * supplier)2193 static void scmi_device_link_add(struct device *consumer,
2194 struct device *supplier)
2195 {
2196 struct device_link *link;
2197
2198 link = device_link_add(consumer, supplier, DL_FLAG_AUTOREMOVE_CONSUMER);
2199
2200 WARN_ON(!link);
2201 }
2202
scmi_set_handle(struct scmi_device * scmi_dev)2203 static void scmi_set_handle(struct scmi_device *scmi_dev)
2204 {
2205 scmi_dev->handle = scmi_handle_get(&scmi_dev->dev);
2206 if (scmi_dev->handle)
2207 scmi_device_link_add(&scmi_dev->dev, scmi_dev->handle->dev);
2208 }
2209
__scmi_xfer_info_init(struct scmi_info * sinfo,struct scmi_xfers_info * info)2210 static int __scmi_xfer_info_init(struct scmi_info *sinfo,
2211 struct scmi_xfers_info *info)
2212 {
2213 int i;
2214 struct scmi_xfer *xfer;
2215 struct device *dev = sinfo->dev;
2216 const struct scmi_desc *desc = sinfo->desc;
2217
2218 /* Pre-allocated messages, no more than what hdr.seq can support */
2219 if (WARN_ON(!info->max_msg || info->max_msg > MSG_TOKEN_MAX)) {
2220 dev_err(dev,
2221 "Invalid maximum messages %d, not in range [1 - %lu]\n",
2222 info->max_msg, MSG_TOKEN_MAX);
2223 return -EINVAL;
2224 }
2225
2226 hash_init(info->pending_xfers);
2227
2228 /* Allocate a bitmask sized to hold MSG_TOKEN_MAX tokens */
2229 info->xfer_alloc_table = devm_bitmap_zalloc(dev, MSG_TOKEN_MAX,
2230 GFP_KERNEL);
2231 if (!info->xfer_alloc_table)
2232 return -ENOMEM;
2233
2234 /*
2235 * Preallocate a number of xfers equal to max inflight messages,
2236 * pre-initialize the buffer pointer to pre-allocated buffers and
2237 * attach all of them to the free list
2238 */
2239 INIT_HLIST_HEAD(&info->free_xfers);
2240 for (i = 0; i < info->max_msg; i++) {
2241 xfer = devm_kzalloc(dev, sizeof(*xfer), GFP_KERNEL);
2242 if (!xfer)
2243 return -ENOMEM;
2244
2245 xfer->rx.buf = devm_kcalloc(dev, sizeof(u8), desc->max_msg_size,
2246 GFP_KERNEL);
2247 if (!xfer->rx.buf)
2248 return -ENOMEM;
2249
2250 xfer->tx.buf = xfer->rx.buf;
2251 init_completion(&xfer->done);
2252 spin_lock_init(&xfer->lock);
2253
2254 /* Add initialized xfer to the free list */
2255 hlist_add_head(&xfer->node, &info->free_xfers);
2256 }
2257
2258 spin_lock_init(&info->xfer_lock);
2259
2260 return 0;
2261 }
2262
scmi_channels_max_msg_configure(struct scmi_info * sinfo)2263 static int scmi_channels_max_msg_configure(struct scmi_info *sinfo)
2264 {
2265 const struct scmi_desc *desc = sinfo->desc;
2266
2267 if (!desc->ops->get_max_msg) {
2268 sinfo->tx_minfo.max_msg = desc->max_msg;
2269 sinfo->rx_minfo.max_msg = desc->max_msg;
2270 } else {
2271 struct scmi_chan_info *base_cinfo;
2272
2273 base_cinfo = idr_find(&sinfo->tx_idr, SCMI_PROTOCOL_BASE);
2274 if (!base_cinfo)
2275 return -EINVAL;
2276 sinfo->tx_minfo.max_msg = desc->ops->get_max_msg(base_cinfo);
2277
2278 /* RX channel is optional so can be skipped */
2279 base_cinfo = idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE);
2280 if (base_cinfo)
2281 sinfo->rx_minfo.max_msg =
2282 desc->ops->get_max_msg(base_cinfo);
2283 }
2284
2285 return 0;
2286 }
2287
scmi_xfer_info_init(struct scmi_info * sinfo)2288 static int scmi_xfer_info_init(struct scmi_info *sinfo)
2289 {
2290 int ret;
2291
2292 ret = scmi_channels_max_msg_configure(sinfo);
2293 if (ret)
2294 return ret;
2295
2296 ret = __scmi_xfer_info_init(sinfo, &sinfo->tx_minfo);
2297 if (!ret && !idr_is_empty(&sinfo->rx_idr))
2298 ret = __scmi_xfer_info_init(sinfo, &sinfo->rx_minfo);
2299
2300 return ret;
2301 }
2302
scmi_chan_setup(struct scmi_info * info,struct device_node * of_node,int prot_id,bool tx)2303 static int scmi_chan_setup(struct scmi_info *info, struct device_node *of_node,
2304 int prot_id, bool tx)
2305 {
2306 int ret, idx;
2307 char name[32];
2308 struct scmi_chan_info *cinfo;
2309 struct idr *idr;
2310 struct scmi_device *tdev = NULL;
2311
2312 /* Transmit channel is first entry i.e. index 0 */
2313 idx = tx ? 0 : 1;
2314 idr = tx ? &info->tx_idr : &info->rx_idr;
2315
2316 if (!info->desc->ops->chan_available(of_node, idx)) {
2317 cinfo = idr_find(idr, SCMI_PROTOCOL_BASE);
2318 if (unlikely(!cinfo)) /* Possible only if platform has no Rx */
2319 return -EINVAL;
2320 goto idr_alloc;
2321 }
2322
2323 cinfo = devm_kzalloc(info->dev, sizeof(*cinfo), GFP_KERNEL);
2324 if (!cinfo)
2325 return -ENOMEM;
2326
2327 cinfo->is_p2a = !tx;
2328 cinfo->rx_timeout_ms = info->desc->max_rx_timeout_ms;
2329
2330 /* Create a unique name for this transport device */
2331 snprintf(name, 32, "__scmi_transport_device_%s_%02X",
2332 idx ? "rx" : "tx", prot_id);
2333 /* Create a uniquely named, dedicated transport device for this chan */
2334 tdev = scmi_device_create(of_node, info->dev, prot_id, name);
2335 if (!tdev) {
2336 dev_err(info->dev,
2337 "failed to create transport device (%s)\n", name);
2338 devm_kfree(info->dev, cinfo);
2339 return -EINVAL;
2340 }
2341 of_node_get(of_node);
2342
2343 cinfo->id = prot_id;
2344 cinfo->dev = &tdev->dev;
2345 ret = info->desc->ops->chan_setup(cinfo, info->dev, tx);
2346 if (ret) {
2347 of_node_put(of_node);
2348 scmi_device_destroy(info->dev, prot_id, name);
2349 devm_kfree(info->dev, cinfo);
2350 return ret;
2351 }
2352
2353 if (tx && is_polling_required(cinfo, info->desc)) {
2354 if (is_transport_polling_capable(info->desc))
2355 dev_info(&tdev->dev,
2356 "Enabled polling mode TX channel - prot_id:%d\n",
2357 prot_id);
2358 else
2359 dev_warn(&tdev->dev,
2360 "Polling mode NOT supported by transport.\n");
2361 }
2362
2363 idr_alloc:
2364 ret = idr_alloc(idr, cinfo, prot_id, prot_id + 1, GFP_KERNEL);
2365 if (ret != prot_id) {
2366 dev_err(info->dev,
2367 "unable to allocate SCMI idr slot err %d\n", ret);
2368 /* Destroy channel and device only if created by this call. */
2369 if (tdev) {
2370 of_node_put(of_node);
2371 scmi_device_destroy(info->dev, prot_id, name);
2372 devm_kfree(info->dev, cinfo);
2373 }
2374 return ret;
2375 }
2376
2377 cinfo->handle = &info->handle;
2378 return 0;
2379 }
2380
2381 static inline int
scmi_txrx_setup(struct scmi_info * info,struct device_node * of_node,int prot_id)2382 scmi_txrx_setup(struct scmi_info *info, struct device_node *of_node,
2383 int prot_id)
2384 {
2385 int ret = scmi_chan_setup(info, of_node, prot_id, true);
2386
2387 if (!ret) {
2388 /* Rx is optional, report only memory errors */
2389 ret = scmi_chan_setup(info, of_node, prot_id, false);
2390 if (ret && ret != -ENOMEM)
2391 ret = 0;
2392 }
2393
2394 return ret;
2395 }
2396
2397 /**
2398 * scmi_channels_setup - Helper to initialize all required channels
2399 *
2400 * @info: The SCMI instance descriptor.
2401 *
2402 * Initialize all the channels found described in the DT against the underlying
2403 * configured transport using custom defined dedicated devices instead of
2404 * borrowing devices from the SCMI drivers; this way channels are initialized
2405 * upfront during core SCMI stack probing and are no more coupled with SCMI
2406 * devices used by SCMI drivers.
2407 *
2408 * Note that, even though a pair of TX/RX channels is associated to each
2409 * protocol defined in the DT, a distinct freshly initialized channel is
2410 * created only if the DT node for the protocol at hand describes a dedicated
2411 * channel: in all the other cases the common BASE protocol channel is reused.
2412 *
2413 * Return: 0 on Success
2414 */
scmi_channels_setup(struct scmi_info * info)2415 static int scmi_channels_setup(struct scmi_info *info)
2416 {
2417 int ret;
2418 struct device_node *child, *top_np = info->dev->of_node;
2419
2420 /* Initialize a common generic channel at first */
2421 ret = scmi_txrx_setup(info, top_np, SCMI_PROTOCOL_BASE);
2422 if (ret)
2423 return ret;
2424
2425 for_each_available_child_of_node(top_np, child) {
2426 u32 prot_id;
2427
2428 if (of_property_read_u32(child, "reg", &prot_id))
2429 continue;
2430
2431 if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
2432 dev_err(info->dev,
2433 "Out of range protocol %d\n", prot_id);
2434
2435 ret = scmi_txrx_setup(info, child, prot_id);
2436 if (ret) {
2437 of_node_put(child);
2438 return ret;
2439 }
2440 }
2441
2442 return 0;
2443 }
2444
scmi_chan_destroy(int id,void * p,void * idr)2445 static int scmi_chan_destroy(int id, void *p, void *idr)
2446 {
2447 struct scmi_chan_info *cinfo = p;
2448
2449 if (cinfo->dev) {
2450 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
2451 struct scmi_device *sdev = to_scmi_dev(cinfo->dev);
2452
2453 of_node_put(cinfo->dev->of_node);
2454 scmi_device_destroy(info->dev, id, sdev->name);
2455 cinfo->dev = NULL;
2456 }
2457
2458 idr_remove(idr, id);
2459
2460 return 0;
2461 }
2462
scmi_cleanup_channels(struct scmi_info * info,struct idr * idr)2463 static void scmi_cleanup_channels(struct scmi_info *info, struct idr *idr)
2464 {
2465 /* At first free all channels at the transport layer ... */
2466 idr_for_each(idr, info->desc->ops->chan_free, idr);
2467
2468 /* ...then destroy all underlying devices */
2469 idr_for_each(idr, scmi_chan_destroy, idr);
2470
2471 idr_destroy(idr);
2472 }
2473
scmi_cleanup_txrx_channels(struct scmi_info * info)2474 static void scmi_cleanup_txrx_channels(struct scmi_info *info)
2475 {
2476 scmi_cleanup_channels(info, &info->tx_idr);
2477
2478 scmi_cleanup_channels(info, &info->rx_idr);
2479 }
2480
scmi_bus_notifier(struct notifier_block * nb,unsigned long action,void * data)2481 static int scmi_bus_notifier(struct notifier_block *nb,
2482 unsigned long action, void *data)
2483 {
2484 struct scmi_info *info = bus_nb_to_scmi_info(nb);
2485 struct scmi_device *sdev = to_scmi_dev(data);
2486
2487 /* Skip transport devices and devices of different SCMI instances */
2488 if (!strncmp(sdev->name, "__scmi_transport_device", 23) ||
2489 sdev->dev.parent != info->dev)
2490 return NOTIFY_DONE;
2491
2492 switch (action) {
2493 case BUS_NOTIFY_BIND_DRIVER:
2494 /* setup handle now as the transport is ready */
2495 scmi_set_handle(sdev);
2496 break;
2497 case BUS_NOTIFY_UNBOUND_DRIVER:
2498 scmi_handle_put(sdev->handle);
2499 sdev->handle = NULL;
2500 break;
2501 default:
2502 return NOTIFY_DONE;
2503 }
2504
2505 dev_dbg(info->dev, "Device %s (%s) is now %s\n", dev_name(&sdev->dev),
2506 sdev->name, action == BUS_NOTIFY_BIND_DRIVER ?
2507 "about to be BOUND." : "UNBOUND.");
2508
2509 return NOTIFY_OK;
2510 }
2511
scmi_device_request_notifier(struct notifier_block * nb,unsigned long action,void * data)2512 static int scmi_device_request_notifier(struct notifier_block *nb,
2513 unsigned long action, void *data)
2514 {
2515 struct device_node *np;
2516 struct scmi_device_id *id_table = data;
2517 struct scmi_info *info = req_nb_to_scmi_info(nb);
2518
2519 np = idr_find(&info->active_protocols, id_table->protocol_id);
2520 if (!np)
2521 return NOTIFY_DONE;
2522
2523 dev_dbg(info->dev, "%sRequested device (%s) for protocol 0x%x\n",
2524 action == SCMI_BUS_NOTIFY_DEVICE_REQUEST ? "" : "UN-",
2525 id_table->name, id_table->protocol_id);
2526
2527 switch (action) {
2528 case SCMI_BUS_NOTIFY_DEVICE_REQUEST:
2529 scmi_create_protocol_devices(np, info, id_table->protocol_id,
2530 id_table->name);
2531 break;
2532 case SCMI_BUS_NOTIFY_DEVICE_UNREQUEST:
2533 scmi_destroy_protocol_devices(info, id_table->protocol_id,
2534 id_table->name);
2535 break;
2536 default:
2537 return NOTIFY_DONE;
2538 }
2539
2540 return NOTIFY_OK;
2541 }
2542
scmi_debugfs_common_cleanup(void * d)2543 static void scmi_debugfs_common_cleanup(void *d)
2544 {
2545 struct scmi_debug_info *dbg = d;
2546
2547 if (!dbg)
2548 return;
2549
2550 debugfs_remove_recursive(dbg->top_dentry);
2551 kfree(dbg->name);
2552 kfree(dbg->type);
2553 }
2554
scmi_debugfs_common_setup(struct scmi_info * info)2555 static struct scmi_debug_info *scmi_debugfs_common_setup(struct scmi_info *info)
2556 {
2557 char top_dir[16];
2558 struct dentry *trans, *top_dentry;
2559 struct scmi_debug_info *dbg;
2560 const char *c_ptr = NULL;
2561
2562 dbg = devm_kzalloc(info->dev, sizeof(*dbg), GFP_KERNEL);
2563 if (!dbg)
2564 return NULL;
2565
2566 dbg->name = kstrdup(of_node_full_name(info->dev->of_node), GFP_KERNEL);
2567 if (!dbg->name) {
2568 devm_kfree(info->dev, dbg);
2569 return NULL;
2570 }
2571
2572 of_property_read_string(info->dev->of_node, "compatible", &c_ptr);
2573 dbg->type = kstrdup(c_ptr, GFP_KERNEL);
2574 if (!dbg->type) {
2575 kfree(dbg->name);
2576 devm_kfree(info->dev, dbg);
2577 return NULL;
2578 }
2579
2580 snprintf(top_dir, 16, "%d", info->id);
2581 top_dentry = debugfs_create_dir(top_dir, scmi_top_dentry);
2582 trans = debugfs_create_dir("transport", top_dentry);
2583
2584 dbg->is_atomic = info->desc->atomic_enabled &&
2585 is_transport_polling_capable(info->desc);
2586
2587 debugfs_create_str("instance_name", 0400, top_dentry,
2588 (char **)&dbg->name);
2589
2590 debugfs_create_u32("atomic_threshold_us", 0400, top_dentry,
2591 &info->atomic_threshold);
2592
2593 debugfs_create_str("type", 0400, trans, (char **)&dbg->type);
2594
2595 debugfs_create_bool("is_atomic", 0400, trans, &dbg->is_atomic);
2596
2597 debugfs_create_u32("max_rx_timeout_ms", 0400, trans,
2598 (u32 *)&info->desc->max_rx_timeout_ms);
2599
2600 debugfs_create_u32("max_msg_size", 0400, trans,
2601 (u32 *)&info->desc->max_msg_size);
2602
2603 debugfs_create_u32("tx_max_msg", 0400, trans,
2604 (u32 *)&info->tx_minfo.max_msg);
2605
2606 debugfs_create_u32("rx_max_msg", 0400, trans,
2607 (u32 *)&info->rx_minfo.max_msg);
2608
2609 dbg->top_dentry = top_dentry;
2610
2611 if (devm_add_action_or_reset(info->dev,
2612 scmi_debugfs_common_cleanup, dbg))
2613 return NULL;
2614
2615 return dbg;
2616 }
2617
scmi_debugfs_raw_mode_setup(struct scmi_info * info)2618 static int scmi_debugfs_raw_mode_setup(struct scmi_info *info)
2619 {
2620 int id, num_chans = 0, ret = 0;
2621 struct scmi_chan_info *cinfo;
2622 u8 channels[SCMI_MAX_CHANNELS] = {};
2623 DECLARE_BITMAP(protos, SCMI_MAX_CHANNELS) = {};
2624
2625 if (!info->dbg)
2626 return -EINVAL;
2627
2628 /* Enumerate all channels to collect their ids */
2629 idr_for_each_entry(&info->tx_idr, cinfo, id) {
2630 /*
2631 * Cannot happen, but be defensive.
2632 * Zero as num_chans is ok, warn and carry on.
2633 */
2634 if (num_chans >= SCMI_MAX_CHANNELS || !cinfo) {
2635 dev_warn(info->dev,
2636 "SCMI RAW - Error enumerating channels\n");
2637 break;
2638 }
2639
2640 if (!test_bit(cinfo->id, protos)) {
2641 channels[num_chans++] = cinfo->id;
2642 set_bit(cinfo->id, protos);
2643 }
2644 }
2645
2646 info->raw = scmi_raw_mode_init(&info->handle, info->dbg->top_dentry,
2647 info->id, channels, num_chans,
2648 info->desc, info->tx_minfo.max_msg);
2649 if (IS_ERR(info->raw)) {
2650 dev_err(info->dev, "Failed to initialize SCMI RAW Mode !\n");
2651 ret = PTR_ERR(info->raw);
2652 info->raw = NULL;
2653 }
2654
2655 return ret;
2656 }
2657
scmi_probe(struct platform_device * pdev)2658 static int scmi_probe(struct platform_device *pdev)
2659 {
2660 int ret;
2661 struct scmi_handle *handle;
2662 const struct scmi_desc *desc;
2663 struct scmi_info *info;
2664 bool coex = IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT_COEX);
2665 struct device *dev = &pdev->dev;
2666 struct device_node *child, *np = dev->of_node;
2667
2668 desc = of_device_get_match_data(dev);
2669 if (!desc)
2670 return -EINVAL;
2671
2672 info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL);
2673 if (!info)
2674 return -ENOMEM;
2675
2676 info->id = ida_alloc_min(&scmi_id, 0, GFP_KERNEL);
2677 if (info->id < 0)
2678 return info->id;
2679
2680 info->dev = dev;
2681 info->desc = desc;
2682 info->bus_nb.notifier_call = scmi_bus_notifier;
2683 info->dev_req_nb.notifier_call = scmi_device_request_notifier;
2684 INIT_LIST_HEAD(&info->node);
2685 idr_init(&info->protocols);
2686 mutex_init(&info->protocols_mtx);
2687 idr_init(&info->active_protocols);
2688 mutex_init(&info->devreq_mtx);
2689
2690 platform_set_drvdata(pdev, info);
2691 idr_init(&info->tx_idr);
2692 idr_init(&info->rx_idr);
2693
2694 handle = &info->handle;
2695 handle->dev = info->dev;
2696 handle->version = &info->version;
2697 handle->devm_protocol_acquire = scmi_devm_protocol_acquire;
2698 handle->devm_protocol_get = scmi_devm_protocol_get;
2699 handle->devm_protocol_put = scmi_devm_protocol_put;
2700
2701 /* System wide atomic threshold for atomic ops .. if any */
2702 if (!of_property_read_u32(np, "atomic-threshold-us",
2703 &info->atomic_threshold))
2704 dev_info(dev,
2705 "SCMI System wide atomic threshold set to %d us\n",
2706 info->atomic_threshold);
2707 handle->is_transport_atomic = scmi_is_transport_atomic;
2708
2709 if (desc->ops->link_supplier) {
2710 ret = desc->ops->link_supplier(dev);
2711 if (ret)
2712 goto clear_ida;
2713 }
2714
2715 /* Setup all channels described in the DT at first */
2716 ret = scmi_channels_setup(info);
2717 if (ret)
2718 goto clear_ida;
2719
2720 ret = bus_register_notifier(&scmi_bus_type, &info->bus_nb);
2721 if (ret)
2722 goto clear_txrx_setup;
2723
2724 ret = blocking_notifier_chain_register(&scmi_requested_devices_nh,
2725 &info->dev_req_nb);
2726 if (ret)
2727 goto clear_bus_notifier;
2728
2729 ret = scmi_xfer_info_init(info);
2730 if (ret)
2731 goto clear_dev_req_notifier;
2732
2733 if (scmi_top_dentry) {
2734 info->dbg = scmi_debugfs_common_setup(info);
2735 if (!info->dbg)
2736 dev_warn(dev, "Failed to setup SCMI debugfs.\n");
2737
2738 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
2739 ret = scmi_debugfs_raw_mode_setup(info);
2740 if (!coex) {
2741 if (ret)
2742 goto clear_dev_req_notifier;
2743
2744 /* Bail out anyway when coex disabled. */
2745 return 0;
2746 }
2747
2748 /* Coex enabled, carry on in any case. */
2749 dev_info(dev, "SCMI RAW Mode COEX enabled !\n");
2750 }
2751 }
2752
2753 if (scmi_notification_init(handle))
2754 dev_err(dev, "SCMI Notifications NOT available.\n");
2755
2756 if (info->desc->atomic_enabled &&
2757 !is_transport_polling_capable(info->desc))
2758 dev_err(dev,
2759 "Transport is not polling capable. Atomic mode not supported.\n");
2760
2761 /*
2762 * Trigger SCMI Base protocol initialization.
2763 * It's mandatory and won't be ever released/deinit until the
2764 * SCMI stack is shutdown/unloaded as a whole.
2765 */
2766 ret = scmi_protocol_acquire(handle, SCMI_PROTOCOL_BASE);
2767 if (ret) {
2768 dev_err(dev, "unable to communicate with SCMI\n");
2769 if (coex)
2770 return 0;
2771 goto notification_exit;
2772 }
2773
2774 mutex_lock(&scmi_list_mutex);
2775 list_add_tail(&info->node, &scmi_list);
2776 mutex_unlock(&scmi_list_mutex);
2777
2778 for_each_available_child_of_node(np, child) {
2779 u32 prot_id;
2780
2781 if (of_property_read_u32(child, "reg", &prot_id))
2782 continue;
2783
2784 if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
2785 dev_err(dev, "Out of range protocol %d\n", prot_id);
2786
2787 if (!scmi_is_protocol_implemented(handle, prot_id)) {
2788 dev_err(dev, "SCMI protocol %d not implemented\n",
2789 prot_id);
2790 continue;
2791 }
2792
2793 /*
2794 * Save this valid DT protocol descriptor amongst
2795 * @active_protocols for this SCMI instance/
2796 */
2797 ret = idr_alloc(&info->active_protocols, child,
2798 prot_id, prot_id + 1, GFP_KERNEL);
2799 if (ret != prot_id) {
2800 dev_err(dev, "SCMI protocol %d already activated. Skip\n",
2801 prot_id);
2802 continue;
2803 }
2804
2805 of_node_get(child);
2806 scmi_create_protocol_devices(child, info, prot_id, NULL);
2807 }
2808
2809 return 0;
2810
2811 notification_exit:
2812 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
2813 scmi_raw_mode_cleanup(info->raw);
2814 scmi_notification_exit(&info->handle);
2815 clear_dev_req_notifier:
2816 blocking_notifier_chain_unregister(&scmi_requested_devices_nh,
2817 &info->dev_req_nb);
2818 clear_bus_notifier:
2819 bus_unregister_notifier(&scmi_bus_type, &info->bus_nb);
2820 clear_txrx_setup:
2821 scmi_cleanup_txrx_channels(info);
2822 clear_ida:
2823 ida_free(&scmi_id, info->id);
2824 return ret;
2825 }
2826
scmi_remove(struct platform_device * pdev)2827 static int scmi_remove(struct platform_device *pdev)
2828 {
2829 int id;
2830 struct scmi_info *info = platform_get_drvdata(pdev);
2831 struct device_node *child;
2832
2833 if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
2834 scmi_raw_mode_cleanup(info->raw);
2835
2836 mutex_lock(&scmi_list_mutex);
2837 if (info->users)
2838 dev_warn(&pdev->dev,
2839 "Still active SCMI users will be forcibly unbound.\n");
2840 list_del(&info->node);
2841 mutex_unlock(&scmi_list_mutex);
2842
2843 scmi_notification_exit(&info->handle);
2844
2845 mutex_lock(&info->protocols_mtx);
2846 idr_destroy(&info->protocols);
2847 mutex_unlock(&info->protocols_mtx);
2848
2849 idr_for_each_entry(&info->active_protocols, child, id)
2850 of_node_put(child);
2851 idr_destroy(&info->active_protocols);
2852
2853 blocking_notifier_chain_unregister(&scmi_requested_devices_nh,
2854 &info->dev_req_nb);
2855 bus_unregister_notifier(&scmi_bus_type, &info->bus_nb);
2856
2857 /* Safe to free channels since no more users */
2858 scmi_cleanup_txrx_channels(info);
2859
2860 ida_free(&scmi_id, info->id);
2861
2862 return 0;
2863 }
2864
protocol_version_show(struct device * dev,struct device_attribute * attr,char * buf)2865 static ssize_t protocol_version_show(struct device *dev,
2866 struct device_attribute *attr, char *buf)
2867 {
2868 struct scmi_info *info = dev_get_drvdata(dev);
2869
2870 return sprintf(buf, "%u.%u\n", info->version.major_ver,
2871 info->version.minor_ver);
2872 }
2873 static DEVICE_ATTR_RO(protocol_version);
2874
firmware_version_show(struct device * dev,struct device_attribute * attr,char * buf)2875 static ssize_t firmware_version_show(struct device *dev,
2876 struct device_attribute *attr, char *buf)
2877 {
2878 struct scmi_info *info = dev_get_drvdata(dev);
2879
2880 return sprintf(buf, "0x%x\n", info->version.impl_ver);
2881 }
2882 static DEVICE_ATTR_RO(firmware_version);
2883
vendor_id_show(struct device * dev,struct device_attribute * attr,char * buf)2884 static ssize_t vendor_id_show(struct device *dev,
2885 struct device_attribute *attr, char *buf)
2886 {
2887 struct scmi_info *info = dev_get_drvdata(dev);
2888
2889 return sprintf(buf, "%s\n", info->version.vendor_id);
2890 }
2891 static DEVICE_ATTR_RO(vendor_id);
2892
sub_vendor_id_show(struct device * dev,struct device_attribute * attr,char * buf)2893 static ssize_t sub_vendor_id_show(struct device *dev,
2894 struct device_attribute *attr, char *buf)
2895 {
2896 struct scmi_info *info = dev_get_drvdata(dev);
2897
2898 return sprintf(buf, "%s\n", info->version.sub_vendor_id);
2899 }
2900 static DEVICE_ATTR_RO(sub_vendor_id);
2901
2902 static struct attribute *versions_attrs[] = {
2903 &dev_attr_firmware_version.attr,
2904 &dev_attr_protocol_version.attr,
2905 &dev_attr_vendor_id.attr,
2906 &dev_attr_sub_vendor_id.attr,
2907 NULL,
2908 };
2909 ATTRIBUTE_GROUPS(versions);
2910
2911 /* Each compatible listed below must have descriptor associated with it */
2912 static const struct of_device_id scmi_of_match[] = {
2913 #ifdef CONFIG_ARM_SCMI_TRANSPORT_MAILBOX
2914 { .compatible = "arm,scmi", .data = &scmi_mailbox_desc },
2915 #endif
2916 #ifdef CONFIG_ARM_SCMI_TRANSPORT_OPTEE
2917 { .compatible = "linaro,scmi-optee", .data = &scmi_optee_desc },
2918 #endif
2919 #ifdef CONFIG_ARM_SCMI_TRANSPORT_SMC
2920 { .compatible = "arm,scmi-smc", .data = &scmi_smc_desc},
2921 { .compatible = "arm,scmi-smc-param", .data = &scmi_smc_desc},
2922 #endif
2923 #ifdef CONFIG_ARM_SCMI_TRANSPORT_VIRTIO
2924 { .compatible = "arm,scmi-virtio", .data = &scmi_virtio_desc},
2925 #endif
2926 { /* Sentinel */ },
2927 };
2928
2929 MODULE_DEVICE_TABLE(of, scmi_of_match);
2930
2931 static struct platform_driver scmi_driver = {
2932 .driver = {
2933 .name = "arm-scmi",
2934 .suppress_bind_attrs = true,
2935 .of_match_table = scmi_of_match,
2936 .dev_groups = versions_groups,
2937 },
2938 .probe = scmi_probe,
2939 .remove = scmi_remove,
2940 };
2941
2942 /**
2943 * __scmi_transports_setup - Common helper to call transport-specific
2944 * .init/.exit code if provided.
2945 *
2946 * @init: A flag to distinguish between init and exit.
2947 *
2948 * Note that, if provided, we invoke .init/.exit functions for all the
2949 * transports currently compiled in.
2950 *
2951 * Return: 0 on Success.
2952 */
__scmi_transports_setup(bool init)2953 static inline int __scmi_transports_setup(bool init)
2954 {
2955 int ret = 0;
2956 const struct of_device_id *trans;
2957
2958 for (trans = scmi_of_match; trans->data; trans++) {
2959 const struct scmi_desc *tdesc = trans->data;
2960
2961 if ((init && !tdesc->transport_init) ||
2962 (!init && !tdesc->transport_exit))
2963 continue;
2964
2965 if (init)
2966 ret = tdesc->transport_init();
2967 else
2968 tdesc->transport_exit();
2969
2970 if (ret) {
2971 pr_err("SCMI transport %s FAILED initialization!\n",
2972 trans->compatible);
2973 break;
2974 }
2975 }
2976
2977 return ret;
2978 }
2979
scmi_transports_init(void)2980 static int __init scmi_transports_init(void)
2981 {
2982 return __scmi_transports_setup(true);
2983 }
2984
scmi_transports_exit(void)2985 static void __exit scmi_transports_exit(void)
2986 {
2987 __scmi_transports_setup(false);
2988 }
2989
scmi_debugfs_init(void)2990 static struct dentry *scmi_debugfs_init(void)
2991 {
2992 struct dentry *d;
2993
2994 d = debugfs_create_dir("scmi", NULL);
2995 if (IS_ERR(d)) {
2996 pr_err("Could NOT create SCMI top dentry.\n");
2997 return NULL;
2998 }
2999
3000 return d;
3001 }
3002
scmi_driver_init(void)3003 static int __init scmi_driver_init(void)
3004 {
3005 int ret;
3006
3007 /* Bail out if no SCMI transport was configured */
3008 if (WARN_ON(!IS_ENABLED(CONFIG_ARM_SCMI_HAVE_TRANSPORT)))
3009 return -EINVAL;
3010
3011 /* Initialize any compiled-in transport which provided an init/exit */
3012 ret = scmi_transports_init();
3013 if (ret)
3014 return ret;
3015
3016 if (IS_ENABLED(CONFIG_ARM_SCMI_NEED_DEBUGFS))
3017 scmi_top_dentry = scmi_debugfs_init();
3018
3019 scmi_base_register();
3020
3021 scmi_clock_register();
3022 scmi_perf_register();
3023 scmi_power_register();
3024 scmi_reset_register();
3025 scmi_sensors_register();
3026 scmi_voltage_register();
3027 scmi_system_register();
3028 scmi_powercap_register();
3029
3030 return platform_driver_register(&scmi_driver);
3031 }
3032 module_init(scmi_driver_init);
3033
scmi_driver_exit(void)3034 static void __exit scmi_driver_exit(void)
3035 {
3036 scmi_base_unregister();
3037
3038 scmi_clock_unregister();
3039 scmi_perf_unregister();
3040 scmi_power_unregister();
3041 scmi_reset_unregister();
3042 scmi_sensors_unregister();
3043 scmi_voltage_unregister();
3044 scmi_system_unregister();
3045 scmi_powercap_unregister();
3046
3047 scmi_transports_exit();
3048
3049 platform_driver_unregister(&scmi_driver);
3050
3051 debugfs_remove_recursive(scmi_top_dentry);
3052 }
3053 module_exit(scmi_driver_exit);
3054
3055 MODULE_ALIAS("platform:arm-scmi");
3056 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
3057 MODULE_DESCRIPTION("ARM SCMI protocol driver");
3058 MODULE_LICENSE("GPL v2");
3059