xref: /openbmc/linux/drivers/firmware/arm_scmi/driver.c (revision 7df45f35313c1ae083dac72c066b3aebfc7fc0cd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * System Control and Management Interface (SCMI) Message Protocol driver
4  *
5  * SCMI Message Protocol is used between the System Control Processor(SCP)
6  * and the Application Processors(AP). The Message Handling Unit(MHU)
7  * provides a mechanism for inter-processor communication between SCP's
8  * Cortex M3 and AP.
9  *
10  * SCP offers control and management of the core/cluster power states,
11  * various power domain DVFS including the core/cluster, certain system
12  * clocks configuration, thermal sensors and many others.
13  *
14  * Copyright (C) 2018-2021 ARM Ltd.
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/bitmap.h>
20 #include <linux/debugfs.h>
21 #include <linux/device.h>
22 #include <linux/export.h>
23 #include <linux/idr.h>
24 #include <linux/io.h>
25 #include <linux/io-64-nonatomic-hi-lo.h>
26 #include <linux/kernel.h>
27 #include <linux/ktime.h>
28 #include <linux/hashtable.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/of.h>
32 #include <linux/platform_device.h>
33 #include <linux/processor.h>
34 #include <linux/refcount.h>
35 #include <linux/slab.h>
36 
37 #include "common.h"
38 #include "notify.h"
39 
40 #include "raw_mode.h"
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/scmi.h>
44 
45 static DEFINE_IDA(scmi_id);
46 
47 static DEFINE_IDR(scmi_protocols);
48 static DEFINE_SPINLOCK(protocol_lock);
49 
50 /* List of all SCMI devices active in system */
51 static LIST_HEAD(scmi_list);
52 /* Protection for the entire list */
53 static DEFINE_MUTEX(scmi_list_mutex);
54 /* Track the unique id for the transfers for debug & profiling purpose */
55 static atomic_t transfer_last_id;
56 
57 static struct dentry *scmi_top_dentry;
58 
59 /**
60  * struct scmi_xfers_info - Structure to manage transfer information
61  *
62  * @xfer_alloc_table: Bitmap table for allocated messages.
63  *	Index of this bitmap table is also used for message
64  *	sequence identifier.
65  * @xfer_lock: Protection for message allocation
66  * @max_msg: Maximum number of messages that can be pending
67  * @free_xfers: A free list for available to use xfers. It is initialized with
68  *		a number of xfers equal to the maximum allowed in-flight
69  *		messages.
70  * @pending_xfers: An hashtable, indexed by msg_hdr.seq, used to keep all the
71  *		   currently in-flight messages.
72  */
73 struct scmi_xfers_info {
74 	unsigned long *xfer_alloc_table;
75 	spinlock_t xfer_lock;
76 	int max_msg;
77 	struct hlist_head free_xfers;
78 	DECLARE_HASHTABLE(pending_xfers, SCMI_PENDING_XFERS_HT_ORDER_SZ);
79 };
80 
81 /**
82  * struct scmi_protocol_instance  - Describe an initialized protocol instance.
83  * @handle: Reference to the SCMI handle associated to this protocol instance.
84  * @proto: A reference to the protocol descriptor.
85  * @gid: A reference for per-protocol devres management.
86  * @users: A refcount to track effective users of this protocol.
87  * @priv: Reference for optional protocol private data.
88  * @ph: An embedded protocol handle that will be passed down to protocol
89  *	initialization code to identify this instance.
90  *
91  * Each protocol is initialized independently once for each SCMI platform in
92  * which is defined by DT and implemented by the SCMI server fw.
93  */
94 struct scmi_protocol_instance {
95 	const struct scmi_handle	*handle;
96 	const struct scmi_protocol	*proto;
97 	void				*gid;
98 	refcount_t			users;
99 	void				*priv;
100 	struct scmi_protocol_handle	ph;
101 };
102 
103 #define ph_to_pi(h)	container_of(h, struct scmi_protocol_instance, ph)
104 
105 /**
106  * struct scmi_debug_info  - Debug common info
107  * @top_dentry: A reference to the top debugfs dentry
108  * @name: Name of this SCMI instance
109  * @type: Type of this SCMI instance
110  * @is_atomic: Flag to state if the transport of this instance is atomic
111  * @counters: An array of atomic_c's used for tracking statistics (if enabled)
112  */
113 struct scmi_debug_info {
114 	struct dentry *top_dentry;
115 	const char *name;
116 	const char *type;
117 	bool is_atomic;
118 	atomic_t counters[SCMI_DEBUG_COUNTERS_LAST];
119 };
120 
121 /**
122  * struct scmi_info - Structure representing a SCMI instance
123  *
124  * @id: A sequence number starting from zero identifying this instance
125  * @dev: Device pointer
126  * @desc: SoC description for this instance
127  * @version: SCMI revision information containing protocol version,
128  *	implementation version and (sub-)vendor identification.
129  * @handle: Instance of SCMI handle to send to clients
130  * @tx_minfo: Universal Transmit Message management info
131  * @rx_minfo: Universal Receive Message management info
132  * @tx_idr: IDR object to map protocol id to Tx channel info pointer
133  * @rx_idr: IDR object to map protocol id to Rx channel info pointer
134  * @protocols: IDR for protocols' instance descriptors initialized for
135  *	       this SCMI instance: populated on protocol's first attempted
136  *	       usage.
137  * @protocols_mtx: A mutex to protect protocols instances initialization.
138  * @protocols_imp: List of protocols implemented, currently maximum of
139  *		   scmi_revision_info.num_protocols elements allocated by the
140  *		   base protocol
141  * @active_protocols: IDR storing device_nodes for protocols actually defined
142  *		      in the DT and confirmed as implemented by fw.
143  * @atomic_threshold: Optional system wide DT-configured threshold, expressed
144  *		      in microseconds, for atomic operations.
145  *		      Only SCMI synchronous commands reported by the platform
146  *		      to have an execution latency lesser-equal to the threshold
147  *		      should be considered for atomic mode operation: such
148  *		      decision is finally left up to the SCMI drivers.
149  * @notify_priv: Pointer to private data structure specific to notifications.
150  * @node: List head
151  * @users: Number of users of this instance
152  * @bus_nb: A notifier to listen for device bind/unbind on the scmi bus
153  * @dev_req_nb: A notifier to listen for device request/unrequest on the scmi
154  *		bus
155  * @devreq_mtx: A mutex to serialize device creation for this SCMI instance
156  * @dbg: A pointer to debugfs related data (if any)
157  * @raw: An opaque reference handle used by SCMI Raw mode.
158  */
159 struct scmi_info {
160 	int id;
161 	struct device *dev;
162 	const struct scmi_desc *desc;
163 	struct scmi_revision_info version;
164 	struct scmi_handle handle;
165 	struct scmi_xfers_info tx_minfo;
166 	struct scmi_xfers_info rx_minfo;
167 	struct idr tx_idr;
168 	struct idr rx_idr;
169 	struct idr protocols;
170 	/* Ensure mutual exclusive access to protocols instance array */
171 	struct mutex protocols_mtx;
172 	u8 *protocols_imp;
173 	struct idr active_protocols;
174 	unsigned int atomic_threshold;
175 	void *notify_priv;
176 	struct list_head node;
177 	int users;
178 	struct notifier_block bus_nb;
179 	struct notifier_block dev_req_nb;
180 	/* Serialize device creation process for this instance */
181 	struct mutex devreq_mtx;
182 	struct scmi_debug_info *dbg;
183 	void *raw;
184 };
185 
186 #define handle_to_scmi_info(h)	container_of(h, struct scmi_info, handle)
187 #define bus_nb_to_scmi_info(nb)	container_of(nb, struct scmi_info, bus_nb)
188 #define req_nb_to_scmi_info(nb)	container_of(nb, struct scmi_info, dev_req_nb)
189 
scmi_protocol_get(int protocol_id)190 static const struct scmi_protocol *scmi_protocol_get(int protocol_id)
191 {
192 	const struct scmi_protocol *proto;
193 
194 	proto = idr_find(&scmi_protocols, protocol_id);
195 	if (!proto || !try_module_get(proto->owner)) {
196 		pr_warn("SCMI Protocol 0x%x not found!\n", protocol_id);
197 		return NULL;
198 	}
199 
200 	pr_debug("Found SCMI Protocol 0x%x\n", protocol_id);
201 
202 	return proto;
203 }
204 
scmi_protocol_put(int protocol_id)205 static void scmi_protocol_put(int protocol_id)
206 {
207 	const struct scmi_protocol *proto;
208 
209 	proto = idr_find(&scmi_protocols, protocol_id);
210 	if (proto)
211 		module_put(proto->owner);
212 }
213 
scmi_protocol_register(const struct scmi_protocol * proto)214 int scmi_protocol_register(const struct scmi_protocol *proto)
215 {
216 	int ret;
217 
218 	if (!proto) {
219 		pr_err("invalid protocol\n");
220 		return -EINVAL;
221 	}
222 
223 	if (!proto->instance_init) {
224 		pr_err("missing init for protocol 0x%x\n", proto->id);
225 		return -EINVAL;
226 	}
227 
228 	spin_lock(&protocol_lock);
229 	ret = idr_alloc(&scmi_protocols, (void *)proto,
230 			proto->id, proto->id + 1, GFP_ATOMIC);
231 	spin_unlock(&protocol_lock);
232 	if (ret != proto->id) {
233 		pr_err("unable to allocate SCMI idr slot for 0x%x - err %d\n",
234 		       proto->id, ret);
235 		return ret;
236 	}
237 
238 	pr_debug("Registered SCMI Protocol 0x%x\n", proto->id);
239 
240 	return 0;
241 }
242 EXPORT_SYMBOL_GPL(scmi_protocol_register);
243 
scmi_protocol_unregister(const struct scmi_protocol * proto)244 void scmi_protocol_unregister(const struct scmi_protocol *proto)
245 {
246 	spin_lock(&protocol_lock);
247 	idr_remove(&scmi_protocols, proto->id);
248 	spin_unlock(&protocol_lock);
249 
250 	pr_debug("Unregistered SCMI Protocol 0x%x\n", proto->id);
251 }
252 EXPORT_SYMBOL_GPL(scmi_protocol_unregister);
253 
254 /**
255  * scmi_create_protocol_devices  - Create devices for all pending requests for
256  * this SCMI instance.
257  *
258  * @np: The device node describing the protocol
259  * @info: The SCMI instance descriptor
260  * @prot_id: The protocol ID
261  * @name: The optional name of the device to be created: if not provided this
262  *	  call will lead to the creation of all the devices currently requested
263  *	  for the specified protocol.
264  */
scmi_create_protocol_devices(struct device_node * np,struct scmi_info * info,int prot_id,const char * name)265 static void scmi_create_protocol_devices(struct device_node *np,
266 					 struct scmi_info *info,
267 					 int prot_id, const char *name)
268 {
269 	struct scmi_device *sdev;
270 
271 	mutex_lock(&info->devreq_mtx);
272 	sdev = scmi_device_create(np, info->dev, prot_id, name);
273 	if (name && !sdev)
274 		dev_err(info->dev,
275 			"failed to create device for protocol 0x%X (%s)\n",
276 			prot_id, name);
277 	mutex_unlock(&info->devreq_mtx);
278 }
279 
scmi_destroy_protocol_devices(struct scmi_info * info,int prot_id,const char * name)280 static void scmi_destroy_protocol_devices(struct scmi_info *info,
281 					  int prot_id, const char *name)
282 {
283 	mutex_lock(&info->devreq_mtx);
284 	scmi_device_destroy(info->dev, prot_id, name);
285 	mutex_unlock(&info->devreq_mtx);
286 }
287 
scmi_notification_instance_data_set(const struct scmi_handle * handle,void * priv)288 void scmi_notification_instance_data_set(const struct scmi_handle *handle,
289 					 void *priv)
290 {
291 	struct scmi_info *info = handle_to_scmi_info(handle);
292 
293 	info->notify_priv = priv;
294 	/* Ensure updated protocol private date are visible */
295 	smp_wmb();
296 }
297 
scmi_notification_instance_data_get(const struct scmi_handle * handle)298 void *scmi_notification_instance_data_get(const struct scmi_handle *handle)
299 {
300 	struct scmi_info *info = handle_to_scmi_info(handle);
301 
302 	/* Ensure protocols_private_data has been updated */
303 	smp_rmb();
304 	return info->notify_priv;
305 }
306 
307 /**
308  * scmi_xfer_token_set  - Reserve and set new token for the xfer at hand
309  *
310  * @minfo: Pointer to Tx/Rx Message management info based on channel type
311  * @xfer: The xfer to act upon
312  *
313  * Pick the next unused monotonically increasing token and set it into
314  * xfer->hdr.seq: picking a monotonically increasing value avoids immediate
315  * reuse of freshly completed or timed-out xfers, thus mitigating the risk
316  * of incorrect association of a late and expired xfer with a live in-flight
317  * transaction, both happening to re-use the same token identifier.
318  *
319  * Since platform is NOT required to answer our request in-order we should
320  * account for a few rare but possible scenarios:
321  *
322  *  - exactly 'next_token' may be NOT available so pick xfer_id >= next_token
323  *    using find_next_zero_bit() starting from candidate next_token bit
324  *
325  *  - all tokens ahead upto (MSG_TOKEN_ID_MASK - 1) are used in-flight but we
326  *    are plenty of free tokens at start, so try a second pass using
327  *    find_next_zero_bit() and starting from 0.
328  *
329  *  X = used in-flight
330  *
331  * Normal
332  * ------
333  *
334  *		|- xfer_id picked
335  *   -----------+----------------------------------------------------------
336  *   | | |X|X|X| | | | | | ... ... ... ... ... ... ... ... ... ... ...|X|X|
337  *   ----------------------------------------------------------------------
338  *		^
339  *		|- next_token
340  *
341  * Out-of-order pending at start
342  * -----------------------------
343  *
344  *	  |- xfer_id picked, last_token fixed
345  *   -----+----------------------------------------------------------------
346  *   |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... ... ...|X| |
347  *   ----------------------------------------------------------------------
348  *    ^
349  *    |- next_token
350  *
351  *
352  * Out-of-order pending at end
353  * ---------------------------
354  *
355  *	  |- xfer_id picked, last_token fixed
356  *   -----+----------------------------------------------------------------
357  *   |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... |X|X|X||X|X|
358  *   ----------------------------------------------------------------------
359  *								^
360  *								|- next_token
361  *
362  * Context: Assumes to be called with @xfer_lock already acquired.
363  *
364  * Return: 0 on Success or error
365  */
scmi_xfer_token_set(struct scmi_xfers_info * minfo,struct scmi_xfer * xfer)366 static int scmi_xfer_token_set(struct scmi_xfers_info *minfo,
367 			       struct scmi_xfer *xfer)
368 {
369 	unsigned long xfer_id, next_token;
370 
371 	/*
372 	 * Pick a candidate monotonic token in range [0, MSG_TOKEN_MAX - 1]
373 	 * using the pre-allocated transfer_id as a base.
374 	 * Note that the global transfer_id is shared across all message types
375 	 * so there could be holes in the allocated set of monotonic sequence
376 	 * numbers, but that is going to limit the effectiveness of the
377 	 * mitigation only in very rare limit conditions.
378 	 */
379 	next_token = (xfer->transfer_id & (MSG_TOKEN_MAX - 1));
380 
381 	/* Pick the next available xfer_id >= next_token */
382 	xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
383 				     MSG_TOKEN_MAX, next_token);
384 	if (xfer_id == MSG_TOKEN_MAX) {
385 		/*
386 		 * After heavily out-of-order responses, there are no free
387 		 * tokens ahead, but only at start of xfer_alloc_table so
388 		 * try again from the beginning.
389 		 */
390 		xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
391 					     MSG_TOKEN_MAX, 0);
392 		/*
393 		 * Something is wrong if we got here since there can be a
394 		 * maximum number of (MSG_TOKEN_MAX - 1) in-flight messages
395 		 * but we have not found any free token [0, MSG_TOKEN_MAX - 1].
396 		 */
397 		if (WARN_ON_ONCE(xfer_id == MSG_TOKEN_MAX))
398 			return -ENOMEM;
399 	}
400 
401 	/* Update +/- last_token accordingly if we skipped some hole */
402 	if (xfer_id != next_token)
403 		atomic_add((int)(xfer_id - next_token), &transfer_last_id);
404 
405 	xfer->hdr.seq = (u16)xfer_id;
406 
407 	return 0;
408 }
409 
410 /**
411  * scmi_xfer_token_clear  - Release the token
412  *
413  * @minfo: Pointer to Tx/Rx Message management info based on channel type
414  * @xfer: The xfer to act upon
415  */
scmi_xfer_token_clear(struct scmi_xfers_info * minfo,struct scmi_xfer * xfer)416 static inline void scmi_xfer_token_clear(struct scmi_xfers_info *minfo,
417 					 struct scmi_xfer *xfer)
418 {
419 	clear_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
420 }
421 
422 /**
423  * scmi_xfer_inflight_register_unlocked  - Register the xfer as in-flight
424  *
425  * @xfer: The xfer to register
426  * @minfo: Pointer to Tx/Rx Message management info based on channel type
427  *
428  * Note that this helper assumes that the xfer to be registered as in-flight
429  * had been built using an xfer sequence number which still corresponds to a
430  * free slot in the xfer_alloc_table.
431  *
432  * Context: Assumes to be called with @xfer_lock already acquired.
433  */
434 static inline void
scmi_xfer_inflight_register_unlocked(struct scmi_xfer * xfer,struct scmi_xfers_info * minfo)435 scmi_xfer_inflight_register_unlocked(struct scmi_xfer *xfer,
436 				     struct scmi_xfers_info *minfo)
437 {
438 	/* Set in-flight */
439 	set_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
440 	hash_add(minfo->pending_xfers, &xfer->node, xfer->hdr.seq);
441 	xfer->pending = true;
442 }
443 
444 /**
445  * scmi_xfer_inflight_register  - Try to register an xfer as in-flight
446  *
447  * @xfer: The xfer to register
448  * @minfo: Pointer to Tx/Rx Message management info based on channel type
449  *
450  * Note that this helper does NOT assume anything about the sequence number
451  * that was baked into the provided xfer, so it checks at first if it can
452  * be mapped to a free slot and fails with an error if another xfer with the
453  * same sequence number is currently still registered as in-flight.
454  *
455  * Return: 0 on Success or -EBUSY if sequence number embedded in the xfer
456  *	   could not rbe mapped to a free slot in the xfer_alloc_table.
457  */
scmi_xfer_inflight_register(struct scmi_xfer * xfer,struct scmi_xfers_info * minfo)458 static int scmi_xfer_inflight_register(struct scmi_xfer *xfer,
459 				       struct scmi_xfers_info *minfo)
460 {
461 	int ret = 0;
462 	unsigned long flags;
463 
464 	spin_lock_irqsave(&minfo->xfer_lock, flags);
465 	if (!test_bit(xfer->hdr.seq, minfo->xfer_alloc_table))
466 		scmi_xfer_inflight_register_unlocked(xfer, minfo);
467 	else
468 		ret = -EBUSY;
469 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
470 
471 	return ret;
472 }
473 
474 /**
475  * scmi_xfer_raw_inflight_register  - An helper to register the given xfer as in
476  * flight on the TX channel, if possible.
477  *
478  * @handle: Pointer to SCMI entity handle
479  * @xfer: The xfer to register
480  *
481  * Return: 0 on Success, error otherwise
482  */
scmi_xfer_raw_inflight_register(const struct scmi_handle * handle,struct scmi_xfer * xfer)483 int scmi_xfer_raw_inflight_register(const struct scmi_handle *handle,
484 				    struct scmi_xfer *xfer)
485 {
486 	struct scmi_info *info = handle_to_scmi_info(handle);
487 
488 	return scmi_xfer_inflight_register(xfer, &info->tx_minfo);
489 }
490 
491 /**
492  * scmi_xfer_pending_set  - Pick a proper sequence number and mark the xfer
493  * as pending in-flight
494  *
495  * @xfer: The xfer to act upon
496  * @minfo: Pointer to Tx/Rx Message management info based on channel type
497  *
498  * Return: 0 on Success or error otherwise
499  */
scmi_xfer_pending_set(struct scmi_xfer * xfer,struct scmi_xfers_info * minfo)500 static inline int scmi_xfer_pending_set(struct scmi_xfer *xfer,
501 					struct scmi_xfers_info *minfo)
502 {
503 	int ret;
504 	unsigned long flags;
505 
506 	spin_lock_irqsave(&minfo->xfer_lock, flags);
507 	/* Set a new monotonic token as the xfer sequence number */
508 	ret = scmi_xfer_token_set(minfo, xfer);
509 	if (!ret)
510 		scmi_xfer_inflight_register_unlocked(xfer, minfo);
511 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
512 
513 	return ret;
514 }
515 
516 /**
517  * scmi_xfer_get() - Allocate one message
518  *
519  * @handle: Pointer to SCMI entity handle
520  * @minfo: Pointer to Tx/Rx Message management info based on channel type
521  *
522  * Helper function which is used by various message functions that are
523  * exposed to clients of this driver for allocating a message traffic event.
524  *
525  * Picks an xfer from the free list @free_xfers (if any available) and perform
526  * a basic initialization.
527  *
528  * Note that, at this point, still no sequence number is assigned to the
529  * allocated xfer, nor it is registered as a pending transaction.
530  *
531  * The successfully initialized xfer is refcounted.
532  *
533  * Context: Holds @xfer_lock while manipulating @free_xfers.
534  *
535  * Return: An initialized xfer if all went fine, else pointer error.
536  */
scmi_xfer_get(const struct scmi_handle * handle,struct scmi_xfers_info * minfo)537 static struct scmi_xfer *scmi_xfer_get(const struct scmi_handle *handle,
538 				       struct scmi_xfers_info *minfo)
539 {
540 	unsigned long flags;
541 	struct scmi_xfer *xfer;
542 
543 	spin_lock_irqsave(&minfo->xfer_lock, flags);
544 	if (hlist_empty(&minfo->free_xfers)) {
545 		spin_unlock_irqrestore(&minfo->xfer_lock, flags);
546 		return ERR_PTR(-ENOMEM);
547 	}
548 
549 	/* grab an xfer from the free_list */
550 	xfer = hlist_entry(minfo->free_xfers.first, struct scmi_xfer, node);
551 	hlist_del_init(&xfer->node);
552 
553 	/*
554 	 * Allocate transfer_id early so that can be used also as base for
555 	 * monotonic sequence number generation if needed.
556 	 */
557 	xfer->transfer_id = atomic_inc_return(&transfer_last_id);
558 
559 	refcount_set(&xfer->users, 1);
560 	atomic_set(&xfer->busy, SCMI_XFER_FREE);
561 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
562 
563 	return xfer;
564 }
565 
566 /**
567  * scmi_xfer_raw_get  - Helper to get a bare free xfer from the TX channel
568  *
569  * @handle: Pointer to SCMI entity handle
570  *
571  * Note that xfer is taken from the TX channel structures.
572  *
573  * Return: A valid xfer on Success, or an error-pointer otherwise
574  */
scmi_xfer_raw_get(const struct scmi_handle * handle)575 struct scmi_xfer *scmi_xfer_raw_get(const struct scmi_handle *handle)
576 {
577 	struct scmi_xfer *xfer;
578 	struct scmi_info *info = handle_to_scmi_info(handle);
579 
580 	xfer = scmi_xfer_get(handle, &info->tx_minfo);
581 	if (!IS_ERR(xfer))
582 		xfer->flags |= SCMI_XFER_FLAG_IS_RAW;
583 
584 	return xfer;
585 }
586 
587 /**
588  * scmi_xfer_raw_channel_get  - Helper to get a reference to the proper channel
589  * to use for a specific protocol_id Raw transaction.
590  *
591  * @handle: Pointer to SCMI entity handle
592  * @protocol_id: Identifier of the protocol
593  *
594  * Note that in a regular SCMI stack, usually, a protocol has to be defined in
595  * the DT to have an associated channel and be usable; but in Raw mode any
596  * protocol in range is allowed, re-using the Base channel, so as to enable
597  * fuzzing on any protocol without the need of a fully compiled DT.
598  *
599  * Return: A reference to the channel to use, or an ERR_PTR
600  */
601 struct scmi_chan_info *
scmi_xfer_raw_channel_get(const struct scmi_handle * handle,u8 protocol_id)602 scmi_xfer_raw_channel_get(const struct scmi_handle *handle, u8 protocol_id)
603 {
604 	struct scmi_chan_info *cinfo;
605 	struct scmi_info *info = handle_to_scmi_info(handle);
606 
607 	cinfo = idr_find(&info->tx_idr, protocol_id);
608 	if (!cinfo) {
609 		if (protocol_id == SCMI_PROTOCOL_BASE)
610 			return ERR_PTR(-EINVAL);
611 		/* Use Base channel for protocols not defined for DT */
612 		cinfo = idr_find(&info->tx_idr, SCMI_PROTOCOL_BASE);
613 		if (!cinfo)
614 			return ERR_PTR(-EINVAL);
615 		dev_warn_once(handle->dev,
616 			      "Using Base channel for protocol 0x%X\n",
617 			      protocol_id);
618 	}
619 
620 	return cinfo;
621 }
622 
623 /**
624  * __scmi_xfer_put() - Release a message
625  *
626  * @minfo: Pointer to Tx/Rx Message management info based on channel type
627  * @xfer: message that was reserved by scmi_xfer_get
628  *
629  * After refcount check, possibly release an xfer, clearing the token slot,
630  * removing xfer from @pending_xfers and putting it back into free_xfers.
631  *
632  * This holds a spinlock to maintain integrity of internal data structures.
633  */
634 static void
__scmi_xfer_put(struct scmi_xfers_info * minfo,struct scmi_xfer * xfer)635 __scmi_xfer_put(struct scmi_xfers_info *minfo, struct scmi_xfer *xfer)
636 {
637 	unsigned long flags;
638 
639 	spin_lock_irqsave(&minfo->xfer_lock, flags);
640 	if (refcount_dec_and_test(&xfer->users)) {
641 		if (xfer->pending) {
642 			scmi_xfer_token_clear(minfo, xfer);
643 			hash_del(&xfer->node);
644 			xfer->pending = false;
645 		}
646 		hlist_add_head(&xfer->node, &minfo->free_xfers);
647 	}
648 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
649 }
650 
651 /**
652  * scmi_xfer_raw_put  - Release an xfer that was taken by @scmi_xfer_raw_get
653  *
654  * @handle: Pointer to SCMI entity handle
655  * @xfer: A reference to the xfer to put
656  *
657  * Note that as with other xfer_put() handlers the xfer is really effectively
658  * released only if there are no more users on the system.
659  */
scmi_xfer_raw_put(const struct scmi_handle * handle,struct scmi_xfer * xfer)660 void scmi_xfer_raw_put(const struct scmi_handle *handle, struct scmi_xfer *xfer)
661 {
662 	struct scmi_info *info = handle_to_scmi_info(handle);
663 
664 	xfer->flags &= ~SCMI_XFER_FLAG_IS_RAW;
665 	xfer->flags &= ~SCMI_XFER_FLAG_CHAN_SET;
666 	return __scmi_xfer_put(&info->tx_minfo, xfer);
667 }
668 
669 /**
670  * scmi_xfer_lookup_unlocked  -  Helper to lookup an xfer_id
671  *
672  * @minfo: Pointer to Tx/Rx Message management info based on channel type
673  * @xfer_id: Token ID to lookup in @pending_xfers
674  *
675  * Refcounting is untouched.
676  *
677  * Context: Assumes to be called with @xfer_lock already acquired.
678  *
679  * Return: A valid xfer on Success or error otherwise
680  */
681 static struct scmi_xfer *
scmi_xfer_lookup_unlocked(struct scmi_xfers_info * minfo,u16 xfer_id)682 scmi_xfer_lookup_unlocked(struct scmi_xfers_info *minfo, u16 xfer_id)
683 {
684 	struct scmi_xfer *xfer = NULL;
685 
686 	if (test_bit(xfer_id, minfo->xfer_alloc_table))
687 		xfer = XFER_FIND(minfo->pending_xfers, xfer_id);
688 
689 	return xfer ?: ERR_PTR(-EINVAL);
690 }
691 
692 /**
693  * scmi_bad_message_trace  - A helper to trace weird messages
694  *
695  * @cinfo: A reference to the channel descriptor on which the message was
696  *	   received
697  * @msg_hdr: Message header to track
698  * @err: A specific error code used as a status value in traces.
699  *
700  * This helper can be used to trace any kind of weird, incomplete, unexpected,
701  * timed-out message that arrives and as such, can be traced only referring to
702  * the header content, since the payload is missing/unreliable.
703  */
scmi_bad_message_trace(struct scmi_chan_info * cinfo,u32 msg_hdr,enum scmi_bad_msg err)704 void scmi_bad_message_trace(struct scmi_chan_info *cinfo, u32 msg_hdr,
705 			    enum scmi_bad_msg err)
706 {
707 	char *tag;
708 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
709 
710 	switch (MSG_XTRACT_TYPE(msg_hdr)) {
711 	case MSG_TYPE_COMMAND:
712 		tag = "!RESP";
713 		break;
714 	case MSG_TYPE_DELAYED_RESP:
715 		tag = "!DLYD";
716 		break;
717 	case MSG_TYPE_NOTIFICATION:
718 		tag = "!NOTI";
719 		break;
720 	default:
721 		tag = "!UNKN";
722 		break;
723 	}
724 
725 	trace_scmi_msg_dump(info->id, cinfo->id,
726 			    MSG_XTRACT_PROT_ID(msg_hdr),
727 			    MSG_XTRACT_ID(msg_hdr), tag,
728 			    MSG_XTRACT_TOKEN(msg_hdr), err, NULL, 0);
729 }
730 
731 /**
732  * scmi_msg_response_validate  - Validate message type against state of related
733  * xfer
734  *
735  * @cinfo: A reference to the channel descriptor.
736  * @msg_type: Message type to check
737  * @xfer: A reference to the xfer to validate against @msg_type
738  *
739  * This function checks if @msg_type is congruent with the current state of
740  * a pending @xfer; if an asynchronous delayed response is received before the
741  * related synchronous response (Out-of-Order Delayed Response) the missing
742  * synchronous response is assumed to be OK and completed, carrying on with the
743  * Delayed Response: this is done to address the case in which the underlying
744  * SCMI transport can deliver such out-of-order responses.
745  *
746  * Context: Assumes to be called with xfer->lock already acquired.
747  *
748  * Return: 0 on Success, error otherwise
749  */
scmi_msg_response_validate(struct scmi_chan_info * cinfo,u8 msg_type,struct scmi_xfer * xfer)750 static inline int scmi_msg_response_validate(struct scmi_chan_info *cinfo,
751 					     u8 msg_type,
752 					     struct scmi_xfer *xfer)
753 {
754 	/*
755 	 * Even if a response was indeed expected on this slot at this point,
756 	 * a buggy platform could wrongly reply feeding us an unexpected
757 	 * delayed response we're not prepared to handle: bail-out safely
758 	 * blaming firmware.
759 	 */
760 	if (msg_type == MSG_TYPE_DELAYED_RESP && !xfer->async_done) {
761 		dev_err(cinfo->dev,
762 			"Delayed Response for %d not expected! Buggy F/W ?\n",
763 			xfer->hdr.seq);
764 		return -EINVAL;
765 	}
766 
767 	switch (xfer->state) {
768 	case SCMI_XFER_SENT_OK:
769 		if (msg_type == MSG_TYPE_DELAYED_RESP) {
770 			/*
771 			 * Delayed Response expected but delivered earlier.
772 			 * Assume message RESPONSE was OK and skip state.
773 			 */
774 			xfer->hdr.status = SCMI_SUCCESS;
775 			xfer->state = SCMI_XFER_RESP_OK;
776 			complete(&xfer->done);
777 			dev_warn(cinfo->dev,
778 				 "Received valid OoO Delayed Response for %d\n",
779 				 xfer->hdr.seq);
780 		}
781 		break;
782 	case SCMI_XFER_RESP_OK:
783 		if (msg_type != MSG_TYPE_DELAYED_RESP)
784 			return -EINVAL;
785 		break;
786 	case SCMI_XFER_DRESP_OK:
787 		/* No further message expected once in SCMI_XFER_DRESP_OK */
788 		return -EINVAL;
789 	}
790 
791 	return 0;
792 }
793 
794 /**
795  * scmi_xfer_state_update  - Update xfer state
796  *
797  * @xfer: A reference to the xfer to update
798  * @msg_type: Type of message being processed.
799  *
800  * Note that this message is assumed to have been already successfully validated
801  * by @scmi_msg_response_validate(), so here we just update the state.
802  *
803  * Context: Assumes to be called on an xfer exclusively acquired using the
804  *	    busy flag.
805  */
scmi_xfer_state_update(struct scmi_xfer * xfer,u8 msg_type)806 static inline void scmi_xfer_state_update(struct scmi_xfer *xfer, u8 msg_type)
807 {
808 	xfer->hdr.type = msg_type;
809 
810 	/* Unknown command types were already discarded earlier */
811 	if (xfer->hdr.type == MSG_TYPE_COMMAND)
812 		xfer->state = SCMI_XFER_RESP_OK;
813 	else
814 		xfer->state = SCMI_XFER_DRESP_OK;
815 }
816 
scmi_xfer_acquired(struct scmi_xfer * xfer)817 static bool scmi_xfer_acquired(struct scmi_xfer *xfer)
818 {
819 	int ret;
820 
821 	ret = atomic_cmpxchg(&xfer->busy, SCMI_XFER_FREE, SCMI_XFER_BUSY);
822 
823 	return ret == SCMI_XFER_FREE;
824 }
825 
826 /**
827  * scmi_xfer_command_acquire  -  Helper to lookup and acquire a command xfer
828  *
829  * @cinfo: A reference to the channel descriptor.
830  * @msg_hdr: A message header to use as lookup key
831  *
832  * When a valid xfer is found for the sequence number embedded in the provided
833  * msg_hdr, reference counting is properly updated and exclusive access to this
834  * xfer is granted till released with @scmi_xfer_command_release.
835  *
836  * Return: A valid @xfer on Success or error otherwise.
837  */
838 static inline struct scmi_xfer *
scmi_xfer_command_acquire(struct scmi_chan_info * cinfo,u32 msg_hdr)839 scmi_xfer_command_acquire(struct scmi_chan_info *cinfo, u32 msg_hdr)
840 {
841 	int ret;
842 	unsigned long flags;
843 	struct scmi_xfer *xfer;
844 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
845 	struct scmi_xfers_info *minfo = &info->tx_minfo;
846 	u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
847 	u16 xfer_id = MSG_XTRACT_TOKEN(msg_hdr);
848 
849 	/* Are we even expecting this? */
850 	spin_lock_irqsave(&minfo->xfer_lock, flags);
851 	xfer = scmi_xfer_lookup_unlocked(minfo, xfer_id);
852 	if (IS_ERR(xfer)) {
853 		dev_err(cinfo->dev,
854 			"Message for %d type %d is not expected!\n",
855 			xfer_id, msg_type);
856 		spin_unlock_irqrestore(&minfo->xfer_lock, flags);
857 
858 		scmi_bad_message_trace(cinfo, msg_hdr, MSG_UNEXPECTED);
859 		scmi_inc_count(info->dbg->counters, ERR_MSG_UNEXPECTED);
860 
861 		return xfer;
862 	}
863 	refcount_inc(&xfer->users);
864 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
865 
866 	spin_lock_irqsave(&xfer->lock, flags);
867 	ret = scmi_msg_response_validate(cinfo, msg_type, xfer);
868 	/*
869 	 * If a pending xfer was found which was also in a congruent state with
870 	 * the received message, acquire exclusive access to it setting the busy
871 	 * flag.
872 	 * Spins only on the rare limit condition of concurrent reception of
873 	 * RESP and DRESP for the same xfer.
874 	 */
875 	if (!ret) {
876 		spin_until_cond(scmi_xfer_acquired(xfer));
877 		scmi_xfer_state_update(xfer, msg_type);
878 	}
879 	spin_unlock_irqrestore(&xfer->lock, flags);
880 
881 	if (ret) {
882 		dev_err(cinfo->dev,
883 			"Invalid message type:%d for %d - HDR:0x%X  state:%d\n",
884 			msg_type, xfer_id, msg_hdr, xfer->state);
885 
886 		scmi_bad_message_trace(cinfo, msg_hdr, MSG_INVALID);
887 		scmi_inc_count(info->dbg->counters, ERR_MSG_INVALID);
888 
889 
890 		/* On error the refcount incremented above has to be dropped */
891 		__scmi_xfer_put(minfo, xfer);
892 		xfer = ERR_PTR(-EINVAL);
893 	}
894 
895 	return xfer;
896 }
897 
scmi_xfer_command_release(struct scmi_info * info,struct scmi_xfer * xfer)898 static inline void scmi_xfer_command_release(struct scmi_info *info,
899 					     struct scmi_xfer *xfer)
900 {
901 	atomic_set(&xfer->busy, SCMI_XFER_FREE);
902 	__scmi_xfer_put(&info->tx_minfo, xfer);
903 }
904 
scmi_clear_channel(struct scmi_info * info,struct scmi_chan_info * cinfo)905 static inline void scmi_clear_channel(struct scmi_info *info,
906 				      struct scmi_chan_info *cinfo)
907 {
908 	if (!cinfo->is_p2a) {
909 		dev_warn(cinfo->dev, "Invalid clear on A2P channel !\n");
910 		return;
911 	}
912 
913 	if (info->desc->ops->clear_channel)
914 		info->desc->ops->clear_channel(cinfo);
915 }
916 
scmi_handle_notification(struct scmi_chan_info * cinfo,u32 msg_hdr,void * priv)917 static void scmi_handle_notification(struct scmi_chan_info *cinfo,
918 				     u32 msg_hdr, void *priv)
919 {
920 	struct scmi_xfer *xfer;
921 	struct device *dev = cinfo->dev;
922 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
923 	struct scmi_xfers_info *minfo = &info->rx_minfo;
924 	ktime_t ts;
925 
926 	ts = ktime_get_boottime();
927 	xfer = scmi_xfer_get(cinfo->handle, minfo);
928 	if (IS_ERR(xfer)) {
929 		dev_err(dev, "failed to get free message slot (%ld)\n",
930 			PTR_ERR(xfer));
931 
932 		scmi_bad_message_trace(cinfo, msg_hdr, MSG_NOMEM);
933 		scmi_inc_count(info->dbg->counters, ERR_MSG_NOMEM);
934 
935 		scmi_clear_channel(info, cinfo);
936 		return;
937 	}
938 
939 	unpack_scmi_header(msg_hdr, &xfer->hdr);
940 	if (priv)
941 		/* Ensure order between xfer->priv store and following ops */
942 		smp_store_mb(xfer->priv, priv);
943 	info->desc->ops->fetch_notification(cinfo, info->desc->max_msg_size,
944 					    xfer);
945 
946 	trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
947 			    xfer->hdr.id, "NOTI", xfer->hdr.seq,
948 			    xfer->hdr.status, xfer->rx.buf, xfer->rx.len);
949 	scmi_inc_count(info->dbg->counters, NOTIFICATION_OK);
950 
951 	scmi_notify(cinfo->handle, xfer->hdr.protocol_id,
952 		    xfer->hdr.id, xfer->rx.buf, xfer->rx.len, ts);
953 
954 	trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
955 			   xfer->hdr.protocol_id, xfer->hdr.seq,
956 			   MSG_TYPE_NOTIFICATION);
957 
958 	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
959 		xfer->hdr.seq = MSG_XTRACT_TOKEN(msg_hdr);
960 		scmi_raw_message_report(info->raw, xfer, SCMI_RAW_NOTIF_QUEUE,
961 					cinfo->id);
962 	}
963 
964 	__scmi_xfer_put(minfo, xfer);
965 
966 	scmi_clear_channel(info, cinfo);
967 }
968 
scmi_handle_response(struct scmi_chan_info * cinfo,u32 msg_hdr,void * priv)969 static void scmi_handle_response(struct scmi_chan_info *cinfo,
970 				 u32 msg_hdr, void *priv)
971 {
972 	struct scmi_xfer *xfer;
973 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
974 
975 	xfer = scmi_xfer_command_acquire(cinfo, msg_hdr);
976 	if (IS_ERR(xfer)) {
977 		if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
978 			scmi_raw_error_report(info->raw, cinfo, msg_hdr, priv);
979 
980 		if (MSG_XTRACT_TYPE(msg_hdr) == MSG_TYPE_DELAYED_RESP)
981 			scmi_clear_channel(info, cinfo);
982 		return;
983 	}
984 
985 	/* rx.len could be shrunk in the sync do_xfer, so reset to maxsz */
986 	if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP)
987 		xfer->rx.len = info->desc->max_msg_size;
988 
989 	if (priv)
990 		/* Ensure order between xfer->priv store and following ops */
991 		smp_store_mb(xfer->priv, priv);
992 	info->desc->ops->fetch_response(cinfo, xfer);
993 
994 	trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
995 			    xfer->hdr.id,
996 			    xfer->hdr.type == MSG_TYPE_DELAYED_RESP ?
997 			    (!SCMI_XFER_IS_RAW(xfer) ? "DLYD" : "dlyd") :
998 			    (!SCMI_XFER_IS_RAW(xfer) ? "RESP" : "resp"),
999 			    xfer->hdr.seq, xfer->hdr.status,
1000 			    xfer->rx.buf, xfer->rx.len);
1001 
1002 	trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
1003 			   xfer->hdr.protocol_id, xfer->hdr.seq,
1004 			   xfer->hdr.type);
1005 
1006 	if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) {
1007 		scmi_clear_channel(info, cinfo);
1008 		complete(xfer->async_done);
1009 		scmi_inc_count(info->dbg->counters, DELAYED_RESPONSE_OK);
1010 	} else {
1011 		complete(&xfer->done);
1012 		scmi_inc_count(info->dbg->counters, RESPONSE_OK);
1013 	}
1014 
1015 	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
1016 		/*
1017 		 * When in polling mode avoid to queue the Raw xfer on the IRQ
1018 		 * RX path since it will be already queued at the end of the TX
1019 		 * poll loop.
1020 		 */
1021 		if (!xfer->hdr.poll_completion)
1022 			scmi_raw_message_report(info->raw, xfer,
1023 						SCMI_RAW_REPLY_QUEUE,
1024 						cinfo->id);
1025 	}
1026 
1027 	scmi_xfer_command_release(info, xfer);
1028 }
1029 
1030 /**
1031  * scmi_rx_callback() - callback for receiving messages
1032  *
1033  * @cinfo: SCMI channel info
1034  * @msg_hdr: Message header
1035  * @priv: Transport specific private data.
1036  *
1037  * Processes one received message to appropriate transfer information and
1038  * signals completion of the transfer.
1039  *
1040  * NOTE: This function will be invoked in IRQ context, hence should be
1041  * as optimal as possible.
1042  */
scmi_rx_callback(struct scmi_chan_info * cinfo,u32 msg_hdr,void * priv)1043 void scmi_rx_callback(struct scmi_chan_info *cinfo, u32 msg_hdr, void *priv)
1044 {
1045 	u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
1046 
1047 	switch (msg_type) {
1048 	case MSG_TYPE_NOTIFICATION:
1049 		scmi_handle_notification(cinfo, msg_hdr, priv);
1050 		break;
1051 	case MSG_TYPE_COMMAND:
1052 	case MSG_TYPE_DELAYED_RESP:
1053 		scmi_handle_response(cinfo, msg_hdr, priv);
1054 		break;
1055 	default:
1056 		WARN_ONCE(1, "received unknown msg_type:%d\n", msg_type);
1057 		scmi_bad_message_trace(cinfo, msg_hdr, MSG_UNKNOWN);
1058 		break;
1059 	}
1060 }
1061 
1062 /**
1063  * xfer_put() - Release a transmit message
1064  *
1065  * @ph: Pointer to SCMI protocol handle
1066  * @xfer: message that was reserved by xfer_get_init
1067  */
xfer_put(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)1068 static void xfer_put(const struct scmi_protocol_handle *ph,
1069 		     struct scmi_xfer *xfer)
1070 {
1071 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1072 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1073 
1074 	__scmi_xfer_put(&info->tx_minfo, xfer);
1075 }
1076 
scmi_xfer_done_no_timeout(struct scmi_chan_info * cinfo,struct scmi_xfer * xfer,ktime_t stop,bool * ooo)1077 static bool scmi_xfer_done_no_timeout(struct scmi_chan_info *cinfo,
1078 				      struct scmi_xfer *xfer, ktime_t stop,
1079 				      bool *ooo)
1080 {
1081 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1082 
1083 	/*
1084 	 * Poll also on xfer->done so that polling can be forcibly terminated
1085 	 * in case of out-of-order receptions of delayed responses
1086 	 */
1087 	return info->desc->ops->poll_done(cinfo, xfer) ||
1088 	       (*ooo = try_wait_for_completion(&xfer->done)) ||
1089 	       ktime_after(ktime_get(), stop);
1090 }
1091 
scmi_wait_for_reply(struct device * dev,const struct scmi_desc * desc,struct scmi_chan_info * cinfo,struct scmi_xfer * xfer,unsigned int timeout_ms)1092 static int scmi_wait_for_reply(struct device *dev, const struct scmi_desc *desc,
1093 			       struct scmi_chan_info *cinfo,
1094 			       struct scmi_xfer *xfer, unsigned int timeout_ms)
1095 {
1096 	int ret = 0;
1097 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1098 
1099 	if (xfer->hdr.poll_completion) {
1100 		/*
1101 		 * Real polling is needed only if transport has NOT declared
1102 		 * itself to support synchronous commands replies.
1103 		 */
1104 		if (!desc->sync_cmds_completed_on_ret) {
1105 			bool ooo = false;
1106 
1107 			/*
1108 			 * Poll on xfer using transport provided .poll_done();
1109 			 * assumes no completion interrupt was available.
1110 			 */
1111 			ktime_t stop = ktime_add_ms(ktime_get(), timeout_ms);
1112 
1113 			spin_until_cond(scmi_xfer_done_no_timeout(cinfo, xfer,
1114 								  stop, &ooo));
1115 			if (!ooo && !info->desc->ops->poll_done(cinfo, xfer)) {
1116 				dev_err(dev,
1117 					"timed out in resp(caller: %pS) - polling\n",
1118 					(void *)_RET_IP_);
1119 				ret = -ETIMEDOUT;
1120 				scmi_inc_count(info->dbg->counters, XFERS_RESPONSE_POLLED_TIMEOUT);
1121 			}
1122 		}
1123 
1124 		if (!ret) {
1125 			unsigned long flags;
1126 
1127 			/*
1128 			 * Do not fetch_response if an out-of-order delayed
1129 			 * response is being processed.
1130 			 */
1131 			spin_lock_irqsave(&xfer->lock, flags);
1132 			if (xfer->state == SCMI_XFER_SENT_OK) {
1133 				desc->ops->fetch_response(cinfo, xfer);
1134 				xfer->state = SCMI_XFER_RESP_OK;
1135 			}
1136 			spin_unlock_irqrestore(&xfer->lock, flags);
1137 
1138 			/* Trace polled replies. */
1139 			trace_scmi_msg_dump(info->id, cinfo->id,
1140 					    xfer->hdr.protocol_id, xfer->hdr.id,
1141 					    !SCMI_XFER_IS_RAW(xfer) ?
1142 					    "RESP" : "resp",
1143 					    xfer->hdr.seq, xfer->hdr.status,
1144 					    xfer->rx.buf, xfer->rx.len);
1145 			scmi_inc_count(info->dbg->counters, RESPONSE_POLLED_OK);
1146 
1147 			if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
1148 				struct scmi_info *info =
1149 					handle_to_scmi_info(cinfo->handle);
1150 
1151 				scmi_raw_message_report(info->raw, xfer,
1152 							SCMI_RAW_REPLY_QUEUE,
1153 							cinfo->id);
1154 			}
1155 		}
1156 	} else {
1157 		/* And we wait for the response. */
1158 		if (!wait_for_completion_timeout(&xfer->done,
1159 						 msecs_to_jiffies(timeout_ms))) {
1160 			dev_err(dev, "timed out in resp(caller: %pS)\n",
1161 				(void *)_RET_IP_);
1162 			ret = -ETIMEDOUT;
1163 			scmi_inc_count(info->dbg->counters, XFERS_RESPONSE_TIMEOUT);
1164 		}
1165 	}
1166 
1167 	return ret;
1168 }
1169 
1170 /**
1171  * scmi_wait_for_message_response  - An helper to group all the possible ways of
1172  * waiting for a synchronous message response.
1173  *
1174  * @cinfo: SCMI channel info
1175  * @xfer: Reference to the transfer being waited for.
1176  *
1177  * Chooses waiting strategy (sleep-waiting vs busy-waiting) depending on
1178  * configuration flags like xfer->hdr.poll_completion.
1179  *
1180  * Return: 0 on Success, error otherwise.
1181  */
scmi_wait_for_message_response(struct scmi_chan_info * cinfo,struct scmi_xfer * xfer)1182 static int scmi_wait_for_message_response(struct scmi_chan_info *cinfo,
1183 					  struct scmi_xfer *xfer)
1184 {
1185 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1186 	struct device *dev = info->dev;
1187 
1188 	trace_scmi_xfer_response_wait(xfer->transfer_id, xfer->hdr.id,
1189 				      xfer->hdr.protocol_id, xfer->hdr.seq,
1190 				      info->desc->max_rx_timeout_ms,
1191 				      xfer->hdr.poll_completion);
1192 
1193 	return scmi_wait_for_reply(dev, info->desc, cinfo, xfer,
1194 				   info->desc->max_rx_timeout_ms);
1195 }
1196 
1197 /**
1198  * scmi_xfer_raw_wait_for_message_response  - An helper to wait for a message
1199  * reply to an xfer raw request on a specific channel for the required timeout.
1200  *
1201  * @cinfo: SCMI channel info
1202  * @xfer: Reference to the transfer being waited for.
1203  * @timeout_ms: The maximum timeout in milliseconds
1204  *
1205  * Return: 0 on Success, error otherwise.
1206  */
scmi_xfer_raw_wait_for_message_response(struct scmi_chan_info * cinfo,struct scmi_xfer * xfer,unsigned int timeout_ms)1207 int scmi_xfer_raw_wait_for_message_response(struct scmi_chan_info *cinfo,
1208 					    struct scmi_xfer *xfer,
1209 					    unsigned int timeout_ms)
1210 {
1211 	int ret;
1212 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
1213 	struct device *dev = info->dev;
1214 
1215 	ret = scmi_wait_for_reply(dev, info->desc, cinfo, xfer, timeout_ms);
1216 	if (ret)
1217 		dev_dbg(dev, "timed out in RAW response - HDR:%08X\n",
1218 			pack_scmi_header(&xfer->hdr));
1219 
1220 	return ret;
1221 }
1222 
1223 /**
1224  * do_xfer() - Do one transfer
1225  *
1226  * @ph: Pointer to SCMI protocol handle
1227  * @xfer: Transfer to initiate and wait for response
1228  *
1229  * Return: -ETIMEDOUT in case of no response, if transmit error,
1230  *	return corresponding error, else if all goes well,
1231  *	return 0.
1232  */
do_xfer(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)1233 static int do_xfer(const struct scmi_protocol_handle *ph,
1234 		   struct scmi_xfer *xfer)
1235 {
1236 	int ret;
1237 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1238 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1239 	struct device *dev = info->dev;
1240 	struct scmi_chan_info *cinfo;
1241 
1242 	/* Check for polling request on custom command xfers at first */
1243 	if (xfer->hdr.poll_completion &&
1244 	    !is_transport_polling_capable(info->desc)) {
1245 		dev_warn_once(dev,
1246 			      "Polling mode is not supported by transport.\n");
1247 		scmi_inc_count(info->dbg->counters, SENT_FAIL_POLLING_UNSUPPORTED);
1248 		return -EINVAL;
1249 	}
1250 
1251 	cinfo = idr_find(&info->tx_idr, pi->proto->id);
1252 	if (unlikely(!cinfo)) {
1253 		scmi_inc_count(info->dbg->counters, SENT_FAIL_CHANNEL_NOT_FOUND);
1254 		return -EINVAL;
1255 	}
1256 	/* True ONLY if also supported by transport. */
1257 	if (is_polling_enabled(cinfo, info->desc))
1258 		xfer->hdr.poll_completion = true;
1259 
1260 	/*
1261 	 * Initialise protocol id now from protocol handle to avoid it being
1262 	 * overridden by mistake (or malice) by the protocol code mangling with
1263 	 * the scmi_xfer structure prior to this.
1264 	 */
1265 	xfer->hdr.protocol_id = pi->proto->id;
1266 	reinit_completion(&xfer->done);
1267 
1268 	trace_scmi_xfer_begin(xfer->transfer_id, xfer->hdr.id,
1269 			      xfer->hdr.protocol_id, xfer->hdr.seq,
1270 			      xfer->hdr.poll_completion);
1271 
1272 	/* Clear any stale status */
1273 	xfer->hdr.status = SCMI_SUCCESS;
1274 	xfer->state = SCMI_XFER_SENT_OK;
1275 	/*
1276 	 * Even though spinlocking is not needed here since no race is possible
1277 	 * on xfer->state due to the monotonically increasing tokens allocation,
1278 	 * we must anyway ensure xfer->state initialization is not re-ordered
1279 	 * after the .send_message() to be sure that on the RX path an early
1280 	 * ISR calling scmi_rx_callback() cannot see an old stale xfer->state.
1281 	 */
1282 	smp_mb();
1283 
1284 	ret = info->desc->ops->send_message(cinfo, xfer);
1285 	if (ret < 0) {
1286 		dev_dbg(dev, "Failed to send message %d\n", ret);
1287 		scmi_inc_count(info->dbg->counters, SENT_FAIL);
1288 		return ret;
1289 	}
1290 
1291 	trace_scmi_msg_dump(info->id, cinfo->id, xfer->hdr.protocol_id,
1292 			    xfer->hdr.id, "CMND", xfer->hdr.seq,
1293 			    xfer->hdr.status, xfer->tx.buf, xfer->tx.len);
1294 	scmi_inc_count(info->dbg->counters, SENT_OK);
1295 
1296 	ret = scmi_wait_for_message_response(cinfo, xfer);
1297 	if (!ret && xfer->hdr.status) {
1298 		ret = scmi_to_linux_errno(xfer->hdr.status);
1299 		scmi_inc_count(info->dbg->counters, ERR_PROTOCOL);
1300 	}
1301 
1302 	if (info->desc->ops->mark_txdone)
1303 		info->desc->ops->mark_txdone(cinfo, ret, xfer);
1304 
1305 	trace_scmi_xfer_end(xfer->transfer_id, xfer->hdr.id,
1306 			    xfer->hdr.protocol_id, xfer->hdr.seq, ret);
1307 
1308 	return ret;
1309 }
1310 
reset_rx_to_maxsz(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)1311 static void reset_rx_to_maxsz(const struct scmi_protocol_handle *ph,
1312 			      struct scmi_xfer *xfer)
1313 {
1314 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1315 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1316 
1317 	xfer->rx.len = info->desc->max_msg_size;
1318 }
1319 
1320 /**
1321  * do_xfer_with_response() - Do one transfer and wait until the delayed
1322  *	response is received
1323  *
1324  * @ph: Pointer to SCMI protocol handle
1325  * @xfer: Transfer to initiate and wait for response
1326  *
1327  * Using asynchronous commands in atomic/polling mode should be avoided since
1328  * it could cause long busy-waiting here, so ignore polling for the delayed
1329  * response and WARN if it was requested for this command transaction since
1330  * upper layers should refrain from issuing such kind of requests.
1331  *
1332  * The only other option would have been to refrain from using any asynchronous
1333  * command even if made available, when an atomic transport is detected, and
1334  * instead forcibly use the synchronous version (thing that can be easily
1335  * attained at the protocol layer), but this would also have led to longer
1336  * stalls of the channel for synchronous commands and possibly timeouts.
1337  * (in other words there is usually a good reason if a platform provides an
1338  *  asynchronous version of a command and we should prefer to use it...just not
1339  *  when using atomic/polling mode)
1340  *
1341  * Return: -ETIMEDOUT in case of no delayed response, if transmit error,
1342  *	return corresponding error, else if all goes well, return 0.
1343  */
do_xfer_with_response(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)1344 static int do_xfer_with_response(const struct scmi_protocol_handle *ph,
1345 				 struct scmi_xfer *xfer)
1346 {
1347 	int ret, timeout = msecs_to_jiffies(SCMI_MAX_RESPONSE_TIMEOUT);
1348 	DECLARE_COMPLETION_ONSTACK(async_response);
1349 
1350 	xfer->async_done = &async_response;
1351 
1352 	/*
1353 	 * Delayed responses should not be polled, so an async command should
1354 	 * not have been used when requiring an atomic/poll context; WARN and
1355 	 * perform instead a sleeping wait.
1356 	 * (Note Async + IgnoreDelayedResponses are sent via do_xfer)
1357 	 */
1358 	WARN_ON_ONCE(xfer->hdr.poll_completion);
1359 
1360 	ret = do_xfer(ph, xfer);
1361 	if (!ret) {
1362 		if (!wait_for_completion_timeout(xfer->async_done, timeout)) {
1363 			dev_err(ph->dev,
1364 				"timed out in delayed resp(caller: %pS)\n",
1365 				(void *)_RET_IP_);
1366 			ret = -ETIMEDOUT;
1367 		} else if (xfer->hdr.status) {
1368 			ret = scmi_to_linux_errno(xfer->hdr.status);
1369 		}
1370 	}
1371 
1372 	xfer->async_done = NULL;
1373 	return ret;
1374 }
1375 
1376 /**
1377  * xfer_get_init() - Allocate and initialise one message for transmit
1378  *
1379  * @ph: Pointer to SCMI protocol handle
1380  * @msg_id: Message identifier
1381  * @tx_size: transmit message size
1382  * @rx_size: receive message size
1383  * @p: pointer to the allocated and initialised message
1384  *
1385  * This function allocates the message using @scmi_xfer_get and
1386  * initialise the header.
1387  *
1388  * Return: 0 if all went fine with @p pointing to message, else
1389  *	corresponding error.
1390  */
xfer_get_init(const struct scmi_protocol_handle * ph,u8 msg_id,size_t tx_size,size_t rx_size,struct scmi_xfer ** p)1391 static int xfer_get_init(const struct scmi_protocol_handle *ph,
1392 			 u8 msg_id, size_t tx_size, size_t rx_size,
1393 			 struct scmi_xfer **p)
1394 {
1395 	int ret;
1396 	struct scmi_xfer *xfer;
1397 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1398 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1399 	struct scmi_xfers_info *minfo = &info->tx_minfo;
1400 	struct device *dev = info->dev;
1401 
1402 	/* Ensure we have sane transfer sizes */
1403 	if (rx_size > info->desc->max_msg_size ||
1404 	    tx_size > info->desc->max_msg_size)
1405 		return -ERANGE;
1406 
1407 	xfer = scmi_xfer_get(pi->handle, minfo);
1408 	if (IS_ERR(xfer)) {
1409 		ret = PTR_ERR(xfer);
1410 		dev_err(dev, "failed to get free message slot(%d)\n", ret);
1411 		return ret;
1412 	}
1413 
1414 	/* Pick a sequence number and register this xfer as in-flight */
1415 	ret = scmi_xfer_pending_set(xfer, minfo);
1416 	if (ret) {
1417 		dev_err(pi->handle->dev,
1418 			"Failed to get monotonic token %d\n", ret);
1419 		__scmi_xfer_put(minfo, xfer);
1420 		return ret;
1421 	}
1422 
1423 	xfer->tx.len = tx_size;
1424 	xfer->rx.len = rx_size ? : info->desc->max_msg_size;
1425 	xfer->hdr.type = MSG_TYPE_COMMAND;
1426 	xfer->hdr.id = msg_id;
1427 	xfer->hdr.poll_completion = false;
1428 
1429 	*p = xfer;
1430 
1431 	return 0;
1432 }
1433 
1434 /**
1435  * version_get() - command to get the revision of the SCMI entity
1436  *
1437  * @ph: Pointer to SCMI protocol handle
1438  * @version: Holds returned version of protocol.
1439  *
1440  * Updates the SCMI information in the internal data structure.
1441  *
1442  * Return: 0 if all went fine, else return appropriate error.
1443  */
version_get(const struct scmi_protocol_handle * ph,u32 * version)1444 static int version_get(const struct scmi_protocol_handle *ph, u32 *version)
1445 {
1446 	int ret;
1447 	__le32 *rev_info;
1448 	struct scmi_xfer *t;
1449 
1450 	ret = xfer_get_init(ph, PROTOCOL_VERSION, 0, sizeof(*version), &t);
1451 	if (ret)
1452 		return ret;
1453 
1454 	ret = do_xfer(ph, t);
1455 	if (!ret) {
1456 		rev_info = t->rx.buf;
1457 		*version = le32_to_cpu(*rev_info);
1458 	}
1459 
1460 	xfer_put(ph, t);
1461 	return ret;
1462 }
1463 
1464 /**
1465  * scmi_set_protocol_priv  - Set protocol specific data at init time
1466  *
1467  * @ph: A reference to the protocol handle.
1468  * @priv: The private data to set.
1469  *
1470  * Return: 0 on Success
1471  */
scmi_set_protocol_priv(const struct scmi_protocol_handle * ph,void * priv)1472 static int scmi_set_protocol_priv(const struct scmi_protocol_handle *ph,
1473 				  void *priv)
1474 {
1475 	struct scmi_protocol_instance *pi = ph_to_pi(ph);
1476 
1477 	pi->priv = priv;
1478 
1479 	return 0;
1480 }
1481 
1482 /**
1483  * scmi_get_protocol_priv  - Set protocol specific data at init time
1484  *
1485  * @ph: A reference to the protocol handle.
1486  *
1487  * Return: Protocol private data if any was set.
1488  */
scmi_get_protocol_priv(const struct scmi_protocol_handle * ph)1489 static void *scmi_get_protocol_priv(const struct scmi_protocol_handle *ph)
1490 {
1491 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1492 
1493 	return pi->priv;
1494 }
1495 
1496 static const struct scmi_xfer_ops xfer_ops = {
1497 	.version_get = version_get,
1498 	.xfer_get_init = xfer_get_init,
1499 	.reset_rx_to_maxsz = reset_rx_to_maxsz,
1500 	.do_xfer = do_xfer,
1501 	.do_xfer_with_response = do_xfer_with_response,
1502 	.xfer_put = xfer_put,
1503 };
1504 
1505 struct scmi_msg_resp_domain_name_get {
1506 	__le32 flags;
1507 	u8 name[SCMI_MAX_STR_SIZE];
1508 };
1509 
1510 /**
1511  * scmi_common_extended_name_get  - Common helper to get extended resources name
1512  * @ph: A protocol handle reference.
1513  * @cmd_id: The specific command ID to use.
1514  * @res_id: The specific resource ID to use.
1515  * @name: A pointer to the preallocated area where the retrieved name will be
1516  *	  stored as a NULL terminated string.
1517  * @len: The len in bytes of the @name char array.
1518  *
1519  * Return: 0 on Succcess
1520  */
scmi_common_extended_name_get(const struct scmi_protocol_handle * ph,u8 cmd_id,u32 res_id,char * name,size_t len)1521 static int scmi_common_extended_name_get(const struct scmi_protocol_handle *ph,
1522 					 u8 cmd_id, u32 res_id, char *name,
1523 					 size_t len)
1524 {
1525 	int ret;
1526 	struct scmi_xfer *t;
1527 	struct scmi_msg_resp_domain_name_get *resp;
1528 
1529 	ret = ph->xops->xfer_get_init(ph, cmd_id, sizeof(res_id),
1530 				      sizeof(*resp), &t);
1531 	if (ret)
1532 		goto out;
1533 
1534 	put_unaligned_le32(res_id, t->tx.buf);
1535 	resp = t->rx.buf;
1536 
1537 	ret = ph->xops->do_xfer(ph, t);
1538 	if (!ret)
1539 		strscpy(name, resp->name, len);
1540 
1541 	ph->xops->xfer_put(ph, t);
1542 out:
1543 	if (ret)
1544 		dev_warn(ph->dev,
1545 			 "Failed to get extended name - id:%u (ret:%d). Using %s\n",
1546 			 res_id, ret, name);
1547 	return ret;
1548 }
1549 
1550 /**
1551  * scmi_protocol_msg_check  - Check protocol message attributes
1552  *
1553  * @ph: A reference to the protocol handle.
1554  * @message_id: The ID of the message to check.
1555  * @attributes: A parameter to optionally return the retrieved message
1556  *		attributes, in case of Success.
1557  *
1558  * An helper to check protocol message attributes for a specific protocol
1559  * and message pair.
1560  *
1561  * Return: 0 on SUCCESS
1562  */
scmi_protocol_msg_check(const struct scmi_protocol_handle * ph,u32 message_id,u32 * attributes)1563 static int scmi_protocol_msg_check(const struct scmi_protocol_handle *ph,
1564 				   u32 message_id, u32 *attributes)
1565 {
1566 	int ret;
1567 	struct scmi_xfer *t;
1568 
1569 	ret = xfer_get_init(ph, PROTOCOL_MESSAGE_ATTRIBUTES,
1570 			    sizeof(__le32), 0, &t);
1571 	if (ret)
1572 		return ret;
1573 
1574 	put_unaligned_le32(message_id, t->tx.buf);
1575 	ret = do_xfer(ph, t);
1576 	if (!ret && attributes)
1577 		*attributes = get_unaligned_le32(t->rx.buf);
1578 	xfer_put(ph, t);
1579 
1580 	return ret;
1581 }
1582 
1583 /**
1584  * struct scmi_iterator  - Iterator descriptor
1585  * @msg: A reference to the message TX buffer; filled by @prepare_message with
1586  *	 a proper custom command payload for each multi-part command request.
1587  * @resp: A reference to the response RX buffer; used by @update_state and
1588  *	  @process_response to parse the multi-part replies.
1589  * @t: A reference to the underlying xfer initialized and used transparently by
1590  *     the iterator internal routines.
1591  * @ph: A reference to the associated protocol handle to be used.
1592  * @ops: A reference to the custom provided iterator operations.
1593  * @state: The current iterator state; used and updated in turn by the iterators
1594  *	   internal routines and by the caller-provided @scmi_iterator_ops.
1595  * @priv: A reference to optional private data as provided by the caller and
1596  *	  passed back to the @@scmi_iterator_ops.
1597  */
1598 struct scmi_iterator {
1599 	void *msg;
1600 	void *resp;
1601 	struct scmi_xfer *t;
1602 	const struct scmi_protocol_handle *ph;
1603 	struct scmi_iterator_ops *ops;
1604 	struct scmi_iterator_state state;
1605 	void *priv;
1606 };
1607 
scmi_iterator_init(const struct scmi_protocol_handle * ph,struct scmi_iterator_ops * ops,unsigned int max_resources,u8 msg_id,size_t tx_size,void * priv)1608 static void *scmi_iterator_init(const struct scmi_protocol_handle *ph,
1609 				struct scmi_iterator_ops *ops,
1610 				unsigned int max_resources, u8 msg_id,
1611 				size_t tx_size, void *priv)
1612 {
1613 	int ret;
1614 	struct scmi_iterator *i;
1615 
1616 	i = devm_kzalloc(ph->dev, sizeof(*i), GFP_KERNEL);
1617 	if (!i)
1618 		return ERR_PTR(-ENOMEM);
1619 
1620 	i->ph = ph;
1621 	i->ops = ops;
1622 	i->priv = priv;
1623 
1624 	ret = ph->xops->xfer_get_init(ph, msg_id, tx_size, 0, &i->t);
1625 	if (ret) {
1626 		devm_kfree(ph->dev, i);
1627 		return ERR_PTR(ret);
1628 	}
1629 
1630 	i->state.max_resources = max_resources;
1631 	i->msg = i->t->tx.buf;
1632 	i->resp = i->t->rx.buf;
1633 
1634 	return i;
1635 }
1636 
scmi_iterator_run(void * iter)1637 static int scmi_iterator_run(void *iter)
1638 {
1639 	int ret = -EINVAL;
1640 	struct scmi_iterator_ops *iops;
1641 	const struct scmi_protocol_handle *ph;
1642 	struct scmi_iterator_state *st;
1643 	struct scmi_iterator *i = iter;
1644 
1645 	if (!i || !i->ops || !i->ph)
1646 		return ret;
1647 
1648 	iops = i->ops;
1649 	ph = i->ph;
1650 	st = &i->state;
1651 
1652 	do {
1653 		iops->prepare_message(i->msg, st->desc_index, i->priv);
1654 		ret = ph->xops->do_xfer(ph, i->t);
1655 		if (ret)
1656 			break;
1657 
1658 		st->rx_len = i->t->rx.len;
1659 		ret = iops->update_state(st, i->resp, i->priv);
1660 		if (ret)
1661 			break;
1662 
1663 		if (st->num_returned > st->max_resources - st->desc_index) {
1664 			dev_err(ph->dev,
1665 				"No. of resources can't exceed %d\n",
1666 				st->max_resources);
1667 			ret = -EINVAL;
1668 			break;
1669 		}
1670 
1671 		for (st->loop_idx = 0; st->loop_idx < st->num_returned;
1672 		     st->loop_idx++) {
1673 			ret = iops->process_response(ph, i->resp, st, i->priv);
1674 			if (ret)
1675 				goto out;
1676 		}
1677 
1678 		st->desc_index += st->num_returned;
1679 		ph->xops->reset_rx_to_maxsz(ph, i->t);
1680 		/*
1681 		 * check for both returned and remaining to avoid infinite
1682 		 * loop due to buggy firmware
1683 		 */
1684 	} while (st->num_returned && st->num_remaining);
1685 
1686 out:
1687 	/* Finalize and destroy iterator */
1688 	ph->xops->xfer_put(ph, i->t);
1689 	devm_kfree(ph->dev, i);
1690 
1691 	return ret;
1692 }
1693 
1694 struct scmi_msg_get_fc_info {
1695 	__le32 domain;
1696 	__le32 message_id;
1697 };
1698 
1699 struct scmi_msg_resp_desc_fc {
1700 	__le32 attr;
1701 #define SUPPORTS_DOORBELL(x)		((x) & BIT(0))
1702 #define DOORBELL_REG_WIDTH(x)		FIELD_GET(GENMASK(2, 1), (x))
1703 	__le32 rate_limit;
1704 	__le32 chan_addr_low;
1705 	__le32 chan_addr_high;
1706 	__le32 chan_size;
1707 	__le32 db_addr_low;
1708 	__le32 db_addr_high;
1709 	__le32 db_set_lmask;
1710 	__le32 db_set_hmask;
1711 	__le32 db_preserve_lmask;
1712 	__le32 db_preserve_hmask;
1713 };
1714 
1715 static void
scmi_common_fastchannel_init(const struct scmi_protocol_handle * ph,u8 describe_id,u32 message_id,u32 valid_size,u32 domain,void __iomem ** p_addr,struct scmi_fc_db_info ** p_db)1716 scmi_common_fastchannel_init(const struct scmi_protocol_handle *ph,
1717 			     u8 describe_id, u32 message_id, u32 valid_size,
1718 			     u32 domain, void __iomem **p_addr,
1719 			     struct scmi_fc_db_info **p_db)
1720 {
1721 	int ret;
1722 	u32 flags;
1723 	u64 phys_addr;
1724 	u32 attributes;
1725 	u8 size;
1726 	void __iomem *addr;
1727 	struct scmi_xfer *t;
1728 	struct scmi_fc_db_info *db = NULL;
1729 	struct scmi_msg_get_fc_info *info;
1730 	struct scmi_msg_resp_desc_fc *resp;
1731 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1732 
1733 	/* Check if the MSG_ID supports fastchannel */
1734 	ret = scmi_protocol_msg_check(ph, message_id, &attributes);
1735 	if (ret || !MSG_SUPPORTS_FASTCHANNEL(attributes)) {
1736 		dev_dbg(ph->dev,
1737 			"Skip FC init for 0x%02X/%d  domain:%d - ret:%d\n",
1738 			pi->proto->id, message_id, domain, ret);
1739 		return;
1740 	}
1741 
1742 	if (!p_addr) {
1743 		ret = -EINVAL;
1744 		goto err_out;
1745 	}
1746 
1747 	ret = ph->xops->xfer_get_init(ph, describe_id,
1748 				      sizeof(*info), sizeof(*resp), &t);
1749 	if (ret)
1750 		goto err_out;
1751 
1752 	info = t->tx.buf;
1753 	info->domain = cpu_to_le32(domain);
1754 	info->message_id = cpu_to_le32(message_id);
1755 
1756 	/*
1757 	 * Bail out on error leaving fc_info addresses zeroed; this includes
1758 	 * the case in which the requested domain/message_id does NOT support
1759 	 * fastchannels at all.
1760 	 */
1761 	ret = ph->xops->do_xfer(ph, t);
1762 	if (ret)
1763 		goto err_xfer;
1764 
1765 	resp = t->rx.buf;
1766 	flags = le32_to_cpu(resp->attr);
1767 	size = le32_to_cpu(resp->chan_size);
1768 	if (size != valid_size) {
1769 		ret = -EINVAL;
1770 		goto err_xfer;
1771 	}
1772 
1773 	phys_addr = le32_to_cpu(resp->chan_addr_low);
1774 	phys_addr |= (u64)le32_to_cpu(resp->chan_addr_high) << 32;
1775 	addr = devm_ioremap(ph->dev, phys_addr, size);
1776 	if (!addr) {
1777 		ret = -EADDRNOTAVAIL;
1778 		goto err_xfer;
1779 	}
1780 
1781 	*p_addr = addr;
1782 
1783 	if (p_db && SUPPORTS_DOORBELL(flags)) {
1784 		db = devm_kzalloc(ph->dev, sizeof(*db), GFP_KERNEL);
1785 		if (!db) {
1786 			ret = -ENOMEM;
1787 			goto err_db;
1788 		}
1789 
1790 		size = 1 << DOORBELL_REG_WIDTH(flags);
1791 		phys_addr = le32_to_cpu(resp->db_addr_low);
1792 		phys_addr |= (u64)le32_to_cpu(resp->db_addr_high) << 32;
1793 		addr = devm_ioremap(ph->dev, phys_addr, size);
1794 		if (!addr) {
1795 			ret = -EADDRNOTAVAIL;
1796 			goto err_db_mem;
1797 		}
1798 
1799 		db->addr = addr;
1800 		db->width = size;
1801 		db->set = le32_to_cpu(resp->db_set_lmask);
1802 		db->set |= (u64)le32_to_cpu(resp->db_set_hmask) << 32;
1803 		db->mask = le32_to_cpu(resp->db_preserve_lmask);
1804 		db->mask |= (u64)le32_to_cpu(resp->db_preserve_hmask) << 32;
1805 
1806 		*p_db = db;
1807 	}
1808 
1809 	ph->xops->xfer_put(ph, t);
1810 
1811 	dev_dbg(ph->dev,
1812 		"Using valid FC for protocol %X [MSG_ID:%u / RES_ID:%u]\n",
1813 		pi->proto->id, message_id, domain);
1814 
1815 	return;
1816 
1817 err_db_mem:
1818 	devm_kfree(ph->dev, db);
1819 
1820 err_db:
1821 	*p_addr = NULL;
1822 
1823 err_xfer:
1824 	ph->xops->xfer_put(ph, t);
1825 
1826 err_out:
1827 	dev_warn(ph->dev,
1828 		 "Failed to get FC for protocol %X [MSG_ID:%u / RES_ID:%u] - ret:%d. Using regular messaging.\n",
1829 		 pi->proto->id, message_id, domain, ret);
1830 }
1831 
1832 #define SCMI_PROTO_FC_RING_DB(w)			\
1833 do {							\
1834 	u##w val = 0;					\
1835 							\
1836 	if (db->mask)					\
1837 		val = ioread##w(db->addr) & db->mask;	\
1838 	iowrite##w((u##w)db->set | val, db->addr);	\
1839 } while (0)
1840 
scmi_common_fastchannel_db_ring(struct scmi_fc_db_info * db)1841 static void scmi_common_fastchannel_db_ring(struct scmi_fc_db_info *db)
1842 {
1843 	if (!db || !db->addr)
1844 		return;
1845 
1846 	if (db->width == 1)
1847 		SCMI_PROTO_FC_RING_DB(8);
1848 	else if (db->width == 2)
1849 		SCMI_PROTO_FC_RING_DB(16);
1850 	else if (db->width == 4)
1851 		SCMI_PROTO_FC_RING_DB(32);
1852 	else /* db->width == 8 */
1853 #ifdef CONFIG_64BIT
1854 		SCMI_PROTO_FC_RING_DB(64);
1855 #else
1856 	{
1857 		u64 val = 0;
1858 
1859 		if (db->mask)
1860 			val = ioread64_hi_lo(db->addr) & db->mask;
1861 		iowrite64_hi_lo(db->set | val, db->addr);
1862 	}
1863 #endif
1864 }
1865 
1866 static const struct scmi_proto_helpers_ops helpers_ops = {
1867 	.extended_name_get = scmi_common_extended_name_get,
1868 	.iter_response_init = scmi_iterator_init,
1869 	.iter_response_run = scmi_iterator_run,
1870 	.protocol_msg_check = scmi_protocol_msg_check,
1871 	.fastchannel_init = scmi_common_fastchannel_init,
1872 	.fastchannel_db_ring = scmi_common_fastchannel_db_ring,
1873 };
1874 
1875 /**
1876  * scmi_revision_area_get  - Retrieve version memory area.
1877  *
1878  * @ph: A reference to the protocol handle.
1879  *
1880  * A helper to grab the version memory area reference during SCMI Base protocol
1881  * initialization.
1882  *
1883  * Return: A reference to the version memory area associated to the SCMI
1884  *	   instance underlying this protocol handle.
1885  */
1886 struct scmi_revision_info *
scmi_revision_area_get(const struct scmi_protocol_handle * ph)1887 scmi_revision_area_get(const struct scmi_protocol_handle *ph)
1888 {
1889 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1890 
1891 	return pi->handle->version;
1892 }
1893 
1894 /**
1895  * scmi_alloc_init_protocol_instance  - Allocate and initialize a protocol
1896  * instance descriptor.
1897  * @info: The reference to the related SCMI instance.
1898  * @proto: The protocol descriptor.
1899  *
1900  * Allocate a new protocol instance descriptor, using the provided @proto
1901  * description, against the specified SCMI instance @info, and initialize it;
1902  * all resources management is handled via a dedicated per-protocol devres
1903  * group.
1904  *
1905  * Context: Assumes to be called with @protocols_mtx already acquired.
1906  * Return: A reference to a freshly allocated and initialized protocol instance
1907  *	   or ERR_PTR on failure. On failure the @proto reference is at first
1908  *	   put using @scmi_protocol_put() before releasing all the devres group.
1909  */
1910 static struct scmi_protocol_instance *
scmi_alloc_init_protocol_instance(struct scmi_info * info,const struct scmi_protocol * proto)1911 scmi_alloc_init_protocol_instance(struct scmi_info *info,
1912 				  const struct scmi_protocol *proto)
1913 {
1914 	int ret = -ENOMEM;
1915 	void *gid;
1916 	struct scmi_protocol_instance *pi;
1917 	const struct scmi_handle *handle = &info->handle;
1918 
1919 	/* Protocol specific devres group */
1920 	gid = devres_open_group(handle->dev, NULL, GFP_KERNEL);
1921 	if (!gid) {
1922 		scmi_protocol_put(proto->id);
1923 		goto out;
1924 	}
1925 
1926 	pi = devm_kzalloc(handle->dev, sizeof(*pi), GFP_KERNEL);
1927 	if (!pi)
1928 		goto clean;
1929 
1930 	pi->gid = gid;
1931 	pi->proto = proto;
1932 	pi->handle = handle;
1933 	pi->ph.dev = handle->dev;
1934 	pi->ph.xops = &xfer_ops;
1935 	pi->ph.hops = &helpers_ops;
1936 	pi->ph.set_priv = scmi_set_protocol_priv;
1937 	pi->ph.get_priv = scmi_get_protocol_priv;
1938 	refcount_set(&pi->users, 1);
1939 	/* proto->init is assured NON NULL by scmi_protocol_register */
1940 	ret = pi->proto->instance_init(&pi->ph);
1941 	if (ret)
1942 		goto clean;
1943 
1944 	ret = idr_alloc(&info->protocols, pi, proto->id, proto->id + 1,
1945 			GFP_KERNEL);
1946 	if (ret != proto->id)
1947 		goto clean;
1948 
1949 	/*
1950 	 * Warn but ignore events registration errors since we do not want
1951 	 * to skip whole protocols if their notifications are messed up.
1952 	 */
1953 	if (pi->proto->events) {
1954 		ret = scmi_register_protocol_events(handle, pi->proto->id,
1955 						    &pi->ph,
1956 						    pi->proto->events);
1957 		if (ret)
1958 			dev_warn(handle->dev,
1959 				 "Protocol:%X - Events Registration Failed - err:%d\n",
1960 				 pi->proto->id, ret);
1961 	}
1962 
1963 	devres_close_group(handle->dev, pi->gid);
1964 	dev_dbg(handle->dev, "Initialized protocol: 0x%X\n", pi->proto->id);
1965 
1966 	return pi;
1967 
1968 clean:
1969 	/* Take care to put the protocol module's owner before releasing all */
1970 	scmi_protocol_put(proto->id);
1971 	devres_release_group(handle->dev, gid);
1972 out:
1973 	return ERR_PTR(ret);
1974 }
1975 
1976 /**
1977  * scmi_get_protocol_instance  - Protocol initialization helper.
1978  * @handle: A reference to the SCMI platform instance.
1979  * @protocol_id: The protocol being requested.
1980  *
1981  * In case the required protocol has never been requested before for this
1982  * instance, allocate and initialize all the needed structures while handling
1983  * resource allocation with a dedicated per-protocol devres subgroup.
1984  *
1985  * Return: A reference to an initialized protocol instance or error on failure:
1986  *	   in particular returns -EPROBE_DEFER when the desired protocol could
1987  *	   NOT be found.
1988  */
1989 static struct scmi_protocol_instance * __must_check
scmi_get_protocol_instance(const struct scmi_handle * handle,u8 protocol_id)1990 scmi_get_protocol_instance(const struct scmi_handle *handle, u8 protocol_id)
1991 {
1992 	struct scmi_protocol_instance *pi;
1993 	struct scmi_info *info = handle_to_scmi_info(handle);
1994 
1995 	mutex_lock(&info->protocols_mtx);
1996 	pi = idr_find(&info->protocols, protocol_id);
1997 
1998 	if (pi) {
1999 		refcount_inc(&pi->users);
2000 	} else {
2001 		const struct scmi_protocol *proto;
2002 
2003 		/* Fails if protocol not registered on bus */
2004 		proto = scmi_protocol_get(protocol_id);
2005 		if (proto)
2006 			pi = scmi_alloc_init_protocol_instance(info, proto);
2007 		else
2008 			pi = ERR_PTR(-EPROBE_DEFER);
2009 	}
2010 	mutex_unlock(&info->protocols_mtx);
2011 
2012 	return pi;
2013 }
2014 
2015 /**
2016  * scmi_protocol_acquire  - Protocol acquire
2017  * @handle: A reference to the SCMI platform instance.
2018  * @protocol_id: The protocol being requested.
2019  *
2020  * Register a new user for the requested protocol on the specified SCMI
2021  * platform instance, possibly triggering its initialization on first user.
2022  *
2023  * Return: 0 if protocol was acquired successfully.
2024  */
scmi_protocol_acquire(const struct scmi_handle * handle,u8 protocol_id)2025 int scmi_protocol_acquire(const struct scmi_handle *handle, u8 protocol_id)
2026 {
2027 	return PTR_ERR_OR_ZERO(scmi_get_protocol_instance(handle, protocol_id));
2028 }
2029 
2030 /**
2031  * scmi_protocol_release  - Protocol de-initialization helper.
2032  * @handle: A reference to the SCMI platform instance.
2033  * @protocol_id: The protocol being requested.
2034  *
2035  * Remove one user for the specified protocol and triggers de-initialization
2036  * and resources de-allocation once the last user has gone.
2037  */
scmi_protocol_release(const struct scmi_handle * handle,u8 protocol_id)2038 void scmi_protocol_release(const struct scmi_handle *handle, u8 protocol_id)
2039 {
2040 	struct scmi_info *info = handle_to_scmi_info(handle);
2041 	struct scmi_protocol_instance *pi;
2042 
2043 	mutex_lock(&info->protocols_mtx);
2044 	pi = idr_find(&info->protocols, protocol_id);
2045 	if (WARN_ON(!pi))
2046 		goto out;
2047 
2048 	if (refcount_dec_and_test(&pi->users)) {
2049 		void *gid = pi->gid;
2050 
2051 		if (pi->proto->events)
2052 			scmi_deregister_protocol_events(handle, protocol_id);
2053 
2054 		if (pi->proto->instance_deinit)
2055 			pi->proto->instance_deinit(&pi->ph);
2056 
2057 		idr_remove(&info->protocols, protocol_id);
2058 
2059 		scmi_protocol_put(protocol_id);
2060 
2061 		devres_release_group(handle->dev, gid);
2062 		dev_dbg(handle->dev, "De-Initialized protocol: 0x%X\n",
2063 			protocol_id);
2064 	}
2065 
2066 out:
2067 	mutex_unlock(&info->protocols_mtx);
2068 }
2069 
scmi_setup_protocol_implemented(const struct scmi_protocol_handle * ph,u8 * prot_imp)2070 void scmi_setup_protocol_implemented(const struct scmi_protocol_handle *ph,
2071 				     u8 *prot_imp)
2072 {
2073 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
2074 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
2075 
2076 	info->protocols_imp = prot_imp;
2077 }
2078 
2079 static bool
scmi_is_protocol_implemented(const struct scmi_handle * handle,u8 prot_id)2080 scmi_is_protocol_implemented(const struct scmi_handle *handle, u8 prot_id)
2081 {
2082 	int i;
2083 	struct scmi_info *info = handle_to_scmi_info(handle);
2084 	struct scmi_revision_info *rev = handle->version;
2085 
2086 	if (!info->protocols_imp)
2087 		return false;
2088 
2089 	for (i = 0; i < rev->num_protocols; i++)
2090 		if (info->protocols_imp[i] == prot_id)
2091 			return true;
2092 	return false;
2093 }
2094 
2095 struct scmi_protocol_devres {
2096 	const struct scmi_handle *handle;
2097 	u8 protocol_id;
2098 };
2099 
scmi_devm_release_protocol(struct device * dev,void * res)2100 static void scmi_devm_release_protocol(struct device *dev, void *res)
2101 {
2102 	struct scmi_protocol_devres *dres = res;
2103 
2104 	scmi_protocol_release(dres->handle, dres->protocol_id);
2105 }
2106 
2107 static struct scmi_protocol_instance __must_check *
scmi_devres_protocol_instance_get(struct scmi_device * sdev,u8 protocol_id)2108 scmi_devres_protocol_instance_get(struct scmi_device *sdev, u8 protocol_id)
2109 {
2110 	struct scmi_protocol_instance *pi;
2111 	struct scmi_protocol_devres *dres;
2112 
2113 	dres = devres_alloc(scmi_devm_release_protocol,
2114 			    sizeof(*dres), GFP_KERNEL);
2115 	if (!dres)
2116 		return ERR_PTR(-ENOMEM);
2117 
2118 	pi = scmi_get_protocol_instance(sdev->handle, protocol_id);
2119 	if (IS_ERR(pi)) {
2120 		devres_free(dres);
2121 		return pi;
2122 	}
2123 
2124 	dres->handle = sdev->handle;
2125 	dres->protocol_id = protocol_id;
2126 	devres_add(&sdev->dev, dres);
2127 
2128 	return pi;
2129 }
2130 
2131 /**
2132  * scmi_devm_protocol_get  - Devres managed get protocol operations and handle
2133  * @sdev: A reference to an scmi_device whose embedded struct device is to
2134  *	  be used for devres accounting.
2135  * @protocol_id: The protocol being requested.
2136  * @ph: A pointer reference used to pass back the associated protocol handle.
2137  *
2138  * Get hold of a protocol accounting for its usage, eventually triggering its
2139  * initialization, and returning the protocol specific operations and related
2140  * protocol handle which will be used as first argument in most of the
2141  * protocols operations methods.
2142  * Being a devres based managed method, protocol hold will be automatically
2143  * released, and possibly de-initialized on last user, once the SCMI driver
2144  * owning the scmi_device is unbound from it.
2145  *
2146  * Return: A reference to the requested protocol operations or error.
2147  *	   Must be checked for errors by caller.
2148  */
2149 static const void __must_check *
scmi_devm_protocol_get(struct scmi_device * sdev,u8 protocol_id,struct scmi_protocol_handle ** ph)2150 scmi_devm_protocol_get(struct scmi_device *sdev, u8 protocol_id,
2151 		       struct scmi_protocol_handle **ph)
2152 {
2153 	struct scmi_protocol_instance *pi;
2154 
2155 	if (!ph)
2156 		return ERR_PTR(-EINVAL);
2157 
2158 	pi = scmi_devres_protocol_instance_get(sdev, protocol_id);
2159 	if (IS_ERR(pi))
2160 		return pi;
2161 
2162 	*ph = &pi->ph;
2163 
2164 	return pi->proto->ops;
2165 }
2166 
2167 /**
2168  * scmi_devm_protocol_acquire  - Devres managed helper to get hold of a protocol
2169  * @sdev: A reference to an scmi_device whose embedded struct device is to
2170  *	  be used for devres accounting.
2171  * @protocol_id: The protocol being requested.
2172  *
2173  * Get hold of a protocol accounting for its usage, possibly triggering its
2174  * initialization but without getting access to its protocol specific operations
2175  * and handle.
2176  *
2177  * Being a devres based managed method, protocol hold will be automatically
2178  * released, and possibly de-initialized on last user, once the SCMI driver
2179  * owning the scmi_device is unbound from it.
2180  *
2181  * Return: 0 on SUCCESS
2182  */
scmi_devm_protocol_acquire(struct scmi_device * sdev,u8 protocol_id)2183 static int __must_check scmi_devm_protocol_acquire(struct scmi_device *sdev,
2184 						   u8 protocol_id)
2185 {
2186 	struct scmi_protocol_instance *pi;
2187 
2188 	pi = scmi_devres_protocol_instance_get(sdev, protocol_id);
2189 	if (IS_ERR(pi))
2190 		return PTR_ERR(pi);
2191 
2192 	return 0;
2193 }
2194 
scmi_devm_protocol_match(struct device * dev,void * res,void * data)2195 static int scmi_devm_protocol_match(struct device *dev, void *res, void *data)
2196 {
2197 	struct scmi_protocol_devres *dres = res;
2198 
2199 	if (WARN_ON(!dres || !data))
2200 		return 0;
2201 
2202 	return dres->protocol_id == *((u8 *)data);
2203 }
2204 
2205 /**
2206  * scmi_devm_protocol_put  - Devres managed put protocol operations and handle
2207  * @sdev: A reference to an scmi_device whose embedded struct device is to
2208  *	  be used for devres accounting.
2209  * @protocol_id: The protocol being requested.
2210  *
2211  * Explicitly release a protocol hold previously obtained calling the above
2212  * @scmi_devm_protocol_get.
2213  */
scmi_devm_protocol_put(struct scmi_device * sdev,u8 protocol_id)2214 static void scmi_devm_protocol_put(struct scmi_device *sdev, u8 protocol_id)
2215 {
2216 	int ret;
2217 
2218 	ret = devres_release(&sdev->dev, scmi_devm_release_protocol,
2219 			     scmi_devm_protocol_match, &protocol_id);
2220 	WARN_ON(ret);
2221 }
2222 
2223 /**
2224  * scmi_is_transport_atomic  - Method to check if underlying transport for an
2225  * SCMI instance is configured as atomic.
2226  *
2227  * @handle: A reference to the SCMI platform instance.
2228  * @atomic_threshold: An optional return value for the system wide currently
2229  *		      configured threshold for atomic operations.
2230  *
2231  * Return: True if transport is configured as atomic
2232  */
scmi_is_transport_atomic(const struct scmi_handle * handle,unsigned int * atomic_threshold)2233 static bool scmi_is_transport_atomic(const struct scmi_handle *handle,
2234 				     unsigned int *atomic_threshold)
2235 {
2236 	bool ret;
2237 	struct scmi_info *info = handle_to_scmi_info(handle);
2238 
2239 	ret = info->desc->atomic_enabled &&
2240 		is_transport_polling_capable(info->desc);
2241 	if (ret && atomic_threshold)
2242 		*atomic_threshold = info->atomic_threshold;
2243 
2244 	return ret;
2245 }
2246 
2247 /**
2248  * scmi_handle_get() - Get the SCMI handle for a device
2249  *
2250  * @dev: pointer to device for which we want SCMI handle
2251  *
2252  * NOTE: The function does not track individual clients of the framework
2253  * and is expected to be maintained by caller of SCMI protocol library.
2254  * scmi_handle_put must be balanced with successful scmi_handle_get
2255  *
2256  * Return: pointer to handle if successful, NULL on error
2257  */
scmi_handle_get(struct device * dev)2258 static struct scmi_handle *scmi_handle_get(struct device *dev)
2259 {
2260 	struct list_head *p;
2261 	struct scmi_info *info;
2262 	struct scmi_handle *handle = NULL;
2263 
2264 	mutex_lock(&scmi_list_mutex);
2265 	list_for_each(p, &scmi_list) {
2266 		info = list_entry(p, struct scmi_info, node);
2267 		if (dev->parent == info->dev) {
2268 			info->users++;
2269 			handle = &info->handle;
2270 			break;
2271 		}
2272 	}
2273 	mutex_unlock(&scmi_list_mutex);
2274 
2275 	return handle;
2276 }
2277 
2278 /**
2279  * scmi_handle_put() - Release the handle acquired by scmi_handle_get
2280  *
2281  * @handle: handle acquired by scmi_handle_get
2282  *
2283  * NOTE: The function does not track individual clients of the framework
2284  * and is expected to be maintained by caller of SCMI protocol library.
2285  * scmi_handle_put must be balanced with successful scmi_handle_get
2286  *
2287  * Return: 0 is successfully released
2288  *	if null was passed, it returns -EINVAL;
2289  */
scmi_handle_put(const struct scmi_handle * handle)2290 static int scmi_handle_put(const struct scmi_handle *handle)
2291 {
2292 	struct scmi_info *info;
2293 
2294 	if (!handle)
2295 		return -EINVAL;
2296 
2297 	info = handle_to_scmi_info(handle);
2298 	mutex_lock(&scmi_list_mutex);
2299 	if (!WARN_ON(!info->users))
2300 		info->users--;
2301 	mutex_unlock(&scmi_list_mutex);
2302 
2303 	return 0;
2304 }
2305 
scmi_device_link_add(struct device * consumer,struct device * supplier)2306 static void scmi_device_link_add(struct device *consumer,
2307 				 struct device *supplier)
2308 {
2309 	struct device_link *link;
2310 
2311 	link = device_link_add(consumer, supplier, DL_FLAG_AUTOREMOVE_CONSUMER);
2312 
2313 	WARN_ON(!link);
2314 }
2315 
scmi_set_handle(struct scmi_device * scmi_dev)2316 static void scmi_set_handle(struct scmi_device *scmi_dev)
2317 {
2318 	scmi_dev->handle = scmi_handle_get(&scmi_dev->dev);
2319 	if (scmi_dev->handle)
2320 		scmi_device_link_add(&scmi_dev->dev, scmi_dev->handle->dev);
2321 }
2322 
__scmi_xfer_info_init(struct scmi_info * sinfo,struct scmi_xfers_info * info)2323 static int __scmi_xfer_info_init(struct scmi_info *sinfo,
2324 				 struct scmi_xfers_info *info)
2325 {
2326 	int i;
2327 	struct scmi_xfer *xfer;
2328 	struct device *dev = sinfo->dev;
2329 	const struct scmi_desc *desc = sinfo->desc;
2330 
2331 	/* Pre-allocated messages, no more than what hdr.seq can support */
2332 	if (WARN_ON(!info->max_msg || info->max_msg > MSG_TOKEN_MAX)) {
2333 		dev_err(dev,
2334 			"Invalid maximum messages %d, not in range [1 - %lu]\n",
2335 			info->max_msg, MSG_TOKEN_MAX);
2336 		return -EINVAL;
2337 	}
2338 
2339 	hash_init(info->pending_xfers);
2340 
2341 	/* Allocate a bitmask sized to hold MSG_TOKEN_MAX tokens */
2342 	info->xfer_alloc_table = devm_bitmap_zalloc(dev, MSG_TOKEN_MAX,
2343 						    GFP_KERNEL);
2344 	if (!info->xfer_alloc_table)
2345 		return -ENOMEM;
2346 
2347 	/*
2348 	 * Preallocate a number of xfers equal to max inflight messages,
2349 	 * pre-initialize the buffer pointer to pre-allocated buffers and
2350 	 * attach all of them to the free list
2351 	 */
2352 	INIT_HLIST_HEAD(&info->free_xfers);
2353 	for (i = 0; i < info->max_msg; i++) {
2354 		xfer = devm_kzalloc(dev, sizeof(*xfer), GFP_KERNEL);
2355 		if (!xfer)
2356 			return -ENOMEM;
2357 
2358 		xfer->rx.buf = devm_kcalloc(dev, sizeof(u8), desc->max_msg_size,
2359 					    GFP_KERNEL);
2360 		if (!xfer->rx.buf)
2361 			return -ENOMEM;
2362 
2363 		xfer->tx.buf = xfer->rx.buf;
2364 		init_completion(&xfer->done);
2365 		spin_lock_init(&xfer->lock);
2366 
2367 		/* Add initialized xfer to the free list */
2368 		hlist_add_head(&xfer->node, &info->free_xfers);
2369 	}
2370 
2371 	spin_lock_init(&info->xfer_lock);
2372 
2373 	return 0;
2374 }
2375 
scmi_channels_max_msg_configure(struct scmi_info * sinfo)2376 static int scmi_channels_max_msg_configure(struct scmi_info *sinfo)
2377 {
2378 	const struct scmi_desc *desc = sinfo->desc;
2379 
2380 	if (!desc->ops->get_max_msg) {
2381 		sinfo->tx_minfo.max_msg = desc->max_msg;
2382 		sinfo->rx_minfo.max_msg = desc->max_msg;
2383 	} else {
2384 		struct scmi_chan_info *base_cinfo;
2385 
2386 		base_cinfo = idr_find(&sinfo->tx_idr, SCMI_PROTOCOL_BASE);
2387 		if (!base_cinfo)
2388 			return -EINVAL;
2389 		sinfo->tx_minfo.max_msg = desc->ops->get_max_msg(base_cinfo);
2390 
2391 		/* RX channel is optional so can be skipped */
2392 		base_cinfo = idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE);
2393 		if (base_cinfo)
2394 			sinfo->rx_minfo.max_msg =
2395 				desc->ops->get_max_msg(base_cinfo);
2396 	}
2397 
2398 	return 0;
2399 }
2400 
scmi_xfer_info_init(struct scmi_info * sinfo)2401 static int scmi_xfer_info_init(struct scmi_info *sinfo)
2402 {
2403 	int ret;
2404 
2405 	ret = scmi_channels_max_msg_configure(sinfo);
2406 	if (ret)
2407 		return ret;
2408 
2409 	ret = __scmi_xfer_info_init(sinfo, &sinfo->tx_minfo);
2410 	if (!ret && !idr_is_empty(&sinfo->rx_idr))
2411 		ret = __scmi_xfer_info_init(sinfo, &sinfo->rx_minfo);
2412 
2413 	return ret;
2414 }
2415 
scmi_chan_setup(struct scmi_info * info,struct device_node * of_node,int prot_id,bool tx)2416 static int scmi_chan_setup(struct scmi_info *info, struct device_node *of_node,
2417 			   int prot_id, bool tx)
2418 {
2419 	int ret, idx;
2420 	char name[32];
2421 	struct scmi_chan_info *cinfo;
2422 	struct idr *idr;
2423 	struct scmi_device *tdev = NULL;
2424 
2425 	/* Transmit channel is first entry i.e. index 0 */
2426 	idx = tx ? 0 : 1;
2427 	idr = tx ? &info->tx_idr : &info->rx_idr;
2428 
2429 	if (!info->desc->ops->chan_available(of_node, idx)) {
2430 		cinfo = idr_find(idr, SCMI_PROTOCOL_BASE);
2431 		if (unlikely(!cinfo)) /* Possible only if platform has no Rx */
2432 			return -EINVAL;
2433 		goto idr_alloc;
2434 	}
2435 
2436 	cinfo = devm_kzalloc(info->dev, sizeof(*cinfo), GFP_KERNEL);
2437 	if (!cinfo)
2438 		return -ENOMEM;
2439 
2440 	cinfo->is_p2a = !tx;
2441 	cinfo->rx_timeout_ms = info->desc->max_rx_timeout_ms;
2442 
2443 	/* Create a unique name for this transport device */
2444 	snprintf(name, 32, "__scmi_transport_device_%s_%02X",
2445 		 idx ? "rx" : "tx", prot_id);
2446 	/* Create a uniquely named, dedicated transport device for this chan */
2447 	tdev = scmi_device_create(of_node, info->dev, prot_id, name);
2448 	if (!tdev) {
2449 		dev_err(info->dev,
2450 			"failed to create transport device (%s)\n", name);
2451 		devm_kfree(info->dev, cinfo);
2452 		return -EINVAL;
2453 	}
2454 	of_node_get(of_node);
2455 
2456 	cinfo->id = prot_id;
2457 	cinfo->dev = &tdev->dev;
2458 	ret = info->desc->ops->chan_setup(cinfo, info->dev, tx);
2459 	if (ret) {
2460 		of_node_put(of_node);
2461 		scmi_device_destroy(info->dev, prot_id, name);
2462 		devm_kfree(info->dev, cinfo);
2463 		return ret;
2464 	}
2465 
2466 	if (tx && is_polling_required(cinfo, info->desc)) {
2467 		if (is_transport_polling_capable(info->desc))
2468 			dev_info(&tdev->dev,
2469 				 "Enabled polling mode TX channel - prot_id:%d\n",
2470 				 prot_id);
2471 		else
2472 			dev_warn(&tdev->dev,
2473 				 "Polling mode NOT supported by transport.\n");
2474 	}
2475 
2476 idr_alloc:
2477 	ret = idr_alloc(idr, cinfo, prot_id, prot_id + 1, GFP_KERNEL);
2478 	if (ret != prot_id) {
2479 		dev_err(info->dev,
2480 			"unable to allocate SCMI idr slot err %d\n", ret);
2481 		/* Destroy channel and device only if created by this call. */
2482 		if (tdev) {
2483 			of_node_put(of_node);
2484 			scmi_device_destroy(info->dev, prot_id, name);
2485 			devm_kfree(info->dev, cinfo);
2486 		}
2487 		return ret;
2488 	}
2489 
2490 	cinfo->handle = &info->handle;
2491 	return 0;
2492 }
2493 
2494 static inline int
scmi_txrx_setup(struct scmi_info * info,struct device_node * of_node,int prot_id)2495 scmi_txrx_setup(struct scmi_info *info, struct device_node *of_node,
2496 		int prot_id)
2497 {
2498 	int ret = scmi_chan_setup(info, of_node, prot_id, true);
2499 
2500 	if (!ret) {
2501 		/* Rx is optional, report only memory errors */
2502 		ret = scmi_chan_setup(info, of_node, prot_id, false);
2503 		if (ret && ret != -ENOMEM)
2504 			ret = 0;
2505 	}
2506 
2507 	return ret;
2508 }
2509 
2510 /**
2511  * scmi_channels_setup  - Helper to initialize all required channels
2512  *
2513  * @info: The SCMI instance descriptor.
2514  *
2515  * Initialize all the channels found described in the DT against the underlying
2516  * configured transport using custom defined dedicated devices instead of
2517  * borrowing devices from the SCMI drivers; this way channels are initialized
2518  * upfront during core SCMI stack probing and are no more coupled with SCMI
2519  * devices used by SCMI drivers.
2520  *
2521  * Note that, even though a pair of TX/RX channels is associated to each
2522  * protocol defined in the DT, a distinct freshly initialized channel is
2523  * created only if the DT node for the protocol at hand describes a dedicated
2524  * channel: in all the other cases the common BASE protocol channel is reused.
2525  *
2526  * Return: 0 on Success
2527  */
scmi_channels_setup(struct scmi_info * info)2528 static int scmi_channels_setup(struct scmi_info *info)
2529 {
2530 	int ret;
2531 	struct device_node *child, *top_np = info->dev->of_node;
2532 
2533 	/* Initialize a common generic channel at first */
2534 	ret = scmi_txrx_setup(info, top_np, SCMI_PROTOCOL_BASE);
2535 	if (ret)
2536 		return ret;
2537 
2538 	for_each_available_child_of_node(top_np, child) {
2539 		u32 prot_id;
2540 
2541 		if (of_property_read_u32(child, "reg", &prot_id))
2542 			continue;
2543 
2544 		if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
2545 			dev_err(info->dev,
2546 				"Out of range protocol %d\n", prot_id);
2547 
2548 		ret = scmi_txrx_setup(info, child, prot_id);
2549 		if (ret) {
2550 			of_node_put(child);
2551 			return ret;
2552 		}
2553 	}
2554 
2555 	return 0;
2556 }
2557 
scmi_chan_destroy(int id,void * p,void * idr)2558 static int scmi_chan_destroy(int id, void *p, void *idr)
2559 {
2560 	struct scmi_chan_info *cinfo = p;
2561 
2562 	if (cinfo->dev) {
2563 		struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
2564 		struct scmi_device *sdev = to_scmi_dev(cinfo->dev);
2565 
2566 		of_node_put(cinfo->dev->of_node);
2567 		scmi_device_destroy(info->dev, id, sdev->name);
2568 		cinfo->dev = NULL;
2569 	}
2570 
2571 	idr_remove(idr, id);
2572 
2573 	return 0;
2574 }
2575 
scmi_cleanup_channels(struct scmi_info * info,struct idr * idr)2576 static void scmi_cleanup_channels(struct scmi_info *info, struct idr *idr)
2577 {
2578 	/* At first free all channels at the transport layer ... */
2579 	idr_for_each(idr, info->desc->ops->chan_free, idr);
2580 
2581 	/* ...then destroy all underlying devices */
2582 	idr_for_each(idr, scmi_chan_destroy, idr);
2583 
2584 	idr_destroy(idr);
2585 }
2586 
scmi_cleanup_txrx_channels(struct scmi_info * info)2587 static void scmi_cleanup_txrx_channels(struct scmi_info *info)
2588 {
2589 	scmi_cleanup_channels(info, &info->tx_idr);
2590 
2591 	scmi_cleanup_channels(info, &info->rx_idr);
2592 }
2593 
scmi_bus_notifier(struct notifier_block * nb,unsigned long action,void * data)2594 static int scmi_bus_notifier(struct notifier_block *nb,
2595 			     unsigned long action, void *data)
2596 {
2597 	struct scmi_info *info = bus_nb_to_scmi_info(nb);
2598 	struct scmi_device *sdev = to_scmi_dev(data);
2599 
2600 	/* Skip transport devices and devices of different SCMI instances */
2601 	if (!strncmp(sdev->name, "__scmi_transport_device", 23) ||
2602 	    sdev->dev.parent != info->dev)
2603 		return NOTIFY_DONE;
2604 
2605 	switch (action) {
2606 	case BUS_NOTIFY_BIND_DRIVER:
2607 		/* setup handle now as the transport is ready */
2608 		scmi_set_handle(sdev);
2609 		break;
2610 	case BUS_NOTIFY_UNBOUND_DRIVER:
2611 		scmi_handle_put(sdev->handle);
2612 		sdev->handle = NULL;
2613 		break;
2614 	default:
2615 		return NOTIFY_DONE;
2616 	}
2617 
2618 	dev_dbg(info->dev, "Device %s (%s) is now %s\n", dev_name(&sdev->dev),
2619 		sdev->name, action == BUS_NOTIFY_BIND_DRIVER ?
2620 		"about to be BOUND." : "UNBOUND.");
2621 
2622 	return NOTIFY_OK;
2623 }
2624 
scmi_device_request_notifier(struct notifier_block * nb,unsigned long action,void * data)2625 static int scmi_device_request_notifier(struct notifier_block *nb,
2626 					unsigned long action, void *data)
2627 {
2628 	struct device_node *np;
2629 	struct scmi_device_id *id_table = data;
2630 	struct scmi_info *info = req_nb_to_scmi_info(nb);
2631 
2632 	np = idr_find(&info->active_protocols, id_table->protocol_id);
2633 	if (!np)
2634 		return NOTIFY_DONE;
2635 
2636 	dev_dbg(info->dev, "%sRequested device (%s) for protocol 0x%x\n",
2637 		action == SCMI_BUS_NOTIFY_DEVICE_REQUEST ? "" : "UN-",
2638 		id_table->name, id_table->protocol_id);
2639 
2640 	switch (action) {
2641 	case SCMI_BUS_NOTIFY_DEVICE_REQUEST:
2642 		scmi_create_protocol_devices(np, info, id_table->protocol_id,
2643 					     id_table->name);
2644 		break;
2645 	case SCMI_BUS_NOTIFY_DEVICE_UNREQUEST:
2646 		scmi_destroy_protocol_devices(info, id_table->protocol_id,
2647 					      id_table->name);
2648 		break;
2649 	default:
2650 		return NOTIFY_DONE;
2651 	}
2652 
2653 	return NOTIFY_OK;
2654 }
2655 
scmi_debugfs_common_cleanup(void * d)2656 static void scmi_debugfs_common_cleanup(void *d)
2657 {
2658 	struct scmi_debug_info *dbg = d;
2659 
2660 	if (!dbg)
2661 		return;
2662 
2663 	debugfs_remove_recursive(dbg->top_dentry);
2664 	kfree(dbg->name);
2665 	kfree(dbg->type);
2666 }
2667 
scmi_debugfs_common_setup(struct scmi_info * info)2668 static struct scmi_debug_info *scmi_debugfs_common_setup(struct scmi_info *info)
2669 {
2670 	char top_dir[16];
2671 	struct dentry *trans, *top_dentry;
2672 	struct scmi_debug_info *dbg;
2673 	const char *c_ptr = NULL;
2674 
2675 	dbg = devm_kzalloc(info->dev, sizeof(*dbg), GFP_KERNEL);
2676 	if (!dbg)
2677 		return NULL;
2678 
2679 	dbg->name = kstrdup(of_node_full_name(info->dev->of_node), GFP_KERNEL);
2680 	if (!dbg->name) {
2681 		devm_kfree(info->dev, dbg);
2682 		return NULL;
2683 	}
2684 
2685 	of_property_read_string(info->dev->of_node, "compatible", &c_ptr);
2686 	dbg->type = kstrdup(c_ptr, GFP_KERNEL);
2687 	if (!dbg->type) {
2688 		kfree(dbg->name);
2689 		devm_kfree(info->dev, dbg);
2690 		return NULL;
2691 	}
2692 
2693 	snprintf(top_dir, 16, "%d", info->id);
2694 	top_dentry = debugfs_create_dir(top_dir, scmi_top_dentry);
2695 	trans = debugfs_create_dir("transport", top_dentry);
2696 
2697 	dbg->is_atomic = info->desc->atomic_enabled &&
2698 				is_transport_polling_capable(info->desc);
2699 
2700 	debugfs_create_str("instance_name", 0400, top_dentry,
2701 			   (char **)&dbg->name);
2702 
2703 	debugfs_create_u32("atomic_threshold_us", 0400, top_dentry,
2704 			   &info->atomic_threshold);
2705 
2706 	debugfs_create_str("type", 0400, trans, (char **)&dbg->type);
2707 
2708 	debugfs_create_bool("is_atomic", 0400, trans, &dbg->is_atomic);
2709 
2710 	debugfs_create_u32("max_rx_timeout_ms", 0400, trans,
2711 			   (u32 *)&info->desc->max_rx_timeout_ms);
2712 
2713 	debugfs_create_u32("max_msg_size", 0400, trans,
2714 			   (u32 *)&info->desc->max_msg_size);
2715 
2716 	debugfs_create_u32("tx_max_msg", 0400, trans,
2717 			   (u32 *)&info->tx_minfo.max_msg);
2718 
2719 	debugfs_create_u32("rx_max_msg", 0400, trans,
2720 			   (u32 *)&info->rx_minfo.max_msg);
2721 
2722 	dbg->top_dentry = top_dentry;
2723 
2724 	if (devm_add_action_or_reset(info->dev,
2725 				     scmi_debugfs_common_cleanup, dbg))
2726 		return NULL;
2727 
2728 	return dbg;
2729 }
2730 
scmi_debugfs_raw_mode_setup(struct scmi_info * info)2731 static int scmi_debugfs_raw_mode_setup(struct scmi_info *info)
2732 {
2733 	int id, num_chans = 0, ret = 0;
2734 	struct scmi_chan_info *cinfo;
2735 	u8 channels[SCMI_MAX_CHANNELS] = {};
2736 	DECLARE_BITMAP(protos, SCMI_MAX_CHANNELS) = {};
2737 
2738 	if (!info->dbg)
2739 		return -EINVAL;
2740 
2741 	/* Enumerate all channels to collect their ids */
2742 	idr_for_each_entry(&info->tx_idr, cinfo, id) {
2743 		/*
2744 		 * Cannot happen, but be defensive.
2745 		 * Zero as num_chans is ok, warn and carry on.
2746 		 */
2747 		if (num_chans >= SCMI_MAX_CHANNELS || !cinfo) {
2748 			dev_warn(info->dev,
2749 				 "SCMI RAW - Error enumerating channels\n");
2750 			break;
2751 		}
2752 
2753 		if (!test_bit(cinfo->id, protos)) {
2754 			channels[num_chans++] = cinfo->id;
2755 			set_bit(cinfo->id, protos);
2756 		}
2757 	}
2758 
2759 	info->raw = scmi_raw_mode_init(&info->handle, info->dbg->top_dentry,
2760 				       info->id, channels, num_chans,
2761 				       info->desc, info->tx_minfo.max_msg);
2762 	if (IS_ERR(info->raw)) {
2763 		dev_err(info->dev, "Failed to initialize SCMI RAW Mode !\n");
2764 		ret = PTR_ERR(info->raw);
2765 		info->raw = NULL;
2766 	}
2767 
2768 	return ret;
2769 }
2770 
scmi_probe(struct platform_device * pdev)2771 static int scmi_probe(struct platform_device *pdev)
2772 {
2773 	int ret;
2774 	struct scmi_handle *handle;
2775 	const struct scmi_desc *desc;
2776 	struct scmi_info *info;
2777 	bool coex = IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT_COEX);
2778 	struct device *dev = &pdev->dev;
2779 	struct device_node *child, *np = dev->of_node;
2780 
2781 	desc = of_device_get_match_data(dev);
2782 	if (!desc)
2783 		return -EINVAL;
2784 
2785 	info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL);
2786 	if (!info)
2787 		return -ENOMEM;
2788 
2789 	info->id = ida_alloc_min(&scmi_id, 0, GFP_KERNEL);
2790 	if (info->id < 0)
2791 		return info->id;
2792 
2793 	info->dev = dev;
2794 	info->desc = desc;
2795 	info->bus_nb.notifier_call = scmi_bus_notifier;
2796 	info->dev_req_nb.notifier_call = scmi_device_request_notifier;
2797 	INIT_LIST_HEAD(&info->node);
2798 	idr_init(&info->protocols);
2799 	mutex_init(&info->protocols_mtx);
2800 	idr_init(&info->active_protocols);
2801 	mutex_init(&info->devreq_mtx);
2802 
2803 	platform_set_drvdata(pdev, info);
2804 	idr_init(&info->tx_idr);
2805 	idr_init(&info->rx_idr);
2806 
2807 	handle = &info->handle;
2808 	handle->dev = info->dev;
2809 	handle->version = &info->version;
2810 	handle->devm_protocol_acquire = scmi_devm_protocol_acquire;
2811 	handle->devm_protocol_get = scmi_devm_protocol_get;
2812 	handle->devm_protocol_put = scmi_devm_protocol_put;
2813 
2814 	/* System wide atomic threshold for atomic ops .. if any */
2815 	if (!of_property_read_u32(np, "atomic-threshold-us",
2816 				  &info->atomic_threshold))
2817 		dev_info(dev,
2818 			 "SCMI System wide atomic threshold set to %d us\n",
2819 			 info->atomic_threshold);
2820 	handle->is_transport_atomic = scmi_is_transport_atomic;
2821 
2822 	if (desc->ops->link_supplier) {
2823 		ret = desc->ops->link_supplier(dev);
2824 		if (ret)
2825 			goto clear_ida;
2826 	}
2827 
2828 	/* Setup all channels described in the DT at first */
2829 	ret = scmi_channels_setup(info);
2830 	if (ret)
2831 		goto clear_ida;
2832 
2833 	ret = bus_register_notifier(&scmi_bus_type, &info->bus_nb);
2834 	if (ret)
2835 		goto clear_txrx_setup;
2836 
2837 	ret = blocking_notifier_chain_register(&scmi_requested_devices_nh,
2838 					       &info->dev_req_nb);
2839 	if (ret)
2840 		goto clear_bus_notifier;
2841 
2842 	ret = scmi_xfer_info_init(info);
2843 	if (ret)
2844 		goto clear_dev_req_notifier;
2845 
2846 	if (scmi_top_dentry) {
2847 		info->dbg = scmi_debugfs_common_setup(info);
2848 		if (!info->dbg)
2849 			dev_warn(dev, "Failed to setup SCMI debugfs.\n");
2850 
2851 		if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT)) {
2852 			ret = scmi_debugfs_raw_mode_setup(info);
2853 			if (!coex) {
2854 				if (ret)
2855 					goto clear_dev_req_notifier;
2856 
2857 				/* Bail out anyway when coex disabled. */
2858 				return 0;
2859 			}
2860 
2861 			/* Coex enabled, carry on in any case. */
2862 			dev_info(dev, "SCMI RAW Mode COEX enabled !\n");
2863 		}
2864 	}
2865 
2866 	if (scmi_notification_init(handle))
2867 		dev_err(dev, "SCMI Notifications NOT available.\n");
2868 
2869 	if (info->desc->atomic_enabled &&
2870 	    !is_transport_polling_capable(info->desc))
2871 		dev_err(dev,
2872 			"Transport is not polling capable. Atomic mode not supported.\n");
2873 
2874 	/*
2875 	 * Trigger SCMI Base protocol initialization.
2876 	 * It's mandatory and won't be ever released/deinit until the
2877 	 * SCMI stack is shutdown/unloaded as a whole.
2878 	 */
2879 	ret = scmi_protocol_acquire(handle, SCMI_PROTOCOL_BASE);
2880 	if (ret) {
2881 		dev_err(dev, "unable to communicate with SCMI\n");
2882 		if (coex)
2883 			return 0;
2884 		goto notification_exit;
2885 	}
2886 
2887 	mutex_lock(&scmi_list_mutex);
2888 	list_add_tail(&info->node, &scmi_list);
2889 	mutex_unlock(&scmi_list_mutex);
2890 
2891 	for_each_available_child_of_node(np, child) {
2892 		u32 prot_id;
2893 
2894 		if (of_property_read_u32(child, "reg", &prot_id))
2895 			continue;
2896 
2897 		if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
2898 			dev_err(dev, "Out of range protocol %d\n", prot_id);
2899 
2900 		if (!scmi_is_protocol_implemented(handle, prot_id)) {
2901 			dev_err(dev, "SCMI protocol %d not implemented\n",
2902 				prot_id);
2903 			continue;
2904 		}
2905 
2906 		/*
2907 		 * Save this valid DT protocol descriptor amongst
2908 		 * @active_protocols for this SCMI instance/
2909 		 */
2910 		ret = idr_alloc(&info->active_protocols, child,
2911 				prot_id, prot_id + 1, GFP_KERNEL);
2912 		if (ret != prot_id) {
2913 			dev_err(dev, "SCMI protocol %d already activated. Skip\n",
2914 				prot_id);
2915 			continue;
2916 		}
2917 
2918 		of_node_get(child);
2919 		scmi_create_protocol_devices(child, info, prot_id, NULL);
2920 	}
2921 
2922 	return 0;
2923 
2924 notification_exit:
2925 	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
2926 		scmi_raw_mode_cleanup(info->raw);
2927 	scmi_notification_exit(&info->handle);
2928 clear_dev_req_notifier:
2929 	blocking_notifier_chain_unregister(&scmi_requested_devices_nh,
2930 					   &info->dev_req_nb);
2931 clear_bus_notifier:
2932 	bus_unregister_notifier(&scmi_bus_type, &info->bus_nb);
2933 clear_txrx_setup:
2934 	scmi_cleanup_txrx_channels(info);
2935 clear_ida:
2936 	ida_free(&scmi_id, info->id);
2937 	return ret;
2938 }
2939 
scmi_remove(struct platform_device * pdev)2940 static int scmi_remove(struct platform_device *pdev)
2941 {
2942 	int id;
2943 	struct scmi_info *info = platform_get_drvdata(pdev);
2944 	struct device_node *child;
2945 
2946 	if (IS_ENABLED(CONFIG_ARM_SCMI_RAW_MODE_SUPPORT))
2947 		scmi_raw_mode_cleanup(info->raw);
2948 
2949 	mutex_lock(&scmi_list_mutex);
2950 	if (info->users)
2951 		dev_warn(&pdev->dev,
2952 			 "Still active SCMI users will be forcibly unbound.\n");
2953 	list_del(&info->node);
2954 	mutex_unlock(&scmi_list_mutex);
2955 
2956 	scmi_notification_exit(&info->handle);
2957 
2958 	mutex_lock(&info->protocols_mtx);
2959 	idr_destroy(&info->protocols);
2960 	mutex_unlock(&info->protocols_mtx);
2961 
2962 	idr_for_each_entry(&info->active_protocols, child, id)
2963 		of_node_put(child);
2964 	idr_destroy(&info->active_protocols);
2965 
2966 	blocking_notifier_chain_unregister(&scmi_requested_devices_nh,
2967 					   &info->dev_req_nb);
2968 	bus_unregister_notifier(&scmi_bus_type, &info->bus_nb);
2969 
2970 	/* Safe to free channels since no more users */
2971 	scmi_cleanup_txrx_channels(info);
2972 
2973 	ida_free(&scmi_id, info->id);
2974 
2975 	return 0;
2976 }
2977 
protocol_version_show(struct device * dev,struct device_attribute * attr,char * buf)2978 static ssize_t protocol_version_show(struct device *dev,
2979 				     struct device_attribute *attr, char *buf)
2980 {
2981 	struct scmi_info *info = dev_get_drvdata(dev);
2982 
2983 	return sprintf(buf, "%u.%u\n", info->version.major_ver,
2984 		       info->version.minor_ver);
2985 }
2986 static DEVICE_ATTR_RO(protocol_version);
2987 
firmware_version_show(struct device * dev,struct device_attribute * attr,char * buf)2988 static ssize_t firmware_version_show(struct device *dev,
2989 				     struct device_attribute *attr, char *buf)
2990 {
2991 	struct scmi_info *info = dev_get_drvdata(dev);
2992 
2993 	return sprintf(buf, "0x%x\n", info->version.impl_ver);
2994 }
2995 static DEVICE_ATTR_RO(firmware_version);
2996 
vendor_id_show(struct device * dev,struct device_attribute * attr,char * buf)2997 static ssize_t vendor_id_show(struct device *dev,
2998 			      struct device_attribute *attr, char *buf)
2999 {
3000 	struct scmi_info *info = dev_get_drvdata(dev);
3001 
3002 	return sprintf(buf, "%s\n", info->version.vendor_id);
3003 }
3004 static DEVICE_ATTR_RO(vendor_id);
3005 
sub_vendor_id_show(struct device * dev,struct device_attribute * attr,char * buf)3006 static ssize_t sub_vendor_id_show(struct device *dev,
3007 				  struct device_attribute *attr, char *buf)
3008 {
3009 	struct scmi_info *info = dev_get_drvdata(dev);
3010 
3011 	return sprintf(buf, "%s\n", info->version.sub_vendor_id);
3012 }
3013 static DEVICE_ATTR_RO(sub_vendor_id);
3014 
3015 static struct attribute *versions_attrs[] = {
3016 	&dev_attr_firmware_version.attr,
3017 	&dev_attr_protocol_version.attr,
3018 	&dev_attr_vendor_id.attr,
3019 	&dev_attr_sub_vendor_id.attr,
3020 	NULL,
3021 };
3022 ATTRIBUTE_GROUPS(versions);
3023 
3024 /* Each compatible listed below must have descriptor associated with it */
3025 static const struct of_device_id scmi_of_match[] = {
3026 #ifdef CONFIG_ARM_SCMI_TRANSPORT_MAILBOX
3027 	{ .compatible = "arm,scmi", .data = &scmi_mailbox_desc },
3028 #endif
3029 #ifdef CONFIG_ARM_SCMI_TRANSPORT_OPTEE
3030 	{ .compatible = "linaro,scmi-optee", .data = &scmi_optee_desc },
3031 #endif
3032 #ifdef CONFIG_ARM_SCMI_TRANSPORT_SMC
3033 	{ .compatible = "arm,scmi-smc", .data = &scmi_smc_desc},
3034 	{ .compatible = "arm,scmi-smc-param", .data = &scmi_smc_desc},
3035 #endif
3036 #ifdef CONFIG_ARM_SCMI_TRANSPORT_VIRTIO
3037 	{ .compatible = "arm,scmi-virtio", .data = &scmi_virtio_desc},
3038 #endif
3039 	{ /* Sentinel */ },
3040 };
3041 
3042 MODULE_DEVICE_TABLE(of, scmi_of_match);
3043 
3044 static struct platform_driver scmi_driver = {
3045 	.driver = {
3046 		   .name = "arm-scmi",
3047 		   .suppress_bind_attrs = true,
3048 		   .of_match_table = scmi_of_match,
3049 		   .dev_groups = versions_groups,
3050 		   },
3051 	.probe = scmi_probe,
3052 	.remove = scmi_remove,
3053 };
3054 
3055 /**
3056  * __scmi_transports_setup  - Common helper to call transport-specific
3057  * .init/.exit code if provided.
3058  *
3059  * @init: A flag to distinguish between init and exit.
3060  *
3061  * Note that, if provided, we invoke .init/.exit functions for all the
3062  * transports currently compiled in.
3063  *
3064  * Return: 0 on Success.
3065  */
__scmi_transports_setup(bool init)3066 static inline int __scmi_transports_setup(bool init)
3067 {
3068 	int ret = 0;
3069 	const struct of_device_id *trans;
3070 
3071 	for (trans = scmi_of_match; trans->data; trans++) {
3072 		const struct scmi_desc *tdesc = trans->data;
3073 
3074 		if ((init && !tdesc->transport_init) ||
3075 		    (!init && !tdesc->transport_exit))
3076 			continue;
3077 
3078 		if (init)
3079 			ret = tdesc->transport_init();
3080 		else
3081 			tdesc->transport_exit();
3082 
3083 		if (ret) {
3084 			pr_err("SCMI transport %s FAILED initialization!\n",
3085 			       trans->compatible);
3086 			break;
3087 		}
3088 	}
3089 
3090 	return ret;
3091 }
3092 
scmi_transports_init(void)3093 static int __init scmi_transports_init(void)
3094 {
3095 	return __scmi_transports_setup(true);
3096 }
3097 
scmi_transports_exit(void)3098 static void __exit scmi_transports_exit(void)
3099 {
3100 	__scmi_transports_setup(false);
3101 }
3102 
scmi_debugfs_init(void)3103 static struct dentry *scmi_debugfs_init(void)
3104 {
3105 	struct dentry *d;
3106 
3107 	d = debugfs_create_dir("scmi", NULL);
3108 	if (IS_ERR(d)) {
3109 		pr_err("Could NOT create SCMI top dentry.\n");
3110 		return NULL;
3111 	}
3112 
3113 	return d;
3114 }
3115 
scmi_driver_init(void)3116 static int __init scmi_driver_init(void)
3117 {
3118 	int ret;
3119 
3120 	/* Bail out if no SCMI transport was configured */
3121 	if (WARN_ON(!IS_ENABLED(CONFIG_ARM_SCMI_HAVE_TRANSPORT)))
3122 		return -EINVAL;
3123 
3124 	/* Initialize any compiled-in transport which provided an init/exit */
3125 	ret = scmi_transports_init();
3126 	if (ret)
3127 		return ret;
3128 
3129 	if (IS_ENABLED(CONFIG_ARM_SCMI_NEED_DEBUGFS))
3130 		scmi_top_dentry = scmi_debugfs_init();
3131 
3132 	scmi_base_register();
3133 
3134 	scmi_clock_register();
3135 	scmi_perf_register();
3136 	scmi_power_register();
3137 	scmi_reset_register();
3138 	scmi_sensors_register();
3139 	scmi_voltage_register();
3140 	scmi_system_register();
3141 	scmi_powercap_register();
3142 
3143 	return platform_driver_register(&scmi_driver);
3144 }
3145 module_init(scmi_driver_init);
3146 
scmi_driver_exit(void)3147 static void __exit scmi_driver_exit(void)
3148 {
3149 	scmi_base_unregister();
3150 
3151 	scmi_clock_unregister();
3152 	scmi_perf_unregister();
3153 	scmi_power_unregister();
3154 	scmi_reset_unregister();
3155 	scmi_sensors_unregister();
3156 	scmi_voltage_unregister();
3157 	scmi_system_unregister();
3158 	scmi_powercap_unregister();
3159 
3160 	scmi_transports_exit();
3161 
3162 	platform_driver_unregister(&scmi_driver);
3163 
3164 	debugfs_remove_recursive(scmi_top_dentry);
3165 }
3166 module_exit(scmi_driver_exit);
3167 
3168 MODULE_ALIAS("platform:arm-scmi");
3169 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
3170 MODULE_DESCRIPTION("ARM SCMI protocol driver");
3171 MODULE_LICENSE("GPL v2");
3172