xref: /openbmc/linux/drivers/gpu/drm/vc4/vc4_plane.c (revision 1e952e95843d437b8a904dbd5b48d72db8ac23ec)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Copyright (C) 2015 Broadcom
4   */
5  
6  /**
7   * DOC: VC4 plane module
8   *
9   * Each DRM plane is a layer of pixels being scanned out by the HVS.
10   *
11   * At atomic modeset check time, we compute the HVS display element
12   * state that would be necessary for displaying the plane (giving us a
13   * chance to figure out if a plane configuration is invalid), then at
14   * atomic flush time the CRTC will ask us to write our element state
15   * into the region of the HVS that it has allocated for us.
16   */
17  
18  #include <drm/drm_atomic.h>
19  #include <drm/drm_atomic_helper.h>
20  #include <drm/drm_atomic_uapi.h>
21  #include <drm/drm_blend.h>
22  #include <drm/drm_drv.h>
23  #include <drm/drm_fb_dma_helper.h>
24  #include <drm/drm_fourcc.h>
25  #include <drm/drm_framebuffer.h>
26  #include <drm/drm_gem_atomic_helper.h>
27  
28  #include "uapi/drm/vc4_drm.h"
29  
30  #include "vc4_drv.h"
31  #include "vc4_regs.h"
32  
33  static const struct hvs_format {
34  	u32 drm; /* DRM_FORMAT_* */
35  	u32 hvs; /* HVS_FORMAT_* */
36  	u32 pixel_order;
37  	u32 pixel_order_hvs5;
38  	bool hvs5_only;
39  } hvs_formats[] = {
40  	{
41  		.drm = DRM_FORMAT_XRGB8888,
42  		.hvs = HVS_PIXEL_FORMAT_RGBA8888,
43  		.pixel_order = HVS_PIXEL_ORDER_ABGR,
44  		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
45  	},
46  	{
47  		.drm = DRM_FORMAT_ARGB8888,
48  		.hvs = HVS_PIXEL_FORMAT_RGBA8888,
49  		.pixel_order = HVS_PIXEL_ORDER_ABGR,
50  		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
51  	},
52  	{
53  		.drm = DRM_FORMAT_ABGR8888,
54  		.hvs = HVS_PIXEL_FORMAT_RGBA8888,
55  		.pixel_order = HVS_PIXEL_ORDER_ARGB,
56  		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
57  	},
58  	{
59  		.drm = DRM_FORMAT_XBGR8888,
60  		.hvs = HVS_PIXEL_FORMAT_RGBA8888,
61  		.pixel_order = HVS_PIXEL_ORDER_ARGB,
62  		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
63  	},
64  	{
65  		.drm = DRM_FORMAT_RGB565,
66  		.hvs = HVS_PIXEL_FORMAT_RGB565,
67  		.pixel_order = HVS_PIXEL_ORDER_XRGB,
68  		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XRGB,
69  	},
70  	{
71  		.drm = DRM_FORMAT_BGR565,
72  		.hvs = HVS_PIXEL_FORMAT_RGB565,
73  		.pixel_order = HVS_PIXEL_ORDER_XBGR,
74  		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XBGR,
75  	},
76  	{
77  		.drm = DRM_FORMAT_ARGB1555,
78  		.hvs = HVS_PIXEL_FORMAT_RGBA5551,
79  		.pixel_order = HVS_PIXEL_ORDER_ABGR,
80  		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
81  	},
82  	{
83  		.drm = DRM_FORMAT_XRGB1555,
84  		.hvs = HVS_PIXEL_FORMAT_RGBA5551,
85  		.pixel_order = HVS_PIXEL_ORDER_ABGR,
86  		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
87  	},
88  	{
89  		.drm = DRM_FORMAT_RGB888,
90  		.hvs = HVS_PIXEL_FORMAT_RGB888,
91  		.pixel_order = HVS_PIXEL_ORDER_XRGB,
92  		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XRGB,
93  	},
94  	{
95  		.drm = DRM_FORMAT_BGR888,
96  		.hvs = HVS_PIXEL_FORMAT_RGB888,
97  		.pixel_order = HVS_PIXEL_ORDER_XBGR,
98  		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XBGR,
99  	},
100  	{
101  		.drm = DRM_FORMAT_YUV422,
102  		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
103  		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
104  		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCBCR,
105  	},
106  	{
107  		.drm = DRM_FORMAT_YVU422,
108  		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE,
109  		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
110  		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCRCB,
111  	},
112  	{
113  		.drm = DRM_FORMAT_YUV420,
114  		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
115  		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
116  		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCBCR,
117  	},
118  	{
119  		.drm = DRM_FORMAT_YVU420,
120  		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE,
121  		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
122  		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCRCB,
123  	},
124  	{
125  		.drm = DRM_FORMAT_NV12,
126  		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
127  		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
128  		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCBCR,
129  	},
130  	{
131  		.drm = DRM_FORMAT_NV21,
132  		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE,
133  		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
134  		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCRCB,
135  	},
136  	{
137  		.drm = DRM_FORMAT_NV16,
138  		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
139  		.pixel_order = HVS_PIXEL_ORDER_XYCBCR,
140  		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCBCR,
141  	},
142  	{
143  		.drm = DRM_FORMAT_NV61,
144  		.hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE,
145  		.pixel_order = HVS_PIXEL_ORDER_XYCRCB,
146  		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCRCB,
147  	},
148  	{
149  		.drm = DRM_FORMAT_P030,
150  		.hvs = HVS_PIXEL_FORMAT_YCBCR_10BIT,
151  		.pixel_order_hvs5 = HVS_PIXEL_ORDER_XYCBCR,
152  		.hvs5_only = true,
153  	},
154  	{
155  		.drm = DRM_FORMAT_XRGB2101010,
156  		.hvs = HVS_PIXEL_FORMAT_RGBA1010102,
157  		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
158  		.hvs5_only = true,
159  	},
160  	{
161  		.drm = DRM_FORMAT_ARGB2101010,
162  		.hvs = HVS_PIXEL_FORMAT_RGBA1010102,
163  		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
164  		.hvs5_only = true,
165  	},
166  	{
167  		.drm = DRM_FORMAT_ABGR2101010,
168  		.hvs = HVS_PIXEL_FORMAT_RGBA1010102,
169  		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
170  		.hvs5_only = true,
171  	},
172  	{
173  		.drm = DRM_FORMAT_XBGR2101010,
174  		.hvs = HVS_PIXEL_FORMAT_RGBA1010102,
175  		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
176  		.hvs5_only = true,
177  	},
178  	{
179  		.drm = DRM_FORMAT_RGB332,
180  		.hvs = HVS_PIXEL_FORMAT_RGB332,
181  		.pixel_order = HVS_PIXEL_ORDER_ARGB,
182  		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
183  	},
184  	{
185  		.drm = DRM_FORMAT_BGR233,
186  		.hvs = HVS_PIXEL_FORMAT_RGB332,
187  		.pixel_order = HVS_PIXEL_ORDER_ABGR,
188  		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
189  	},
190  	{
191  		.drm = DRM_FORMAT_XRGB4444,
192  		.hvs = HVS_PIXEL_FORMAT_RGBA4444,
193  		.pixel_order = HVS_PIXEL_ORDER_ABGR,
194  		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
195  	},
196  	{
197  		.drm = DRM_FORMAT_ARGB4444,
198  		.hvs = HVS_PIXEL_FORMAT_RGBA4444,
199  		.pixel_order = HVS_PIXEL_ORDER_ABGR,
200  		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ARGB,
201  	},
202  	{
203  		.drm = DRM_FORMAT_XBGR4444,
204  		.hvs = HVS_PIXEL_FORMAT_RGBA4444,
205  		.pixel_order = HVS_PIXEL_ORDER_ARGB,
206  		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
207  	},
208  	{
209  		.drm = DRM_FORMAT_ABGR4444,
210  		.hvs = HVS_PIXEL_FORMAT_RGBA4444,
211  		.pixel_order = HVS_PIXEL_ORDER_ARGB,
212  		.pixel_order_hvs5 = HVS_PIXEL_ORDER_ABGR,
213  	},
214  	{
215  		.drm = DRM_FORMAT_BGRX4444,
216  		.hvs = HVS_PIXEL_FORMAT_RGBA4444,
217  		.pixel_order = HVS_PIXEL_ORDER_RGBA,
218  		.pixel_order_hvs5 = HVS_PIXEL_ORDER_BGRA,
219  	},
220  	{
221  		.drm = DRM_FORMAT_BGRA4444,
222  		.hvs = HVS_PIXEL_FORMAT_RGBA4444,
223  		.pixel_order = HVS_PIXEL_ORDER_RGBA,
224  		.pixel_order_hvs5 = HVS_PIXEL_ORDER_BGRA,
225  	},
226  	{
227  		.drm = DRM_FORMAT_RGBX4444,
228  		.hvs = HVS_PIXEL_FORMAT_RGBA4444,
229  		.pixel_order = HVS_PIXEL_ORDER_BGRA,
230  		.pixel_order_hvs5 = HVS_PIXEL_ORDER_RGBA,
231  	},
232  	{
233  		.drm = DRM_FORMAT_RGBA4444,
234  		.hvs = HVS_PIXEL_FORMAT_RGBA4444,
235  		.pixel_order = HVS_PIXEL_ORDER_BGRA,
236  		.pixel_order_hvs5 = HVS_PIXEL_ORDER_RGBA,
237  	},
238  };
239  
vc4_get_hvs_format(u32 drm_format)240  static const struct hvs_format *vc4_get_hvs_format(u32 drm_format)
241  {
242  	unsigned i;
243  
244  	for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
245  		if (hvs_formats[i].drm == drm_format)
246  			return &hvs_formats[i];
247  	}
248  
249  	return NULL;
250  }
251  
vc4_get_scaling_mode(u32 src,u32 dst)252  static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst)
253  {
254  	if (dst == src)
255  		return VC4_SCALING_NONE;
256  	if (3 * dst >= 2 * src)
257  		return VC4_SCALING_PPF;
258  	else
259  		return VC4_SCALING_TPZ;
260  }
261  
plane_enabled(struct drm_plane_state * state)262  static bool plane_enabled(struct drm_plane_state *state)
263  {
264  	return state->fb && !WARN_ON(!state->crtc);
265  }
266  
vc4_plane_duplicate_state(struct drm_plane * plane)267  static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane)
268  {
269  	struct vc4_plane_state *vc4_state;
270  
271  	if (WARN_ON(!plane->state))
272  		return NULL;
273  
274  	vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL);
275  	if (!vc4_state)
276  		return NULL;
277  
278  	memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm));
279  	vc4_state->dlist_initialized = 0;
280  
281  	__drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base);
282  
283  	if (vc4_state->dlist) {
284  		vc4_state->dlist = kmemdup(vc4_state->dlist,
285  					   vc4_state->dlist_count * 4,
286  					   GFP_KERNEL);
287  		if (!vc4_state->dlist) {
288  			kfree(vc4_state);
289  			return NULL;
290  		}
291  		vc4_state->dlist_size = vc4_state->dlist_count;
292  	}
293  
294  	return &vc4_state->base;
295  }
296  
vc4_plane_destroy_state(struct drm_plane * plane,struct drm_plane_state * state)297  static void vc4_plane_destroy_state(struct drm_plane *plane,
298  				    struct drm_plane_state *state)
299  {
300  	struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
301  	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
302  
303  	if (drm_mm_node_allocated(&vc4_state->lbm)) {
304  		unsigned long irqflags;
305  
306  		spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
307  		drm_mm_remove_node(&vc4_state->lbm);
308  		spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
309  	}
310  
311  	kfree(vc4_state->dlist);
312  	__drm_atomic_helper_plane_destroy_state(&vc4_state->base);
313  	kfree(state);
314  }
315  
316  /* Called during init to allocate the plane's atomic state. */
vc4_plane_reset(struct drm_plane * plane)317  static void vc4_plane_reset(struct drm_plane *plane)
318  {
319  	struct vc4_plane_state *vc4_state;
320  
321  	WARN_ON(plane->state);
322  
323  	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
324  	if (!vc4_state)
325  		return;
326  
327  	__drm_atomic_helper_plane_reset(plane, &vc4_state->base);
328  }
329  
vc4_dlist_counter_increment(struct vc4_plane_state * vc4_state)330  static void vc4_dlist_counter_increment(struct vc4_plane_state *vc4_state)
331  {
332  	if (vc4_state->dlist_count == vc4_state->dlist_size) {
333  		u32 new_size = max(4u, vc4_state->dlist_count * 2);
334  		u32 *new_dlist = kmalloc_array(new_size, 4, GFP_KERNEL);
335  
336  		if (!new_dlist)
337  			return;
338  		memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4);
339  
340  		kfree(vc4_state->dlist);
341  		vc4_state->dlist = new_dlist;
342  		vc4_state->dlist_size = new_size;
343  	}
344  
345  	vc4_state->dlist_count++;
346  }
347  
vc4_dlist_write(struct vc4_plane_state * vc4_state,u32 val)348  static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val)
349  {
350  	unsigned int idx = vc4_state->dlist_count;
351  
352  	vc4_dlist_counter_increment(vc4_state);
353  	vc4_state->dlist[idx] = val;
354  }
355  
356  /* Returns the scl0/scl1 field based on whether the dimensions need to
357   * be up/down/non-scaled.
358   *
359   * This is a replication of a table from the spec.
360   */
vc4_get_scl_field(struct drm_plane_state * state,int plane)361  static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane)
362  {
363  	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
364  
365  	switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) {
366  	case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF:
367  		return SCALER_CTL0_SCL_H_PPF_V_PPF;
368  	case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF:
369  		return SCALER_CTL0_SCL_H_TPZ_V_PPF;
370  	case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ:
371  		return SCALER_CTL0_SCL_H_PPF_V_TPZ;
372  	case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ:
373  		return SCALER_CTL0_SCL_H_TPZ_V_TPZ;
374  	case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE:
375  		return SCALER_CTL0_SCL_H_PPF_V_NONE;
376  	case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF:
377  		return SCALER_CTL0_SCL_H_NONE_V_PPF;
378  	case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ:
379  		return SCALER_CTL0_SCL_H_NONE_V_TPZ;
380  	case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE:
381  		return SCALER_CTL0_SCL_H_TPZ_V_NONE;
382  	default:
383  	case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE:
384  		/* The unity case is independently handled by
385  		 * SCALER_CTL0_UNITY.
386  		 */
387  		return 0;
388  	}
389  }
390  
vc4_plane_margins_adj(struct drm_plane_state * pstate)391  static int vc4_plane_margins_adj(struct drm_plane_state *pstate)
392  {
393  	struct vc4_plane_state *vc4_pstate = to_vc4_plane_state(pstate);
394  	unsigned int left, right, top, bottom, adjhdisplay, adjvdisplay;
395  	struct drm_crtc_state *crtc_state;
396  
397  	crtc_state = drm_atomic_get_new_crtc_state(pstate->state,
398  						   pstate->crtc);
399  
400  	vc4_crtc_get_margins(crtc_state, &left, &right, &top, &bottom);
401  	if (!left && !right && !top && !bottom)
402  		return 0;
403  
404  	if (left + right >= crtc_state->mode.hdisplay ||
405  	    top + bottom >= crtc_state->mode.vdisplay)
406  		return -EINVAL;
407  
408  	adjhdisplay = crtc_state->mode.hdisplay - (left + right);
409  	vc4_pstate->crtc_x = DIV_ROUND_CLOSEST(vc4_pstate->crtc_x *
410  					       adjhdisplay,
411  					       crtc_state->mode.hdisplay);
412  	vc4_pstate->crtc_x += left;
413  	if (vc4_pstate->crtc_x > crtc_state->mode.hdisplay - right)
414  		vc4_pstate->crtc_x = crtc_state->mode.hdisplay - right;
415  
416  	adjvdisplay = crtc_state->mode.vdisplay - (top + bottom);
417  	vc4_pstate->crtc_y = DIV_ROUND_CLOSEST(vc4_pstate->crtc_y *
418  					       adjvdisplay,
419  					       crtc_state->mode.vdisplay);
420  	vc4_pstate->crtc_y += top;
421  	if (vc4_pstate->crtc_y > crtc_state->mode.vdisplay - bottom)
422  		vc4_pstate->crtc_y = crtc_state->mode.vdisplay - bottom;
423  
424  	vc4_pstate->crtc_w = DIV_ROUND_CLOSEST(vc4_pstate->crtc_w *
425  					       adjhdisplay,
426  					       crtc_state->mode.hdisplay);
427  	vc4_pstate->crtc_h = DIV_ROUND_CLOSEST(vc4_pstate->crtc_h *
428  					       adjvdisplay,
429  					       crtc_state->mode.vdisplay);
430  
431  	if (!vc4_pstate->crtc_w || !vc4_pstate->crtc_h)
432  		return -EINVAL;
433  
434  	return 0;
435  }
436  
vc4_plane_setup_clipping_and_scaling(struct drm_plane_state * state)437  static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state)
438  {
439  	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
440  	struct drm_framebuffer *fb = state->fb;
441  	struct drm_gem_dma_object *bo;
442  	int num_planes = fb->format->num_planes;
443  	struct drm_crtc_state *crtc_state;
444  	u32 h_subsample = fb->format->hsub;
445  	u32 v_subsample = fb->format->vsub;
446  	int i, ret;
447  
448  	crtc_state = drm_atomic_get_existing_crtc_state(state->state,
449  							state->crtc);
450  	if (!crtc_state) {
451  		DRM_DEBUG_KMS("Invalid crtc state\n");
452  		return -EINVAL;
453  	}
454  
455  	ret = drm_atomic_helper_check_plane_state(state, crtc_state, 1,
456  						  INT_MAX, true, true);
457  	if (ret)
458  		return ret;
459  
460  	for (i = 0; i < num_planes; i++) {
461  		bo = drm_fb_dma_get_gem_obj(fb, i);
462  		vc4_state->offsets[i] = bo->dma_addr + fb->offsets[i];
463  	}
464  
465  	/*
466  	 * We don't support subpixel source positioning for scaling,
467  	 * but fractional coordinates can be generated by clipping
468  	 * so just round for now
469  	 */
470  	vc4_state->src_x = DIV_ROUND_CLOSEST(state->src.x1, 1 << 16);
471  	vc4_state->src_y = DIV_ROUND_CLOSEST(state->src.y1, 1 << 16);
472  	vc4_state->src_w[0] = DIV_ROUND_CLOSEST(state->src.x2, 1 << 16) - vc4_state->src_x;
473  	vc4_state->src_h[0] = DIV_ROUND_CLOSEST(state->src.y2, 1 << 16) - vc4_state->src_y;
474  
475  	vc4_state->crtc_x = state->dst.x1;
476  	vc4_state->crtc_y = state->dst.y1;
477  	vc4_state->crtc_w = state->dst.x2 - state->dst.x1;
478  	vc4_state->crtc_h = state->dst.y2 - state->dst.y1;
479  
480  	ret = vc4_plane_margins_adj(state);
481  	if (ret)
482  		return ret;
483  
484  	vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0],
485  						       vc4_state->crtc_w);
486  	vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0],
487  						       vc4_state->crtc_h);
488  
489  	vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE &&
490  			       vc4_state->y_scaling[0] == VC4_SCALING_NONE);
491  
492  	if (num_planes > 1) {
493  		vc4_state->is_yuv = true;
494  
495  		vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample;
496  		vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample;
497  
498  		vc4_state->x_scaling[1] =
499  			vc4_get_scaling_mode(vc4_state->src_w[1],
500  					     vc4_state->crtc_w);
501  		vc4_state->y_scaling[1] =
502  			vc4_get_scaling_mode(vc4_state->src_h[1],
503  					     vc4_state->crtc_h);
504  
505  		/* YUV conversion requires that horizontal scaling be enabled
506  		 * on the UV plane even if vc4_get_scaling_mode() returned
507  		 * VC4_SCALING_NONE (which can happen when the down-scaling
508  		 * ratio is 0.5). Let's force it to VC4_SCALING_PPF in this
509  		 * case.
510  		 */
511  		if (vc4_state->x_scaling[1] == VC4_SCALING_NONE)
512  			vc4_state->x_scaling[1] = VC4_SCALING_PPF;
513  	} else {
514  		vc4_state->is_yuv = false;
515  		vc4_state->x_scaling[1] = VC4_SCALING_NONE;
516  		vc4_state->y_scaling[1] = VC4_SCALING_NONE;
517  	}
518  
519  	return 0;
520  }
521  
vc4_write_tpz(struct vc4_plane_state * vc4_state,u32 src,u32 dst)522  static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
523  {
524  	u32 scale, recip;
525  
526  	scale = (1 << 16) * src / dst;
527  
528  	/* The specs note that while the reciprocal would be defined
529  	 * as (1<<32)/scale, ~0 is close enough.
530  	 */
531  	recip = ~0 / scale;
532  
533  	vc4_dlist_write(vc4_state,
534  			VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) |
535  			VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE));
536  	vc4_dlist_write(vc4_state,
537  			VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP));
538  }
539  
vc4_write_ppf(struct vc4_plane_state * vc4_state,u32 src,u32 dst)540  static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst)
541  {
542  	u32 scale = (1 << 16) * src / dst;
543  
544  	vc4_dlist_write(vc4_state,
545  			SCALER_PPF_AGC |
546  			VC4_SET_FIELD(scale, SCALER_PPF_SCALE) |
547  			VC4_SET_FIELD(0, SCALER_PPF_IPHASE));
548  }
549  
vc4_lbm_size(struct drm_plane_state * state)550  static u32 vc4_lbm_size(struct drm_plane_state *state)
551  {
552  	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
553  	struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev);
554  	u32 pix_per_line;
555  	u32 lbm;
556  
557  	/* LBM is not needed when there's no vertical scaling. */
558  	if (vc4_state->y_scaling[0] == VC4_SCALING_NONE &&
559  	    vc4_state->y_scaling[1] == VC4_SCALING_NONE)
560  		return 0;
561  
562  	/*
563  	 * This can be further optimized in the RGB/YUV444 case if the PPF
564  	 * decimation factor is between 0.5 and 1.0 by using crtc_w.
565  	 *
566  	 * It's not an issue though, since in that case since src_w[0] is going
567  	 * to be greater than or equal to crtc_w.
568  	 */
569  	if (vc4_state->x_scaling[0] == VC4_SCALING_TPZ)
570  		pix_per_line = vc4_state->crtc_w;
571  	else
572  		pix_per_line = vc4_state->src_w[0];
573  
574  	if (!vc4_state->is_yuv) {
575  		if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ)
576  			lbm = pix_per_line * 8;
577  		else {
578  			/* In special cases, this multiplier might be 12. */
579  			lbm = pix_per_line * 16;
580  		}
581  	} else {
582  		/* There are cases for this going down to a multiplier
583  		 * of 2, but according to the firmware source, the
584  		 * table in the docs is somewhat wrong.
585  		 */
586  		lbm = pix_per_line * 16;
587  	}
588  
589  	/* Align it to 64 or 128 (hvs5) bytes */
590  	lbm = roundup(lbm, vc4->is_vc5 ? 128 : 64);
591  
592  	/* Each "word" of the LBM memory contains 2 or 4 (hvs5) pixels */
593  	lbm /= vc4->is_vc5 ? 4 : 2;
594  
595  	return lbm;
596  }
597  
vc4_write_scaling_parameters(struct drm_plane_state * state,int channel)598  static void vc4_write_scaling_parameters(struct drm_plane_state *state,
599  					 int channel)
600  {
601  	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
602  
603  	/* Ch0 H-PPF Word 0: Scaling Parameters */
604  	if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) {
605  		vc4_write_ppf(vc4_state,
606  			      vc4_state->src_w[channel], vc4_state->crtc_w);
607  	}
608  
609  	/* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */
610  	if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) {
611  		vc4_write_ppf(vc4_state,
612  			      vc4_state->src_h[channel], vc4_state->crtc_h);
613  		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
614  	}
615  
616  	/* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */
617  	if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) {
618  		vc4_write_tpz(vc4_state,
619  			      vc4_state->src_w[channel], vc4_state->crtc_w);
620  	}
621  
622  	/* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */
623  	if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) {
624  		vc4_write_tpz(vc4_state,
625  			      vc4_state->src_h[channel], vc4_state->crtc_h);
626  		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
627  	}
628  }
629  
vc4_plane_calc_load(struct drm_plane_state * state)630  static void vc4_plane_calc_load(struct drm_plane_state *state)
631  {
632  	unsigned int hvs_load_shift, vrefresh, i;
633  	struct drm_framebuffer *fb = state->fb;
634  	struct vc4_plane_state *vc4_state;
635  	struct drm_crtc_state *crtc_state;
636  	unsigned int vscale_factor;
637  
638  	vc4_state = to_vc4_plane_state(state);
639  	crtc_state = drm_atomic_get_existing_crtc_state(state->state,
640  							state->crtc);
641  	vrefresh = drm_mode_vrefresh(&crtc_state->adjusted_mode);
642  
643  	/* The HVS is able to process 2 pixels/cycle when scaling the source,
644  	 * 4 pixels/cycle otherwise.
645  	 * Alpha blending step seems to be pipelined and it's always operating
646  	 * at 4 pixels/cycle, so the limiting aspect here seems to be the
647  	 * scaler block.
648  	 * HVS load is expressed in clk-cycles/sec (AKA Hz).
649  	 */
650  	if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
651  	    vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
652  	    vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
653  	    vc4_state->y_scaling[1] != VC4_SCALING_NONE)
654  		hvs_load_shift = 1;
655  	else
656  		hvs_load_shift = 2;
657  
658  	vc4_state->membus_load = 0;
659  	vc4_state->hvs_load = 0;
660  	for (i = 0; i < fb->format->num_planes; i++) {
661  		/* Even if the bandwidth/plane required for a single frame is
662  		 *
663  		 * vc4_state->src_w[i] * vc4_state->src_h[i] * cpp * vrefresh
664  		 *
665  		 * when downscaling, we have to read more pixels per line in
666  		 * the time frame reserved for a single line, so the bandwidth
667  		 * demand can be punctually higher. To account for that, we
668  		 * calculate the down-scaling factor and multiply the plane
669  		 * load by this number. We're likely over-estimating the read
670  		 * demand, but that's better than under-estimating it.
671  		 */
672  		vscale_factor = DIV_ROUND_UP(vc4_state->src_h[i],
673  					     vc4_state->crtc_h);
674  		vc4_state->membus_load += vc4_state->src_w[i] *
675  					  vc4_state->src_h[i] * vscale_factor *
676  					  fb->format->cpp[i];
677  		vc4_state->hvs_load += vc4_state->crtc_h * vc4_state->crtc_w;
678  	}
679  
680  	vc4_state->hvs_load *= vrefresh;
681  	vc4_state->hvs_load >>= hvs_load_shift;
682  	vc4_state->membus_load *= vrefresh;
683  }
684  
vc4_plane_allocate_lbm(struct drm_plane_state * state)685  static int vc4_plane_allocate_lbm(struct drm_plane_state *state)
686  {
687  	struct vc4_dev *vc4 = to_vc4_dev(state->plane->dev);
688  	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
689  	unsigned long irqflags;
690  	u32 lbm_size;
691  
692  	lbm_size = vc4_lbm_size(state);
693  	if (!lbm_size)
694  		return 0;
695  
696  	if (WARN_ON(!vc4_state->lbm_offset))
697  		return -EINVAL;
698  
699  	/* Allocate the LBM memory that the HVS will use for temporary
700  	 * storage due to our scaling/format conversion.
701  	 */
702  	if (!drm_mm_node_allocated(&vc4_state->lbm)) {
703  		int ret;
704  
705  		spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags);
706  		ret = drm_mm_insert_node_generic(&vc4->hvs->lbm_mm,
707  						 &vc4_state->lbm,
708  						 lbm_size,
709  						 vc4->is_vc5 ? 64 : 32,
710  						 0, 0);
711  		spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags);
712  
713  		if (ret)
714  			return ret;
715  	} else {
716  		WARN_ON_ONCE(lbm_size != vc4_state->lbm.size);
717  	}
718  
719  	vc4_state->dlist[vc4_state->lbm_offset] = vc4_state->lbm.start;
720  
721  	return 0;
722  }
723  
724  /*
725   * The colorspace conversion matrices are held in 3 entries in the dlist.
726   * Create an array of them, with entries for each full and limited mode, and
727   * each supported colorspace.
728   */
729  static const u32 colorspace_coeffs[2][DRM_COLOR_ENCODING_MAX][3] = {
730  	{
731  		/* Limited range */
732  		{
733  			/* BT601 */
734  			SCALER_CSC0_ITR_R_601_5,
735  			SCALER_CSC1_ITR_R_601_5,
736  			SCALER_CSC2_ITR_R_601_5,
737  		}, {
738  			/* BT709 */
739  			SCALER_CSC0_ITR_R_709_3,
740  			SCALER_CSC1_ITR_R_709_3,
741  			SCALER_CSC2_ITR_R_709_3,
742  		}, {
743  			/* BT2020 */
744  			SCALER_CSC0_ITR_R_2020,
745  			SCALER_CSC1_ITR_R_2020,
746  			SCALER_CSC2_ITR_R_2020,
747  		}
748  	}, {
749  		/* Full range */
750  		{
751  			/* JFIF */
752  			SCALER_CSC0_JPEG_JFIF,
753  			SCALER_CSC1_JPEG_JFIF,
754  			SCALER_CSC2_JPEG_JFIF,
755  		}, {
756  			/* BT709 */
757  			SCALER_CSC0_ITR_R_709_3_FR,
758  			SCALER_CSC1_ITR_R_709_3_FR,
759  			SCALER_CSC2_ITR_R_709_3_FR,
760  		}, {
761  			/* BT2020 */
762  			SCALER_CSC0_ITR_R_2020_FR,
763  			SCALER_CSC1_ITR_R_2020_FR,
764  			SCALER_CSC2_ITR_R_2020_FR,
765  		}
766  	}
767  };
768  
vc4_hvs4_get_alpha_blend_mode(struct drm_plane_state * state)769  static u32 vc4_hvs4_get_alpha_blend_mode(struct drm_plane_state *state)
770  {
771  	if (!state->fb->format->has_alpha)
772  		return VC4_SET_FIELD(SCALER_POS2_ALPHA_MODE_FIXED,
773  				     SCALER_POS2_ALPHA_MODE);
774  
775  	switch (state->pixel_blend_mode) {
776  	case DRM_MODE_BLEND_PIXEL_NONE:
777  		return VC4_SET_FIELD(SCALER_POS2_ALPHA_MODE_FIXED,
778  				     SCALER_POS2_ALPHA_MODE);
779  	default:
780  	case DRM_MODE_BLEND_PREMULTI:
781  		return VC4_SET_FIELD(SCALER_POS2_ALPHA_MODE_PIPELINE,
782  				     SCALER_POS2_ALPHA_MODE) |
783  			SCALER_POS2_ALPHA_PREMULT;
784  	case DRM_MODE_BLEND_COVERAGE:
785  		return VC4_SET_FIELD(SCALER_POS2_ALPHA_MODE_PIPELINE,
786  				     SCALER_POS2_ALPHA_MODE);
787  	}
788  }
789  
vc4_hvs5_get_alpha_blend_mode(struct drm_plane_state * state)790  static u32 vc4_hvs5_get_alpha_blend_mode(struct drm_plane_state *state)
791  {
792  	if (!state->fb->format->has_alpha)
793  		return VC4_SET_FIELD(SCALER5_CTL2_ALPHA_MODE_FIXED,
794  				     SCALER5_CTL2_ALPHA_MODE);
795  
796  	switch (state->pixel_blend_mode) {
797  	case DRM_MODE_BLEND_PIXEL_NONE:
798  		return VC4_SET_FIELD(SCALER5_CTL2_ALPHA_MODE_FIXED,
799  				     SCALER5_CTL2_ALPHA_MODE);
800  	default:
801  	case DRM_MODE_BLEND_PREMULTI:
802  		return VC4_SET_FIELD(SCALER5_CTL2_ALPHA_MODE_PIPELINE,
803  				     SCALER5_CTL2_ALPHA_MODE) |
804  			SCALER5_CTL2_ALPHA_PREMULT;
805  	case DRM_MODE_BLEND_COVERAGE:
806  		return VC4_SET_FIELD(SCALER5_CTL2_ALPHA_MODE_PIPELINE,
807  				     SCALER5_CTL2_ALPHA_MODE);
808  	}
809  }
810  
811  /* Writes out a full display list for an active plane to the plane's
812   * private dlist state.
813   */
vc4_plane_mode_set(struct drm_plane * plane,struct drm_plane_state * state)814  static int vc4_plane_mode_set(struct drm_plane *plane,
815  			      struct drm_plane_state *state)
816  {
817  	struct vc4_dev *vc4 = to_vc4_dev(plane->dev);
818  	struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
819  	struct drm_framebuffer *fb = state->fb;
820  	u32 ctl0_offset = vc4_state->dlist_count;
821  	const struct hvs_format *format = vc4_get_hvs_format(fb->format->format);
822  	u64 base_format_mod = fourcc_mod_broadcom_mod(fb->modifier);
823  	int num_planes = fb->format->num_planes;
824  	u32 h_subsample = fb->format->hsub;
825  	u32 v_subsample = fb->format->vsub;
826  	bool mix_plane_alpha;
827  	bool covers_screen;
828  	u32 scl0, scl1, pitch0;
829  	u32 tiling, src_y;
830  	u32 hvs_format = format->hvs;
831  	unsigned int rotation;
832  	int ret, i;
833  
834  	if (vc4_state->dlist_initialized)
835  		return 0;
836  
837  	ret = vc4_plane_setup_clipping_and_scaling(state);
838  	if (ret)
839  		return ret;
840  
841  	/* SCL1 is used for Cb/Cr scaling of planar formats.  For RGB
842  	 * and 4:4:4, scl1 should be set to scl0 so both channels of
843  	 * the scaler do the same thing.  For YUV, the Y plane needs
844  	 * to be put in channel 1 and Cb/Cr in channel 0, so we swap
845  	 * the scl fields here.
846  	 */
847  	if (num_planes == 1) {
848  		scl0 = vc4_get_scl_field(state, 0);
849  		scl1 = scl0;
850  	} else {
851  		scl0 = vc4_get_scl_field(state, 1);
852  		scl1 = vc4_get_scl_field(state, 0);
853  	}
854  
855  	rotation = drm_rotation_simplify(state->rotation,
856  					 DRM_MODE_ROTATE_0 |
857  					 DRM_MODE_REFLECT_X |
858  					 DRM_MODE_REFLECT_Y);
859  
860  	/* We must point to the last line when Y reflection is enabled. */
861  	src_y = vc4_state->src_y;
862  	if (rotation & DRM_MODE_REFLECT_Y)
863  		src_y += vc4_state->src_h[0] - 1;
864  
865  	switch (base_format_mod) {
866  	case DRM_FORMAT_MOD_LINEAR:
867  		tiling = SCALER_CTL0_TILING_LINEAR;
868  		pitch0 = VC4_SET_FIELD(fb->pitches[0], SCALER_SRC_PITCH);
869  
870  		/* Adjust the base pointer to the first pixel to be scanned
871  		 * out.
872  		 */
873  		for (i = 0; i < num_planes; i++) {
874  			vc4_state->offsets[i] += src_y /
875  						 (i ? v_subsample : 1) *
876  						 fb->pitches[i];
877  
878  			vc4_state->offsets[i] += vc4_state->src_x /
879  						 (i ? h_subsample : 1) *
880  						 fb->format->cpp[i];
881  		}
882  
883  		break;
884  
885  	case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED: {
886  		u32 tile_size_shift = 12; /* T tiles are 4kb */
887  		/* Whole-tile offsets, mostly for setting the pitch. */
888  		u32 tile_w_shift = fb->format->cpp[0] == 2 ? 6 : 5;
889  		u32 tile_h_shift = 5; /* 16 and 32bpp are 32 pixels high */
890  		u32 tile_w_mask = (1 << tile_w_shift) - 1;
891  		/* The height mask on 32-bit-per-pixel tiles is 63, i.e. twice
892  		 * the height (in pixels) of a 4k tile.
893  		 */
894  		u32 tile_h_mask = (2 << tile_h_shift) - 1;
895  		/* For T-tiled, the FB pitch is "how many bytes from one row to
896  		 * the next, such that
897  		 *
898  		 *	pitch * tile_h == tile_size * tiles_per_row
899  		 */
900  		u32 tiles_w = fb->pitches[0] >> (tile_size_shift - tile_h_shift);
901  		u32 tiles_l = vc4_state->src_x >> tile_w_shift;
902  		u32 tiles_r = tiles_w - tiles_l;
903  		u32 tiles_t = src_y >> tile_h_shift;
904  		/* Intra-tile offsets, which modify the base address (the
905  		 * SCALER_PITCH0_TILE_Y_OFFSET tells HVS how to walk from that
906  		 * base address).
907  		 */
908  		u32 tile_y = (src_y >> 4) & 1;
909  		u32 subtile_y = (src_y >> 2) & 3;
910  		u32 utile_y = src_y & 3;
911  		u32 x_off = vc4_state->src_x & tile_w_mask;
912  		u32 y_off = src_y & tile_h_mask;
913  
914  		/* When Y reflection is requested we must set the
915  		 * SCALER_PITCH0_TILE_LINE_DIR flag to tell HVS that all lines
916  		 * after the initial one should be fetched in descending order,
917  		 * which makes sense since we start from the last line and go
918  		 * backward.
919  		 * Don't know why we need y_off = max_y_off - y_off, but it's
920  		 * definitely required (I guess it's also related to the "going
921  		 * backward" situation).
922  		 */
923  		if (rotation & DRM_MODE_REFLECT_Y) {
924  			y_off = tile_h_mask - y_off;
925  			pitch0 = SCALER_PITCH0_TILE_LINE_DIR;
926  		} else {
927  			pitch0 = 0;
928  		}
929  
930  		tiling = SCALER_CTL0_TILING_256B_OR_T;
931  		pitch0 |= (VC4_SET_FIELD(x_off, SCALER_PITCH0_SINK_PIX) |
932  			   VC4_SET_FIELD(y_off, SCALER_PITCH0_TILE_Y_OFFSET) |
933  			   VC4_SET_FIELD(tiles_l, SCALER_PITCH0_TILE_WIDTH_L) |
934  			   VC4_SET_FIELD(tiles_r, SCALER_PITCH0_TILE_WIDTH_R));
935  		vc4_state->offsets[0] += tiles_t * (tiles_w << tile_size_shift);
936  		vc4_state->offsets[0] += subtile_y << 8;
937  		vc4_state->offsets[0] += utile_y << 4;
938  
939  		/* Rows of tiles alternate left-to-right and right-to-left. */
940  		if (tiles_t & 1) {
941  			pitch0 |= SCALER_PITCH0_TILE_INITIAL_LINE_DIR;
942  			vc4_state->offsets[0] += (tiles_w - tiles_l) <<
943  						 tile_size_shift;
944  			vc4_state->offsets[0] -= (1 + !tile_y) << 10;
945  		} else {
946  			vc4_state->offsets[0] += tiles_l << tile_size_shift;
947  			vc4_state->offsets[0] += tile_y << 10;
948  		}
949  
950  		break;
951  	}
952  
953  	case DRM_FORMAT_MOD_BROADCOM_SAND64:
954  	case DRM_FORMAT_MOD_BROADCOM_SAND128:
955  	case DRM_FORMAT_MOD_BROADCOM_SAND256: {
956  		uint32_t param = fourcc_mod_broadcom_param(fb->modifier);
957  
958  		if (param > SCALER_TILE_HEIGHT_MASK) {
959  			DRM_DEBUG_KMS("SAND height too large (%d)\n",
960  				      param);
961  			return -EINVAL;
962  		}
963  
964  		if (fb->format->format == DRM_FORMAT_P030) {
965  			hvs_format = HVS_PIXEL_FORMAT_YCBCR_10BIT;
966  			tiling = SCALER_CTL0_TILING_128B;
967  		} else {
968  			hvs_format = HVS_PIXEL_FORMAT_H264;
969  
970  			switch (base_format_mod) {
971  			case DRM_FORMAT_MOD_BROADCOM_SAND64:
972  				tiling = SCALER_CTL0_TILING_64B;
973  				break;
974  			case DRM_FORMAT_MOD_BROADCOM_SAND128:
975  				tiling = SCALER_CTL0_TILING_128B;
976  				break;
977  			case DRM_FORMAT_MOD_BROADCOM_SAND256:
978  				tiling = SCALER_CTL0_TILING_256B_OR_T;
979  				break;
980  			default:
981  				return -EINVAL;
982  			}
983  		}
984  
985  		/* Adjust the base pointer to the first pixel to be scanned
986  		 * out.
987  		 *
988  		 * For P030, y_ptr [31:4] is the 128bit word for the start pixel
989  		 * y_ptr [3:0] is the pixel (0-11) contained within that 128bit
990  		 * word that should be taken as the first pixel.
991  		 * Ditto uv_ptr [31:4] vs [3:0], however [3:0] contains the
992  		 * element within the 128bit word, eg for pixel 3 the value
993  		 * should be 6.
994  		 */
995  		for (i = 0; i < num_planes; i++) {
996  			u32 tile_w, tile, x_off, pix_per_tile;
997  
998  			if (fb->format->format == DRM_FORMAT_P030) {
999  				/*
1000  				 * Spec says: bits [31:4] of the given address
1001  				 * should point to the 128-bit word containing
1002  				 * the desired starting pixel, and bits[3:0]
1003  				 * should be between 0 and 11, indicating which
1004  				 * of the 12-pixels in that 128-bit word is the
1005  				 * first pixel to be used
1006  				 */
1007  				u32 remaining_pixels = vc4_state->src_x % 96;
1008  				u32 aligned = remaining_pixels / 12;
1009  				u32 last_bits = remaining_pixels % 12;
1010  
1011  				x_off = aligned * 16 + last_bits;
1012  				tile_w = 128;
1013  				pix_per_tile = 96;
1014  			} else {
1015  				switch (base_format_mod) {
1016  				case DRM_FORMAT_MOD_BROADCOM_SAND64:
1017  					tile_w = 64;
1018  					break;
1019  				case DRM_FORMAT_MOD_BROADCOM_SAND128:
1020  					tile_w = 128;
1021  					break;
1022  				case DRM_FORMAT_MOD_BROADCOM_SAND256:
1023  					tile_w = 256;
1024  					break;
1025  				default:
1026  					return -EINVAL;
1027  				}
1028  				pix_per_tile = tile_w / fb->format->cpp[0];
1029  				x_off = (vc4_state->src_x % pix_per_tile) /
1030  					(i ? h_subsample : 1) *
1031  					fb->format->cpp[i];
1032  			}
1033  
1034  			tile = vc4_state->src_x / pix_per_tile;
1035  
1036  			vc4_state->offsets[i] += param * tile_w * tile;
1037  			vc4_state->offsets[i] += src_y /
1038  						 (i ? v_subsample : 1) *
1039  						 tile_w;
1040  			vc4_state->offsets[i] += x_off & ~(i ? 1 : 0);
1041  		}
1042  
1043  		pitch0 = VC4_SET_FIELD(param, SCALER_TILE_HEIGHT);
1044  		break;
1045  	}
1046  
1047  	default:
1048  		DRM_DEBUG_KMS("Unsupported FB tiling flag 0x%16llx",
1049  			      (long long)fb->modifier);
1050  		return -EINVAL;
1051  	}
1052  
1053  	/* Don't waste cycles mixing with plane alpha if the set alpha
1054  	 * is opaque or there is no per-pixel alpha information.
1055  	 * In any case we use the alpha property value as the fixed alpha.
1056  	 */
1057  	mix_plane_alpha = state->alpha != DRM_BLEND_ALPHA_OPAQUE &&
1058  			  fb->format->has_alpha;
1059  
1060  	if (!vc4->is_vc5) {
1061  	/* Control word */
1062  		vc4_dlist_write(vc4_state,
1063  				SCALER_CTL0_VALID |
1064  				(rotation & DRM_MODE_REFLECT_X ? SCALER_CTL0_HFLIP : 0) |
1065  				(rotation & DRM_MODE_REFLECT_Y ? SCALER_CTL0_VFLIP : 0) |
1066  				VC4_SET_FIELD(SCALER_CTL0_RGBA_EXPAND_ROUND, SCALER_CTL0_RGBA_EXPAND) |
1067  				(format->pixel_order << SCALER_CTL0_ORDER_SHIFT) |
1068  				(hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
1069  				VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
1070  				(vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) |
1071  				VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
1072  				VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1));
1073  
1074  		/* Position Word 0: Image Positions and Alpha Value */
1075  		vc4_state->pos0_offset = vc4_state->dlist_count;
1076  		vc4_dlist_write(vc4_state,
1077  				VC4_SET_FIELD(state->alpha >> 8, SCALER_POS0_FIXED_ALPHA) |
1078  				VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) |
1079  				VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y));
1080  
1081  		/* Position Word 1: Scaled Image Dimensions. */
1082  		if (!vc4_state->is_unity) {
1083  			vc4_dlist_write(vc4_state,
1084  					VC4_SET_FIELD(vc4_state->crtc_w,
1085  						      SCALER_POS1_SCL_WIDTH) |
1086  					VC4_SET_FIELD(vc4_state->crtc_h,
1087  						      SCALER_POS1_SCL_HEIGHT));
1088  		}
1089  
1090  		/* Position Word 2: Source Image Size, Alpha */
1091  		vc4_state->pos2_offset = vc4_state->dlist_count;
1092  		vc4_dlist_write(vc4_state,
1093  				(mix_plane_alpha ? SCALER_POS2_ALPHA_MIX : 0) |
1094  				vc4_hvs4_get_alpha_blend_mode(state) |
1095  				VC4_SET_FIELD(vc4_state->src_w[0],
1096  					      SCALER_POS2_WIDTH) |
1097  				VC4_SET_FIELD(vc4_state->src_h[0],
1098  					      SCALER_POS2_HEIGHT));
1099  
1100  		/* Position Word 3: Context.  Written by the HVS. */
1101  		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
1102  
1103  	} else {
1104  		/* Control word */
1105  		vc4_dlist_write(vc4_state,
1106  				SCALER_CTL0_VALID |
1107  				(format->pixel_order_hvs5 << SCALER_CTL0_ORDER_SHIFT) |
1108  				(hvs_format << SCALER_CTL0_PIXEL_FORMAT_SHIFT) |
1109  				VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) |
1110  				(vc4_state->is_unity ?
1111  						SCALER5_CTL0_UNITY : 0) |
1112  				VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) |
1113  				VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1) |
1114  				SCALER5_CTL0_ALPHA_EXPAND |
1115  				SCALER5_CTL0_RGB_EXPAND);
1116  
1117  		/* Position Word 0: Image Positions and Alpha Value */
1118  		vc4_state->pos0_offset = vc4_state->dlist_count;
1119  		vc4_dlist_write(vc4_state,
1120  				(rotation & DRM_MODE_REFLECT_Y ?
1121  						SCALER5_POS0_VFLIP : 0) |
1122  				VC4_SET_FIELD(vc4_state->crtc_x,
1123  					      SCALER_POS0_START_X) |
1124  				(rotation & DRM_MODE_REFLECT_X ?
1125  					      SCALER5_POS0_HFLIP : 0) |
1126  				VC4_SET_FIELD(vc4_state->crtc_y,
1127  					      SCALER5_POS0_START_Y)
1128  			       );
1129  
1130  		/* Control Word 2 */
1131  		vc4_dlist_write(vc4_state,
1132  				VC4_SET_FIELD(state->alpha >> 4,
1133  					      SCALER5_CTL2_ALPHA) |
1134  				vc4_hvs5_get_alpha_blend_mode(state) |
1135  				(mix_plane_alpha ?
1136  					SCALER5_CTL2_ALPHA_MIX : 0)
1137  			       );
1138  
1139  		/* Position Word 1: Scaled Image Dimensions. */
1140  		if (!vc4_state->is_unity) {
1141  			vc4_dlist_write(vc4_state,
1142  					VC4_SET_FIELD(vc4_state->crtc_w,
1143  						      SCALER5_POS1_SCL_WIDTH) |
1144  					VC4_SET_FIELD(vc4_state->crtc_h,
1145  						      SCALER5_POS1_SCL_HEIGHT));
1146  		}
1147  
1148  		/* Position Word 2: Source Image Size */
1149  		vc4_state->pos2_offset = vc4_state->dlist_count;
1150  		vc4_dlist_write(vc4_state,
1151  				VC4_SET_FIELD(vc4_state->src_w[0],
1152  					      SCALER5_POS2_WIDTH) |
1153  				VC4_SET_FIELD(vc4_state->src_h[0],
1154  					      SCALER5_POS2_HEIGHT));
1155  
1156  		/* Position Word 3: Context.  Written by the HVS. */
1157  		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
1158  	}
1159  
1160  
1161  	/* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers
1162  	 *
1163  	 * The pointers may be any byte address.
1164  	 */
1165  	vc4_state->ptr0_offset = vc4_state->dlist_count;
1166  	for (i = 0; i < num_planes; i++)
1167  		vc4_dlist_write(vc4_state, vc4_state->offsets[i]);
1168  
1169  	/* Pointer Context Word 0/1/2: Written by the HVS */
1170  	for (i = 0; i < num_planes; i++)
1171  		vc4_dlist_write(vc4_state, 0xc0c0c0c0);
1172  
1173  	/* Pitch word 0 */
1174  	vc4_dlist_write(vc4_state, pitch0);
1175  
1176  	/* Pitch word 1/2 */
1177  	for (i = 1; i < num_planes; i++) {
1178  		if (hvs_format != HVS_PIXEL_FORMAT_H264 &&
1179  		    hvs_format != HVS_PIXEL_FORMAT_YCBCR_10BIT) {
1180  			vc4_dlist_write(vc4_state,
1181  					VC4_SET_FIELD(fb->pitches[i],
1182  						      SCALER_SRC_PITCH));
1183  		} else {
1184  			vc4_dlist_write(vc4_state, pitch0);
1185  		}
1186  	}
1187  
1188  	/* Colorspace conversion words */
1189  	if (vc4_state->is_yuv) {
1190  		enum drm_color_encoding color_encoding = state->color_encoding;
1191  		enum drm_color_range color_range = state->color_range;
1192  		const u32 *ccm;
1193  
1194  		if (color_encoding >= DRM_COLOR_ENCODING_MAX)
1195  			color_encoding = DRM_COLOR_YCBCR_BT601;
1196  		if (color_range >= DRM_COLOR_RANGE_MAX)
1197  			color_range = DRM_COLOR_YCBCR_LIMITED_RANGE;
1198  
1199  		ccm = colorspace_coeffs[color_range][color_encoding];
1200  
1201  		vc4_dlist_write(vc4_state, ccm[0]);
1202  		vc4_dlist_write(vc4_state, ccm[1]);
1203  		vc4_dlist_write(vc4_state, ccm[2]);
1204  	}
1205  
1206  	vc4_state->lbm_offset = 0;
1207  
1208  	if (vc4_state->x_scaling[0] != VC4_SCALING_NONE ||
1209  	    vc4_state->x_scaling[1] != VC4_SCALING_NONE ||
1210  	    vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
1211  	    vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
1212  		/* Reserve a slot for the LBM Base Address. The real value will
1213  		 * be set when calling vc4_plane_allocate_lbm().
1214  		 */
1215  		if (vc4_state->y_scaling[0] != VC4_SCALING_NONE ||
1216  		    vc4_state->y_scaling[1] != VC4_SCALING_NONE) {
1217  			vc4_state->lbm_offset = vc4_state->dlist_count;
1218  			vc4_dlist_counter_increment(vc4_state);
1219  		}
1220  
1221  		if (num_planes > 1) {
1222  			/* Emit Cb/Cr as channel 0 and Y as channel
1223  			 * 1. This matches how we set up scl0/scl1
1224  			 * above.
1225  			 */
1226  			vc4_write_scaling_parameters(state, 1);
1227  		}
1228  		vc4_write_scaling_parameters(state, 0);
1229  
1230  		/* If any PPF setup was done, then all the kernel
1231  		 * pointers get uploaded.
1232  		 */
1233  		if (vc4_state->x_scaling[0] == VC4_SCALING_PPF ||
1234  		    vc4_state->y_scaling[0] == VC4_SCALING_PPF ||
1235  		    vc4_state->x_scaling[1] == VC4_SCALING_PPF ||
1236  		    vc4_state->y_scaling[1] == VC4_SCALING_PPF) {
1237  			u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start,
1238  						   SCALER_PPF_KERNEL_OFFSET);
1239  
1240  			/* HPPF plane 0 */
1241  			vc4_dlist_write(vc4_state, kernel);
1242  			/* VPPF plane 0 */
1243  			vc4_dlist_write(vc4_state, kernel);
1244  			/* HPPF plane 1 */
1245  			vc4_dlist_write(vc4_state, kernel);
1246  			/* VPPF plane 1 */
1247  			vc4_dlist_write(vc4_state, kernel);
1248  		}
1249  	}
1250  
1251  	vc4_state->dlist[ctl0_offset] |=
1252  		VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE);
1253  
1254  	/* crtc_* are already clipped coordinates. */
1255  	covers_screen = vc4_state->crtc_x == 0 && vc4_state->crtc_y == 0 &&
1256  			vc4_state->crtc_w == state->crtc->mode.hdisplay &&
1257  			vc4_state->crtc_h == state->crtc->mode.vdisplay;
1258  	/* Background fill might be necessary when the plane has per-pixel
1259  	 * alpha content or a non-opaque plane alpha and could blend from the
1260  	 * background or does not cover the entire screen.
1261  	 */
1262  	vc4_state->needs_bg_fill = fb->format->has_alpha || !covers_screen ||
1263  				   state->alpha != DRM_BLEND_ALPHA_OPAQUE;
1264  
1265  	/* Flag the dlist as initialized to avoid checking it twice in case
1266  	 * the async update check already called vc4_plane_mode_set() and
1267  	 * decided to fallback to sync update because async update was not
1268  	 * possible.
1269  	 */
1270  	vc4_state->dlist_initialized = 1;
1271  
1272  	vc4_plane_calc_load(state);
1273  
1274  	return 0;
1275  }
1276  
1277  /* If a modeset involves changing the setup of a plane, the atomic
1278   * infrastructure will call this to validate a proposed plane setup.
1279   * However, if a plane isn't getting updated, this (and the
1280   * corresponding vc4_plane_atomic_update) won't get called.  Thus, we
1281   * compute the dlist here and have all active plane dlists get updated
1282   * in the CRTC's flush.
1283   */
vc4_plane_atomic_check(struct drm_plane * plane,struct drm_atomic_state * state)1284  static int vc4_plane_atomic_check(struct drm_plane *plane,
1285  				  struct drm_atomic_state *state)
1286  {
1287  	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1288  										 plane);
1289  	struct vc4_plane_state *vc4_state = to_vc4_plane_state(new_plane_state);
1290  	int ret;
1291  
1292  	vc4_state->dlist_count = 0;
1293  
1294  	if (!plane_enabled(new_plane_state))
1295  		return 0;
1296  
1297  	ret = vc4_plane_mode_set(plane, new_plane_state);
1298  	if (ret)
1299  		return ret;
1300  
1301  	return vc4_plane_allocate_lbm(new_plane_state);
1302  }
1303  
vc4_plane_atomic_update(struct drm_plane * plane,struct drm_atomic_state * state)1304  static void vc4_plane_atomic_update(struct drm_plane *plane,
1305  				    struct drm_atomic_state *state)
1306  {
1307  	/* No contents here.  Since we don't know where in the CRTC's
1308  	 * dlist we should be stored, our dlist is uploaded to the
1309  	 * hardware with vc4_plane_write_dlist() at CRTC atomic_flush
1310  	 * time.
1311  	 */
1312  }
1313  
vc4_plane_write_dlist(struct drm_plane * plane,u32 __iomem * dlist)1314  u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist)
1315  {
1316  	struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
1317  	int i;
1318  	int idx;
1319  
1320  	if (!drm_dev_enter(plane->dev, &idx))
1321  		goto out;
1322  
1323  	vc4_state->hw_dlist = dlist;
1324  
1325  	/* Can't memcpy_toio() because it needs to be 32-bit writes. */
1326  	for (i = 0; i < vc4_state->dlist_count; i++)
1327  		writel(vc4_state->dlist[i], &dlist[i]);
1328  
1329  	drm_dev_exit(idx);
1330  
1331  out:
1332  	return vc4_state->dlist_count;
1333  }
1334  
vc4_plane_dlist_size(const struct drm_plane_state * state)1335  u32 vc4_plane_dlist_size(const struct drm_plane_state *state)
1336  {
1337  	const struct vc4_plane_state *vc4_state = to_vc4_plane_state(state);
1338  
1339  	return vc4_state->dlist_count;
1340  }
1341  
1342  /* Updates the plane to immediately (well, once the FIFO needs
1343   * refilling) scan out from at a new framebuffer.
1344   */
vc4_plane_async_set_fb(struct drm_plane * plane,struct drm_framebuffer * fb)1345  void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb)
1346  {
1347  	struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state);
1348  	struct drm_gem_dma_object *bo = drm_fb_dma_get_gem_obj(fb, 0);
1349  	uint32_t addr;
1350  	int idx;
1351  
1352  	if (!drm_dev_enter(plane->dev, &idx))
1353  		return;
1354  
1355  	/* We're skipping the address adjustment for negative origin,
1356  	 * because this is only called on the primary plane.
1357  	 */
1358  	WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0);
1359  	addr = bo->dma_addr + fb->offsets[0];
1360  
1361  	/* Write the new address into the hardware immediately.  The
1362  	 * scanout will start from this address as soon as the FIFO
1363  	 * needs to refill with pixels.
1364  	 */
1365  	writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
1366  
1367  	/* Also update the CPU-side dlist copy, so that any later
1368  	 * atomic updates that don't do a new modeset on our plane
1369  	 * also use our updated address.
1370  	 */
1371  	vc4_state->dlist[vc4_state->ptr0_offset] = addr;
1372  
1373  	drm_dev_exit(idx);
1374  }
1375  
vc4_plane_atomic_async_update(struct drm_plane * plane,struct drm_atomic_state * state)1376  static void vc4_plane_atomic_async_update(struct drm_plane *plane,
1377  					  struct drm_atomic_state *state)
1378  {
1379  	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1380  										 plane);
1381  	struct vc4_plane_state *vc4_state, *new_vc4_state;
1382  	int idx;
1383  
1384  	if (!drm_dev_enter(plane->dev, &idx))
1385  		return;
1386  
1387  	swap(plane->state->fb, new_plane_state->fb);
1388  	plane->state->crtc_x = new_plane_state->crtc_x;
1389  	plane->state->crtc_y = new_plane_state->crtc_y;
1390  	plane->state->crtc_w = new_plane_state->crtc_w;
1391  	plane->state->crtc_h = new_plane_state->crtc_h;
1392  	plane->state->src_x = new_plane_state->src_x;
1393  	plane->state->src_y = new_plane_state->src_y;
1394  	plane->state->src_w = new_plane_state->src_w;
1395  	plane->state->src_h = new_plane_state->src_h;
1396  	plane->state->alpha = new_plane_state->alpha;
1397  	plane->state->pixel_blend_mode = new_plane_state->pixel_blend_mode;
1398  	plane->state->rotation = new_plane_state->rotation;
1399  	plane->state->zpos = new_plane_state->zpos;
1400  	plane->state->normalized_zpos = new_plane_state->normalized_zpos;
1401  	plane->state->color_encoding = new_plane_state->color_encoding;
1402  	plane->state->color_range = new_plane_state->color_range;
1403  	plane->state->src = new_plane_state->src;
1404  	plane->state->dst = new_plane_state->dst;
1405  	plane->state->visible = new_plane_state->visible;
1406  
1407  	new_vc4_state = to_vc4_plane_state(new_plane_state);
1408  	vc4_state = to_vc4_plane_state(plane->state);
1409  
1410  	vc4_state->crtc_x = new_vc4_state->crtc_x;
1411  	vc4_state->crtc_y = new_vc4_state->crtc_y;
1412  	vc4_state->crtc_h = new_vc4_state->crtc_h;
1413  	vc4_state->crtc_w = new_vc4_state->crtc_w;
1414  	vc4_state->src_x = new_vc4_state->src_x;
1415  	vc4_state->src_y = new_vc4_state->src_y;
1416  	memcpy(vc4_state->src_w, new_vc4_state->src_w,
1417  	       sizeof(vc4_state->src_w));
1418  	memcpy(vc4_state->src_h, new_vc4_state->src_h,
1419  	       sizeof(vc4_state->src_h));
1420  	memcpy(vc4_state->x_scaling, new_vc4_state->x_scaling,
1421  	       sizeof(vc4_state->x_scaling));
1422  	memcpy(vc4_state->y_scaling, new_vc4_state->y_scaling,
1423  	       sizeof(vc4_state->y_scaling));
1424  	vc4_state->is_unity = new_vc4_state->is_unity;
1425  	vc4_state->is_yuv = new_vc4_state->is_yuv;
1426  	memcpy(vc4_state->offsets, new_vc4_state->offsets,
1427  	       sizeof(vc4_state->offsets));
1428  	vc4_state->needs_bg_fill = new_vc4_state->needs_bg_fill;
1429  
1430  	/* Update the current vc4_state pos0, pos2 and ptr0 dlist entries. */
1431  	vc4_state->dlist[vc4_state->pos0_offset] =
1432  		new_vc4_state->dlist[vc4_state->pos0_offset];
1433  	vc4_state->dlist[vc4_state->pos2_offset] =
1434  		new_vc4_state->dlist[vc4_state->pos2_offset];
1435  	vc4_state->dlist[vc4_state->ptr0_offset] =
1436  		new_vc4_state->dlist[vc4_state->ptr0_offset];
1437  
1438  	/* Note that we can't just call vc4_plane_write_dlist()
1439  	 * because that would smash the context data that the HVS is
1440  	 * currently using.
1441  	 */
1442  	writel(vc4_state->dlist[vc4_state->pos0_offset],
1443  	       &vc4_state->hw_dlist[vc4_state->pos0_offset]);
1444  	writel(vc4_state->dlist[vc4_state->pos2_offset],
1445  	       &vc4_state->hw_dlist[vc4_state->pos2_offset]);
1446  	writel(vc4_state->dlist[vc4_state->ptr0_offset],
1447  	       &vc4_state->hw_dlist[vc4_state->ptr0_offset]);
1448  
1449  	drm_dev_exit(idx);
1450  }
1451  
vc4_plane_atomic_async_check(struct drm_plane * plane,struct drm_atomic_state * state)1452  static int vc4_plane_atomic_async_check(struct drm_plane *plane,
1453  					struct drm_atomic_state *state)
1454  {
1455  	struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
1456  										 plane);
1457  	struct vc4_plane_state *old_vc4_state, *new_vc4_state;
1458  	int ret;
1459  	u32 i;
1460  
1461  	ret = vc4_plane_mode_set(plane, new_plane_state);
1462  	if (ret)
1463  		return ret;
1464  
1465  	old_vc4_state = to_vc4_plane_state(plane->state);
1466  	new_vc4_state = to_vc4_plane_state(new_plane_state);
1467  
1468  	if (!new_vc4_state->hw_dlist)
1469  		return -EINVAL;
1470  
1471  	if (old_vc4_state->dlist_count != new_vc4_state->dlist_count ||
1472  	    old_vc4_state->pos0_offset != new_vc4_state->pos0_offset ||
1473  	    old_vc4_state->pos2_offset != new_vc4_state->pos2_offset ||
1474  	    old_vc4_state->ptr0_offset != new_vc4_state->ptr0_offset ||
1475  	    vc4_lbm_size(plane->state) != vc4_lbm_size(new_plane_state))
1476  		return -EINVAL;
1477  
1478  	/* Only pos0, pos2 and ptr0 DWORDS can be updated in an async update
1479  	 * if anything else has changed, fallback to a sync update.
1480  	 */
1481  	for (i = 0; i < new_vc4_state->dlist_count; i++) {
1482  		if (i == new_vc4_state->pos0_offset ||
1483  		    i == new_vc4_state->pos2_offset ||
1484  		    i == new_vc4_state->ptr0_offset ||
1485  		    (new_vc4_state->lbm_offset &&
1486  		     i == new_vc4_state->lbm_offset))
1487  			continue;
1488  
1489  		if (new_vc4_state->dlist[i] != old_vc4_state->dlist[i])
1490  			return -EINVAL;
1491  	}
1492  
1493  	return 0;
1494  }
1495  
vc4_prepare_fb(struct drm_plane * plane,struct drm_plane_state * state)1496  static int vc4_prepare_fb(struct drm_plane *plane,
1497  			  struct drm_plane_state *state)
1498  {
1499  	struct vc4_bo *bo;
1500  
1501  	if (!state->fb)
1502  		return 0;
1503  
1504  	bo = to_vc4_bo(&drm_fb_dma_get_gem_obj(state->fb, 0)->base);
1505  
1506  	drm_gem_plane_helper_prepare_fb(plane, state);
1507  
1508  	return vc4_bo_inc_usecnt(bo);
1509  }
1510  
vc4_cleanup_fb(struct drm_plane * plane,struct drm_plane_state * state)1511  static void vc4_cleanup_fb(struct drm_plane *plane,
1512  			   struct drm_plane_state *state)
1513  {
1514  	struct vc4_bo *bo;
1515  
1516  	if (!state->fb)
1517  		return;
1518  
1519  	bo = to_vc4_bo(&drm_fb_dma_get_gem_obj(state->fb, 0)->base);
1520  	vc4_bo_dec_usecnt(bo);
1521  }
1522  
1523  static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = {
1524  	.atomic_check = vc4_plane_atomic_check,
1525  	.atomic_update = vc4_plane_atomic_update,
1526  	.prepare_fb = vc4_prepare_fb,
1527  	.cleanup_fb = vc4_cleanup_fb,
1528  	.atomic_async_check = vc4_plane_atomic_async_check,
1529  	.atomic_async_update = vc4_plane_atomic_async_update,
1530  };
1531  
1532  static const struct drm_plane_helper_funcs vc5_plane_helper_funcs = {
1533  	.atomic_check = vc4_plane_atomic_check,
1534  	.atomic_update = vc4_plane_atomic_update,
1535  	.atomic_async_check = vc4_plane_atomic_async_check,
1536  	.atomic_async_update = vc4_plane_atomic_async_update,
1537  };
1538  
vc4_format_mod_supported(struct drm_plane * plane,uint32_t format,uint64_t modifier)1539  static bool vc4_format_mod_supported(struct drm_plane *plane,
1540  				     uint32_t format,
1541  				     uint64_t modifier)
1542  {
1543  	/* Support T_TILING for RGB formats only. */
1544  	switch (format) {
1545  	case DRM_FORMAT_XRGB8888:
1546  	case DRM_FORMAT_ARGB8888:
1547  	case DRM_FORMAT_ABGR8888:
1548  	case DRM_FORMAT_XBGR8888:
1549  	case DRM_FORMAT_RGB565:
1550  	case DRM_FORMAT_BGR565:
1551  	case DRM_FORMAT_ARGB1555:
1552  	case DRM_FORMAT_XRGB1555:
1553  		switch (fourcc_mod_broadcom_mod(modifier)) {
1554  		case DRM_FORMAT_MOD_LINEAR:
1555  		case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED:
1556  			return true;
1557  		default:
1558  			return false;
1559  		}
1560  	case DRM_FORMAT_NV12:
1561  	case DRM_FORMAT_NV21:
1562  		switch (fourcc_mod_broadcom_mod(modifier)) {
1563  		case DRM_FORMAT_MOD_LINEAR:
1564  		case DRM_FORMAT_MOD_BROADCOM_SAND64:
1565  		case DRM_FORMAT_MOD_BROADCOM_SAND128:
1566  		case DRM_FORMAT_MOD_BROADCOM_SAND256:
1567  			return true;
1568  		default:
1569  			return false;
1570  		}
1571  	case DRM_FORMAT_P030:
1572  		switch (fourcc_mod_broadcom_mod(modifier)) {
1573  		case DRM_FORMAT_MOD_BROADCOM_SAND128:
1574  			return true;
1575  		default:
1576  			return false;
1577  		}
1578  	case DRM_FORMAT_RGBX1010102:
1579  	case DRM_FORMAT_BGRX1010102:
1580  	case DRM_FORMAT_RGBA1010102:
1581  	case DRM_FORMAT_BGRA1010102:
1582  	case DRM_FORMAT_XRGB4444:
1583  	case DRM_FORMAT_ARGB4444:
1584  	case DRM_FORMAT_XBGR4444:
1585  	case DRM_FORMAT_ABGR4444:
1586  	case DRM_FORMAT_RGBX4444:
1587  	case DRM_FORMAT_RGBA4444:
1588  	case DRM_FORMAT_BGRX4444:
1589  	case DRM_FORMAT_BGRA4444:
1590  	case DRM_FORMAT_RGB332:
1591  	case DRM_FORMAT_BGR233:
1592  	case DRM_FORMAT_YUV422:
1593  	case DRM_FORMAT_YVU422:
1594  	case DRM_FORMAT_YUV420:
1595  	case DRM_FORMAT_YVU420:
1596  	case DRM_FORMAT_NV16:
1597  	case DRM_FORMAT_NV61:
1598  	default:
1599  		return (modifier == DRM_FORMAT_MOD_LINEAR);
1600  	}
1601  }
1602  
1603  static const struct drm_plane_funcs vc4_plane_funcs = {
1604  	.update_plane = drm_atomic_helper_update_plane,
1605  	.disable_plane = drm_atomic_helper_disable_plane,
1606  	.reset = vc4_plane_reset,
1607  	.atomic_duplicate_state = vc4_plane_duplicate_state,
1608  	.atomic_destroy_state = vc4_plane_destroy_state,
1609  	.format_mod_supported = vc4_format_mod_supported,
1610  };
1611  
vc4_plane_init(struct drm_device * dev,enum drm_plane_type type,uint32_t possible_crtcs)1612  struct drm_plane *vc4_plane_init(struct drm_device *dev,
1613  				 enum drm_plane_type type,
1614  				 uint32_t possible_crtcs)
1615  {
1616  	struct vc4_dev *vc4 = to_vc4_dev(dev);
1617  	struct drm_plane *plane;
1618  	struct vc4_plane *vc4_plane;
1619  	u32 formats[ARRAY_SIZE(hvs_formats)];
1620  	int num_formats = 0;
1621  	unsigned i;
1622  	static const uint64_t modifiers[] = {
1623  		DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED,
1624  		DRM_FORMAT_MOD_BROADCOM_SAND128,
1625  		DRM_FORMAT_MOD_BROADCOM_SAND64,
1626  		DRM_FORMAT_MOD_BROADCOM_SAND256,
1627  		DRM_FORMAT_MOD_LINEAR,
1628  		DRM_FORMAT_MOD_INVALID
1629  	};
1630  
1631  	for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) {
1632  		if (!hvs_formats[i].hvs5_only || vc4->is_vc5) {
1633  			formats[num_formats] = hvs_formats[i].drm;
1634  			num_formats++;
1635  		}
1636  	}
1637  
1638  	vc4_plane = drmm_universal_plane_alloc(dev, struct vc4_plane, base,
1639  					       possible_crtcs,
1640  					       &vc4_plane_funcs,
1641  					       formats, num_formats,
1642  					       modifiers, type, NULL);
1643  	if (IS_ERR(vc4_plane))
1644  		return ERR_CAST(vc4_plane);
1645  	plane = &vc4_plane->base;
1646  
1647  	if (vc4->is_vc5)
1648  		drm_plane_helper_add(plane, &vc5_plane_helper_funcs);
1649  	else
1650  		drm_plane_helper_add(plane, &vc4_plane_helper_funcs);
1651  
1652  	drm_plane_create_alpha_property(plane);
1653  	drm_plane_create_blend_mode_property(plane,
1654  					     BIT(DRM_MODE_BLEND_PIXEL_NONE) |
1655  					     BIT(DRM_MODE_BLEND_PREMULTI) |
1656  					     BIT(DRM_MODE_BLEND_COVERAGE));
1657  	drm_plane_create_rotation_property(plane, DRM_MODE_ROTATE_0,
1658  					   DRM_MODE_ROTATE_0 |
1659  					   DRM_MODE_ROTATE_180 |
1660  					   DRM_MODE_REFLECT_X |
1661  					   DRM_MODE_REFLECT_Y);
1662  
1663  	drm_plane_create_color_properties(plane,
1664  					  BIT(DRM_COLOR_YCBCR_BT601) |
1665  					  BIT(DRM_COLOR_YCBCR_BT709) |
1666  					  BIT(DRM_COLOR_YCBCR_BT2020),
1667  					  BIT(DRM_COLOR_YCBCR_LIMITED_RANGE) |
1668  					  BIT(DRM_COLOR_YCBCR_FULL_RANGE),
1669  					  DRM_COLOR_YCBCR_BT709,
1670  					  DRM_COLOR_YCBCR_LIMITED_RANGE);
1671  
1672  	if (type == DRM_PLANE_TYPE_PRIMARY)
1673  		drm_plane_create_zpos_immutable_property(plane, 0);
1674  
1675  	return plane;
1676  }
1677  
1678  #define VC4_NUM_OVERLAY_PLANES	16
1679  
vc4_plane_create_additional_planes(struct drm_device * drm)1680  int vc4_plane_create_additional_planes(struct drm_device *drm)
1681  {
1682  	struct drm_plane *cursor_plane;
1683  	struct drm_crtc *crtc;
1684  	unsigned int i;
1685  
1686  	/* Set up some arbitrary number of planes.  We're not limited
1687  	 * by a set number of physical registers, just the space in
1688  	 * the HVS (16k) and how small an plane can be (28 bytes).
1689  	 * However, each plane we set up takes up some memory, and
1690  	 * increases the cost of looping over planes, which atomic
1691  	 * modesetting does quite a bit.  As a result, we pick a
1692  	 * modest number of planes to expose, that should hopefully
1693  	 * still cover any sane usecase.
1694  	 */
1695  	for (i = 0; i < VC4_NUM_OVERLAY_PLANES; i++) {
1696  		struct drm_plane *plane =
1697  			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY,
1698  				       GENMASK(drm->mode_config.num_crtc - 1, 0));
1699  
1700  		if (IS_ERR(plane))
1701  			continue;
1702  
1703  		/* Create zpos property. Max of all the overlays + 1 primary +
1704  		 * 1 cursor plane on a crtc.
1705  		 */
1706  		drm_plane_create_zpos_property(plane, i + 1, 1,
1707  					       VC4_NUM_OVERLAY_PLANES + 1);
1708  	}
1709  
1710  	drm_for_each_crtc(crtc, drm) {
1711  		/* Set up the legacy cursor after overlay initialization,
1712  		 * since the zpos fallback is that planes are rendered by plane
1713  		 * ID order, and that then puts the cursor on top.
1714  		 */
1715  		cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR,
1716  					      drm_crtc_mask(crtc));
1717  		if (!IS_ERR(cursor_plane)) {
1718  			crtc->cursor = cursor_plane;
1719  
1720  			drm_plane_create_zpos_property(cursor_plane,
1721  						       VC4_NUM_OVERLAY_PLANES + 1,
1722  						       1,
1723  						       VC4_NUM_OVERLAY_PLANES + 1);
1724  		}
1725  	}
1726  
1727  	return 0;
1728  }
1729