xref: /openbmc/linux/drivers/infiniband/hw/hfi1/hfi.h (revision c900529f3d9161bfde5cca0754f83b4d3c3e0220)
1  /* SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause */
2  /*
3   * Copyright(c) 2020-2023 Cornelis Networks, Inc.
4   * Copyright(c) 2015-2020 Intel Corporation.
5   */
6  
7  #ifndef _HFI1_KERNEL_H
8  #define _HFI1_KERNEL_H
9  
10  #include <linux/refcount.h>
11  #include <linux/interrupt.h>
12  #include <linux/pci.h>
13  #include <linux/dma-mapping.h>
14  #include <linux/mutex.h>
15  #include <linux/list.h>
16  #include <linux/scatterlist.h>
17  #include <linux/slab.h>
18  #include <linux/io.h>
19  #include <linux/fs.h>
20  #include <linux/completion.h>
21  #include <linux/kref.h>
22  #include <linux/sched.h>
23  #include <linux/cdev.h>
24  #include <linux/delay.h>
25  #include <linux/kthread.h>
26  #include <linux/i2c.h>
27  #include <linux/i2c-algo-bit.h>
28  #include <linux/xarray.h>
29  #include <rdma/ib_hdrs.h>
30  #include <rdma/opa_addr.h>
31  #include <linux/rhashtable.h>
32  #include <rdma/rdma_vt.h>
33  
34  #include "chip_registers.h"
35  #include "common.h"
36  #include "opfn.h"
37  #include "verbs.h"
38  #include "pio.h"
39  #include "chip.h"
40  #include "mad.h"
41  #include "qsfp.h"
42  #include "platform.h"
43  #include "affinity.h"
44  #include "msix.h"
45  
46  /* bumped 1 from s/w major version of TrueScale */
47  #define HFI1_CHIP_VERS_MAJ 3U
48  
49  /* don't care about this except printing */
50  #define HFI1_CHIP_VERS_MIN 0U
51  
52  /* The Organization Unique Identifier (Mfg code), and its position in GUID */
53  #define HFI1_OUI 0x001175
54  #define HFI1_OUI_LSB 40
55  
56  #define DROP_PACKET_OFF		0
57  #define DROP_PACKET_ON		1
58  
59  #define NEIGHBOR_TYPE_HFI		0
60  #define NEIGHBOR_TYPE_SWITCH	1
61  
62  #define HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES 5
63  
64  extern unsigned long hfi1_cap_mask;
65  #define HFI1_CAP_KGET_MASK(mask, cap) ((mask) & HFI1_CAP_##cap)
66  #define HFI1_CAP_UGET_MASK(mask, cap) \
67  	(((mask) >> HFI1_CAP_USER_SHIFT) & HFI1_CAP_##cap)
68  #define HFI1_CAP_KGET(cap) (HFI1_CAP_KGET_MASK(hfi1_cap_mask, cap))
69  #define HFI1_CAP_UGET(cap) (HFI1_CAP_UGET_MASK(hfi1_cap_mask, cap))
70  #define HFI1_CAP_IS_KSET(cap) (!!HFI1_CAP_KGET(cap))
71  #define HFI1_CAP_IS_USET(cap) (!!HFI1_CAP_UGET(cap))
72  #define HFI1_MISC_GET() ((hfi1_cap_mask >> HFI1_CAP_MISC_SHIFT) & \
73  			HFI1_CAP_MISC_MASK)
74  /* Offline Disabled Reason is 4-bits */
75  #define HFI1_ODR_MASK(rsn) ((rsn) & OPA_PI_MASK_OFFLINE_REASON)
76  
77  /*
78   * Control context is always 0 and handles the error packets.
79   * It also handles the VL15 and multicast packets.
80   */
81  #define HFI1_CTRL_CTXT    0
82  
83  /*
84   * Driver context will store software counters for each of the events
85   * associated with these status registers
86   */
87  #define NUM_CCE_ERR_STATUS_COUNTERS 41
88  #define NUM_RCV_ERR_STATUS_COUNTERS 64
89  #define NUM_MISC_ERR_STATUS_COUNTERS 13
90  #define NUM_SEND_PIO_ERR_STATUS_COUNTERS 36
91  #define NUM_SEND_DMA_ERR_STATUS_COUNTERS 4
92  #define NUM_SEND_EGRESS_ERR_STATUS_COUNTERS 64
93  #define NUM_SEND_ERR_STATUS_COUNTERS 3
94  #define NUM_SEND_CTXT_ERR_STATUS_COUNTERS 5
95  #define NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS 24
96  
97  /*
98   * per driver stats, either not device nor port-specific, or
99   * summed over all of the devices and ports.
100   * They are described by name via ipathfs filesystem, so layout
101   * and number of elements can change without breaking compatibility.
102   * If members are added or deleted hfi1_statnames[] in debugfs.c must
103   * change to match.
104   */
105  struct hfi1_ib_stats {
106  	__u64 sps_ints; /* number of interrupts handled */
107  	__u64 sps_errints; /* number of error interrupts */
108  	__u64 sps_txerrs; /* tx-related packet errors */
109  	__u64 sps_rcverrs; /* non-crc rcv packet errors */
110  	__u64 sps_hwerrs; /* hardware errors reported (parity, etc.) */
111  	__u64 sps_nopiobufs; /* no pio bufs avail from kernel */
112  	__u64 sps_ctxts; /* number of contexts currently open */
113  	__u64 sps_lenerrs; /* number of kernel packets where RHF != LRH len */
114  	__u64 sps_buffull;
115  	__u64 sps_hdrfull;
116  };
117  
118  extern struct hfi1_ib_stats hfi1_stats;
119  extern const struct pci_error_handlers hfi1_pci_err_handler;
120  
121  extern int num_driver_cntrs;
122  
123  /*
124   * First-cut criterion for "device is active" is
125   * two thousand dwords combined Tx, Rx traffic per
126   * 5-second interval. SMA packets are 64 dwords,
127   * and occur "a few per second", presumably each way.
128   */
129  #define HFI1_TRAFFIC_ACTIVE_THRESHOLD (2000)
130  
131  /*
132   * Below contains all data related to a single context (formerly called port).
133   */
134  
135  struct hfi1_opcode_stats_perctx;
136  
137  struct ctxt_eager_bufs {
138  	struct eager_buffer {
139  		void *addr;
140  		dma_addr_t dma;
141  		ssize_t len;
142  	} *buffers;
143  	struct {
144  		void *addr;
145  		dma_addr_t dma;
146  	} *rcvtids;
147  	u32 size;                /* total size of eager buffers */
148  	u32 rcvtid_size;         /* size of each eager rcv tid */
149  	u16 count;               /* size of buffers array */
150  	u16 numbufs;             /* number of buffers allocated */
151  	u16 alloced;             /* number of rcvarray entries used */
152  	u16 threshold;           /* head update threshold */
153  };
154  
155  struct exp_tid_set {
156  	struct list_head list;
157  	u32 count;
158  };
159  
160  struct hfi1_ctxtdata;
161  typedef int (*intr_handler)(struct hfi1_ctxtdata *rcd, int data);
162  typedef void (*rhf_rcv_function_ptr)(struct hfi1_packet *packet);
163  
164  struct tid_queue {
165  	struct list_head queue_head;
166  			/* queue head for QP TID resource waiters */
167  	u32 enqueue;	/* count of tid enqueues */
168  	u32 dequeue;	/* count of tid dequeues */
169  };
170  
171  struct hfi1_ctxtdata {
172  	/* rcvhdrq base, needs mmap before useful */
173  	void *rcvhdrq;
174  	/* kernel virtual address where hdrqtail is updated */
175  	volatile __le64 *rcvhdrtail_kvaddr;
176  	/* so functions that need physical port can get it easily */
177  	struct hfi1_pportdata *ppd;
178  	/* so file ops can get at unit */
179  	struct hfi1_devdata *dd;
180  	/* this receive context's assigned PIO ACK send context */
181  	struct send_context *sc;
182  	/* per context recv functions */
183  	const rhf_rcv_function_ptr *rhf_rcv_function_map;
184  	/*
185  	 * The interrupt handler for a particular receive context can vary
186  	 * throughout it's lifetime. This is not a lock protected data member so
187  	 * it must be updated atomically and the prev and new value must always
188  	 * be valid. Worst case is we process an extra interrupt and up to 64
189  	 * packets with the wrong interrupt handler.
190  	 */
191  	intr_handler do_interrupt;
192  	/** fast handler after autoactive */
193  	intr_handler fast_handler;
194  	/** slow handler */
195  	intr_handler slow_handler;
196  	/* napi pointer assiociated with netdev */
197  	struct napi_struct *napi;
198  	/* verbs rx_stats per rcd */
199  	struct hfi1_opcode_stats_perctx *opstats;
200  	/* clear interrupt mask */
201  	u64 imask;
202  	/* ctxt rcvhdrq head offset */
203  	u32 head;
204  	/* number of rcvhdrq entries */
205  	u16 rcvhdrq_cnt;
206  	u8 ireg;	/* clear interrupt register */
207  	/* receive packet sequence counter */
208  	u8 seq_cnt;
209  	/* size of each of the rcvhdrq entries */
210  	u8 rcvhdrqentsize;
211  	/* offset of RHF within receive header entry */
212  	u8 rhf_offset;
213  	/* dynamic receive available interrupt timeout */
214  	u8 rcvavail_timeout;
215  	/* Indicates that this is vnic context */
216  	bool is_vnic;
217  	/* vnic queue index this context is mapped to */
218  	u8 vnic_q_idx;
219  	/* Is ASPM interrupt supported for this context */
220  	bool aspm_intr_supported;
221  	/* ASPM state (enabled/disabled) for this context */
222  	bool aspm_enabled;
223  	/* Is ASPM processing enabled for this context (in intr context) */
224  	bool aspm_intr_enable;
225  	struct ctxt_eager_bufs egrbufs;
226  	/* QPs waiting for context processing */
227  	struct list_head qp_wait_list;
228  	/* tid allocation lists */
229  	struct exp_tid_set tid_group_list;
230  	struct exp_tid_set tid_used_list;
231  	struct exp_tid_set tid_full_list;
232  
233  	/* Timer for re-enabling ASPM if interrupt activity quiets down */
234  	struct timer_list aspm_timer;
235  	/* per-context configuration flags */
236  	unsigned long flags;
237  	/* array of tid_groups */
238  	struct tid_group  *groups;
239  	/* mmap of hdrq, must fit in 44 bits */
240  	dma_addr_t rcvhdrq_dma;
241  	dma_addr_t rcvhdrqtailaddr_dma;
242  	/* Last interrupt timestamp */
243  	ktime_t aspm_ts_last_intr;
244  	/* Last timestamp at which we scheduled a timer for this context */
245  	ktime_t aspm_ts_timer_sched;
246  	/* Lock to serialize between intr, timer intr and user threads */
247  	spinlock_t aspm_lock;
248  	/* Reference count the base context usage */
249  	struct kref kref;
250  	/* numa node of this context */
251  	int numa_id;
252  	/* associated msix interrupt. */
253  	s16 msix_intr;
254  	/* job key */
255  	u16 jkey;
256  	/* number of RcvArray groups for this context. */
257  	u16 rcv_array_groups;
258  	/* index of first eager TID entry. */
259  	u16 eager_base;
260  	/* number of expected TID entries */
261  	u16 expected_count;
262  	/* index of first expected TID entry. */
263  	u16 expected_base;
264  	/* Device context index */
265  	u8 ctxt;
266  
267  	/* PSM Specific fields */
268  	/* lock protecting all Expected TID data */
269  	struct mutex exp_mutex;
270  	/* lock protecting all Expected TID data of kernel contexts */
271  	spinlock_t exp_lock;
272  	/* Queue for QP's waiting for HW TID flows */
273  	struct tid_queue flow_queue;
274  	/* Queue for QP's waiting for HW receive array entries */
275  	struct tid_queue rarr_queue;
276  	/* when waiting for rcv or pioavail */
277  	wait_queue_head_t wait;
278  	/* uuid from PSM */
279  	u8 uuid[16];
280  	/* same size as task_struct .comm[], command that opened context */
281  	char comm[TASK_COMM_LEN];
282  	/* Bitmask of in use context(s) */
283  	DECLARE_BITMAP(in_use_ctxts, HFI1_MAX_SHARED_CTXTS);
284  	/* per-context event flags for fileops/intr communication */
285  	unsigned long event_flags;
286  	/* A page of memory for rcvhdrhead, rcvegrhead, rcvegrtail * N */
287  	void *subctxt_uregbase;
288  	/* An array of pages for the eager receive buffers * N */
289  	void *subctxt_rcvegrbuf;
290  	/* An array of pages for the eager header queue entries * N */
291  	void *subctxt_rcvhdr_base;
292  	/* total number of polled urgent packets */
293  	u32 urgent;
294  	/* saved total number of polled urgent packets for poll edge trigger */
295  	u32 urgent_poll;
296  	/* Type of packets or conditions we want to poll for */
297  	u16 poll_type;
298  	/* non-zero if ctxt is being shared. */
299  	u16 subctxt_id;
300  	/* The version of the library which opened this ctxt */
301  	u32 userversion;
302  	/*
303  	 * non-zero if ctxt can be shared, and defines the maximum number of
304  	 * sub-contexts for this device context.
305  	 */
306  	u8 subctxt_cnt;
307  
308  	/* Bit mask to track free TID RDMA HW flows */
309  	unsigned long flow_mask;
310  	struct tid_flow_state flows[RXE_NUM_TID_FLOWS];
311  };
312  
313  /**
314   * rcvhdrq_size - return total size in bytes for header queue
315   * @rcd: the receive context
316   *
317   * rcvhdrqentsize is in DWs, so we have to convert to bytes
318   *
319   */
rcvhdrq_size(struct hfi1_ctxtdata * rcd)320  static inline u32 rcvhdrq_size(struct hfi1_ctxtdata *rcd)
321  {
322  	return PAGE_ALIGN(rcd->rcvhdrq_cnt *
323  			  rcd->rcvhdrqentsize * sizeof(u32));
324  }
325  
326  /*
327   * Represents a single packet at a high level. Put commonly computed things in
328   * here so we do not have to keep doing them over and over. The rule of thumb is
329   * if something is used one time to derive some value, store that something in
330   * here. If it is used multiple times, then store the result of that derivation
331   * in here.
332   */
333  struct hfi1_packet {
334  	void *ebuf;
335  	void *hdr;
336  	void *payload;
337  	struct hfi1_ctxtdata *rcd;
338  	__le32 *rhf_addr;
339  	struct rvt_qp *qp;
340  	struct ib_other_headers *ohdr;
341  	struct ib_grh *grh;
342  	struct opa_16b_mgmt *mgmt;
343  	u64 rhf;
344  	u32 maxcnt;
345  	u32 rhqoff;
346  	u32 dlid;
347  	u32 slid;
348  	int numpkt;
349  	u16 tlen;
350  	s16 etail;
351  	u16 pkey;
352  	u8 hlen;
353  	u8 rsize;
354  	u8 updegr;
355  	u8 etype;
356  	u8 extra_byte;
357  	u8 pad;
358  	u8 sc;
359  	u8 sl;
360  	u8 opcode;
361  	bool migrated;
362  };
363  
364  /* Packet types */
365  #define HFI1_PKT_TYPE_9B  0
366  #define HFI1_PKT_TYPE_16B 1
367  
368  /*
369   * OPA 16B Header
370   */
371  #define OPA_16B_L4_MASK		0xFFull
372  #define OPA_16B_SC_MASK		0x1F00000ull
373  #define OPA_16B_SC_SHIFT	20
374  #define OPA_16B_LID_MASK	0xFFFFFull
375  #define OPA_16B_DLID_MASK	0xF000ull
376  #define OPA_16B_DLID_SHIFT	20
377  #define OPA_16B_DLID_HIGH_SHIFT	12
378  #define OPA_16B_SLID_MASK	0xF00ull
379  #define OPA_16B_SLID_SHIFT	20
380  #define OPA_16B_SLID_HIGH_SHIFT	8
381  #define OPA_16B_BECN_MASK       0x80000000ull
382  #define OPA_16B_BECN_SHIFT      31
383  #define OPA_16B_FECN_MASK       0x10000000ull
384  #define OPA_16B_FECN_SHIFT      28
385  #define OPA_16B_L2_MASK		0x60000000ull
386  #define OPA_16B_L2_SHIFT	29
387  #define OPA_16B_PKEY_MASK	0xFFFF0000ull
388  #define OPA_16B_PKEY_SHIFT	16
389  #define OPA_16B_LEN_MASK	0x7FF00000ull
390  #define OPA_16B_LEN_SHIFT	20
391  #define OPA_16B_RC_MASK		0xE000000ull
392  #define OPA_16B_RC_SHIFT	25
393  #define OPA_16B_AGE_MASK	0xFF0000ull
394  #define OPA_16B_AGE_SHIFT	16
395  #define OPA_16B_ENTROPY_MASK	0xFFFFull
396  
397  /*
398   * OPA 16B L2/L4 Encodings
399   */
400  #define OPA_16B_L4_9B		0x00
401  #define OPA_16B_L2_TYPE		0x02
402  #define OPA_16B_L4_FM		0x08
403  #define OPA_16B_L4_IB_LOCAL	0x09
404  #define OPA_16B_L4_IB_GLOBAL	0x0A
405  #define OPA_16B_L4_ETHR		OPA_VNIC_L4_ETHR
406  
407  /*
408   * OPA 16B Management
409   */
410  #define OPA_16B_L4_FM_PAD	3  /* fixed 3B pad */
411  #define OPA_16B_L4_FM_HLEN	24 /* 16B(16) + L4_FM(8) */
412  
hfi1_16B_get_l4(struct hfi1_16b_header * hdr)413  static inline u8 hfi1_16B_get_l4(struct hfi1_16b_header *hdr)
414  {
415  	return (u8)(hdr->lrh[2] & OPA_16B_L4_MASK);
416  }
417  
hfi1_16B_get_sc(struct hfi1_16b_header * hdr)418  static inline u8 hfi1_16B_get_sc(struct hfi1_16b_header *hdr)
419  {
420  	return (u8)((hdr->lrh[1] & OPA_16B_SC_MASK) >> OPA_16B_SC_SHIFT);
421  }
422  
hfi1_16B_get_dlid(struct hfi1_16b_header * hdr)423  static inline u32 hfi1_16B_get_dlid(struct hfi1_16b_header *hdr)
424  {
425  	return (u32)((hdr->lrh[1] & OPA_16B_LID_MASK) |
426  		     (((hdr->lrh[2] & OPA_16B_DLID_MASK) >>
427  		     OPA_16B_DLID_HIGH_SHIFT) << OPA_16B_DLID_SHIFT));
428  }
429  
hfi1_16B_get_slid(struct hfi1_16b_header * hdr)430  static inline u32 hfi1_16B_get_slid(struct hfi1_16b_header *hdr)
431  {
432  	return (u32)((hdr->lrh[0] & OPA_16B_LID_MASK) |
433  		     (((hdr->lrh[2] & OPA_16B_SLID_MASK) >>
434  		     OPA_16B_SLID_HIGH_SHIFT) << OPA_16B_SLID_SHIFT));
435  }
436  
hfi1_16B_get_becn(struct hfi1_16b_header * hdr)437  static inline u8 hfi1_16B_get_becn(struct hfi1_16b_header *hdr)
438  {
439  	return (u8)((hdr->lrh[0] & OPA_16B_BECN_MASK) >> OPA_16B_BECN_SHIFT);
440  }
441  
hfi1_16B_get_fecn(struct hfi1_16b_header * hdr)442  static inline u8 hfi1_16B_get_fecn(struct hfi1_16b_header *hdr)
443  {
444  	return (u8)((hdr->lrh[1] & OPA_16B_FECN_MASK) >> OPA_16B_FECN_SHIFT);
445  }
446  
hfi1_16B_get_l2(struct hfi1_16b_header * hdr)447  static inline u8 hfi1_16B_get_l2(struct hfi1_16b_header *hdr)
448  {
449  	return (u8)((hdr->lrh[1] & OPA_16B_L2_MASK) >> OPA_16B_L2_SHIFT);
450  }
451  
hfi1_16B_get_pkey(struct hfi1_16b_header * hdr)452  static inline u16 hfi1_16B_get_pkey(struct hfi1_16b_header *hdr)
453  {
454  	return (u16)((hdr->lrh[2] & OPA_16B_PKEY_MASK) >> OPA_16B_PKEY_SHIFT);
455  }
456  
hfi1_16B_get_rc(struct hfi1_16b_header * hdr)457  static inline u8 hfi1_16B_get_rc(struct hfi1_16b_header *hdr)
458  {
459  	return (u8)((hdr->lrh[1] & OPA_16B_RC_MASK) >> OPA_16B_RC_SHIFT);
460  }
461  
hfi1_16B_get_age(struct hfi1_16b_header * hdr)462  static inline u8 hfi1_16B_get_age(struct hfi1_16b_header *hdr)
463  {
464  	return (u8)((hdr->lrh[3] & OPA_16B_AGE_MASK) >> OPA_16B_AGE_SHIFT);
465  }
466  
hfi1_16B_get_len(struct hfi1_16b_header * hdr)467  static inline u16 hfi1_16B_get_len(struct hfi1_16b_header *hdr)
468  {
469  	return (u16)((hdr->lrh[0] & OPA_16B_LEN_MASK) >> OPA_16B_LEN_SHIFT);
470  }
471  
hfi1_16B_get_entropy(struct hfi1_16b_header * hdr)472  static inline u16 hfi1_16B_get_entropy(struct hfi1_16b_header *hdr)
473  {
474  	return (u16)(hdr->lrh[3] & OPA_16B_ENTROPY_MASK);
475  }
476  
477  #define OPA_16B_MAKE_QW(low_dw, high_dw) (((u64)(high_dw) << 32) | (low_dw))
478  
479  /*
480   * BTH
481   */
482  #define OPA_16B_BTH_PAD_MASK	7
hfi1_16B_bth_get_pad(struct ib_other_headers * ohdr)483  static inline u8 hfi1_16B_bth_get_pad(struct ib_other_headers *ohdr)
484  {
485  	return (u8)((be32_to_cpu(ohdr->bth[0]) >> IB_BTH_PAD_SHIFT) &
486  		   OPA_16B_BTH_PAD_MASK);
487  }
488  
489  /*
490   * 16B Management
491   */
492  #define OPA_16B_MGMT_QPN_MASK	0xFFFFFF
hfi1_16B_get_dest_qpn(struct opa_16b_mgmt * mgmt)493  static inline u32 hfi1_16B_get_dest_qpn(struct opa_16b_mgmt *mgmt)
494  {
495  	return be32_to_cpu(mgmt->dest_qpn) & OPA_16B_MGMT_QPN_MASK;
496  }
497  
hfi1_16B_get_src_qpn(struct opa_16b_mgmt * mgmt)498  static inline u32 hfi1_16B_get_src_qpn(struct opa_16b_mgmt *mgmt)
499  {
500  	return be32_to_cpu(mgmt->src_qpn) & OPA_16B_MGMT_QPN_MASK;
501  }
502  
hfi1_16B_set_qpn(struct opa_16b_mgmt * mgmt,u32 dest_qp,u32 src_qp)503  static inline void hfi1_16B_set_qpn(struct opa_16b_mgmt *mgmt,
504  				    u32 dest_qp, u32 src_qp)
505  {
506  	mgmt->dest_qpn = cpu_to_be32(dest_qp & OPA_16B_MGMT_QPN_MASK);
507  	mgmt->src_qpn = cpu_to_be32(src_qp & OPA_16B_MGMT_QPN_MASK);
508  }
509  
510  /**
511   * hfi1_get_rc_ohdr - get extended header
512   * @opah - the opaheader
513   */
514  static inline struct ib_other_headers *
hfi1_get_rc_ohdr(struct hfi1_opa_header * opah)515  hfi1_get_rc_ohdr(struct hfi1_opa_header *opah)
516  {
517  	struct ib_other_headers *ohdr;
518  	struct ib_header *hdr = NULL;
519  	struct hfi1_16b_header *hdr_16b = NULL;
520  
521  	/* Find out where the BTH is */
522  	if (opah->hdr_type == HFI1_PKT_TYPE_9B) {
523  		hdr = &opah->ibh;
524  		if (ib_get_lnh(hdr) == HFI1_LRH_BTH)
525  			ohdr = &hdr->u.oth;
526  		else
527  			ohdr = &hdr->u.l.oth;
528  	} else {
529  		u8 l4;
530  
531  		hdr_16b = &opah->opah;
532  		l4  = hfi1_16B_get_l4(hdr_16b);
533  		if (l4 == OPA_16B_L4_IB_LOCAL)
534  			ohdr = &hdr_16b->u.oth;
535  		else
536  			ohdr = &hdr_16b->u.l.oth;
537  	}
538  	return ohdr;
539  }
540  
541  struct rvt_sge_state;
542  
543  /*
544   * Get/Set IB link-level config parameters for f_get/set_ib_cfg()
545   * Mostly for MADs that set or query link parameters, also ipath
546   * config interfaces
547   */
548  #define HFI1_IB_CFG_LIDLMC 0 /* LID (LS16b) and Mask (MS16b) */
549  #define HFI1_IB_CFG_LWID_DG_ENB 1 /* allowed Link-width downgrade */
550  #define HFI1_IB_CFG_LWID_ENB 2 /* allowed Link-width */
551  #define HFI1_IB_CFG_LWID 3 /* currently active Link-width */
552  #define HFI1_IB_CFG_SPD_ENB 4 /* allowed Link speeds */
553  #define HFI1_IB_CFG_SPD 5 /* current Link spd */
554  #define HFI1_IB_CFG_RXPOL_ENB 6 /* Auto-RX-polarity enable */
555  #define HFI1_IB_CFG_LREV_ENB 7 /* Auto-Lane-reversal enable */
556  #define HFI1_IB_CFG_LINKLATENCY 8 /* Link Latency (IB1.2 only) */
557  #define HFI1_IB_CFG_HRTBT 9 /* IB heartbeat off/enable/auto; DDR/QDR only */
558  #define HFI1_IB_CFG_OP_VLS 10 /* operational VLs */
559  #define HFI1_IB_CFG_VL_HIGH_CAP 11 /* num of VL high priority weights */
560  #define HFI1_IB_CFG_VL_LOW_CAP 12 /* num of VL low priority weights */
561  #define HFI1_IB_CFG_OVERRUN_THRESH 13 /* IB overrun threshold */
562  #define HFI1_IB_CFG_PHYERR_THRESH 14 /* IB PHY error threshold */
563  #define HFI1_IB_CFG_LINKDEFAULT 15 /* IB link default (sleep/poll) */
564  #define HFI1_IB_CFG_PKEYS 16 /* update partition keys */
565  #define HFI1_IB_CFG_MTU 17 /* update MTU in IBC */
566  #define HFI1_IB_CFG_VL_HIGH_LIMIT 19
567  #define HFI1_IB_CFG_PMA_TICKS 20 /* PMA sample tick resolution */
568  #define HFI1_IB_CFG_PORT 21 /* switch port we are connected to */
569  
570  /*
571   * HFI or Host Link States
572   *
573   * These describe the states the driver thinks the logical and physical
574   * states are in.  Used as an argument to set_link_state().  Implemented
575   * as bits for easy multi-state checking.  The actual state can only be
576   * one.
577   */
578  #define __HLS_UP_INIT_BP	0
579  #define __HLS_UP_ARMED_BP	1
580  #define __HLS_UP_ACTIVE_BP	2
581  #define __HLS_DN_DOWNDEF_BP	3	/* link down default */
582  #define __HLS_DN_POLL_BP	4
583  #define __HLS_DN_DISABLE_BP	5
584  #define __HLS_DN_OFFLINE_BP	6
585  #define __HLS_VERIFY_CAP_BP	7
586  #define __HLS_GOING_UP_BP	8
587  #define __HLS_GOING_OFFLINE_BP  9
588  #define __HLS_LINK_COOLDOWN_BP 10
589  
590  #define HLS_UP_INIT	  BIT(__HLS_UP_INIT_BP)
591  #define HLS_UP_ARMED	  BIT(__HLS_UP_ARMED_BP)
592  #define HLS_UP_ACTIVE	  BIT(__HLS_UP_ACTIVE_BP)
593  #define HLS_DN_DOWNDEF	  BIT(__HLS_DN_DOWNDEF_BP) /* link down default */
594  #define HLS_DN_POLL	  BIT(__HLS_DN_POLL_BP)
595  #define HLS_DN_DISABLE	  BIT(__HLS_DN_DISABLE_BP)
596  #define HLS_DN_OFFLINE	  BIT(__HLS_DN_OFFLINE_BP)
597  #define HLS_VERIFY_CAP	  BIT(__HLS_VERIFY_CAP_BP)
598  #define HLS_GOING_UP	  BIT(__HLS_GOING_UP_BP)
599  #define HLS_GOING_OFFLINE BIT(__HLS_GOING_OFFLINE_BP)
600  #define HLS_LINK_COOLDOWN BIT(__HLS_LINK_COOLDOWN_BP)
601  
602  #define HLS_UP (HLS_UP_INIT | HLS_UP_ARMED | HLS_UP_ACTIVE)
603  #define HLS_DOWN ~(HLS_UP)
604  
605  #define HLS_DEFAULT HLS_DN_POLL
606  
607  /* use this MTU size if none other is given */
608  #define HFI1_DEFAULT_ACTIVE_MTU 10240
609  /* use this MTU size as the default maximum */
610  #define HFI1_DEFAULT_MAX_MTU 10240
611  /* default partition key */
612  #define DEFAULT_PKEY 0xffff
613  
614  /*
615   * Possible fabric manager config parameters for fm_{get,set}_table()
616   */
617  #define FM_TBL_VL_HIGH_ARB		1 /* Get/set VL high prio weights */
618  #define FM_TBL_VL_LOW_ARB		2 /* Get/set VL low prio weights */
619  #define FM_TBL_BUFFER_CONTROL		3 /* Get/set Buffer Control */
620  #define FM_TBL_SC2VLNT			4 /* Get/set SC->VLnt */
621  #define FM_TBL_VL_PREEMPT_ELEMS		5 /* Get (no set) VL preempt elems */
622  #define FM_TBL_VL_PREEMPT_MATRIX	6 /* Get (no set) VL preempt matrix */
623  
624  /*
625   * Possible "operations" for f_rcvctrl(ppd, op, ctxt)
626   * these are bits so they can be combined, e.g.
627   * HFI1_RCVCTRL_INTRAVAIL_ENB | HFI1_RCVCTRL_CTXT_ENB
628   */
629  #define HFI1_RCVCTRL_TAILUPD_ENB 0x01
630  #define HFI1_RCVCTRL_TAILUPD_DIS 0x02
631  #define HFI1_RCVCTRL_CTXT_ENB 0x04
632  #define HFI1_RCVCTRL_CTXT_DIS 0x08
633  #define HFI1_RCVCTRL_INTRAVAIL_ENB 0x10
634  #define HFI1_RCVCTRL_INTRAVAIL_DIS 0x20
635  #define HFI1_RCVCTRL_PKEY_ENB 0x40  /* Note, default is enabled */
636  #define HFI1_RCVCTRL_PKEY_DIS 0x80
637  #define HFI1_RCVCTRL_TIDFLOW_ENB 0x0400
638  #define HFI1_RCVCTRL_TIDFLOW_DIS 0x0800
639  #define HFI1_RCVCTRL_ONE_PKT_EGR_ENB 0x1000
640  #define HFI1_RCVCTRL_ONE_PKT_EGR_DIS 0x2000
641  #define HFI1_RCVCTRL_NO_RHQ_DROP_ENB 0x4000
642  #define HFI1_RCVCTRL_NO_RHQ_DROP_DIS 0x8000
643  #define HFI1_RCVCTRL_NO_EGR_DROP_ENB 0x10000
644  #define HFI1_RCVCTRL_NO_EGR_DROP_DIS 0x20000
645  #define HFI1_RCVCTRL_URGENT_ENB 0x40000
646  #define HFI1_RCVCTRL_URGENT_DIS 0x80000
647  
648  /* partition enforcement flags */
649  #define HFI1_PART_ENFORCE_IN	0x1
650  #define HFI1_PART_ENFORCE_OUT	0x2
651  
652  /* how often we check for synthetic counter wrap around */
653  #define SYNTH_CNT_TIME 3
654  
655  /* Counter flags */
656  #define CNTR_NORMAL		0x0 /* Normal counters, just read register */
657  #define CNTR_SYNTH		0x1 /* Synthetic counters, saturate at all 1s */
658  #define CNTR_DISABLED		0x2 /* Disable this counter */
659  #define CNTR_32BIT		0x4 /* Simulate 64 bits for this counter */
660  #define CNTR_VL			0x8 /* Per VL counter */
661  #define CNTR_SDMA              0x10
662  #define CNTR_INVALID_VL		-1  /* Specifies invalid VL */
663  #define CNTR_MODE_W		0x0
664  #define CNTR_MODE_R		0x1
665  
666  /* VLs Supported/Operational */
667  #define HFI1_MIN_VLS_SUPPORTED 1
668  #define HFI1_MAX_VLS_SUPPORTED 8
669  
670  #define HFI1_GUIDS_PER_PORT  5
671  #define HFI1_PORT_GUID_INDEX 0
672  
incr_cntr64(u64 * cntr)673  static inline void incr_cntr64(u64 *cntr)
674  {
675  	if (*cntr < (u64)-1LL)
676  		(*cntr)++;
677  }
678  
679  #define MAX_NAME_SIZE 64
680  struct hfi1_msix_entry {
681  	enum irq_type type;
682  	int irq;
683  	void *arg;
684  	cpumask_t mask;
685  	struct irq_affinity_notify notify;
686  };
687  
688  struct hfi1_msix_info {
689  	/* lock to synchronize in_use_msix access */
690  	spinlock_t msix_lock;
691  	DECLARE_BITMAP(in_use_msix, CCE_NUM_MSIX_VECTORS);
692  	struct hfi1_msix_entry *msix_entries;
693  	u16 max_requested;
694  };
695  
696  /* per-SL CCA information */
697  struct cca_timer {
698  	struct hrtimer hrtimer;
699  	struct hfi1_pportdata *ppd; /* read-only */
700  	int sl; /* read-only */
701  	u16 ccti; /* read/write - current value of CCTI */
702  };
703  
704  struct link_down_reason {
705  	/*
706  	 * SMA-facing value.  Should be set from .latest when
707  	 * HLS_UP_* -> HLS_DN_* transition actually occurs.
708  	 */
709  	u8 sma;
710  	u8 latest;
711  };
712  
713  enum {
714  	LO_PRIO_TABLE,
715  	HI_PRIO_TABLE,
716  	MAX_PRIO_TABLE
717  };
718  
719  struct vl_arb_cache {
720  	/* protect vl arb cache */
721  	spinlock_t lock;
722  	struct ib_vl_weight_elem table[VL_ARB_TABLE_SIZE];
723  };
724  
725  /*
726   * The structure below encapsulates data relevant to a physical IB Port.
727   * Current chips support only one such port, but the separation
728   * clarifies things a bit. Note that to conform to IB conventions,
729   * port-numbers are one-based. The first or only port is port1.
730   */
731  struct hfi1_pportdata {
732  	struct hfi1_ibport ibport_data;
733  
734  	struct hfi1_devdata *dd;
735  
736  	/* PHY support */
737  	struct qsfp_data qsfp_info;
738  	/* Values for SI tuning of SerDes */
739  	u32 port_type;
740  	u32 tx_preset_eq;
741  	u32 tx_preset_noeq;
742  	u32 rx_preset;
743  	u8  local_atten;
744  	u8  remote_atten;
745  	u8  default_atten;
746  	u8  max_power_class;
747  
748  	/* did we read platform config from scratch registers? */
749  	bool config_from_scratch;
750  
751  	/* GUIDs for this interface, in host order, guids[0] is a port guid */
752  	u64 guids[HFI1_GUIDS_PER_PORT];
753  
754  	/* GUID for peer interface, in host order */
755  	u64 neighbor_guid;
756  
757  	/* up or down physical link state */
758  	u32 linkup;
759  
760  	/*
761  	 * this address is mapped read-only into user processes so they can
762  	 * get status cheaply, whenever they want.  One qword of status per port
763  	 */
764  	u64 *statusp;
765  
766  	/* SendDMA related entries */
767  
768  	struct workqueue_struct *hfi1_wq;
769  	struct workqueue_struct *link_wq;
770  
771  	/* move out of interrupt context */
772  	struct work_struct link_vc_work;
773  	struct work_struct link_up_work;
774  	struct work_struct link_down_work;
775  	struct work_struct sma_message_work;
776  	struct work_struct freeze_work;
777  	struct work_struct link_downgrade_work;
778  	struct work_struct link_bounce_work;
779  	struct delayed_work start_link_work;
780  	/* host link state variables */
781  	struct mutex hls_lock;
782  	u32 host_link_state;
783  
784  	/* these are the "32 bit" regs */
785  
786  	u32 ibmtu; /* The MTU programmed for this unit */
787  	/*
788  	 * Current max size IB packet (in bytes) including IB headers, that
789  	 * we can send. Changes when ibmtu changes.
790  	 */
791  	u32 ibmaxlen;
792  	u32 current_egress_rate; /* units [10^6 bits/sec] */
793  	/* LID programmed for this instance */
794  	u32 lid;
795  	/* list of pkeys programmed; 0 if not set */
796  	u16 pkeys[MAX_PKEY_VALUES];
797  	u16 link_width_supported;
798  	u16 link_width_downgrade_supported;
799  	u16 link_speed_supported;
800  	u16 link_width_enabled;
801  	u16 link_width_downgrade_enabled;
802  	u16 link_speed_enabled;
803  	u16 link_width_active;
804  	u16 link_width_downgrade_tx_active;
805  	u16 link_width_downgrade_rx_active;
806  	u16 link_speed_active;
807  	u8 vls_supported;
808  	u8 vls_operational;
809  	u8 actual_vls_operational;
810  	/* LID mask control */
811  	u8 lmc;
812  	/* Rx Polarity inversion (compensate for ~tx on partner) */
813  	u8 rx_pol_inv;
814  
815  	u8 hw_pidx;     /* physical port index */
816  	u32 port;        /* IB port number and index into dd->pports - 1 */
817  	/* type of neighbor node */
818  	u8 neighbor_type;
819  	u8 neighbor_normal;
820  	u8 neighbor_fm_security; /* 1 if firmware checking is disabled */
821  	u8 neighbor_port_number;
822  	u8 is_sm_config_started;
823  	u8 offline_disabled_reason;
824  	u8 is_active_optimize_enabled;
825  	u8 driver_link_ready;	/* driver ready for active link */
826  	u8 link_enabled;	/* link enabled? */
827  	u8 linkinit_reason;
828  	u8 local_tx_rate;	/* rate given to 8051 firmware */
829  	u8 qsfp_retry_count;
830  
831  	/* placeholders for IB MAD packet settings */
832  	u8 overrun_threshold;
833  	u8 phy_error_threshold;
834  	unsigned int is_link_down_queued;
835  
836  	/* Used to override LED behavior for things like maintenance beaconing*/
837  	/*
838  	 * Alternates per phase of blink
839  	 * [0] holds LED off duration, [1] holds LED on duration
840  	 */
841  	unsigned long led_override_vals[2];
842  	u8 led_override_phase; /* LSB picks from vals[] */
843  	atomic_t led_override_timer_active;
844  	/* Used to flash LEDs in override mode */
845  	struct timer_list led_override_timer;
846  
847  	u32 sm_trap_qp;
848  	u32 sa_qp;
849  
850  	/*
851  	 * cca_timer_lock protects access to the per-SL cca_timer
852  	 * structures (specifically the ccti member).
853  	 */
854  	spinlock_t cca_timer_lock ____cacheline_aligned_in_smp;
855  	struct cca_timer cca_timer[OPA_MAX_SLS];
856  
857  	/* List of congestion control table entries */
858  	struct ib_cc_table_entry_shadow ccti_entries[CC_TABLE_SHADOW_MAX];
859  
860  	/* congestion entries, each entry corresponding to a SL */
861  	struct opa_congestion_setting_entry_shadow
862  		congestion_entries[OPA_MAX_SLS];
863  
864  	/*
865  	 * cc_state_lock protects (write) access to the per-port
866  	 * struct cc_state.
867  	 */
868  	spinlock_t cc_state_lock ____cacheline_aligned_in_smp;
869  
870  	struct cc_state __rcu *cc_state;
871  
872  	/* Total number of congestion control table entries */
873  	u16 total_cct_entry;
874  
875  	/* Bit map identifying service level */
876  	u32 cc_sl_control_map;
877  
878  	/* CA's max number of 64 entry units in the congestion control table */
879  	u8 cc_max_table_entries;
880  
881  	/*
882  	 * begin congestion log related entries
883  	 * cc_log_lock protects all congestion log related data
884  	 */
885  	spinlock_t cc_log_lock ____cacheline_aligned_in_smp;
886  	u8 threshold_cong_event_map[OPA_MAX_SLS / 8];
887  	u16 threshold_event_counter;
888  	struct opa_hfi1_cong_log_event_internal cc_events[OPA_CONG_LOG_ELEMS];
889  	int cc_log_idx; /* index for logging events */
890  	int cc_mad_idx; /* index for reporting events */
891  	/* end congestion log related entries */
892  
893  	struct vl_arb_cache vl_arb_cache[MAX_PRIO_TABLE];
894  
895  	/* port relative counter buffer */
896  	u64 *cntrs;
897  	/* port relative synthetic counter buffer */
898  	u64 *scntrs;
899  	/* port_xmit_discards are synthesized from different egress errors */
900  	u64 port_xmit_discards;
901  	u64 port_xmit_discards_vl[C_VL_COUNT];
902  	u64 port_xmit_constraint_errors;
903  	u64 port_rcv_constraint_errors;
904  	/* count of 'link_err' interrupts from DC */
905  	u64 link_downed;
906  	/* number of times link retrained successfully */
907  	u64 link_up;
908  	/* number of times a link unknown frame was reported */
909  	u64 unknown_frame_count;
910  	/* port_ltp_crc_mode is returned in 'portinfo' MADs */
911  	u16 port_ltp_crc_mode;
912  	/* port_crc_mode_enabled is the crc we support */
913  	u8 port_crc_mode_enabled;
914  	/* mgmt_allowed is also returned in 'portinfo' MADs */
915  	u8 mgmt_allowed;
916  	u8 part_enforce; /* partition enforcement flags */
917  	struct link_down_reason local_link_down_reason;
918  	struct link_down_reason neigh_link_down_reason;
919  	/* Value to be sent to link peer on LinkDown .*/
920  	u8 remote_link_down_reason;
921  	/* Error events that will cause a port bounce. */
922  	u32 port_error_action;
923  	struct work_struct linkstate_active_work;
924  	/* Does this port need to prescan for FECNs */
925  	bool cc_prescan;
926  	/*
927  	 * Sample sendWaitCnt & sendWaitVlCnt during link transition
928  	 * and counter request.
929  	 */
930  	u64 port_vl_xmit_wait_last[C_VL_COUNT + 1];
931  	u16 prev_link_width;
932  	u64 vl_xmit_flit_cnt[C_VL_COUNT + 1];
933  };
934  
935  typedef void (*opcode_handler)(struct hfi1_packet *packet);
936  typedef void (*hfi1_make_req)(struct rvt_qp *qp,
937  			      struct hfi1_pkt_state *ps,
938  			      struct rvt_swqe *wqe);
939  extern const rhf_rcv_function_ptr normal_rhf_rcv_functions[];
940  extern const rhf_rcv_function_ptr netdev_rhf_rcv_functions[];
941  
942  /* return values for the RHF receive functions */
943  #define RHF_RCV_CONTINUE  0	/* keep going */
944  #define RHF_RCV_DONE	  1	/* stop, this packet processed */
945  #define RHF_RCV_REPROCESS 2	/* stop. retain this packet */
946  
947  struct rcv_array_data {
948  	u16 ngroups;
949  	u16 nctxt_extra;
950  	u8 group_size;
951  };
952  
953  struct per_vl_data {
954  	u16 mtu;
955  	struct send_context *sc;
956  };
957  
958  /* 16 to directly index */
959  #define PER_VL_SEND_CONTEXTS 16
960  
961  struct err_info_rcvport {
962  	u8 status_and_code;
963  	u64 packet_flit1;
964  	u64 packet_flit2;
965  };
966  
967  struct err_info_constraint {
968  	u8 status;
969  	u16 pkey;
970  	u32 slid;
971  };
972  
973  struct hfi1_temp {
974  	unsigned int curr;       /* current temperature */
975  	unsigned int lo_lim;     /* low temperature limit */
976  	unsigned int hi_lim;     /* high temperature limit */
977  	unsigned int crit_lim;   /* critical temperature limit */
978  	u8 triggers;      /* temperature triggers */
979  };
980  
981  struct hfi1_i2c_bus {
982  	struct hfi1_devdata *controlling_dd; /* current controlling device */
983  	struct i2c_adapter adapter;	/* bus details */
984  	struct i2c_algo_bit_data algo;	/* bus algorithm details */
985  	int num;			/* bus number, 0 or 1 */
986  };
987  
988  /* common data between shared ASIC HFIs */
989  struct hfi1_asic_data {
990  	struct hfi1_devdata *dds[2];	/* back pointers */
991  	struct mutex asic_resource_mutex;
992  	struct hfi1_i2c_bus *i2c_bus0;
993  	struct hfi1_i2c_bus *i2c_bus1;
994  };
995  
996  /* sizes for both the QP and RSM map tables */
997  #define NUM_MAP_ENTRIES	 256
998  #define NUM_MAP_REGS      32
999  
1000  /* Virtual NIC information */
1001  struct hfi1_vnic_data {
1002  	struct kmem_cache *txreq_cache;
1003  	u8 num_vports;
1004  };
1005  
1006  struct hfi1_vnic_vport_info;
1007  
1008  /* device data struct now contains only "general per-device" info.
1009   * fields related to a physical IB port are in a hfi1_pportdata struct.
1010   */
1011  struct sdma_engine;
1012  struct sdma_vl_map;
1013  
1014  #define BOARD_VERS_MAX 96 /* how long the version string can be */
1015  #define SERIAL_MAX 16 /* length of the serial number */
1016  
1017  typedef int (*send_routine)(struct rvt_qp *, struct hfi1_pkt_state *, u64);
1018  struct hfi1_netdev_rx;
1019  struct hfi1_devdata {
1020  	struct hfi1_ibdev verbs_dev;     /* must be first */
1021  	/* pointers to related structs for this device */
1022  	/* pci access data structure */
1023  	struct pci_dev *pcidev;
1024  	struct cdev user_cdev;
1025  	struct cdev diag_cdev;
1026  	struct cdev ui_cdev;
1027  	struct device *user_device;
1028  	struct device *diag_device;
1029  	struct device *ui_device;
1030  
1031  	/* first mapping up to RcvArray */
1032  	u8 __iomem *kregbase1;
1033  	resource_size_t physaddr;
1034  
1035  	/* second uncached mapping from RcvArray to pio send buffers */
1036  	u8 __iomem *kregbase2;
1037  	/* for detecting offset above kregbase2 address */
1038  	u32 base2_start;
1039  
1040  	/* Per VL data. Enough for all VLs but not all elements are set/used. */
1041  	struct per_vl_data vld[PER_VL_SEND_CONTEXTS];
1042  	/* send context data */
1043  	struct send_context_info *send_contexts;
1044  	/* map hardware send contexts to software index */
1045  	u8 *hw_to_sw;
1046  	/* spinlock for allocating and releasing send context resources */
1047  	spinlock_t sc_lock;
1048  	/* lock for pio_map */
1049  	spinlock_t pio_map_lock;
1050  	/* Send Context initialization lock. */
1051  	spinlock_t sc_init_lock;
1052  	/* lock for sdma_map */
1053  	spinlock_t                          sde_map_lock;
1054  	/* array of kernel send contexts */
1055  	struct send_context **kernel_send_context;
1056  	/* array of vl maps */
1057  	struct pio_vl_map __rcu *pio_map;
1058  	/* default flags to last descriptor */
1059  	u64 default_desc1;
1060  
1061  	/* fields common to all SDMA engines */
1062  
1063  	volatile __le64                    *sdma_heads_dma; /* DMA'ed by chip */
1064  	dma_addr_t                          sdma_heads_phys;
1065  	void                               *sdma_pad_dma; /* DMA'ed by chip */
1066  	dma_addr_t                          sdma_pad_phys;
1067  	/* for deallocation */
1068  	size_t                              sdma_heads_size;
1069  	/* num used */
1070  	u32                                 num_sdma;
1071  	/* array of engines sized by num_sdma */
1072  	struct sdma_engine                 *per_sdma;
1073  	/* array of vl maps */
1074  	struct sdma_vl_map __rcu           *sdma_map;
1075  	/* SPC freeze waitqueue and variable */
1076  	wait_queue_head_t		  sdma_unfreeze_wq;
1077  	atomic_t			  sdma_unfreeze_count;
1078  
1079  	u32 lcb_access_count;		/* count of LCB users */
1080  
1081  	/* common data between shared ASIC HFIs in this OS */
1082  	struct hfi1_asic_data *asic_data;
1083  
1084  	/* mem-mapped pointer to base of PIO buffers */
1085  	void __iomem *piobase;
1086  	/*
1087  	 * write-combining mem-mapped pointer to base of RcvArray
1088  	 * memory.
1089  	 */
1090  	void __iomem *rcvarray_wc;
1091  	/*
1092  	 * credit return base - a per-NUMA range of DMA address that
1093  	 * the chip will use to update the per-context free counter
1094  	 */
1095  	struct credit_return_base *cr_base;
1096  
1097  	/* send context numbers and sizes for each type */
1098  	struct sc_config_sizes sc_sizes[SC_MAX];
1099  
1100  	char *boardname; /* human readable board info */
1101  
1102  	u64 ctx0_seq_drop;
1103  
1104  	/* reset value */
1105  	u64 z_int_counter;
1106  	u64 z_rcv_limit;
1107  	u64 z_send_schedule;
1108  
1109  	u64 __percpu *send_schedule;
1110  	/* number of reserved contexts for netdev usage */
1111  	u16 num_netdev_contexts;
1112  	/* number of receive contexts in use by the driver */
1113  	u32 num_rcv_contexts;
1114  	/* number of pio send contexts in use by the driver */
1115  	u32 num_send_contexts;
1116  	/*
1117  	 * number of ctxts available for PSM open
1118  	 */
1119  	u32 freectxts;
1120  	/* total number of available user/PSM contexts */
1121  	u32 num_user_contexts;
1122  	/* base receive interrupt timeout, in CSR units */
1123  	u32 rcv_intr_timeout_csr;
1124  
1125  	spinlock_t sendctrl_lock; /* protect changes to SendCtrl */
1126  	spinlock_t rcvctrl_lock; /* protect changes to RcvCtrl */
1127  	spinlock_t uctxt_lock; /* protect rcd changes */
1128  	struct mutex dc8051_lock; /* exclusive access to 8051 */
1129  	struct workqueue_struct *update_cntr_wq;
1130  	struct work_struct update_cntr_work;
1131  	/* exclusive access to 8051 memory */
1132  	spinlock_t dc8051_memlock;
1133  	int dc8051_timed_out;	/* remember if the 8051 timed out */
1134  	/*
1135  	 * A page that will hold event notification bitmaps for all
1136  	 * contexts. This page will be mapped into all processes.
1137  	 */
1138  	unsigned long *events;
1139  	/*
1140  	 * per unit status, see also portdata statusp
1141  	 * mapped read-only into user processes so they can get unit and
1142  	 * IB link status cheaply
1143  	 */
1144  	struct hfi1_status *status;
1145  
1146  	/* revision register shadow */
1147  	u64 revision;
1148  	/* Base GUID for device (network order) */
1149  	u64 base_guid;
1150  
1151  	/* both sides of the PCIe link are gen3 capable */
1152  	u8 link_gen3_capable;
1153  	u8 dc_shutdown;
1154  	/* localbus width (1, 2,4,8,16,32) from config space  */
1155  	u32 lbus_width;
1156  	/* localbus speed in MHz */
1157  	u32 lbus_speed;
1158  	int unit; /* unit # of this chip */
1159  	int node; /* home node of this chip */
1160  
1161  	/* save these PCI fields to restore after a reset */
1162  	u32 pcibar0;
1163  	u32 pcibar1;
1164  	u32 pci_rom;
1165  	u16 pci_command;
1166  	u16 pcie_devctl;
1167  	u16 pcie_lnkctl;
1168  	u16 pcie_devctl2;
1169  	u32 pci_msix0;
1170  	u32 pci_tph2;
1171  
1172  	/*
1173  	 * ASCII serial number, from flash, large enough for original
1174  	 * all digit strings, and longer serial number format
1175  	 */
1176  	u8 serial[SERIAL_MAX];
1177  	/* human readable board version */
1178  	u8 boardversion[BOARD_VERS_MAX];
1179  	u8 lbus_info[32]; /* human readable localbus info */
1180  	/* chip major rev, from CceRevision */
1181  	u8 majrev;
1182  	/* chip minor rev, from CceRevision */
1183  	u8 minrev;
1184  	/* hardware ID */
1185  	u8 hfi1_id;
1186  	/* implementation code */
1187  	u8 icode;
1188  	/* vAU of this device */
1189  	u8 vau;
1190  	/* vCU of this device */
1191  	u8 vcu;
1192  	/* link credits of this device */
1193  	u16 link_credits;
1194  	/* initial vl15 credits to use */
1195  	u16 vl15_init;
1196  
1197  	/*
1198  	 * Cached value for vl15buf, read during verify cap interrupt. VL15
1199  	 * credits are to be kept at 0 and set when handling the link-up
1200  	 * interrupt. This removes the possibility of receiving VL15 MAD
1201  	 * packets before this HFI is ready.
1202  	 */
1203  	u16 vl15buf_cached;
1204  
1205  	/* Misc small ints */
1206  	u8 n_krcv_queues;
1207  	u8 qos_shift;
1208  
1209  	u16 irev;	/* implementation revision */
1210  	u32 dc8051_ver; /* 8051 firmware version */
1211  
1212  	spinlock_t hfi1_diag_trans_lock; /* protect diag observer ops */
1213  	struct platform_config platform_config;
1214  	struct platform_config_cache pcfg_cache;
1215  
1216  	struct diag_client *diag_client;
1217  
1218  	/* general interrupt: mask of handled interrupts */
1219  	u64 gi_mask[CCE_NUM_INT_CSRS];
1220  
1221  	struct rcv_array_data rcv_entries;
1222  
1223  	/* cycle length of PS* counters in HW (in picoseconds) */
1224  	u16 psxmitwait_check_rate;
1225  
1226  	/*
1227  	 * 64 bit synthetic counters
1228  	 */
1229  	struct timer_list synth_stats_timer;
1230  
1231  	/* MSI-X information */
1232  	struct hfi1_msix_info msix_info;
1233  
1234  	/*
1235  	 * device counters
1236  	 */
1237  	char *cntrnames;
1238  	size_t cntrnameslen;
1239  	size_t ndevcntrs;
1240  	u64 *cntrs;
1241  	u64 *scntrs;
1242  
1243  	/*
1244  	 * remembered values for synthetic counters
1245  	 */
1246  	u64 last_tx;
1247  	u64 last_rx;
1248  
1249  	/*
1250  	 * per-port counters
1251  	 */
1252  	size_t nportcntrs;
1253  	char *portcntrnames;
1254  	size_t portcntrnameslen;
1255  
1256  	struct err_info_rcvport err_info_rcvport;
1257  	struct err_info_constraint err_info_rcv_constraint;
1258  	struct err_info_constraint err_info_xmit_constraint;
1259  
1260  	atomic_t drop_packet;
1261  	bool do_drop;
1262  	u8 err_info_uncorrectable;
1263  	u8 err_info_fmconfig;
1264  
1265  	/*
1266  	 * Software counters for the status bits defined by the
1267  	 * associated error status registers
1268  	 */
1269  	u64 cce_err_status_cnt[NUM_CCE_ERR_STATUS_COUNTERS];
1270  	u64 rcv_err_status_cnt[NUM_RCV_ERR_STATUS_COUNTERS];
1271  	u64 misc_err_status_cnt[NUM_MISC_ERR_STATUS_COUNTERS];
1272  	u64 send_pio_err_status_cnt[NUM_SEND_PIO_ERR_STATUS_COUNTERS];
1273  	u64 send_dma_err_status_cnt[NUM_SEND_DMA_ERR_STATUS_COUNTERS];
1274  	u64 send_egress_err_status_cnt[NUM_SEND_EGRESS_ERR_STATUS_COUNTERS];
1275  	u64 send_err_status_cnt[NUM_SEND_ERR_STATUS_COUNTERS];
1276  
1277  	/* Software counter that spans all contexts */
1278  	u64 sw_ctxt_err_status_cnt[NUM_SEND_CTXT_ERR_STATUS_COUNTERS];
1279  	/* Software counter that spans all DMA engines */
1280  	u64 sw_send_dma_eng_err_status_cnt[
1281  		NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS];
1282  	/* Software counter that aggregates all cce_err_status errors */
1283  	u64 sw_cce_err_status_aggregate;
1284  	/* Software counter that aggregates all bypass packet rcv errors */
1285  	u64 sw_rcv_bypass_packet_errors;
1286  
1287  	/* Save the enabled LCB error bits */
1288  	u64 lcb_err_en;
1289  	struct cpu_mask_set *comp_vect;
1290  	int *comp_vect_mappings;
1291  	u32 comp_vect_possible_cpus;
1292  
1293  	/*
1294  	 * Capability to have different send engines simply by changing a
1295  	 * pointer value.
1296  	 */
1297  	send_routine process_pio_send ____cacheline_aligned_in_smp;
1298  	send_routine process_dma_send;
1299  	void (*pio_inline_send)(struct hfi1_devdata *dd, struct pio_buf *pbuf,
1300  				u64 pbc, const void *from, size_t count);
1301  	int (*process_vnic_dma_send)(struct hfi1_devdata *dd, u8 q_idx,
1302  				     struct hfi1_vnic_vport_info *vinfo,
1303  				     struct sk_buff *skb, u64 pbc, u8 plen);
1304  	/* hfi1_pportdata, points to array of (physical) port-specific
1305  	 * data structs, indexed by pidx (0..n-1)
1306  	 */
1307  	struct hfi1_pportdata *pport;
1308  	/* receive context data */
1309  	struct hfi1_ctxtdata **rcd;
1310  	u64 __percpu *int_counter;
1311  	/* verbs tx opcode stats */
1312  	struct hfi1_opcode_stats_perctx __percpu *tx_opstats;
1313  	/* device (not port) flags, basically device capabilities */
1314  	u16 flags;
1315  	/* Number of physical ports available */
1316  	u8 num_pports;
1317  	/* Lowest context number which can be used by user processes or VNIC */
1318  	u8 first_dyn_alloc_ctxt;
1319  	/* adding a new field here would make it part of this cacheline */
1320  
1321  	/* seqlock for sc2vl */
1322  	seqlock_t sc2vl_lock ____cacheline_aligned_in_smp;
1323  	u64 sc2vl[4];
1324  	u64 __percpu *rcv_limit;
1325  	/* adding a new field here would make it part of this cacheline */
1326  
1327  	/* OUI comes from the HW. Used everywhere as 3 separate bytes. */
1328  	u8 oui1;
1329  	u8 oui2;
1330  	u8 oui3;
1331  
1332  	/* Timer and counter used to detect RcvBufOvflCnt changes */
1333  	struct timer_list rcverr_timer;
1334  
1335  	wait_queue_head_t event_queue;
1336  
1337  	/* receive context tail dummy address */
1338  	__le64 *rcvhdrtail_dummy_kvaddr;
1339  	dma_addr_t rcvhdrtail_dummy_dma;
1340  
1341  	u32 rcv_ovfl_cnt;
1342  	/* Serialize ASPM enable/disable between multiple verbs contexts */
1343  	spinlock_t aspm_lock;
1344  	/* Number of verbs contexts which have disabled ASPM */
1345  	atomic_t aspm_disabled_cnt;
1346  	/* Keeps track of user space clients */
1347  	refcount_t user_refcount;
1348  	/* Used to wait for outstanding user space clients before dev removal */
1349  	struct completion user_comp;
1350  
1351  	bool eprom_available;	/* true if EPROM is available for this device */
1352  	bool aspm_supported;	/* Does HW support ASPM */
1353  	bool aspm_enabled;	/* ASPM state: enabled/disabled */
1354  	struct rhashtable *sdma_rht;
1355  
1356  	/* vnic data */
1357  	struct hfi1_vnic_data vnic;
1358  	/* Lock to protect IRQ SRC register access */
1359  	spinlock_t irq_src_lock;
1360  	int vnic_num_vports;
1361  	struct hfi1_netdev_rx *netdev_rx;
1362  	struct hfi1_affinity_node *affinity_entry;
1363  
1364  	/* Keeps track of IPoIB RSM rule users */
1365  	atomic_t ipoib_rsm_usr_num;
1366  };
1367  
1368  /* 8051 firmware version helper */
1369  #define dc8051_ver(a, b, c) ((a) << 16 | (b) << 8 | (c))
1370  #define dc8051_ver_maj(a) (((a) & 0xff0000) >> 16)
1371  #define dc8051_ver_min(a) (((a) & 0x00ff00) >> 8)
1372  #define dc8051_ver_patch(a) ((a) & 0x0000ff)
1373  
1374  /* f_put_tid types */
1375  #define PT_EXPECTED       0
1376  #define PT_EAGER          1
1377  #define PT_INVALID_FLUSH  2
1378  #define PT_INVALID        3
1379  
1380  struct tid_rb_node;
1381  
1382  /* Private data for file operations */
1383  struct hfi1_filedata {
1384  	struct srcu_struct pq_srcu;
1385  	struct hfi1_devdata *dd;
1386  	struct hfi1_ctxtdata *uctxt;
1387  	struct hfi1_user_sdma_comp_q *cq;
1388  	/* update side lock for SRCU */
1389  	spinlock_t pq_rcu_lock;
1390  	struct hfi1_user_sdma_pkt_q __rcu *pq;
1391  	u16 subctxt;
1392  	/* for cpu affinity; -1 if none */
1393  	int rec_cpu_num;
1394  	u32 tid_n_pinned;
1395  	bool use_mn;
1396  	struct tid_rb_node **entry_to_rb;
1397  	spinlock_t tid_lock; /* protect tid_[limit,used] counters */
1398  	u32 tid_limit;
1399  	u32 tid_used;
1400  	u32 *invalid_tids;
1401  	u32 invalid_tid_idx;
1402  	/* protect invalid_tids array and invalid_tid_idx */
1403  	spinlock_t invalid_lock;
1404  };
1405  
1406  extern struct xarray hfi1_dev_table;
1407  struct hfi1_devdata *hfi1_lookup(int unit);
1408  
uctxt_offset(struct hfi1_ctxtdata * uctxt)1409  static inline unsigned long uctxt_offset(struct hfi1_ctxtdata *uctxt)
1410  {
1411  	return (uctxt->ctxt - uctxt->dd->first_dyn_alloc_ctxt) *
1412  		HFI1_MAX_SHARED_CTXTS;
1413  }
1414  
1415  int hfi1_init(struct hfi1_devdata *dd, int reinit);
1416  int hfi1_count_active_units(void);
1417  
1418  int hfi1_diag_add(struct hfi1_devdata *dd);
1419  void hfi1_diag_remove(struct hfi1_devdata *dd);
1420  void handle_linkup_change(struct hfi1_devdata *dd, u32 linkup);
1421  
1422  void handle_user_interrupt(struct hfi1_ctxtdata *rcd);
1423  
1424  int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd);
1425  int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd);
1426  int hfi1_create_kctxts(struct hfi1_devdata *dd);
1427  int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
1428  			 struct hfi1_ctxtdata **rcd);
1429  void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd);
1430  void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
1431  			 struct hfi1_devdata *dd, u8 hw_pidx, u32 port);
1432  void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd);
1433  int hfi1_rcd_put(struct hfi1_ctxtdata *rcd);
1434  int hfi1_rcd_get(struct hfi1_ctxtdata *rcd);
1435  struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
1436  						 u16 ctxt);
1437  struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt);
1438  int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread);
1439  int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread);
1440  int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread);
1441  int handle_receive_interrupt_napi_fp(struct hfi1_ctxtdata *rcd, int budget);
1442  int handle_receive_interrupt_napi_sp(struct hfi1_ctxtdata *rcd, int budget);
1443  void set_all_slowpath(struct hfi1_devdata *dd);
1444  
1445  extern const struct pci_device_id hfi1_pci_tbl[];
1446  void hfi1_make_ud_req_9B(struct rvt_qp *qp,
1447  			 struct hfi1_pkt_state *ps,
1448  			 struct rvt_swqe *wqe);
1449  
1450  void hfi1_make_ud_req_16B(struct rvt_qp *qp,
1451  			  struct hfi1_pkt_state *ps,
1452  			  struct rvt_swqe *wqe);
1453  
1454  /* receive packet handler dispositions */
1455  #define RCV_PKT_OK      0x0 /* keep going */
1456  #define RCV_PKT_LIMIT   0x1 /* stop, hit limit, start thread */
1457  #define RCV_PKT_DONE    0x2 /* stop, no more packets detected */
1458  
1459  /**
1460   * hfi1_rcd_head - add accessor for rcd head
1461   * @rcd: the context
1462   */
hfi1_rcd_head(struct hfi1_ctxtdata * rcd)1463  static inline u32 hfi1_rcd_head(struct hfi1_ctxtdata *rcd)
1464  {
1465  	return rcd->head;
1466  }
1467  
1468  /**
1469   * hfi1_set_rcd_head - add accessor for rcd head
1470   * @rcd: the context
1471   * @head: the new head
1472   */
hfi1_set_rcd_head(struct hfi1_ctxtdata * rcd,u32 head)1473  static inline void hfi1_set_rcd_head(struct hfi1_ctxtdata *rcd, u32 head)
1474  {
1475  	rcd->head = head;
1476  }
1477  
1478  /* calculate the current RHF address */
get_rhf_addr(struct hfi1_ctxtdata * rcd)1479  static inline __le32 *get_rhf_addr(struct hfi1_ctxtdata *rcd)
1480  {
1481  	return (__le32 *)rcd->rcvhdrq + rcd->head + rcd->rhf_offset;
1482  }
1483  
1484  /* return DMA_RTAIL configuration */
get_dma_rtail_setting(struct hfi1_ctxtdata * rcd)1485  static inline bool get_dma_rtail_setting(struct hfi1_ctxtdata *rcd)
1486  {
1487  	return !!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL);
1488  }
1489  
1490  /**
1491   * hfi1_seq_incr_wrap - wrapping increment for sequence
1492   * @seq: the current sequence number
1493   *
1494   * Returns: the incremented seq
1495   */
hfi1_seq_incr_wrap(u8 seq)1496  static inline u8 hfi1_seq_incr_wrap(u8 seq)
1497  {
1498  	if (++seq > RHF_MAX_SEQ)
1499  		seq = 1;
1500  	return seq;
1501  }
1502  
1503  /**
1504   * hfi1_seq_cnt - return seq_cnt member
1505   * @rcd: the receive context
1506   *
1507   * Return seq_cnt member
1508   */
hfi1_seq_cnt(struct hfi1_ctxtdata * rcd)1509  static inline u8 hfi1_seq_cnt(struct hfi1_ctxtdata *rcd)
1510  {
1511  	return rcd->seq_cnt;
1512  }
1513  
1514  /**
1515   * hfi1_set_seq_cnt - return seq_cnt member
1516   * @rcd: the receive context
1517   *
1518   * Return seq_cnt member
1519   */
hfi1_set_seq_cnt(struct hfi1_ctxtdata * rcd,u8 cnt)1520  static inline void hfi1_set_seq_cnt(struct hfi1_ctxtdata *rcd, u8 cnt)
1521  {
1522  	rcd->seq_cnt = cnt;
1523  }
1524  
1525  /**
1526   * last_rcv_seq - is last
1527   * @rcd: the receive context
1528   * @seq: sequence
1529   *
1530   * return true if last packet
1531   */
last_rcv_seq(struct hfi1_ctxtdata * rcd,u32 seq)1532  static inline bool last_rcv_seq(struct hfi1_ctxtdata *rcd, u32 seq)
1533  {
1534  	return seq != rcd->seq_cnt;
1535  }
1536  
1537  /**
1538   * rcd_seq_incr - increment context sequence number
1539   * @rcd: the receive context
1540   * @seq: the current sequence number
1541   *
1542   * Returns: true if the this was the last packet
1543   */
hfi1_seq_incr(struct hfi1_ctxtdata * rcd,u32 seq)1544  static inline bool hfi1_seq_incr(struct hfi1_ctxtdata *rcd, u32 seq)
1545  {
1546  	rcd->seq_cnt = hfi1_seq_incr_wrap(rcd->seq_cnt);
1547  	return last_rcv_seq(rcd, seq);
1548  }
1549  
1550  /**
1551   * get_hdrqentsize - return hdrq entry size
1552   * @rcd: the receive context
1553   */
get_hdrqentsize(struct hfi1_ctxtdata * rcd)1554  static inline u8 get_hdrqentsize(struct hfi1_ctxtdata *rcd)
1555  {
1556  	return rcd->rcvhdrqentsize;
1557  }
1558  
1559  /**
1560   * get_hdrq_cnt - return hdrq count
1561   * @rcd: the receive context
1562   */
get_hdrq_cnt(struct hfi1_ctxtdata * rcd)1563  static inline u16 get_hdrq_cnt(struct hfi1_ctxtdata *rcd)
1564  {
1565  	return rcd->rcvhdrq_cnt;
1566  }
1567  
1568  /**
1569   * hfi1_is_slowpath - check if this context is slow path
1570   * @rcd: the receive context
1571   */
hfi1_is_slowpath(struct hfi1_ctxtdata * rcd)1572  static inline bool hfi1_is_slowpath(struct hfi1_ctxtdata *rcd)
1573  {
1574  	return rcd->do_interrupt == rcd->slow_handler;
1575  }
1576  
1577  /**
1578   * hfi1_is_fastpath - check if this context is fast path
1579   * @rcd: the receive context
1580   */
hfi1_is_fastpath(struct hfi1_ctxtdata * rcd)1581  static inline bool hfi1_is_fastpath(struct hfi1_ctxtdata *rcd)
1582  {
1583  	if (rcd->ctxt == HFI1_CTRL_CTXT)
1584  		return false;
1585  
1586  	return rcd->do_interrupt == rcd->fast_handler;
1587  }
1588  
1589  /**
1590   * hfi1_set_fast - change to the fast handler
1591   * @rcd: the receive context
1592   */
hfi1_set_fast(struct hfi1_ctxtdata * rcd)1593  static inline void hfi1_set_fast(struct hfi1_ctxtdata *rcd)
1594  {
1595  	if (unlikely(!rcd))
1596  		return;
1597  	if (unlikely(!hfi1_is_fastpath(rcd)))
1598  		rcd->do_interrupt = rcd->fast_handler;
1599  }
1600  
1601  int hfi1_reset_device(int);
1602  
1603  void receive_interrupt_work(struct work_struct *work);
1604  
1605  /* extract service channel from header and rhf */
hfi1_9B_get_sc5(struct ib_header * hdr,u64 rhf)1606  static inline int hfi1_9B_get_sc5(struct ib_header *hdr, u64 rhf)
1607  {
1608  	return ib_get_sc(hdr) | ((!!(rhf_dc_info(rhf))) << 4);
1609  }
1610  
1611  #define HFI1_JKEY_WIDTH       16
1612  #define HFI1_JKEY_MASK        (BIT(16) - 1)
1613  #define HFI1_ADMIN_JKEY_RANGE 32
1614  
1615  /*
1616   * J_KEYs are split and allocated in the following groups:
1617   *   0 - 31    - users with administrator privileges
1618   *  32 - 63    - kernel protocols using KDETH packets
1619   *  64 - 65535 - all other users using KDETH packets
1620   */
generate_jkey(kuid_t uid)1621  static inline u16 generate_jkey(kuid_t uid)
1622  {
1623  	u16 jkey = from_kuid(current_user_ns(), uid) & HFI1_JKEY_MASK;
1624  
1625  	if (capable(CAP_SYS_ADMIN))
1626  		jkey &= HFI1_ADMIN_JKEY_RANGE - 1;
1627  	else if (jkey < 64)
1628  		jkey |= BIT(HFI1_JKEY_WIDTH - 1);
1629  
1630  	return jkey;
1631  }
1632  
1633  /*
1634   * active_egress_rate
1635   *
1636   * returns the active egress rate in units of [10^6 bits/sec]
1637   */
active_egress_rate(struct hfi1_pportdata * ppd)1638  static inline u32 active_egress_rate(struct hfi1_pportdata *ppd)
1639  {
1640  	u16 link_speed = ppd->link_speed_active;
1641  	u16 link_width = ppd->link_width_active;
1642  	u32 egress_rate;
1643  
1644  	if (link_speed == OPA_LINK_SPEED_25G)
1645  		egress_rate = 25000;
1646  	else /* assume OPA_LINK_SPEED_12_5G */
1647  		egress_rate = 12500;
1648  
1649  	switch (link_width) {
1650  	case OPA_LINK_WIDTH_4X:
1651  		egress_rate *= 4;
1652  		break;
1653  	case OPA_LINK_WIDTH_3X:
1654  		egress_rate *= 3;
1655  		break;
1656  	case OPA_LINK_WIDTH_2X:
1657  		egress_rate *= 2;
1658  		break;
1659  	default:
1660  		/* assume IB_WIDTH_1X */
1661  		break;
1662  	}
1663  
1664  	return egress_rate;
1665  }
1666  
1667  /*
1668   * egress_cycles
1669   *
1670   * Returns the number of 'fabric clock cycles' to egress a packet
1671   * of length 'len' bytes, at 'rate' Mbit/s. Since the fabric clock
1672   * rate is (approximately) 805 MHz, the units of the returned value
1673   * are (1/805 MHz).
1674   */
egress_cycles(u32 len,u32 rate)1675  static inline u32 egress_cycles(u32 len, u32 rate)
1676  {
1677  	u32 cycles;
1678  
1679  	/*
1680  	 * cycles is:
1681  	 *
1682  	 *          (length) [bits] / (rate) [bits/sec]
1683  	 *  ---------------------------------------------------
1684  	 *  fabric_clock_period == 1 /(805 * 10^6) [cycles/sec]
1685  	 */
1686  
1687  	cycles = len * 8; /* bits */
1688  	cycles *= 805;
1689  	cycles /= rate;
1690  
1691  	return cycles;
1692  }
1693  
1694  void set_link_ipg(struct hfi1_pportdata *ppd);
1695  void process_becn(struct hfi1_pportdata *ppd, u8 sl, u32 rlid, u32 lqpn,
1696  		  u32 rqpn, u8 svc_type);
1697  void return_cnp(struct hfi1_ibport *ibp, struct rvt_qp *qp, u32 remote_qpn,
1698  		u16 pkey, u32 slid, u32 dlid, u8 sc5,
1699  		const struct ib_grh *old_grh);
1700  void return_cnp_16B(struct hfi1_ibport *ibp, struct rvt_qp *qp,
1701  		    u32 remote_qpn, u16 pkey, u32 slid, u32 dlid,
1702  		    u8 sc5, const struct ib_grh *old_grh);
1703  typedef void (*hfi1_handle_cnp)(struct hfi1_ibport *ibp, struct rvt_qp *qp,
1704  				u32 remote_qpn, u16 pkey, u32 slid, u32 dlid,
1705  				u8 sc5, const struct ib_grh *old_grh);
1706  
1707  #define PKEY_CHECK_INVALID -1
1708  int egress_pkey_check(struct hfi1_pportdata *ppd, u32 slid, u16 pkey,
1709  		      u8 sc5, int8_t s_pkey_index);
1710  
1711  #define PACKET_EGRESS_TIMEOUT 350
pause_for_credit_return(struct hfi1_devdata * dd)1712  static inline void pause_for_credit_return(struct hfi1_devdata *dd)
1713  {
1714  	/* Pause at least 1us, to ensure chip returns all credits */
1715  	u32 usec = cclock_to_ns(dd, PACKET_EGRESS_TIMEOUT) / 1000;
1716  
1717  	udelay(usec ? usec : 1);
1718  }
1719  
1720  /**
1721   * sc_to_vlt() - reverse lookup sc to vl
1722   * @dd - devdata
1723   * @sc5 - 5 bit sc
1724   */
sc_to_vlt(struct hfi1_devdata * dd,u8 sc5)1725  static inline u8 sc_to_vlt(struct hfi1_devdata *dd, u8 sc5)
1726  {
1727  	unsigned seq;
1728  	u8 rval;
1729  
1730  	if (sc5 >= OPA_MAX_SCS)
1731  		return (u8)(0xff);
1732  
1733  	do {
1734  		seq = read_seqbegin(&dd->sc2vl_lock);
1735  		rval = *(((u8 *)dd->sc2vl) + sc5);
1736  	} while (read_seqretry(&dd->sc2vl_lock, seq));
1737  
1738  	return rval;
1739  }
1740  
1741  #define PKEY_MEMBER_MASK 0x8000
1742  #define PKEY_LOW_15_MASK 0x7fff
1743  
1744  /*
1745   * ingress_pkey_matches_entry - return 1 if the pkey matches ent (ent
1746   * being an entry from the ingress partition key table), return 0
1747   * otherwise. Use the matching criteria for ingress partition keys
1748   * specified in the OPAv1 spec., section 9.10.14.
1749   */
ingress_pkey_matches_entry(u16 pkey,u16 ent)1750  static inline int ingress_pkey_matches_entry(u16 pkey, u16 ent)
1751  {
1752  	u16 mkey = pkey & PKEY_LOW_15_MASK;
1753  	u16 ment = ent & PKEY_LOW_15_MASK;
1754  
1755  	if (mkey == ment) {
1756  		/*
1757  		 * If pkey[15] is clear (limited partition member),
1758  		 * is bit 15 in the corresponding table element
1759  		 * clear (limited member)?
1760  		 */
1761  		if (!(pkey & PKEY_MEMBER_MASK))
1762  			return !!(ent & PKEY_MEMBER_MASK);
1763  		return 1;
1764  	}
1765  	return 0;
1766  }
1767  
1768  /*
1769   * ingress_pkey_table_search - search the entire pkey table for
1770   * an entry which matches 'pkey'. return 0 if a match is found,
1771   * and 1 otherwise.
1772   */
ingress_pkey_table_search(struct hfi1_pportdata * ppd,u16 pkey)1773  static int ingress_pkey_table_search(struct hfi1_pportdata *ppd, u16 pkey)
1774  {
1775  	int i;
1776  
1777  	for (i = 0; i < MAX_PKEY_VALUES; i++) {
1778  		if (ingress_pkey_matches_entry(pkey, ppd->pkeys[i]))
1779  			return 0;
1780  	}
1781  	return 1;
1782  }
1783  
1784  /*
1785   * ingress_pkey_table_fail - record a failure of ingress pkey validation,
1786   * i.e., increment port_rcv_constraint_errors for the port, and record
1787   * the 'error info' for this failure.
1788   */
ingress_pkey_table_fail(struct hfi1_pportdata * ppd,u16 pkey,u32 slid)1789  static void ingress_pkey_table_fail(struct hfi1_pportdata *ppd, u16 pkey,
1790  				    u32 slid)
1791  {
1792  	struct hfi1_devdata *dd = ppd->dd;
1793  
1794  	incr_cntr64(&ppd->port_rcv_constraint_errors);
1795  	if (!(dd->err_info_rcv_constraint.status & OPA_EI_STATUS_SMASK)) {
1796  		dd->err_info_rcv_constraint.status |= OPA_EI_STATUS_SMASK;
1797  		dd->err_info_rcv_constraint.slid = slid;
1798  		dd->err_info_rcv_constraint.pkey = pkey;
1799  	}
1800  }
1801  
1802  /*
1803   * ingress_pkey_check - Return 0 if the ingress pkey is valid, return 1
1804   * otherwise. Use the criteria in the OPAv1 spec, section 9.10.14. idx
1805   * is a hint as to the best place in the partition key table to begin
1806   * searching. This function should not be called on the data path because
1807   * of performance reasons. On datapath pkey check is expected to be done
1808   * by HW and rcv_pkey_check function should be called instead.
1809   */
ingress_pkey_check(struct hfi1_pportdata * ppd,u16 pkey,u8 sc5,u8 idx,u32 slid,bool force)1810  static inline int ingress_pkey_check(struct hfi1_pportdata *ppd, u16 pkey,
1811  				     u8 sc5, u8 idx, u32 slid, bool force)
1812  {
1813  	if (!(force) && !(ppd->part_enforce & HFI1_PART_ENFORCE_IN))
1814  		return 0;
1815  
1816  	/* If SC15, pkey[0:14] must be 0x7fff */
1817  	if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1818  		goto bad;
1819  
1820  	/* Is the pkey = 0x0, or 0x8000? */
1821  	if ((pkey & PKEY_LOW_15_MASK) == 0)
1822  		goto bad;
1823  
1824  	/* The most likely matching pkey has index 'idx' */
1825  	if (ingress_pkey_matches_entry(pkey, ppd->pkeys[idx]))
1826  		return 0;
1827  
1828  	/* no match - try the whole table */
1829  	if (!ingress_pkey_table_search(ppd, pkey))
1830  		return 0;
1831  
1832  bad:
1833  	ingress_pkey_table_fail(ppd, pkey, slid);
1834  	return 1;
1835  }
1836  
1837  /*
1838   * rcv_pkey_check - Return 0 if the ingress pkey is valid, return 1
1839   * otherwise. It only ensures pkey is vlid for QP0. This function
1840   * should be called on the data path instead of ingress_pkey_check
1841   * as on data path, pkey check is done by HW (except for QP0).
1842   */
rcv_pkey_check(struct hfi1_pportdata * ppd,u16 pkey,u8 sc5,u16 slid)1843  static inline int rcv_pkey_check(struct hfi1_pportdata *ppd, u16 pkey,
1844  				 u8 sc5, u16 slid)
1845  {
1846  	if (!(ppd->part_enforce & HFI1_PART_ENFORCE_IN))
1847  		return 0;
1848  
1849  	/* If SC15, pkey[0:14] must be 0x7fff */
1850  	if ((sc5 == 0xf) && ((pkey & PKEY_LOW_15_MASK) != PKEY_LOW_15_MASK))
1851  		goto bad;
1852  
1853  	return 0;
1854  bad:
1855  	ingress_pkey_table_fail(ppd, pkey, slid);
1856  	return 1;
1857  }
1858  
1859  /* MTU handling */
1860  
1861  /* MTU enumeration, 256-4k match IB */
1862  #define OPA_MTU_0     0
1863  #define OPA_MTU_256   1
1864  #define OPA_MTU_512   2
1865  #define OPA_MTU_1024  3
1866  #define OPA_MTU_2048  4
1867  #define OPA_MTU_4096  5
1868  
1869  u32 lrh_max_header_bytes(struct hfi1_devdata *dd);
1870  int mtu_to_enum(u32 mtu, int default_if_bad);
1871  u16 enum_to_mtu(int mtu);
valid_ib_mtu(unsigned int mtu)1872  static inline int valid_ib_mtu(unsigned int mtu)
1873  {
1874  	return mtu == 256 || mtu == 512 ||
1875  		mtu == 1024 || mtu == 2048 ||
1876  		mtu == 4096;
1877  }
1878  
valid_opa_max_mtu(unsigned int mtu)1879  static inline int valid_opa_max_mtu(unsigned int mtu)
1880  {
1881  	return mtu >= 2048 &&
1882  		(valid_ib_mtu(mtu) || mtu == 8192 || mtu == 10240);
1883  }
1884  
1885  int set_mtu(struct hfi1_pportdata *ppd);
1886  
1887  int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc);
1888  void hfi1_disable_after_error(struct hfi1_devdata *dd);
1889  int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit);
1890  int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encode);
1891  
1892  int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t);
1893  int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t);
1894  
1895  void set_up_vau(struct hfi1_devdata *dd, u8 vau);
1896  void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf);
1897  void reset_link_credits(struct hfi1_devdata *dd);
1898  void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu);
1899  
1900  int set_buffer_control(struct hfi1_pportdata *ppd, struct buffer_control *bc);
1901  
dd_from_ppd(struct hfi1_pportdata * ppd)1902  static inline struct hfi1_devdata *dd_from_ppd(struct hfi1_pportdata *ppd)
1903  {
1904  	return ppd->dd;
1905  }
1906  
dd_from_dev(struct hfi1_ibdev * dev)1907  static inline struct hfi1_devdata *dd_from_dev(struct hfi1_ibdev *dev)
1908  {
1909  	return container_of(dev, struct hfi1_devdata, verbs_dev);
1910  }
1911  
dd_from_ibdev(struct ib_device * ibdev)1912  static inline struct hfi1_devdata *dd_from_ibdev(struct ib_device *ibdev)
1913  {
1914  	return dd_from_dev(to_idev(ibdev));
1915  }
1916  
ppd_from_ibp(struct hfi1_ibport * ibp)1917  static inline struct hfi1_pportdata *ppd_from_ibp(struct hfi1_ibport *ibp)
1918  {
1919  	return container_of(ibp, struct hfi1_pportdata, ibport_data);
1920  }
1921  
dev_from_rdi(struct rvt_dev_info * rdi)1922  static inline struct hfi1_ibdev *dev_from_rdi(struct rvt_dev_info *rdi)
1923  {
1924  	return container_of(rdi, struct hfi1_ibdev, rdi);
1925  }
1926  
to_iport(struct ib_device * ibdev,u32 port)1927  static inline struct hfi1_ibport *to_iport(struct ib_device *ibdev, u32 port)
1928  {
1929  	struct hfi1_devdata *dd = dd_from_ibdev(ibdev);
1930  	u32 pidx = port - 1; /* IB number port from 1, hdw from 0 */
1931  
1932  	WARN_ON(pidx >= dd->num_pports);
1933  	return &dd->pport[pidx].ibport_data;
1934  }
1935  
rcd_to_iport(struct hfi1_ctxtdata * rcd)1936  static inline struct hfi1_ibport *rcd_to_iport(struct hfi1_ctxtdata *rcd)
1937  {
1938  	return &rcd->ppd->ibport_data;
1939  }
1940  
1941  /**
1942   * hfi1_may_ecn - Check whether FECN or BECN processing should be done
1943   * @pkt: the packet to be evaluated
1944   *
1945   * Check whether the FECN or BECN bits in the packet's header are
1946   * enabled, depending on packet type.
1947   *
1948   * This function only checks for FECN and BECN bits. Additional checks
1949   * are done in the slowpath (hfi1_process_ecn_slowpath()) in order to
1950   * ensure correct handling.
1951   */
hfi1_may_ecn(struct hfi1_packet * pkt)1952  static inline bool hfi1_may_ecn(struct hfi1_packet *pkt)
1953  {
1954  	bool fecn, becn;
1955  
1956  	if (pkt->etype == RHF_RCV_TYPE_BYPASS) {
1957  		fecn = hfi1_16B_get_fecn(pkt->hdr);
1958  		becn = hfi1_16B_get_becn(pkt->hdr);
1959  	} else {
1960  		fecn = ib_bth_get_fecn(pkt->ohdr);
1961  		becn = ib_bth_get_becn(pkt->ohdr);
1962  	}
1963  	return fecn || becn;
1964  }
1965  
1966  bool hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt,
1967  			       bool prescan);
process_ecn(struct rvt_qp * qp,struct hfi1_packet * pkt)1968  static inline bool process_ecn(struct rvt_qp *qp, struct hfi1_packet *pkt)
1969  {
1970  	bool do_work;
1971  
1972  	do_work = hfi1_may_ecn(pkt);
1973  	if (unlikely(do_work))
1974  		return hfi1_process_ecn_slowpath(qp, pkt, false);
1975  	return false;
1976  }
1977  
1978  /*
1979   * Return the indexed PKEY from the port PKEY table.
1980   */
hfi1_get_pkey(struct hfi1_ibport * ibp,unsigned index)1981  static inline u16 hfi1_get_pkey(struct hfi1_ibport *ibp, unsigned index)
1982  {
1983  	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
1984  	u16 ret;
1985  
1986  	if (index >= ARRAY_SIZE(ppd->pkeys))
1987  		ret = 0;
1988  	else
1989  		ret = ppd->pkeys[index];
1990  
1991  	return ret;
1992  }
1993  
1994  /*
1995   * Return the indexed GUID from the port GUIDs table.
1996   */
get_sguid(struct hfi1_ibport * ibp,unsigned int index)1997  static inline __be64 get_sguid(struct hfi1_ibport *ibp, unsigned int index)
1998  {
1999  	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
2000  
2001  	WARN_ON(index >= HFI1_GUIDS_PER_PORT);
2002  	return cpu_to_be64(ppd->guids[index]);
2003  }
2004  
2005  /*
2006   * Called by readers of cc_state only, must call under rcu_read_lock().
2007   */
get_cc_state(struct hfi1_pportdata * ppd)2008  static inline struct cc_state *get_cc_state(struct hfi1_pportdata *ppd)
2009  {
2010  	return rcu_dereference(ppd->cc_state);
2011  }
2012  
2013  /*
2014   * Called by writers of cc_state only,  must call under cc_state_lock.
2015   */
2016  static inline
get_cc_state_protected(struct hfi1_pportdata * ppd)2017  struct cc_state *get_cc_state_protected(struct hfi1_pportdata *ppd)
2018  {
2019  	return rcu_dereference_protected(ppd->cc_state,
2020  					 lockdep_is_held(&ppd->cc_state_lock));
2021  }
2022  
2023  /*
2024   * values for dd->flags (_device_ related flags)
2025   */
2026  #define HFI1_INITTED           0x1    /* chip and driver up and initted */
2027  #define HFI1_PRESENT           0x2    /* chip accesses can be done */
2028  #define HFI1_FROZEN            0x4    /* chip in SPC freeze */
2029  #define HFI1_HAS_SDMA_TIMEOUT  0x8
2030  #define HFI1_HAS_SEND_DMA      0x10   /* Supports Send DMA */
2031  #define HFI1_FORCED_FREEZE     0x80   /* driver forced freeze mode */
2032  #define HFI1_SHUTDOWN          0x100  /* device is shutting down */
2033  
2034  /* IB dword length mask in PBC (lower 11 bits); same for all chips */
2035  #define HFI1_PBC_LENGTH_MASK                     ((1 << 11) - 1)
2036  
2037  /* ctxt_flag bit offsets */
2038  		/* base context has not finished initializing */
2039  #define HFI1_CTXT_BASE_UNINIT 1
2040  		/* base context initaliation failed */
2041  #define HFI1_CTXT_BASE_FAILED 2
2042  		/* waiting for a packet to arrive */
2043  #define HFI1_CTXT_WAITING_RCV 3
2044  		/* waiting for an urgent packet to arrive */
2045  #define HFI1_CTXT_WAITING_URG 4
2046  
2047  /* free up any allocated data at closes */
2048  int hfi1_init_dd(struct hfi1_devdata *dd);
2049  void hfi1_free_devdata(struct hfi1_devdata *dd);
2050  
2051  /* LED beaconing functions */
2052  void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon,
2053  			     unsigned int timeoff);
2054  void shutdown_led_override(struct hfi1_pportdata *ppd);
2055  
2056  #define HFI1_CREDIT_RETURN_RATE (100)
2057  
2058  /*
2059   * The number of words for the KDETH protocol field.  If this is
2060   * larger then the actual field used, then part of the payload
2061   * will be in the header.
2062   *
2063   * Optimally, we want this sized so that a typical case will
2064   * use full cache lines.  The typical local KDETH header would
2065   * be:
2066   *
2067   *	Bytes	Field
2068   *	  8	LRH
2069   *	 12	BHT
2070   *	 ??	KDETH
2071   *	  8	RHF
2072   *	---
2073   *	 28 + KDETH
2074   *
2075   * For a 64-byte cache line, KDETH would need to be 36 bytes or 9 DWORDS
2076   */
2077  #define DEFAULT_RCVHDRSIZE 9
2078  
2079  /*
2080   * Maximal header byte count:
2081   *
2082   *	Bytes	Field
2083   *	  8	LRH
2084   *	 40	GRH (optional)
2085   *	 12	BTH
2086   *	 ??	KDETH
2087   *	  8	RHF
2088   *	---
2089   *	 68 + KDETH
2090   *
2091   * We also want to maintain a cache line alignment to assist DMA'ing
2092   * of the header bytes.  Round up to a good size.
2093   */
2094  #define DEFAULT_RCVHDR_ENTSIZE 32
2095  
2096  bool hfi1_can_pin_pages(struct hfi1_devdata *dd, struct mm_struct *mm,
2097  			u32 nlocked, u32 npages);
2098  int hfi1_acquire_user_pages(struct mm_struct *mm, unsigned long vaddr,
2099  			    size_t npages, bool writable, struct page **pages);
2100  void hfi1_release_user_pages(struct mm_struct *mm, struct page **p,
2101  			     size_t npages, bool dirty);
2102  
2103  /**
2104   * hfi1_rcvhdrtail_kvaddr - return tail kvaddr
2105   * @rcd - the receive context
2106   */
hfi1_rcvhdrtail_kvaddr(const struct hfi1_ctxtdata * rcd)2107  static inline __le64 *hfi1_rcvhdrtail_kvaddr(const struct hfi1_ctxtdata *rcd)
2108  {
2109  	return (__le64 *)rcd->rcvhdrtail_kvaddr;
2110  }
2111  
clear_rcvhdrtail(const struct hfi1_ctxtdata * rcd)2112  static inline void clear_rcvhdrtail(const struct hfi1_ctxtdata *rcd)
2113  {
2114  	u64 *kv = (u64 *)hfi1_rcvhdrtail_kvaddr(rcd);
2115  
2116  	if (kv)
2117  		*kv = 0ULL;
2118  }
2119  
get_rcvhdrtail(const struct hfi1_ctxtdata * rcd)2120  static inline u32 get_rcvhdrtail(const struct hfi1_ctxtdata *rcd)
2121  {
2122  	/*
2123  	 * volatile because it's a DMA target from the chip, routine is
2124  	 * inlined, and don't want register caching or reordering.
2125  	 */
2126  	return (u32)le64_to_cpu(*hfi1_rcvhdrtail_kvaddr(rcd));
2127  }
2128  
hfi1_packet_present(struct hfi1_ctxtdata * rcd)2129  static inline bool hfi1_packet_present(struct hfi1_ctxtdata *rcd)
2130  {
2131  	if (likely(!rcd->rcvhdrtail_kvaddr)) {
2132  		u32 seq = rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd)));
2133  
2134  		return !last_rcv_seq(rcd, seq);
2135  	}
2136  	return hfi1_rcd_head(rcd) != get_rcvhdrtail(rcd);
2137  }
2138  
2139  /*
2140   * sysfs interface.
2141   */
2142  
2143  extern const char ib_hfi1_version[];
2144  extern const struct attribute_group ib_hfi1_attr_group;
2145  extern const struct attribute_group *hfi1_attr_port_groups[];
2146  
2147  int hfi1_device_create(struct hfi1_devdata *dd);
2148  void hfi1_device_remove(struct hfi1_devdata *dd);
2149  
2150  int hfi1_verbs_register_sysfs(struct hfi1_devdata *dd);
2151  void hfi1_verbs_unregister_sysfs(struct hfi1_devdata *dd);
2152  /* Hook for sysfs read of QSFP */
2153  int qsfp_dump(struct hfi1_pportdata *ppd, char *buf, int len);
2154  
2155  int hfi1_pcie_init(struct hfi1_devdata *dd);
2156  void hfi1_pcie_cleanup(struct pci_dev *pdev);
2157  int hfi1_pcie_ddinit(struct hfi1_devdata *dd, struct pci_dev *pdev);
2158  void hfi1_pcie_ddcleanup(struct hfi1_devdata *);
2159  int pcie_speeds(struct hfi1_devdata *dd);
2160  int restore_pci_variables(struct hfi1_devdata *dd);
2161  int save_pci_variables(struct hfi1_devdata *dd);
2162  int do_pcie_gen3_transition(struct hfi1_devdata *dd);
2163  void tune_pcie_caps(struct hfi1_devdata *dd);
2164  int parse_platform_config(struct hfi1_devdata *dd);
2165  int get_platform_config_field(struct hfi1_devdata *dd,
2166  			      enum platform_config_table_type_encoding
2167  			      table_type, int table_index, int field_index,
2168  			      u32 *data, u32 len);
2169  
2170  struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi);
2171  
2172  /*
2173   * Flush write combining store buffers (if present) and perform a write
2174   * barrier.
2175   */
flush_wc(void)2176  static inline void flush_wc(void)
2177  {
2178  	asm volatile("sfence" : : : "memory");
2179  }
2180  
2181  void handle_eflags(struct hfi1_packet *packet);
2182  void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd);
2183  
2184  /* global module parameter variables */
2185  extern unsigned int hfi1_max_mtu;
2186  extern unsigned int hfi1_cu;
2187  extern unsigned int user_credit_return_threshold;
2188  extern int num_user_contexts;
2189  extern unsigned long n_krcvqs;
2190  extern uint krcvqs[];
2191  extern int krcvqsset;
2192  extern uint loopback;
2193  extern uint quick_linkup;
2194  extern uint rcv_intr_timeout;
2195  extern uint rcv_intr_count;
2196  extern uint rcv_intr_dynamic;
2197  extern ushort link_crc_mask;
2198  
2199  extern struct mutex hfi1_mutex;
2200  
2201  /* Number of seconds before our card status check...  */
2202  #define STATUS_TIMEOUT 60
2203  
2204  #define DRIVER_NAME		"hfi1"
2205  #define HFI1_USER_MINOR_BASE     0
2206  #define HFI1_TRACE_MINOR         127
2207  #define HFI1_NMINORS             255
2208  
2209  #define PCI_VENDOR_ID_INTEL 0x8086
2210  #define PCI_DEVICE_ID_INTEL0 0x24f0
2211  #define PCI_DEVICE_ID_INTEL1 0x24f1
2212  
2213  #define HFI1_PKT_USER_SC_INTEGRITY					    \
2214  	(SEND_CTXT_CHECK_ENABLE_DISALLOW_NON_KDETH_PACKETS_SMASK	    \
2215  	| SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK		\
2216  	| SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_SMASK		    \
2217  	| SEND_CTXT_CHECK_ENABLE_DISALLOW_GRH_SMASK)
2218  
2219  #define HFI1_PKT_KERNEL_SC_INTEGRITY					    \
2220  	(SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK)
2221  
hfi1_pkt_default_send_ctxt_mask(struct hfi1_devdata * dd,u16 ctxt_type)2222  static inline u64 hfi1_pkt_default_send_ctxt_mask(struct hfi1_devdata *dd,
2223  						  u16 ctxt_type)
2224  {
2225  	u64 base_sc_integrity;
2226  
2227  	/* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */
2228  	if (HFI1_CAP_IS_KSET(NO_INTEGRITY))
2229  		return 0;
2230  
2231  	base_sc_integrity =
2232  	SEND_CTXT_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK
2233  	| SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK
2234  	| SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK
2235  	| SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK
2236  	| SEND_CTXT_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK
2237  #ifndef CONFIG_FAULT_INJECTION
2238  	| SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_TEST_SMASK
2239  #endif
2240  	| SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK
2241  	| SEND_CTXT_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK
2242  	| SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK
2243  	| SEND_CTXT_CHECK_ENABLE_DISALLOW_RAW_SMASK
2244  	| SEND_CTXT_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK
2245  	| SEND_CTXT_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK
2246  	| SEND_CTXT_CHECK_ENABLE_CHECK_OPCODE_SMASK
2247  	| SEND_CTXT_CHECK_ENABLE_CHECK_SLID_SMASK
2248  	| SEND_CTXT_CHECK_ENABLE_CHECK_VL_SMASK
2249  	| SEND_CTXT_CHECK_ENABLE_CHECK_ENABLE_SMASK;
2250  
2251  	if (ctxt_type == SC_USER)
2252  		base_sc_integrity |=
2253  #ifndef CONFIG_FAULT_INJECTION
2254  			SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_TEST_SMASK |
2255  #endif
2256  			HFI1_PKT_USER_SC_INTEGRITY;
2257  	else if (ctxt_type != SC_KERNEL)
2258  		base_sc_integrity |= HFI1_PKT_KERNEL_SC_INTEGRITY;
2259  
2260  	/* turn on send-side job key checks if !A0 */
2261  	if (!is_ax(dd))
2262  		base_sc_integrity |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
2263  
2264  	return base_sc_integrity;
2265  }
2266  
hfi1_pkt_base_sdma_integrity(struct hfi1_devdata * dd)2267  static inline u64 hfi1_pkt_base_sdma_integrity(struct hfi1_devdata *dd)
2268  {
2269  	u64 base_sdma_integrity;
2270  
2271  	/* No integrity checks if HFI1_CAP_NO_INTEGRITY is set */
2272  	if (HFI1_CAP_IS_KSET(NO_INTEGRITY))
2273  		return 0;
2274  
2275  	base_sdma_integrity =
2276  	SEND_DMA_CHECK_ENABLE_DISALLOW_BYPASS_BAD_PKT_LEN_SMASK
2277  	| SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_BYPASS_PACKETS_SMASK
2278  	| SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_LONG_IB_PACKETS_SMASK
2279  	| SEND_DMA_CHECK_ENABLE_DISALLOW_BAD_PKT_LEN_SMASK
2280  	| SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_BYPASS_PACKETS_SMASK
2281  	| SEND_DMA_CHECK_ENABLE_DISALLOW_TOO_SMALL_IB_PACKETS_SMASK
2282  	| SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_IPV6_SMASK
2283  	| SEND_DMA_CHECK_ENABLE_DISALLOW_RAW_SMASK
2284  	| SEND_DMA_CHECK_ENABLE_CHECK_BYPASS_VL_MAPPING_SMASK
2285  	| SEND_DMA_CHECK_ENABLE_CHECK_VL_MAPPING_SMASK
2286  	| SEND_DMA_CHECK_ENABLE_CHECK_OPCODE_SMASK
2287  	| SEND_DMA_CHECK_ENABLE_CHECK_SLID_SMASK
2288  	| SEND_DMA_CHECK_ENABLE_CHECK_VL_SMASK
2289  	| SEND_DMA_CHECK_ENABLE_CHECK_ENABLE_SMASK;
2290  
2291  	if (!HFI1_CAP_IS_KSET(STATIC_RATE_CTRL))
2292  		base_sdma_integrity |=
2293  		SEND_DMA_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK;
2294  
2295  	/* turn on send-side job key checks if !A0 */
2296  	if (!is_ax(dd))
2297  		base_sdma_integrity |=
2298  			SEND_DMA_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
2299  
2300  	return base_sdma_integrity;
2301  }
2302  
2303  #define dd_dev_emerg(dd, fmt, ...) \
2304  	dev_emerg(&(dd)->pcidev->dev, "%s: " fmt, \
2305  		  rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
2306  
2307  #define dd_dev_err(dd, fmt, ...) \
2308  	dev_err(&(dd)->pcidev->dev, "%s: " fmt, \
2309  		rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
2310  
2311  #define dd_dev_err_ratelimited(dd, fmt, ...) \
2312  	dev_err_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \
2313  			    rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \
2314  			    ##__VA_ARGS__)
2315  
2316  #define dd_dev_warn(dd, fmt, ...) \
2317  	dev_warn(&(dd)->pcidev->dev, "%s: " fmt, \
2318  		 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
2319  
2320  #define dd_dev_warn_ratelimited(dd, fmt, ...) \
2321  	dev_warn_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \
2322  			     rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \
2323  			     ##__VA_ARGS__)
2324  
2325  #define dd_dev_info(dd, fmt, ...) \
2326  	dev_info(&(dd)->pcidev->dev, "%s: " fmt, \
2327  		 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
2328  
2329  #define dd_dev_info_ratelimited(dd, fmt, ...) \
2330  	dev_info_ratelimited(&(dd)->pcidev->dev, "%s: " fmt, \
2331  			     rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), \
2332  			     ##__VA_ARGS__)
2333  
2334  #define dd_dev_dbg(dd, fmt, ...) \
2335  	dev_dbg(&(dd)->pcidev->dev, "%s: " fmt, \
2336  		rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), ##__VA_ARGS__)
2337  
2338  #define hfi1_dev_porterr(dd, port, fmt, ...) \
2339  	dev_err(&(dd)->pcidev->dev, "%s: port %u: " fmt, \
2340  		rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), (port), ##__VA_ARGS__)
2341  
2342  /*
2343   * this is used for formatting hw error messages...
2344   */
2345  struct hfi1_hwerror_msgs {
2346  	u64 mask;
2347  	const char *msg;
2348  	size_t sz;
2349  };
2350  
2351  /* in intr.c... */
2352  void hfi1_format_hwerrors(u64 hwerrs,
2353  			  const struct hfi1_hwerror_msgs *hwerrmsgs,
2354  			  size_t nhwerrmsgs, char *msg, size_t lmsg);
2355  
2356  #define USER_OPCODE_CHECK_VAL 0xC0
2357  #define USER_OPCODE_CHECK_MASK 0xC0
2358  #define OPCODE_CHECK_VAL_DISABLED 0x0
2359  #define OPCODE_CHECK_MASK_DISABLED 0x0
2360  
hfi1_reset_cpu_counters(struct hfi1_devdata * dd)2361  static inline void hfi1_reset_cpu_counters(struct hfi1_devdata *dd)
2362  {
2363  	struct hfi1_pportdata *ppd;
2364  	int i;
2365  
2366  	dd->z_int_counter = get_all_cpu_total(dd->int_counter);
2367  	dd->z_rcv_limit = get_all_cpu_total(dd->rcv_limit);
2368  	dd->z_send_schedule = get_all_cpu_total(dd->send_schedule);
2369  
2370  	ppd = (struct hfi1_pportdata *)(dd + 1);
2371  	for (i = 0; i < dd->num_pports; i++, ppd++) {
2372  		ppd->ibport_data.rvp.z_rc_acks =
2373  			get_all_cpu_total(ppd->ibport_data.rvp.rc_acks);
2374  		ppd->ibport_data.rvp.z_rc_qacks =
2375  			get_all_cpu_total(ppd->ibport_data.rvp.rc_qacks);
2376  	}
2377  }
2378  
2379  /* Control LED state */
setextled(struct hfi1_devdata * dd,u32 on)2380  static inline void setextled(struct hfi1_devdata *dd, u32 on)
2381  {
2382  	if (on)
2383  		write_csr(dd, DCC_CFG_LED_CNTRL, 0x1F);
2384  	else
2385  		write_csr(dd, DCC_CFG_LED_CNTRL, 0x10);
2386  }
2387  
2388  /* return the i2c resource given the target */
i2c_target(u32 target)2389  static inline u32 i2c_target(u32 target)
2390  {
2391  	return target ? CR_I2C2 : CR_I2C1;
2392  }
2393  
2394  /* return the i2c chain chip resource that this HFI uses for QSFP */
qsfp_resource(struct hfi1_devdata * dd)2395  static inline u32 qsfp_resource(struct hfi1_devdata *dd)
2396  {
2397  	return i2c_target(dd->hfi1_id);
2398  }
2399  
2400  /* Is this device integrated or discrete? */
is_integrated(struct hfi1_devdata * dd)2401  static inline bool is_integrated(struct hfi1_devdata *dd)
2402  {
2403  	return dd->pcidev->device == PCI_DEVICE_ID_INTEL1;
2404  }
2405  
2406  /**
2407   * hfi1_need_drop - detect need for drop
2408   * @dd: - the device
2409   *
2410   * In some cases, the first packet needs to be dropped.
2411   *
2412   * Return true is the current packet needs to be dropped and false otherwise.
2413   */
hfi1_need_drop(struct hfi1_devdata * dd)2414  static inline bool hfi1_need_drop(struct hfi1_devdata *dd)
2415  {
2416  	if (unlikely(dd->do_drop &&
2417  		     atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) ==
2418  		     DROP_PACKET_ON)) {
2419  		dd->do_drop = false;
2420  		return true;
2421  	}
2422  	return false;
2423  }
2424  
2425  int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp);
2426  
2427  #define DD_DEV_ENTRY(dd)       __string(dev, dev_name(&(dd)->pcidev->dev))
2428  #define DD_DEV_ASSIGN(dd)      __assign_str(dev, dev_name(&(dd)->pcidev->dev))
2429  
hfi1_update_ah_attr(struct ib_device * ibdev,struct rdma_ah_attr * attr)2430  static inline void hfi1_update_ah_attr(struct ib_device *ibdev,
2431  				       struct rdma_ah_attr *attr)
2432  {
2433  	struct hfi1_pportdata *ppd;
2434  	struct hfi1_ibport *ibp;
2435  	u32 dlid = rdma_ah_get_dlid(attr);
2436  
2437  	/*
2438  	 * Kernel clients may not have setup GRH information
2439  	 * Set that here.
2440  	 */
2441  	ibp = to_iport(ibdev, rdma_ah_get_port_num(attr));
2442  	ppd = ppd_from_ibp(ibp);
2443  	if ((((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ||
2444  	      (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE))) &&
2445  	    (dlid != be32_to_cpu(OPA_LID_PERMISSIVE)) &&
2446  	    (dlid != be16_to_cpu(IB_LID_PERMISSIVE)) &&
2447  	    (!(rdma_ah_get_ah_flags(attr) & IB_AH_GRH))) ||
2448  	    (rdma_ah_get_make_grd(attr))) {
2449  		rdma_ah_set_ah_flags(attr, IB_AH_GRH);
2450  		rdma_ah_set_interface_id(attr, OPA_MAKE_ID(dlid));
2451  		rdma_ah_set_subnet_prefix(attr, ibp->rvp.gid_prefix);
2452  	}
2453  }
2454  
2455  /*
2456   * hfi1_check_mcast- Check if the given lid is
2457   * in the OPA multicast range.
2458   *
2459   * The LID might either reside in ah.dlid or might be
2460   * in the GRH of the address handle as DGID if extended
2461   * addresses are in use.
2462   */
hfi1_check_mcast(u32 lid)2463  static inline bool hfi1_check_mcast(u32 lid)
2464  {
2465  	return ((lid >= opa_get_mcast_base(OPA_MCAST_NR)) &&
2466  		(lid != be32_to_cpu(OPA_LID_PERMISSIVE)));
2467  }
2468  
2469  #define opa_get_lid(lid, format)	\
2470  	__opa_get_lid(lid, OPA_PORT_PACKET_FORMAT_##format)
2471  
2472  /* Convert a lid to a specific lid space */
__opa_get_lid(u32 lid,u8 format)2473  static inline u32 __opa_get_lid(u32 lid, u8 format)
2474  {
2475  	bool is_mcast = hfi1_check_mcast(lid);
2476  
2477  	switch (format) {
2478  	case OPA_PORT_PACKET_FORMAT_8B:
2479  	case OPA_PORT_PACKET_FORMAT_10B:
2480  		if (is_mcast)
2481  			return (lid - opa_get_mcast_base(OPA_MCAST_NR) +
2482  				0xF0000);
2483  		return lid & 0xFFFFF;
2484  	case OPA_PORT_PACKET_FORMAT_16B:
2485  		if (is_mcast)
2486  			return (lid - opa_get_mcast_base(OPA_MCAST_NR) +
2487  				0xF00000);
2488  		return lid & 0xFFFFFF;
2489  	case OPA_PORT_PACKET_FORMAT_9B:
2490  		if (is_mcast)
2491  			return (lid -
2492  				opa_get_mcast_base(OPA_MCAST_NR) +
2493  				be16_to_cpu(IB_MULTICAST_LID_BASE));
2494  		else
2495  			return lid & 0xFFFF;
2496  	default:
2497  		return lid;
2498  	}
2499  }
2500  
2501  /* Return true if the given lid is the OPA 16B multicast range */
hfi1_is_16B_mcast(u32 lid)2502  static inline bool hfi1_is_16B_mcast(u32 lid)
2503  {
2504  	return ((lid >=
2505  		opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 16B)) &&
2506  		(lid != opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B)));
2507  }
2508  
hfi1_make_opa_lid(struct rdma_ah_attr * attr)2509  static inline void hfi1_make_opa_lid(struct rdma_ah_attr *attr)
2510  {
2511  	const struct ib_global_route *grh = rdma_ah_read_grh(attr);
2512  	u32 dlid = rdma_ah_get_dlid(attr);
2513  
2514  	/* Modify ah_attr.dlid to be in the 32 bit LID space.
2515  	 * This is how the address will be laid out:
2516  	 * Assuming MCAST_NR to be 4,
2517  	 * 32 bit permissive LID = 0xFFFFFFFF
2518  	 * Multicast LID range = 0xFFFFFFFE to 0xF0000000
2519  	 * Unicast LID range = 0xEFFFFFFF to 1
2520  	 * Invalid LID = 0
2521  	 */
2522  	if (ib_is_opa_gid(&grh->dgid))
2523  		dlid = opa_get_lid_from_gid(&grh->dgid);
2524  	else if ((dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) &&
2525  		 (dlid != be16_to_cpu(IB_LID_PERMISSIVE)) &&
2526  		 (dlid != be32_to_cpu(OPA_LID_PERMISSIVE)))
2527  		dlid = dlid - be16_to_cpu(IB_MULTICAST_LID_BASE) +
2528  			opa_get_mcast_base(OPA_MCAST_NR);
2529  	else if (dlid == be16_to_cpu(IB_LID_PERMISSIVE))
2530  		dlid = be32_to_cpu(OPA_LID_PERMISSIVE);
2531  
2532  	rdma_ah_set_dlid(attr, dlid);
2533  }
2534  
hfi1_get_packet_type(u32 lid)2535  static inline u8 hfi1_get_packet_type(u32 lid)
2536  {
2537  	/* 9B if lid > 0xF0000000 */
2538  	if (lid >= opa_get_mcast_base(OPA_MCAST_NR))
2539  		return HFI1_PKT_TYPE_9B;
2540  
2541  	/* 16B if lid > 0xC000 */
2542  	if (lid >= opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 9B))
2543  		return HFI1_PKT_TYPE_16B;
2544  
2545  	return HFI1_PKT_TYPE_9B;
2546  }
2547  
hfi1_get_hdr_type(u32 lid,struct rdma_ah_attr * attr)2548  static inline bool hfi1_get_hdr_type(u32 lid, struct rdma_ah_attr *attr)
2549  {
2550  	/*
2551  	 * If there was an incoming 16B packet with permissive
2552  	 * LIDs, OPA GIDs would have been programmed when those
2553  	 * packets were received. A 16B packet will have to
2554  	 * be sent in response to that packet. Return a 16B
2555  	 * header type if that's the case.
2556  	 */
2557  	if (rdma_ah_get_dlid(attr) == be32_to_cpu(OPA_LID_PERMISSIVE))
2558  		return (ib_is_opa_gid(&rdma_ah_read_grh(attr)->dgid)) ?
2559  			HFI1_PKT_TYPE_16B : HFI1_PKT_TYPE_9B;
2560  
2561  	/*
2562  	 * Return a 16B header type if either the destination
2563  	 * or source lid is extended.
2564  	 */
2565  	if (hfi1_get_packet_type(rdma_ah_get_dlid(attr)) == HFI1_PKT_TYPE_16B)
2566  		return HFI1_PKT_TYPE_16B;
2567  
2568  	return hfi1_get_packet_type(lid);
2569  }
2570  
hfi1_make_ext_grh(struct hfi1_packet * packet,struct ib_grh * grh,u32 slid,u32 dlid)2571  static inline void hfi1_make_ext_grh(struct hfi1_packet *packet,
2572  				     struct ib_grh *grh, u32 slid,
2573  				     u32 dlid)
2574  {
2575  	struct hfi1_ibport *ibp = &packet->rcd->ppd->ibport_data;
2576  	struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
2577  
2578  	if (!ibp)
2579  		return;
2580  
2581  	grh->hop_limit = 1;
2582  	grh->sgid.global.subnet_prefix = ibp->rvp.gid_prefix;
2583  	if (slid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))
2584  		grh->sgid.global.interface_id =
2585  			OPA_MAKE_ID(be32_to_cpu(OPA_LID_PERMISSIVE));
2586  	else
2587  		grh->sgid.global.interface_id = OPA_MAKE_ID(slid);
2588  
2589  	/*
2590  	 * Upper layers (like mad) may compare the dgid in the
2591  	 * wc that is obtained here with the sgid_index in
2592  	 * the wr. Since sgid_index in wr is always 0 for
2593  	 * extended lids, set the dgid here to the default
2594  	 * IB gid.
2595  	 */
2596  	grh->dgid.global.subnet_prefix = ibp->rvp.gid_prefix;
2597  	grh->dgid.global.interface_id =
2598  		cpu_to_be64(ppd->guids[HFI1_PORT_GUID_INDEX]);
2599  }
2600  
hfi1_get_16b_padding(u32 hdr_size,u32 payload)2601  static inline int hfi1_get_16b_padding(u32 hdr_size, u32 payload)
2602  {
2603  	return -(hdr_size + payload + (SIZE_OF_CRC << 2) +
2604  		     SIZE_OF_LT) & 0x7;
2605  }
2606  
hfi1_make_ib_hdr(struct ib_header * hdr,u16 lrh0,u16 len,u16 dlid,u16 slid)2607  static inline void hfi1_make_ib_hdr(struct ib_header *hdr,
2608  				    u16 lrh0, u16 len,
2609  				    u16 dlid, u16 slid)
2610  {
2611  	hdr->lrh[0] = cpu_to_be16(lrh0);
2612  	hdr->lrh[1] = cpu_to_be16(dlid);
2613  	hdr->lrh[2] = cpu_to_be16(len);
2614  	hdr->lrh[3] = cpu_to_be16(slid);
2615  }
2616  
hfi1_make_16b_hdr(struct hfi1_16b_header * hdr,u32 slid,u32 dlid,u16 len,u16 pkey,bool becn,bool fecn,u8 l4,u8 sc)2617  static inline void hfi1_make_16b_hdr(struct hfi1_16b_header *hdr,
2618  				     u32 slid, u32 dlid,
2619  				     u16 len, u16 pkey,
2620  				     bool becn, bool fecn, u8 l4,
2621  				     u8 sc)
2622  {
2623  	u32 lrh0 = 0;
2624  	u32 lrh1 = 0x40000000;
2625  	u32 lrh2 = 0;
2626  	u32 lrh3 = 0;
2627  
2628  	lrh0 = (lrh0 & ~OPA_16B_BECN_MASK) | (becn << OPA_16B_BECN_SHIFT);
2629  	lrh0 = (lrh0 & ~OPA_16B_LEN_MASK) | (len << OPA_16B_LEN_SHIFT);
2630  	lrh0 = (lrh0 & ~OPA_16B_LID_MASK)  | (slid & OPA_16B_LID_MASK);
2631  	lrh1 = (lrh1 & ~OPA_16B_FECN_MASK) | (fecn << OPA_16B_FECN_SHIFT);
2632  	lrh1 = (lrh1 & ~OPA_16B_SC_MASK) | (sc << OPA_16B_SC_SHIFT);
2633  	lrh1 = (lrh1 & ~OPA_16B_LID_MASK) | (dlid & OPA_16B_LID_MASK);
2634  	lrh2 = (lrh2 & ~OPA_16B_SLID_MASK) |
2635  		((slid >> OPA_16B_SLID_SHIFT) << OPA_16B_SLID_HIGH_SHIFT);
2636  	lrh2 = (lrh2 & ~OPA_16B_DLID_MASK) |
2637  		((dlid >> OPA_16B_DLID_SHIFT) << OPA_16B_DLID_HIGH_SHIFT);
2638  	lrh2 = (lrh2 & ~OPA_16B_PKEY_MASK) | ((u32)pkey << OPA_16B_PKEY_SHIFT);
2639  	lrh2 = (lrh2 & ~OPA_16B_L4_MASK) | l4;
2640  
2641  	hdr->lrh[0] = lrh0;
2642  	hdr->lrh[1] = lrh1;
2643  	hdr->lrh[2] = lrh2;
2644  	hdr->lrh[3] = lrh3;
2645  }
2646  #endif                          /* _HFI1_KERNEL_H */
2647