xref: /openbmc/linux/tools/perf/util/intel-pt.c (revision 44ad3baf1cca483e418b6aadf2d3994f69e0f16a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pt.c: Intel Processor Trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6 
7 #include <inttypes.h>
8 #include <linux/perf_event.h>
9 #include <stdio.h>
10 #include <stdbool.h>
11 #include <errno.h>
12 #include <linux/kernel.h>
13 #include <linux/string.h>
14 #include <linux/types.h>
15 #include <linux/zalloc.h>
16 
17 #include "session.h"
18 #include "machine.h"
19 #include "memswap.h"
20 #include "sort.h"
21 #include "tool.h"
22 #include "event.h"
23 #include "evlist.h"
24 #include "evsel.h"
25 #include "map.h"
26 #include "color.h"
27 #include "thread.h"
28 #include "thread-stack.h"
29 #include "symbol.h"
30 #include "callchain.h"
31 #include "dso.h"
32 #include "debug.h"
33 #include "auxtrace.h"
34 #include "tsc.h"
35 #include "intel-pt.h"
36 #include "config.h"
37 #include "util/perf_api_probe.h"
38 #include "util/synthetic-events.h"
39 #include "time-utils.h"
40 
41 #include "../arch/x86/include/uapi/asm/perf_regs.h"
42 
43 #include "intel-pt-decoder/intel-pt-log.h"
44 #include "intel-pt-decoder/intel-pt-decoder.h"
45 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
46 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
47 
48 #define MAX_TIMESTAMP (~0ULL)
49 
50 #define INTEL_PT_CFG_PASS_THRU	BIT_ULL(0)
51 #define INTEL_PT_CFG_PWR_EVT_EN	BIT_ULL(4)
52 #define INTEL_PT_CFG_BRANCH_EN	BIT_ULL(13)
53 #define INTEL_PT_CFG_EVT_EN	BIT_ULL(31)
54 #define INTEL_PT_CFG_TNT_DIS	BIT_ULL(55)
55 
56 struct range {
57 	u64 start;
58 	u64 end;
59 };
60 
61 struct intel_pt {
62 	struct auxtrace auxtrace;
63 	struct auxtrace_queues queues;
64 	struct auxtrace_heap heap;
65 	u32 auxtrace_type;
66 	struct perf_session *session;
67 	struct machine *machine;
68 	struct evsel *switch_evsel;
69 	struct thread *unknown_thread;
70 	bool timeless_decoding;
71 	bool sampling_mode;
72 	bool snapshot_mode;
73 	bool per_cpu_mmaps;
74 	bool have_tsc;
75 	bool data_queued;
76 	bool est_tsc;
77 	bool sync_switch;
78 	bool sync_switch_not_supported;
79 	bool mispred_all;
80 	bool use_thread_stack;
81 	bool callstack;
82 	bool cap_event_trace;
83 	bool have_guest_sideband;
84 	unsigned int br_stack_sz;
85 	unsigned int br_stack_sz_plus;
86 	int have_sched_switch;
87 	u32 pmu_type;
88 	u64 kernel_start;
89 	u64 switch_ip;
90 	u64 ptss_ip;
91 	u64 first_timestamp;
92 
93 	struct perf_tsc_conversion tc;
94 	bool cap_user_time_zero;
95 
96 	struct itrace_synth_opts synth_opts;
97 
98 	bool sample_instructions;
99 	u64 instructions_sample_type;
100 	u64 instructions_id;
101 
102 	bool sample_cycles;
103 	u64 cycles_sample_type;
104 	u64 cycles_id;
105 
106 	bool sample_branches;
107 	u32 branches_filter;
108 	u64 branches_sample_type;
109 	u64 branches_id;
110 
111 	bool sample_transactions;
112 	u64 transactions_sample_type;
113 	u64 transactions_id;
114 
115 	bool sample_ptwrites;
116 	u64 ptwrites_sample_type;
117 	u64 ptwrites_id;
118 
119 	bool sample_pwr_events;
120 	u64 pwr_events_sample_type;
121 	u64 mwait_id;
122 	u64 pwre_id;
123 	u64 exstop_id;
124 	u64 pwrx_id;
125 	u64 cbr_id;
126 	u64 psb_id;
127 
128 	bool single_pebs;
129 	bool sample_pebs;
130 	int pebs_data_src_fmt;
131 	struct evsel *pebs_evsel;
132 
133 	u64 evt_sample_type;
134 	u64 evt_id;
135 
136 	u64 iflag_chg_sample_type;
137 	u64 iflag_chg_id;
138 
139 	u64 tsc_bit;
140 	u64 mtc_bit;
141 	u64 mtc_freq_bits;
142 	u32 tsc_ctc_ratio_n;
143 	u32 tsc_ctc_ratio_d;
144 	u64 cyc_bit;
145 	u64 noretcomp_bit;
146 	unsigned max_non_turbo_ratio;
147 	unsigned cbr2khz;
148 	int max_loops;
149 
150 	unsigned long num_events;
151 
152 	char *filter;
153 	struct addr_filters filts;
154 
155 	struct range *time_ranges;
156 	unsigned int range_cnt;
157 
158 	struct ip_callchain *chain;
159 	struct branch_stack *br_stack;
160 
161 	u64 dflt_tsc_offset;
162 	struct rb_root vmcs_info;
163 };
164 
165 enum switch_state {
166 	INTEL_PT_SS_NOT_TRACING,
167 	INTEL_PT_SS_UNKNOWN,
168 	INTEL_PT_SS_TRACING,
169 	INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
170 	INTEL_PT_SS_EXPECTING_SWITCH_IP,
171 };
172 
173 /* applicable_counters is 64-bits */
174 #define INTEL_PT_MAX_PEBS 64
175 
176 struct intel_pt_pebs_event {
177 	struct evsel *evsel;
178 	u64 id;
179 	int data_src_fmt;
180 };
181 
182 struct intel_pt_queue {
183 	struct intel_pt *pt;
184 	unsigned int queue_nr;
185 	struct auxtrace_buffer *buffer;
186 	struct auxtrace_buffer *old_buffer;
187 	void *decoder;
188 	const struct intel_pt_state *state;
189 	struct ip_callchain *chain;
190 	struct branch_stack *last_branch;
191 	union perf_event *event_buf;
192 	bool on_heap;
193 	bool stop;
194 	bool step_through_buffers;
195 	bool use_buffer_pid_tid;
196 	bool sync_switch;
197 	bool sample_ipc;
198 	pid_t pid, tid;
199 	int cpu;
200 	int switch_state;
201 	pid_t next_tid;
202 	struct thread *thread;
203 	struct machine *guest_machine;
204 	struct thread *guest_thread;
205 	struct thread *unknown_guest_thread;
206 	pid_t guest_machine_pid;
207 	pid_t guest_pid;
208 	pid_t guest_tid;
209 	int vcpu;
210 	bool exclude_kernel;
211 	bool have_sample;
212 	u64 time;
213 	u64 timestamp;
214 	u64 sel_timestamp;
215 	bool sel_start;
216 	unsigned int sel_idx;
217 	u32 flags;
218 	u16 insn_len;
219 	u64 last_insn_cnt;
220 	u64 ipc_insn_cnt;
221 	u64 ipc_cyc_cnt;
222 	u64 last_in_insn_cnt;
223 	u64 last_in_cyc_cnt;
224 	u64 last_cy_insn_cnt;
225 	u64 last_cy_cyc_cnt;
226 	u64 last_br_insn_cnt;
227 	u64 last_br_cyc_cnt;
228 	unsigned int cbr_seen;
229 	char insn[INTEL_PT_INSN_BUF_SZ];
230 	struct intel_pt_pebs_event pebs[INTEL_PT_MAX_PEBS];
231 };
232 
intel_pt_dump(struct intel_pt * pt __maybe_unused,unsigned char * buf,size_t len)233 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
234 			  unsigned char *buf, size_t len)
235 {
236 	struct intel_pt_pkt packet;
237 	size_t pos = 0;
238 	int ret, pkt_len, i;
239 	char desc[INTEL_PT_PKT_DESC_MAX];
240 	const char *color = PERF_COLOR_BLUE;
241 	enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
242 
243 	color_fprintf(stdout, color,
244 		      ". ... Intel Processor Trace data: size %zu bytes\n",
245 		      len);
246 
247 	while (len) {
248 		ret = intel_pt_get_packet(buf, len, &packet, &ctx);
249 		if (ret > 0)
250 			pkt_len = ret;
251 		else
252 			pkt_len = 1;
253 		printf(".");
254 		color_fprintf(stdout, color, "  %08x: ", pos);
255 		for (i = 0; i < pkt_len; i++)
256 			color_fprintf(stdout, color, " %02x", buf[i]);
257 		for (; i < 16; i++)
258 			color_fprintf(stdout, color, "   ");
259 		if (ret > 0) {
260 			ret = intel_pt_pkt_desc(&packet, desc,
261 						INTEL_PT_PKT_DESC_MAX);
262 			if (ret > 0)
263 				color_fprintf(stdout, color, " %s\n", desc);
264 		} else {
265 			color_fprintf(stdout, color, " Bad packet!\n");
266 		}
267 		pos += pkt_len;
268 		buf += pkt_len;
269 		len -= pkt_len;
270 	}
271 }
272 
intel_pt_dump_event(struct intel_pt * pt,unsigned char * buf,size_t len)273 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
274 				size_t len)
275 {
276 	printf(".\n");
277 	intel_pt_dump(pt, buf, len);
278 }
279 
intel_pt_log_event(union perf_event * event)280 static void intel_pt_log_event(union perf_event *event)
281 {
282 	FILE *f = intel_pt_log_fp();
283 
284 	if (!intel_pt_enable_logging || !f)
285 		return;
286 
287 	perf_event__fprintf(event, NULL, f);
288 }
289 
intel_pt_dump_sample(struct perf_session * session,struct perf_sample * sample)290 static void intel_pt_dump_sample(struct perf_session *session,
291 				 struct perf_sample *sample)
292 {
293 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
294 					   auxtrace);
295 
296 	printf("\n");
297 	intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
298 }
299 
intel_pt_log_events(struct intel_pt * pt,u64 tm)300 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
301 {
302 	struct perf_time_interval *range = pt->synth_opts.ptime_range;
303 	int n = pt->synth_opts.range_num;
304 
305 	if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
306 		return true;
307 
308 	if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
309 		return false;
310 
311 	/* perf_time__ranges_skip_sample does not work if time is zero */
312 	if (!tm)
313 		tm = 1;
314 
315 	return !n || !perf_time__ranges_skip_sample(range, n, tm);
316 }
317 
intel_pt_findnew_vmcs(struct rb_root * rb_root,u64 vmcs,u64 dflt_tsc_offset)318 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root,
319 							u64 vmcs,
320 							u64 dflt_tsc_offset)
321 {
322 	struct rb_node **p = &rb_root->rb_node;
323 	struct rb_node *parent = NULL;
324 	struct intel_pt_vmcs_info *v;
325 
326 	while (*p) {
327 		parent = *p;
328 		v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node);
329 
330 		if (v->vmcs == vmcs)
331 			return v;
332 
333 		if (vmcs < v->vmcs)
334 			p = &(*p)->rb_left;
335 		else
336 			p = &(*p)->rb_right;
337 	}
338 
339 	v = zalloc(sizeof(*v));
340 	if (v) {
341 		v->vmcs = vmcs;
342 		v->tsc_offset = dflt_tsc_offset;
343 		v->reliable = dflt_tsc_offset;
344 
345 		rb_link_node(&v->rb_node, parent, p);
346 		rb_insert_color(&v->rb_node, rb_root);
347 	}
348 
349 	return v;
350 }
351 
intel_pt_findnew_vmcs_info(void * data,uint64_t vmcs)352 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs)
353 {
354 	struct intel_pt_queue *ptq = data;
355 	struct intel_pt *pt = ptq->pt;
356 
357 	if (!vmcs && !pt->dflt_tsc_offset)
358 		return NULL;
359 
360 	return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset);
361 }
362 
intel_pt_free_vmcs_info(struct intel_pt * pt)363 static void intel_pt_free_vmcs_info(struct intel_pt *pt)
364 {
365 	struct intel_pt_vmcs_info *v;
366 	struct rb_node *n;
367 
368 	n = rb_first(&pt->vmcs_info);
369 	while (n) {
370 		v = rb_entry(n, struct intel_pt_vmcs_info, rb_node);
371 		n = rb_next(n);
372 		rb_erase(&v->rb_node, &pt->vmcs_info);
373 		free(v);
374 	}
375 }
376 
intel_pt_do_fix_overlap(struct intel_pt * pt,struct auxtrace_buffer * a,struct auxtrace_buffer * b)377 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
378 				   struct auxtrace_buffer *b)
379 {
380 	bool consecutive = false;
381 	void *start;
382 
383 	start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
384 				      pt->have_tsc, &consecutive,
385 				      pt->synth_opts.vm_time_correlation);
386 	if (!start)
387 		return -EINVAL;
388 	/*
389 	 * In the case of vm_time_correlation, the overlap might contain TSC
390 	 * packets that will not be fixed, and that will then no longer work for
391 	 * overlap detection. Avoid that by zeroing out the overlap.
392 	 */
393 	if (pt->synth_opts.vm_time_correlation)
394 		memset(b->data, 0, start - b->data);
395 	b->use_size = b->data + b->size - start;
396 	b->use_data = start;
397 	if (b->use_size && consecutive)
398 		b->consecutive = true;
399 	return 0;
400 }
401 
intel_pt_get_buffer(struct intel_pt_queue * ptq,struct auxtrace_buffer * buffer,struct auxtrace_buffer * old_buffer,struct intel_pt_buffer * b)402 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
403 			       struct auxtrace_buffer *buffer,
404 			       struct auxtrace_buffer *old_buffer,
405 			       struct intel_pt_buffer *b)
406 {
407 	bool might_overlap;
408 
409 	if (!buffer->data) {
410 		int fd = perf_data__fd(ptq->pt->session->data);
411 
412 		buffer->data = auxtrace_buffer__get_data(buffer, fd);
413 		if (!buffer->data)
414 			return -ENOMEM;
415 	}
416 
417 	might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
418 	if (might_overlap && !buffer->consecutive && old_buffer &&
419 	    intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
420 		return -ENOMEM;
421 
422 	if (buffer->use_data) {
423 		b->len = buffer->use_size;
424 		b->buf = buffer->use_data;
425 	} else {
426 		b->len = buffer->size;
427 		b->buf = buffer->data;
428 	}
429 	b->ref_timestamp = buffer->reference;
430 
431 	if (!old_buffer || (might_overlap && !buffer->consecutive)) {
432 		b->consecutive = false;
433 		b->trace_nr = buffer->buffer_nr + 1;
434 	} else {
435 		b->consecutive = true;
436 	}
437 
438 	return 0;
439 }
440 
441 /* Do not drop buffers with references - refer intel_pt_get_trace() */
intel_pt_lookahead_drop_buffer(struct intel_pt_queue * ptq,struct auxtrace_buffer * buffer)442 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
443 					   struct auxtrace_buffer *buffer)
444 {
445 	if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
446 		return;
447 
448 	auxtrace_buffer__drop_data(buffer);
449 }
450 
451 /* Must be serialized with respect to intel_pt_get_trace() */
intel_pt_lookahead(void * data,intel_pt_lookahead_cb_t cb,void * cb_data)452 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
453 			      void *cb_data)
454 {
455 	struct intel_pt_queue *ptq = data;
456 	struct auxtrace_buffer *buffer = ptq->buffer;
457 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
458 	struct auxtrace_queue *queue;
459 	int err = 0;
460 
461 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
462 
463 	while (1) {
464 		struct intel_pt_buffer b = { .len = 0 };
465 
466 		buffer = auxtrace_buffer__next(queue, buffer);
467 		if (!buffer)
468 			break;
469 
470 		err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
471 		if (err)
472 			break;
473 
474 		if (b.len) {
475 			intel_pt_lookahead_drop_buffer(ptq, old_buffer);
476 			old_buffer = buffer;
477 		} else {
478 			intel_pt_lookahead_drop_buffer(ptq, buffer);
479 			continue;
480 		}
481 
482 		err = cb(&b, cb_data);
483 		if (err)
484 			break;
485 	}
486 
487 	if (buffer != old_buffer)
488 		intel_pt_lookahead_drop_buffer(ptq, buffer);
489 	intel_pt_lookahead_drop_buffer(ptq, old_buffer);
490 
491 	return err;
492 }
493 
494 /*
495  * This function assumes data is processed sequentially only.
496  * Must be serialized with respect to intel_pt_lookahead()
497  */
intel_pt_get_trace(struct intel_pt_buffer * b,void * data)498 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
499 {
500 	struct intel_pt_queue *ptq = data;
501 	struct auxtrace_buffer *buffer = ptq->buffer;
502 	struct auxtrace_buffer *old_buffer = ptq->old_buffer;
503 	struct auxtrace_queue *queue;
504 	int err;
505 
506 	if (ptq->stop) {
507 		b->len = 0;
508 		return 0;
509 	}
510 
511 	queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
512 
513 	buffer = auxtrace_buffer__next(queue, buffer);
514 	if (!buffer) {
515 		if (old_buffer)
516 			auxtrace_buffer__drop_data(old_buffer);
517 		b->len = 0;
518 		return 0;
519 	}
520 
521 	ptq->buffer = buffer;
522 
523 	err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
524 	if (err)
525 		return err;
526 
527 	if (ptq->step_through_buffers)
528 		ptq->stop = true;
529 
530 	if (b->len) {
531 		if (old_buffer)
532 			auxtrace_buffer__drop_data(old_buffer);
533 		ptq->old_buffer = buffer;
534 	} else {
535 		auxtrace_buffer__drop_data(buffer);
536 		return intel_pt_get_trace(b, data);
537 	}
538 
539 	return 0;
540 }
541 
542 struct intel_pt_cache_entry {
543 	struct auxtrace_cache_entry	entry;
544 	u64				insn_cnt;
545 	u64				byte_cnt;
546 	enum intel_pt_insn_op		op;
547 	enum intel_pt_insn_branch	branch;
548 	bool				emulated_ptwrite;
549 	int				length;
550 	int32_t				rel;
551 	char				insn[INTEL_PT_INSN_BUF_SZ];
552 };
553 
intel_pt_config_div(const char * var,const char * value,void * data)554 static int intel_pt_config_div(const char *var, const char *value, void *data)
555 {
556 	int *d = data;
557 	long val;
558 
559 	if (!strcmp(var, "intel-pt.cache-divisor")) {
560 		val = strtol(value, NULL, 0);
561 		if (val > 0 && val <= INT_MAX)
562 			*d = val;
563 	}
564 
565 	return 0;
566 }
567 
intel_pt_cache_divisor(void)568 static int intel_pt_cache_divisor(void)
569 {
570 	static int d;
571 
572 	if (d)
573 		return d;
574 
575 	perf_config(intel_pt_config_div, &d);
576 
577 	if (!d)
578 		d = 64;
579 
580 	return d;
581 }
582 
intel_pt_cache_size(struct dso * dso,struct machine * machine)583 static unsigned int intel_pt_cache_size(struct dso *dso,
584 					struct machine *machine)
585 {
586 	off_t size;
587 
588 	size = dso__data_size(dso, machine);
589 	size /= intel_pt_cache_divisor();
590 	if (size < 1000)
591 		return 10;
592 	if (size > (1 << 21))
593 		return 21;
594 	return 32 - __builtin_clz(size);
595 }
596 
intel_pt_cache(struct dso * dso,struct machine * machine)597 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
598 					     struct machine *machine)
599 {
600 	struct auxtrace_cache *c;
601 	unsigned int bits;
602 
603 	if (dso->auxtrace_cache)
604 		return dso->auxtrace_cache;
605 
606 	bits = intel_pt_cache_size(dso, machine);
607 
608 	/* Ignoring cache creation failure */
609 	c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
610 
611 	dso->auxtrace_cache = c;
612 
613 	return c;
614 }
615 
intel_pt_cache_add(struct dso * dso,struct machine * machine,u64 offset,u64 insn_cnt,u64 byte_cnt,struct intel_pt_insn * intel_pt_insn)616 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
617 			      u64 offset, u64 insn_cnt, u64 byte_cnt,
618 			      struct intel_pt_insn *intel_pt_insn)
619 {
620 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
621 	struct intel_pt_cache_entry *e;
622 	int err;
623 
624 	if (!c)
625 		return -ENOMEM;
626 
627 	e = auxtrace_cache__alloc_entry(c);
628 	if (!e)
629 		return -ENOMEM;
630 
631 	e->insn_cnt = insn_cnt;
632 	e->byte_cnt = byte_cnt;
633 	e->op = intel_pt_insn->op;
634 	e->branch = intel_pt_insn->branch;
635 	e->emulated_ptwrite = intel_pt_insn->emulated_ptwrite;
636 	e->length = intel_pt_insn->length;
637 	e->rel = intel_pt_insn->rel;
638 	memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
639 
640 	err = auxtrace_cache__add(c, offset, &e->entry);
641 	if (err)
642 		auxtrace_cache__free_entry(c, e);
643 
644 	return err;
645 }
646 
647 static struct intel_pt_cache_entry *
intel_pt_cache_lookup(struct dso * dso,struct machine * machine,u64 offset)648 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
649 {
650 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
651 
652 	if (!c)
653 		return NULL;
654 
655 	return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
656 }
657 
intel_pt_cache_invalidate(struct dso * dso,struct machine * machine,u64 offset)658 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
659 				      u64 offset)
660 {
661 	struct auxtrace_cache *c = intel_pt_cache(dso, machine);
662 
663 	if (!c)
664 		return;
665 
666 	auxtrace_cache__remove(dso->auxtrace_cache, offset);
667 }
668 
intel_pt_guest_kernel_ip(uint64_t ip)669 static inline bool intel_pt_guest_kernel_ip(uint64_t ip)
670 {
671 	/* Assumes 64-bit kernel */
672 	return ip & (1ULL << 63);
673 }
674 
intel_pt_nr_cpumode(struct intel_pt_queue * ptq,uint64_t ip,bool nr)675 static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr)
676 {
677 	if (nr) {
678 		return intel_pt_guest_kernel_ip(ip) ?
679 		       PERF_RECORD_MISC_GUEST_KERNEL :
680 		       PERF_RECORD_MISC_GUEST_USER;
681 	}
682 
683 	return ip >= ptq->pt->kernel_start ?
684 	       PERF_RECORD_MISC_KERNEL :
685 	       PERF_RECORD_MISC_USER;
686 }
687 
intel_pt_cpumode(struct intel_pt_queue * ptq,uint64_t from_ip,uint64_t to_ip)688 static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip)
689 {
690 	/* No support for non-zero CS base */
691 	if (from_ip)
692 		return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr);
693 	return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr);
694 }
695 
intel_pt_get_guest(struct intel_pt_queue * ptq)696 static int intel_pt_get_guest(struct intel_pt_queue *ptq)
697 {
698 	struct machines *machines = &ptq->pt->session->machines;
699 	struct machine *machine;
700 	pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid;
701 
702 	if (ptq->guest_machine && pid == ptq->guest_machine->pid)
703 		return 0;
704 
705 	ptq->guest_machine = NULL;
706 	thread__zput(ptq->unknown_guest_thread);
707 
708 	if (symbol_conf.guest_code) {
709 		thread__zput(ptq->guest_thread);
710 		ptq->guest_thread = machines__findnew_guest_code(machines, pid);
711 	}
712 
713 	machine = machines__find_guest(machines, pid);
714 	if (!machine)
715 		return -1;
716 
717 	ptq->unknown_guest_thread = machine__idle_thread(machine);
718 	if (!ptq->unknown_guest_thread)
719 		return -1;
720 
721 	ptq->guest_machine = machine;
722 
723 	return 0;
724 }
725 
intel_pt_jmp_16(struct intel_pt_insn * intel_pt_insn)726 static inline bool intel_pt_jmp_16(struct intel_pt_insn *intel_pt_insn)
727 {
728 	return intel_pt_insn->rel == 16 && intel_pt_insn->branch == INTEL_PT_BR_UNCONDITIONAL;
729 }
730 
731 #define PTWRITE_MAGIC		"\x0f\x0bperf,ptwrite  "
732 #define PTWRITE_MAGIC_LEN	16
733 
intel_pt_emulated_ptwrite(struct dso * dso,struct machine * machine,u64 offset)734 static bool intel_pt_emulated_ptwrite(struct dso *dso, struct machine *machine, u64 offset)
735 {
736 	unsigned char buf[PTWRITE_MAGIC_LEN];
737 	ssize_t len;
738 
739 	len = dso__data_read_offset(dso, machine, offset, buf, PTWRITE_MAGIC_LEN);
740 	if (len == PTWRITE_MAGIC_LEN && !memcmp(buf, PTWRITE_MAGIC, PTWRITE_MAGIC_LEN)) {
741 		intel_pt_log("Emulated ptwrite signature found\n");
742 		return true;
743 	}
744 	intel_pt_log("Emulated ptwrite signature not found\n");
745 	return false;
746 }
747 
intel_pt_walk_next_insn(struct intel_pt_insn * intel_pt_insn,uint64_t * insn_cnt_ptr,uint64_t * ip,uint64_t to_ip,uint64_t max_insn_cnt,void * data)748 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
749 				   uint64_t *insn_cnt_ptr, uint64_t *ip,
750 				   uint64_t to_ip, uint64_t max_insn_cnt,
751 				   void *data)
752 {
753 	struct intel_pt_queue *ptq = data;
754 	struct machine *machine = ptq->pt->machine;
755 	struct thread *thread;
756 	struct addr_location al;
757 	unsigned char buf[INTEL_PT_INSN_BUF_SZ];
758 	ssize_t len;
759 	int x86_64, ret = 0;
760 	u8 cpumode;
761 	u64 offset, start_offset, start_ip;
762 	u64 insn_cnt = 0;
763 	bool one_map = true;
764 	bool nr;
765 
766 
767 	addr_location__init(&al);
768 	intel_pt_insn->length = 0;
769 	intel_pt_insn->op = INTEL_PT_OP_OTHER;
770 
771 	if (to_ip && *ip == to_ip)
772 		goto out_no_cache;
773 
774 	nr = ptq->state->to_nr;
775 	cpumode = intel_pt_nr_cpumode(ptq, *ip, nr);
776 
777 	if (nr) {
778 		if (ptq->pt->have_guest_sideband) {
779 			if (!ptq->guest_machine || ptq->guest_machine_pid != ptq->pid) {
780 				intel_pt_log("ERROR: guest sideband but no guest machine\n");
781 				ret = -EINVAL;
782 				goto out_ret;
783 			}
784 		} else if ((!symbol_conf.guest_code && cpumode != PERF_RECORD_MISC_GUEST_KERNEL) ||
785 			   intel_pt_get_guest(ptq)) {
786 			intel_pt_log("ERROR: no guest machine\n");
787 			ret = -EINVAL;
788 			goto out_ret;
789 		}
790 		machine = ptq->guest_machine;
791 		thread = ptq->guest_thread;
792 		if (!thread) {
793 			if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL) {
794 				intel_pt_log("ERROR: no guest thread\n");
795 				ret = -EINVAL;
796 				goto out_ret;
797 			}
798 			thread = ptq->unknown_guest_thread;
799 		}
800 	} else {
801 		thread = ptq->thread;
802 		if (!thread) {
803 			if (cpumode != PERF_RECORD_MISC_KERNEL) {
804 				intel_pt_log("ERROR: no thread\n");
805 				ret = -EINVAL;
806 				goto out_ret;
807 			}
808 			thread = ptq->pt->unknown_thread;
809 		}
810 	}
811 
812 	while (1) {
813 		struct dso *dso;
814 
815 		if (!thread__find_map(thread, cpumode, *ip, &al) || !map__dso(al.map)) {
816 			if (al.map)
817 				intel_pt_log("ERROR: thread has no dso for %#" PRIx64 "\n", *ip);
818 			else
819 				intel_pt_log("ERROR: thread has no map for %#" PRIx64 "\n", *ip);
820 			addr_location__exit(&al);
821 			ret = -EINVAL;
822 			goto out_ret;
823 		}
824 		dso = map__dso(al.map);
825 
826 		if (dso->data.status == DSO_DATA_STATUS_ERROR &&
827 			dso__data_status_seen(dso, DSO_DATA_STATUS_SEEN_ITRACE)) {
828 			ret = -ENOENT;
829 			goto out_ret;
830 		}
831 
832 		offset = map__map_ip(al.map, *ip);
833 
834 		if (!to_ip && one_map) {
835 			struct intel_pt_cache_entry *e;
836 
837 			e = intel_pt_cache_lookup(dso, machine, offset);
838 			if (e &&
839 			    (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
840 				*insn_cnt_ptr = e->insn_cnt;
841 				*ip += e->byte_cnt;
842 				intel_pt_insn->op = e->op;
843 				intel_pt_insn->branch = e->branch;
844 				intel_pt_insn->emulated_ptwrite = e->emulated_ptwrite;
845 				intel_pt_insn->length = e->length;
846 				intel_pt_insn->rel = e->rel;
847 				memcpy(intel_pt_insn->buf, e->insn, INTEL_PT_INSN_BUF_SZ);
848 				intel_pt_log_insn_no_data(intel_pt_insn, *ip);
849 				ret = 0;
850 				goto out_ret;
851 			}
852 		}
853 
854 		start_offset = offset;
855 		start_ip = *ip;
856 
857 		/* Load maps to ensure dso->is_64_bit has been updated */
858 		map__load(al.map);
859 
860 		x86_64 = dso->is_64_bit;
861 
862 		while (1) {
863 			len = dso__data_read_offset(dso, machine,
864 						    offset, buf,
865 						    INTEL_PT_INSN_BUF_SZ);
866 			if (len <= 0) {
867 				intel_pt_log("ERROR: failed to read at offset %#" PRIx64 " ",
868 					     offset);
869 				if (intel_pt_enable_logging)
870 					dso__fprintf(dso, intel_pt_log_fp());
871 				ret = -EINVAL;
872 				goto out_ret;
873 			}
874 
875 			if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn)) {
876 				ret = -EINVAL;
877 				goto out_ret;
878 			}
879 
880 			intel_pt_log_insn(intel_pt_insn, *ip);
881 
882 			insn_cnt += 1;
883 
884 			if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH) {
885 				bool eptw;
886 				u64 offs;
887 
888 				if (!intel_pt_jmp_16(intel_pt_insn))
889 					goto out;
890 				/* Check for emulated ptwrite */
891 				offs = offset + intel_pt_insn->length;
892 				eptw = intel_pt_emulated_ptwrite(dso, machine, offs);
893 				intel_pt_insn->emulated_ptwrite = eptw;
894 				goto out;
895 			}
896 
897 			if (max_insn_cnt && insn_cnt >= max_insn_cnt)
898 				goto out_no_cache;
899 
900 			*ip += intel_pt_insn->length;
901 
902 			if (to_ip && *ip == to_ip) {
903 				intel_pt_insn->length = 0;
904 				intel_pt_insn->op = INTEL_PT_OP_OTHER;
905 				goto out_no_cache;
906 			}
907 
908 			if (*ip >= map__end(al.map))
909 				break;
910 
911 			offset += intel_pt_insn->length;
912 		}
913 		one_map = false;
914 	}
915 out:
916 	*insn_cnt_ptr = insn_cnt;
917 
918 	if (!one_map)
919 		goto out_no_cache;
920 
921 	/*
922 	 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
923 	 * entries.
924 	 */
925 	if (to_ip) {
926 		struct intel_pt_cache_entry *e;
927 
928 		e = intel_pt_cache_lookup(map__dso(al.map), machine, start_offset);
929 		if (e)
930 			goto out_ret;
931 	}
932 
933 	/* Ignore cache errors */
934 	intel_pt_cache_add(map__dso(al.map), machine, start_offset, insn_cnt,
935 			   *ip - start_ip, intel_pt_insn);
936 
937 out_ret:
938 	addr_location__exit(&al);
939 	return ret;
940 
941 out_no_cache:
942 	*insn_cnt_ptr = insn_cnt;
943 	addr_location__exit(&al);
944 	return 0;
945 }
946 
intel_pt_match_pgd_ip(struct intel_pt * pt,uint64_t ip,uint64_t offset,const char * filename)947 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
948 				  uint64_t offset, const char *filename)
949 {
950 	struct addr_filter *filt;
951 	bool have_filter   = false;
952 	bool hit_tracestop = false;
953 	bool hit_filter    = false;
954 
955 	list_for_each_entry(filt, &pt->filts.head, list) {
956 		if (filt->start)
957 			have_filter = true;
958 
959 		if ((filename && !filt->filename) ||
960 		    (!filename && filt->filename) ||
961 		    (filename && strcmp(filename, filt->filename)))
962 			continue;
963 
964 		if (!(offset >= filt->addr && offset < filt->addr + filt->size))
965 			continue;
966 
967 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
968 			     ip, offset, filename ? filename : "[kernel]",
969 			     filt->start ? "filter" : "stop",
970 			     filt->addr, filt->size);
971 
972 		if (filt->start)
973 			hit_filter = true;
974 		else
975 			hit_tracestop = true;
976 	}
977 
978 	if (!hit_tracestop && !hit_filter)
979 		intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
980 			     ip, offset, filename ? filename : "[kernel]");
981 
982 	return hit_tracestop || (have_filter && !hit_filter);
983 }
984 
__intel_pt_pgd_ip(uint64_t ip,void * data)985 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
986 {
987 	struct intel_pt_queue *ptq = data;
988 	struct thread *thread;
989 	struct addr_location al;
990 	u8 cpumode;
991 	u64 offset;
992 	int res;
993 
994 	if (ptq->state->to_nr) {
995 		if (intel_pt_guest_kernel_ip(ip))
996 			return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
997 		/* No support for decoding guest user space */
998 		return -EINVAL;
999 	} else if (ip >= ptq->pt->kernel_start) {
1000 		return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
1001 	}
1002 
1003 	cpumode = PERF_RECORD_MISC_USER;
1004 
1005 	thread = ptq->thread;
1006 	if (!thread)
1007 		return -EINVAL;
1008 
1009 	addr_location__init(&al);
1010 	if (!thread__find_map(thread, cpumode, ip, &al) || !map__dso(al.map))
1011 		return -EINVAL;
1012 
1013 	offset = map__map_ip(al.map, ip);
1014 
1015 	res = intel_pt_match_pgd_ip(ptq->pt, ip, offset, map__dso(al.map)->long_name);
1016 	addr_location__exit(&al);
1017 	return res;
1018 }
1019 
intel_pt_pgd_ip(uint64_t ip,void * data)1020 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
1021 {
1022 	return __intel_pt_pgd_ip(ip, data) > 0;
1023 }
1024 
intel_pt_get_config(struct intel_pt * pt,struct perf_event_attr * attr,u64 * config)1025 static bool intel_pt_get_config(struct intel_pt *pt,
1026 				struct perf_event_attr *attr, u64 *config)
1027 {
1028 	if (attr->type == pt->pmu_type) {
1029 		if (config)
1030 			*config = attr->config;
1031 		return true;
1032 	}
1033 
1034 	return false;
1035 }
1036 
intel_pt_exclude_kernel(struct intel_pt * pt)1037 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
1038 {
1039 	struct evsel *evsel;
1040 
1041 	evlist__for_each_entry(pt->session->evlist, evsel) {
1042 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1043 		    !evsel->core.attr.exclude_kernel)
1044 			return false;
1045 	}
1046 	return true;
1047 }
1048 
intel_pt_return_compression(struct intel_pt * pt)1049 static bool intel_pt_return_compression(struct intel_pt *pt)
1050 {
1051 	struct evsel *evsel;
1052 	u64 config;
1053 
1054 	if (!pt->noretcomp_bit)
1055 		return true;
1056 
1057 	evlist__for_each_entry(pt->session->evlist, evsel) {
1058 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1059 		    (config & pt->noretcomp_bit))
1060 			return false;
1061 	}
1062 	return true;
1063 }
1064 
intel_pt_branch_enable(struct intel_pt * pt)1065 static bool intel_pt_branch_enable(struct intel_pt *pt)
1066 {
1067 	struct evsel *evsel;
1068 	u64 config;
1069 
1070 	evlist__for_each_entry(pt->session->evlist, evsel) {
1071 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1072 		    (config & INTEL_PT_CFG_PASS_THRU) &&
1073 		    !(config & INTEL_PT_CFG_BRANCH_EN))
1074 			return false;
1075 	}
1076 	return true;
1077 }
1078 
intel_pt_disabled_tnt(struct intel_pt * pt)1079 static bool intel_pt_disabled_tnt(struct intel_pt *pt)
1080 {
1081 	struct evsel *evsel;
1082 	u64 config;
1083 
1084 	evlist__for_each_entry(pt->session->evlist, evsel) {
1085 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1086 		    config & INTEL_PT_CFG_TNT_DIS)
1087 			return true;
1088 	}
1089 	return false;
1090 }
1091 
intel_pt_mtc_period(struct intel_pt * pt)1092 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
1093 {
1094 	struct evsel *evsel;
1095 	unsigned int shift;
1096 	u64 config;
1097 
1098 	if (!pt->mtc_freq_bits)
1099 		return 0;
1100 
1101 	for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
1102 		config >>= 1;
1103 
1104 	evlist__for_each_entry(pt->session->evlist, evsel) {
1105 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1106 			return (config & pt->mtc_freq_bits) >> shift;
1107 	}
1108 	return 0;
1109 }
1110 
intel_pt_timeless_decoding(struct intel_pt * pt)1111 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
1112 {
1113 	struct evsel *evsel;
1114 	bool timeless_decoding = true;
1115 	u64 config;
1116 
1117 	if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding)
1118 		return true;
1119 
1120 	evlist__for_each_entry(pt->session->evlist, evsel) {
1121 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
1122 			return true;
1123 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1124 			if (config & pt->tsc_bit)
1125 				timeless_decoding = false;
1126 			else
1127 				return true;
1128 		}
1129 	}
1130 	return timeless_decoding;
1131 }
1132 
intel_pt_tracing_kernel(struct intel_pt * pt)1133 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
1134 {
1135 	struct evsel *evsel;
1136 
1137 	evlist__for_each_entry(pt->session->evlist, evsel) {
1138 		if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1139 		    !evsel->core.attr.exclude_kernel)
1140 			return true;
1141 	}
1142 	return false;
1143 }
1144 
intel_pt_have_tsc(struct intel_pt * pt)1145 static bool intel_pt_have_tsc(struct intel_pt *pt)
1146 {
1147 	struct evsel *evsel;
1148 	bool have_tsc = false;
1149 	u64 config;
1150 
1151 	if (!pt->tsc_bit)
1152 		return false;
1153 
1154 	evlist__for_each_entry(pt->session->evlist, evsel) {
1155 		if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1156 			if (config & pt->tsc_bit)
1157 				have_tsc = true;
1158 			else
1159 				return false;
1160 		}
1161 	}
1162 	return have_tsc;
1163 }
1164 
intel_pt_have_mtc(struct intel_pt * pt)1165 static bool intel_pt_have_mtc(struct intel_pt *pt)
1166 {
1167 	struct evsel *evsel;
1168 	u64 config;
1169 
1170 	evlist__for_each_entry(pt->session->evlist, evsel) {
1171 		if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1172 		    (config & pt->mtc_bit))
1173 			return true;
1174 	}
1175 	return false;
1176 }
1177 
intel_pt_sampling_mode(struct intel_pt * pt)1178 static bool intel_pt_sampling_mode(struct intel_pt *pt)
1179 {
1180 	struct evsel *evsel;
1181 
1182 	evlist__for_each_entry(pt->session->evlist, evsel) {
1183 		if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
1184 		    evsel->core.attr.aux_sample_size)
1185 			return true;
1186 	}
1187 	return false;
1188 }
1189 
intel_pt_ctl(struct intel_pt * pt)1190 static u64 intel_pt_ctl(struct intel_pt *pt)
1191 {
1192 	struct evsel *evsel;
1193 	u64 config;
1194 
1195 	evlist__for_each_entry(pt->session->evlist, evsel) {
1196 		if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1197 			return config;
1198 	}
1199 	return 0;
1200 }
1201 
intel_pt_ns_to_ticks(const struct intel_pt * pt,u64 ns)1202 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
1203 {
1204 	u64 quot, rem;
1205 
1206 	quot = ns / pt->tc.time_mult;
1207 	rem  = ns % pt->tc.time_mult;
1208 	return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
1209 		pt->tc.time_mult;
1210 }
1211 
intel_pt_alloc_chain(struct intel_pt * pt)1212 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
1213 {
1214 	size_t sz = sizeof(struct ip_callchain);
1215 
1216 	/* Add 1 to callchain_sz for callchain context */
1217 	sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
1218 	return zalloc(sz);
1219 }
1220 
intel_pt_callchain_init(struct intel_pt * pt)1221 static int intel_pt_callchain_init(struct intel_pt *pt)
1222 {
1223 	struct evsel *evsel;
1224 
1225 	evlist__for_each_entry(pt->session->evlist, evsel) {
1226 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
1227 			evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
1228 	}
1229 
1230 	pt->chain = intel_pt_alloc_chain(pt);
1231 	if (!pt->chain)
1232 		return -ENOMEM;
1233 
1234 	return 0;
1235 }
1236 
intel_pt_add_callchain(struct intel_pt * pt,struct perf_sample * sample)1237 static void intel_pt_add_callchain(struct intel_pt *pt,
1238 				   struct perf_sample *sample)
1239 {
1240 	struct thread *thread = machine__findnew_thread(pt->machine,
1241 							sample->pid,
1242 							sample->tid);
1243 
1244 	thread_stack__sample_late(thread, sample->cpu, pt->chain,
1245 				  pt->synth_opts.callchain_sz + 1, sample->ip,
1246 				  pt->kernel_start);
1247 
1248 	sample->callchain = pt->chain;
1249 }
1250 
intel_pt_alloc_br_stack(unsigned int entry_cnt)1251 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
1252 {
1253 	size_t sz = sizeof(struct branch_stack);
1254 
1255 	sz += entry_cnt * sizeof(struct branch_entry);
1256 	return zalloc(sz);
1257 }
1258 
intel_pt_br_stack_init(struct intel_pt * pt)1259 static int intel_pt_br_stack_init(struct intel_pt *pt)
1260 {
1261 	struct evsel *evsel;
1262 
1263 	evlist__for_each_entry(pt->session->evlist, evsel) {
1264 		if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
1265 			evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
1266 	}
1267 
1268 	pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
1269 	if (!pt->br_stack)
1270 		return -ENOMEM;
1271 
1272 	return 0;
1273 }
1274 
intel_pt_add_br_stack(struct intel_pt * pt,struct perf_sample * sample)1275 static void intel_pt_add_br_stack(struct intel_pt *pt,
1276 				  struct perf_sample *sample)
1277 {
1278 	struct thread *thread = machine__findnew_thread(pt->machine,
1279 							sample->pid,
1280 							sample->tid);
1281 
1282 	thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
1283 				     pt->br_stack_sz, sample->ip,
1284 				     pt->kernel_start);
1285 
1286 	sample->branch_stack = pt->br_stack;
1287 	thread__put(thread);
1288 }
1289 
1290 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1291 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
1292 
intel_pt_alloc_queue(struct intel_pt * pt,unsigned int queue_nr)1293 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
1294 						   unsigned int queue_nr)
1295 {
1296 	struct intel_pt_params params = { .get_trace = 0, };
1297 	struct perf_env *env = pt->machine->env;
1298 	struct intel_pt_queue *ptq;
1299 
1300 	ptq = zalloc(sizeof(struct intel_pt_queue));
1301 	if (!ptq)
1302 		return NULL;
1303 
1304 	if (pt->synth_opts.callchain) {
1305 		ptq->chain = intel_pt_alloc_chain(pt);
1306 		if (!ptq->chain)
1307 			goto out_free;
1308 	}
1309 
1310 	if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1311 		unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1312 
1313 		ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1314 		if (!ptq->last_branch)
1315 			goto out_free;
1316 	}
1317 
1318 	ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1319 	if (!ptq->event_buf)
1320 		goto out_free;
1321 
1322 	ptq->pt = pt;
1323 	ptq->queue_nr = queue_nr;
1324 	ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1325 	ptq->pid = -1;
1326 	ptq->tid = -1;
1327 	ptq->cpu = -1;
1328 	ptq->next_tid = -1;
1329 
1330 	params.get_trace = intel_pt_get_trace;
1331 	params.walk_insn = intel_pt_walk_next_insn;
1332 	params.lookahead = intel_pt_lookahead;
1333 	params.findnew_vmcs_info = intel_pt_findnew_vmcs_info;
1334 	params.data = ptq;
1335 	params.return_compression = intel_pt_return_compression(pt);
1336 	params.branch_enable = intel_pt_branch_enable(pt);
1337 	params.ctl = intel_pt_ctl(pt);
1338 	params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1339 	params.mtc_period = intel_pt_mtc_period(pt);
1340 	params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1341 	params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1342 	params.quick = pt->synth_opts.quick;
1343 	params.vm_time_correlation = pt->synth_opts.vm_time_correlation;
1344 	params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run;
1345 	params.first_timestamp = pt->first_timestamp;
1346 	params.max_loops = pt->max_loops;
1347 
1348 	/* Cannot walk code without TNT, so force 'quick' mode */
1349 	if (params.branch_enable && intel_pt_disabled_tnt(pt) && !params.quick)
1350 		params.quick = 1;
1351 
1352 	if (pt->filts.cnt > 0)
1353 		params.pgd_ip = intel_pt_pgd_ip;
1354 
1355 	if (pt->synth_opts.instructions || pt->synth_opts.cycles) {
1356 		if (pt->synth_opts.period) {
1357 			switch (pt->synth_opts.period_type) {
1358 			case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1359 				params.period_type =
1360 						INTEL_PT_PERIOD_INSTRUCTIONS;
1361 				params.period = pt->synth_opts.period;
1362 				break;
1363 			case PERF_ITRACE_PERIOD_TICKS:
1364 				params.period_type = INTEL_PT_PERIOD_TICKS;
1365 				params.period = pt->synth_opts.period;
1366 				break;
1367 			case PERF_ITRACE_PERIOD_NANOSECS:
1368 				params.period_type = INTEL_PT_PERIOD_TICKS;
1369 				params.period = intel_pt_ns_to_ticks(pt,
1370 							pt->synth_opts.period);
1371 				break;
1372 			default:
1373 				break;
1374 			}
1375 		}
1376 
1377 		if (!params.period) {
1378 			params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1379 			params.period = 1;
1380 		}
1381 	}
1382 
1383 	if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1384 		params.flags |= INTEL_PT_FUP_WITH_NLIP;
1385 
1386 	ptq->decoder = intel_pt_decoder_new(&params);
1387 	if (!ptq->decoder)
1388 		goto out_free;
1389 
1390 	return ptq;
1391 
1392 out_free:
1393 	zfree(&ptq->event_buf);
1394 	zfree(&ptq->last_branch);
1395 	zfree(&ptq->chain);
1396 	free(ptq);
1397 	return NULL;
1398 }
1399 
intel_pt_free_queue(void * priv)1400 static void intel_pt_free_queue(void *priv)
1401 {
1402 	struct intel_pt_queue *ptq = priv;
1403 
1404 	if (!ptq)
1405 		return;
1406 	thread__zput(ptq->thread);
1407 	thread__zput(ptq->guest_thread);
1408 	thread__zput(ptq->unknown_guest_thread);
1409 	intel_pt_decoder_free(ptq->decoder);
1410 	zfree(&ptq->event_buf);
1411 	zfree(&ptq->last_branch);
1412 	zfree(&ptq->chain);
1413 	free(ptq);
1414 }
1415 
intel_pt_first_timestamp(struct intel_pt * pt,u64 timestamp)1416 static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp)
1417 {
1418 	unsigned int i;
1419 
1420 	pt->first_timestamp = timestamp;
1421 
1422 	for (i = 0; i < pt->queues.nr_queues; i++) {
1423 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1424 		struct intel_pt_queue *ptq = queue->priv;
1425 
1426 		if (ptq && ptq->decoder)
1427 			intel_pt_set_first_timestamp(ptq->decoder, timestamp);
1428 	}
1429 }
1430 
intel_pt_get_guest_from_sideband(struct intel_pt_queue * ptq)1431 static int intel_pt_get_guest_from_sideband(struct intel_pt_queue *ptq)
1432 {
1433 	struct machines *machines = &ptq->pt->session->machines;
1434 	struct machine *machine;
1435 	pid_t machine_pid = ptq->pid;
1436 	pid_t tid;
1437 	int vcpu;
1438 
1439 	if (machine_pid <= 0)
1440 		return 0; /* Not a guest machine */
1441 
1442 	machine = machines__find(machines, machine_pid);
1443 	if (!machine)
1444 		return 0; /* Not a guest machine */
1445 
1446 	if (ptq->guest_machine != machine) {
1447 		ptq->guest_machine = NULL;
1448 		thread__zput(ptq->guest_thread);
1449 		thread__zput(ptq->unknown_guest_thread);
1450 
1451 		ptq->unknown_guest_thread = machine__find_thread(machine, 0, 0);
1452 		if (!ptq->unknown_guest_thread)
1453 			return -1;
1454 		ptq->guest_machine = machine;
1455 	}
1456 
1457 	vcpu = ptq->thread ? thread__guest_cpu(ptq->thread) : -1;
1458 	if (vcpu < 0)
1459 		return -1;
1460 
1461 	tid = machine__get_current_tid(machine, vcpu);
1462 
1463 	if (ptq->guest_thread && thread__tid(ptq->guest_thread) != tid)
1464 		thread__zput(ptq->guest_thread);
1465 
1466 	if (!ptq->guest_thread) {
1467 		ptq->guest_thread = machine__find_thread(machine, -1, tid);
1468 		if (!ptq->guest_thread)
1469 			return -1;
1470 	}
1471 
1472 	ptq->guest_machine_pid = machine_pid;
1473 	ptq->guest_pid = thread__pid(ptq->guest_thread);
1474 	ptq->guest_tid = tid;
1475 	ptq->vcpu = vcpu;
1476 
1477 	return 0;
1478 }
1479 
intel_pt_set_pid_tid_cpu(struct intel_pt * pt,struct auxtrace_queue * queue)1480 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1481 				     struct auxtrace_queue *queue)
1482 {
1483 	struct intel_pt_queue *ptq = queue->priv;
1484 
1485 	if (queue->tid == -1 || pt->have_sched_switch) {
1486 		ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1487 		if (ptq->tid == -1)
1488 			ptq->pid = -1;
1489 		thread__zput(ptq->thread);
1490 	}
1491 
1492 	if (!ptq->thread && ptq->tid != -1)
1493 		ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1494 
1495 	if (ptq->thread) {
1496 		ptq->pid = thread__pid(ptq->thread);
1497 		if (queue->cpu == -1)
1498 			ptq->cpu = thread__cpu(ptq->thread);
1499 	}
1500 
1501 	if (pt->have_guest_sideband && intel_pt_get_guest_from_sideband(ptq)) {
1502 		ptq->guest_machine_pid = 0;
1503 		ptq->guest_pid = -1;
1504 		ptq->guest_tid = -1;
1505 		ptq->vcpu = -1;
1506 	}
1507 }
1508 
intel_pt_sample_flags(struct intel_pt_queue * ptq)1509 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1510 {
1511 	struct intel_pt *pt = ptq->pt;
1512 
1513 	ptq->insn_len = 0;
1514 	if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1515 		ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1516 	} else if (ptq->state->flags & INTEL_PT_ASYNC) {
1517 		if (!ptq->state->to_ip)
1518 			ptq->flags = PERF_IP_FLAG_BRANCH |
1519 				     PERF_IP_FLAG_ASYNC |
1520 				     PERF_IP_FLAG_TRACE_END;
1521 		else if (ptq->state->from_nr && !ptq->state->to_nr)
1522 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1523 				     PERF_IP_FLAG_ASYNC |
1524 				     PERF_IP_FLAG_VMEXIT;
1525 		else
1526 			ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1527 				     PERF_IP_FLAG_ASYNC |
1528 				     PERF_IP_FLAG_INTERRUPT;
1529 	} else {
1530 		if (ptq->state->from_ip)
1531 			ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1532 		else
1533 			ptq->flags = PERF_IP_FLAG_BRANCH |
1534 				     PERF_IP_FLAG_TRACE_BEGIN;
1535 		if (ptq->state->flags & INTEL_PT_IN_TX)
1536 			ptq->flags |= PERF_IP_FLAG_IN_TX;
1537 		ptq->insn_len = ptq->state->insn_len;
1538 		memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1539 	}
1540 
1541 	if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1542 		ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1543 	if (ptq->state->type & INTEL_PT_TRACE_END)
1544 		ptq->flags |= PERF_IP_FLAG_TRACE_END;
1545 
1546 	if (pt->cap_event_trace) {
1547 		if (ptq->state->type & INTEL_PT_IFLAG_CHG) {
1548 			if (!ptq->state->from_iflag)
1549 				ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1550 			if (ptq->state->from_iflag != ptq->state->to_iflag)
1551 				ptq->flags |= PERF_IP_FLAG_INTR_TOGGLE;
1552 		} else if (!ptq->state->to_iflag) {
1553 			ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1554 		}
1555 	}
1556 }
1557 
intel_pt_setup_time_range(struct intel_pt * pt,struct intel_pt_queue * ptq)1558 static void intel_pt_setup_time_range(struct intel_pt *pt,
1559 				      struct intel_pt_queue *ptq)
1560 {
1561 	if (!pt->range_cnt)
1562 		return;
1563 
1564 	ptq->sel_timestamp = pt->time_ranges[0].start;
1565 	ptq->sel_idx = 0;
1566 
1567 	if (ptq->sel_timestamp) {
1568 		ptq->sel_start = true;
1569 	} else {
1570 		ptq->sel_timestamp = pt->time_ranges[0].end;
1571 		ptq->sel_start = false;
1572 	}
1573 }
1574 
intel_pt_setup_queue(struct intel_pt * pt,struct auxtrace_queue * queue,unsigned int queue_nr)1575 static int intel_pt_setup_queue(struct intel_pt *pt,
1576 				struct auxtrace_queue *queue,
1577 				unsigned int queue_nr)
1578 {
1579 	struct intel_pt_queue *ptq = queue->priv;
1580 
1581 	if (list_empty(&queue->head))
1582 		return 0;
1583 
1584 	if (!ptq) {
1585 		ptq = intel_pt_alloc_queue(pt, queue_nr);
1586 		if (!ptq)
1587 			return -ENOMEM;
1588 		queue->priv = ptq;
1589 
1590 		if (queue->cpu != -1)
1591 			ptq->cpu = queue->cpu;
1592 		ptq->tid = queue->tid;
1593 
1594 		ptq->cbr_seen = UINT_MAX;
1595 
1596 		if (pt->sampling_mode && !pt->snapshot_mode &&
1597 		    pt->timeless_decoding)
1598 			ptq->step_through_buffers = true;
1599 
1600 		ptq->sync_switch = pt->sync_switch;
1601 
1602 		intel_pt_setup_time_range(pt, ptq);
1603 	}
1604 
1605 	if (!ptq->on_heap &&
1606 	    (!ptq->sync_switch ||
1607 	     ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1608 		const struct intel_pt_state *state;
1609 		int ret;
1610 
1611 		if (pt->timeless_decoding)
1612 			return 0;
1613 
1614 		intel_pt_log("queue %u getting timestamp\n", queue_nr);
1615 		intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1616 			     queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1617 
1618 		if (ptq->sel_start && ptq->sel_timestamp) {
1619 			ret = intel_pt_fast_forward(ptq->decoder,
1620 						    ptq->sel_timestamp);
1621 			if (ret)
1622 				return ret;
1623 		}
1624 
1625 		while (1) {
1626 			state = intel_pt_decode(ptq->decoder);
1627 			if (state->err) {
1628 				if (state->err == INTEL_PT_ERR_NODATA) {
1629 					intel_pt_log("queue %u has no timestamp\n",
1630 						     queue_nr);
1631 					return 0;
1632 				}
1633 				continue;
1634 			}
1635 			if (state->timestamp)
1636 				break;
1637 		}
1638 
1639 		ptq->timestamp = state->timestamp;
1640 		intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1641 			     queue_nr, ptq->timestamp);
1642 		ptq->state = state;
1643 		ptq->have_sample = true;
1644 		if (ptq->sel_start && ptq->sel_timestamp &&
1645 		    ptq->timestamp < ptq->sel_timestamp)
1646 			ptq->have_sample = false;
1647 		intel_pt_sample_flags(ptq);
1648 		ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1649 		if (ret)
1650 			return ret;
1651 		ptq->on_heap = true;
1652 	}
1653 
1654 	return 0;
1655 }
1656 
intel_pt_setup_queues(struct intel_pt * pt)1657 static int intel_pt_setup_queues(struct intel_pt *pt)
1658 {
1659 	unsigned int i;
1660 	int ret;
1661 
1662 	for (i = 0; i < pt->queues.nr_queues; i++) {
1663 		ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1664 		if (ret)
1665 			return ret;
1666 	}
1667 	return 0;
1668 }
1669 
intel_pt_skip_event(struct intel_pt * pt)1670 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1671 {
1672 	return pt->synth_opts.initial_skip &&
1673 	       pt->num_events++ < pt->synth_opts.initial_skip;
1674 }
1675 
1676 /*
1677  * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1678  * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1679  * from this decoder state.
1680  */
intel_pt_skip_cbr_event(struct intel_pt * pt)1681 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1682 {
1683 	return pt->synth_opts.initial_skip &&
1684 	       pt->num_events + 4 < pt->synth_opts.initial_skip;
1685 }
1686 
intel_pt_prep_a_sample(struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1687 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1688 				   union perf_event *event,
1689 				   struct perf_sample *sample)
1690 {
1691 	event->sample.header.type = PERF_RECORD_SAMPLE;
1692 	event->sample.header.size = sizeof(struct perf_event_header);
1693 
1694 	sample->pid = ptq->pid;
1695 	sample->tid = ptq->tid;
1696 
1697 	if (ptq->pt->have_guest_sideband) {
1698 		if ((ptq->state->from_ip && ptq->state->from_nr) ||
1699 		    (ptq->state->to_ip && ptq->state->to_nr)) {
1700 			sample->pid = ptq->guest_pid;
1701 			sample->tid = ptq->guest_tid;
1702 			sample->machine_pid = ptq->guest_machine_pid;
1703 			sample->vcpu = ptq->vcpu;
1704 		}
1705 	}
1706 
1707 	sample->cpu = ptq->cpu;
1708 	sample->insn_len = ptq->insn_len;
1709 	memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1710 }
1711 
intel_pt_prep_b_sample(struct intel_pt * pt,struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1712 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1713 				   struct intel_pt_queue *ptq,
1714 				   union perf_event *event,
1715 				   struct perf_sample *sample)
1716 {
1717 	intel_pt_prep_a_sample(ptq, event, sample);
1718 
1719 	if (!pt->timeless_decoding)
1720 		sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1721 
1722 	sample->ip = ptq->state->from_ip;
1723 	sample->addr = ptq->state->to_ip;
1724 	sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr);
1725 	sample->period = 1;
1726 	sample->flags = ptq->flags;
1727 
1728 	event->sample.header.misc = sample->cpumode;
1729 }
1730 
intel_pt_inject_event(union perf_event * event,struct perf_sample * sample,u64 type)1731 static int intel_pt_inject_event(union perf_event *event,
1732 				 struct perf_sample *sample, u64 type)
1733 {
1734 	event->header.size = perf_event__sample_event_size(sample, type, 0);
1735 	return perf_event__synthesize_sample(event, type, 0, sample);
1736 }
1737 
intel_pt_opt_inject(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample,u64 type)1738 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1739 				      union perf_event *event,
1740 				      struct perf_sample *sample, u64 type)
1741 {
1742 	if (!pt->synth_opts.inject)
1743 		return 0;
1744 
1745 	return intel_pt_inject_event(event, sample, type);
1746 }
1747 
intel_pt_deliver_synth_event(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample,u64 type)1748 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1749 					union perf_event *event,
1750 					struct perf_sample *sample, u64 type)
1751 {
1752 	int ret;
1753 
1754 	ret = intel_pt_opt_inject(pt, event, sample, type);
1755 	if (ret)
1756 		return ret;
1757 
1758 	ret = perf_session__deliver_synth_event(pt->session, event, sample);
1759 	if (ret)
1760 		pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1761 
1762 	return ret;
1763 }
1764 
intel_pt_synth_branch_sample(struct intel_pt_queue * ptq)1765 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1766 {
1767 	struct intel_pt *pt = ptq->pt;
1768 	union perf_event *event = ptq->event_buf;
1769 	struct perf_sample sample = { .ip = 0, };
1770 	struct dummy_branch_stack {
1771 		u64			nr;
1772 		u64			hw_idx;
1773 		struct branch_entry	entries;
1774 	} dummy_bs;
1775 
1776 	if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1777 		return 0;
1778 
1779 	if (intel_pt_skip_event(pt))
1780 		return 0;
1781 
1782 	intel_pt_prep_b_sample(pt, ptq, event, &sample);
1783 
1784 	sample.id = ptq->pt->branches_id;
1785 	sample.stream_id = ptq->pt->branches_id;
1786 
1787 	/*
1788 	 * perf report cannot handle events without a branch stack when using
1789 	 * SORT_MODE__BRANCH so make a dummy one.
1790 	 */
1791 	if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1792 		dummy_bs = (struct dummy_branch_stack){
1793 			.nr = 1,
1794 			.hw_idx = -1ULL,
1795 			.entries = {
1796 				.from = sample.ip,
1797 				.to = sample.addr,
1798 			},
1799 		};
1800 		sample.branch_stack = (struct branch_stack *)&dummy_bs;
1801 	}
1802 
1803 	if (ptq->sample_ipc)
1804 		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1805 	if (sample.cyc_cnt) {
1806 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1807 		ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1808 		ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1809 	}
1810 
1811 	return intel_pt_deliver_synth_event(pt, event, &sample,
1812 					    pt->branches_sample_type);
1813 }
1814 
intel_pt_prep_sample(struct intel_pt * pt,struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1815 static void intel_pt_prep_sample(struct intel_pt *pt,
1816 				 struct intel_pt_queue *ptq,
1817 				 union perf_event *event,
1818 				 struct perf_sample *sample)
1819 {
1820 	intel_pt_prep_b_sample(pt, ptq, event, sample);
1821 
1822 	if (pt->synth_opts.callchain) {
1823 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1824 				     pt->synth_opts.callchain_sz + 1,
1825 				     sample->ip, pt->kernel_start);
1826 		sample->callchain = ptq->chain;
1827 	}
1828 
1829 	if (pt->synth_opts.last_branch) {
1830 		thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1831 					pt->br_stack_sz);
1832 		sample->branch_stack = ptq->last_branch;
1833 	}
1834 }
1835 
intel_pt_synth_instruction_sample(struct intel_pt_queue * ptq)1836 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1837 {
1838 	struct intel_pt *pt = ptq->pt;
1839 	union perf_event *event = ptq->event_buf;
1840 	struct perf_sample sample = { .ip = 0, };
1841 
1842 	if (intel_pt_skip_event(pt))
1843 		return 0;
1844 
1845 	intel_pt_prep_sample(pt, ptq, event, &sample);
1846 
1847 	sample.id = ptq->pt->instructions_id;
1848 	sample.stream_id = ptq->pt->instructions_id;
1849 	if (pt->synth_opts.quick)
1850 		sample.period = 1;
1851 	else
1852 		sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1853 
1854 	if (ptq->sample_ipc)
1855 		sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1856 	if (sample.cyc_cnt) {
1857 		sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1858 		ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1859 		ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1860 	}
1861 
1862 	ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1863 
1864 	return intel_pt_deliver_synth_event(pt, event, &sample,
1865 					    pt->instructions_sample_type);
1866 }
1867 
intel_pt_synth_cycle_sample(struct intel_pt_queue * ptq)1868 static int intel_pt_synth_cycle_sample(struct intel_pt_queue *ptq)
1869 {
1870 	struct intel_pt *pt = ptq->pt;
1871 	union perf_event *event = ptq->event_buf;
1872 	struct perf_sample sample = { .ip = 0, };
1873 	u64 period = 0;
1874 
1875 	if (ptq->sample_ipc)
1876 		period = ptq->ipc_cyc_cnt - ptq->last_cy_cyc_cnt;
1877 
1878 	if (!period || intel_pt_skip_event(pt))
1879 		return 0;
1880 
1881 	intel_pt_prep_sample(pt, ptq, event, &sample);
1882 
1883 	sample.id = ptq->pt->cycles_id;
1884 	sample.stream_id = ptq->pt->cycles_id;
1885 	sample.period = period;
1886 
1887 	sample.cyc_cnt = period;
1888 	sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_cy_insn_cnt;
1889 	ptq->last_cy_insn_cnt = ptq->ipc_insn_cnt;
1890 	ptq->last_cy_cyc_cnt = ptq->ipc_cyc_cnt;
1891 
1892 	return intel_pt_deliver_synth_event(pt, event, &sample, pt->cycles_sample_type);
1893 }
1894 
intel_pt_synth_transaction_sample(struct intel_pt_queue * ptq)1895 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1896 {
1897 	struct intel_pt *pt = ptq->pt;
1898 	union perf_event *event = ptq->event_buf;
1899 	struct perf_sample sample = { .ip = 0, };
1900 
1901 	if (intel_pt_skip_event(pt))
1902 		return 0;
1903 
1904 	intel_pt_prep_sample(pt, ptq, event, &sample);
1905 
1906 	sample.id = ptq->pt->transactions_id;
1907 	sample.stream_id = ptq->pt->transactions_id;
1908 
1909 	return intel_pt_deliver_synth_event(pt, event, &sample,
1910 					    pt->transactions_sample_type);
1911 }
1912 
intel_pt_prep_p_sample(struct intel_pt * pt,struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1913 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1914 				   struct intel_pt_queue *ptq,
1915 				   union perf_event *event,
1916 				   struct perf_sample *sample)
1917 {
1918 	intel_pt_prep_sample(pt, ptq, event, sample);
1919 
1920 	/*
1921 	 * Zero IP is used to mean "trace start" but that is not the case for
1922 	 * power or PTWRITE events with no IP, so clear the flags.
1923 	 */
1924 	if (!sample->ip)
1925 		sample->flags = 0;
1926 }
1927 
intel_pt_synth_ptwrite_sample(struct intel_pt_queue * ptq)1928 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1929 {
1930 	struct intel_pt *pt = ptq->pt;
1931 	union perf_event *event = ptq->event_buf;
1932 	struct perf_sample sample = { .ip = 0, };
1933 	struct perf_synth_intel_ptwrite raw;
1934 
1935 	if (intel_pt_skip_event(pt))
1936 		return 0;
1937 
1938 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1939 
1940 	sample.id = ptq->pt->ptwrites_id;
1941 	sample.stream_id = ptq->pt->ptwrites_id;
1942 
1943 	raw.flags = 0;
1944 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1945 	raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1946 
1947 	sample.raw_size = perf_synth__raw_size(raw);
1948 	sample.raw_data = perf_synth__raw_data(&raw);
1949 
1950 	return intel_pt_deliver_synth_event(pt, event, &sample,
1951 					    pt->ptwrites_sample_type);
1952 }
1953 
intel_pt_synth_cbr_sample(struct intel_pt_queue * ptq)1954 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1955 {
1956 	struct intel_pt *pt = ptq->pt;
1957 	union perf_event *event = ptq->event_buf;
1958 	struct perf_sample sample = { .ip = 0, };
1959 	struct perf_synth_intel_cbr raw;
1960 	u32 flags;
1961 
1962 	if (intel_pt_skip_cbr_event(pt))
1963 		return 0;
1964 
1965 	ptq->cbr_seen = ptq->state->cbr;
1966 
1967 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1968 
1969 	sample.id = ptq->pt->cbr_id;
1970 	sample.stream_id = ptq->pt->cbr_id;
1971 
1972 	flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1973 	raw.flags = cpu_to_le32(flags);
1974 	raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1975 	raw.reserved3 = 0;
1976 
1977 	sample.raw_size = perf_synth__raw_size(raw);
1978 	sample.raw_data = perf_synth__raw_data(&raw);
1979 
1980 	return intel_pt_deliver_synth_event(pt, event, &sample,
1981 					    pt->pwr_events_sample_type);
1982 }
1983 
intel_pt_synth_psb_sample(struct intel_pt_queue * ptq)1984 static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq)
1985 {
1986 	struct intel_pt *pt = ptq->pt;
1987 	union perf_event *event = ptq->event_buf;
1988 	struct perf_sample sample = { .ip = 0, };
1989 	struct perf_synth_intel_psb raw;
1990 
1991 	if (intel_pt_skip_event(pt))
1992 		return 0;
1993 
1994 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
1995 
1996 	sample.id = ptq->pt->psb_id;
1997 	sample.stream_id = ptq->pt->psb_id;
1998 	sample.flags = 0;
1999 
2000 	raw.reserved = 0;
2001 	raw.offset = ptq->state->psb_offset;
2002 
2003 	sample.raw_size = perf_synth__raw_size(raw);
2004 	sample.raw_data = perf_synth__raw_data(&raw);
2005 
2006 	return intel_pt_deliver_synth_event(pt, event, &sample,
2007 					    pt->pwr_events_sample_type);
2008 }
2009 
intel_pt_synth_mwait_sample(struct intel_pt_queue * ptq)2010 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
2011 {
2012 	struct intel_pt *pt = ptq->pt;
2013 	union perf_event *event = ptq->event_buf;
2014 	struct perf_sample sample = { .ip = 0, };
2015 	struct perf_synth_intel_mwait raw;
2016 
2017 	if (intel_pt_skip_event(pt))
2018 		return 0;
2019 
2020 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2021 
2022 	sample.id = ptq->pt->mwait_id;
2023 	sample.stream_id = ptq->pt->mwait_id;
2024 
2025 	raw.reserved = 0;
2026 	raw.payload = cpu_to_le64(ptq->state->mwait_payload);
2027 
2028 	sample.raw_size = perf_synth__raw_size(raw);
2029 	sample.raw_data = perf_synth__raw_data(&raw);
2030 
2031 	return intel_pt_deliver_synth_event(pt, event, &sample,
2032 					    pt->pwr_events_sample_type);
2033 }
2034 
intel_pt_synth_pwre_sample(struct intel_pt_queue * ptq)2035 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
2036 {
2037 	struct intel_pt *pt = ptq->pt;
2038 	union perf_event *event = ptq->event_buf;
2039 	struct perf_sample sample = { .ip = 0, };
2040 	struct perf_synth_intel_pwre raw;
2041 
2042 	if (intel_pt_skip_event(pt))
2043 		return 0;
2044 
2045 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2046 
2047 	sample.id = ptq->pt->pwre_id;
2048 	sample.stream_id = ptq->pt->pwre_id;
2049 
2050 	raw.reserved = 0;
2051 	raw.payload = cpu_to_le64(ptq->state->pwre_payload);
2052 
2053 	sample.raw_size = perf_synth__raw_size(raw);
2054 	sample.raw_data = perf_synth__raw_data(&raw);
2055 
2056 	return intel_pt_deliver_synth_event(pt, event, &sample,
2057 					    pt->pwr_events_sample_type);
2058 }
2059 
intel_pt_synth_exstop_sample(struct intel_pt_queue * ptq)2060 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
2061 {
2062 	struct intel_pt *pt = ptq->pt;
2063 	union perf_event *event = ptq->event_buf;
2064 	struct perf_sample sample = { .ip = 0, };
2065 	struct perf_synth_intel_exstop raw;
2066 
2067 	if (intel_pt_skip_event(pt))
2068 		return 0;
2069 
2070 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2071 
2072 	sample.id = ptq->pt->exstop_id;
2073 	sample.stream_id = ptq->pt->exstop_id;
2074 
2075 	raw.flags = 0;
2076 	raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2077 
2078 	sample.raw_size = perf_synth__raw_size(raw);
2079 	sample.raw_data = perf_synth__raw_data(&raw);
2080 
2081 	return intel_pt_deliver_synth_event(pt, event, &sample,
2082 					    pt->pwr_events_sample_type);
2083 }
2084 
intel_pt_synth_pwrx_sample(struct intel_pt_queue * ptq)2085 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
2086 {
2087 	struct intel_pt *pt = ptq->pt;
2088 	union perf_event *event = ptq->event_buf;
2089 	struct perf_sample sample = { .ip = 0, };
2090 	struct perf_synth_intel_pwrx raw;
2091 
2092 	if (intel_pt_skip_event(pt))
2093 		return 0;
2094 
2095 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2096 
2097 	sample.id = ptq->pt->pwrx_id;
2098 	sample.stream_id = ptq->pt->pwrx_id;
2099 
2100 	raw.reserved = 0;
2101 	raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
2102 
2103 	sample.raw_size = perf_synth__raw_size(raw);
2104 	sample.raw_data = perf_synth__raw_data(&raw);
2105 
2106 	return intel_pt_deliver_synth_event(pt, event, &sample,
2107 					    pt->pwr_events_sample_type);
2108 }
2109 
2110 /*
2111  * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
2112  * intel_pt_add_gp_regs().
2113  */
2114 static const int pebs_gp_regs[] = {
2115 	[PERF_REG_X86_FLAGS]	= 1,
2116 	[PERF_REG_X86_IP]	= 2,
2117 	[PERF_REG_X86_AX]	= 3,
2118 	[PERF_REG_X86_CX]	= 4,
2119 	[PERF_REG_X86_DX]	= 5,
2120 	[PERF_REG_X86_BX]	= 6,
2121 	[PERF_REG_X86_SP]	= 7,
2122 	[PERF_REG_X86_BP]	= 8,
2123 	[PERF_REG_X86_SI]	= 9,
2124 	[PERF_REG_X86_DI]	= 10,
2125 	[PERF_REG_X86_R8]	= 11,
2126 	[PERF_REG_X86_R9]	= 12,
2127 	[PERF_REG_X86_R10]	= 13,
2128 	[PERF_REG_X86_R11]	= 14,
2129 	[PERF_REG_X86_R12]	= 15,
2130 	[PERF_REG_X86_R13]	= 16,
2131 	[PERF_REG_X86_R14]	= 17,
2132 	[PERF_REG_X86_R15]	= 18,
2133 };
2134 
intel_pt_add_gp_regs(struct regs_dump * intr_regs,u64 * pos,const struct intel_pt_blk_items * items,u64 regs_mask)2135 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
2136 				 const struct intel_pt_blk_items *items,
2137 				 u64 regs_mask)
2138 {
2139 	const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
2140 	u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
2141 	u32 bit;
2142 	int i;
2143 
2144 	for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
2145 		/* Get the PEBS gp_regs array index */
2146 		int n = pebs_gp_regs[i] - 1;
2147 
2148 		if (n < 0)
2149 			continue;
2150 		/*
2151 		 * Add only registers that were requested (i.e. 'regs_mask') and
2152 		 * that were provided (i.e. 'mask'), and update the resulting
2153 		 * mask (i.e. 'intr_regs->mask') accordingly.
2154 		 */
2155 		if (mask & 1 << n && regs_mask & bit) {
2156 			intr_regs->mask |= bit;
2157 			*pos++ = gp_regs[n];
2158 		}
2159 	}
2160 
2161 	return pos;
2162 }
2163 
2164 #ifndef PERF_REG_X86_XMM0
2165 #define PERF_REG_X86_XMM0 32
2166 #endif
2167 
intel_pt_add_xmm(struct regs_dump * intr_regs,u64 * pos,const struct intel_pt_blk_items * items,u64 regs_mask)2168 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
2169 			     const struct intel_pt_blk_items *items,
2170 			     u64 regs_mask)
2171 {
2172 	u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
2173 	const u64 *xmm = items->xmm;
2174 
2175 	/*
2176 	 * If there are any XMM registers, then there should be all of them.
2177 	 * Nevertheless, follow the logic to add only registers that were
2178 	 * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
2179 	 * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
2180 	 */
2181 	intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
2182 
2183 	for (; mask; mask >>= 1, xmm++) {
2184 		if (mask & 1)
2185 			*pos++ = *xmm;
2186 	}
2187 }
2188 
2189 #define LBR_INFO_MISPRED	(1ULL << 63)
2190 #define LBR_INFO_IN_TX		(1ULL << 62)
2191 #define LBR_INFO_ABORT		(1ULL << 61)
2192 #define LBR_INFO_CYCLES		0xffff
2193 
2194 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
intel_pt_lbr_flags(u64 info)2195 static u64 intel_pt_lbr_flags(u64 info)
2196 {
2197 	union {
2198 		struct branch_flags flags;
2199 		u64 result;
2200 	} u;
2201 
2202 	u.result	  = 0;
2203 	u.flags.mispred	  = !!(info & LBR_INFO_MISPRED);
2204 	u.flags.predicted = !(info & LBR_INFO_MISPRED);
2205 	u.flags.in_tx	  = !!(info & LBR_INFO_IN_TX);
2206 	u.flags.abort	  = !!(info & LBR_INFO_ABORT);
2207 	u.flags.cycles	  = info & LBR_INFO_CYCLES;
2208 
2209 	return u.result;
2210 }
2211 
intel_pt_add_lbrs(struct branch_stack * br_stack,const struct intel_pt_blk_items * items)2212 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
2213 			      const struct intel_pt_blk_items *items)
2214 {
2215 	u64 *to;
2216 	int i;
2217 
2218 	br_stack->nr = 0;
2219 
2220 	to = &br_stack->entries[0].from;
2221 
2222 	for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
2223 		u32 mask = items->mask[i];
2224 		const u64 *from = items->val[i];
2225 
2226 		for (; mask; mask >>= 3, from += 3) {
2227 			if ((mask & 7) == 7) {
2228 				*to++ = from[0];
2229 				*to++ = from[1];
2230 				*to++ = intel_pt_lbr_flags(from[2]);
2231 				br_stack->nr += 1;
2232 			}
2233 		}
2234 	}
2235 }
2236 
2237 #define P(a, b) PERF_MEM_S(a, b)
2238 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
2239 #define LEVEL(x) P(LVLNUM, x)
2240 #define REM P(REMOTE, REMOTE)
2241 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
2242 
2243 #define PERF_PEBS_DATA_SOURCE_GRT_MAX	0x10
2244 #define PERF_PEBS_DATA_SOURCE_GRT_MASK	(PERF_PEBS_DATA_SOURCE_GRT_MAX - 1)
2245 
2246 /* Based on kernel __intel_pmu_pebs_data_source_grt() and pebs_data_source */
2247 static const u64 pebs_data_source_grt[PERF_PEBS_DATA_SOURCE_GRT_MAX] = {
2248 	P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),         /* L3 miss|SNP N/A */
2249 	OP_LH | P(LVL, L1)  | LEVEL(L1)  | P(SNOOP, NONE),             /* L1 hit|SNP None */
2250 	OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE),             /* LFB/MAB hit|SNP None */
2251 	OP_LH | P(LVL, L2)  | LEVEL(L2)  | P(SNOOP, NONE),             /* L2 hit|SNP None */
2252 	OP_LH | P(LVL, L3)  | LEVEL(L3)  | P(SNOOP, NONE),             /* L3 hit|SNP None */
2253 	OP_LH | P(LVL, L3)  | LEVEL(L3)  | P(SNOOP, HIT),              /* L3 hit|SNP Hit */
2254 	OP_LH | P(LVL, L3)  | LEVEL(L3)  | P(SNOOP, HITM),             /* L3 hit|SNP HitM */
2255 	OP_LH | P(LVL, L3)  | LEVEL(L3)  | P(SNOOP, HITM),             /* L3 hit|SNP HitM */
2256 	OP_LH | P(LVL, L3)  | LEVEL(L3)  | P(SNOOPX, FWD),             /* L3 hit|SNP Fwd */
2257 	OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM),   /* Remote L3 hit|SNP HitM */
2258 	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, HIT),         /* RAM hit|SNP Hit */
2259 	OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT),    /* Remote L3 hit|SNP Hit */
2260 	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | SNOOP_NONE_MISS,       /* RAM hit|SNP None or Miss */
2261 	OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* Remote RAM hit|SNP None or Miss */
2262 	OP_LH | P(LVL, IO)  | LEVEL(NA) | P(SNOOP, NONE),              /* I/O hit|SNP None */
2263 	OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE),              /* Uncached hit|SNP None */
2264 };
2265 
2266 /* Based on kernel __intel_pmu_pebs_data_source_cmt() and pebs_data_source */
2267 static const u64 pebs_data_source_cmt[PERF_PEBS_DATA_SOURCE_GRT_MAX] = {
2268 	P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),       /* L3 miss|SNP N/A */
2269 	OP_LH | P(LVL, L1)  | LEVEL(L1)  | P(SNOOP, NONE),           /* L1 hit|SNP None */
2270 	OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE),           /* LFB/MAB hit|SNP None */
2271 	OP_LH | P(LVL, L2)  | LEVEL(L2)  | P(SNOOP, NONE),           /* L2 hit|SNP None */
2272 	OP_LH | P(LVL, L3)  | LEVEL(L3)  | P(SNOOP, NONE),           /* L3 hit|SNP None */
2273 	OP_LH | P(LVL, L3)  | LEVEL(L3)  | P(SNOOP, MISS),           /* L3 hit|SNP Hit */
2274 	OP_LH | P(LVL, L3)  | LEVEL(L3)  | P(SNOOP, HIT),            /* L3 hit|SNP HitM */
2275 	OP_LH | P(LVL, L3)  | LEVEL(L3)  | P(SNOOPX, FWD),           /* L3 hit|SNP HitM */
2276 	OP_LH | P(LVL, L3)  | LEVEL(L3)  | P(SNOOP, HITM),           /* L3 hit|SNP Fwd */
2277 	OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* Remote L3 hit|SNP HitM */
2278 	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, NONE),      /* RAM hit|SNP Hit */
2279 	OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE),                   /* Remote L3 hit|SNP Hit */
2280 	OP_LH | LEVEL(RAM) | REM | P(SNOOPX, FWD),                   /* RAM hit|SNP None or Miss */
2281 	OP_LH | LEVEL(RAM) | REM | P(SNOOP, HITM),                   /* Remote RAM hit|SNP None or Miss */
2282 	OP_LH | P(LVL, IO)  | LEVEL(NA) | P(SNOOP, NONE),            /* I/O hit|SNP None */
2283 	OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE),            /* Uncached hit|SNP None */
2284 };
2285 
2286 /* Based on kernel pebs_set_tlb_lock() */
pebs_set_tlb_lock(u64 * val,bool tlb,bool lock)2287 static inline void pebs_set_tlb_lock(u64 *val, bool tlb, bool lock)
2288 {
2289 	/*
2290 	 * TLB access
2291 	 * 0 = did not miss 2nd level TLB
2292 	 * 1 = missed 2nd level TLB
2293 	 */
2294 	if (tlb)
2295 		*val |= P(TLB, MISS) | P(TLB, L2);
2296 	else
2297 		*val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
2298 
2299 	/* locked prefix */
2300 	if (lock)
2301 		*val |= P(LOCK, LOCKED);
2302 }
2303 
2304 /* Based on kernel __grt_latency_data() */
intel_pt_grt_latency_data(u8 dse,bool tlb,bool lock,bool blk,const u64 * pebs_data_source)2305 static u64 intel_pt_grt_latency_data(u8 dse, bool tlb, bool lock, bool blk,
2306 				     const u64 *pebs_data_source)
2307 {
2308 	u64 val;
2309 
2310 	dse &= PERF_PEBS_DATA_SOURCE_GRT_MASK;
2311 	val = pebs_data_source[dse];
2312 
2313 	pebs_set_tlb_lock(&val, tlb, lock);
2314 
2315 	if (blk)
2316 		val |= P(BLK, DATA);
2317 	else
2318 		val |= P(BLK, NA);
2319 
2320 	return val;
2321 }
2322 
2323 /* Default value for data source */
2324 #define PERF_MEM_NA (PERF_MEM_S(OP, NA)    |\
2325 		     PERF_MEM_S(LVL, NA)   |\
2326 		     PERF_MEM_S(SNOOP, NA) |\
2327 		     PERF_MEM_S(LOCK, NA)  |\
2328 		     PERF_MEM_S(TLB, NA)   |\
2329 		     PERF_MEM_S(LVLNUM, NA))
2330 
2331 enum DATA_SRC_FORMAT {
2332 	DATA_SRC_FORMAT_ERR  = -1,
2333 	DATA_SRC_FORMAT_NA   =  0,
2334 	DATA_SRC_FORMAT_GRT  =  1,
2335 	DATA_SRC_FORMAT_CMT  =  2,
2336 };
2337 
2338 /* Based on kernel grt_latency_data() and cmt_latency_data */
intel_pt_get_data_src(u64 mem_aux_info,int data_src_fmt)2339 static u64 intel_pt_get_data_src(u64 mem_aux_info, int data_src_fmt)
2340 {
2341 	switch (data_src_fmt) {
2342 	case DATA_SRC_FORMAT_GRT: {
2343 		union {
2344 			u64 val;
2345 			struct {
2346 				unsigned int dse:4;
2347 				unsigned int locked:1;
2348 				unsigned int stlb_miss:1;
2349 				unsigned int fwd_blk:1;
2350 				unsigned int reserved:25;
2351 			};
2352 		} x = {.val = mem_aux_info};
2353 		return intel_pt_grt_latency_data(x.dse, x.stlb_miss, x.locked, x.fwd_blk,
2354 						 pebs_data_source_grt);
2355 	}
2356 	case DATA_SRC_FORMAT_CMT: {
2357 		union {
2358 			u64 val;
2359 			struct {
2360 				unsigned int dse:5;
2361 				unsigned int locked:1;
2362 				unsigned int stlb_miss:1;
2363 				unsigned int fwd_blk:1;
2364 				unsigned int reserved:24;
2365 			};
2366 		} x = {.val = mem_aux_info};
2367 		return intel_pt_grt_latency_data(x.dse, x.stlb_miss, x.locked, x.fwd_blk,
2368 						 pebs_data_source_cmt);
2369 	}
2370 	default:
2371 		return PERF_MEM_NA;
2372 	}
2373 }
2374 
intel_pt_do_synth_pebs_sample(struct intel_pt_queue * ptq,struct evsel * evsel,u64 id,int data_src_fmt)2375 static int intel_pt_do_synth_pebs_sample(struct intel_pt_queue *ptq, struct evsel *evsel,
2376 					 u64 id, int data_src_fmt)
2377 {
2378 	const struct intel_pt_blk_items *items = &ptq->state->items;
2379 	struct perf_sample sample = { .ip = 0, };
2380 	union perf_event *event = ptq->event_buf;
2381 	struct intel_pt *pt = ptq->pt;
2382 	u64 sample_type = evsel->core.attr.sample_type;
2383 	u8 cpumode;
2384 	u64 regs[8 * sizeof(sample.intr_regs.mask)];
2385 
2386 	if (intel_pt_skip_event(pt))
2387 		return 0;
2388 
2389 	intel_pt_prep_a_sample(ptq, event, &sample);
2390 
2391 	sample.id = id;
2392 	sample.stream_id = id;
2393 
2394 	if (!evsel->core.attr.freq)
2395 		sample.period = evsel->core.attr.sample_period;
2396 
2397 	/* No support for non-zero CS base */
2398 	if (items->has_ip)
2399 		sample.ip = items->ip;
2400 	else if (items->has_rip)
2401 		sample.ip = items->rip;
2402 	else
2403 		sample.ip = ptq->state->from_ip;
2404 
2405 	cpumode = intel_pt_cpumode(ptq, sample.ip, 0);
2406 
2407 	event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
2408 
2409 	sample.cpumode = cpumode;
2410 
2411 	if (sample_type & PERF_SAMPLE_TIME) {
2412 		u64 timestamp = 0;
2413 
2414 		if (items->has_timestamp)
2415 			timestamp = items->timestamp;
2416 		else if (!pt->timeless_decoding)
2417 			timestamp = ptq->timestamp;
2418 		if (timestamp)
2419 			sample.time = tsc_to_perf_time(timestamp, &pt->tc);
2420 	}
2421 
2422 	if (sample_type & PERF_SAMPLE_CALLCHAIN &&
2423 	    pt->synth_opts.callchain) {
2424 		thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
2425 				     pt->synth_opts.callchain_sz, sample.ip,
2426 				     pt->kernel_start);
2427 		sample.callchain = ptq->chain;
2428 	}
2429 
2430 	if (sample_type & PERF_SAMPLE_REGS_INTR &&
2431 	    (items->mask[INTEL_PT_GP_REGS_POS] ||
2432 	     items->mask[INTEL_PT_XMM_POS])) {
2433 		u64 regs_mask = evsel->core.attr.sample_regs_intr;
2434 		u64 *pos;
2435 
2436 		sample.intr_regs.abi = items->is_32_bit ?
2437 				       PERF_SAMPLE_REGS_ABI_32 :
2438 				       PERF_SAMPLE_REGS_ABI_64;
2439 		sample.intr_regs.regs = regs;
2440 
2441 		pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
2442 
2443 		intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
2444 	}
2445 
2446 	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
2447 		if (items->mask[INTEL_PT_LBR_0_POS] ||
2448 		    items->mask[INTEL_PT_LBR_1_POS] ||
2449 		    items->mask[INTEL_PT_LBR_2_POS]) {
2450 			intel_pt_add_lbrs(ptq->last_branch, items);
2451 		} else if (pt->synth_opts.last_branch) {
2452 			thread_stack__br_sample(ptq->thread, ptq->cpu,
2453 						ptq->last_branch,
2454 						pt->br_stack_sz);
2455 		} else {
2456 			ptq->last_branch->nr = 0;
2457 		}
2458 		sample.branch_stack = ptq->last_branch;
2459 	}
2460 
2461 	if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
2462 		sample.addr = items->mem_access_address;
2463 
2464 	if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2465 		/*
2466 		 * Refer kernel's setup_pebs_adaptive_sample_data() and
2467 		 * intel_hsw_weight().
2468 		 */
2469 		if (items->has_mem_access_latency) {
2470 			u64 weight = items->mem_access_latency >> 32;
2471 
2472 			/*
2473 			 * Starts from SPR, the mem access latency field
2474 			 * contains both cache latency [47:32] and instruction
2475 			 * latency [15:0]. The cache latency is the same as the
2476 			 * mem access latency on previous platforms.
2477 			 *
2478 			 * In practice, no memory access could last than 4G
2479 			 * cycles. Use latency >> 32 to distinguish the
2480 			 * different format of the mem access latency field.
2481 			 */
2482 			if (weight > 0) {
2483 				sample.weight = weight & 0xffff;
2484 				sample.ins_lat = items->mem_access_latency & 0xffff;
2485 			} else
2486 				sample.weight = items->mem_access_latency;
2487 		}
2488 		if (!sample.weight && items->has_tsx_aux_info) {
2489 			/* Cycles last block */
2490 			sample.weight = (u32)items->tsx_aux_info;
2491 		}
2492 	}
2493 
2494 	if (sample_type & PERF_SAMPLE_DATA_SRC) {
2495 		if (items->has_mem_aux_info && data_src_fmt) {
2496 			if (data_src_fmt < 0) {
2497 				pr_err("Intel PT missing data_src info\n");
2498 				return -1;
2499 			}
2500 			sample.data_src = intel_pt_get_data_src(items->mem_aux_info, data_src_fmt);
2501 		} else {
2502 			sample.data_src = PERF_MEM_NA;
2503 		}
2504 	}
2505 
2506 	if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
2507 		u64 ax = items->has_rax ? items->rax : 0;
2508 		/* Refer kernel's intel_hsw_transaction() */
2509 		u64 txn = (u8)(items->tsx_aux_info >> 32);
2510 
2511 		/* For RTM XABORTs also log the abort code from AX */
2512 		if (txn & PERF_TXN_TRANSACTION && ax & 1)
2513 			txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
2514 		sample.transaction = txn;
2515 	}
2516 
2517 	return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
2518 }
2519 
intel_pt_synth_single_pebs_sample(struct intel_pt_queue * ptq)2520 static int intel_pt_synth_single_pebs_sample(struct intel_pt_queue *ptq)
2521 {
2522 	struct intel_pt *pt = ptq->pt;
2523 	struct evsel *evsel = pt->pebs_evsel;
2524 	int data_src_fmt = pt->pebs_data_src_fmt;
2525 	u64 id = evsel->core.id[0];
2526 
2527 	return intel_pt_do_synth_pebs_sample(ptq, evsel, id, data_src_fmt);
2528 }
2529 
intel_pt_synth_pebs_sample(struct intel_pt_queue * ptq)2530 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
2531 {
2532 	const struct intel_pt_blk_items *items = &ptq->state->items;
2533 	struct intel_pt_pebs_event *pe;
2534 	struct intel_pt *pt = ptq->pt;
2535 	int err = -EINVAL;
2536 	int hw_id;
2537 
2538 	if (!items->has_applicable_counters || !items->applicable_counters) {
2539 		if (!pt->single_pebs)
2540 			pr_err("PEBS-via-PT record with no applicable_counters\n");
2541 		return intel_pt_synth_single_pebs_sample(ptq);
2542 	}
2543 
2544 	for_each_set_bit(hw_id, (unsigned long *)&items->applicable_counters, INTEL_PT_MAX_PEBS) {
2545 		pe = &ptq->pebs[hw_id];
2546 		if (!pe->evsel) {
2547 			if (!pt->single_pebs)
2548 				pr_err("PEBS-via-PT record with no matching event, hw_id %d\n",
2549 				       hw_id);
2550 			return intel_pt_synth_single_pebs_sample(ptq);
2551 		}
2552 		err = intel_pt_do_synth_pebs_sample(ptq, pe->evsel, pe->id, pe->data_src_fmt);
2553 		if (err)
2554 			return err;
2555 	}
2556 
2557 	return err;
2558 }
2559 
intel_pt_synth_events_sample(struct intel_pt_queue * ptq)2560 static int intel_pt_synth_events_sample(struct intel_pt_queue *ptq)
2561 {
2562 	struct intel_pt *pt = ptq->pt;
2563 	union perf_event *event = ptq->event_buf;
2564 	struct perf_sample sample = { .ip = 0, };
2565 	struct {
2566 		struct perf_synth_intel_evt cfe;
2567 		struct perf_synth_intel_evd evd[INTEL_PT_MAX_EVDS];
2568 	} raw;
2569 	int i;
2570 
2571 	if (intel_pt_skip_event(pt))
2572 		return 0;
2573 
2574 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2575 
2576 	sample.id        = ptq->pt->evt_id;
2577 	sample.stream_id = ptq->pt->evt_id;
2578 
2579 	raw.cfe.type     = ptq->state->cfe_type;
2580 	raw.cfe.reserved = 0;
2581 	raw.cfe.ip       = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2582 	raw.cfe.vector   = ptq->state->cfe_vector;
2583 	raw.cfe.evd_cnt  = ptq->state->evd_cnt;
2584 
2585 	for (i = 0; i < ptq->state->evd_cnt; i++) {
2586 		raw.evd[i].et       = 0;
2587 		raw.evd[i].evd_type = ptq->state->evd[i].type;
2588 		raw.evd[i].payload  = ptq->state->evd[i].payload;
2589 	}
2590 
2591 	sample.raw_size = perf_synth__raw_size(raw) +
2592 			  ptq->state->evd_cnt * sizeof(struct perf_synth_intel_evd);
2593 	sample.raw_data = perf_synth__raw_data(&raw);
2594 
2595 	return intel_pt_deliver_synth_event(pt, event, &sample,
2596 					    pt->evt_sample_type);
2597 }
2598 
intel_pt_synth_iflag_chg_sample(struct intel_pt_queue * ptq)2599 static int intel_pt_synth_iflag_chg_sample(struct intel_pt_queue *ptq)
2600 {
2601 	struct intel_pt *pt = ptq->pt;
2602 	union perf_event *event = ptq->event_buf;
2603 	struct perf_sample sample = { .ip = 0, };
2604 	struct perf_synth_intel_iflag_chg raw;
2605 
2606 	if (intel_pt_skip_event(pt))
2607 		return 0;
2608 
2609 	intel_pt_prep_p_sample(pt, ptq, event, &sample);
2610 
2611 	sample.id = ptq->pt->iflag_chg_id;
2612 	sample.stream_id = ptq->pt->iflag_chg_id;
2613 
2614 	raw.flags = 0;
2615 	raw.iflag = ptq->state->to_iflag;
2616 
2617 	if (ptq->state->type & INTEL_PT_BRANCH) {
2618 		raw.via_branch = 1;
2619 		raw.branch_ip = ptq->state->to_ip;
2620 	} else {
2621 		sample.addr = 0;
2622 	}
2623 	sample.flags = ptq->flags;
2624 
2625 	sample.raw_size = perf_synth__raw_size(raw);
2626 	sample.raw_data = perf_synth__raw_data(&raw);
2627 
2628 	return intel_pt_deliver_synth_event(pt, event, &sample,
2629 					    pt->iflag_chg_sample_type);
2630 }
2631 
intel_pt_synth_error(struct intel_pt * pt,int code,int cpu,pid_t pid,pid_t tid,u64 ip,u64 timestamp,pid_t machine_pid,int vcpu)2632 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
2633 				pid_t pid, pid_t tid, u64 ip, u64 timestamp,
2634 				pid_t machine_pid, int vcpu)
2635 {
2636 	bool dump_log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR;
2637 	bool log_on_stdout = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT;
2638 	union perf_event event;
2639 	char msg[MAX_AUXTRACE_ERROR_MSG];
2640 	int err;
2641 
2642 	if (pt->synth_opts.error_minus_flags) {
2643 		if (code == INTEL_PT_ERR_OVR &&
2644 		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
2645 			return 0;
2646 		if (code == INTEL_PT_ERR_LOST &&
2647 		    pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
2648 			return 0;
2649 	}
2650 
2651 	intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
2652 
2653 	auxtrace_synth_guest_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
2654 				   code, cpu, pid, tid, ip, msg, timestamp,
2655 				   machine_pid, vcpu);
2656 
2657 	if (intel_pt_enable_logging && !log_on_stdout) {
2658 		FILE *fp = intel_pt_log_fp();
2659 
2660 		if (fp)
2661 			perf_event__fprintf_auxtrace_error(&event, fp);
2662 	}
2663 
2664 	if (code != INTEL_PT_ERR_LOST && dump_log_on_error)
2665 		intel_pt_log_dump_buf();
2666 
2667 	err = perf_session__deliver_synth_event(pt->session, &event, NULL);
2668 	if (err)
2669 		pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
2670 		       err);
2671 
2672 	return err;
2673 }
2674 
intel_ptq_synth_error(struct intel_pt_queue * ptq,const struct intel_pt_state * state)2675 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
2676 				 const struct intel_pt_state *state)
2677 {
2678 	struct intel_pt *pt = ptq->pt;
2679 	u64 tm = ptq->timestamp;
2680 	pid_t machine_pid = 0;
2681 	pid_t pid = ptq->pid;
2682 	pid_t tid = ptq->tid;
2683 	int vcpu = -1;
2684 
2685 	tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
2686 
2687 	if (pt->have_guest_sideband && state->from_nr) {
2688 		machine_pid = ptq->guest_machine_pid;
2689 		vcpu = ptq->vcpu;
2690 		pid = ptq->guest_pid;
2691 		tid = ptq->guest_tid;
2692 	}
2693 
2694 	return intel_pt_synth_error(pt, state->err, ptq->cpu, pid, tid,
2695 				    state->from_ip, tm, machine_pid, vcpu);
2696 }
2697 
intel_pt_next_tid(struct intel_pt * pt,struct intel_pt_queue * ptq)2698 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
2699 {
2700 	struct auxtrace_queue *queue;
2701 	pid_t tid = ptq->next_tid;
2702 	int err;
2703 
2704 	if (tid == -1)
2705 		return 0;
2706 
2707 	intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
2708 
2709 	err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
2710 
2711 	queue = &pt->queues.queue_array[ptq->queue_nr];
2712 	intel_pt_set_pid_tid_cpu(pt, queue);
2713 
2714 	ptq->next_tid = -1;
2715 
2716 	return err;
2717 }
2718 
intel_pt_is_switch_ip(struct intel_pt_queue * ptq,u64 ip)2719 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
2720 {
2721 	struct intel_pt *pt = ptq->pt;
2722 
2723 	return ip == pt->switch_ip &&
2724 	       (ptq->flags & PERF_IP_FLAG_BRANCH) &&
2725 	       !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
2726 			       PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
2727 }
2728 
2729 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
2730 			  INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
2731 
intel_pt_sample(struct intel_pt_queue * ptq)2732 static int intel_pt_sample(struct intel_pt_queue *ptq)
2733 {
2734 	const struct intel_pt_state *state = ptq->state;
2735 	struct intel_pt *pt = ptq->pt;
2736 	int err;
2737 
2738 	if (!ptq->have_sample)
2739 		return 0;
2740 
2741 	ptq->have_sample = false;
2742 
2743 	if (pt->synth_opts.approx_ipc) {
2744 		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2745 		ptq->ipc_cyc_cnt = ptq->state->cycles;
2746 		ptq->sample_ipc = true;
2747 	} else {
2748 		ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2749 		ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
2750 		ptq->sample_ipc = ptq->state->flags & INTEL_PT_SAMPLE_IPC;
2751 	}
2752 
2753 	/* Ensure guest code maps are set up */
2754 	if (symbol_conf.guest_code && (state->from_nr || state->to_nr))
2755 		intel_pt_get_guest(ptq);
2756 
2757 	/*
2758 	 * Do PEBS first to allow for the possibility that the PEBS timestamp
2759 	 * precedes the current timestamp.
2760 	 */
2761 	if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
2762 		err = intel_pt_synth_pebs_sample(ptq);
2763 		if (err)
2764 			return err;
2765 	}
2766 
2767 	if (pt->synth_opts.intr_events) {
2768 		if (state->type & INTEL_PT_EVT) {
2769 			err = intel_pt_synth_events_sample(ptq);
2770 			if (err)
2771 				return err;
2772 		}
2773 		if (state->type & INTEL_PT_IFLAG_CHG) {
2774 			err = intel_pt_synth_iflag_chg_sample(ptq);
2775 			if (err)
2776 				return err;
2777 		}
2778 	}
2779 
2780 	if (pt->sample_pwr_events) {
2781 		if (state->type & INTEL_PT_PSB_EVT) {
2782 			err = intel_pt_synth_psb_sample(ptq);
2783 			if (err)
2784 				return err;
2785 		}
2786 		if (ptq->state->cbr != ptq->cbr_seen) {
2787 			err = intel_pt_synth_cbr_sample(ptq);
2788 			if (err)
2789 				return err;
2790 		}
2791 		if (state->type & INTEL_PT_PWR_EVT) {
2792 			if (state->type & INTEL_PT_MWAIT_OP) {
2793 				err = intel_pt_synth_mwait_sample(ptq);
2794 				if (err)
2795 					return err;
2796 			}
2797 			if (state->type & INTEL_PT_PWR_ENTRY) {
2798 				err = intel_pt_synth_pwre_sample(ptq);
2799 				if (err)
2800 					return err;
2801 			}
2802 			if (state->type & INTEL_PT_EX_STOP) {
2803 				err = intel_pt_synth_exstop_sample(ptq);
2804 				if (err)
2805 					return err;
2806 			}
2807 			if (state->type & INTEL_PT_PWR_EXIT) {
2808 				err = intel_pt_synth_pwrx_sample(ptq);
2809 				if (err)
2810 					return err;
2811 			}
2812 		}
2813 	}
2814 
2815 	if (state->type & INTEL_PT_INSTRUCTION) {
2816 		if (pt->sample_instructions) {
2817 			err = intel_pt_synth_instruction_sample(ptq);
2818 			if (err)
2819 				return err;
2820 		}
2821 		if (pt->sample_cycles) {
2822 			err = intel_pt_synth_cycle_sample(ptq);
2823 			if (err)
2824 				return err;
2825 		}
2826 	}
2827 
2828 	if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2829 		err = intel_pt_synth_transaction_sample(ptq);
2830 		if (err)
2831 			return err;
2832 	}
2833 
2834 	if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2835 		err = intel_pt_synth_ptwrite_sample(ptq);
2836 		if (err)
2837 			return err;
2838 	}
2839 
2840 	if (!(state->type & INTEL_PT_BRANCH))
2841 		return 0;
2842 
2843 	if (pt->use_thread_stack) {
2844 		thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2845 				    state->from_ip, state->to_ip, ptq->insn_len,
2846 				    state->trace_nr, pt->callstack,
2847 				    pt->br_stack_sz_plus,
2848 				    pt->mispred_all);
2849 	} else {
2850 		thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2851 	}
2852 
2853 	if (pt->sample_branches) {
2854 		if (state->from_nr != state->to_nr &&
2855 		    state->from_ip && state->to_ip) {
2856 			struct intel_pt_state *st = (struct intel_pt_state *)state;
2857 			u64 to_ip = st->to_ip;
2858 			u64 from_ip = st->from_ip;
2859 
2860 			/*
2861 			 * perf cannot handle having different machines for ip
2862 			 * and addr, so create 2 branches.
2863 			 */
2864 			st->to_ip = 0;
2865 			err = intel_pt_synth_branch_sample(ptq);
2866 			if (err)
2867 				return err;
2868 			st->from_ip = 0;
2869 			st->to_ip = to_ip;
2870 			err = intel_pt_synth_branch_sample(ptq);
2871 			st->from_ip = from_ip;
2872 		} else {
2873 			err = intel_pt_synth_branch_sample(ptq);
2874 		}
2875 		if (err)
2876 			return err;
2877 	}
2878 
2879 	if (!ptq->sync_switch)
2880 		return 0;
2881 
2882 	if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2883 		switch (ptq->switch_state) {
2884 		case INTEL_PT_SS_NOT_TRACING:
2885 		case INTEL_PT_SS_UNKNOWN:
2886 		case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2887 			err = intel_pt_next_tid(pt, ptq);
2888 			if (err)
2889 				return err;
2890 			ptq->switch_state = INTEL_PT_SS_TRACING;
2891 			break;
2892 		default:
2893 			ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2894 			return 1;
2895 		}
2896 	} else if (!state->to_ip) {
2897 		ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2898 	} else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2899 		ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2900 	} else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2901 		   state->to_ip == pt->ptss_ip &&
2902 		   (ptq->flags & PERF_IP_FLAG_CALL)) {
2903 		ptq->switch_state = INTEL_PT_SS_TRACING;
2904 	}
2905 
2906 	return 0;
2907 }
2908 
intel_pt_switch_ip(struct intel_pt * pt,u64 * ptss_ip)2909 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2910 {
2911 	struct machine *machine = pt->machine;
2912 	struct map *map;
2913 	struct symbol *sym, *start;
2914 	u64 ip, switch_ip = 0;
2915 	const char *ptss;
2916 
2917 	if (ptss_ip)
2918 		*ptss_ip = 0;
2919 
2920 	map = machine__kernel_map(machine);
2921 	if (!map)
2922 		return 0;
2923 
2924 	if (map__load(map))
2925 		return 0;
2926 
2927 	start = dso__first_symbol(map__dso(map));
2928 
2929 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2930 		if (sym->binding == STB_GLOBAL &&
2931 		    !strcmp(sym->name, "__switch_to")) {
2932 			ip = map__unmap_ip(map, sym->start);
2933 			if (ip >= map__start(map) && ip < map__end(map)) {
2934 				switch_ip = ip;
2935 				break;
2936 			}
2937 		}
2938 	}
2939 
2940 	if (!switch_ip || !ptss_ip)
2941 		return 0;
2942 
2943 	if (pt->have_sched_switch == 1)
2944 		ptss = "perf_trace_sched_switch";
2945 	else
2946 		ptss = "__perf_event_task_sched_out";
2947 
2948 	for (sym = start; sym; sym = dso__next_symbol(sym)) {
2949 		if (!strcmp(sym->name, ptss)) {
2950 			ip = map__unmap_ip(map, sym->start);
2951 			if (ip >= map__start(map) && ip < map__end(map)) {
2952 				*ptss_ip = ip;
2953 				break;
2954 			}
2955 		}
2956 	}
2957 
2958 	return switch_ip;
2959 }
2960 
intel_pt_enable_sync_switch(struct intel_pt * pt)2961 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2962 {
2963 	unsigned int i;
2964 
2965 	if (pt->sync_switch_not_supported)
2966 		return;
2967 
2968 	pt->sync_switch = true;
2969 
2970 	for (i = 0; i < pt->queues.nr_queues; i++) {
2971 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2972 		struct intel_pt_queue *ptq = queue->priv;
2973 
2974 		if (ptq)
2975 			ptq->sync_switch = true;
2976 	}
2977 }
2978 
intel_pt_disable_sync_switch(struct intel_pt * pt)2979 static void intel_pt_disable_sync_switch(struct intel_pt *pt)
2980 {
2981 	unsigned int i;
2982 
2983 	pt->sync_switch = false;
2984 
2985 	for (i = 0; i < pt->queues.nr_queues; i++) {
2986 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2987 		struct intel_pt_queue *ptq = queue->priv;
2988 
2989 		if (ptq) {
2990 			ptq->sync_switch = false;
2991 			intel_pt_next_tid(pt, ptq);
2992 		}
2993 	}
2994 }
2995 
2996 /*
2997  * To filter against time ranges, it is only necessary to look at the next start
2998  * or end time.
2999  */
intel_pt_next_time(struct intel_pt_queue * ptq)3000 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
3001 {
3002 	struct intel_pt *pt = ptq->pt;
3003 
3004 	if (ptq->sel_start) {
3005 		/* Next time is an end time */
3006 		ptq->sel_start = false;
3007 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
3008 		return true;
3009 	} else if (ptq->sel_idx + 1 < pt->range_cnt) {
3010 		/* Next time is a start time */
3011 		ptq->sel_start = true;
3012 		ptq->sel_idx += 1;
3013 		ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
3014 		return true;
3015 	}
3016 
3017 	/* No next time */
3018 	return false;
3019 }
3020 
intel_pt_time_filter(struct intel_pt_queue * ptq,u64 * ff_timestamp)3021 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
3022 {
3023 	int err;
3024 
3025 	while (1) {
3026 		if (ptq->sel_start) {
3027 			if (ptq->timestamp >= ptq->sel_timestamp) {
3028 				/* After start time, so consider next time */
3029 				intel_pt_next_time(ptq);
3030 				if (!ptq->sel_timestamp) {
3031 					/* No end time */
3032 					return 0;
3033 				}
3034 				/* Check against end time */
3035 				continue;
3036 			}
3037 			/* Before start time, so fast forward */
3038 			ptq->have_sample = false;
3039 			if (ptq->sel_timestamp > *ff_timestamp) {
3040 				if (ptq->sync_switch) {
3041 					intel_pt_next_tid(ptq->pt, ptq);
3042 					ptq->switch_state = INTEL_PT_SS_UNKNOWN;
3043 				}
3044 				*ff_timestamp = ptq->sel_timestamp;
3045 				err = intel_pt_fast_forward(ptq->decoder,
3046 							    ptq->sel_timestamp);
3047 				if (err)
3048 					return err;
3049 			}
3050 			return 0;
3051 		} else if (ptq->timestamp > ptq->sel_timestamp) {
3052 			/* After end time, so consider next time */
3053 			if (!intel_pt_next_time(ptq)) {
3054 				/* No next time range, so stop decoding */
3055 				ptq->have_sample = false;
3056 				ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
3057 				return 1;
3058 			}
3059 			/* Check against next start time */
3060 			continue;
3061 		} else {
3062 			/* Before end time */
3063 			return 0;
3064 		}
3065 	}
3066 }
3067 
intel_pt_run_decoder(struct intel_pt_queue * ptq,u64 * timestamp)3068 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
3069 {
3070 	const struct intel_pt_state *state = ptq->state;
3071 	struct intel_pt *pt = ptq->pt;
3072 	u64 ff_timestamp = 0;
3073 	int err;
3074 
3075 	if (!pt->kernel_start) {
3076 		pt->kernel_start = machine__kernel_start(pt->machine);
3077 		if (pt->per_cpu_mmaps &&
3078 		    (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
3079 		    !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
3080 		    !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) {
3081 			pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
3082 			if (pt->switch_ip) {
3083 				intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
3084 					     pt->switch_ip, pt->ptss_ip);
3085 				intel_pt_enable_sync_switch(pt);
3086 			}
3087 		}
3088 	}
3089 
3090 	intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
3091 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
3092 	while (1) {
3093 		err = intel_pt_sample(ptq);
3094 		if (err)
3095 			return err;
3096 
3097 		state = intel_pt_decode(ptq->decoder);
3098 		if (state->err) {
3099 			if (state->err == INTEL_PT_ERR_NODATA)
3100 				return 1;
3101 			if (ptq->sync_switch &&
3102 			    state->from_ip >= pt->kernel_start) {
3103 				ptq->sync_switch = false;
3104 				intel_pt_next_tid(pt, ptq);
3105 			}
3106 			ptq->timestamp = state->est_timestamp;
3107 			if (pt->synth_opts.errors) {
3108 				err = intel_ptq_synth_error(ptq, state);
3109 				if (err)
3110 					return err;
3111 			}
3112 			continue;
3113 		}
3114 
3115 		ptq->state = state;
3116 		ptq->have_sample = true;
3117 		intel_pt_sample_flags(ptq);
3118 
3119 		/* Use estimated TSC upon return to user space */
3120 		if (pt->est_tsc &&
3121 		    (state->from_ip >= pt->kernel_start || !state->from_ip) &&
3122 		    state->to_ip && state->to_ip < pt->kernel_start) {
3123 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
3124 				     state->timestamp, state->est_timestamp);
3125 			ptq->timestamp = state->est_timestamp;
3126 		/* Use estimated TSC in unknown switch state */
3127 		} else if (ptq->sync_switch &&
3128 			   ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
3129 			   intel_pt_is_switch_ip(ptq, state->to_ip) &&
3130 			   ptq->next_tid == -1) {
3131 			intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
3132 				     state->timestamp, state->est_timestamp);
3133 			ptq->timestamp = state->est_timestamp;
3134 		} else if (state->timestamp > ptq->timestamp) {
3135 			ptq->timestamp = state->timestamp;
3136 		}
3137 
3138 		if (ptq->sel_timestamp) {
3139 			err = intel_pt_time_filter(ptq, &ff_timestamp);
3140 			if (err)
3141 				return err;
3142 		}
3143 
3144 		if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
3145 			*timestamp = ptq->timestamp;
3146 			return 0;
3147 		}
3148 	}
3149 	return 0;
3150 }
3151 
intel_pt_update_queues(struct intel_pt * pt)3152 static inline int intel_pt_update_queues(struct intel_pt *pt)
3153 {
3154 	if (pt->queues.new_data) {
3155 		pt->queues.new_data = false;
3156 		return intel_pt_setup_queues(pt);
3157 	}
3158 	return 0;
3159 }
3160 
intel_pt_process_queues(struct intel_pt * pt,u64 timestamp)3161 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
3162 {
3163 	unsigned int queue_nr;
3164 	u64 ts;
3165 	int ret;
3166 
3167 	while (1) {
3168 		struct auxtrace_queue *queue;
3169 		struct intel_pt_queue *ptq;
3170 
3171 		if (!pt->heap.heap_cnt)
3172 			return 0;
3173 
3174 		if (pt->heap.heap_array[0].ordinal >= timestamp)
3175 			return 0;
3176 
3177 		queue_nr = pt->heap.heap_array[0].queue_nr;
3178 		queue = &pt->queues.queue_array[queue_nr];
3179 		ptq = queue->priv;
3180 
3181 		intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
3182 			     queue_nr, pt->heap.heap_array[0].ordinal,
3183 			     timestamp);
3184 
3185 		auxtrace_heap__pop(&pt->heap);
3186 
3187 		if (pt->heap.heap_cnt) {
3188 			ts = pt->heap.heap_array[0].ordinal + 1;
3189 			if (ts > timestamp)
3190 				ts = timestamp;
3191 		} else {
3192 			ts = timestamp;
3193 		}
3194 
3195 		intel_pt_set_pid_tid_cpu(pt, queue);
3196 
3197 		ret = intel_pt_run_decoder(ptq, &ts);
3198 
3199 		if (ret < 0) {
3200 			auxtrace_heap__add(&pt->heap, queue_nr, ts);
3201 			return ret;
3202 		}
3203 
3204 		if (!ret) {
3205 			ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
3206 			if (ret < 0)
3207 				return ret;
3208 		} else {
3209 			ptq->on_heap = false;
3210 		}
3211 	}
3212 
3213 	return 0;
3214 }
3215 
intel_pt_process_timeless_queues(struct intel_pt * pt,pid_t tid,u64 time_)3216 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
3217 					    u64 time_)
3218 {
3219 	struct auxtrace_queues *queues = &pt->queues;
3220 	unsigned int i;
3221 	u64 ts = 0;
3222 
3223 	for (i = 0; i < queues->nr_queues; i++) {
3224 		struct auxtrace_queue *queue = &pt->queues.queue_array[i];
3225 		struct intel_pt_queue *ptq = queue->priv;
3226 
3227 		if (ptq && (tid == -1 || ptq->tid == tid)) {
3228 			ptq->time = time_;
3229 			intel_pt_set_pid_tid_cpu(pt, queue);
3230 			intel_pt_run_decoder(ptq, &ts);
3231 		}
3232 	}
3233 	return 0;
3234 }
3235 
intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue * ptq,struct auxtrace_queue * queue,struct perf_sample * sample)3236 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
3237 					    struct auxtrace_queue *queue,
3238 					    struct perf_sample *sample)
3239 {
3240 	struct machine *m = ptq->pt->machine;
3241 
3242 	ptq->pid = sample->pid;
3243 	ptq->tid = sample->tid;
3244 	ptq->cpu = queue->cpu;
3245 
3246 	intel_pt_log("queue %u cpu %d pid %d tid %d\n",
3247 		     ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
3248 
3249 	thread__zput(ptq->thread);
3250 
3251 	if (ptq->tid == -1)
3252 		return;
3253 
3254 	if (ptq->pid == -1) {
3255 		ptq->thread = machine__find_thread(m, -1, ptq->tid);
3256 		if (ptq->thread)
3257 			ptq->pid = thread__pid(ptq->thread);
3258 		return;
3259 	}
3260 
3261 	ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
3262 }
3263 
intel_pt_process_timeless_sample(struct intel_pt * pt,struct perf_sample * sample)3264 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
3265 					    struct perf_sample *sample)
3266 {
3267 	struct auxtrace_queue *queue;
3268 	struct intel_pt_queue *ptq;
3269 	u64 ts = 0;
3270 
3271 	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3272 	if (!queue)
3273 		return -EINVAL;
3274 
3275 	ptq = queue->priv;
3276 	if (!ptq)
3277 		return 0;
3278 
3279 	ptq->stop = false;
3280 	ptq->time = sample->time;
3281 	intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
3282 	intel_pt_run_decoder(ptq, &ts);
3283 	return 0;
3284 }
3285 
intel_pt_lost(struct intel_pt * pt,struct perf_sample * sample)3286 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
3287 {
3288 	return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
3289 				    sample->pid, sample->tid, 0, sample->time,
3290 				    sample->machine_pid, sample->vcpu);
3291 }
3292 
intel_pt_cpu_to_ptq(struct intel_pt * pt,int cpu)3293 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
3294 {
3295 	unsigned i, j;
3296 
3297 	if (cpu < 0 || !pt->queues.nr_queues)
3298 		return NULL;
3299 
3300 	if ((unsigned)cpu >= pt->queues.nr_queues)
3301 		i = pt->queues.nr_queues - 1;
3302 	else
3303 		i = cpu;
3304 
3305 	if (pt->queues.queue_array[i].cpu == cpu)
3306 		return pt->queues.queue_array[i].priv;
3307 
3308 	for (j = 0; i > 0; j++) {
3309 		if (pt->queues.queue_array[--i].cpu == cpu)
3310 			return pt->queues.queue_array[i].priv;
3311 	}
3312 
3313 	for (; j < pt->queues.nr_queues; j++) {
3314 		if (pt->queues.queue_array[j].cpu == cpu)
3315 			return pt->queues.queue_array[j].priv;
3316 	}
3317 
3318 	return NULL;
3319 }
3320 
intel_pt_sync_switch(struct intel_pt * pt,int cpu,pid_t tid,u64 timestamp)3321 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
3322 				u64 timestamp)
3323 {
3324 	struct intel_pt_queue *ptq;
3325 	int err;
3326 
3327 	if (!pt->sync_switch)
3328 		return 1;
3329 
3330 	ptq = intel_pt_cpu_to_ptq(pt, cpu);
3331 	if (!ptq || !ptq->sync_switch)
3332 		return 1;
3333 
3334 	switch (ptq->switch_state) {
3335 	case INTEL_PT_SS_NOT_TRACING:
3336 		break;
3337 	case INTEL_PT_SS_UNKNOWN:
3338 	case INTEL_PT_SS_TRACING:
3339 		ptq->next_tid = tid;
3340 		ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
3341 		return 0;
3342 	case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3343 		if (!ptq->on_heap) {
3344 			ptq->timestamp = perf_time_to_tsc(timestamp,
3345 							  &pt->tc);
3346 			err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
3347 						 ptq->timestamp);
3348 			if (err)
3349 				return err;
3350 			ptq->on_heap = true;
3351 		}
3352 		ptq->switch_state = INTEL_PT_SS_TRACING;
3353 		break;
3354 	case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3355 		intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
3356 		break;
3357 	default:
3358 		break;
3359 	}
3360 
3361 	ptq->next_tid = -1;
3362 
3363 	return 1;
3364 }
3365 
3366 #ifdef HAVE_LIBTRACEEVENT
intel_pt_process_switch(struct intel_pt * pt,struct perf_sample * sample)3367 static int intel_pt_process_switch(struct intel_pt *pt,
3368 				   struct perf_sample *sample)
3369 {
3370 	pid_t tid;
3371 	int cpu, ret;
3372 	struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id);
3373 
3374 	if (evsel != pt->switch_evsel)
3375 		return 0;
3376 
3377 	tid = evsel__intval(evsel, sample, "next_pid");
3378 	cpu = sample->cpu;
3379 
3380 	intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3381 		     cpu, tid, sample->time, perf_time_to_tsc(sample->time,
3382 		     &pt->tc));
3383 
3384 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3385 	if (ret <= 0)
3386 		return ret;
3387 
3388 	return machine__set_current_tid(pt->machine, cpu, -1, tid);
3389 }
3390 #endif /* HAVE_LIBTRACEEVENT */
3391 
intel_pt_context_switch_in(struct intel_pt * pt,struct perf_sample * sample)3392 static int intel_pt_context_switch_in(struct intel_pt *pt,
3393 				      struct perf_sample *sample)
3394 {
3395 	pid_t pid = sample->pid;
3396 	pid_t tid = sample->tid;
3397 	int cpu = sample->cpu;
3398 
3399 	if (pt->sync_switch) {
3400 		struct intel_pt_queue *ptq;
3401 
3402 		ptq = intel_pt_cpu_to_ptq(pt, cpu);
3403 		if (ptq && ptq->sync_switch) {
3404 			ptq->next_tid = -1;
3405 			switch (ptq->switch_state) {
3406 			case INTEL_PT_SS_NOT_TRACING:
3407 			case INTEL_PT_SS_UNKNOWN:
3408 			case INTEL_PT_SS_TRACING:
3409 				break;
3410 			case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3411 			case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3412 				ptq->switch_state = INTEL_PT_SS_TRACING;
3413 				break;
3414 			default:
3415 				break;
3416 			}
3417 		}
3418 	}
3419 
3420 	/*
3421 	 * If the current tid has not been updated yet, ensure it is now that
3422 	 * a "switch in" event has occurred.
3423 	 */
3424 	if (machine__get_current_tid(pt->machine, cpu) == tid)
3425 		return 0;
3426 
3427 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
3428 }
3429 
intel_pt_guest_context_switch(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample)3430 static int intel_pt_guest_context_switch(struct intel_pt *pt,
3431 					 union perf_event *event,
3432 					 struct perf_sample *sample)
3433 {
3434 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3435 	struct machines *machines = &pt->session->machines;
3436 	struct machine *machine = machines__find(machines, sample->machine_pid);
3437 
3438 	pt->have_guest_sideband = true;
3439 
3440 	/*
3441 	 * sync_switch cannot handle guest machines at present, so just disable
3442 	 * it.
3443 	 */
3444 	pt->sync_switch_not_supported = true;
3445 	if (pt->sync_switch)
3446 		intel_pt_disable_sync_switch(pt);
3447 
3448 	if (out)
3449 		return 0;
3450 
3451 	if (!machine)
3452 		return -EINVAL;
3453 
3454 	return machine__set_current_tid(machine, sample->vcpu, sample->pid, sample->tid);
3455 }
3456 
intel_pt_context_switch(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample)3457 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
3458 				   struct perf_sample *sample)
3459 {
3460 	bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3461 	pid_t pid, tid;
3462 	int cpu, ret;
3463 
3464 	if (perf_event__is_guest(event))
3465 		return intel_pt_guest_context_switch(pt, event, sample);
3466 
3467 	cpu = sample->cpu;
3468 
3469 	if (pt->have_sched_switch == 3) {
3470 		if (!out)
3471 			return intel_pt_context_switch_in(pt, sample);
3472 		if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
3473 			pr_err("Expecting CPU-wide context switch event\n");
3474 			return -EINVAL;
3475 		}
3476 		pid = event->context_switch.next_prev_pid;
3477 		tid = event->context_switch.next_prev_tid;
3478 	} else {
3479 		if (out)
3480 			return 0;
3481 		pid = sample->pid;
3482 		tid = sample->tid;
3483 	}
3484 
3485 	if (tid == -1)
3486 		intel_pt_log("context_switch event has no tid\n");
3487 
3488 	ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3489 	if (ret <= 0)
3490 		return ret;
3491 
3492 	return machine__set_current_tid(pt->machine, cpu, pid, tid);
3493 }
3494 
intel_pt_process_itrace_start(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample)3495 static int intel_pt_process_itrace_start(struct intel_pt *pt,
3496 					 union perf_event *event,
3497 					 struct perf_sample *sample)
3498 {
3499 	if (!pt->per_cpu_mmaps)
3500 		return 0;
3501 
3502 	intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3503 		     sample->cpu, event->itrace_start.pid,
3504 		     event->itrace_start.tid, sample->time,
3505 		     perf_time_to_tsc(sample->time, &pt->tc));
3506 
3507 	return machine__set_current_tid(pt->machine, sample->cpu,
3508 					event->itrace_start.pid,
3509 					event->itrace_start.tid);
3510 }
3511 
3512 /*
3513  * Events with data_src are identified by L1_Hit_Indication
3514  * refer https://github.com/intel/perfmon
3515  */
intel_pt_data_src_fmt(struct intel_pt * pt,struct evsel * evsel)3516 static int intel_pt_data_src_fmt(struct intel_pt *pt, struct evsel *evsel)
3517 {
3518 	struct perf_env *env = pt->machine->env;
3519 	int fmt = DATA_SRC_FORMAT_NA;
3520 
3521 	if (!env->cpuid)
3522 		return DATA_SRC_FORMAT_ERR;
3523 
3524 	/*
3525 	 * PEBS-via-PT is only supported on E-core non-hybrid. Of those only
3526 	 * Gracemont and Crestmont have data_src. Check for:
3527 	 *	Alderlake N   (Gracemont)
3528 	 *	Sierra Forest (Crestmont)
3529 	 *	Grand Ridge   (Crestmont)
3530 	 */
3531 
3532 	if (!strncmp(env->cpuid, "GenuineIntel,6,190,", 19))
3533 		fmt = DATA_SRC_FORMAT_GRT;
3534 
3535 	if (!strncmp(env->cpuid, "GenuineIntel,6,175,", 19) ||
3536 	    !strncmp(env->cpuid, "GenuineIntel,6,182,", 19))
3537 		fmt = DATA_SRC_FORMAT_CMT;
3538 
3539 	if (fmt == DATA_SRC_FORMAT_NA)
3540 		return fmt;
3541 
3542 	/*
3543 	 * Only data_src events are:
3544 	 *	mem-loads	event=0xd0,umask=0x5
3545 	 *	mem-stores	event=0xd0,umask=0x6
3546 	 */
3547 	if (evsel->core.attr.type == PERF_TYPE_RAW &&
3548 	    ((evsel->core.attr.config & 0xffff) == 0x5d0 ||
3549 	     (evsel->core.attr.config & 0xffff) == 0x6d0))
3550 		return fmt;
3551 
3552 	return DATA_SRC_FORMAT_NA;
3553 }
3554 
intel_pt_process_aux_output_hw_id(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample)3555 static int intel_pt_process_aux_output_hw_id(struct intel_pt *pt,
3556 					     union perf_event *event,
3557 					     struct perf_sample *sample)
3558 {
3559 	u64 hw_id = event->aux_output_hw_id.hw_id;
3560 	struct auxtrace_queue *queue;
3561 	struct intel_pt_queue *ptq;
3562 	struct evsel *evsel;
3563 
3564 	queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3565 	evsel = evlist__id2evsel_strict(pt->session->evlist, sample->id);
3566 	if (!queue || !queue->priv || !evsel || hw_id > INTEL_PT_MAX_PEBS) {
3567 		pr_err("Bad AUX output hardware ID\n");
3568 		return -EINVAL;
3569 	}
3570 
3571 	ptq = queue->priv;
3572 
3573 	ptq->pebs[hw_id].evsel = evsel;
3574 	ptq->pebs[hw_id].id = sample->id;
3575 	ptq->pebs[hw_id].data_src_fmt = intel_pt_data_src_fmt(pt, evsel);
3576 
3577 	return 0;
3578 }
3579 
intel_pt_find_map(struct thread * thread,u8 cpumode,u64 addr,struct addr_location * al)3580 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
3581 			     struct addr_location *al)
3582 {
3583 	if (!al->map || addr < map__start(al->map) || addr >= map__end(al->map)) {
3584 		if (!thread__find_map(thread, cpumode, addr, al))
3585 			return -1;
3586 	}
3587 
3588 	return 0;
3589 }
3590 
3591 /* Invalidate all instruction cache entries that overlap the text poke */
intel_pt_text_poke(struct intel_pt * pt,union perf_event * event)3592 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
3593 {
3594 	u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
3595 	u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
3596 	/* Assume text poke begins in a basic block no more than 4096 bytes */
3597 	int cnt = 4096 + event->text_poke.new_len;
3598 	struct thread *thread = pt->unknown_thread;
3599 	struct addr_location al;
3600 	struct machine *machine = pt->machine;
3601 	struct intel_pt_cache_entry *e;
3602 	u64 offset;
3603 	int ret = 0;
3604 
3605 	addr_location__init(&al);
3606 	if (!event->text_poke.new_len)
3607 		goto out;
3608 
3609 	for (; cnt; cnt--, addr--) {
3610 		struct dso *dso;
3611 
3612 		if (intel_pt_find_map(thread, cpumode, addr, &al)) {
3613 			if (addr < event->text_poke.addr)
3614 				goto out;
3615 			continue;
3616 		}
3617 
3618 		dso = map__dso(al.map);
3619 		if (!dso || !dso->auxtrace_cache)
3620 			continue;
3621 
3622 		offset = map__map_ip(al.map, addr);
3623 
3624 		e = intel_pt_cache_lookup(dso, machine, offset);
3625 		if (!e)
3626 			continue;
3627 
3628 		if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
3629 			/*
3630 			 * No overlap. Working backwards there cannot be another
3631 			 * basic block that overlaps the text poke if there is a
3632 			 * branch instruction before the text poke address.
3633 			 */
3634 			if (e->branch != INTEL_PT_BR_NO_BRANCH)
3635 				goto out;
3636 		} else {
3637 			intel_pt_cache_invalidate(dso, machine, offset);
3638 			intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
3639 				     dso->long_name, addr);
3640 		}
3641 	}
3642 out:
3643 	addr_location__exit(&al);
3644 	return ret;
3645 }
3646 
intel_pt_process_event(struct perf_session * session,union perf_event * event,struct perf_sample * sample,struct perf_tool * tool)3647 static int intel_pt_process_event(struct perf_session *session,
3648 				  union perf_event *event,
3649 				  struct perf_sample *sample,
3650 				  struct perf_tool *tool)
3651 {
3652 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3653 					   auxtrace);
3654 	u64 timestamp;
3655 	int err = 0;
3656 
3657 	if (dump_trace)
3658 		return 0;
3659 
3660 	if (!tool->ordered_events) {
3661 		pr_err("Intel Processor Trace requires ordered events\n");
3662 		return -EINVAL;
3663 	}
3664 
3665 	if (sample->time && sample->time != (u64)-1)
3666 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3667 	else
3668 		timestamp = 0;
3669 
3670 	if (timestamp || pt->timeless_decoding) {
3671 		err = intel_pt_update_queues(pt);
3672 		if (err)
3673 			return err;
3674 	}
3675 
3676 	if (pt->timeless_decoding) {
3677 		if (pt->sampling_mode) {
3678 			if (sample->aux_sample.size)
3679 				err = intel_pt_process_timeless_sample(pt,
3680 								       sample);
3681 		} else if (event->header.type == PERF_RECORD_EXIT) {
3682 			err = intel_pt_process_timeless_queues(pt,
3683 							       event->fork.tid,
3684 							       sample->time);
3685 		}
3686 	} else if (timestamp) {
3687 		if (!pt->first_timestamp)
3688 			intel_pt_first_timestamp(pt, timestamp);
3689 		err = intel_pt_process_queues(pt, timestamp);
3690 	}
3691 	if (err)
3692 		return err;
3693 
3694 	if (event->header.type == PERF_RECORD_SAMPLE) {
3695 		if (pt->synth_opts.add_callchain && !sample->callchain)
3696 			intel_pt_add_callchain(pt, sample);
3697 		if (pt->synth_opts.add_last_branch && !sample->branch_stack)
3698 			intel_pt_add_br_stack(pt, sample);
3699 	}
3700 
3701 	if (event->header.type == PERF_RECORD_AUX &&
3702 	    (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
3703 	    pt->synth_opts.errors) {
3704 		err = intel_pt_lost(pt, sample);
3705 		if (err)
3706 			return err;
3707 	}
3708 
3709 #ifdef HAVE_LIBTRACEEVENT
3710 	if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
3711 		err = intel_pt_process_switch(pt, sample);
3712 	else
3713 #endif
3714 	if (event->header.type == PERF_RECORD_ITRACE_START)
3715 		err = intel_pt_process_itrace_start(pt, event, sample);
3716 	else if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID)
3717 		err = intel_pt_process_aux_output_hw_id(pt, event, sample);
3718 	else if (event->header.type == PERF_RECORD_SWITCH ||
3719 		 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
3720 		err = intel_pt_context_switch(pt, event, sample);
3721 
3722 	if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
3723 		err = intel_pt_text_poke(pt, event);
3724 
3725 	if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
3726 		intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
3727 			     event->header.type, sample->cpu, sample->time, timestamp);
3728 		intel_pt_log_event(event);
3729 	}
3730 
3731 	return err;
3732 }
3733 
intel_pt_flush(struct perf_session * session,struct perf_tool * tool)3734 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
3735 {
3736 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3737 					   auxtrace);
3738 	int ret;
3739 
3740 	if (dump_trace)
3741 		return 0;
3742 
3743 	if (!tool->ordered_events)
3744 		return -EINVAL;
3745 
3746 	ret = intel_pt_update_queues(pt);
3747 	if (ret < 0)
3748 		return ret;
3749 
3750 	if (pt->timeless_decoding)
3751 		return intel_pt_process_timeless_queues(pt, -1,
3752 							MAX_TIMESTAMP - 1);
3753 
3754 	return intel_pt_process_queues(pt, MAX_TIMESTAMP);
3755 }
3756 
intel_pt_free_events(struct perf_session * session)3757 static void intel_pt_free_events(struct perf_session *session)
3758 {
3759 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3760 					   auxtrace);
3761 	struct auxtrace_queues *queues = &pt->queues;
3762 	unsigned int i;
3763 
3764 	for (i = 0; i < queues->nr_queues; i++) {
3765 		intel_pt_free_queue(queues->queue_array[i].priv);
3766 		queues->queue_array[i].priv = NULL;
3767 	}
3768 	intel_pt_log_disable();
3769 	auxtrace_queues__free(queues);
3770 }
3771 
intel_pt_free(struct perf_session * session)3772 static void intel_pt_free(struct perf_session *session)
3773 {
3774 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3775 					   auxtrace);
3776 
3777 	auxtrace_heap__free(&pt->heap);
3778 	intel_pt_free_events(session);
3779 	session->auxtrace = NULL;
3780 	intel_pt_free_vmcs_info(pt);
3781 	thread__put(pt->unknown_thread);
3782 	addr_filters__exit(&pt->filts);
3783 	zfree(&pt->chain);
3784 	zfree(&pt->filter);
3785 	zfree(&pt->time_ranges);
3786 	zfree(&pt->br_stack);
3787 	free(pt);
3788 }
3789 
intel_pt_evsel_is_auxtrace(struct perf_session * session,struct evsel * evsel)3790 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
3791 				       struct evsel *evsel)
3792 {
3793 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3794 					   auxtrace);
3795 
3796 	return evsel->core.attr.type == pt->pmu_type;
3797 }
3798 
intel_pt_process_auxtrace_event(struct perf_session * session,union perf_event * event,struct perf_tool * tool __maybe_unused)3799 static int intel_pt_process_auxtrace_event(struct perf_session *session,
3800 					   union perf_event *event,
3801 					   struct perf_tool *tool __maybe_unused)
3802 {
3803 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3804 					   auxtrace);
3805 
3806 	if (!pt->data_queued) {
3807 		struct auxtrace_buffer *buffer;
3808 		off_t data_offset;
3809 		int fd = perf_data__fd(session->data);
3810 		int err;
3811 
3812 		if (perf_data__is_pipe(session->data)) {
3813 			data_offset = 0;
3814 		} else {
3815 			data_offset = lseek(fd, 0, SEEK_CUR);
3816 			if (data_offset == -1)
3817 				return -errno;
3818 		}
3819 
3820 		err = auxtrace_queues__add_event(&pt->queues, session, event,
3821 						 data_offset, &buffer);
3822 		if (err)
3823 			return err;
3824 
3825 		/* Dump here now we have copied a piped trace out of the pipe */
3826 		if (dump_trace) {
3827 			if (auxtrace_buffer__get_data(buffer, fd)) {
3828 				intel_pt_dump_event(pt, buffer->data,
3829 						    buffer->size);
3830 				auxtrace_buffer__put_data(buffer);
3831 			}
3832 		}
3833 	}
3834 
3835 	return 0;
3836 }
3837 
intel_pt_queue_data(struct perf_session * session,struct perf_sample * sample,union perf_event * event,u64 data_offset)3838 static int intel_pt_queue_data(struct perf_session *session,
3839 			       struct perf_sample *sample,
3840 			       union perf_event *event, u64 data_offset)
3841 {
3842 	struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3843 					   auxtrace);
3844 	u64 timestamp;
3845 
3846 	if (event) {
3847 		return auxtrace_queues__add_event(&pt->queues, session, event,
3848 						  data_offset, NULL);
3849 	}
3850 
3851 	if (sample->time && sample->time != (u64)-1)
3852 		timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3853 	else
3854 		timestamp = 0;
3855 
3856 	return auxtrace_queues__add_sample(&pt->queues, session, sample,
3857 					   data_offset, timestamp);
3858 }
3859 
3860 struct intel_pt_synth {
3861 	struct perf_tool dummy_tool;
3862 	struct perf_session *session;
3863 };
3864 
intel_pt_event_synth(struct perf_tool * tool,union perf_event * event,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)3865 static int intel_pt_event_synth(struct perf_tool *tool,
3866 				union perf_event *event,
3867 				struct perf_sample *sample __maybe_unused,
3868 				struct machine *machine __maybe_unused)
3869 {
3870 	struct intel_pt_synth *intel_pt_synth =
3871 			container_of(tool, struct intel_pt_synth, dummy_tool);
3872 
3873 	return perf_session__deliver_synth_event(intel_pt_synth->session, event,
3874 						 NULL);
3875 }
3876 
intel_pt_synth_event(struct perf_session * session,const char * name,struct perf_event_attr * attr,u64 id)3877 static int intel_pt_synth_event(struct perf_session *session, const char *name,
3878 				struct perf_event_attr *attr, u64 id)
3879 {
3880 	struct intel_pt_synth intel_pt_synth;
3881 	int err;
3882 
3883 	pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
3884 		 name, id, (u64)attr->sample_type);
3885 
3886 	memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
3887 	intel_pt_synth.session = session;
3888 
3889 	err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
3890 					  &id, intel_pt_event_synth);
3891 	if (err)
3892 		pr_err("%s: failed to synthesize '%s' event type\n",
3893 		       __func__, name);
3894 
3895 	return err;
3896 }
3897 
intel_pt_set_event_name(struct evlist * evlist,u64 id,const char * name)3898 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
3899 				    const char *name)
3900 {
3901 	struct evsel *evsel;
3902 
3903 	evlist__for_each_entry(evlist, evsel) {
3904 		if (evsel->core.id && evsel->core.id[0] == id) {
3905 			if (evsel->name)
3906 				zfree(&evsel->name);
3907 			evsel->name = strdup(name);
3908 			break;
3909 		}
3910 	}
3911 }
3912 
intel_pt_evsel(struct intel_pt * pt,struct evlist * evlist)3913 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
3914 					 struct evlist *evlist)
3915 {
3916 	struct evsel *evsel;
3917 
3918 	evlist__for_each_entry(evlist, evsel) {
3919 		if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
3920 			return evsel;
3921 	}
3922 
3923 	return NULL;
3924 }
3925 
intel_pt_synth_events(struct intel_pt * pt,struct perf_session * session)3926 static int intel_pt_synth_events(struct intel_pt *pt,
3927 				 struct perf_session *session)
3928 {
3929 	struct evlist *evlist = session->evlist;
3930 	struct evsel *evsel = intel_pt_evsel(pt, evlist);
3931 	struct perf_event_attr attr;
3932 	u64 id;
3933 	int err;
3934 
3935 	if (!evsel) {
3936 		pr_debug("There are no selected events with Intel Processor Trace data\n");
3937 		return 0;
3938 	}
3939 
3940 	memset(&attr, 0, sizeof(struct perf_event_attr));
3941 	attr.size = sizeof(struct perf_event_attr);
3942 	attr.type = PERF_TYPE_HARDWARE;
3943 	attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
3944 	attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
3945 			    PERF_SAMPLE_PERIOD;
3946 	if (pt->timeless_decoding)
3947 		attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
3948 	else
3949 		attr.sample_type |= PERF_SAMPLE_TIME;
3950 	if (!pt->per_cpu_mmaps)
3951 		attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
3952 	attr.exclude_user = evsel->core.attr.exclude_user;
3953 	attr.exclude_kernel = evsel->core.attr.exclude_kernel;
3954 	attr.exclude_hv = evsel->core.attr.exclude_hv;
3955 	attr.exclude_host = evsel->core.attr.exclude_host;
3956 	attr.exclude_guest = evsel->core.attr.exclude_guest;
3957 	attr.sample_id_all = evsel->core.attr.sample_id_all;
3958 	attr.read_format = evsel->core.attr.read_format;
3959 
3960 	id = evsel->core.id[0] + 1000000000;
3961 	if (!id)
3962 		id = 1;
3963 
3964 	if (pt->synth_opts.branches) {
3965 		attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3966 		attr.sample_period = 1;
3967 		attr.sample_type |= PERF_SAMPLE_ADDR;
3968 		err = intel_pt_synth_event(session, "branches", &attr, id);
3969 		if (err)
3970 			return err;
3971 		pt->sample_branches = true;
3972 		pt->branches_sample_type = attr.sample_type;
3973 		pt->branches_id = id;
3974 		id += 1;
3975 		attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3976 	}
3977 
3978 	if (pt->synth_opts.callchain)
3979 		attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3980 	if (pt->synth_opts.last_branch) {
3981 		attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3982 		/*
3983 		 * We don't use the hardware index, but the sample generation
3984 		 * code uses the new format branch_stack with this field,
3985 		 * so the event attributes must indicate that it's present.
3986 		 */
3987 		attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3988 	}
3989 
3990 	if (pt->synth_opts.instructions) {
3991 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3992 		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3993 			attr.sample_period =
3994 				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3995 		else
3996 			attr.sample_period = pt->synth_opts.period;
3997 		err = intel_pt_synth_event(session, "instructions", &attr, id);
3998 		if (err)
3999 			return err;
4000 		pt->sample_instructions = true;
4001 		pt->instructions_sample_type = attr.sample_type;
4002 		pt->instructions_id = id;
4003 		id += 1;
4004 	}
4005 
4006 	if (pt->synth_opts.cycles) {
4007 		attr.config = PERF_COUNT_HW_CPU_CYCLES;
4008 		if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
4009 			attr.sample_period =
4010 				intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
4011 		else
4012 			attr.sample_period = pt->synth_opts.period;
4013 		err = intel_pt_synth_event(session, "cycles", &attr, id);
4014 		if (err)
4015 			return err;
4016 		pt->sample_cycles = true;
4017 		pt->cycles_sample_type = attr.sample_type;
4018 		pt->cycles_id = id;
4019 		id += 1;
4020 	}
4021 
4022 	attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
4023 	attr.sample_period = 1;
4024 
4025 	if (pt->synth_opts.transactions) {
4026 		attr.config = PERF_COUNT_HW_INSTRUCTIONS;
4027 		err = intel_pt_synth_event(session, "transactions", &attr, id);
4028 		if (err)
4029 			return err;
4030 		pt->sample_transactions = true;
4031 		pt->transactions_sample_type = attr.sample_type;
4032 		pt->transactions_id = id;
4033 		intel_pt_set_event_name(evlist, id, "transactions");
4034 		id += 1;
4035 	}
4036 
4037 	attr.type = PERF_TYPE_SYNTH;
4038 	attr.sample_type |= PERF_SAMPLE_RAW;
4039 
4040 	if (pt->synth_opts.ptwrites) {
4041 		attr.config = PERF_SYNTH_INTEL_PTWRITE;
4042 		err = intel_pt_synth_event(session, "ptwrite", &attr, id);
4043 		if (err)
4044 			return err;
4045 		pt->sample_ptwrites = true;
4046 		pt->ptwrites_sample_type = attr.sample_type;
4047 		pt->ptwrites_id = id;
4048 		intel_pt_set_event_name(evlist, id, "ptwrite");
4049 		id += 1;
4050 	}
4051 
4052 	if (pt->synth_opts.pwr_events) {
4053 		pt->sample_pwr_events = true;
4054 		pt->pwr_events_sample_type = attr.sample_type;
4055 
4056 		attr.config = PERF_SYNTH_INTEL_CBR;
4057 		err = intel_pt_synth_event(session, "cbr", &attr, id);
4058 		if (err)
4059 			return err;
4060 		pt->cbr_id = id;
4061 		intel_pt_set_event_name(evlist, id, "cbr");
4062 		id += 1;
4063 
4064 		attr.config = PERF_SYNTH_INTEL_PSB;
4065 		err = intel_pt_synth_event(session, "psb", &attr, id);
4066 		if (err)
4067 			return err;
4068 		pt->psb_id = id;
4069 		intel_pt_set_event_name(evlist, id, "psb");
4070 		id += 1;
4071 	}
4072 
4073 	if (pt->synth_opts.pwr_events && (evsel->core.attr.config & INTEL_PT_CFG_PWR_EVT_EN)) {
4074 		attr.config = PERF_SYNTH_INTEL_MWAIT;
4075 		err = intel_pt_synth_event(session, "mwait", &attr, id);
4076 		if (err)
4077 			return err;
4078 		pt->mwait_id = id;
4079 		intel_pt_set_event_name(evlist, id, "mwait");
4080 		id += 1;
4081 
4082 		attr.config = PERF_SYNTH_INTEL_PWRE;
4083 		err = intel_pt_synth_event(session, "pwre", &attr, id);
4084 		if (err)
4085 			return err;
4086 		pt->pwre_id = id;
4087 		intel_pt_set_event_name(evlist, id, "pwre");
4088 		id += 1;
4089 
4090 		attr.config = PERF_SYNTH_INTEL_EXSTOP;
4091 		err = intel_pt_synth_event(session, "exstop", &attr, id);
4092 		if (err)
4093 			return err;
4094 		pt->exstop_id = id;
4095 		intel_pt_set_event_name(evlist, id, "exstop");
4096 		id += 1;
4097 
4098 		attr.config = PERF_SYNTH_INTEL_PWRX;
4099 		err = intel_pt_synth_event(session, "pwrx", &attr, id);
4100 		if (err)
4101 			return err;
4102 		pt->pwrx_id = id;
4103 		intel_pt_set_event_name(evlist, id, "pwrx");
4104 		id += 1;
4105 	}
4106 
4107 	if (pt->synth_opts.intr_events && (evsel->core.attr.config & INTEL_PT_CFG_EVT_EN)) {
4108 		attr.config = PERF_SYNTH_INTEL_EVT;
4109 		err = intel_pt_synth_event(session, "evt", &attr, id);
4110 		if (err)
4111 			return err;
4112 		pt->evt_sample_type = attr.sample_type;
4113 		pt->evt_id = id;
4114 		intel_pt_set_event_name(evlist, id, "evt");
4115 		id += 1;
4116 	}
4117 
4118 	if (pt->synth_opts.intr_events && pt->cap_event_trace) {
4119 		attr.config = PERF_SYNTH_INTEL_IFLAG_CHG;
4120 		err = intel_pt_synth_event(session, "iflag", &attr, id);
4121 		if (err)
4122 			return err;
4123 		pt->iflag_chg_sample_type = attr.sample_type;
4124 		pt->iflag_chg_id = id;
4125 		intel_pt_set_event_name(evlist, id, "iflag");
4126 		id += 1;
4127 	}
4128 
4129 	return 0;
4130 }
4131 
intel_pt_setup_pebs_events(struct intel_pt * pt)4132 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
4133 {
4134 	struct evsel *evsel;
4135 
4136 	if (!pt->synth_opts.other_events)
4137 		return;
4138 
4139 	evlist__for_each_entry(pt->session->evlist, evsel) {
4140 		if (evsel->core.attr.aux_output && evsel->core.id) {
4141 			if (pt->single_pebs) {
4142 				pt->single_pebs = false;
4143 				return;
4144 			}
4145 			pt->single_pebs = true;
4146 			pt->sample_pebs = true;
4147 			pt->pebs_data_src_fmt = intel_pt_data_src_fmt(pt, evsel);
4148 			pt->pebs_evsel = evsel;
4149 		}
4150 	}
4151 }
4152 
intel_pt_find_sched_switch(struct evlist * evlist)4153 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
4154 {
4155 	struct evsel *evsel;
4156 
4157 	evlist__for_each_entry_reverse(evlist, evsel) {
4158 		const char *name = evsel__name(evsel);
4159 
4160 		if (!strcmp(name, "sched:sched_switch"))
4161 			return evsel;
4162 	}
4163 
4164 	return NULL;
4165 }
4166 
intel_pt_find_switch(struct evlist * evlist)4167 static bool intel_pt_find_switch(struct evlist *evlist)
4168 {
4169 	struct evsel *evsel;
4170 
4171 	evlist__for_each_entry(evlist, evsel) {
4172 		if (evsel->core.attr.context_switch)
4173 			return true;
4174 	}
4175 
4176 	return false;
4177 }
4178 
intel_pt_perf_config(const char * var,const char * value,void * data)4179 static int intel_pt_perf_config(const char *var, const char *value, void *data)
4180 {
4181 	struct intel_pt *pt = data;
4182 
4183 	if (!strcmp(var, "intel-pt.mispred-all"))
4184 		pt->mispred_all = perf_config_bool(var, value);
4185 
4186 	if (!strcmp(var, "intel-pt.max-loops"))
4187 		perf_config_int(&pt->max_loops, var, value);
4188 
4189 	return 0;
4190 }
4191 
4192 /* Find least TSC which converts to ns or later */
intel_pt_tsc_start(u64 ns,struct intel_pt * pt)4193 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
4194 {
4195 	u64 tsc, tm;
4196 
4197 	tsc = perf_time_to_tsc(ns, &pt->tc);
4198 
4199 	while (1) {
4200 		tm = tsc_to_perf_time(tsc, &pt->tc);
4201 		if (tm < ns)
4202 			break;
4203 		tsc -= 1;
4204 	}
4205 
4206 	while (tm < ns)
4207 		tm = tsc_to_perf_time(++tsc, &pt->tc);
4208 
4209 	return tsc;
4210 }
4211 
4212 /* Find greatest TSC which converts to ns or earlier */
intel_pt_tsc_end(u64 ns,struct intel_pt * pt)4213 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
4214 {
4215 	u64 tsc, tm;
4216 
4217 	tsc = perf_time_to_tsc(ns, &pt->tc);
4218 
4219 	while (1) {
4220 		tm = tsc_to_perf_time(tsc, &pt->tc);
4221 		if (tm > ns)
4222 			break;
4223 		tsc += 1;
4224 	}
4225 
4226 	while (tm > ns)
4227 		tm = tsc_to_perf_time(--tsc, &pt->tc);
4228 
4229 	return tsc;
4230 }
4231 
intel_pt_setup_time_ranges(struct intel_pt * pt,struct itrace_synth_opts * opts)4232 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
4233 				      struct itrace_synth_opts *opts)
4234 {
4235 	struct perf_time_interval *p = opts->ptime_range;
4236 	int n = opts->range_num;
4237 	int i;
4238 
4239 	if (!n || !p || pt->timeless_decoding)
4240 		return 0;
4241 
4242 	pt->time_ranges = calloc(n, sizeof(struct range));
4243 	if (!pt->time_ranges)
4244 		return -ENOMEM;
4245 
4246 	pt->range_cnt = n;
4247 
4248 	intel_pt_log("%s: %u range(s)\n", __func__, n);
4249 
4250 	for (i = 0; i < n; i++) {
4251 		struct range *r = &pt->time_ranges[i];
4252 		u64 ts = p[i].start;
4253 		u64 te = p[i].end;
4254 
4255 		/*
4256 		 * Take care to ensure the TSC range matches the perf-time range
4257 		 * when converted back to perf-time.
4258 		 */
4259 		r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
4260 		r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
4261 
4262 		intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
4263 			     i, ts, te);
4264 		intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
4265 			     i, r->start, r->end);
4266 	}
4267 
4268 	return 0;
4269 }
4270 
intel_pt_parse_vm_tm_corr_arg(struct intel_pt * pt,char ** args)4271 static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args)
4272 {
4273 	struct intel_pt_vmcs_info *vmcs_info;
4274 	u64 tsc_offset, vmcs;
4275 	char *p = *args;
4276 
4277 	errno = 0;
4278 
4279 	p = skip_spaces(p);
4280 	if (!*p)
4281 		return 1;
4282 
4283 	tsc_offset = strtoull(p, &p, 0);
4284 	if (errno)
4285 		return -errno;
4286 	p = skip_spaces(p);
4287 	if (*p != ':') {
4288 		pt->dflt_tsc_offset = tsc_offset;
4289 		*args = p;
4290 		return 0;
4291 	}
4292 	p += 1;
4293 	while (1) {
4294 		vmcs = strtoull(p, &p, 0);
4295 		if (errno)
4296 			return -errno;
4297 		if (!vmcs)
4298 			return -EINVAL;
4299 		vmcs_info = intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, tsc_offset);
4300 		if (!vmcs_info)
4301 			return -ENOMEM;
4302 		p = skip_spaces(p);
4303 		if (*p != ',')
4304 			break;
4305 		p += 1;
4306 	}
4307 	*args = p;
4308 	return 0;
4309 }
4310 
intel_pt_parse_vm_tm_corr_args(struct intel_pt * pt)4311 static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt)
4312 {
4313 	char *args = pt->synth_opts.vm_tm_corr_args;
4314 	int ret;
4315 
4316 	if (!args)
4317 		return 0;
4318 
4319 	do {
4320 		ret = intel_pt_parse_vm_tm_corr_arg(pt, &args);
4321 	} while (!ret);
4322 
4323 	if (ret < 0) {
4324 		pr_err("Failed to parse VM Time Correlation options\n");
4325 		return ret;
4326 	}
4327 
4328 	return 0;
4329 }
4330 
4331 static const char * const intel_pt_info_fmts[] = {
4332 	[INTEL_PT_PMU_TYPE]		= "  PMU Type            %"PRId64"\n",
4333 	[INTEL_PT_TIME_SHIFT]		= "  Time Shift          %"PRIu64"\n",
4334 	[INTEL_PT_TIME_MULT]		= "  Time Muliplier      %"PRIu64"\n",
4335 	[INTEL_PT_TIME_ZERO]		= "  Time Zero           %"PRIu64"\n",
4336 	[INTEL_PT_CAP_USER_TIME_ZERO]	= "  Cap Time Zero       %"PRId64"\n",
4337 	[INTEL_PT_TSC_BIT]		= "  TSC bit             %#"PRIx64"\n",
4338 	[INTEL_PT_NORETCOMP_BIT]	= "  NoRETComp bit       %#"PRIx64"\n",
4339 	[INTEL_PT_HAVE_SCHED_SWITCH]	= "  Have sched_switch   %"PRId64"\n",
4340 	[INTEL_PT_SNAPSHOT_MODE]	= "  Snapshot mode       %"PRId64"\n",
4341 	[INTEL_PT_PER_CPU_MMAPS]	= "  Per-cpu maps        %"PRId64"\n",
4342 	[INTEL_PT_MTC_BIT]		= "  MTC bit             %#"PRIx64"\n",
4343 	[INTEL_PT_MTC_FREQ_BITS]	= "  MTC freq bits       %#"PRIx64"\n",
4344 	[INTEL_PT_TSC_CTC_N]		= "  TSC:CTC numerator   %"PRIu64"\n",
4345 	[INTEL_PT_TSC_CTC_D]		= "  TSC:CTC denominator %"PRIu64"\n",
4346 	[INTEL_PT_CYC_BIT]		= "  CYC bit             %#"PRIx64"\n",
4347 	[INTEL_PT_MAX_NONTURBO_RATIO]	= "  Max non-turbo ratio %"PRIu64"\n",
4348 	[INTEL_PT_FILTER_STR_LEN]	= "  Filter string len.  %"PRIu64"\n",
4349 };
4350 
intel_pt_print_info(__u64 * arr,int start,int finish)4351 static void intel_pt_print_info(__u64 *arr, int start, int finish)
4352 {
4353 	int i;
4354 
4355 	if (!dump_trace)
4356 		return;
4357 
4358 	for (i = start; i <= finish; i++) {
4359 		const char *fmt = intel_pt_info_fmts[i];
4360 
4361 		if (fmt)
4362 			fprintf(stdout, fmt, arr[i]);
4363 	}
4364 }
4365 
intel_pt_print_info_str(const char * name,const char * str)4366 static void intel_pt_print_info_str(const char *name, const char *str)
4367 {
4368 	if (!dump_trace)
4369 		return;
4370 
4371 	fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
4372 }
4373 
intel_pt_has(struct perf_record_auxtrace_info * auxtrace_info,int pos)4374 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
4375 {
4376 	return auxtrace_info->header.size >=
4377 		sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
4378 }
4379 
intel_pt_process_auxtrace_info(union perf_event * event,struct perf_session * session)4380 int intel_pt_process_auxtrace_info(union perf_event *event,
4381 				   struct perf_session *session)
4382 {
4383 	struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
4384 	size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
4385 	struct intel_pt *pt;
4386 	void *info_end;
4387 	__u64 *info;
4388 	int err;
4389 
4390 	if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
4391 					min_sz)
4392 		return -EINVAL;
4393 
4394 	pt = zalloc(sizeof(struct intel_pt));
4395 	if (!pt)
4396 		return -ENOMEM;
4397 
4398 	pt->vmcs_info = RB_ROOT;
4399 
4400 	addr_filters__init(&pt->filts);
4401 
4402 	err = perf_config(intel_pt_perf_config, pt);
4403 	if (err)
4404 		goto err_free;
4405 
4406 	err = auxtrace_queues__init(&pt->queues);
4407 	if (err)
4408 		goto err_free;
4409 
4410 	if (session->itrace_synth_opts->set) {
4411 		pt->synth_opts = *session->itrace_synth_opts;
4412 	} else {
4413 		struct itrace_synth_opts *opts = session->itrace_synth_opts;
4414 
4415 		itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample);
4416 		if (!opts->default_no_sample && !opts->inject) {
4417 			pt->synth_opts.branches = false;
4418 			pt->synth_opts.callchain = true;
4419 			pt->synth_opts.add_callchain = true;
4420 		}
4421 		pt->synth_opts.thread_stack = opts->thread_stack;
4422 	}
4423 
4424 	if (!(pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT))
4425 		intel_pt_log_set_name(INTEL_PT_PMU_NAME);
4426 
4427 	pt->session = session;
4428 	pt->machine = &session->machines.host; /* No kvm support */
4429 	pt->auxtrace_type = auxtrace_info->type;
4430 	pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
4431 	pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
4432 	pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
4433 	pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
4434 	pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
4435 	pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
4436 	pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
4437 	pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
4438 	pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
4439 	pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
4440 	intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
4441 			    INTEL_PT_PER_CPU_MMAPS);
4442 
4443 	if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
4444 		pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
4445 		pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
4446 		pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
4447 		pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
4448 		pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
4449 		intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
4450 				    INTEL_PT_CYC_BIT);
4451 	}
4452 
4453 	if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
4454 		pt->max_non_turbo_ratio =
4455 			auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
4456 		intel_pt_print_info(&auxtrace_info->priv[0],
4457 				    INTEL_PT_MAX_NONTURBO_RATIO,
4458 				    INTEL_PT_MAX_NONTURBO_RATIO);
4459 	}
4460 
4461 	info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
4462 	info_end = (void *)auxtrace_info + auxtrace_info->header.size;
4463 
4464 	if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
4465 		size_t len;
4466 
4467 		len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
4468 		intel_pt_print_info(&auxtrace_info->priv[0],
4469 				    INTEL_PT_FILTER_STR_LEN,
4470 				    INTEL_PT_FILTER_STR_LEN);
4471 		if (len) {
4472 			const char *filter = (const char *)info;
4473 
4474 			len = roundup(len + 1, 8);
4475 			info += len >> 3;
4476 			if ((void *)info > info_end) {
4477 				pr_err("%s: bad filter string length\n", __func__);
4478 				err = -EINVAL;
4479 				goto err_free_queues;
4480 			}
4481 			pt->filter = memdup(filter, len);
4482 			if (!pt->filter) {
4483 				err = -ENOMEM;
4484 				goto err_free_queues;
4485 			}
4486 			if (session->header.needs_swap)
4487 				mem_bswap_64(pt->filter, len);
4488 			if (pt->filter[len - 1]) {
4489 				pr_err("%s: filter string not null terminated\n", __func__);
4490 				err = -EINVAL;
4491 				goto err_free_queues;
4492 			}
4493 			err = addr_filters__parse_bare_filter(&pt->filts,
4494 							      filter);
4495 			if (err)
4496 				goto err_free_queues;
4497 		}
4498 		intel_pt_print_info_str("Filter string", pt->filter);
4499 	}
4500 
4501 	if ((void *)info < info_end) {
4502 		pt->cap_event_trace = *info++;
4503 		if (dump_trace)
4504 			fprintf(stdout, "  Cap Event Trace     %d\n",
4505 				pt->cap_event_trace);
4506 	}
4507 
4508 	pt->timeless_decoding = intel_pt_timeless_decoding(pt);
4509 	if (pt->timeless_decoding && !pt->tc.time_mult)
4510 		pt->tc.time_mult = 1;
4511 	pt->have_tsc = intel_pt_have_tsc(pt);
4512 	pt->sampling_mode = intel_pt_sampling_mode(pt);
4513 	pt->est_tsc = !pt->timeless_decoding;
4514 
4515 	if (pt->synth_opts.vm_time_correlation) {
4516 		if (pt->timeless_decoding) {
4517 			pr_err("Intel PT has no time information for VM Time Correlation\n");
4518 			err = -EINVAL;
4519 			goto err_free_queues;
4520 		}
4521 		if (session->itrace_synth_opts->ptime_range) {
4522 			pr_err("Time ranges cannot be specified with VM Time Correlation\n");
4523 			err = -EINVAL;
4524 			goto err_free_queues;
4525 		}
4526 		/* Currently TSC Offset is calculated using MTC packets */
4527 		if (!intel_pt_have_mtc(pt)) {
4528 			pr_err("MTC packets must have been enabled for VM Time Correlation\n");
4529 			err = -EINVAL;
4530 			goto err_free_queues;
4531 		}
4532 		err = intel_pt_parse_vm_tm_corr_args(pt);
4533 		if (err)
4534 			goto err_free_queues;
4535 	}
4536 
4537 	pt->unknown_thread = thread__new(999999999, 999999999);
4538 	if (!pt->unknown_thread) {
4539 		err = -ENOMEM;
4540 		goto err_free_queues;
4541 	}
4542 
4543 	err = thread__set_comm(pt->unknown_thread, "unknown", 0);
4544 	if (err)
4545 		goto err_delete_thread;
4546 	if (thread__init_maps(pt->unknown_thread, pt->machine)) {
4547 		err = -ENOMEM;
4548 		goto err_delete_thread;
4549 	}
4550 
4551 	pt->auxtrace.process_event = intel_pt_process_event;
4552 	pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
4553 	pt->auxtrace.queue_data = intel_pt_queue_data;
4554 	pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
4555 	pt->auxtrace.flush_events = intel_pt_flush;
4556 	pt->auxtrace.free_events = intel_pt_free_events;
4557 	pt->auxtrace.free = intel_pt_free;
4558 	pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
4559 	session->auxtrace = &pt->auxtrace;
4560 
4561 	if (dump_trace)
4562 		return 0;
4563 
4564 	if (pt->have_sched_switch == 1) {
4565 		pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
4566 		if (!pt->switch_evsel) {
4567 			pr_err("%s: missing sched_switch event\n", __func__);
4568 			err = -EINVAL;
4569 			goto err_delete_thread;
4570 		}
4571 	} else if (pt->have_sched_switch == 2 &&
4572 		   !intel_pt_find_switch(session->evlist)) {
4573 		pr_err("%s: missing context_switch attribute flag\n", __func__);
4574 		err = -EINVAL;
4575 		goto err_delete_thread;
4576 	}
4577 
4578 	if (pt->synth_opts.log) {
4579 		bool log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR;
4580 		unsigned int log_on_error_size = pt->synth_opts.log_on_error_size;
4581 
4582 		intel_pt_log_enable(log_on_error, log_on_error_size);
4583 	}
4584 
4585 	/* Maximum non-turbo ratio is TSC freq / 100 MHz */
4586 	if (pt->tc.time_mult) {
4587 		u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
4588 
4589 		if (!pt->max_non_turbo_ratio)
4590 			pt->max_non_turbo_ratio =
4591 					(tsc_freq + 50000000) / 100000000;
4592 		intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
4593 		intel_pt_log("Maximum non-turbo ratio %u\n",
4594 			     pt->max_non_turbo_ratio);
4595 		pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
4596 	}
4597 
4598 	err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
4599 	if (err)
4600 		goto err_delete_thread;
4601 
4602 	if (pt->synth_opts.calls)
4603 		pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
4604 				       PERF_IP_FLAG_TRACE_END;
4605 	if (pt->synth_opts.returns)
4606 		pt->branches_filter |= PERF_IP_FLAG_RETURN |
4607 				       PERF_IP_FLAG_TRACE_BEGIN;
4608 
4609 	if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
4610 	    !symbol_conf.use_callchain) {
4611 		symbol_conf.use_callchain = true;
4612 		if (callchain_register_param(&callchain_param) < 0) {
4613 			symbol_conf.use_callchain = false;
4614 			pt->synth_opts.callchain = false;
4615 			pt->synth_opts.add_callchain = false;
4616 		}
4617 	}
4618 
4619 	if (pt->synth_opts.add_callchain) {
4620 		err = intel_pt_callchain_init(pt);
4621 		if (err)
4622 			goto err_delete_thread;
4623 	}
4624 
4625 	if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
4626 		pt->br_stack_sz = pt->synth_opts.last_branch_sz;
4627 		pt->br_stack_sz_plus = pt->br_stack_sz;
4628 	}
4629 
4630 	if (pt->synth_opts.add_last_branch) {
4631 		err = intel_pt_br_stack_init(pt);
4632 		if (err)
4633 			goto err_delete_thread;
4634 		/*
4635 		 * Additional branch stack size to cater for tracing from the
4636 		 * actual sample ip to where the sample time is recorded.
4637 		 * Measured at about 200 branches, but generously set to 1024.
4638 		 * If kernel space is not being traced, then add just 1 for the
4639 		 * branch to kernel space.
4640 		 */
4641 		if (intel_pt_tracing_kernel(pt))
4642 			pt->br_stack_sz_plus += 1024;
4643 		else
4644 			pt->br_stack_sz_plus += 1;
4645 	}
4646 
4647 	pt->use_thread_stack = pt->synth_opts.callchain ||
4648 			       pt->synth_opts.add_callchain ||
4649 			       pt->synth_opts.thread_stack ||
4650 			       pt->synth_opts.last_branch ||
4651 			       pt->synth_opts.add_last_branch;
4652 
4653 	pt->callstack = pt->synth_opts.callchain ||
4654 			pt->synth_opts.add_callchain ||
4655 			pt->synth_opts.thread_stack;
4656 
4657 	err = intel_pt_synth_events(pt, session);
4658 	if (err)
4659 		goto err_delete_thread;
4660 
4661 	intel_pt_setup_pebs_events(pt);
4662 
4663 	if (perf_data__is_pipe(session->data)) {
4664 		pr_warning("WARNING: Intel PT with pipe mode is not recommended.\n"
4665 			   "         The output cannot relied upon.  In particular,\n"
4666 			   "         timestamps and the order of events may be incorrect.\n");
4667 	}
4668 
4669 	if (pt->sampling_mode || list_empty(&session->auxtrace_index))
4670 		err = auxtrace_queue_data(session, true, true);
4671 	else
4672 		err = auxtrace_queues__process_index(&pt->queues, session);
4673 	if (err)
4674 		goto err_delete_thread;
4675 
4676 	if (pt->queues.populated)
4677 		pt->data_queued = true;
4678 
4679 	if (pt->timeless_decoding)
4680 		pr_debug2("Intel PT decoding without timestamps\n");
4681 
4682 	return 0;
4683 
4684 err_delete_thread:
4685 	zfree(&pt->chain);
4686 	thread__zput(pt->unknown_thread);
4687 err_free_queues:
4688 	intel_pt_log_disable();
4689 	auxtrace_queues__free(&pt->queues);
4690 	session->auxtrace = NULL;
4691 err_free:
4692 	addr_filters__exit(&pt->filts);
4693 	zfree(&pt->filter);
4694 	zfree(&pt->time_ranges);
4695 	free(pt);
4696 	return err;
4697 }
4698