1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Kernel Probes (KProbes)
4 *
5 * Copyright IBM Corp. 2002, 2006
6 *
7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
8 */
9
10 #define pr_fmt(fmt) "kprobes: " fmt
11
12 #include <linux/moduleloader.h>
13 #include <linux/kprobes.h>
14 #include <linux/ptrace.h>
15 #include <linux/preempt.h>
16 #include <linux/stop_machine.h>
17 #include <linux/kdebug.h>
18 #include <linux/uaccess.h>
19 #include <linux/extable.h>
20 #include <linux/module.h>
21 #include <linux/slab.h>
22 #include <linux/hardirq.h>
23 #include <linux/ftrace.h>
24 #include <asm/set_memory.h>
25 #include <asm/sections.h>
26 #include <asm/dis.h>
27 #include "kprobes.h"
28 #include "entry.h"
29
30 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
31 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
32
33 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
34
35 static int insn_page_in_use;
36
alloc_insn_page(void)37 void *alloc_insn_page(void)
38 {
39 void *page;
40
41 page = module_alloc(PAGE_SIZE);
42 if (!page)
43 return NULL;
44 set_memory_rox((unsigned long)page, 1);
45 return page;
46 }
47
alloc_s390_insn_page(void)48 static void *alloc_s390_insn_page(void)
49 {
50 if (xchg(&insn_page_in_use, 1) == 1)
51 return NULL;
52 return &kprobes_insn_page;
53 }
54
free_s390_insn_page(void * page)55 static void free_s390_insn_page(void *page)
56 {
57 xchg(&insn_page_in_use, 0);
58 }
59
60 struct kprobe_insn_cache kprobe_s390_insn_slots = {
61 .mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
62 .alloc = alloc_s390_insn_page,
63 .free = free_s390_insn_page,
64 .pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
65 .insn_size = MAX_INSN_SIZE,
66 };
67
copy_instruction(struct kprobe * p)68 static void copy_instruction(struct kprobe *p)
69 {
70 kprobe_opcode_t insn[MAX_INSN_SIZE];
71 s64 disp, new_disp;
72 u64 addr, new_addr;
73 unsigned int len;
74
75 len = insn_length(*p->addr >> 8);
76 memcpy(&insn, p->addr, len);
77 p->opcode = insn[0];
78 if (probe_is_insn_relative_long(&insn[0])) {
79 /*
80 * For pc-relative instructions in RIL-b or RIL-c format patch
81 * the RI2 displacement field. We have already made sure that
82 * the insn slot for the patched instruction is within the same
83 * 2GB area as the original instruction (either kernel image or
84 * module area). Therefore the new displacement will always fit.
85 */
86 disp = *(s32 *)&insn[1];
87 addr = (u64)(unsigned long)p->addr;
88 new_addr = (u64)(unsigned long)p->ainsn.insn;
89 new_disp = ((addr + (disp * 2)) - new_addr) / 2;
90 *(s32 *)&insn[1] = new_disp;
91 }
92 s390_kernel_write(p->ainsn.insn, &insn, len);
93 }
94 NOKPROBE_SYMBOL(copy_instruction);
95
s390_get_insn_slot(struct kprobe * p)96 static int s390_get_insn_slot(struct kprobe *p)
97 {
98 /*
99 * Get an insn slot that is within the same 2GB area like the original
100 * instruction. That way instructions with a 32bit signed displacement
101 * field can be patched and executed within the insn slot.
102 */
103 p->ainsn.insn = NULL;
104 if (is_kernel((unsigned long)p->addr))
105 p->ainsn.insn = get_s390_insn_slot();
106 else if (is_module_addr(p->addr))
107 p->ainsn.insn = get_insn_slot();
108 return p->ainsn.insn ? 0 : -ENOMEM;
109 }
110 NOKPROBE_SYMBOL(s390_get_insn_slot);
111
s390_free_insn_slot(struct kprobe * p)112 static void s390_free_insn_slot(struct kprobe *p)
113 {
114 if (!p->ainsn.insn)
115 return;
116 if (is_kernel((unsigned long)p->addr))
117 free_s390_insn_slot(p->ainsn.insn, 0);
118 else
119 free_insn_slot(p->ainsn.insn, 0);
120 p->ainsn.insn = NULL;
121 }
122 NOKPROBE_SYMBOL(s390_free_insn_slot);
123
124 /* Check if paddr is at an instruction boundary */
can_probe(unsigned long paddr)125 static bool can_probe(unsigned long paddr)
126 {
127 unsigned long addr, offset = 0;
128 kprobe_opcode_t insn;
129 struct kprobe *kp;
130
131 if (paddr & 0x01)
132 return false;
133
134 if (!kallsyms_lookup_size_offset(paddr, NULL, &offset))
135 return false;
136
137 /* Decode instructions */
138 addr = paddr - offset;
139 while (addr < paddr) {
140 if (copy_from_kernel_nofault(&insn, (void *)addr, sizeof(insn)))
141 return false;
142
143 if (insn >> 8 == 0) {
144 if (insn != BREAKPOINT_INSTRUCTION) {
145 /*
146 * Note that QEMU inserts opcode 0x0000 to implement
147 * software breakpoints for guests. Since the size of
148 * the original instruction is unknown, stop following
149 * instructions and prevent setting a kprobe.
150 */
151 return false;
152 }
153 /*
154 * Check if the instruction has been modified by another
155 * kprobe, in which case the original instruction is
156 * decoded.
157 */
158 kp = get_kprobe((void *)addr);
159 if (!kp) {
160 /* not a kprobe */
161 return false;
162 }
163 insn = kp->opcode;
164 }
165 addr += insn_length(insn >> 8);
166 }
167 return addr == paddr;
168 }
169
arch_prepare_kprobe(struct kprobe * p)170 int arch_prepare_kprobe(struct kprobe *p)
171 {
172 if (!can_probe((unsigned long)p->addr))
173 return -EINVAL;
174 /* Make sure the probe isn't going on a difficult instruction */
175 if (probe_is_prohibited_opcode(p->addr))
176 return -EINVAL;
177 if (s390_get_insn_slot(p))
178 return -ENOMEM;
179 copy_instruction(p);
180 return 0;
181 }
182 NOKPROBE_SYMBOL(arch_prepare_kprobe);
183
184 struct swap_insn_args {
185 struct kprobe *p;
186 unsigned int arm_kprobe : 1;
187 };
188
swap_instruction(void * data)189 static int swap_instruction(void *data)
190 {
191 struct swap_insn_args *args = data;
192 struct kprobe *p = args->p;
193 u16 opc;
194
195 opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
196 s390_kernel_write(p->addr, &opc, sizeof(opc));
197 return 0;
198 }
199 NOKPROBE_SYMBOL(swap_instruction);
200
arch_arm_kprobe(struct kprobe * p)201 void arch_arm_kprobe(struct kprobe *p)
202 {
203 struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
204
205 stop_machine_cpuslocked(swap_instruction, &args, NULL);
206 }
207 NOKPROBE_SYMBOL(arch_arm_kprobe);
208
arch_disarm_kprobe(struct kprobe * p)209 void arch_disarm_kprobe(struct kprobe *p)
210 {
211 struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
212
213 stop_machine_cpuslocked(swap_instruction, &args, NULL);
214 }
215 NOKPROBE_SYMBOL(arch_disarm_kprobe);
216
arch_remove_kprobe(struct kprobe * p)217 void arch_remove_kprobe(struct kprobe *p)
218 {
219 s390_free_insn_slot(p);
220 }
221 NOKPROBE_SYMBOL(arch_remove_kprobe);
222
enable_singlestep(struct kprobe_ctlblk * kcb,struct pt_regs * regs,unsigned long ip)223 static void enable_singlestep(struct kprobe_ctlblk *kcb,
224 struct pt_regs *regs,
225 unsigned long ip)
226 {
227 struct per_regs per_kprobe;
228
229 /* Set up the PER control registers %cr9-%cr11 */
230 per_kprobe.control = PER_EVENT_IFETCH;
231 per_kprobe.start = ip;
232 per_kprobe.end = ip;
233
234 /* Save control regs and psw mask */
235 __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
236 kcb->kprobe_saved_imask = regs->psw.mask &
237 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
238
239 /* Set PER control regs, turns on single step for the given address */
240 __ctl_load(per_kprobe, 9, 11);
241 regs->psw.mask |= PSW_MASK_PER;
242 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
243 regs->psw.addr = ip;
244 }
245 NOKPROBE_SYMBOL(enable_singlestep);
246
disable_singlestep(struct kprobe_ctlblk * kcb,struct pt_regs * regs,unsigned long ip)247 static void disable_singlestep(struct kprobe_ctlblk *kcb,
248 struct pt_regs *regs,
249 unsigned long ip)
250 {
251 /* Restore control regs and psw mask, set new psw address */
252 __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
253 regs->psw.mask &= ~PSW_MASK_PER;
254 regs->psw.mask |= kcb->kprobe_saved_imask;
255 regs->psw.addr = ip;
256 }
257 NOKPROBE_SYMBOL(disable_singlestep);
258
259 /*
260 * Activate a kprobe by storing its pointer to current_kprobe. The
261 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
262 * two kprobes can be active, see KPROBE_REENTER.
263 */
push_kprobe(struct kprobe_ctlblk * kcb,struct kprobe * p)264 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
265 {
266 kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
267 kcb->prev_kprobe.status = kcb->kprobe_status;
268 __this_cpu_write(current_kprobe, p);
269 }
270 NOKPROBE_SYMBOL(push_kprobe);
271
272 /*
273 * Deactivate a kprobe by backing up to the previous state. If the
274 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
275 * for any other state prev_kprobe.kp will be NULL.
276 */
pop_kprobe(struct kprobe_ctlblk * kcb)277 static void pop_kprobe(struct kprobe_ctlblk *kcb)
278 {
279 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
280 kcb->kprobe_status = kcb->prev_kprobe.status;
281 kcb->prev_kprobe.kp = NULL;
282 }
283 NOKPROBE_SYMBOL(pop_kprobe);
284
kprobe_reenter_check(struct kprobe_ctlblk * kcb,struct kprobe * p)285 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
286 {
287 switch (kcb->kprobe_status) {
288 case KPROBE_HIT_SSDONE:
289 case KPROBE_HIT_ACTIVE:
290 kprobes_inc_nmissed_count(p);
291 break;
292 case KPROBE_HIT_SS:
293 case KPROBE_REENTER:
294 default:
295 /*
296 * A kprobe on the code path to single step an instruction
297 * is a BUG. The code path resides in the .kprobes.text
298 * section and is executed with interrupts disabled.
299 */
300 pr_err("Failed to recover from reentered kprobes.\n");
301 dump_kprobe(p);
302 BUG();
303 }
304 }
305 NOKPROBE_SYMBOL(kprobe_reenter_check);
306
kprobe_handler(struct pt_regs * regs)307 static int kprobe_handler(struct pt_regs *regs)
308 {
309 struct kprobe_ctlblk *kcb;
310 struct kprobe *p;
311
312 /*
313 * We want to disable preemption for the entire duration of kprobe
314 * processing. That includes the calls to the pre/post handlers
315 * and single stepping the kprobe instruction.
316 */
317 preempt_disable();
318 kcb = get_kprobe_ctlblk();
319 p = get_kprobe((void *)(regs->psw.addr - 2));
320
321 if (p) {
322 if (kprobe_running()) {
323 /*
324 * We have hit a kprobe while another is still
325 * active. This can happen in the pre and post
326 * handler. Single step the instruction of the
327 * new probe but do not call any handler function
328 * of this secondary kprobe.
329 * push_kprobe and pop_kprobe saves and restores
330 * the currently active kprobe.
331 */
332 kprobe_reenter_check(kcb, p);
333 push_kprobe(kcb, p);
334 kcb->kprobe_status = KPROBE_REENTER;
335 } else {
336 /*
337 * If we have no pre-handler or it returned 0, we
338 * continue with single stepping. If we have a
339 * pre-handler and it returned non-zero, it prepped
340 * for changing execution path, so get out doing
341 * nothing more here.
342 */
343 push_kprobe(kcb, p);
344 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
345 if (p->pre_handler && p->pre_handler(p, regs)) {
346 pop_kprobe(kcb);
347 preempt_enable_no_resched();
348 return 1;
349 }
350 kcb->kprobe_status = KPROBE_HIT_SS;
351 }
352 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
353 return 1;
354 } /* else:
355 * No kprobe at this address and no active kprobe. The trap has
356 * not been caused by a kprobe breakpoint. The race of breakpoint
357 * vs. kprobe remove does not exist because on s390 as we use
358 * stop_machine to arm/disarm the breakpoints.
359 */
360 preempt_enable_no_resched();
361 return 0;
362 }
363 NOKPROBE_SYMBOL(kprobe_handler);
364
365 /*
366 * Called after single-stepping. p->addr is the address of the
367 * instruction whose first byte has been replaced by the "breakpoint"
368 * instruction. To avoid the SMP problems that can occur when we
369 * temporarily put back the original opcode to single-step, we
370 * single-stepped a copy of the instruction. The address of this
371 * copy is p->ainsn.insn.
372 */
resume_execution(struct kprobe * p,struct pt_regs * regs)373 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
374 {
375 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
376 unsigned long ip = regs->psw.addr;
377 int fixup = probe_get_fixup_type(p->ainsn.insn);
378
379 if (fixup & FIXUP_PSW_NORMAL)
380 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
381
382 if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
383 int ilen = insn_length(p->ainsn.insn[0] >> 8);
384 if (ip - (unsigned long) p->ainsn.insn == ilen)
385 ip = (unsigned long) p->addr + ilen;
386 }
387
388 if (fixup & FIXUP_RETURN_REGISTER) {
389 int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
390 regs->gprs[reg] += (unsigned long) p->addr -
391 (unsigned long) p->ainsn.insn;
392 }
393
394 disable_singlestep(kcb, regs, ip);
395 }
396 NOKPROBE_SYMBOL(resume_execution);
397
post_kprobe_handler(struct pt_regs * regs)398 static int post_kprobe_handler(struct pt_regs *regs)
399 {
400 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
401 struct kprobe *p = kprobe_running();
402
403 if (!p)
404 return 0;
405
406 resume_execution(p, regs);
407 if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
408 kcb->kprobe_status = KPROBE_HIT_SSDONE;
409 p->post_handler(p, regs, 0);
410 }
411 pop_kprobe(kcb);
412 preempt_enable_no_resched();
413
414 /*
415 * if somebody else is singlestepping across a probe point, psw mask
416 * will have PER set, in which case, continue the remaining processing
417 * of do_single_step, as if this is not a probe hit.
418 */
419 if (regs->psw.mask & PSW_MASK_PER)
420 return 0;
421
422 return 1;
423 }
424 NOKPROBE_SYMBOL(post_kprobe_handler);
425
kprobe_trap_handler(struct pt_regs * regs,int trapnr)426 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
427 {
428 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
429 struct kprobe *p = kprobe_running();
430
431 switch(kcb->kprobe_status) {
432 case KPROBE_HIT_SS:
433 case KPROBE_REENTER:
434 /*
435 * We are here because the instruction being single
436 * stepped caused a page fault. We reset the current
437 * kprobe and the nip points back to the probe address
438 * and allow the page fault handler to continue as a
439 * normal page fault.
440 */
441 disable_singlestep(kcb, regs, (unsigned long) p->addr);
442 pop_kprobe(kcb);
443 preempt_enable_no_resched();
444 break;
445 case KPROBE_HIT_ACTIVE:
446 case KPROBE_HIT_SSDONE:
447 /*
448 * In case the user-specified fault handler returned
449 * zero, try to fix up.
450 */
451 if (fixup_exception(regs))
452 return 1;
453 /*
454 * fixup_exception() could not handle it,
455 * Let do_page_fault() fix it.
456 */
457 break;
458 default:
459 break;
460 }
461 return 0;
462 }
463 NOKPROBE_SYMBOL(kprobe_trap_handler);
464
kprobe_fault_handler(struct pt_regs * regs,int trapnr)465 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
466 {
467 int ret;
468
469 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
470 local_irq_disable();
471 ret = kprobe_trap_handler(regs, trapnr);
472 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
473 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
474 return ret;
475 }
476 NOKPROBE_SYMBOL(kprobe_fault_handler);
477
478 /*
479 * Wrapper routine to for handling exceptions.
480 */
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)481 int kprobe_exceptions_notify(struct notifier_block *self,
482 unsigned long val, void *data)
483 {
484 struct die_args *args = (struct die_args *) data;
485 struct pt_regs *regs = args->regs;
486 int ret = NOTIFY_DONE;
487
488 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
489 local_irq_disable();
490
491 switch (val) {
492 case DIE_BPT:
493 if (kprobe_handler(regs))
494 ret = NOTIFY_STOP;
495 break;
496 case DIE_SSTEP:
497 if (post_kprobe_handler(regs))
498 ret = NOTIFY_STOP;
499 break;
500 case DIE_TRAP:
501 if (!preemptible() && kprobe_running() &&
502 kprobe_trap_handler(regs, args->trapnr))
503 ret = NOTIFY_STOP;
504 break;
505 default:
506 break;
507 }
508
509 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
510 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
511
512 return ret;
513 }
514 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
515
arch_init_kprobes(void)516 int __init arch_init_kprobes(void)
517 {
518 return 0;
519 }
520
arch_trampoline_kprobe(struct kprobe * p)521 int arch_trampoline_kprobe(struct kprobe *p)
522 {
523 return 0;
524 }
525 NOKPROBE_SYMBOL(arch_trampoline_kprobe);
526