1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Admin Function driver
3 *
4 * Copyright (C) 2018 Marvell.
5 *
6 */
7
8 #include <linux/module.h>
9 #include <linux/interrupt.h>
10 #include <linux/delay.h>
11 #include <linux/irq.h>
12 #include <linux/pci.h>
13 #include <linux/sysfs.h>
14
15 #include "cgx.h"
16 #include "rvu.h"
17 #include "rvu_reg.h"
18 #include "ptp.h"
19 #include "mcs.h"
20
21 #include "rvu_trace.h"
22 #include "rvu_npc_hash.h"
23
24 #define DRV_NAME "rvu_af"
25 #define DRV_STRING "Marvell OcteonTX2 RVU Admin Function Driver"
26
27 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
28 struct rvu_block *block, int lf);
29 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
30 struct rvu_block *block, int lf);
31 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
32
33 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
34 int type, int num,
35 void (mbox_handler)(struct work_struct *),
36 void (mbox_up_handler)(struct work_struct *));
37 enum {
38 TYPE_AFVF,
39 TYPE_AFPF,
40 };
41
42 /* Supported devices */
43 static const struct pci_device_id rvu_id_table[] = {
44 { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
45 { 0, } /* end of table */
46 };
47
48 MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>");
49 MODULE_DESCRIPTION(DRV_STRING);
50 MODULE_LICENSE("GPL v2");
51 MODULE_DEVICE_TABLE(pci, rvu_id_table);
52
53 static char *mkex_profile; /* MKEX profile name */
54 module_param(mkex_profile, charp, 0000);
55 MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
56
57 static char *kpu_profile; /* KPU profile name */
58 module_param(kpu_profile, charp, 0000);
59 MODULE_PARM_DESC(kpu_profile, "KPU profile name string");
60
rvu_setup_hw_capabilities(struct rvu * rvu)61 static void rvu_setup_hw_capabilities(struct rvu *rvu)
62 {
63 struct rvu_hwinfo *hw = rvu->hw;
64
65 hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1;
66 hw->cap.nix_fixed_txschq_mapping = false;
67 hw->cap.nix_shaping = true;
68 hw->cap.nix_tx_link_bp = true;
69 hw->cap.nix_rx_multicast = true;
70 hw->cap.nix_shaper_toggle_wait = false;
71 hw->cap.npc_hash_extract = false;
72 hw->cap.npc_exact_match_enabled = false;
73 hw->rvu = rvu;
74
75 if (is_rvu_pre_96xx_C0(rvu)) {
76 hw->cap.nix_fixed_txschq_mapping = true;
77 hw->cap.nix_txsch_per_cgx_lmac = 4;
78 hw->cap.nix_txsch_per_lbk_lmac = 132;
79 hw->cap.nix_txsch_per_sdp_lmac = 76;
80 hw->cap.nix_shaping = false;
81 hw->cap.nix_tx_link_bp = false;
82 if (is_rvu_96xx_A0(rvu) || is_rvu_95xx_A0(rvu))
83 hw->cap.nix_rx_multicast = false;
84 }
85 if (!is_rvu_pre_96xx_C0(rvu))
86 hw->cap.nix_shaper_toggle_wait = true;
87
88 if (!is_rvu_otx2(rvu))
89 hw->cap.per_pf_mbox_regs = true;
90
91 if (is_rvu_npc_hash_extract_en(rvu))
92 hw->cap.npc_hash_extract = true;
93 }
94
95 /* Poll a RVU block's register 'offset', for a 'zero'
96 * or 'nonzero' at bits specified by 'mask'
97 */
rvu_poll_reg(struct rvu * rvu,u64 block,u64 offset,u64 mask,bool zero)98 int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
99 {
100 unsigned long timeout = jiffies + usecs_to_jiffies(20000);
101 bool twice = false;
102 void __iomem *reg;
103 u64 reg_val;
104
105 reg = rvu->afreg_base + ((block << 28) | offset);
106 again:
107 reg_val = readq(reg);
108 if (zero && !(reg_val & mask))
109 return 0;
110 if (!zero && (reg_val & mask))
111 return 0;
112 if (time_before(jiffies, timeout)) {
113 usleep_range(1, 5);
114 goto again;
115 }
116 /* In scenarios where CPU is scheduled out before checking
117 * 'time_before' (above) and gets scheduled in such that
118 * jiffies are beyond timeout value, then check again if HW is
119 * done with the operation in the meantime.
120 */
121 if (!twice) {
122 twice = true;
123 goto again;
124 }
125 return -EBUSY;
126 }
127
rvu_alloc_rsrc(struct rsrc_bmap * rsrc)128 int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
129 {
130 int id;
131
132 if (!rsrc->bmap)
133 return -EINVAL;
134
135 id = find_first_zero_bit(rsrc->bmap, rsrc->max);
136 if (id >= rsrc->max)
137 return -ENOSPC;
138
139 __set_bit(id, rsrc->bmap);
140
141 return id;
142 }
143
rvu_alloc_rsrc_contig(struct rsrc_bmap * rsrc,int nrsrc)144 int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
145 {
146 int start;
147
148 if (!rsrc->bmap)
149 return -EINVAL;
150
151 start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
152 if (start >= rsrc->max)
153 return -ENOSPC;
154
155 bitmap_set(rsrc->bmap, start, nrsrc);
156 return start;
157 }
158
rvu_free_rsrc_contig(struct rsrc_bmap * rsrc,int nrsrc,int start)159 static void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
160 {
161 if (!rsrc->bmap)
162 return;
163 if (start >= rsrc->max)
164 return;
165
166 bitmap_clear(rsrc->bmap, start, nrsrc);
167 }
168
rvu_rsrc_check_contig(struct rsrc_bmap * rsrc,int nrsrc)169 bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
170 {
171 int start;
172
173 if (!rsrc->bmap)
174 return false;
175
176 start = bitmap_find_next_zero_area(rsrc->bmap, rsrc->max, 0, nrsrc, 0);
177 if (start >= rsrc->max)
178 return false;
179
180 return true;
181 }
182
rvu_free_rsrc(struct rsrc_bmap * rsrc,int id)183 void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
184 {
185 if (!rsrc->bmap)
186 return;
187
188 __clear_bit(id, rsrc->bmap);
189 }
190
rvu_rsrc_free_count(struct rsrc_bmap * rsrc)191 int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
192 {
193 int used;
194
195 if (!rsrc->bmap)
196 return 0;
197
198 used = bitmap_weight(rsrc->bmap, rsrc->max);
199 return (rsrc->max - used);
200 }
201
is_rsrc_free(struct rsrc_bmap * rsrc,int id)202 bool is_rsrc_free(struct rsrc_bmap *rsrc, int id)
203 {
204 if (!rsrc->bmap)
205 return false;
206
207 return !test_bit(id, rsrc->bmap);
208 }
209
rvu_alloc_bitmap(struct rsrc_bmap * rsrc)210 int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
211 {
212 rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
213 sizeof(long), GFP_KERNEL);
214 if (!rsrc->bmap)
215 return -ENOMEM;
216 return 0;
217 }
218
rvu_free_bitmap(struct rsrc_bmap * rsrc)219 void rvu_free_bitmap(struct rsrc_bmap *rsrc)
220 {
221 kfree(rsrc->bmap);
222 }
223
224 /* Get block LF's HW index from a PF_FUNC's block slot number */
rvu_get_lf(struct rvu * rvu,struct rvu_block * block,u16 pcifunc,u16 slot)225 int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
226 {
227 u16 match = 0;
228 int lf;
229
230 mutex_lock(&rvu->rsrc_lock);
231 for (lf = 0; lf < block->lf.max; lf++) {
232 if (block->fn_map[lf] == pcifunc) {
233 if (slot == match) {
234 mutex_unlock(&rvu->rsrc_lock);
235 return lf;
236 }
237 match++;
238 }
239 }
240 mutex_unlock(&rvu->rsrc_lock);
241 return -ENODEV;
242 }
243
244 /* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
245 * Some silicon variants of OcteonTX2 supports
246 * multiple blocks of same type.
247 *
248 * @pcifunc has to be zero when no LF is yet attached.
249 *
250 * For a pcifunc if LFs are attached from multiple blocks of same type, then
251 * return blkaddr of first encountered block.
252 */
rvu_get_blkaddr(struct rvu * rvu,int blktype,u16 pcifunc)253 int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
254 {
255 int devnum, blkaddr = -ENODEV;
256 u64 cfg, reg;
257 bool is_pf;
258
259 switch (blktype) {
260 case BLKTYPE_NPC:
261 blkaddr = BLKADDR_NPC;
262 goto exit;
263 case BLKTYPE_NPA:
264 blkaddr = BLKADDR_NPA;
265 goto exit;
266 case BLKTYPE_NIX:
267 /* For now assume NIX0 */
268 if (!pcifunc) {
269 blkaddr = BLKADDR_NIX0;
270 goto exit;
271 }
272 break;
273 case BLKTYPE_SSO:
274 blkaddr = BLKADDR_SSO;
275 goto exit;
276 case BLKTYPE_SSOW:
277 blkaddr = BLKADDR_SSOW;
278 goto exit;
279 case BLKTYPE_TIM:
280 blkaddr = BLKADDR_TIM;
281 goto exit;
282 case BLKTYPE_CPT:
283 /* For now assume CPT0 */
284 if (!pcifunc) {
285 blkaddr = BLKADDR_CPT0;
286 goto exit;
287 }
288 break;
289 }
290
291 /* Check if this is a RVU PF or VF */
292 if (pcifunc & RVU_PFVF_FUNC_MASK) {
293 is_pf = false;
294 devnum = rvu_get_hwvf(rvu, pcifunc);
295 } else {
296 is_pf = true;
297 devnum = rvu_get_pf(pcifunc);
298 }
299
300 /* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' or
301 * 'BLKADDR_NIX1'.
302 */
303 if (blktype == BLKTYPE_NIX) {
304 reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(0) :
305 RVU_PRIV_HWVFX_NIXX_CFG(0);
306 cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
307 if (cfg) {
308 blkaddr = BLKADDR_NIX0;
309 goto exit;
310 }
311
312 reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(1) :
313 RVU_PRIV_HWVFX_NIXX_CFG(1);
314 cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
315 if (cfg)
316 blkaddr = BLKADDR_NIX1;
317 }
318
319 if (blktype == BLKTYPE_CPT) {
320 reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(0) :
321 RVU_PRIV_HWVFX_CPTX_CFG(0);
322 cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
323 if (cfg) {
324 blkaddr = BLKADDR_CPT0;
325 goto exit;
326 }
327
328 reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(1) :
329 RVU_PRIV_HWVFX_CPTX_CFG(1);
330 cfg = rvu_read64(rvu, BLKADDR_RVUM, reg | (devnum << 16));
331 if (cfg)
332 blkaddr = BLKADDR_CPT1;
333 }
334
335 exit:
336 if (is_block_implemented(rvu->hw, blkaddr))
337 return blkaddr;
338 return -ENODEV;
339 }
340
rvu_update_rsrc_map(struct rvu * rvu,struct rvu_pfvf * pfvf,struct rvu_block * block,u16 pcifunc,u16 lf,bool attach)341 static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
342 struct rvu_block *block, u16 pcifunc,
343 u16 lf, bool attach)
344 {
345 int devnum, num_lfs = 0;
346 bool is_pf;
347 u64 reg;
348
349 if (lf >= block->lf.max) {
350 dev_err(&rvu->pdev->dev,
351 "%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
352 __func__, lf, block->name, block->lf.max);
353 return;
354 }
355
356 /* Check if this is for a RVU PF or VF */
357 if (pcifunc & RVU_PFVF_FUNC_MASK) {
358 is_pf = false;
359 devnum = rvu_get_hwvf(rvu, pcifunc);
360 } else {
361 is_pf = true;
362 devnum = rvu_get_pf(pcifunc);
363 }
364
365 block->fn_map[lf] = attach ? pcifunc : 0;
366
367 switch (block->addr) {
368 case BLKADDR_NPA:
369 pfvf->npalf = attach ? true : false;
370 num_lfs = pfvf->npalf;
371 break;
372 case BLKADDR_NIX0:
373 case BLKADDR_NIX1:
374 pfvf->nixlf = attach ? true : false;
375 num_lfs = pfvf->nixlf;
376 break;
377 case BLKADDR_SSO:
378 attach ? pfvf->sso++ : pfvf->sso--;
379 num_lfs = pfvf->sso;
380 break;
381 case BLKADDR_SSOW:
382 attach ? pfvf->ssow++ : pfvf->ssow--;
383 num_lfs = pfvf->ssow;
384 break;
385 case BLKADDR_TIM:
386 attach ? pfvf->timlfs++ : pfvf->timlfs--;
387 num_lfs = pfvf->timlfs;
388 break;
389 case BLKADDR_CPT0:
390 attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
391 num_lfs = pfvf->cptlfs;
392 break;
393 case BLKADDR_CPT1:
394 attach ? pfvf->cpt1_lfs++ : pfvf->cpt1_lfs--;
395 num_lfs = pfvf->cpt1_lfs;
396 break;
397 }
398
399 reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
400 rvu_write64(rvu, BLKADDR_RVUM, reg | (devnum << 16), num_lfs);
401 }
402
rvu_get_pf(u16 pcifunc)403 inline int rvu_get_pf(u16 pcifunc)
404 {
405 return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
406 }
407
rvu_get_pf_numvfs(struct rvu * rvu,int pf,int * numvfs,int * hwvf)408 void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
409 {
410 u64 cfg;
411
412 /* Get numVFs attached to this PF and first HWVF */
413 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
414 if (numvfs)
415 *numvfs = (cfg >> 12) & 0xFF;
416 if (hwvf)
417 *hwvf = cfg & 0xFFF;
418 }
419
rvu_get_hwvf(struct rvu * rvu,int pcifunc)420 int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
421 {
422 int pf, func;
423 u64 cfg;
424
425 pf = rvu_get_pf(pcifunc);
426 func = pcifunc & RVU_PFVF_FUNC_MASK;
427
428 /* Get first HWVF attached to this PF */
429 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
430
431 return ((cfg & 0xFFF) + func - 1);
432 }
433
rvu_get_pfvf(struct rvu * rvu,int pcifunc)434 struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
435 {
436 /* Check if it is a PF or VF */
437 if (pcifunc & RVU_PFVF_FUNC_MASK)
438 return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
439 else
440 return &rvu->pf[rvu_get_pf(pcifunc)];
441 }
442
is_pf_func_valid(struct rvu * rvu,u16 pcifunc)443 static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
444 {
445 int pf, vf, nvfs;
446 u64 cfg;
447
448 pf = rvu_get_pf(pcifunc);
449 if (pf >= rvu->hw->total_pfs)
450 return false;
451
452 if (!(pcifunc & RVU_PFVF_FUNC_MASK))
453 return true;
454
455 /* Check if VF is within number of VFs attached to this PF */
456 vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
457 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
458 nvfs = (cfg >> 12) & 0xFF;
459 if (vf >= nvfs)
460 return false;
461
462 return true;
463 }
464
is_block_implemented(struct rvu_hwinfo * hw,int blkaddr)465 bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
466 {
467 struct rvu_block *block;
468
469 if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
470 return false;
471
472 block = &hw->block[blkaddr];
473 return block->implemented;
474 }
475
rvu_check_block_implemented(struct rvu * rvu)476 static void rvu_check_block_implemented(struct rvu *rvu)
477 {
478 struct rvu_hwinfo *hw = rvu->hw;
479 struct rvu_block *block;
480 int blkid;
481 u64 cfg;
482
483 /* For each block check if 'implemented' bit is set */
484 for (blkid = 0; blkid < BLK_COUNT; blkid++) {
485 block = &hw->block[blkid];
486 cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
487 if (cfg & BIT_ULL(11))
488 block->implemented = true;
489 }
490 }
491
rvu_setup_rvum_blk_revid(struct rvu * rvu)492 static void rvu_setup_rvum_blk_revid(struct rvu *rvu)
493 {
494 rvu_write64(rvu, BLKADDR_RVUM,
495 RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM),
496 RVU_BLK_RVUM_REVID);
497 }
498
rvu_clear_rvum_blk_revid(struct rvu * rvu)499 static void rvu_clear_rvum_blk_revid(struct rvu *rvu)
500 {
501 rvu_write64(rvu, BLKADDR_RVUM,
502 RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), 0x00);
503 }
504
rvu_lf_reset(struct rvu * rvu,struct rvu_block * block,int lf)505 int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
506 {
507 int err;
508
509 if (!block->implemented)
510 return 0;
511
512 rvu_write64(rvu, block->addr, block->lfreset_reg, lf | BIT_ULL(12));
513 err = rvu_poll_reg(rvu, block->addr, block->lfreset_reg, BIT_ULL(12),
514 true);
515 return err;
516 }
517
rvu_block_reset(struct rvu * rvu,int blkaddr,u64 rst_reg)518 static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
519 {
520 struct rvu_block *block = &rvu->hw->block[blkaddr];
521 int err;
522
523 if (!block->implemented)
524 return;
525
526 rvu_write64(rvu, blkaddr, rst_reg, BIT_ULL(0));
527 err = rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true);
528 if (err) {
529 dev_err(rvu->dev, "HW block:%d reset timeout retrying again\n", blkaddr);
530 while (rvu_poll_reg(rvu, blkaddr, rst_reg, BIT_ULL(63), true) == -EBUSY)
531 ;
532 }
533 }
534
rvu_reset_all_blocks(struct rvu * rvu)535 static void rvu_reset_all_blocks(struct rvu *rvu)
536 {
537 /* Do a HW reset of all RVU blocks */
538 rvu_block_reset(rvu, BLKADDR_NPA, NPA_AF_BLK_RST);
539 rvu_block_reset(rvu, BLKADDR_NIX0, NIX_AF_BLK_RST);
540 rvu_block_reset(rvu, BLKADDR_NIX1, NIX_AF_BLK_RST);
541 rvu_block_reset(rvu, BLKADDR_NPC, NPC_AF_BLK_RST);
542 rvu_block_reset(rvu, BLKADDR_SSO, SSO_AF_BLK_RST);
543 rvu_block_reset(rvu, BLKADDR_TIM, TIM_AF_BLK_RST);
544 rvu_block_reset(rvu, BLKADDR_CPT0, CPT_AF_BLK_RST);
545 rvu_block_reset(rvu, BLKADDR_CPT1, CPT_AF_BLK_RST);
546 rvu_block_reset(rvu, BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST);
547 rvu_block_reset(rvu, BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST);
548 rvu_block_reset(rvu, BLKADDR_NDC_NIX1_RX, NDC_AF_BLK_RST);
549 rvu_block_reset(rvu, BLKADDR_NDC_NIX1_TX, NDC_AF_BLK_RST);
550 rvu_block_reset(rvu, BLKADDR_NDC_NPA0, NDC_AF_BLK_RST);
551 }
552
rvu_scan_block(struct rvu * rvu,struct rvu_block * block)553 static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
554 {
555 struct rvu_pfvf *pfvf;
556 u64 cfg;
557 int lf;
558
559 for (lf = 0; lf < block->lf.max; lf++) {
560 cfg = rvu_read64(rvu, block->addr,
561 block->lfcfg_reg | (lf << block->lfshift));
562 if (!(cfg & BIT_ULL(63)))
563 continue;
564
565 /* Set this resource as being used */
566 __set_bit(lf, block->lf.bmap);
567
568 /* Get, to whom this LF is attached */
569 pfvf = rvu_get_pfvf(rvu, (cfg >> 8) & 0xFFFF);
570 rvu_update_rsrc_map(rvu, pfvf, block,
571 (cfg >> 8) & 0xFFFF, lf, true);
572
573 /* Set start MSIX vector for this LF within this PF/VF */
574 rvu_set_msix_offset(rvu, pfvf, block, lf);
575 }
576 }
577
rvu_check_min_msix_vec(struct rvu * rvu,int nvecs,int pf,int vf)578 static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
579 {
580 int min_vecs;
581
582 if (!vf)
583 goto check_pf;
584
585 if (!nvecs) {
586 dev_warn(rvu->dev,
587 "PF%d:VF%d is configured with zero msix vectors, %d\n",
588 pf, vf - 1, nvecs);
589 }
590 return;
591
592 check_pf:
593 if (pf == 0)
594 min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
595 else
596 min_vecs = RVU_PF_INT_VEC_CNT;
597
598 if (!(nvecs < min_vecs))
599 return;
600 dev_warn(rvu->dev,
601 "PF%d is configured with too few vectors, %d, min is %d\n",
602 pf, nvecs, min_vecs);
603 }
604
rvu_setup_msix_resources(struct rvu * rvu)605 static int rvu_setup_msix_resources(struct rvu *rvu)
606 {
607 struct rvu_hwinfo *hw = rvu->hw;
608 int pf, vf, numvfs, hwvf, err;
609 int nvecs, offset, max_msix;
610 struct rvu_pfvf *pfvf;
611 u64 cfg, phy_addr;
612 dma_addr_t iova;
613
614 for (pf = 0; pf < hw->total_pfs; pf++) {
615 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
616 /* If PF is not enabled, nothing to do */
617 if (!((cfg >> 20) & 0x01))
618 continue;
619
620 rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
621
622 pfvf = &rvu->pf[pf];
623 /* Get num of MSIX vectors attached to this PF */
624 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
625 pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
626 rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, 0);
627
628 /* Alloc msix bitmap for this PF */
629 err = rvu_alloc_bitmap(&pfvf->msix);
630 if (err)
631 return err;
632
633 /* Allocate memory for MSIX vector to RVU block LF mapping */
634 pfvf->msix_lfmap = devm_kcalloc(rvu->dev, pfvf->msix.max,
635 sizeof(u16), GFP_KERNEL);
636 if (!pfvf->msix_lfmap)
637 return -ENOMEM;
638
639 /* For PF0 (AF) firmware will set msix vector offsets for
640 * AF, block AF and PF0_INT vectors, so jump to VFs.
641 */
642 if (!pf)
643 goto setup_vfmsix;
644
645 /* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
646 * These are allocated on driver init and never freed,
647 * so no need to set 'msix_lfmap' for these.
648 */
649 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
650 nvecs = (cfg >> 12) & 0xFF;
651 cfg &= ~0x7FFULL;
652 offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
653 rvu_write64(rvu, BLKADDR_RVUM,
654 RVU_PRIV_PFX_INT_CFG(pf), cfg | offset);
655 setup_vfmsix:
656 /* Alloc msix bitmap for VFs */
657 for (vf = 0; vf < numvfs; vf++) {
658 pfvf = &rvu->hwvf[hwvf + vf];
659 /* Get num of MSIX vectors attached to this VF */
660 cfg = rvu_read64(rvu, BLKADDR_RVUM,
661 RVU_PRIV_PFX_MSIX_CFG(pf));
662 pfvf->msix.max = (cfg & 0xFFF) + 1;
663 rvu_check_min_msix_vec(rvu, pfvf->msix.max, pf, vf + 1);
664
665 /* Alloc msix bitmap for this VF */
666 err = rvu_alloc_bitmap(&pfvf->msix);
667 if (err)
668 return err;
669
670 pfvf->msix_lfmap =
671 devm_kcalloc(rvu->dev, pfvf->msix.max,
672 sizeof(u16), GFP_KERNEL);
673 if (!pfvf->msix_lfmap)
674 return -ENOMEM;
675
676 /* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
677 * These are allocated on driver init and never freed,
678 * so no need to set 'msix_lfmap' for these.
679 */
680 cfg = rvu_read64(rvu, BLKADDR_RVUM,
681 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
682 nvecs = (cfg >> 12) & 0xFF;
683 cfg &= ~0x7FFULL;
684 offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
685 rvu_write64(rvu, BLKADDR_RVUM,
686 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
687 cfg | offset);
688 }
689 }
690
691 /* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
692 * create an IOMMU mapping for the physical address configured by
693 * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
694 */
695 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
696 max_msix = cfg & 0xFFFFF;
697 if (rvu->fwdata && rvu->fwdata->msixtr_base)
698 phy_addr = rvu->fwdata->msixtr_base;
699 else
700 phy_addr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
701
702 iova = dma_map_resource(rvu->dev, phy_addr,
703 max_msix * PCI_MSIX_ENTRY_SIZE,
704 DMA_BIDIRECTIONAL, 0);
705
706 if (dma_mapping_error(rvu->dev, iova))
707 return -ENOMEM;
708
709 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, (u64)iova);
710 rvu->msix_base_iova = iova;
711 rvu->msixtr_base_phy = phy_addr;
712
713 return 0;
714 }
715
rvu_reset_msix(struct rvu * rvu)716 static void rvu_reset_msix(struct rvu *rvu)
717 {
718 /* Restore msixtr base register */
719 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_MSIXTR_BASE,
720 rvu->msixtr_base_phy);
721 }
722
rvu_free_hw_resources(struct rvu * rvu)723 static void rvu_free_hw_resources(struct rvu *rvu)
724 {
725 struct rvu_hwinfo *hw = rvu->hw;
726 struct rvu_block *block;
727 struct rvu_pfvf *pfvf;
728 int id, max_msix;
729 u64 cfg;
730
731 rvu_npa_freemem(rvu);
732 rvu_npc_freemem(rvu);
733 rvu_nix_freemem(rvu);
734
735 /* Free block LF bitmaps */
736 for (id = 0; id < BLK_COUNT; id++) {
737 block = &hw->block[id];
738 kfree(block->lf.bmap);
739 }
740
741 /* Free MSIX bitmaps */
742 for (id = 0; id < hw->total_pfs; id++) {
743 pfvf = &rvu->pf[id];
744 kfree(pfvf->msix.bmap);
745 }
746
747 for (id = 0; id < hw->total_vfs; id++) {
748 pfvf = &rvu->hwvf[id];
749 kfree(pfvf->msix.bmap);
750 }
751
752 /* Unmap MSIX vector base IOVA mapping */
753 if (!rvu->msix_base_iova)
754 return;
755 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
756 max_msix = cfg & 0xFFFFF;
757 dma_unmap_resource(rvu->dev, rvu->msix_base_iova,
758 max_msix * PCI_MSIX_ENTRY_SIZE,
759 DMA_BIDIRECTIONAL, 0);
760
761 rvu_reset_msix(rvu);
762 mutex_destroy(&rvu->rsrc_lock);
763 }
764
rvu_setup_pfvf_macaddress(struct rvu * rvu)765 static void rvu_setup_pfvf_macaddress(struct rvu *rvu)
766 {
767 struct rvu_hwinfo *hw = rvu->hw;
768 int pf, vf, numvfs, hwvf;
769 struct rvu_pfvf *pfvf;
770 u64 *mac;
771
772 for (pf = 0; pf < hw->total_pfs; pf++) {
773 /* For PF0(AF), Assign MAC address to only VFs (LBKVFs) */
774 if (!pf)
775 goto lbkvf;
776
777 if (!is_pf_cgxmapped(rvu, pf))
778 continue;
779 /* Assign MAC address to PF */
780 pfvf = &rvu->pf[pf];
781 if (rvu->fwdata && pf < PF_MACNUM_MAX) {
782 mac = &rvu->fwdata->pf_macs[pf];
783 if (*mac)
784 u64_to_ether_addr(*mac, pfvf->mac_addr);
785 else
786 eth_random_addr(pfvf->mac_addr);
787 } else {
788 eth_random_addr(pfvf->mac_addr);
789 }
790 ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
791
792 lbkvf:
793 /* Assign MAC address to VFs*/
794 rvu_get_pf_numvfs(rvu, pf, &numvfs, &hwvf);
795 for (vf = 0; vf < numvfs; vf++, hwvf++) {
796 pfvf = &rvu->hwvf[hwvf];
797 if (rvu->fwdata && hwvf < VF_MACNUM_MAX) {
798 mac = &rvu->fwdata->vf_macs[hwvf];
799 if (*mac)
800 u64_to_ether_addr(*mac, pfvf->mac_addr);
801 else
802 eth_random_addr(pfvf->mac_addr);
803 } else {
804 eth_random_addr(pfvf->mac_addr);
805 }
806 ether_addr_copy(pfvf->default_mac, pfvf->mac_addr);
807 }
808 }
809 }
810
rvu_fwdata_init(struct rvu * rvu)811 static int rvu_fwdata_init(struct rvu *rvu)
812 {
813 u64 fwdbase;
814 int err;
815
816 /* Get firmware data base address */
817 err = cgx_get_fwdata_base(&fwdbase);
818 if (err)
819 goto fail;
820 rvu->fwdata = ioremap_wc(fwdbase, sizeof(struct rvu_fwdata));
821 if (!rvu->fwdata)
822 goto fail;
823 if (!is_rvu_fwdata_valid(rvu)) {
824 dev_err(rvu->dev,
825 "Mismatch in 'fwdata' struct btw kernel and firmware\n");
826 iounmap(rvu->fwdata);
827 rvu->fwdata = NULL;
828 return -EINVAL;
829 }
830 return 0;
831 fail:
832 dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n");
833 return -EIO;
834 }
835
rvu_fwdata_exit(struct rvu * rvu)836 static void rvu_fwdata_exit(struct rvu *rvu)
837 {
838 if (rvu->fwdata)
839 iounmap(rvu->fwdata);
840 }
841
rvu_setup_nix_hw_resource(struct rvu * rvu,int blkaddr)842 static int rvu_setup_nix_hw_resource(struct rvu *rvu, int blkaddr)
843 {
844 struct rvu_hwinfo *hw = rvu->hw;
845 struct rvu_block *block;
846 int blkid;
847 u64 cfg;
848
849 /* Init NIX LF's bitmap */
850 block = &hw->block[blkaddr];
851 if (!block->implemented)
852 return 0;
853 blkid = (blkaddr == BLKADDR_NIX0) ? 0 : 1;
854 cfg = rvu_read64(rvu, blkaddr, NIX_AF_CONST2);
855 block->lf.max = cfg & 0xFFF;
856 block->addr = blkaddr;
857 block->type = BLKTYPE_NIX;
858 block->lfshift = 8;
859 block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
860 block->pf_lfcnt_reg = RVU_PRIV_PFX_NIXX_CFG(blkid);
861 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIXX_CFG(blkid);
862 block->lfcfg_reg = NIX_PRIV_LFX_CFG;
863 block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
864 block->lfreset_reg = NIX_AF_LF_RST;
865 block->rvu = rvu;
866 sprintf(block->name, "NIX%d", blkid);
867 rvu->nix_blkaddr[blkid] = blkaddr;
868 return rvu_alloc_bitmap(&block->lf);
869 }
870
rvu_setup_cpt_hw_resource(struct rvu * rvu,int blkaddr)871 static int rvu_setup_cpt_hw_resource(struct rvu *rvu, int blkaddr)
872 {
873 struct rvu_hwinfo *hw = rvu->hw;
874 struct rvu_block *block;
875 int blkid;
876 u64 cfg;
877
878 /* Init CPT LF's bitmap */
879 block = &hw->block[blkaddr];
880 if (!block->implemented)
881 return 0;
882 blkid = (blkaddr == BLKADDR_CPT0) ? 0 : 1;
883 cfg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0);
884 block->lf.max = cfg & 0xFF;
885 block->addr = blkaddr;
886 block->type = BLKTYPE_CPT;
887 block->multislot = true;
888 block->lfshift = 3;
889 block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
890 block->pf_lfcnt_reg = RVU_PRIV_PFX_CPTX_CFG(blkid);
891 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPTX_CFG(blkid);
892 block->lfcfg_reg = CPT_PRIV_LFX_CFG;
893 block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
894 block->lfreset_reg = CPT_AF_LF_RST;
895 block->rvu = rvu;
896 sprintf(block->name, "CPT%d", blkid);
897 return rvu_alloc_bitmap(&block->lf);
898 }
899
rvu_get_lbk_bufsize(struct rvu * rvu)900 static void rvu_get_lbk_bufsize(struct rvu *rvu)
901 {
902 struct pci_dev *pdev = NULL;
903 void __iomem *base;
904 u64 lbk_const;
905
906 pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
907 PCI_DEVID_OCTEONTX2_LBK, pdev);
908 if (!pdev)
909 return;
910
911 base = pci_ioremap_bar(pdev, 0);
912 if (!base)
913 goto err_put;
914
915 lbk_const = readq(base + LBK_CONST);
916
917 /* cache fifo size */
918 rvu->hw->lbk_bufsize = FIELD_GET(LBK_CONST_BUF_SIZE, lbk_const);
919
920 iounmap(base);
921 err_put:
922 pci_dev_put(pdev);
923 }
924
rvu_setup_hw_resources(struct rvu * rvu)925 static int rvu_setup_hw_resources(struct rvu *rvu)
926 {
927 struct rvu_hwinfo *hw = rvu->hw;
928 struct rvu_block *block;
929 int blkid, err;
930 u64 cfg;
931
932 /* Get HW supported max RVU PF & VF count */
933 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_CONST);
934 hw->total_pfs = (cfg >> 32) & 0xFF;
935 hw->total_vfs = (cfg >> 20) & 0xFFF;
936 hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
937
938 /* Init NPA LF's bitmap */
939 block = &hw->block[BLKADDR_NPA];
940 if (!block->implemented)
941 goto nix;
942 cfg = rvu_read64(rvu, BLKADDR_NPA, NPA_AF_CONST);
943 block->lf.max = (cfg >> 16) & 0xFFF;
944 block->addr = BLKADDR_NPA;
945 block->type = BLKTYPE_NPA;
946 block->lfshift = 8;
947 block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
948 block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
949 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
950 block->lfcfg_reg = NPA_PRIV_LFX_CFG;
951 block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
952 block->lfreset_reg = NPA_AF_LF_RST;
953 block->rvu = rvu;
954 sprintf(block->name, "NPA");
955 err = rvu_alloc_bitmap(&block->lf);
956 if (err) {
957 dev_err(rvu->dev,
958 "%s: Failed to allocate NPA LF bitmap\n", __func__);
959 return err;
960 }
961
962 nix:
963 err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX0);
964 if (err) {
965 dev_err(rvu->dev,
966 "%s: Failed to allocate NIX0 LFs bitmap\n", __func__);
967 return err;
968 }
969
970 err = rvu_setup_nix_hw_resource(rvu, BLKADDR_NIX1);
971 if (err) {
972 dev_err(rvu->dev,
973 "%s: Failed to allocate NIX1 LFs bitmap\n", __func__);
974 return err;
975 }
976
977 /* Init SSO group's bitmap */
978 block = &hw->block[BLKADDR_SSO];
979 if (!block->implemented)
980 goto ssow;
981 cfg = rvu_read64(rvu, BLKADDR_SSO, SSO_AF_CONST);
982 block->lf.max = cfg & 0xFFFF;
983 block->addr = BLKADDR_SSO;
984 block->type = BLKTYPE_SSO;
985 block->multislot = true;
986 block->lfshift = 3;
987 block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
988 block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
989 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
990 block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
991 block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
992 block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
993 block->rvu = rvu;
994 sprintf(block->name, "SSO GROUP");
995 err = rvu_alloc_bitmap(&block->lf);
996 if (err) {
997 dev_err(rvu->dev,
998 "%s: Failed to allocate SSO LF bitmap\n", __func__);
999 return err;
1000 }
1001
1002 ssow:
1003 /* Init SSO workslot's bitmap */
1004 block = &hw->block[BLKADDR_SSOW];
1005 if (!block->implemented)
1006 goto tim;
1007 block->lf.max = (cfg >> 56) & 0xFF;
1008 block->addr = BLKADDR_SSOW;
1009 block->type = BLKTYPE_SSOW;
1010 block->multislot = true;
1011 block->lfshift = 3;
1012 block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
1013 block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
1014 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
1015 block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
1016 block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
1017 block->lfreset_reg = SSOW_AF_LF_HWS_RST;
1018 block->rvu = rvu;
1019 sprintf(block->name, "SSOWS");
1020 err = rvu_alloc_bitmap(&block->lf);
1021 if (err) {
1022 dev_err(rvu->dev,
1023 "%s: Failed to allocate SSOW LF bitmap\n", __func__);
1024 return err;
1025 }
1026
1027 tim:
1028 /* Init TIM LF's bitmap */
1029 block = &hw->block[BLKADDR_TIM];
1030 if (!block->implemented)
1031 goto cpt;
1032 cfg = rvu_read64(rvu, BLKADDR_TIM, TIM_AF_CONST);
1033 block->lf.max = cfg & 0xFFFF;
1034 block->addr = BLKADDR_TIM;
1035 block->type = BLKTYPE_TIM;
1036 block->multislot = true;
1037 block->lfshift = 3;
1038 block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
1039 block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
1040 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
1041 block->lfcfg_reg = TIM_PRIV_LFX_CFG;
1042 block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
1043 block->lfreset_reg = TIM_AF_LF_RST;
1044 block->rvu = rvu;
1045 sprintf(block->name, "TIM");
1046 err = rvu_alloc_bitmap(&block->lf);
1047 if (err) {
1048 dev_err(rvu->dev,
1049 "%s: Failed to allocate TIM LF bitmap\n", __func__);
1050 return err;
1051 }
1052
1053 cpt:
1054 err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT0);
1055 if (err) {
1056 dev_err(rvu->dev,
1057 "%s: Failed to allocate CPT0 LF bitmap\n", __func__);
1058 return err;
1059 }
1060 err = rvu_setup_cpt_hw_resource(rvu, BLKADDR_CPT1);
1061 if (err) {
1062 dev_err(rvu->dev,
1063 "%s: Failed to allocate CPT1 LF bitmap\n", __func__);
1064 return err;
1065 }
1066
1067 /* Allocate memory for PFVF data */
1068 rvu->pf = devm_kcalloc(rvu->dev, hw->total_pfs,
1069 sizeof(struct rvu_pfvf), GFP_KERNEL);
1070 if (!rvu->pf) {
1071 dev_err(rvu->dev,
1072 "%s: Failed to allocate memory for PF's rvu_pfvf struct\n", __func__);
1073 return -ENOMEM;
1074 }
1075
1076 rvu->hwvf = devm_kcalloc(rvu->dev, hw->total_vfs,
1077 sizeof(struct rvu_pfvf), GFP_KERNEL);
1078 if (!rvu->hwvf) {
1079 dev_err(rvu->dev,
1080 "%s: Failed to allocate memory for VF's rvu_pfvf struct\n", __func__);
1081 return -ENOMEM;
1082 }
1083
1084 mutex_init(&rvu->rsrc_lock);
1085
1086 rvu_fwdata_init(rvu);
1087
1088 err = rvu_setup_msix_resources(rvu);
1089 if (err) {
1090 dev_err(rvu->dev,
1091 "%s: Failed to setup MSIX resources\n", __func__);
1092 return err;
1093 }
1094
1095 for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1096 block = &hw->block[blkid];
1097 if (!block->lf.bmap)
1098 continue;
1099
1100 /* Allocate memory for block LF/slot to pcifunc mapping info */
1101 block->fn_map = devm_kcalloc(rvu->dev, block->lf.max,
1102 sizeof(u16), GFP_KERNEL);
1103 if (!block->fn_map) {
1104 err = -ENOMEM;
1105 goto msix_err;
1106 }
1107
1108 /* Scan all blocks to check if low level firmware has
1109 * already provisioned any of the resources to a PF/VF.
1110 */
1111 rvu_scan_block(rvu, block);
1112 }
1113
1114 err = rvu_set_channels_base(rvu);
1115 if (err)
1116 goto msix_err;
1117
1118 err = rvu_npc_init(rvu);
1119 if (err) {
1120 dev_err(rvu->dev, "%s: Failed to initialize npc\n", __func__);
1121 goto npc_err;
1122 }
1123
1124 err = rvu_cgx_init(rvu);
1125 if (err) {
1126 dev_err(rvu->dev, "%s: Failed to initialize cgx\n", __func__);
1127 goto cgx_err;
1128 }
1129
1130 err = rvu_npc_exact_init(rvu);
1131 if (err) {
1132 dev_err(rvu->dev, "failed to initialize exact match table\n");
1133 return err;
1134 }
1135
1136 /* Assign MACs for CGX mapped functions */
1137 rvu_setup_pfvf_macaddress(rvu);
1138
1139 err = rvu_npa_init(rvu);
1140 if (err) {
1141 dev_err(rvu->dev, "%s: Failed to initialize npa\n", __func__);
1142 goto npa_err;
1143 }
1144
1145 rvu_get_lbk_bufsize(rvu);
1146
1147 err = rvu_nix_init(rvu);
1148 if (err) {
1149 dev_err(rvu->dev, "%s: Failed to initialize nix\n", __func__);
1150 goto nix_err;
1151 }
1152
1153 err = rvu_sdp_init(rvu);
1154 if (err) {
1155 dev_err(rvu->dev, "%s: Failed to initialize sdp\n", __func__);
1156 goto nix_err;
1157 }
1158
1159 rvu_program_channels(rvu);
1160 cgx_start_linkup(rvu);
1161
1162 err = rvu_mcs_init(rvu);
1163 if (err) {
1164 dev_err(rvu->dev, "%s: Failed to initialize mcs\n", __func__);
1165 goto nix_err;
1166 }
1167
1168 err = rvu_cpt_init(rvu);
1169 if (err) {
1170 dev_err(rvu->dev, "%s: Failed to initialize cpt\n", __func__);
1171 goto mcs_err;
1172 }
1173
1174 return 0;
1175
1176 mcs_err:
1177 rvu_mcs_exit(rvu);
1178 nix_err:
1179 rvu_nix_freemem(rvu);
1180 npa_err:
1181 rvu_npa_freemem(rvu);
1182 cgx_err:
1183 rvu_cgx_exit(rvu);
1184 npc_err:
1185 rvu_npc_freemem(rvu);
1186 rvu_fwdata_exit(rvu);
1187 msix_err:
1188 rvu_reset_msix(rvu);
1189 return err;
1190 }
1191
1192 /* NPA and NIX admin queue APIs */
rvu_aq_free(struct rvu * rvu,struct admin_queue * aq)1193 void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
1194 {
1195 if (!aq)
1196 return;
1197
1198 qmem_free(rvu->dev, aq->inst);
1199 qmem_free(rvu->dev, aq->res);
1200 devm_kfree(rvu->dev, aq);
1201 }
1202
rvu_aq_alloc(struct rvu * rvu,struct admin_queue ** ad_queue,int qsize,int inst_size,int res_size)1203 int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
1204 int qsize, int inst_size, int res_size)
1205 {
1206 struct admin_queue *aq;
1207 int err;
1208
1209 *ad_queue = devm_kzalloc(rvu->dev, sizeof(*aq), GFP_KERNEL);
1210 if (!*ad_queue)
1211 return -ENOMEM;
1212 aq = *ad_queue;
1213
1214 /* Alloc memory for instructions i.e AQ */
1215 err = qmem_alloc(rvu->dev, &aq->inst, qsize, inst_size);
1216 if (err) {
1217 devm_kfree(rvu->dev, aq);
1218 return err;
1219 }
1220
1221 /* Alloc memory for results */
1222 err = qmem_alloc(rvu->dev, &aq->res, qsize, res_size);
1223 if (err) {
1224 rvu_aq_free(rvu, aq);
1225 return err;
1226 }
1227
1228 spin_lock_init(&aq->lock);
1229 return 0;
1230 }
1231
rvu_mbox_handler_ready(struct rvu * rvu,struct msg_req * req,struct ready_msg_rsp * rsp)1232 int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
1233 struct ready_msg_rsp *rsp)
1234 {
1235 if (rvu->fwdata) {
1236 rsp->rclk_freq = rvu->fwdata->rclk;
1237 rsp->sclk_freq = rvu->fwdata->sclk;
1238 }
1239 return 0;
1240 }
1241
1242 /* Get current count of a RVU block's LF/slots
1243 * provisioned to a given RVU func.
1244 */
rvu_get_rsrc_mapcount(struct rvu_pfvf * pfvf,int blkaddr)1245 u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blkaddr)
1246 {
1247 switch (blkaddr) {
1248 case BLKADDR_NPA:
1249 return pfvf->npalf ? 1 : 0;
1250 case BLKADDR_NIX0:
1251 case BLKADDR_NIX1:
1252 return pfvf->nixlf ? 1 : 0;
1253 case BLKADDR_SSO:
1254 return pfvf->sso;
1255 case BLKADDR_SSOW:
1256 return pfvf->ssow;
1257 case BLKADDR_TIM:
1258 return pfvf->timlfs;
1259 case BLKADDR_CPT0:
1260 return pfvf->cptlfs;
1261 case BLKADDR_CPT1:
1262 return pfvf->cpt1_lfs;
1263 }
1264 return 0;
1265 }
1266
1267 /* Return true if LFs of block type are attached to pcifunc */
is_blktype_attached(struct rvu_pfvf * pfvf,int blktype)1268 static bool is_blktype_attached(struct rvu_pfvf *pfvf, int blktype)
1269 {
1270 switch (blktype) {
1271 case BLKTYPE_NPA:
1272 return pfvf->npalf ? 1 : 0;
1273 case BLKTYPE_NIX:
1274 return pfvf->nixlf ? 1 : 0;
1275 case BLKTYPE_SSO:
1276 return !!pfvf->sso;
1277 case BLKTYPE_SSOW:
1278 return !!pfvf->ssow;
1279 case BLKTYPE_TIM:
1280 return !!pfvf->timlfs;
1281 case BLKTYPE_CPT:
1282 return pfvf->cptlfs || pfvf->cpt1_lfs;
1283 }
1284
1285 return false;
1286 }
1287
is_pffunc_map_valid(struct rvu * rvu,u16 pcifunc,int blktype)1288 bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
1289 {
1290 struct rvu_pfvf *pfvf;
1291
1292 if (!is_pf_func_valid(rvu, pcifunc))
1293 return false;
1294
1295 pfvf = rvu_get_pfvf(rvu, pcifunc);
1296
1297 /* Check if this PFFUNC has a LF of type blktype attached */
1298 if (!is_blktype_attached(pfvf, blktype))
1299 return false;
1300
1301 return true;
1302 }
1303
rvu_lookup_rsrc(struct rvu * rvu,struct rvu_block * block,int pcifunc,int slot)1304 static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
1305 int pcifunc, int slot)
1306 {
1307 u64 val;
1308
1309 val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
1310 rvu_write64(rvu, block->addr, block->lookup_reg, val);
1311 /* Wait for the lookup to finish */
1312 /* TODO: put some timeout here */
1313 while (rvu_read64(rvu, block->addr, block->lookup_reg) & (1ULL << 13))
1314 ;
1315
1316 val = rvu_read64(rvu, block->addr, block->lookup_reg);
1317
1318 /* Check LF valid bit */
1319 if (!(val & (1ULL << 12)))
1320 return -1;
1321
1322 return (val & 0xFFF);
1323 }
1324
rvu_get_blkaddr_from_slot(struct rvu * rvu,int blktype,u16 pcifunc,u16 global_slot,u16 * slot_in_block)1325 int rvu_get_blkaddr_from_slot(struct rvu *rvu, int blktype, u16 pcifunc,
1326 u16 global_slot, u16 *slot_in_block)
1327 {
1328 struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1329 int numlfs, total_lfs = 0, nr_blocks = 0;
1330 int i, num_blkaddr[BLK_COUNT] = { 0 };
1331 struct rvu_block *block;
1332 int blkaddr;
1333 u16 start_slot;
1334
1335 if (!is_blktype_attached(pfvf, blktype))
1336 return -ENODEV;
1337
1338 /* Get all the block addresses from which LFs are attached to
1339 * the given pcifunc in num_blkaddr[].
1340 */
1341 for (blkaddr = BLKADDR_RVUM; blkaddr < BLK_COUNT; blkaddr++) {
1342 block = &rvu->hw->block[blkaddr];
1343 if (block->type != blktype)
1344 continue;
1345 if (!is_block_implemented(rvu->hw, blkaddr))
1346 continue;
1347
1348 numlfs = rvu_get_rsrc_mapcount(pfvf, blkaddr);
1349 if (numlfs) {
1350 total_lfs += numlfs;
1351 num_blkaddr[nr_blocks] = blkaddr;
1352 nr_blocks++;
1353 }
1354 }
1355
1356 if (global_slot >= total_lfs)
1357 return -ENODEV;
1358
1359 /* Based on the given global slot number retrieve the
1360 * correct block address out of all attached block
1361 * addresses and slot number in that block.
1362 */
1363 total_lfs = 0;
1364 blkaddr = -ENODEV;
1365 for (i = 0; i < nr_blocks; i++) {
1366 numlfs = rvu_get_rsrc_mapcount(pfvf, num_blkaddr[i]);
1367 total_lfs += numlfs;
1368 if (global_slot < total_lfs) {
1369 blkaddr = num_blkaddr[i];
1370 start_slot = total_lfs - numlfs;
1371 *slot_in_block = global_slot - start_slot;
1372 break;
1373 }
1374 }
1375
1376 return blkaddr;
1377 }
1378
rvu_detach_block(struct rvu * rvu,int pcifunc,int blktype)1379 static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
1380 {
1381 struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1382 struct rvu_hwinfo *hw = rvu->hw;
1383 struct rvu_block *block;
1384 int slot, lf, num_lfs;
1385 int blkaddr;
1386
1387 blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
1388 if (blkaddr < 0)
1389 return;
1390
1391 if (blktype == BLKTYPE_NIX)
1392 rvu_nix_reset_mac(pfvf, pcifunc);
1393
1394 block = &hw->block[blkaddr];
1395
1396 num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1397 if (!num_lfs)
1398 return;
1399
1400 for (slot = 0; slot < num_lfs; slot++) {
1401 lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
1402 if (lf < 0) /* This should never happen */
1403 continue;
1404
1405 /* Disable the LF */
1406 rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1407 (lf << block->lfshift), 0x00ULL);
1408
1409 /* Update SW maintained mapping info as well */
1410 rvu_update_rsrc_map(rvu, pfvf, block,
1411 pcifunc, lf, false);
1412
1413 /* Free the resource */
1414 rvu_free_rsrc(&block->lf, lf);
1415
1416 /* Clear MSIX vector offset for this LF */
1417 rvu_clear_msix_offset(rvu, pfvf, block, lf);
1418 }
1419 }
1420
rvu_detach_rsrcs(struct rvu * rvu,struct rsrc_detach * detach,u16 pcifunc)1421 static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
1422 u16 pcifunc)
1423 {
1424 struct rvu_hwinfo *hw = rvu->hw;
1425 bool detach_all = true;
1426 struct rvu_block *block;
1427 int blkid;
1428
1429 mutex_lock(&rvu->rsrc_lock);
1430
1431 /* Check for partial resource detach */
1432 if (detach && detach->partial)
1433 detach_all = false;
1434
1435 /* Check for RVU block's LFs attached to this func,
1436 * if so, detach them.
1437 */
1438 for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1439 block = &hw->block[blkid];
1440 if (!block->lf.bmap)
1441 continue;
1442 if (!detach_all && detach) {
1443 if (blkid == BLKADDR_NPA && !detach->npalf)
1444 continue;
1445 else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
1446 continue;
1447 else if ((blkid == BLKADDR_NIX1) && !detach->nixlf)
1448 continue;
1449 else if ((blkid == BLKADDR_SSO) && !detach->sso)
1450 continue;
1451 else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1452 continue;
1453 else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1454 continue;
1455 else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1456 continue;
1457 else if ((blkid == BLKADDR_CPT1) && !detach->cptlfs)
1458 continue;
1459 }
1460 rvu_detach_block(rvu, pcifunc, block->type);
1461 }
1462
1463 mutex_unlock(&rvu->rsrc_lock);
1464 return 0;
1465 }
1466
rvu_mbox_handler_detach_resources(struct rvu * rvu,struct rsrc_detach * detach,struct msg_rsp * rsp)1467 int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1468 struct rsrc_detach *detach,
1469 struct msg_rsp *rsp)
1470 {
1471 return rvu_detach_rsrcs(rvu, detach, detach->hdr.pcifunc);
1472 }
1473
rvu_get_nix_blkaddr(struct rvu * rvu,u16 pcifunc)1474 int rvu_get_nix_blkaddr(struct rvu *rvu, u16 pcifunc)
1475 {
1476 struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1477 int blkaddr = BLKADDR_NIX0, vf;
1478 struct rvu_pfvf *pf;
1479
1480 pf = rvu_get_pfvf(rvu, pcifunc & ~RVU_PFVF_FUNC_MASK);
1481
1482 /* All CGX mapped PFs are set with assigned NIX block during init */
1483 if (is_pf_cgxmapped(rvu, rvu_get_pf(pcifunc))) {
1484 blkaddr = pf->nix_blkaddr;
1485 } else if (is_afvf(pcifunc)) {
1486 vf = pcifunc - 1;
1487 /* Assign NIX based on VF number. All even numbered VFs get
1488 * NIX0 and odd numbered gets NIX1
1489 */
1490 blkaddr = (vf & 1) ? BLKADDR_NIX1 : BLKADDR_NIX0;
1491 /* NIX1 is not present on all silicons */
1492 if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1493 blkaddr = BLKADDR_NIX0;
1494 }
1495
1496 /* if SDP1 then the blkaddr is NIX1 */
1497 if (is_sdp_pfvf(pcifunc) && pf->sdp_info->node_id == 1)
1498 blkaddr = BLKADDR_NIX1;
1499
1500 switch (blkaddr) {
1501 case BLKADDR_NIX1:
1502 pfvf->nix_blkaddr = BLKADDR_NIX1;
1503 pfvf->nix_rx_intf = NIX_INTFX_RX(1);
1504 pfvf->nix_tx_intf = NIX_INTFX_TX(1);
1505 break;
1506 case BLKADDR_NIX0:
1507 default:
1508 pfvf->nix_blkaddr = BLKADDR_NIX0;
1509 pfvf->nix_rx_intf = NIX_INTFX_RX(0);
1510 pfvf->nix_tx_intf = NIX_INTFX_TX(0);
1511 break;
1512 }
1513
1514 return pfvf->nix_blkaddr;
1515 }
1516
rvu_get_attach_blkaddr(struct rvu * rvu,int blktype,u16 pcifunc,struct rsrc_attach * attach)1517 static int rvu_get_attach_blkaddr(struct rvu *rvu, int blktype,
1518 u16 pcifunc, struct rsrc_attach *attach)
1519 {
1520 int blkaddr;
1521
1522 switch (blktype) {
1523 case BLKTYPE_NIX:
1524 blkaddr = rvu_get_nix_blkaddr(rvu, pcifunc);
1525 break;
1526 case BLKTYPE_CPT:
1527 if (attach->hdr.ver < RVU_MULTI_BLK_VER)
1528 return rvu_get_blkaddr(rvu, blktype, 0);
1529 blkaddr = attach->cpt_blkaddr ? attach->cpt_blkaddr :
1530 BLKADDR_CPT0;
1531 if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1)
1532 return -ENODEV;
1533 break;
1534 default:
1535 return rvu_get_blkaddr(rvu, blktype, 0);
1536 }
1537
1538 if (is_block_implemented(rvu->hw, blkaddr))
1539 return blkaddr;
1540
1541 return -ENODEV;
1542 }
1543
rvu_attach_block(struct rvu * rvu,int pcifunc,int blktype,int num_lfs,struct rsrc_attach * attach)1544 static void rvu_attach_block(struct rvu *rvu, int pcifunc, int blktype,
1545 int num_lfs, struct rsrc_attach *attach)
1546 {
1547 struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1548 struct rvu_hwinfo *hw = rvu->hw;
1549 struct rvu_block *block;
1550 int slot, lf;
1551 int blkaddr;
1552 u64 cfg;
1553
1554 if (!num_lfs)
1555 return;
1556
1557 blkaddr = rvu_get_attach_blkaddr(rvu, blktype, pcifunc, attach);
1558 if (blkaddr < 0)
1559 return;
1560
1561 block = &hw->block[blkaddr];
1562 if (!block->lf.bmap)
1563 return;
1564
1565 for (slot = 0; slot < num_lfs; slot++) {
1566 /* Allocate the resource */
1567 lf = rvu_alloc_rsrc(&block->lf);
1568 if (lf < 0)
1569 return;
1570
1571 cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1572 rvu_write64(rvu, blkaddr, block->lfcfg_reg |
1573 (lf << block->lfshift), cfg);
1574 rvu_update_rsrc_map(rvu, pfvf, block,
1575 pcifunc, lf, true);
1576
1577 /* Set start MSIX vector for this LF within this PF/VF */
1578 rvu_set_msix_offset(rvu, pfvf, block, lf);
1579 }
1580 }
1581
rvu_check_rsrc_availability(struct rvu * rvu,struct rsrc_attach * req,u16 pcifunc)1582 static int rvu_check_rsrc_availability(struct rvu *rvu,
1583 struct rsrc_attach *req, u16 pcifunc)
1584 {
1585 struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1586 int free_lfs, mappedlfs, blkaddr;
1587 struct rvu_hwinfo *hw = rvu->hw;
1588 struct rvu_block *block;
1589
1590 /* Only one NPA LF can be attached */
1591 if (req->npalf && !is_blktype_attached(pfvf, BLKTYPE_NPA)) {
1592 block = &hw->block[BLKADDR_NPA];
1593 free_lfs = rvu_rsrc_free_count(&block->lf);
1594 if (!free_lfs)
1595 goto fail;
1596 } else if (req->npalf) {
1597 dev_err(&rvu->pdev->dev,
1598 "Func 0x%x: Invalid req, already has NPA\n",
1599 pcifunc);
1600 return -EINVAL;
1601 }
1602
1603 /* Only one NIX LF can be attached */
1604 if (req->nixlf && !is_blktype_attached(pfvf, BLKTYPE_NIX)) {
1605 blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_NIX,
1606 pcifunc, req);
1607 if (blkaddr < 0)
1608 return blkaddr;
1609 block = &hw->block[blkaddr];
1610 free_lfs = rvu_rsrc_free_count(&block->lf);
1611 if (!free_lfs)
1612 goto fail;
1613 } else if (req->nixlf) {
1614 dev_err(&rvu->pdev->dev,
1615 "Func 0x%x: Invalid req, already has NIX\n",
1616 pcifunc);
1617 return -EINVAL;
1618 }
1619
1620 if (req->sso) {
1621 block = &hw->block[BLKADDR_SSO];
1622 /* Is request within limits ? */
1623 if (req->sso > block->lf.max) {
1624 dev_err(&rvu->pdev->dev,
1625 "Func 0x%x: Invalid SSO req, %d > max %d\n",
1626 pcifunc, req->sso, block->lf.max);
1627 return -EINVAL;
1628 }
1629 mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1630 free_lfs = rvu_rsrc_free_count(&block->lf);
1631 /* Check if additional resources are available */
1632 if (req->sso > mappedlfs &&
1633 ((req->sso - mappedlfs) > free_lfs))
1634 goto fail;
1635 }
1636
1637 if (req->ssow) {
1638 block = &hw->block[BLKADDR_SSOW];
1639 if (req->ssow > block->lf.max) {
1640 dev_err(&rvu->pdev->dev,
1641 "Func 0x%x: Invalid SSOW req, %d > max %d\n",
1642 pcifunc, req->ssow, block->lf.max);
1643 return -EINVAL;
1644 }
1645 mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1646 free_lfs = rvu_rsrc_free_count(&block->lf);
1647 if (req->ssow > mappedlfs &&
1648 ((req->ssow - mappedlfs) > free_lfs))
1649 goto fail;
1650 }
1651
1652 if (req->timlfs) {
1653 block = &hw->block[BLKADDR_TIM];
1654 if (req->timlfs > block->lf.max) {
1655 dev_err(&rvu->pdev->dev,
1656 "Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1657 pcifunc, req->timlfs, block->lf.max);
1658 return -EINVAL;
1659 }
1660 mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1661 free_lfs = rvu_rsrc_free_count(&block->lf);
1662 if (req->timlfs > mappedlfs &&
1663 ((req->timlfs - mappedlfs) > free_lfs))
1664 goto fail;
1665 }
1666
1667 if (req->cptlfs) {
1668 blkaddr = rvu_get_attach_blkaddr(rvu, BLKTYPE_CPT,
1669 pcifunc, req);
1670 if (blkaddr < 0)
1671 return blkaddr;
1672 block = &hw->block[blkaddr];
1673 if (req->cptlfs > block->lf.max) {
1674 dev_err(&rvu->pdev->dev,
1675 "Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1676 pcifunc, req->cptlfs, block->lf.max);
1677 return -EINVAL;
1678 }
1679 mappedlfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
1680 free_lfs = rvu_rsrc_free_count(&block->lf);
1681 if (req->cptlfs > mappedlfs &&
1682 ((req->cptlfs - mappedlfs) > free_lfs))
1683 goto fail;
1684 }
1685
1686 return 0;
1687
1688 fail:
1689 dev_info(rvu->dev, "Request for %s failed\n", block->name);
1690 return -ENOSPC;
1691 }
1692
rvu_attach_from_same_block(struct rvu * rvu,int blktype,struct rsrc_attach * attach)1693 static bool rvu_attach_from_same_block(struct rvu *rvu, int blktype,
1694 struct rsrc_attach *attach)
1695 {
1696 int blkaddr, num_lfs;
1697
1698 blkaddr = rvu_get_attach_blkaddr(rvu, blktype,
1699 attach->hdr.pcifunc, attach);
1700 if (blkaddr < 0)
1701 return false;
1702
1703 num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, attach->hdr.pcifunc),
1704 blkaddr);
1705 /* Requester already has LFs from given block ? */
1706 return !!num_lfs;
1707 }
1708
rvu_mbox_handler_attach_resources(struct rvu * rvu,struct rsrc_attach * attach,struct msg_rsp * rsp)1709 int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1710 struct rsrc_attach *attach,
1711 struct msg_rsp *rsp)
1712 {
1713 u16 pcifunc = attach->hdr.pcifunc;
1714 int err;
1715
1716 /* If first request, detach all existing attached resources */
1717 if (!attach->modify)
1718 rvu_detach_rsrcs(rvu, NULL, pcifunc);
1719
1720 mutex_lock(&rvu->rsrc_lock);
1721
1722 /* Check if the request can be accommodated */
1723 err = rvu_check_rsrc_availability(rvu, attach, pcifunc);
1724 if (err)
1725 goto exit;
1726
1727 /* Now attach the requested resources */
1728 if (attach->npalf)
1729 rvu_attach_block(rvu, pcifunc, BLKTYPE_NPA, 1, attach);
1730
1731 if (attach->nixlf)
1732 rvu_attach_block(rvu, pcifunc, BLKTYPE_NIX, 1, attach);
1733
1734 if (attach->sso) {
1735 /* RVU func doesn't know which exact LF or slot is attached
1736 * to it, it always sees as slot 0,1,2. So for a 'modify'
1737 * request, simply detach all existing attached LFs/slots
1738 * and attach a fresh.
1739 */
1740 if (attach->modify)
1741 rvu_detach_block(rvu, pcifunc, BLKTYPE_SSO);
1742 rvu_attach_block(rvu, pcifunc, BLKTYPE_SSO,
1743 attach->sso, attach);
1744 }
1745
1746 if (attach->ssow) {
1747 if (attach->modify)
1748 rvu_detach_block(rvu, pcifunc, BLKTYPE_SSOW);
1749 rvu_attach_block(rvu, pcifunc, BLKTYPE_SSOW,
1750 attach->ssow, attach);
1751 }
1752
1753 if (attach->timlfs) {
1754 if (attach->modify)
1755 rvu_detach_block(rvu, pcifunc, BLKTYPE_TIM);
1756 rvu_attach_block(rvu, pcifunc, BLKTYPE_TIM,
1757 attach->timlfs, attach);
1758 }
1759
1760 if (attach->cptlfs) {
1761 if (attach->modify &&
1762 rvu_attach_from_same_block(rvu, BLKTYPE_CPT, attach))
1763 rvu_detach_block(rvu, pcifunc, BLKTYPE_CPT);
1764 rvu_attach_block(rvu, pcifunc, BLKTYPE_CPT,
1765 attach->cptlfs, attach);
1766 }
1767
1768 exit:
1769 mutex_unlock(&rvu->rsrc_lock);
1770 return err;
1771 }
1772
rvu_get_msix_offset(struct rvu * rvu,struct rvu_pfvf * pfvf,int blkaddr,int lf)1773 static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1774 int blkaddr, int lf)
1775 {
1776 u16 vec;
1777
1778 if (lf < 0)
1779 return MSIX_VECTOR_INVALID;
1780
1781 for (vec = 0; vec < pfvf->msix.max; vec++) {
1782 if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1783 return vec;
1784 }
1785 return MSIX_VECTOR_INVALID;
1786 }
1787
rvu_set_msix_offset(struct rvu * rvu,struct rvu_pfvf * pfvf,struct rvu_block * block,int lf)1788 static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1789 struct rvu_block *block, int lf)
1790 {
1791 u16 nvecs, vec, offset;
1792 u64 cfg;
1793
1794 cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1795 (lf << block->lfshift));
1796 nvecs = (cfg >> 12) & 0xFF;
1797
1798 /* Check and alloc MSIX vectors, must be contiguous */
1799 if (!rvu_rsrc_check_contig(&pfvf->msix, nvecs))
1800 return;
1801
1802 offset = rvu_alloc_rsrc_contig(&pfvf->msix, nvecs);
1803
1804 /* Config MSIX offset in LF */
1805 rvu_write64(rvu, block->addr, block->msixcfg_reg |
1806 (lf << block->lfshift), (cfg & ~0x7FFULL) | offset);
1807
1808 /* Update the bitmap as well */
1809 for (vec = 0; vec < nvecs; vec++)
1810 pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1811 }
1812
rvu_clear_msix_offset(struct rvu * rvu,struct rvu_pfvf * pfvf,struct rvu_block * block,int lf)1813 static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1814 struct rvu_block *block, int lf)
1815 {
1816 u16 nvecs, vec, offset;
1817 u64 cfg;
1818
1819 cfg = rvu_read64(rvu, block->addr, block->msixcfg_reg |
1820 (lf << block->lfshift));
1821 nvecs = (cfg >> 12) & 0xFF;
1822
1823 /* Clear MSIX offset in LF */
1824 rvu_write64(rvu, block->addr, block->msixcfg_reg |
1825 (lf << block->lfshift), cfg & ~0x7FFULL);
1826
1827 offset = rvu_get_msix_offset(rvu, pfvf, block->addr, lf);
1828
1829 /* Update the mapping */
1830 for (vec = 0; vec < nvecs; vec++)
1831 pfvf->msix_lfmap[offset + vec] = 0;
1832
1833 /* Free the same in MSIX bitmap */
1834 rvu_free_rsrc_contig(&pfvf->msix, nvecs, offset);
1835 }
1836
rvu_mbox_handler_msix_offset(struct rvu * rvu,struct msg_req * req,struct msix_offset_rsp * rsp)1837 int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1838 struct msix_offset_rsp *rsp)
1839 {
1840 struct rvu_hwinfo *hw = rvu->hw;
1841 u16 pcifunc = req->hdr.pcifunc;
1842 struct rvu_pfvf *pfvf;
1843 int lf, slot, blkaddr;
1844
1845 pfvf = rvu_get_pfvf(rvu, pcifunc);
1846 if (!pfvf->msix.bmap)
1847 return 0;
1848
1849 /* Set MSIX offsets for each block's LFs attached to this PF/VF */
1850 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_NPA], pcifunc, 0);
1851 rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, BLKADDR_NPA, lf);
1852
1853 /* Get BLKADDR from which LFs are attached to pcifunc */
1854 blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
1855 if (blkaddr < 0) {
1856 rsp->nix_msixoff = MSIX_VECTOR_INVALID;
1857 } else {
1858 lf = rvu_get_lf(rvu, &hw->block[blkaddr], pcifunc, 0);
1859 rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, blkaddr, lf);
1860 }
1861
1862 rsp->sso = pfvf->sso;
1863 for (slot = 0; slot < rsp->sso; slot++) {
1864 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSO], pcifunc, slot);
1865 rsp->sso_msixoff[slot] =
1866 rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSO, lf);
1867 }
1868
1869 rsp->ssow = pfvf->ssow;
1870 for (slot = 0; slot < rsp->ssow; slot++) {
1871 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_SSOW], pcifunc, slot);
1872 rsp->ssow_msixoff[slot] =
1873 rvu_get_msix_offset(rvu, pfvf, BLKADDR_SSOW, lf);
1874 }
1875
1876 rsp->timlfs = pfvf->timlfs;
1877 for (slot = 0; slot < rsp->timlfs; slot++) {
1878 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_TIM], pcifunc, slot);
1879 rsp->timlf_msixoff[slot] =
1880 rvu_get_msix_offset(rvu, pfvf, BLKADDR_TIM, lf);
1881 }
1882
1883 rsp->cptlfs = pfvf->cptlfs;
1884 for (slot = 0; slot < rsp->cptlfs; slot++) {
1885 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT0], pcifunc, slot);
1886 rsp->cptlf_msixoff[slot] =
1887 rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT0, lf);
1888 }
1889
1890 rsp->cpt1_lfs = pfvf->cpt1_lfs;
1891 for (slot = 0; slot < rsp->cpt1_lfs; slot++) {
1892 lf = rvu_get_lf(rvu, &hw->block[BLKADDR_CPT1], pcifunc, slot);
1893 rsp->cpt1_lf_msixoff[slot] =
1894 rvu_get_msix_offset(rvu, pfvf, BLKADDR_CPT1, lf);
1895 }
1896
1897 return 0;
1898 }
1899
rvu_mbox_handler_free_rsrc_cnt(struct rvu * rvu,struct msg_req * req,struct free_rsrcs_rsp * rsp)1900 int rvu_mbox_handler_free_rsrc_cnt(struct rvu *rvu, struct msg_req *req,
1901 struct free_rsrcs_rsp *rsp)
1902 {
1903 struct rvu_hwinfo *hw = rvu->hw;
1904 struct rvu_block *block;
1905 struct nix_txsch *txsch;
1906 struct nix_hw *nix_hw;
1907
1908 mutex_lock(&rvu->rsrc_lock);
1909
1910 block = &hw->block[BLKADDR_NPA];
1911 rsp->npa = rvu_rsrc_free_count(&block->lf);
1912
1913 block = &hw->block[BLKADDR_NIX0];
1914 rsp->nix = rvu_rsrc_free_count(&block->lf);
1915
1916 block = &hw->block[BLKADDR_NIX1];
1917 rsp->nix1 = rvu_rsrc_free_count(&block->lf);
1918
1919 block = &hw->block[BLKADDR_SSO];
1920 rsp->sso = rvu_rsrc_free_count(&block->lf);
1921
1922 block = &hw->block[BLKADDR_SSOW];
1923 rsp->ssow = rvu_rsrc_free_count(&block->lf);
1924
1925 block = &hw->block[BLKADDR_TIM];
1926 rsp->tim = rvu_rsrc_free_count(&block->lf);
1927
1928 block = &hw->block[BLKADDR_CPT0];
1929 rsp->cpt = rvu_rsrc_free_count(&block->lf);
1930
1931 block = &hw->block[BLKADDR_CPT1];
1932 rsp->cpt1 = rvu_rsrc_free_count(&block->lf);
1933
1934 if (rvu->hw->cap.nix_fixed_txschq_mapping) {
1935 rsp->schq[NIX_TXSCH_LVL_SMQ] = 1;
1936 rsp->schq[NIX_TXSCH_LVL_TL4] = 1;
1937 rsp->schq[NIX_TXSCH_LVL_TL3] = 1;
1938 rsp->schq[NIX_TXSCH_LVL_TL2] = 1;
1939 /* NIX1 */
1940 if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1941 goto out;
1942 rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] = 1;
1943 rsp->schq_nix1[NIX_TXSCH_LVL_TL4] = 1;
1944 rsp->schq_nix1[NIX_TXSCH_LVL_TL3] = 1;
1945 rsp->schq_nix1[NIX_TXSCH_LVL_TL2] = 1;
1946 } else {
1947 nix_hw = get_nix_hw(hw, BLKADDR_NIX0);
1948 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1949 rsp->schq[NIX_TXSCH_LVL_SMQ] =
1950 rvu_rsrc_free_count(&txsch->schq);
1951
1952 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1953 rsp->schq[NIX_TXSCH_LVL_TL4] =
1954 rvu_rsrc_free_count(&txsch->schq);
1955
1956 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1957 rsp->schq[NIX_TXSCH_LVL_TL3] =
1958 rvu_rsrc_free_count(&txsch->schq);
1959
1960 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1961 rsp->schq[NIX_TXSCH_LVL_TL2] =
1962 rvu_rsrc_free_count(&txsch->schq);
1963
1964 if (!is_block_implemented(rvu->hw, BLKADDR_NIX1))
1965 goto out;
1966
1967 nix_hw = get_nix_hw(hw, BLKADDR_NIX1);
1968 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1969 rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] =
1970 rvu_rsrc_free_count(&txsch->schq);
1971
1972 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1973 rsp->schq_nix1[NIX_TXSCH_LVL_TL4] =
1974 rvu_rsrc_free_count(&txsch->schq);
1975
1976 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1977 rsp->schq_nix1[NIX_TXSCH_LVL_TL3] =
1978 rvu_rsrc_free_count(&txsch->schq);
1979
1980 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1981 rsp->schq_nix1[NIX_TXSCH_LVL_TL2] =
1982 rvu_rsrc_free_count(&txsch->schq);
1983 }
1984
1985 rsp->schq_nix1[NIX_TXSCH_LVL_TL1] = 1;
1986 out:
1987 rsp->schq[NIX_TXSCH_LVL_TL1] = 1;
1988 mutex_unlock(&rvu->rsrc_lock);
1989
1990 return 0;
1991 }
1992
rvu_mbox_handler_vf_flr(struct rvu * rvu,struct msg_req * req,struct msg_rsp * rsp)1993 int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
1994 struct msg_rsp *rsp)
1995 {
1996 u16 pcifunc = req->hdr.pcifunc;
1997 u16 vf, numvfs;
1998 u64 cfg;
1999
2000 vf = pcifunc & RVU_PFVF_FUNC_MASK;
2001 cfg = rvu_read64(rvu, BLKADDR_RVUM,
2002 RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
2003 numvfs = (cfg >> 12) & 0xFF;
2004
2005 if (vf && vf <= numvfs)
2006 __rvu_flr_handler(rvu, pcifunc);
2007 else
2008 return RVU_INVALID_VF_ID;
2009
2010 return 0;
2011 }
2012
rvu_mbox_handler_get_hw_cap(struct rvu * rvu,struct msg_req * req,struct get_hw_cap_rsp * rsp)2013 int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req,
2014 struct get_hw_cap_rsp *rsp)
2015 {
2016 struct rvu_hwinfo *hw = rvu->hw;
2017
2018 rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping;
2019 rsp->nix_shaping = hw->cap.nix_shaping;
2020 rsp->npc_hash_extract = hw->cap.npc_hash_extract;
2021
2022 return 0;
2023 }
2024
rvu_mbox_handler_set_vf_perm(struct rvu * rvu,struct set_vf_perm * req,struct msg_rsp * rsp)2025 int rvu_mbox_handler_set_vf_perm(struct rvu *rvu, struct set_vf_perm *req,
2026 struct msg_rsp *rsp)
2027 {
2028 struct rvu_hwinfo *hw = rvu->hw;
2029 u16 pcifunc = req->hdr.pcifunc;
2030 struct rvu_pfvf *pfvf;
2031 int blkaddr, nixlf;
2032 u16 target;
2033
2034 /* Only PF can add VF permissions */
2035 if ((pcifunc & RVU_PFVF_FUNC_MASK) || is_afvf(pcifunc))
2036 return -EOPNOTSUPP;
2037
2038 target = (pcifunc & ~RVU_PFVF_FUNC_MASK) | (req->vf + 1);
2039 pfvf = rvu_get_pfvf(rvu, target);
2040
2041 if (req->flags & RESET_VF_PERM) {
2042 pfvf->flags &= RVU_CLEAR_VF_PERM;
2043 } else if (test_bit(PF_SET_VF_TRUSTED, &pfvf->flags) ^
2044 (req->flags & VF_TRUSTED)) {
2045 change_bit(PF_SET_VF_TRUSTED, &pfvf->flags);
2046 /* disable multicast and promisc entries */
2047 if (!test_bit(PF_SET_VF_TRUSTED, &pfvf->flags)) {
2048 blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, target);
2049 if (blkaddr < 0)
2050 return 0;
2051 nixlf = rvu_get_lf(rvu, &hw->block[blkaddr],
2052 target, 0);
2053 if (nixlf < 0)
2054 return 0;
2055 npc_enadis_default_mce_entry(rvu, target, nixlf,
2056 NIXLF_ALLMULTI_ENTRY,
2057 false);
2058 npc_enadis_default_mce_entry(rvu, target, nixlf,
2059 NIXLF_PROMISC_ENTRY,
2060 false);
2061 }
2062 }
2063
2064 return 0;
2065 }
2066
rvu_process_mbox_msg(struct otx2_mbox * mbox,int devid,struct mbox_msghdr * req)2067 static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
2068 struct mbox_msghdr *req)
2069 {
2070 struct rvu *rvu = pci_get_drvdata(mbox->pdev);
2071
2072 /* Check if valid, if not reply with a invalid msg */
2073 if (req->sig != OTX2_MBOX_REQ_SIG)
2074 goto bad_message;
2075
2076 switch (req->id) {
2077 #define M(_name, _id, _fn_name, _req_type, _rsp_type) \
2078 case _id: { \
2079 struct _rsp_type *rsp; \
2080 int err; \
2081 \
2082 rsp = (struct _rsp_type *)otx2_mbox_alloc_msg( \
2083 mbox, devid, \
2084 sizeof(struct _rsp_type)); \
2085 /* some handlers should complete even if reply */ \
2086 /* could not be allocated */ \
2087 if (!rsp && \
2088 _id != MBOX_MSG_DETACH_RESOURCES && \
2089 _id != MBOX_MSG_NIX_TXSCH_FREE && \
2090 _id != MBOX_MSG_VF_FLR) \
2091 return -ENOMEM; \
2092 if (rsp) { \
2093 rsp->hdr.id = _id; \
2094 rsp->hdr.sig = OTX2_MBOX_RSP_SIG; \
2095 rsp->hdr.pcifunc = req->pcifunc; \
2096 rsp->hdr.rc = 0; \
2097 } \
2098 \
2099 err = rvu_mbox_handler_ ## _fn_name(rvu, \
2100 (struct _req_type *)req, \
2101 rsp); \
2102 if (rsp && err) \
2103 rsp->hdr.rc = err; \
2104 \
2105 trace_otx2_msg_process(mbox->pdev, _id, err); \
2106 return rsp ? err : -ENOMEM; \
2107 }
2108 MBOX_MESSAGES
2109 #undef M
2110
2111 bad_message:
2112 default:
2113 otx2_reply_invalid_msg(mbox, devid, req->pcifunc, req->id);
2114 return -ENODEV;
2115 }
2116 }
2117
__rvu_mbox_handler(struct rvu_work * mwork,int type,bool poll)2118 static void __rvu_mbox_handler(struct rvu_work *mwork, int type, bool poll)
2119 {
2120 struct rvu *rvu = mwork->rvu;
2121 int offset, err, id, devid;
2122 struct otx2_mbox_dev *mdev;
2123 struct mbox_hdr *req_hdr;
2124 struct mbox_msghdr *msg;
2125 struct mbox_wq_info *mw;
2126 struct otx2_mbox *mbox;
2127
2128 switch (type) {
2129 case TYPE_AFPF:
2130 mw = &rvu->afpf_wq_info;
2131 break;
2132 case TYPE_AFVF:
2133 mw = &rvu->afvf_wq_info;
2134 break;
2135 default:
2136 return;
2137 }
2138
2139 devid = mwork - mw->mbox_wrk;
2140 mbox = &mw->mbox;
2141 mdev = &mbox->dev[devid];
2142
2143 /* Process received mbox messages */
2144 req_hdr = mdev->mbase + mbox->rx_start;
2145 if (mw->mbox_wrk[devid].num_msgs == 0)
2146 return;
2147
2148 offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
2149
2150 for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) {
2151 msg = mdev->mbase + offset;
2152
2153 /* Set which PF/VF sent this message based on mbox IRQ */
2154 switch (type) {
2155 case TYPE_AFPF:
2156 msg->pcifunc &=
2157 ~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
2158 msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
2159 break;
2160 case TYPE_AFVF:
2161 msg->pcifunc &=
2162 ~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
2163 msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
2164 break;
2165 }
2166
2167 err = rvu_process_mbox_msg(mbox, devid, msg);
2168 if (!err) {
2169 offset = mbox->rx_start + msg->next_msgoff;
2170 continue;
2171 }
2172
2173 if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
2174 dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
2175 err, otx2_mbox_id2name(msg->id),
2176 msg->id, rvu_get_pf(msg->pcifunc),
2177 (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
2178 else
2179 dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
2180 err, otx2_mbox_id2name(msg->id),
2181 msg->id, devid);
2182 }
2183 mw->mbox_wrk[devid].num_msgs = 0;
2184
2185 if (poll)
2186 otx2_mbox_wait_for_zero(mbox, devid);
2187
2188 /* Send mbox responses to VF/PF */
2189 otx2_mbox_msg_send(mbox, devid);
2190 }
2191
rvu_afpf_mbox_handler(struct work_struct * work)2192 static inline void rvu_afpf_mbox_handler(struct work_struct *work)
2193 {
2194 struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2195 struct rvu *rvu = mwork->rvu;
2196
2197 mutex_lock(&rvu->mbox_lock);
2198 __rvu_mbox_handler(mwork, TYPE_AFPF, true);
2199 mutex_unlock(&rvu->mbox_lock);
2200 }
2201
rvu_afvf_mbox_handler(struct work_struct * work)2202 static inline void rvu_afvf_mbox_handler(struct work_struct *work)
2203 {
2204 struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2205
2206 __rvu_mbox_handler(mwork, TYPE_AFVF, false);
2207 }
2208
__rvu_mbox_up_handler(struct rvu_work * mwork,int type)2209 static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
2210 {
2211 struct rvu *rvu = mwork->rvu;
2212 struct otx2_mbox_dev *mdev;
2213 struct mbox_hdr *rsp_hdr;
2214 struct mbox_msghdr *msg;
2215 struct mbox_wq_info *mw;
2216 struct otx2_mbox *mbox;
2217 int offset, id, devid;
2218
2219 switch (type) {
2220 case TYPE_AFPF:
2221 mw = &rvu->afpf_wq_info;
2222 break;
2223 case TYPE_AFVF:
2224 mw = &rvu->afvf_wq_info;
2225 break;
2226 default:
2227 return;
2228 }
2229
2230 devid = mwork - mw->mbox_wrk_up;
2231 mbox = &mw->mbox_up;
2232 mdev = &mbox->dev[devid];
2233
2234 rsp_hdr = mdev->mbase + mbox->rx_start;
2235 if (mw->mbox_wrk_up[devid].up_num_msgs == 0) {
2236 dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
2237 return;
2238 }
2239
2240 offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
2241
2242 for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) {
2243 msg = mdev->mbase + offset;
2244
2245 if (msg->id >= MBOX_MSG_MAX) {
2246 dev_err(rvu->dev,
2247 "Mbox msg with unknown ID 0x%x\n", msg->id);
2248 goto end;
2249 }
2250
2251 if (msg->sig != OTX2_MBOX_RSP_SIG) {
2252 dev_err(rvu->dev,
2253 "Mbox msg with wrong signature %x, ID 0x%x\n",
2254 msg->sig, msg->id);
2255 goto end;
2256 }
2257
2258 switch (msg->id) {
2259 case MBOX_MSG_CGX_LINK_EVENT:
2260 break;
2261 default:
2262 if (msg->rc)
2263 dev_err(rvu->dev,
2264 "Mbox msg response has err %d, ID 0x%x\n",
2265 msg->rc, msg->id);
2266 break;
2267 }
2268 end:
2269 offset = mbox->rx_start + msg->next_msgoff;
2270 mdev->msgs_acked++;
2271 }
2272 mw->mbox_wrk_up[devid].up_num_msgs = 0;
2273
2274 otx2_mbox_reset(mbox, devid);
2275 }
2276
rvu_afpf_mbox_up_handler(struct work_struct * work)2277 static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
2278 {
2279 struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2280
2281 __rvu_mbox_up_handler(mwork, TYPE_AFPF);
2282 }
2283
rvu_afvf_mbox_up_handler(struct work_struct * work)2284 static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
2285 {
2286 struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2287
2288 __rvu_mbox_up_handler(mwork, TYPE_AFVF);
2289 }
2290
rvu_get_mbox_regions(struct rvu * rvu,void ** mbox_addr,int num,int type,unsigned long * pf_bmap)2291 static int rvu_get_mbox_regions(struct rvu *rvu, void **mbox_addr,
2292 int num, int type, unsigned long *pf_bmap)
2293 {
2294 struct rvu_hwinfo *hw = rvu->hw;
2295 int region;
2296 u64 bar4;
2297
2298 /* For cn10k platform VF mailbox regions of a PF follows after the
2299 * PF <-> AF mailbox region. Whereas for Octeontx2 it is read from
2300 * RVU_PF_VF_BAR4_ADDR register.
2301 */
2302 if (type == TYPE_AFVF) {
2303 for (region = 0; region < num; region++) {
2304 if (!test_bit(region, pf_bmap))
2305 continue;
2306
2307 if (hw->cap.per_pf_mbox_regs) {
2308 bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2309 RVU_AF_PFX_BAR4_ADDR(0)) +
2310 MBOX_SIZE;
2311 bar4 += region * MBOX_SIZE;
2312 } else {
2313 bar4 = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
2314 bar4 += region * MBOX_SIZE;
2315 }
2316 mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2317 if (!mbox_addr[region])
2318 goto error;
2319 }
2320 return 0;
2321 }
2322
2323 /* For cn10k platform AF <-> PF mailbox region of a PF is read from per
2324 * PF registers. Whereas for Octeontx2 it is read from
2325 * RVU_AF_PF_BAR4_ADDR register.
2326 */
2327 for (region = 0; region < num; region++) {
2328 if (!test_bit(region, pf_bmap))
2329 continue;
2330
2331 if (hw->cap.per_pf_mbox_regs) {
2332 bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2333 RVU_AF_PFX_BAR4_ADDR(region));
2334 } else {
2335 bar4 = rvu_read64(rvu, BLKADDR_RVUM,
2336 RVU_AF_PF_BAR4_ADDR);
2337 bar4 += region * MBOX_SIZE;
2338 }
2339 mbox_addr[region] = (void *)ioremap_wc(bar4, MBOX_SIZE);
2340 if (!mbox_addr[region])
2341 goto error;
2342 }
2343 return 0;
2344
2345 error:
2346 while (region--)
2347 iounmap((void __iomem *)mbox_addr[region]);
2348 return -ENOMEM;
2349 }
2350
rvu_mbox_init(struct rvu * rvu,struct mbox_wq_info * mw,int type,int num,void (mbox_handler)(struct work_struct *),void (mbox_up_handler)(struct work_struct *))2351 static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
2352 int type, int num,
2353 void (mbox_handler)(struct work_struct *),
2354 void (mbox_up_handler)(struct work_struct *))
2355 {
2356 int err = -EINVAL, i, dir, dir_up;
2357 void __iomem *reg_base;
2358 struct rvu_work *mwork;
2359 unsigned long *pf_bmap;
2360 void **mbox_regions;
2361 const char *name;
2362 u64 cfg;
2363
2364 pf_bmap = bitmap_zalloc(num, GFP_KERNEL);
2365 if (!pf_bmap)
2366 return -ENOMEM;
2367
2368 /* RVU VFs */
2369 if (type == TYPE_AFVF)
2370 bitmap_set(pf_bmap, 0, num);
2371
2372 if (type == TYPE_AFPF) {
2373 /* Mark enabled PFs in bitmap */
2374 for (i = 0; i < num; i++) {
2375 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(i));
2376 if (cfg & BIT_ULL(20))
2377 set_bit(i, pf_bmap);
2378 }
2379 }
2380
2381 mutex_init(&rvu->mbox_lock);
2382
2383 mbox_regions = kcalloc(num, sizeof(void *), GFP_KERNEL);
2384 if (!mbox_regions) {
2385 err = -ENOMEM;
2386 goto free_bitmap;
2387 }
2388
2389 switch (type) {
2390 case TYPE_AFPF:
2391 name = "rvu_afpf_mailbox";
2392 dir = MBOX_DIR_AFPF;
2393 dir_up = MBOX_DIR_AFPF_UP;
2394 reg_base = rvu->afreg_base;
2395 err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFPF, pf_bmap);
2396 if (err)
2397 goto free_regions;
2398 break;
2399 case TYPE_AFVF:
2400 name = "rvu_afvf_mailbox";
2401 dir = MBOX_DIR_PFVF;
2402 dir_up = MBOX_DIR_PFVF_UP;
2403 reg_base = rvu->pfreg_base;
2404 err = rvu_get_mbox_regions(rvu, mbox_regions, num, TYPE_AFVF, pf_bmap);
2405 if (err)
2406 goto free_regions;
2407 break;
2408 default:
2409 goto free_regions;
2410 }
2411
2412 mw->mbox_wq = alloc_workqueue(name,
2413 WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2414 num);
2415 if (!mw->mbox_wq) {
2416 err = -ENOMEM;
2417 goto unmap_regions;
2418 }
2419
2420 mw->mbox_wrk = devm_kcalloc(rvu->dev, num,
2421 sizeof(struct rvu_work), GFP_KERNEL);
2422 if (!mw->mbox_wrk) {
2423 err = -ENOMEM;
2424 goto exit;
2425 }
2426
2427 mw->mbox_wrk_up = devm_kcalloc(rvu->dev, num,
2428 sizeof(struct rvu_work), GFP_KERNEL);
2429 if (!mw->mbox_wrk_up) {
2430 err = -ENOMEM;
2431 goto exit;
2432 }
2433
2434 err = otx2_mbox_regions_init(&mw->mbox, mbox_regions, rvu->pdev,
2435 reg_base, dir, num, pf_bmap);
2436 if (err)
2437 goto exit;
2438
2439 err = otx2_mbox_regions_init(&mw->mbox_up, mbox_regions, rvu->pdev,
2440 reg_base, dir_up, num, pf_bmap);
2441 if (err)
2442 goto exit;
2443
2444 for (i = 0; i < num; i++) {
2445 if (!test_bit(i, pf_bmap))
2446 continue;
2447
2448 mwork = &mw->mbox_wrk[i];
2449 mwork->rvu = rvu;
2450 INIT_WORK(&mwork->work, mbox_handler);
2451
2452 mwork = &mw->mbox_wrk_up[i];
2453 mwork->rvu = rvu;
2454 INIT_WORK(&mwork->work, mbox_up_handler);
2455 }
2456 goto free_regions;
2457
2458 exit:
2459 destroy_workqueue(mw->mbox_wq);
2460 unmap_regions:
2461 while (num--)
2462 iounmap((void __iomem *)mbox_regions[num]);
2463 free_regions:
2464 kfree(mbox_regions);
2465 free_bitmap:
2466 bitmap_free(pf_bmap);
2467 return err;
2468 }
2469
rvu_mbox_destroy(struct mbox_wq_info * mw)2470 static void rvu_mbox_destroy(struct mbox_wq_info *mw)
2471 {
2472 struct otx2_mbox *mbox = &mw->mbox;
2473 struct otx2_mbox_dev *mdev;
2474 int devid;
2475
2476 if (mw->mbox_wq) {
2477 destroy_workqueue(mw->mbox_wq);
2478 mw->mbox_wq = NULL;
2479 }
2480
2481 for (devid = 0; devid < mbox->ndevs; devid++) {
2482 mdev = &mbox->dev[devid];
2483 if (mdev->hwbase)
2484 iounmap((void __iomem *)mdev->hwbase);
2485 }
2486
2487 otx2_mbox_destroy(&mw->mbox);
2488 otx2_mbox_destroy(&mw->mbox_up);
2489 }
2490
rvu_queue_work(struct mbox_wq_info * mw,int first,int mdevs,u64 intr)2491 static void rvu_queue_work(struct mbox_wq_info *mw, int first,
2492 int mdevs, u64 intr)
2493 {
2494 struct otx2_mbox_dev *mdev;
2495 struct otx2_mbox *mbox;
2496 struct mbox_hdr *hdr;
2497 int i;
2498
2499 for (i = first; i < mdevs; i++) {
2500 /* start from 0 */
2501 if (!(intr & BIT_ULL(i - first)))
2502 continue;
2503
2504 mbox = &mw->mbox;
2505 mdev = &mbox->dev[i];
2506 hdr = mdev->mbase + mbox->rx_start;
2507
2508 /*The hdr->num_msgs is set to zero immediately in the interrupt
2509 * handler to ensure that it holds a correct value next time
2510 * when the interrupt handler is called.
2511 * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler
2512 * pf>mbox.up_num_msgs holds the data for use in
2513 * pfaf_mbox_up_handler.
2514 */
2515
2516 if (hdr->num_msgs) {
2517 mw->mbox_wrk[i].num_msgs = hdr->num_msgs;
2518 hdr->num_msgs = 0;
2519 queue_work(mw->mbox_wq, &mw->mbox_wrk[i].work);
2520 }
2521 mbox = &mw->mbox_up;
2522 mdev = &mbox->dev[i];
2523 hdr = mdev->mbase + mbox->rx_start;
2524 if (hdr->num_msgs) {
2525 mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs;
2526 hdr->num_msgs = 0;
2527 queue_work(mw->mbox_wq, &mw->mbox_wrk_up[i].work);
2528 }
2529 }
2530 }
2531
rvu_mbox_pf_intr_handler(int irq,void * rvu_irq)2532 static irqreturn_t rvu_mbox_pf_intr_handler(int irq, void *rvu_irq)
2533 {
2534 struct rvu *rvu = (struct rvu *)rvu_irq;
2535 u64 intr;
2536
2537 intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
2538 /* Clear interrupts */
2539 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, intr);
2540 if (intr)
2541 trace_otx2_msg_interrupt(rvu->pdev, "PF(s) to AF", intr);
2542
2543 /* Sync with mbox memory region */
2544 rmb();
2545
2546 rvu_queue_work(&rvu->afpf_wq_info, 0, rvu->hw->total_pfs, intr);
2547
2548 return IRQ_HANDLED;
2549 }
2550
rvu_mbox_intr_handler(int irq,void * rvu_irq)2551 static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
2552 {
2553 struct rvu *rvu = (struct rvu *)rvu_irq;
2554 int vfs = rvu->vfs;
2555 u64 intr;
2556
2557 /* Sync with mbox memory region */
2558 rmb();
2559
2560 /* Handle VF interrupts */
2561 if (vfs > 64) {
2562 intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
2563 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), intr);
2564
2565 rvu_queue_work(&rvu->afvf_wq_info, 64, vfs, intr);
2566 vfs -= 64;
2567 }
2568
2569 intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
2570 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), intr);
2571 if (intr)
2572 trace_otx2_msg_interrupt(rvu->pdev, "VF(s) to AF", intr);
2573
2574 rvu_queue_work(&rvu->afvf_wq_info, 0, vfs, intr);
2575
2576 return IRQ_HANDLED;
2577 }
2578
rvu_enable_mbox_intr(struct rvu * rvu)2579 static void rvu_enable_mbox_intr(struct rvu *rvu)
2580 {
2581 struct rvu_hwinfo *hw = rvu->hw;
2582
2583 /* Clear spurious irqs, if any */
2584 rvu_write64(rvu, BLKADDR_RVUM,
2585 RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
2586
2587 /* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
2588 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
2589 INTR_MASK(hw->total_pfs) & ~1ULL);
2590 }
2591
rvu_blklf_teardown(struct rvu * rvu,u16 pcifunc,u8 blkaddr)2592 static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
2593 {
2594 struct rvu_block *block;
2595 int slot, lf, num_lfs;
2596 int err;
2597
2598 block = &rvu->hw->block[blkaddr];
2599 num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
2600 block->addr);
2601 if (!num_lfs)
2602 return;
2603 for (slot = 0; slot < num_lfs; slot++) {
2604 lf = rvu_get_lf(rvu, block, pcifunc, slot);
2605 if (lf < 0)
2606 continue;
2607
2608 /* Cleanup LF and reset it */
2609 if (block->addr == BLKADDR_NIX0 || block->addr == BLKADDR_NIX1)
2610 rvu_nix_lf_teardown(rvu, pcifunc, block->addr, lf);
2611 else if (block->addr == BLKADDR_NPA)
2612 rvu_npa_lf_teardown(rvu, pcifunc, lf);
2613 else if ((block->addr == BLKADDR_CPT0) ||
2614 (block->addr == BLKADDR_CPT1))
2615 rvu_cpt_lf_teardown(rvu, pcifunc, block->addr, lf,
2616 slot);
2617
2618 err = rvu_lf_reset(rvu, block, lf);
2619 if (err) {
2620 dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
2621 block->addr, lf);
2622 }
2623 }
2624 }
2625
__rvu_flr_handler(struct rvu * rvu,u16 pcifunc)2626 static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
2627 {
2628 if (rvu_npc_exact_has_match_table(rvu))
2629 rvu_npc_exact_reset(rvu, pcifunc);
2630
2631 mutex_lock(&rvu->flr_lock);
2632 /* Reset order should reflect inter-block dependencies:
2633 * 1. Reset any packet/work sources (NIX, CPT, TIM)
2634 * 2. Flush and reset SSO/SSOW
2635 * 3. Cleanup pools (NPA)
2636 */
2637 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX0);
2638 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NIX1);
2639 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT0);
2640 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_CPT1);
2641 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_TIM);
2642 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSOW);
2643 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_SSO);
2644 rvu_blklf_teardown(rvu, pcifunc, BLKADDR_NPA);
2645 rvu_reset_lmt_map_tbl(rvu, pcifunc);
2646 rvu_detach_rsrcs(rvu, NULL, pcifunc);
2647 /* In scenarios where PF/VF drivers detach NIXLF without freeing MCAM
2648 * entries, check and free the MCAM entries explicitly to avoid leak.
2649 * Since LF is detached use LF number as -1.
2650 */
2651 rvu_npc_free_mcam_entries(rvu, pcifunc, -1);
2652 rvu_mac_reset(rvu, pcifunc);
2653
2654 if (rvu->mcs_blk_cnt)
2655 rvu_mcs_flr_handler(rvu, pcifunc);
2656
2657 mutex_unlock(&rvu->flr_lock);
2658 }
2659
rvu_afvf_flr_handler(struct rvu * rvu,int vf)2660 static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
2661 {
2662 int reg = 0;
2663
2664 /* pcifunc = 0(PF0) | (vf + 1) */
2665 __rvu_flr_handler(rvu, vf + 1);
2666
2667 if (vf >= 64) {
2668 reg = 1;
2669 vf = vf - 64;
2670 }
2671
2672 /* Signal FLR finish and enable IRQ */
2673 rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
2674 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
2675 }
2676
rvu_flr_handler(struct work_struct * work)2677 static void rvu_flr_handler(struct work_struct *work)
2678 {
2679 struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
2680 struct rvu *rvu = flrwork->rvu;
2681 u16 pcifunc, numvfs, vf;
2682 u64 cfg;
2683 int pf;
2684
2685 pf = flrwork - rvu->flr_wrk;
2686 if (pf >= rvu->hw->total_pfs) {
2687 rvu_afvf_flr_handler(rvu, pf - rvu->hw->total_pfs);
2688 return;
2689 }
2690
2691 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2692 numvfs = (cfg >> 12) & 0xFF;
2693 pcifunc = pf << RVU_PFVF_PF_SHIFT;
2694
2695 for (vf = 0; vf < numvfs; vf++)
2696 __rvu_flr_handler(rvu, (pcifunc | (vf + 1)));
2697
2698 __rvu_flr_handler(rvu, pcifunc);
2699
2700 /* Signal FLR finish */
2701 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
2702
2703 /* Enable interrupt */
2704 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S, BIT_ULL(pf));
2705 }
2706
rvu_afvf_queue_flr_work(struct rvu * rvu,int start_vf,int numvfs)2707 static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
2708 {
2709 int dev, vf, reg = 0;
2710 u64 intr;
2711
2712 if (start_vf >= 64)
2713 reg = 1;
2714
2715 intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
2716 if (!intr)
2717 return;
2718
2719 for (vf = 0; vf < numvfs; vf++) {
2720 if (!(intr & BIT_ULL(vf)))
2721 continue;
2722 /* Clear and disable the interrupt */
2723 rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
2724 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
2725
2726 dev = vf + start_vf + rvu->hw->total_pfs;
2727 queue_work(rvu->flr_wq, &rvu->flr_wrk[dev].work);
2728 }
2729 }
2730
rvu_flr_intr_handler(int irq,void * rvu_irq)2731 static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
2732 {
2733 struct rvu *rvu = (struct rvu *)rvu_irq;
2734 u64 intr;
2735 u8 pf;
2736
2737 intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT);
2738 if (!intr)
2739 goto afvf_flr;
2740
2741 for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2742 if (intr & (1ULL << pf)) {
2743 /* clear interrupt */
2744 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT,
2745 BIT_ULL(pf));
2746 /* Disable the interrupt */
2747 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2748 BIT_ULL(pf));
2749 /* PF is already dead do only AF related operations */
2750 queue_work(rvu->flr_wq, &rvu->flr_wrk[pf].work);
2751 }
2752 }
2753
2754 afvf_flr:
2755 rvu_afvf_queue_flr_work(rvu, 0, 64);
2756 if (rvu->vfs > 64)
2757 rvu_afvf_queue_flr_work(rvu, 64, rvu->vfs - 64);
2758
2759 return IRQ_HANDLED;
2760 }
2761
rvu_me_handle_vfset(struct rvu * rvu,int idx,u64 intr)2762 static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
2763 {
2764 int vf;
2765
2766 /* Nothing to be done here other than clearing the
2767 * TRPEND bit.
2768 */
2769 for (vf = 0; vf < 64; vf++) {
2770 if (intr & (1ULL << vf)) {
2771 /* clear the trpend due to ME(master enable) */
2772 rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
2773 /* clear interrupt */
2774 rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
2775 }
2776 }
2777 }
2778
2779 /* Handles ME interrupts from VFs of AF */
rvu_me_vf_intr_handler(int irq,void * rvu_irq)2780 static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
2781 {
2782 struct rvu *rvu = (struct rvu *)rvu_irq;
2783 int vfset;
2784 u64 intr;
2785
2786 intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2787
2788 for (vfset = 0; vfset <= 1; vfset++) {
2789 intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
2790 if (intr)
2791 rvu_me_handle_vfset(rvu, vfset, intr);
2792 }
2793
2794 return IRQ_HANDLED;
2795 }
2796
2797 /* Handles ME interrupts from PFs */
rvu_me_pf_intr_handler(int irq,void * rvu_irq)2798 static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
2799 {
2800 struct rvu *rvu = (struct rvu *)rvu_irq;
2801 u64 intr;
2802 u8 pf;
2803
2804 intr = rvu_read64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT);
2805
2806 /* Nothing to be done here other than clearing the
2807 * TRPEND bit.
2808 */
2809 for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2810 if (intr & (1ULL << pf)) {
2811 /* clear the trpend due to ME(master enable) */
2812 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFTRPEND,
2813 BIT_ULL(pf));
2814 /* clear interrupt */
2815 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT,
2816 BIT_ULL(pf));
2817 }
2818 }
2819
2820 return IRQ_HANDLED;
2821 }
2822
rvu_unregister_interrupts(struct rvu * rvu)2823 static void rvu_unregister_interrupts(struct rvu *rvu)
2824 {
2825 int irq;
2826
2827 rvu_cpt_unregister_interrupts(rvu);
2828
2829 /* Disable the Mbox interrupt */
2830 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
2831 INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2832
2833 /* Disable the PF FLR interrupt */
2834 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2835 INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2836
2837 /* Disable the PF ME interrupt */
2838 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
2839 INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2840
2841 for (irq = 0; irq < rvu->num_vec; irq++) {
2842 if (rvu->irq_allocated[irq]) {
2843 free_irq(pci_irq_vector(rvu->pdev, irq), rvu);
2844 rvu->irq_allocated[irq] = false;
2845 }
2846 }
2847
2848 pci_free_irq_vectors(rvu->pdev);
2849 rvu->num_vec = 0;
2850 }
2851
rvu_afvf_msix_vectors_num_ok(struct rvu * rvu)2852 static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
2853 {
2854 struct rvu_pfvf *pfvf = &rvu->pf[0];
2855 int offset;
2856
2857 pfvf = &rvu->pf[0];
2858 offset = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2859
2860 /* Make sure there are enough MSIX vectors configured so that
2861 * VF interrupts can be handled. Offset equal to zero means
2862 * that PF vectors are not configured and overlapping AF vectors.
2863 */
2864 return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
2865 offset;
2866 }
2867
rvu_register_interrupts(struct rvu * rvu)2868 static int rvu_register_interrupts(struct rvu *rvu)
2869 {
2870 int ret, offset, pf_vec_start;
2871
2872 rvu->num_vec = pci_msix_vec_count(rvu->pdev);
2873
2874 rvu->irq_name = devm_kmalloc_array(rvu->dev, rvu->num_vec,
2875 NAME_SIZE, GFP_KERNEL);
2876 if (!rvu->irq_name)
2877 return -ENOMEM;
2878
2879 rvu->irq_allocated = devm_kcalloc(rvu->dev, rvu->num_vec,
2880 sizeof(bool), GFP_KERNEL);
2881 if (!rvu->irq_allocated)
2882 return -ENOMEM;
2883
2884 /* Enable MSI-X */
2885 ret = pci_alloc_irq_vectors(rvu->pdev, rvu->num_vec,
2886 rvu->num_vec, PCI_IRQ_MSIX);
2887 if (ret < 0) {
2888 dev_err(rvu->dev,
2889 "RVUAF: Request for %d msix vectors failed, ret %d\n",
2890 rvu->num_vec, ret);
2891 return ret;
2892 }
2893
2894 /* Register mailbox interrupt handler */
2895 sprintf(&rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], "RVUAF Mbox");
2896 ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_MBOX),
2897 rvu_mbox_pf_intr_handler, 0,
2898 &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], rvu);
2899 if (ret) {
2900 dev_err(rvu->dev,
2901 "RVUAF: IRQ registration failed for mbox irq\n");
2902 goto fail;
2903 }
2904
2905 rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
2906
2907 /* Enable mailbox interrupts from all PFs */
2908 rvu_enable_mbox_intr(rvu);
2909
2910 /* Register FLR interrupt handler */
2911 sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2912 "RVUAF FLR");
2913 ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFFLR),
2914 rvu_flr_intr_handler, 0,
2915 &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2916 rvu);
2917 if (ret) {
2918 dev_err(rvu->dev,
2919 "RVUAF: IRQ registration failed for FLR\n");
2920 goto fail;
2921 }
2922 rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
2923
2924 /* Enable FLR interrupt for all PFs*/
2925 rvu_write64(rvu, BLKADDR_RVUM,
2926 RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
2927
2928 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
2929 INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2930
2931 /* Register ME interrupt handler */
2932 sprintf(&rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2933 "RVUAF ME");
2934 ret = request_irq(pci_irq_vector(rvu->pdev, RVU_AF_INT_VEC_PFME),
2935 rvu_me_pf_intr_handler, 0,
2936 &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2937 rvu);
2938 if (ret) {
2939 dev_err(rvu->dev,
2940 "RVUAF: IRQ registration failed for ME\n");
2941 }
2942 rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
2943
2944 /* Clear TRPEND bit for all PF */
2945 rvu_write64(rvu, BLKADDR_RVUM,
2946 RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs));
2947 /* Enable ME interrupt for all PFs*/
2948 rvu_write64(rvu, BLKADDR_RVUM,
2949 RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
2950
2951 rvu_write64(rvu, BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
2952 INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2953
2954 if (!rvu_afvf_msix_vectors_num_ok(rvu))
2955 return 0;
2956
2957 /* Get PF MSIX vectors offset. */
2958 pf_vec_start = rvu_read64(rvu, BLKADDR_RVUM,
2959 RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2960
2961 /* Register MBOX0 interrupt. */
2962 offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
2963 sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox0");
2964 ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2965 rvu_mbox_intr_handler, 0,
2966 &rvu->irq_name[offset * NAME_SIZE],
2967 rvu);
2968 if (ret)
2969 dev_err(rvu->dev,
2970 "RVUAF: IRQ registration failed for Mbox0\n");
2971
2972 rvu->irq_allocated[offset] = true;
2973
2974 /* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
2975 * simply increment current offset by 1.
2976 */
2977 offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
2978 sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF Mbox1");
2979 ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2980 rvu_mbox_intr_handler, 0,
2981 &rvu->irq_name[offset * NAME_SIZE],
2982 rvu);
2983 if (ret)
2984 dev_err(rvu->dev,
2985 "RVUAF: IRQ registration failed for Mbox1\n");
2986
2987 rvu->irq_allocated[offset] = true;
2988
2989 /* Register FLR interrupt handler for AF's VFs */
2990 offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
2991 sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR0");
2992 ret = request_irq(pci_irq_vector(rvu->pdev, offset),
2993 rvu_flr_intr_handler, 0,
2994 &rvu->irq_name[offset * NAME_SIZE], rvu);
2995 if (ret) {
2996 dev_err(rvu->dev,
2997 "RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
2998 goto fail;
2999 }
3000 rvu->irq_allocated[offset] = true;
3001
3002 offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
3003 sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF FLR1");
3004 ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3005 rvu_flr_intr_handler, 0,
3006 &rvu->irq_name[offset * NAME_SIZE], rvu);
3007 if (ret) {
3008 dev_err(rvu->dev,
3009 "RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
3010 goto fail;
3011 }
3012 rvu->irq_allocated[offset] = true;
3013
3014 /* Register ME interrupt handler for AF's VFs */
3015 offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
3016 sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME0");
3017 ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3018 rvu_me_vf_intr_handler, 0,
3019 &rvu->irq_name[offset * NAME_SIZE], rvu);
3020 if (ret) {
3021 dev_err(rvu->dev,
3022 "RVUAF: IRQ registration failed for RVUAFVF ME0\n");
3023 goto fail;
3024 }
3025 rvu->irq_allocated[offset] = true;
3026
3027 offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
3028 sprintf(&rvu->irq_name[offset * NAME_SIZE], "RVUAFVF ME1");
3029 ret = request_irq(pci_irq_vector(rvu->pdev, offset),
3030 rvu_me_vf_intr_handler, 0,
3031 &rvu->irq_name[offset * NAME_SIZE], rvu);
3032 if (ret) {
3033 dev_err(rvu->dev,
3034 "RVUAF: IRQ registration failed for RVUAFVF ME1\n");
3035 goto fail;
3036 }
3037 rvu->irq_allocated[offset] = true;
3038
3039 ret = rvu_cpt_register_interrupts(rvu);
3040 if (ret)
3041 goto fail;
3042
3043 return 0;
3044
3045 fail:
3046 rvu_unregister_interrupts(rvu);
3047 return ret;
3048 }
3049
rvu_flr_wq_destroy(struct rvu * rvu)3050 static void rvu_flr_wq_destroy(struct rvu *rvu)
3051 {
3052 if (rvu->flr_wq) {
3053 destroy_workqueue(rvu->flr_wq);
3054 rvu->flr_wq = NULL;
3055 }
3056 }
3057
rvu_flr_init(struct rvu * rvu)3058 static int rvu_flr_init(struct rvu *rvu)
3059 {
3060 int dev, num_devs;
3061 u64 cfg;
3062 int pf;
3063
3064 /* Enable FLR for all PFs*/
3065 for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
3066 cfg = rvu_read64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
3067 rvu_write64(rvu, BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
3068 cfg | BIT_ULL(22));
3069 }
3070
3071 rvu->flr_wq = alloc_ordered_workqueue("rvu_afpf_flr",
3072 WQ_HIGHPRI | WQ_MEM_RECLAIM);
3073 if (!rvu->flr_wq)
3074 return -ENOMEM;
3075
3076 num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(rvu->pdev);
3077 rvu->flr_wrk = devm_kcalloc(rvu->dev, num_devs,
3078 sizeof(struct rvu_work), GFP_KERNEL);
3079 if (!rvu->flr_wrk) {
3080 destroy_workqueue(rvu->flr_wq);
3081 return -ENOMEM;
3082 }
3083
3084 for (dev = 0; dev < num_devs; dev++) {
3085 rvu->flr_wrk[dev].rvu = rvu;
3086 INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
3087 }
3088
3089 mutex_init(&rvu->flr_lock);
3090
3091 return 0;
3092 }
3093
rvu_disable_afvf_intr(struct rvu * rvu)3094 static void rvu_disable_afvf_intr(struct rvu *rvu)
3095 {
3096 int vfs = rvu->vfs;
3097
3098 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
3099 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
3100 rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
3101 if (vfs <= 64)
3102 return;
3103
3104 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
3105 INTR_MASK(vfs - 64));
3106 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3107 rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3108 }
3109
rvu_enable_afvf_intr(struct rvu * rvu)3110 static void rvu_enable_afvf_intr(struct rvu *rvu)
3111 {
3112 int vfs = rvu->vfs;
3113
3114 /* Clear any pending interrupts and enable AF VF interrupts for
3115 * the first 64 VFs.
3116 */
3117 /* Mbox */
3118 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
3119 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
3120
3121 /* FLR */
3122 rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
3123 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
3124 rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
3125
3126 /* Same for remaining VFs, if any. */
3127 if (vfs <= 64)
3128 return;
3129
3130 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
3131 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
3132 INTR_MASK(vfs - 64));
3133
3134 rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
3135 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3136 rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3137 }
3138
rvu_get_num_lbk_chans(void)3139 int rvu_get_num_lbk_chans(void)
3140 {
3141 struct pci_dev *pdev;
3142 void __iomem *base;
3143 int ret = -EIO;
3144
3145 pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
3146 NULL);
3147 if (!pdev)
3148 goto err;
3149
3150 base = pci_ioremap_bar(pdev, 0);
3151 if (!base)
3152 goto err_put;
3153
3154 /* Read number of available LBK channels from LBK(0)_CONST register. */
3155 ret = (readq(base + 0x10) >> 32) & 0xffff;
3156 iounmap(base);
3157 err_put:
3158 pci_dev_put(pdev);
3159 err:
3160 return ret;
3161 }
3162
rvu_enable_sriov(struct rvu * rvu)3163 static int rvu_enable_sriov(struct rvu *rvu)
3164 {
3165 struct pci_dev *pdev = rvu->pdev;
3166 int err, chans, vfs;
3167
3168 if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
3169 dev_warn(&pdev->dev,
3170 "Skipping SRIOV enablement since not enough IRQs are available\n");
3171 return 0;
3172 }
3173
3174 chans = rvu_get_num_lbk_chans();
3175 if (chans < 0)
3176 return chans;
3177
3178 vfs = pci_sriov_get_totalvfs(pdev);
3179
3180 /* Limit VFs in case we have more VFs than LBK channels available. */
3181 if (vfs > chans)
3182 vfs = chans;
3183
3184 if (!vfs)
3185 return 0;
3186
3187 /* LBK channel number 63 is used for switching packets between
3188 * CGX mapped VFs. Hence limit LBK pairs till 62 only.
3189 */
3190 if (vfs > 62)
3191 vfs = 62;
3192
3193 /* Save VFs number for reference in VF interrupts handlers.
3194 * Since interrupts might start arriving during SRIOV enablement
3195 * ordinary API cannot be used to get number of enabled VFs.
3196 */
3197 rvu->vfs = vfs;
3198
3199 err = rvu_mbox_init(rvu, &rvu->afvf_wq_info, TYPE_AFVF, vfs,
3200 rvu_afvf_mbox_handler, rvu_afvf_mbox_up_handler);
3201 if (err)
3202 return err;
3203
3204 rvu_enable_afvf_intr(rvu);
3205 /* Make sure IRQs are enabled before SRIOV. */
3206 mb();
3207
3208 err = pci_enable_sriov(pdev, vfs);
3209 if (err) {
3210 rvu_disable_afvf_intr(rvu);
3211 rvu_mbox_destroy(&rvu->afvf_wq_info);
3212 return err;
3213 }
3214
3215 return 0;
3216 }
3217
rvu_disable_sriov(struct rvu * rvu)3218 static void rvu_disable_sriov(struct rvu *rvu)
3219 {
3220 rvu_disable_afvf_intr(rvu);
3221 rvu_mbox_destroy(&rvu->afvf_wq_info);
3222 pci_disable_sriov(rvu->pdev);
3223 }
3224
rvu_update_module_params(struct rvu * rvu)3225 static void rvu_update_module_params(struct rvu *rvu)
3226 {
3227 const char *default_pfl_name = "default";
3228
3229 strscpy(rvu->mkex_pfl_name,
3230 mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
3231 strscpy(rvu->kpu_pfl_name,
3232 kpu_profile ? kpu_profile : default_pfl_name, KPU_NAME_LEN);
3233 }
3234
rvu_probe(struct pci_dev * pdev,const struct pci_device_id * id)3235 static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3236 {
3237 struct device *dev = &pdev->dev;
3238 struct rvu *rvu;
3239 int err;
3240
3241 rvu = devm_kzalloc(dev, sizeof(*rvu), GFP_KERNEL);
3242 if (!rvu)
3243 return -ENOMEM;
3244
3245 rvu->hw = devm_kzalloc(dev, sizeof(struct rvu_hwinfo), GFP_KERNEL);
3246 if (!rvu->hw) {
3247 devm_kfree(dev, rvu);
3248 return -ENOMEM;
3249 }
3250
3251 pci_set_drvdata(pdev, rvu);
3252 rvu->pdev = pdev;
3253 rvu->dev = &pdev->dev;
3254
3255 err = pci_enable_device(pdev);
3256 if (err) {
3257 dev_err(dev, "Failed to enable PCI device\n");
3258 goto err_freemem;
3259 }
3260
3261 err = pci_request_regions(pdev, DRV_NAME);
3262 if (err) {
3263 dev_err(dev, "PCI request regions failed 0x%x\n", err);
3264 goto err_disable_device;
3265 }
3266
3267 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
3268 if (err) {
3269 dev_err(dev, "DMA mask config failed, abort\n");
3270 goto err_release_regions;
3271 }
3272
3273 pci_set_master(pdev);
3274
3275 rvu->ptp = ptp_get();
3276 if (IS_ERR(rvu->ptp)) {
3277 err = PTR_ERR(rvu->ptp);
3278 if (err)
3279 goto err_release_regions;
3280 rvu->ptp = NULL;
3281 }
3282
3283 /* Map Admin function CSRs */
3284 rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, 0);
3285 rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, 0);
3286 if (!rvu->afreg_base || !rvu->pfreg_base) {
3287 dev_err(dev, "Unable to map admin function CSRs, aborting\n");
3288 err = -ENOMEM;
3289 goto err_put_ptp;
3290 }
3291
3292 /* Store module params in rvu structure */
3293 rvu_update_module_params(rvu);
3294
3295 /* Check which blocks the HW supports */
3296 rvu_check_block_implemented(rvu);
3297
3298 rvu_reset_all_blocks(rvu);
3299
3300 rvu_setup_hw_capabilities(rvu);
3301
3302 err = rvu_setup_hw_resources(rvu);
3303 if (err)
3304 goto err_put_ptp;
3305
3306 /* Init mailbox btw AF and PFs */
3307 err = rvu_mbox_init(rvu, &rvu->afpf_wq_info, TYPE_AFPF,
3308 rvu->hw->total_pfs, rvu_afpf_mbox_handler,
3309 rvu_afpf_mbox_up_handler);
3310 if (err) {
3311 dev_err(dev, "%s: Failed to initialize mbox\n", __func__);
3312 goto err_hwsetup;
3313 }
3314
3315 err = rvu_flr_init(rvu);
3316 if (err) {
3317 dev_err(dev, "%s: Failed to initialize flr\n", __func__);
3318 goto err_mbox;
3319 }
3320
3321 err = rvu_register_interrupts(rvu);
3322 if (err) {
3323 dev_err(dev, "%s: Failed to register interrupts\n", __func__);
3324 goto err_flr;
3325 }
3326
3327 err = rvu_register_dl(rvu);
3328 if (err) {
3329 dev_err(dev, "%s: Failed to register devlink\n", __func__);
3330 goto err_irq;
3331 }
3332
3333 rvu_setup_rvum_blk_revid(rvu);
3334
3335 /* Enable AF's VFs (if any) */
3336 err = rvu_enable_sriov(rvu);
3337 if (err) {
3338 dev_err(dev, "%s: Failed to enable sriov\n", __func__);
3339 goto err_dl;
3340 }
3341
3342 /* Initialize debugfs */
3343 rvu_dbg_init(rvu);
3344
3345 mutex_init(&rvu->rswitch.switch_lock);
3346
3347 if (rvu->fwdata)
3348 ptp_start(rvu, rvu->fwdata->sclk, rvu->fwdata->ptp_ext_clk_rate,
3349 rvu->fwdata->ptp_ext_tstamp);
3350
3351 return 0;
3352 err_dl:
3353 rvu_unregister_dl(rvu);
3354 err_irq:
3355 rvu_unregister_interrupts(rvu);
3356 err_flr:
3357 rvu_flr_wq_destroy(rvu);
3358 err_mbox:
3359 rvu_mbox_destroy(&rvu->afpf_wq_info);
3360 err_hwsetup:
3361 rvu_cgx_exit(rvu);
3362 rvu_fwdata_exit(rvu);
3363 rvu_mcs_exit(rvu);
3364 rvu_reset_all_blocks(rvu);
3365 rvu_free_hw_resources(rvu);
3366 rvu_clear_rvum_blk_revid(rvu);
3367 err_put_ptp:
3368 ptp_put(rvu->ptp);
3369 err_release_regions:
3370 pci_release_regions(pdev);
3371 err_disable_device:
3372 pci_disable_device(pdev);
3373 err_freemem:
3374 pci_set_drvdata(pdev, NULL);
3375 devm_kfree(&pdev->dev, rvu->hw);
3376 devm_kfree(dev, rvu);
3377 return err;
3378 }
3379
rvu_remove(struct pci_dev * pdev)3380 static void rvu_remove(struct pci_dev *pdev)
3381 {
3382 struct rvu *rvu = pci_get_drvdata(pdev);
3383
3384 rvu_dbg_exit(rvu);
3385 rvu_unregister_dl(rvu);
3386 rvu_unregister_interrupts(rvu);
3387 rvu_flr_wq_destroy(rvu);
3388 rvu_cgx_exit(rvu);
3389 rvu_fwdata_exit(rvu);
3390 rvu_mcs_exit(rvu);
3391 rvu_mbox_destroy(&rvu->afpf_wq_info);
3392 rvu_disable_sriov(rvu);
3393 rvu_reset_all_blocks(rvu);
3394 rvu_free_hw_resources(rvu);
3395 rvu_clear_rvum_blk_revid(rvu);
3396 ptp_put(rvu->ptp);
3397 pci_release_regions(pdev);
3398 pci_disable_device(pdev);
3399 pci_set_drvdata(pdev, NULL);
3400
3401 devm_kfree(&pdev->dev, rvu->hw);
3402 devm_kfree(&pdev->dev, rvu);
3403 }
3404
3405 static struct pci_driver rvu_driver = {
3406 .name = DRV_NAME,
3407 .id_table = rvu_id_table,
3408 .probe = rvu_probe,
3409 .remove = rvu_remove,
3410 };
3411
rvu_init_module(void)3412 static int __init rvu_init_module(void)
3413 {
3414 int err;
3415
3416 pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
3417
3418 err = pci_register_driver(&cgx_driver);
3419 if (err < 0)
3420 return err;
3421
3422 err = pci_register_driver(&ptp_driver);
3423 if (err < 0)
3424 goto ptp_err;
3425
3426 err = pci_register_driver(&mcs_driver);
3427 if (err < 0)
3428 goto mcs_err;
3429
3430 err = pci_register_driver(&rvu_driver);
3431 if (err < 0)
3432 goto rvu_err;
3433
3434 return 0;
3435 rvu_err:
3436 pci_unregister_driver(&mcs_driver);
3437 mcs_err:
3438 pci_unregister_driver(&ptp_driver);
3439 ptp_err:
3440 pci_unregister_driver(&cgx_driver);
3441
3442 return err;
3443 }
3444
rvu_cleanup_module(void)3445 static void __exit rvu_cleanup_module(void)
3446 {
3447 pci_unregister_driver(&rvu_driver);
3448 pci_unregister_driver(&mcs_driver);
3449 pci_unregister_driver(&ptp_driver);
3450 pci_unregister_driver(&cgx_driver);
3451 }
3452
3453 module_init(rvu_init_module);
3454 module_exit(rvu_cleanup_module);
3455