xref: /openbmc/linux/kernel/rcu/tree.c (revision 4ebdac060e5e24a89a7b3ec33ec46a41621e57fe)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  *
5  * Copyright IBM Corporation, 2008
6  *
7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8  *	    Manfred Spraul <manfred@colorfullife.com>
9  *	    Paul E. McKenney <paulmck@linux.ibm.com>
10  *
11  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13  *
14  * For detailed explanation of Read-Copy Update mechanism see -
15  *	Documentation/RCU
16  */
17 
18 #define pr_fmt(fmt) "rcu: " fmt
19 
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/kmemleak.h>
35 #include <linux/moduleparam.h>
36 #include <linux/panic.h>
37 #include <linux/panic_notifier.h>
38 #include <linux/percpu.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/mutex.h>
42 #include <linux/time.h>
43 #include <linux/kernel_stat.h>
44 #include <linux/wait.h>
45 #include <linux/kthread.h>
46 #include <uapi/linux/sched/types.h>
47 #include <linux/prefetch.h>
48 #include <linux/delay.h>
49 #include <linux/random.h>
50 #include <linux/trace_events.h>
51 #include <linux/suspend.h>
52 #include <linux/ftrace.h>
53 #include <linux/tick.h>
54 #include <linux/sysrq.h>
55 #include <linux/kprobes.h>
56 #include <linux/gfp.h>
57 #include <linux/oom.h>
58 #include <linux/smpboot.h>
59 #include <linux/jiffies.h>
60 #include <linux/slab.h>
61 #include <linux/sched/isolation.h>
62 #include <linux/sched/clock.h>
63 #include <linux/vmalloc.h>
64 #include <linux/mm.h>
65 #include <linux/kasan.h>
66 #include <linux/context_tracking.h>
67 #include "../time/tick-internal.h"
68 
69 #include "tree.h"
70 #include "rcu.h"
71 
72 #ifdef MODULE_PARAM_PREFIX
73 #undef MODULE_PARAM_PREFIX
74 #endif
75 #define MODULE_PARAM_PREFIX "rcutree."
76 
77 /* Data structures. */
78 
79 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
80 	.gpwrap = true,
81 #ifdef CONFIG_RCU_NOCB_CPU
82 	.cblist.flags = SEGCBLIST_RCU_CORE,
83 #endif
84 };
85 static struct rcu_state rcu_state = {
86 	.level = { &rcu_state.node[0] },
87 	.gp_state = RCU_GP_IDLE,
88 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
89 	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
90 	.barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
91 	.name = RCU_NAME,
92 	.abbr = RCU_ABBR,
93 	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
94 	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
95 	.ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
96 };
97 
98 /* Dump rcu_node combining tree at boot to verify correct setup. */
99 static bool dump_tree;
100 module_param(dump_tree, bool, 0444);
101 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
102 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
103 #ifndef CONFIG_PREEMPT_RT
104 module_param(use_softirq, bool, 0444);
105 #endif
106 /* Control rcu_node-tree auto-balancing at boot time. */
107 static bool rcu_fanout_exact;
108 module_param(rcu_fanout_exact, bool, 0444);
109 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
110 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
111 module_param(rcu_fanout_leaf, int, 0444);
112 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
113 /* Number of rcu_nodes at specified level. */
114 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
115 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
116 
117 /*
118  * The rcu_scheduler_active variable is initialized to the value
119  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
120  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
121  * RCU can assume that there is but one task, allowing RCU to (for example)
122  * optimize synchronize_rcu() to a simple barrier().  When this variable
123  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
124  * to detect real grace periods.  This variable is also used to suppress
125  * boot-time false positives from lockdep-RCU error checking.  Finally, it
126  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
127  * is fully initialized, including all of its kthreads having been spawned.
128  */
129 int rcu_scheduler_active __read_mostly;
130 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
131 
132 /*
133  * The rcu_scheduler_fully_active variable transitions from zero to one
134  * during the early_initcall() processing, which is after the scheduler
135  * is capable of creating new tasks.  So RCU processing (for example,
136  * creating tasks for RCU priority boosting) must be delayed until after
137  * rcu_scheduler_fully_active transitions from zero to one.  We also
138  * currently delay invocation of any RCU callbacks until after this point.
139  *
140  * It might later prove better for people registering RCU callbacks during
141  * early boot to take responsibility for these callbacks, but one step at
142  * a time.
143  */
144 static int rcu_scheduler_fully_active __read_mostly;
145 
146 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
147 			      unsigned long gps, unsigned long flags);
148 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
149 static void invoke_rcu_core(void);
150 static void rcu_report_exp_rdp(struct rcu_data *rdp);
151 static void sync_sched_exp_online_cleanup(int cpu);
152 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
153 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
154 static bool rcu_rdp_cpu_online(struct rcu_data *rdp);
155 static bool rcu_init_invoked(void);
156 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
157 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
158 
159 /*
160  * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
161  * real-time priority(enabling/disabling) is controlled by
162  * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
163  */
164 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
165 module_param(kthread_prio, int, 0444);
166 
167 /* Delay in jiffies for grace-period initialization delays, debug only. */
168 
169 static int gp_preinit_delay;
170 module_param(gp_preinit_delay, int, 0444);
171 static int gp_init_delay;
172 module_param(gp_init_delay, int, 0444);
173 static int gp_cleanup_delay;
174 module_param(gp_cleanup_delay, int, 0444);
175 
176 // Add delay to rcu_read_unlock() for strict grace periods.
177 static int rcu_unlock_delay;
178 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
179 module_param(rcu_unlock_delay, int, 0444);
180 #endif
181 
182 /*
183  * This rcu parameter is runtime-read-only. It reflects
184  * a minimum allowed number of objects which can be cached
185  * per-CPU. Object size is equal to one page. This value
186  * can be changed at boot time.
187  */
188 static int rcu_min_cached_objs = 5;
189 module_param(rcu_min_cached_objs, int, 0444);
190 
191 // A page shrinker can ask for pages to be freed to make them
192 // available for other parts of the system. This usually happens
193 // under low memory conditions, and in that case we should also
194 // defer page-cache filling for a short time period.
195 //
196 // The default value is 5 seconds, which is long enough to reduce
197 // interference with the shrinker while it asks other systems to
198 // drain their caches.
199 static int rcu_delay_page_cache_fill_msec = 5000;
200 module_param(rcu_delay_page_cache_fill_msec, int, 0444);
201 
202 /* Retrieve RCU kthreads priority for rcutorture */
rcu_get_gp_kthreads_prio(void)203 int rcu_get_gp_kthreads_prio(void)
204 {
205 	return kthread_prio;
206 }
207 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
208 
209 /*
210  * Number of grace periods between delays, normalized by the duration of
211  * the delay.  The longer the delay, the more the grace periods between
212  * each delay.  The reason for this normalization is that it means that,
213  * for non-zero delays, the overall slowdown of grace periods is constant
214  * regardless of the duration of the delay.  This arrangement balances
215  * the need for long delays to increase some race probabilities with the
216  * need for fast grace periods to increase other race probabilities.
217  */
218 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays for debugging. */
219 
220 /*
221  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
222  * permit this function to be invoked without holding the root rcu_node
223  * structure's ->lock, but of course results can be subject to change.
224  */
rcu_gp_in_progress(void)225 static int rcu_gp_in_progress(void)
226 {
227 	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
228 }
229 
230 /*
231  * Return the number of callbacks queued on the specified CPU.
232  * Handles both the nocbs and normal cases.
233  */
rcu_get_n_cbs_cpu(int cpu)234 static long rcu_get_n_cbs_cpu(int cpu)
235 {
236 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
237 
238 	if (rcu_segcblist_is_enabled(&rdp->cblist))
239 		return rcu_segcblist_n_cbs(&rdp->cblist);
240 	return 0;
241 }
242 
rcu_softirq_qs(void)243 void rcu_softirq_qs(void)
244 {
245 	rcu_qs();
246 	rcu_preempt_deferred_qs(current);
247 	rcu_tasks_qs(current, false);
248 }
249 
250 /*
251  * Reset the current CPU's ->dynticks counter to indicate that the
252  * newly onlined CPU is no longer in an extended quiescent state.
253  * This will either leave the counter unchanged, or increment it
254  * to the next non-quiescent value.
255  *
256  * The non-atomic test/increment sequence works because the upper bits
257  * of the ->dynticks counter are manipulated only by the corresponding CPU,
258  * or when the corresponding CPU is offline.
259  */
rcu_dynticks_eqs_online(void)260 static void rcu_dynticks_eqs_online(void)
261 {
262 	if (ct_dynticks() & RCU_DYNTICKS_IDX)
263 		return;
264 	ct_state_inc(RCU_DYNTICKS_IDX);
265 }
266 
267 /*
268  * Snapshot the ->dynticks counter with full ordering so as to allow
269  * stable comparison of this counter with past and future snapshots.
270  */
rcu_dynticks_snap(int cpu)271 static int rcu_dynticks_snap(int cpu)
272 {
273 	smp_mb();  // Fundamental RCU ordering guarantee.
274 	return ct_dynticks_cpu_acquire(cpu);
275 }
276 
277 /*
278  * Return true if the snapshot returned from rcu_dynticks_snap()
279  * indicates that RCU is in an extended quiescent state.
280  */
rcu_dynticks_in_eqs(int snap)281 static bool rcu_dynticks_in_eqs(int snap)
282 {
283 	return !(snap & RCU_DYNTICKS_IDX);
284 }
285 
286 /*
287  * Return true if the CPU corresponding to the specified rcu_data
288  * structure has spent some time in an extended quiescent state since
289  * rcu_dynticks_snap() returned the specified snapshot.
290  */
rcu_dynticks_in_eqs_since(struct rcu_data * rdp,int snap)291 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
292 {
293 	return snap != rcu_dynticks_snap(rdp->cpu);
294 }
295 
296 /*
297  * Return true if the referenced integer is zero while the specified
298  * CPU remains within a single extended quiescent state.
299  */
rcu_dynticks_zero_in_eqs(int cpu,int * vp)300 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
301 {
302 	int snap;
303 
304 	// If not quiescent, force back to earlier extended quiescent state.
305 	snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX;
306 	smp_rmb(); // Order ->dynticks and *vp reads.
307 	if (READ_ONCE(*vp))
308 		return false;  // Non-zero, so report failure;
309 	smp_rmb(); // Order *vp read and ->dynticks re-read.
310 
311 	// If still in the same extended quiescent state, we are good!
312 	return snap == ct_dynticks_cpu(cpu);
313 }
314 
315 /*
316  * Let the RCU core know that this CPU has gone through the scheduler,
317  * which is a quiescent state.  This is called when the need for a
318  * quiescent state is urgent, so we burn an atomic operation and full
319  * memory barriers to let the RCU core know about it, regardless of what
320  * this CPU might (or might not) do in the near future.
321  *
322  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
323  *
324  * The caller must have disabled interrupts and must not be idle.
325  */
rcu_momentary_dyntick_idle(void)326 notrace void rcu_momentary_dyntick_idle(void)
327 {
328 	int seq;
329 
330 	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
331 	seq = ct_state_inc(2 * RCU_DYNTICKS_IDX);
332 	/* It is illegal to call this from idle state. */
333 	WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX));
334 	rcu_preempt_deferred_qs(current);
335 }
336 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
337 
338 /**
339  * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
340  *
341  * If the current CPU is idle and running at a first-level (not nested)
342  * interrupt, or directly, from idle, return true.
343  *
344  * The caller must have at least disabled IRQs.
345  */
rcu_is_cpu_rrupt_from_idle(void)346 static int rcu_is_cpu_rrupt_from_idle(void)
347 {
348 	long nesting;
349 
350 	/*
351 	 * Usually called from the tick; but also used from smp_function_call()
352 	 * for expedited grace periods. This latter can result in running from
353 	 * the idle task, instead of an actual IPI.
354 	 */
355 	lockdep_assert_irqs_disabled();
356 
357 	/* Check for counter underflows */
358 	RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0,
359 			 "RCU dynticks_nesting counter underflow!");
360 	RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0,
361 			 "RCU dynticks_nmi_nesting counter underflow/zero!");
362 
363 	/* Are we at first interrupt nesting level? */
364 	nesting = ct_dynticks_nmi_nesting();
365 	if (nesting > 1)
366 		return false;
367 
368 	/*
369 	 * If we're not in an interrupt, we must be in the idle task!
370 	 */
371 	WARN_ON_ONCE(!nesting && !is_idle_task(current));
372 
373 	/* Does CPU appear to be idle from an RCU standpoint? */
374 	return ct_dynticks_nesting() == 0;
375 }
376 
377 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
378 				// Maximum callbacks per rcu_do_batch ...
379 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
380 static long blimit = DEFAULT_RCU_BLIMIT;
381 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
382 static long qhimark = DEFAULT_RCU_QHIMARK;
383 #define DEFAULT_RCU_QLOMARK 100   // Once only this many pending, use blimit.
384 static long qlowmark = DEFAULT_RCU_QLOMARK;
385 #define DEFAULT_RCU_QOVLD_MULT 2
386 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
387 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
388 static long qovld_calc = -1;	  // No pre-initialization lock acquisitions!
389 
390 module_param(blimit, long, 0444);
391 module_param(qhimark, long, 0444);
392 module_param(qlowmark, long, 0444);
393 module_param(qovld, long, 0444);
394 
395 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
396 static ulong jiffies_till_next_fqs = ULONG_MAX;
397 static bool rcu_kick_kthreads;
398 static int rcu_divisor = 7;
399 module_param(rcu_divisor, int, 0644);
400 
401 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
402 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
403 module_param(rcu_resched_ns, long, 0644);
404 
405 /*
406  * How long the grace period must be before we start recruiting
407  * quiescent-state help from rcu_note_context_switch().
408  */
409 static ulong jiffies_till_sched_qs = ULONG_MAX;
410 module_param(jiffies_till_sched_qs, ulong, 0444);
411 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
412 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
413 
414 /*
415  * Make sure that we give the grace-period kthread time to detect any
416  * idle CPUs before taking active measures to force quiescent states.
417  * However, don't go below 100 milliseconds, adjusted upwards for really
418  * large systems.
419  */
adjust_jiffies_till_sched_qs(void)420 static void adjust_jiffies_till_sched_qs(void)
421 {
422 	unsigned long j;
423 
424 	/* If jiffies_till_sched_qs was specified, respect the request. */
425 	if (jiffies_till_sched_qs != ULONG_MAX) {
426 		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
427 		return;
428 	}
429 	/* Otherwise, set to third fqs scan, but bound below on large system. */
430 	j = READ_ONCE(jiffies_till_first_fqs) +
431 		      2 * READ_ONCE(jiffies_till_next_fqs);
432 	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
433 		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
434 	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
435 	WRITE_ONCE(jiffies_to_sched_qs, j);
436 }
437 
param_set_first_fqs_jiffies(const char * val,const struct kernel_param * kp)438 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
439 {
440 	ulong j;
441 	int ret = kstrtoul(val, 0, &j);
442 
443 	if (!ret) {
444 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
445 		adjust_jiffies_till_sched_qs();
446 	}
447 	return ret;
448 }
449 
param_set_next_fqs_jiffies(const char * val,const struct kernel_param * kp)450 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
451 {
452 	ulong j;
453 	int ret = kstrtoul(val, 0, &j);
454 
455 	if (!ret) {
456 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
457 		adjust_jiffies_till_sched_qs();
458 	}
459 	return ret;
460 }
461 
462 static const struct kernel_param_ops first_fqs_jiffies_ops = {
463 	.set = param_set_first_fqs_jiffies,
464 	.get = param_get_ulong,
465 };
466 
467 static const struct kernel_param_ops next_fqs_jiffies_ops = {
468 	.set = param_set_next_fqs_jiffies,
469 	.get = param_get_ulong,
470 };
471 
472 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
473 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
474 module_param(rcu_kick_kthreads, bool, 0644);
475 
476 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
477 static int rcu_pending(int user);
478 
479 /*
480  * Return the number of RCU GPs completed thus far for debug & stats.
481  */
rcu_get_gp_seq(void)482 unsigned long rcu_get_gp_seq(void)
483 {
484 	return READ_ONCE(rcu_state.gp_seq);
485 }
486 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
487 
488 /*
489  * Return the number of RCU expedited batches completed thus far for
490  * debug & stats.  Odd numbers mean that a batch is in progress, even
491  * numbers mean idle.  The value returned will thus be roughly double
492  * the cumulative batches since boot.
493  */
rcu_exp_batches_completed(void)494 unsigned long rcu_exp_batches_completed(void)
495 {
496 	return rcu_state.expedited_sequence;
497 }
498 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
499 
500 /*
501  * Return the root node of the rcu_state structure.
502  */
rcu_get_root(void)503 static struct rcu_node *rcu_get_root(void)
504 {
505 	return &rcu_state.node[0];
506 }
507 
508 /*
509  * Send along grace-period-related data for rcutorture diagnostics.
510  */
rcutorture_get_gp_data(enum rcutorture_type test_type,int * flags,unsigned long * gp_seq)511 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
512 			    unsigned long *gp_seq)
513 {
514 	switch (test_type) {
515 	case RCU_FLAVOR:
516 		*flags = READ_ONCE(rcu_state.gp_flags);
517 		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
518 		break;
519 	default:
520 		break;
521 	}
522 }
523 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
524 
525 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
526 /*
527  * An empty function that will trigger a reschedule on
528  * IRQ tail once IRQs get re-enabled on userspace/guest resume.
529  */
late_wakeup_func(struct irq_work * work)530 static void late_wakeup_func(struct irq_work *work)
531 {
532 }
533 
534 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
535 	IRQ_WORK_INIT(late_wakeup_func);
536 
537 /*
538  * If either:
539  *
540  * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
541  * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
542  *
543  * In these cases the late RCU wake ups aren't supported in the resched loops and our
544  * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
545  * get re-enabled again.
546  */
rcu_irq_work_resched(void)547 noinstr void rcu_irq_work_resched(void)
548 {
549 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
550 
551 	if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
552 		return;
553 
554 	if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
555 		return;
556 
557 	instrumentation_begin();
558 	if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
559 		irq_work_queue(this_cpu_ptr(&late_wakeup_work));
560 	}
561 	instrumentation_end();
562 }
563 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */
564 
565 #ifdef CONFIG_PROVE_RCU
566 /**
567  * rcu_irq_exit_check_preempt - Validate that scheduling is possible
568  */
rcu_irq_exit_check_preempt(void)569 void rcu_irq_exit_check_preempt(void)
570 {
571 	lockdep_assert_irqs_disabled();
572 
573 	RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0,
574 			 "RCU dynticks_nesting counter underflow/zero!");
575 	RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() !=
576 			 DYNTICK_IRQ_NONIDLE,
577 			 "Bad RCU  dynticks_nmi_nesting counter\n");
578 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
579 			 "RCU in extended quiescent state!");
580 }
581 #endif /* #ifdef CONFIG_PROVE_RCU */
582 
583 #ifdef CONFIG_NO_HZ_FULL
584 /**
585  * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
586  *
587  * The scheduler tick is not normally enabled when CPUs enter the kernel
588  * from nohz_full userspace execution.  After all, nohz_full userspace
589  * execution is an RCU quiescent state and the time executing in the kernel
590  * is quite short.  Except of course when it isn't.  And it is not hard to
591  * cause a large system to spend tens of seconds or even minutes looping
592  * in the kernel, which can cause a number of problems, include RCU CPU
593  * stall warnings.
594  *
595  * Therefore, if a nohz_full CPU fails to report a quiescent state
596  * in a timely manner, the RCU grace-period kthread sets that CPU's
597  * ->rcu_urgent_qs flag with the expectation that the next interrupt or
598  * exception will invoke this function, which will turn on the scheduler
599  * tick, which will enable RCU to detect that CPU's quiescent states,
600  * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
601  * The tick will be disabled once a quiescent state is reported for
602  * this CPU.
603  *
604  * Of course, in carefully tuned systems, there might never be an
605  * interrupt or exception.  In that case, the RCU grace-period kthread
606  * will eventually cause one to happen.  However, in less carefully
607  * controlled environments, this function allows RCU to get what it
608  * needs without creating otherwise useless interruptions.
609  */
__rcu_irq_enter_check_tick(void)610 void __rcu_irq_enter_check_tick(void)
611 {
612 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
613 
614 	// If we're here from NMI there's nothing to do.
615 	if (in_nmi())
616 		return;
617 
618 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
619 			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
620 
621 	if (!tick_nohz_full_cpu(rdp->cpu) ||
622 	    !READ_ONCE(rdp->rcu_urgent_qs) ||
623 	    READ_ONCE(rdp->rcu_forced_tick)) {
624 		// RCU doesn't need nohz_full help from this CPU, or it is
625 		// already getting that help.
626 		return;
627 	}
628 
629 	// We get here only when not in an extended quiescent state and
630 	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
631 	// already watching and (2) The fact that we are in an interrupt
632 	// handler and that the rcu_node lock is an irq-disabled lock
633 	// prevents self-deadlock.  So we can safely recheck under the lock.
634 	// Note that the nohz_full state currently cannot change.
635 	raw_spin_lock_rcu_node(rdp->mynode);
636 	if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) {
637 		// A nohz_full CPU is in the kernel and RCU needs a
638 		// quiescent state.  Turn on the tick!
639 		WRITE_ONCE(rdp->rcu_forced_tick, true);
640 		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
641 	}
642 	raw_spin_unlock_rcu_node(rdp->mynode);
643 }
644 NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick);
645 #endif /* CONFIG_NO_HZ_FULL */
646 
647 /*
648  * Check to see if any future non-offloaded RCU-related work will need
649  * to be done by the current CPU, even if none need be done immediately,
650  * returning 1 if so.  This function is part of the RCU implementation;
651  * it is -not- an exported member of the RCU API.  This is used by
652  * the idle-entry code to figure out whether it is safe to disable the
653  * scheduler-clock interrupt.
654  *
655  * Just check whether or not this CPU has non-offloaded RCU callbacks
656  * queued.
657  */
rcu_needs_cpu(void)658 int rcu_needs_cpu(void)
659 {
660 	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
661 		!rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
662 }
663 
664 /*
665  * If any sort of urgency was applied to the current CPU (for example,
666  * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
667  * to get to a quiescent state, disable it.
668  */
rcu_disable_urgency_upon_qs(struct rcu_data * rdp)669 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
670 {
671 	raw_lockdep_assert_held_rcu_node(rdp->mynode);
672 	WRITE_ONCE(rdp->rcu_urgent_qs, false);
673 	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
674 	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
675 		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
676 		WRITE_ONCE(rdp->rcu_forced_tick, false);
677 	}
678 }
679 
680 /**
681  * rcu_is_watching - RCU read-side critical sections permitted on current CPU?
682  *
683  * Return @true if RCU is watching the running CPU and @false otherwise.
684  * An @true return means that this CPU can safely enter RCU read-side
685  * critical sections.
686  *
687  * Although calls to rcu_is_watching() from most parts of the kernel
688  * will return @true, there are important exceptions.  For example, if the
689  * current CPU is deep within its idle loop, in kernel entry/exit code,
690  * or offline, rcu_is_watching() will return @false.
691  *
692  * Make notrace because it can be called by the internal functions of
693  * ftrace, and making this notrace removes unnecessary recursion calls.
694  */
rcu_is_watching(void)695 notrace bool rcu_is_watching(void)
696 {
697 	bool ret;
698 
699 	preempt_disable_notrace();
700 	ret = !rcu_dynticks_curr_cpu_in_eqs();
701 	preempt_enable_notrace();
702 	return ret;
703 }
704 EXPORT_SYMBOL_GPL(rcu_is_watching);
705 
706 /*
707  * If a holdout task is actually running, request an urgent quiescent
708  * state from its CPU.  This is unsynchronized, so migrations can cause
709  * the request to go to the wrong CPU.  Which is OK, all that will happen
710  * is that the CPU's next context switch will be a bit slower and next
711  * time around this task will generate another request.
712  */
rcu_request_urgent_qs_task(struct task_struct * t)713 void rcu_request_urgent_qs_task(struct task_struct *t)
714 {
715 	int cpu;
716 
717 	barrier();
718 	cpu = task_cpu(t);
719 	if (!task_curr(t))
720 		return; /* This task is not running on that CPU. */
721 	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
722 }
723 
724 /*
725  * When trying to report a quiescent state on behalf of some other CPU,
726  * it is our responsibility to check for and handle potential overflow
727  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
728  * After all, the CPU might be in deep idle state, and thus executing no
729  * code whatsoever.
730  */
rcu_gpnum_ovf(struct rcu_node * rnp,struct rcu_data * rdp)731 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
732 {
733 	raw_lockdep_assert_held_rcu_node(rnp);
734 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
735 			 rnp->gp_seq))
736 		WRITE_ONCE(rdp->gpwrap, true);
737 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
738 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
739 }
740 
741 /*
742  * Snapshot the specified CPU's dynticks counter so that we can later
743  * credit them with an implicit quiescent state.  Return 1 if this CPU
744  * is in dynticks idle mode, which is an extended quiescent state.
745  */
dyntick_save_progress_counter(struct rcu_data * rdp)746 static int dyntick_save_progress_counter(struct rcu_data *rdp)
747 {
748 	rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu);
749 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
750 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
751 		rcu_gpnum_ovf(rdp->mynode, rdp);
752 		return 1;
753 	}
754 	return 0;
755 }
756 
757 #ifndef arch_irq_stat_cpu
758 #define arch_irq_stat_cpu(cpu) 0
759 #endif
760 
761 /*
762  * Returns positive if the specified CPU has passed through a quiescent state
763  * by virtue of being in or having passed through an dynticks idle state since
764  * the last call to dyntick_save_progress_counter() for this same CPU, or by
765  * virtue of having been offline.
766  *
767  * Returns negative if the specified CPU needs a force resched.
768  *
769  * Returns zero otherwise.
770  */
rcu_implicit_dynticks_qs(struct rcu_data * rdp)771 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
772 {
773 	unsigned long jtsq;
774 	int ret = 0;
775 	struct rcu_node *rnp = rdp->mynode;
776 
777 	/*
778 	 * If the CPU passed through or entered a dynticks idle phase with
779 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
780 	 * already acknowledged the request to pass through a quiescent
781 	 * state.  Either way, that CPU cannot possibly be in an RCU
782 	 * read-side critical section that started before the beginning
783 	 * of the current RCU grace period.
784 	 */
785 	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
786 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
787 		rcu_gpnum_ovf(rnp, rdp);
788 		return 1;
789 	}
790 
791 	/*
792 	 * Complain if a CPU that is considered to be offline from RCU's
793 	 * perspective has not yet reported a quiescent state.  After all,
794 	 * the offline CPU should have reported a quiescent state during
795 	 * the CPU-offline process, or, failing that, by rcu_gp_init()
796 	 * if it ran concurrently with either the CPU going offline or the
797 	 * last task on a leaf rcu_node structure exiting its RCU read-side
798 	 * critical section while all CPUs corresponding to that structure
799 	 * are offline.  This added warning detects bugs in any of these
800 	 * code paths.
801 	 *
802 	 * The rcu_node structure's ->lock is held here, which excludes
803 	 * the relevant portions the CPU-hotplug code, the grace-period
804 	 * initialization code, and the rcu_read_unlock() code paths.
805 	 *
806 	 * For more detail, please refer to the "Hotplug CPU" section
807 	 * of RCU's Requirements documentation.
808 	 */
809 	if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
810 		struct rcu_node *rnp1;
811 
812 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
813 			__func__, rnp->grplo, rnp->grphi, rnp->level,
814 			(long)rnp->gp_seq, (long)rnp->completedqs);
815 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
816 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
817 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
818 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
819 			__func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
820 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
821 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
822 		return 1; /* Break things loose after complaining. */
823 	}
824 
825 	/*
826 	 * A CPU running for an extended time within the kernel can
827 	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
828 	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
829 	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
830 	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
831 	 * variable are safe because the assignments are repeated if this
832 	 * CPU failed to pass through a quiescent state.  This code
833 	 * also checks .jiffies_resched in case jiffies_to_sched_qs
834 	 * is set way high.
835 	 */
836 	jtsq = READ_ONCE(jiffies_to_sched_qs);
837 	if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
838 	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
839 	     time_after(jiffies, rcu_state.jiffies_resched) ||
840 	     rcu_state.cbovld)) {
841 		WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
842 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
843 		smp_store_release(&rdp->rcu_urgent_qs, true);
844 	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
845 		WRITE_ONCE(rdp->rcu_urgent_qs, true);
846 	}
847 
848 	/*
849 	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
850 	 * The above code handles this, but only for straight cond_resched().
851 	 * And some in-kernel loops check need_resched() before calling
852 	 * cond_resched(), which defeats the above code for CPUs that are
853 	 * running in-kernel with scheduling-clock interrupts disabled.
854 	 * So hit them over the head with the resched_cpu() hammer!
855 	 */
856 	if (tick_nohz_full_cpu(rdp->cpu) &&
857 	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
858 	     rcu_state.cbovld)) {
859 		WRITE_ONCE(rdp->rcu_urgent_qs, true);
860 		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
861 		ret = -1;
862 	}
863 
864 	/*
865 	 * If more than halfway to RCU CPU stall-warning time, invoke
866 	 * resched_cpu() more frequently to try to loosen things up a bit.
867 	 * Also check to see if the CPU is getting hammered with interrupts,
868 	 * but only once per grace period, just to keep the IPIs down to
869 	 * a dull roar.
870 	 */
871 	if (time_after(jiffies, rcu_state.jiffies_resched)) {
872 		if (time_after(jiffies,
873 			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
874 			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
875 			ret = -1;
876 		}
877 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
878 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
879 		    (rnp->ffmask & rdp->grpmask)) {
880 			rdp->rcu_iw_pending = true;
881 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
882 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
883 		}
884 
885 		if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) {
886 			int cpu = rdp->cpu;
887 			struct rcu_snap_record *rsrp;
888 			struct kernel_cpustat *kcsp;
889 
890 			kcsp = &kcpustat_cpu(cpu);
891 
892 			rsrp = &rdp->snap_record;
893 			rsrp->cputime_irq     = kcpustat_field(kcsp, CPUTIME_IRQ, cpu);
894 			rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu);
895 			rsrp->cputime_system  = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu);
896 			rsrp->nr_hardirqs = kstat_cpu_irqs_sum(cpu) + arch_irq_stat_cpu(cpu);
897 			rsrp->nr_softirqs = kstat_cpu_softirqs_sum(cpu);
898 			rsrp->nr_csw = nr_context_switches_cpu(cpu);
899 			rsrp->jiffies = jiffies;
900 			rsrp->gp_seq = rdp->gp_seq;
901 		}
902 	}
903 
904 	return ret;
905 }
906 
907 /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
trace_rcu_this_gp(struct rcu_node * rnp,struct rcu_data * rdp,unsigned long gp_seq_req,const char * s)908 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
909 			      unsigned long gp_seq_req, const char *s)
910 {
911 	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
912 				      gp_seq_req, rnp->level,
913 				      rnp->grplo, rnp->grphi, s);
914 }
915 
916 /*
917  * rcu_start_this_gp - Request the start of a particular grace period
918  * @rnp_start: The leaf node of the CPU from which to start.
919  * @rdp: The rcu_data corresponding to the CPU from which to start.
920  * @gp_seq_req: The gp_seq of the grace period to start.
921  *
922  * Start the specified grace period, as needed to handle newly arrived
923  * callbacks.  The required future grace periods are recorded in each
924  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
925  * is reason to awaken the grace-period kthread.
926  *
927  * The caller must hold the specified rcu_node structure's ->lock, which
928  * is why the caller is responsible for waking the grace-period kthread.
929  *
930  * Returns true if the GP thread needs to be awakened else false.
931  */
rcu_start_this_gp(struct rcu_node * rnp_start,struct rcu_data * rdp,unsigned long gp_seq_req)932 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
933 			      unsigned long gp_seq_req)
934 {
935 	bool ret = false;
936 	struct rcu_node *rnp;
937 
938 	/*
939 	 * Use funnel locking to either acquire the root rcu_node
940 	 * structure's lock or bail out if the need for this grace period
941 	 * has already been recorded -- or if that grace period has in
942 	 * fact already started.  If there is already a grace period in
943 	 * progress in a non-leaf node, no recording is needed because the
944 	 * end of the grace period will scan the leaf rcu_node structures.
945 	 * Note that rnp_start->lock must not be released.
946 	 */
947 	raw_lockdep_assert_held_rcu_node(rnp_start);
948 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
949 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
950 		if (rnp != rnp_start)
951 			raw_spin_lock_rcu_node(rnp);
952 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
953 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
954 		    (rnp != rnp_start &&
955 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
956 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
957 					  TPS("Prestarted"));
958 			goto unlock_out;
959 		}
960 		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
961 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
962 			/*
963 			 * We just marked the leaf or internal node, and a
964 			 * grace period is in progress, which means that
965 			 * rcu_gp_cleanup() will see the marking.  Bail to
966 			 * reduce contention.
967 			 */
968 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
969 					  TPS("Startedleaf"));
970 			goto unlock_out;
971 		}
972 		if (rnp != rnp_start && rnp->parent != NULL)
973 			raw_spin_unlock_rcu_node(rnp);
974 		if (!rnp->parent)
975 			break;  /* At root, and perhaps also leaf. */
976 	}
977 
978 	/* If GP already in progress, just leave, otherwise start one. */
979 	if (rcu_gp_in_progress()) {
980 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
981 		goto unlock_out;
982 	}
983 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
984 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
985 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
986 	if (!READ_ONCE(rcu_state.gp_kthread)) {
987 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
988 		goto unlock_out;
989 	}
990 	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
991 	ret = true;  /* Caller must wake GP kthread. */
992 unlock_out:
993 	/* Push furthest requested GP to leaf node and rcu_data structure. */
994 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
995 		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
996 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
997 	}
998 	if (rnp != rnp_start)
999 		raw_spin_unlock_rcu_node(rnp);
1000 	return ret;
1001 }
1002 
1003 /*
1004  * Clean up any old requests for the just-ended grace period.  Also return
1005  * whether any additional grace periods have been requested.
1006  */
rcu_future_gp_cleanup(struct rcu_node * rnp)1007 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1008 {
1009 	bool needmore;
1010 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1011 
1012 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1013 	if (!needmore)
1014 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1015 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1016 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1017 	return needmore;
1018 }
1019 
swake_up_one_online_ipi(void * arg)1020 static void swake_up_one_online_ipi(void *arg)
1021 {
1022 	struct swait_queue_head *wqh = arg;
1023 
1024 	swake_up_one(wqh);
1025 }
1026 
swake_up_one_online(struct swait_queue_head * wqh)1027 static void swake_up_one_online(struct swait_queue_head *wqh)
1028 {
1029 	int cpu = get_cpu();
1030 
1031 	/*
1032 	 * If called from rcutree_report_cpu_starting(), wake up
1033 	 * is dangerous that late in the CPU-down hotplug process. The
1034 	 * scheduler might queue an ignored hrtimer. Defer the wake up
1035 	 * to an online CPU instead.
1036 	 */
1037 	if (unlikely(cpu_is_offline(cpu))) {
1038 		int target;
1039 
1040 		target = cpumask_any_and(housekeeping_cpumask(HK_TYPE_RCU),
1041 					 cpu_online_mask);
1042 
1043 		smp_call_function_single(target, swake_up_one_online_ipi,
1044 					 wqh, 0);
1045 		put_cpu();
1046 	} else {
1047 		put_cpu();
1048 		swake_up_one(wqh);
1049 	}
1050 }
1051 
1052 /*
1053  * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1054  * interrupt or softirq handler, in which case we just might immediately
1055  * sleep upon return, resulting in a grace-period hang), and don't bother
1056  * awakening when there is nothing for the grace-period kthread to do
1057  * (as in several CPUs raced to awaken, we lost), and finally don't try
1058  * to awaken a kthread that has not yet been created.  If all those checks
1059  * are passed, track some debug information and awaken.
1060  *
1061  * So why do the self-wakeup when in an interrupt or softirq handler
1062  * in the grace-period kthread's context?  Because the kthread might have
1063  * been interrupted just as it was going to sleep, and just after the final
1064  * pre-sleep check of the awaken condition.  In this case, a wakeup really
1065  * is required, and is therefore supplied.
1066  */
rcu_gp_kthread_wake(void)1067 static void rcu_gp_kthread_wake(void)
1068 {
1069 	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1070 
1071 	if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
1072 	    !READ_ONCE(rcu_state.gp_flags) || !t)
1073 		return;
1074 	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1075 	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1076 	swake_up_one_online(&rcu_state.gp_wq);
1077 }
1078 
1079 /*
1080  * If there is room, assign a ->gp_seq number to any callbacks on this
1081  * CPU that have not already been assigned.  Also accelerate any callbacks
1082  * that were previously assigned a ->gp_seq number that has since proven
1083  * to be too conservative, which can happen if callbacks get assigned a
1084  * ->gp_seq number while RCU is idle, but with reference to a non-root
1085  * rcu_node structure.  This function is idempotent, so it does not hurt
1086  * to call it repeatedly.  Returns an flag saying that we should awaken
1087  * the RCU grace-period kthread.
1088  *
1089  * The caller must hold rnp->lock with interrupts disabled.
1090  */
rcu_accelerate_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1091 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1092 {
1093 	unsigned long gp_seq_req;
1094 	bool ret = false;
1095 
1096 	rcu_lockdep_assert_cblist_protected(rdp);
1097 	raw_lockdep_assert_held_rcu_node(rnp);
1098 
1099 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1100 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1101 		return false;
1102 
1103 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1104 
1105 	/*
1106 	 * Callbacks are often registered with incomplete grace-period
1107 	 * information.  Something about the fact that getting exact
1108 	 * information requires acquiring a global lock...  RCU therefore
1109 	 * makes a conservative estimate of the grace period number at which
1110 	 * a given callback will become ready to invoke.	The following
1111 	 * code checks this estimate and improves it when possible, thus
1112 	 * accelerating callback invocation to an earlier grace-period
1113 	 * number.
1114 	 */
1115 	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1116 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1117 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1118 
1119 	/* Trace depending on how much we were able to accelerate. */
1120 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1121 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1122 	else
1123 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1124 
1125 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1126 
1127 	return ret;
1128 }
1129 
1130 /*
1131  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1132  * rcu_node structure's ->lock be held.  It consults the cached value
1133  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1134  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1135  * while holding the leaf rcu_node structure's ->lock.
1136  */
rcu_accelerate_cbs_unlocked(struct rcu_node * rnp,struct rcu_data * rdp)1137 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1138 					struct rcu_data *rdp)
1139 {
1140 	unsigned long c;
1141 	bool needwake;
1142 
1143 	rcu_lockdep_assert_cblist_protected(rdp);
1144 	c = rcu_seq_snap(&rcu_state.gp_seq);
1145 	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1146 		/* Old request still live, so mark recent callbacks. */
1147 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1148 		return;
1149 	}
1150 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1151 	needwake = rcu_accelerate_cbs(rnp, rdp);
1152 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1153 	if (needwake)
1154 		rcu_gp_kthread_wake();
1155 }
1156 
1157 /*
1158  * Move any callbacks whose grace period has completed to the
1159  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1160  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1161  * sublist.  This function is idempotent, so it does not hurt to
1162  * invoke it repeatedly.  As long as it is not invoked -too- often...
1163  * Returns true if the RCU grace-period kthread needs to be awakened.
1164  *
1165  * The caller must hold rnp->lock with interrupts disabled.
1166  */
rcu_advance_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1167 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1168 {
1169 	rcu_lockdep_assert_cblist_protected(rdp);
1170 	raw_lockdep_assert_held_rcu_node(rnp);
1171 
1172 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1173 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1174 		return false;
1175 
1176 	/*
1177 	 * Find all callbacks whose ->gp_seq numbers indicate that they
1178 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1179 	 */
1180 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1181 
1182 	/* Classify any remaining callbacks. */
1183 	return rcu_accelerate_cbs(rnp, rdp);
1184 }
1185 
1186 /*
1187  * Move and classify callbacks, but only if doing so won't require
1188  * that the RCU grace-period kthread be awakened.
1189  */
rcu_advance_cbs_nowake(struct rcu_node * rnp,struct rcu_data * rdp)1190 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1191 						  struct rcu_data *rdp)
1192 {
1193 	rcu_lockdep_assert_cblist_protected(rdp);
1194 	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1195 		return;
1196 	// The grace period cannot end while we hold the rcu_node lock.
1197 	if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1198 		WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1199 	raw_spin_unlock_rcu_node(rnp);
1200 }
1201 
1202 /*
1203  * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1204  * quiescent state.  This is intended to be invoked when the CPU notices
1205  * a new grace period.
1206  */
rcu_strict_gp_check_qs(void)1207 static void rcu_strict_gp_check_qs(void)
1208 {
1209 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1210 		rcu_read_lock();
1211 		rcu_read_unlock();
1212 	}
1213 }
1214 
1215 /*
1216  * Update CPU-local rcu_data state to record the beginnings and ends of
1217  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1218  * structure corresponding to the current CPU, and must have irqs disabled.
1219  * Returns true if the grace-period kthread needs to be awakened.
1220  */
__note_gp_changes(struct rcu_node * rnp,struct rcu_data * rdp)1221 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1222 {
1223 	bool ret = false;
1224 	bool need_qs;
1225 	const bool offloaded = rcu_rdp_is_offloaded(rdp);
1226 
1227 	raw_lockdep_assert_held_rcu_node(rnp);
1228 
1229 	if (rdp->gp_seq == rnp->gp_seq)
1230 		return false; /* Nothing to do. */
1231 
1232 	/* Handle the ends of any preceding grace periods first. */
1233 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1234 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1235 		if (!offloaded)
1236 			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1237 		rdp->core_needs_qs = false;
1238 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1239 	} else {
1240 		if (!offloaded)
1241 			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1242 		if (rdp->core_needs_qs)
1243 			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1244 	}
1245 
1246 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1247 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1248 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1249 		/*
1250 		 * If the current grace period is waiting for this CPU,
1251 		 * set up to detect a quiescent state, otherwise don't
1252 		 * go looking for one.
1253 		 */
1254 		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1255 		need_qs = !!(rnp->qsmask & rdp->grpmask);
1256 		rdp->cpu_no_qs.b.norm = need_qs;
1257 		rdp->core_needs_qs = need_qs;
1258 		zero_cpu_stall_ticks(rdp);
1259 	}
1260 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1261 	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1262 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1263 	if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap))
1264 		WRITE_ONCE(rdp->last_sched_clock, jiffies);
1265 	WRITE_ONCE(rdp->gpwrap, false);
1266 	rcu_gpnum_ovf(rnp, rdp);
1267 	return ret;
1268 }
1269 
note_gp_changes(struct rcu_data * rdp)1270 static void note_gp_changes(struct rcu_data *rdp)
1271 {
1272 	unsigned long flags;
1273 	bool needwake;
1274 	struct rcu_node *rnp;
1275 
1276 	local_irq_save(flags);
1277 	rnp = rdp->mynode;
1278 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1279 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1280 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1281 		local_irq_restore(flags);
1282 		return;
1283 	}
1284 	needwake = __note_gp_changes(rnp, rdp);
1285 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1286 	rcu_strict_gp_check_qs();
1287 	if (needwake)
1288 		rcu_gp_kthread_wake();
1289 }
1290 
1291 static atomic_t *rcu_gp_slow_suppress;
1292 
1293 /* Register a counter to suppress debugging grace-period delays. */
rcu_gp_slow_register(atomic_t * rgssp)1294 void rcu_gp_slow_register(atomic_t *rgssp)
1295 {
1296 	WARN_ON_ONCE(rcu_gp_slow_suppress);
1297 
1298 	WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
1299 }
1300 EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
1301 
1302 /* Unregister a counter, with NULL for not caring which. */
rcu_gp_slow_unregister(atomic_t * rgssp)1303 void rcu_gp_slow_unregister(atomic_t *rgssp)
1304 {
1305 	WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress && rcu_gp_slow_suppress != NULL);
1306 
1307 	WRITE_ONCE(rcu_gp_slow_suppress, NULL);
1308 }
1309 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
1310 
rcu_gp_slow_is_suppressed(void)1311 static bool rcu_gp_slow_is_suppressed(void)
1312 {
1313 	atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
1314 
1315 	return rgssp && atomic_read(rgssp);
1316 }
1317 
rcu_gp_slow(int delay)1318 static void rcu_gp_slow(int delay)
1319 {
1320 	if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
1321 	    !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1322 		schedule_timeout_idle(delay);
1323 }
1324 
1325 static unsigned long sleep_duration;
1326 
1327 /* Allow rcutorture to stall the grace-period kthread. */
rcu_gp_set_torture_wait(int duration)1328 void rcu_gp_set_torture_wait(int duration)
1329 {
1330 	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1331 		WRITE_ONCE(sleep_duration, duration);
1332 }
1333 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1334 
1335 /* Actually implement the aforementioned wait. */
rcu_gp_torture_wait(void)1336 static void rcu_gp_torture_wait(void)
1337 {
1338 	unsigned long duration;
1339 
1340 	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1341 		return;
1342 	duration = xchg(&sleep_duration, 0UL);
1343 	if (duration > 0) {
1344 		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1345 		schedule_timeout_idle(duration);
1346 		pr_alert("%s: Wait complete\n", __func__);
1347 	}
1348 }
1349 
1350 /*
1351  * Handler for on_each_cpu() to invoke the target CPU's RCU core
1352  * processing.
1353  */
rcu_strict_gp_boundary(void * unused)1354 static void rcu_strict_gp_boundary(void *unused)
1355 {
1356 	invoke_rcu_core();
1357 }
1358 
1359 // Make the polled API aware of the beginning of a grace period.
rcu_poll_gp_seq_start(unsigned long * snap)1360 static void rcu_poll_gp_seq_start(unsigned long *snap)
1361 {
1362 	struct rcu_node *rnp = rcu_get_root();
1363 
1364 	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1365 		raw_lockdep_assert_held_rcu_node(rnp);
1366 
1367 	// If RCU was idle, note beginning of GP.
1368 	if (!rcu_seq_state(rcu_state.gp_seq_polled))
1369 		rcu_seq_start(&rcu_state.gp_seq_polled);
1370 
1371 	// Either way, record current state.
1372 	*snap = rcu_state.gp_seq_polled;
1373 }
1374 
1375 // Make the polled API aware of the end of a grace period.
rcu_poll_gp_seq_end(unsigned long * snap)1376 static void rcu_poll_gp_seq_end(unsigned long *snap)
1377 {
1378 	struct rcu_node *rnp = rcu_get_root();
1379 
1380 	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1381 		raw_lockdep_assert_held_rcu_node(rnp);
1382 
1383 	// If the previously noted GP is still in effect, record the
1384 	// end of that GP.  Either way, zero counter to avoid counter-wrap
1385 	// problems.
1386 	if (*snap && *snap == rcu_state.gp_seq_polled) {
1387 		rcu_seq_end(&rcu_state.gp_seq_polled);
1388 		rcu_state.gp_seq_polled_snap = 0;
1389 		rcu_state.gp_seq_polled_exp_snap = 0;
1390 	} else {
1391 		*snap = 0;
1392 	}
1393 }
1394 
1395 // Make the polled API aware of the beginning of a grace period, but
1396 // where caller does not hold the root rcu_node structure's lock.
rcu_poll_gp_seq_start_unlocked(unsigned long * snap)1397 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
1398 {
1399 	unsigned long flags;
1400 	struct rcu_node *rnp = rcu_get_root();
1401 
1402 	if (rcu_init_invoked()) {
1403 		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1404 			lockdep_assert_irqs_enabled();
1405 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1406 	}
1407 	rcu_poll_gp_seq_start(snap);
1408 	if (rcu_init_invoked())
1409 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1410 }
1411 
1412 // Make the polled API aware of the end of a grace period, but where
1413 // caller does not hold the root rcu_node structure's lock.
rcu_poll_gp_seq_end_unlocked(unsigned long * snap)1414 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
1415 {
1416 	unsigned long flags;
1417 	struct rcu_node *rnp = rcu_get_root();
1418 
1419 	if (rcu_init_invoked()) {
1420 		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1421 			lockdep_assert_irqs_enabled();
1422 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1423 	}
1424 	rcu_poll_gp_seq_end(snap);
1425 	if (rcu_init_invoked())
1426 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1427 }
1428 
1429 /*
1430  * Initialize a new grace period.  Return false if no grace period required.
1431  */
rcu_gp_init(void)1432 static noinline_for_stack bool rcu_gp_init(void)
1433 {
1434 	unsigned long flags;
1435 	unsigned long oldmask;
1436 	unsigned long mask;
1437 	struct rcu_data *rdp;
1438 	struct rcu_node *rnp = rcu_get_root();
1439 
1440 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1441 	raw_spin_lock_irq_rcu_node(rnp);
1442 	if (!READ_ONCE(rcu_state.gp_flags)) {
1443 		/* Spurious wakeup, tell caller to go back to sleep.  */
1444 		raw_spin_unlock_irq_rcu_node(rnp);
1445 		return false;
1446 	}
1447 	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1448 
1449 	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1450 		/*
1451 		 * Grace period already in progress, don't start another.
1452 		 * Not supposed to be able to happen.
1453 		 */
1454 		raw_spin_unlock_irq_rcu_node(rnp);
1455 		return false;
1456 	}
1457 
1458 	/* Advance to a new grace period and initialize state. */
1459 	record_gp_stall_check_time();
1460 	/* Record GP times before starting GP, hence rcu_seq_start(). */
1461 	rcu_seq_start(&rcu_state.gp_seq);
1462 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1463 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1464 	rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap);
1465 	raw_spin_unlock_irq_rcu_node(rnp);
1466 
1467 	/*
1468 	 * Apply per-leaf buffered online and offline operations to
1469 	 * the rcu_node tree. Note that this new grace period need not
1470 	 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1471 	 * offlining path, when combined with checks in this function,
1472 	 * will handle CPUs that are currently going offline or that will
1473 	 * go offline later.  Please also refer to "Hotplug CPU" section
1474 	 * of RCU's Requirements documentation.
1475 	 */
1476 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1477 	/* Exclude CPU hotplug operations. */
1478 	rcu_for_each_leaf_node(rnp) {
1479 		local_irq_save(flags);
1480 		arch_spin_lock(&rcu_state.ofl_lock);
1481 		raw_spin_lock_rcu_node(rnp);
1482 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1483 		    !rnp->wait_blkd_tasks) {
1484 			/* Nothing to do on this leaf rcu_node structure. */
1485 			raw_spin_unlock_rcu_node(rnp);
1486 			arch_spin_unlock(&rcu_state.ofl_lock);
1487 			local_irq_restore(flags);
1488 			continue;
1489 		}
1490 
1491 		/* Record old state, apply changes to ->qsmaskinit field. */
1492 		oldmask = rnp->qsmaskinit;
1493 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1494 
1495 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1496 		if (!oldmask != !rnp->qsmaskinit) {
1497 			if (!oldmask) { /* First online CPU for rcu_node. */
1498 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1499 					rcu_init_new_rnp(rnp);
1500 			} else if (rcu_preempt_has_tasks(rnp)) {
1501 				rnp->wait_blkd_tasks = true; /* blocked tasks */
1502 			} else { /* Last offline CPU and can propagate. */
1503 				rcu_cleanup_dead_rnp(rnp);
1504 			}
1505 		}
1506 
1507 		/*
1508 		 * If all waited-on tasks from prior grace period are
1509 		 * done, and if all this rcu_node structure's CPUs are
1510 		 * still offline, propagate up the rcu_node tree and
1511 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1512 		 * rcu_node structure's CPUs has since come back online,
1513 		 * simply clear ->wait_blkd_tasks.
1514 		 */
1515 		if (rnp->wait_blkd_tasks &&
1516 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1517 			rnp->wait_blkd_tasks = false;
1518 			if (!rnp->qsmaskinit)
1519 				rcu_cleanup_dead_rnp(rnp);
1520 		}
1521 
1522 		raw_spin_unlock_rcu_node(rnp);
1523 		arch_spin_unlock(&rcu_state.ofl_lock);
1524 		local_irq_restore(flags);
1525 	}
1526 	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1527 
1528 	/*
1529 	 * Set the quiescent-state-needed bits in all the rcu_node
1530 	 * structures for all currently online CPUs in breadth-first
1531 	 * order, starting from the root rcu_node structure, relying on the
1532 	 * layout of the tree within the rcu_state.node[] array.  Note that
1533 	 * other CPUs will access only the leaves of the hierarchy, thus
1534 	 * seeing that no grace period is in progress, at least until the
1535 	 * corresponding leaf node has been initialized.
1536 	 *
1537 	 * The grace period cannot complete until the initialization
1538 	 * process finishes, because this kthread handles both.
1539 	 */
1540 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1541 	rcu_for_each_node_breadth_first(rnp) {
1542 		rcu_gp_slow(gp_init_delay);
1543 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1544 		rdp = this_cpu_ptr(&rcu_data);
1545 		rcu_preempt_check_blocked_tasks(rnp);
1546 		rnp->qsmask = rnp->qsmaskinit;
1547 		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1548 		if (rnp == rdp->mynode)
1549 			(void)__note_gp_changes(rnp, rdp);
1550 		rcu_preempt_boost_start_gp(rnp);
1551 		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1552 					    rnp->level, rnp->grplo,
1553 					    rnp->grphi, rnp->qsmask);
1554 		/* Quiescent states for tasks on any now-offline CPUs. */
1555 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1556 		rnp->rcu_gp_init_mask = mask;
1557 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1558 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1559 		else
1560 			raw_spin_unlock_irq_rcu_node(rnp);
1561 		cond_resched_tasks_rcu_qs();
1562 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1563 	}
1564 
1565 	// If strict, make all CPUs aware of new grace period.
1566 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1567 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1568 
1569 	return true;
1570 }
1571 
1572 /*
1573  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1574  * time.
1575  */
rcu_gp_fqs_check_wake(int * gfp)1576 static bool rcu_gp_fqs_check_wake(int *gfp)
1577 {
1578 	struct rcu_node *rnp = rcu_get_root();
1579 
1580 	// If under overload conditions, force an immediate FQS scan.
1581 	if (*gfp & RCU_GP_FLAG_OVLD)
1582 		return true;
1583 
1584 	// Someone like call_rcu() requested a force-quiescent-state scan.
1585 	*gfp = READ_ONCE(rcu_state.gp_flags);
1586 	if (*gfp & RCU_GP_FLAG_FQS)
1587 		return true;
1588 
1589 	// The current grace period has completed.
1590 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1591 		return true;
1592 
1593 	return false;
1594 }
1595 
1596 /*
1597  * Do one round of quiescent-state forcing.
1598  */
rcu_gp_fqs(bool first_time)1599 static void rcu_gp_fqs(bool first_time)
1600 {
1601 	int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall);
1602 	struct rcu_node *rnp = rcu_get_root();
1603 
1604 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1605 	WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1606 
1607 	WARN_ON_ONCE(nr_fqs > 3);
1608 	/* Only countdown nr_fqs for stall purposes if jiffies moves. */
1609 	if (nr_fqs) {
1610 		if (nr_fqs == 1) {
1611 			WRITE_ONCE(rcu_state.jiffies_stall,
1612 				   jiffies + rcu_jiffies_till_stall_check());
1613 		}
1614 		WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs);
1615 	}
1616 
1617 	if (first_time) {
1618 		/* Collect dyntick-idle snapshots. */
1619 		force_qs_rnp(dyntick_save_progress_counter);
1620 	} else {
1621 		/* Handle dyntick-idle and offline CPUs. */
1622 		force_qs_rnp(rcu_implicit_dynticks_qs);
1623 	}
1624 	/* Clear flag to prevent immediate re-entry. */
1625 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1626 		raw_spin_lock_irq_rcu_node(rnp);
1627 		WRITE_ONCE(rcu_state.gp_flags,
1628 			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1629 		raw_spin_unlock_irq_rcu_node(rnp);
1630 	}
1631 }
1632 
1633 /*
1634  * Loop doing repeated quiescent-state forcing until the grace period ends.
1635  */
rcu_gp_fqs_loop(void)1636 static noinline_for_stack void rcu_gp_fqs_loop(void)
1637 {
1638 	bool first_gp_fqs = true;
1639 	int gf = 0;
1640 	unsigned long j;
1641 	int ret;
1642 	struct rcu_node *rnp = rcu_get_root();
1643 
1644 	j = READ_ONCE(jiffies_till_first_fqs);
1645 	if (rcu_state.cbovld)
1646 		gf = RCU_GP_FLAG_OVLD;
1647 	ret = 0;
1648 	for (;;) {
1649 		if (rcu_state.cbovld) {
1650 			j = (j + 2) / 3;
1651 			if (j <= 0)
1652 				j = 1;
1653 		}
1654 		if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) {
1655 			WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1656 			/*
1657 			 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1658 			 * update; required for stall checks.
1659 			 */
1660 			smp_wmb();
1661 			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1662 				   jiffies + (j ? 3 * j : 2));
1663 		}
1664 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1665 				       TPS("fqswait"));
1666 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
1667 		(void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
1668 				 rcu_gp_fqs_check_wake(&gf), j);
1669 		rcu_gp_torture_wait();
1670 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
1671 		/* Locking provides needed memory barriers. */
1672 		/*
1673 		 * Exit the loop if the root rcu_node structure indicates that the grace period
1674 		 * has ended, leave the loop.  The rcu_preempt_blocked_readers_cgp(rnp) check
1675 		 * is required only for single-node rcu_node trees because readers blocking
1676 		 * the current grace period are queued only on leaf rcu_node structures.
1677 		 * For multi-node trees, checking the root node's ->qsmask suffices, because a
1678 		 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from
1679 		 * the corresponding leaf nodes have passed through their quiescent state.
1680 		 */
1681 		if (!READ_ONCE(rnp->qsmask) &&
1682 		    !rcu_preempt_blocked_readers_cgp(rnp))
1683 			break;
1684 		/* If time for quiescent-state forcing, do it. */
1685 		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1686 		    (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
1687 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1688 					       TPS("fqsstart"));
1689 			rcu_gp_fqs(first_gp_fqs);
1690 			gf = 0;
1691 			if (first_gp_fqs) {
1692 				first_gp_fqs = false;
1693 				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1694 			}
1695 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1696 					       TPS("fqsend"));
1697 			cond_resched_tasks_rcu_qs();
1698 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1699 			ret = 0; /* Force full wait till next FQS. */
1700 			j = READ_ONCE(jiffies_till_next_fqs);
1701 		} else {
1702 			/* Deal with stray signal. */
1703 			cond_resched_tasks_rcu_qs();
1704 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1705 			WARN_ON(signal_pending(current));
1706 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1707 					       TPS("fqswaitsig"));
1708 			ret = 1; /* Keep old FQS timing. */
1709 			j = jiffies;
1710 			if (time_after(jiffies, rcu_state.jiffies_force_qs))
1711 				j = 1;
1712 			else
1713 				j = rcu_state.jiffies_force_qs - j;
1714 			gf = 0;
1715 		}
1716 	}
1717 }
1718 
1719 /*
1720  * Clean up after the old grace period.
1721  */
rcu_gp_cleanup(void)1722 static noinline void rcu_gp_cleanup(void)
1723 {
1724 	int cpu;
1725 	bool needgp = false;
1726 	unsigned long gp_duration;
1727 	unsigned long new_gp_seq;
1728 	bool offloaded;
1729 	struct rcu_data *rdp;
1730 	struct rcu_node *rnp = rcu_get_root();
1731 	struct swait_queue_head *sq;
1732 
1733 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1734 	raw_spin_lock_irq_rcu_node(rnp);
1735 	rcu_state.gp_end = jiffies;
1736 	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1737 	if (gp_duration > rcu_state.gp_max)
1738 		rcu_state.gp_max = gp_duration;
1739 
1740 	/*
1741 	 * We know the grace period is complete, but to everyone else
1742 	 * it appears to still be ongoing.  But it is also the case
1743 	 * that to everyone else it looks like there is nothing that
1744 	 * they can do to advance the grace period.  It is therefore
1745 	 * safe for us to drop the lock in order to mark the grace
1746 	 * period as completed in all of the rcu_node structures.
1747 	 */
1748 	rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap);
1749 	raw_spin_unlock_irq_rcu_node(rnp);
1750 
1751 	/*
1752 	 * Propagate new ->gp_seq value to rcu_node structures so that
1753 	 * other CPUs don't have to wait until the start of the next grace
1754 	 * period to process their callbacks.  This also avoids some nasty
1755 	 * RCU grace-period initialization races by forcing the end of
1756 	 * the current grace period to be completely recorded in all of
1757 	 * the rcu_node structures before the beginning of the next grace
1758 	 * period is recorded in any of the rcu_node structures.
1759 	 */
1760 	new_gp_seq = rcu_state.gp_seq;
1761 	rcu_seq_end(&new_gp_seq);
1762 	rcu_for_each_node_breadth_first(rnp) {
1763 		raw_spin_lock_irq_rcu_node(rnp);
1764 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1765 			dump_blkd_tasks(rnp, 10);
1766 		WARN_ON_ONCE(rnp->qsmask);
1767 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1768 		if (!rnp->parent)
1769 			smp_mb(); // Order against failing poll_state_synchronize_rcu_full().
1770 		rdp = this_cpu_ptr(&rcu_data);
1771 		if (rnp == rdp->mynode)
1772 			needgp = __note_gp_changes(rnp, rdp) || needgp;
1773 		/* smp_mb() provided by prior unlock-lock pair. */
1774 		needgp = rcu_future_gp_cleanup(rnp) || needgp;
1775 		// Reset overload indication for CPUs no longer overloaded
1776 		if (rcu_is_leaf_node(rnp))
1777 			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
1778 				rdp = per_cpu_ptr(&rcu_data, cpu);
1779 				check_cb_ovld_locked(rdp, rnp);
1780 			}
1781 		sq = rcu_nocb_gp_get(rnp);
1782 		raw_spin_unlock_irq_rcu_node(rnp);
1783 		rcu_nocb_gp_cleanup(sq);
1784 		cond_resched_tasks_rcu_qs();
1785 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1786 		rcu_gp_slow(gp_cleanup_delay);
1787 	}
1788 	rnp = rcu_get_root();
1789 	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1790 
1791 	/* Declare grace period done, trace first to use old GP number. */
1792 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1793 	rcu_seq_end(&rcu_state.gp_seq);
1794 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1795 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
1796 	/* Check for GP requests since above loop. */
1797 	rdp = this_cpu_ptr(&rcu_data);
1798 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1799 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1800 				  TPS("CleanupMore"));
1801 		needgp = true;
1802 	}
1803 	/* Advance CBs to reduce false positives below. */
1804 	offloaded = rcu_rdp_is_offloaded(rdp);
1805 	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1806 
1807 		// We get here if a grace period was needed (“needgp”)
1808 		// and the above call to rcu_accelerate_cbs() did not set
1809 		// the RCU_GP_FLAG_INIT bit in ->gp_state (which records
1810 		// the need for another grace period).  The purpose
1811 		// of the “offloaded” check is to avoid invoking
1812 		// rcu_accelerate_cbs() on an offloaded CPU because we do not
1813 		// hold the ->nocb_lock needed to safely access an offloaded
1814 		// ->cblist.  We do not want to acquire that lock because
1815 		// it can be heavily contended during callback floods.
1816 
1817 		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1818 		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1819 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
1820 	} else {
1821 
1822 		// We get here either if there is no need for an
1823 		// additional grace period or if rcu_accelerate_cbs() has
1824 		// already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 
1825 		// So all we need to do is to clear all of the other
1826 		// ->gp_flags bits.
1827 
1828 		WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1829 	}
1830 	raw_spin_unlock_irq_rcu_node(rnp);
1831 
1832 	// If strict, make all CPUs aware of the end of the old grace period.
1833 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1834 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1835 }
1836 
1837 /*
1838  * Body of kthread that handles grace periods.
1839  */
rcu_gp_kthread(void * unused)1840 static int __noreturn rcu_gp_kthread(void *unused)
1841 {
1842 	rcu_bind_gp_kthread();
1843 	for (;;) {
1844 
1845 		/* Handle grace-period start. */
1846 		for (;;) {
1847 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1848 					       TPS("reqwait"));
1849 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
1850 			swait_event_idle_exclusive(rcu_state.gp_wq,
1851 					 READ_ONCE(rcu_state.gp_flags) &
1852 					 RCU_GP_FLAG_INIT);
1853 			rcu_gp_torture_wait();
1854 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
1855 			/* Locking provides needed memory barrier. */
1856 			if (rcu_gp_init())
1857 				break;
1858 			cond_resched_tasks_rcu_qs();
1859 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1860 			WARN_ON(signal_pending(current));
1861 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1862 					       TPS("reqwaitsig"));
1863 		}
1864 
1865 		/* Handle quiescent-state forcing. */
1866 		rcu_gp_fqs_loop();
1867 
1868 		/* Handle grace-period end. */
1869 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
1870 		rcu_gp_cleanup();
1871 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
1872 	}
1873 }
1874 
1875 /*
1876  * Report a full set of quiescent states to the rcu_state data structure.
1877  * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1878  * another grace period is required.  Whether we wake the grace-period
1879  * kthread or it awakens itself for the next round of quiescent-state
1880  * forcing, that kthread will clean up after the just-completed grace
1881  * period.  Note that the caller must hold rnp->lock, which is released
1882  * before return.
1883  */
rcu_report_qs_rsp(unsigned long flags)1884 static void rcu_report_qs_rsp(unsigned long flags)
1885 	__releases(rcu_get_root()->lock)
1886 {
1887 	raw_lockdep_assert_held_rcu_node(rcu_get_root());
1888 	WARN_ON_ONCE(!rcu_gp_in_progress());
1889 	WRITE_ONCE(rcu_state.gp_flags,
1890 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1891 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1892 	rcu_gp_kthread_wake();
1893 }
1894 
1895 /*
1896  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1897  * Allows quiescent states for a group of CPUs to be reported at one go
1898  * to the specified rcu_node structure, though all the CPUs in the group
1899  * must be represented by the same rcu_node structure (which need not be a
1900  * leaf rcu_node structure, though it often will be).  The gps parameter
1901  * is the grace-period snapshot, which means that the quiescent states
1902  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
1903  * must be held upon entry, and it is released before return.
1904  *
1905  * As a special case, if mask is zero, the bit-already-cleared check is
1906  * disabled.  This allows propagating quiescent state due to resumed tasks
1907  * during grace-period initialization.
1908  */
rcu_report_qs_rnp(unsigned long mask,struct rcu_node * rnp,unsigned long gps,unsigned long flags)1909 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1910 			      unsigned long gps, unsigned long flags)
1911 	__releases(rnp->lock)
1912 {
1913 	unsigned long oldmask = 0;
1914 	struct rcu_node *rnp_c;
1915 
1916 	raw_lockdep_assert_held_rcu_node(rnp);
1917 
1918 	/* Walk up the rcu_node hierarchy. */
1919 	for (;;) {
1920 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1921 
1922 			/*
1923 			 * Our bit has already been cleared, or the
1924 			 * relevant grace period is already over, so done.
1925 			 */
1926 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1927 			return;
1928 		}
1929 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1930 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1931 			     rcu_preempt_blocked_readers_cgp(rnp));
1932 		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
1933 		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1934 						 mask, rnp->qsmask, rnp->level,
1935 						 rnp->grplo, rnp->grphi,
1936 						 !!rnp->gp_tasks);
1937 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1938 
1939 			/* Other bits still set at this level, so done. */
1940 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1941 			return;
1942 		}
1943 		rnp->completedqs = rnp->gp_seq;
1944 		mask = rnp->grpmask;
1945 		if (rnp->parent == NULL) {
1946 
1947 			/* No more levels.  Exit loop holding root lock. */
1948 
1949 			break;
1950 		}
1951 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1952 		rnp_c = rnp;
1953 		rnp = rnp->parent;
1954 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1955 		oldmask = READ_ONCE(rnp_c->qsmask);
1956 	}
1957 
1958 	/*
1959 	 * Get here if we are the last CPU to pass through a quiescent
1960 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1961 	 * to clean up and start the next grace period if one is needed.
1962 	 */
1963 	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1964 }
1965 
1966 /*
1967  * Record a quiescent state for all tasks that were previously queued
1968  * on the specified rcu_node structure and that were blocking the current
1969  * RCU grace period.  The caller must hold the corresponding rnp->lock with
1970  * irqs disabled, and this lock is released upon return, but irqs remain
1971  * disabled.
1972  */
1973 static void __maybe_unused
rcu_report_unblock_qs_rnp(struct rcu_node * rnp,unsigned long flags)1974 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1975 	__releases(rnp->lock)
1976 {
1977 	unsigned long gps;
1978 	unsigned long mask;
1979 	struct rcu_node *rnp_p;
1980 
1981 	raw_lockdep_assert_held_rcu_node(rnp);
1982 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
1983 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1984 	    rnp->qsmask != 0) {
1985 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1986 		return;  /* Still need more quiescent states! */
1987 	}
1988 
1989 	rnp->completedqs = rnp->gp_seq;
1990 	rnp_p = rnp->parent;
1991 	if (rnp_p == NULL) {
1992 		/*
1993 		 * Only one rcu_node structure in the tree, so don't
1994 		 * try to report up to its nonexistent parent!
1995 		 */
1996 		rcu_report_qs_rsp(flags);
1997 		return;
1998 	}
1999 
2000 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2001 	gps = rnp->gp_seq;
2002 	mask = rnp->grpmask;
2003 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2004 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2005 	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2006 }
2007 
2008 /*
2009  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2010  * structure.  This must be called from the specified CPU.
2011  */
2012 static void
rcu_report_qs_rdp(struct rcu_data * rdp)2013 rcu_report_qs_rdp(struct rcu_data *rdp)
2014 {
2015 	unsigned long flags;
2016 	unsigned long mask;
2017 	bool needacc = false;
2018 	struct rcu_node *rnp;
2019 
2020 	WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2021 	rnp = rdp->mynode;
2022 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2023 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2024 	    rdp->gpwrap) {
2025 
2026 		/*
2027 		 * The grace period in which this quiescent state was
2028 		 * recorded has ended, so don't report it upwards.
2029 		 * We will instead need a new quiescent state that lies
2030 		 * within the current grace period.
2031 		 */
2032 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2033 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2034 		return;
2035 	}
2036 	mask = rdp->grpmask;
2037 	rdp->core_needs_qs = false;
2038 	if ((rnp->qsmask & mask) == 0) {
2039 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2040 	} else {
2041 		/*
2042 		 * This GP can't end until cpu checks in, so all of our
2043 		 * callbacks can be processed during the next GP.
2044 		 *
2045 		 * NOCB kthreads have their own way to deal with that...
2046 		 */
2047 		if (!rcu_rdp_is_offloaded(rdp)) {
2048 			/*
2049 			 * The current GP has not yet ended, so it
2050 			 * should not be possible for rcu_accelerate_cbs()
2051 			 * to return true.  So complain, but don't awaken.
2052 			 */
2053 			WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp));
2054 		} else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
2055 			/*
2056 			 * ...but NOCB kthreads may miss or delay callbacks acceleration
2057 			 * if in the middle of a (de-)offloading process.
2058 			 */
2059 			needacc = true;
2060 		}
2061 
2062 		rcu_disable_urgency_upon_qs(rdp);
2063 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2064 		/* ^^^ Released rnp->lock */
2065 
2066 		if (needacc) {
2067 			rcu_nocb_lock_irqsave(rdp, flags);
2068 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2069 			rcu_nocb_unlock_irqrestore(rdp, flags);
2070 		}
2071 	}
2072 }
2073 
2074 /*
2075  * Check to see if there is a new grace period of which this CPU
2076  * is not yet aware, and if so, set up local rcu_data state for it.
2077  * Otherwise, see if this CPU has just passed through its first
2078  * quiescent state for this grace period, and record that fact if so.
2079  */
2080 static void
rcu_check_quiescent_state(struct rcu_data * rdp)2081 rcu_check_quiescent_state(struct rcu_data *rdp)
2082 {
2083 	/* Check for grace-period ends and beginnings. */
2084 	note_gp_changes(rdp);
2085 
2086 	/*
2087 	 * Does this CPU still need to do its part for current grace period?
2088 	 * If no, return and let the other CPUs do their part as well.
2089 	 */
2090 	if (!rdp->core_needs_qs)
2091 		return;
2092 
2093 	/*
2094 	 * Was there a quiescent state since the beginning of the grace
2095 	 * period? If no, then exit and wait for the next call.
2096 	 */
2097 	if (rdp->cpu_no_qs.b.norm)
2098 		return;
2099 
2100 	/*
2101 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2102 	 * judge of that).
2103 	 */
2104 	rcu_report_qs_rdp(rdp);
2105 }
2106 
2107 /* Return true if callback-invocation time limit exceeded. */
rcu_do_batch_check_time(long count,long tlimit,bool jlimit_check,unsigned long jlimit)2108 static bool rcu_do_batch_check_time(long count, long tlimit,
2109 				    bool jlimit_check, unsigned long jlimit)
2110 {
2111 	// Invoke local_clock() only once per 32 consecutive callbacks.
2112 	return unlikely(tlimit) &&
2113 	       (!likely(count & 31) ||
2114 		(IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) &&
2115 		 jlimit_check && time_after(jiffies, jlimit))) &&
2116 	       local_clock() >= tlimit;
2117 }
2118 
2119 /*
2120  * Invoke any RCU callbacks that have made it to the end of their grace
2121  * period.  Throttle as specified by rdp->blimit.
2122  */
rcu_do_batch(struct rcu_data * rdp)2123 static void rcu_do_batch(struct rcu_data *rdp)
2124 {
2125 	long bl;
2126 	long count = 0;
2127 	int div;
2128 	bool __maybe_unused empty;
2129 	unsigned long flags;
2130 	unsigned long jlimit;
2131 	bool jlimit_check = false;
2132 	long pending;
2133 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2134 	struct rcu_head *rhp;
2135 	long tlimit = 0;
2136 
2137 	/* If no callbacks are ready, just return. */
2138 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2139 		trace_rcu_batch_start(rcu_state.name,
2140 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2141 		trace_rcu_batch_end(rcu_state.name, 0,
2142 				    !rcu_segcblist_empty(&rdp->cblist),
2143 				    need_resched(), is_idle_task(current),
2144 				    rcu_is_callbacks_kthread(rdp));
2145 		return;
2146 	}
2147 
2148 	/*
2149 	 * Extract the list of ready callbacks, disabling IRQs to prevent
2150 	 * races with call_rcu() from interrupt handlers.  Leave the
2151 	 * callback counts, as rcu_barrier() needs to be conservative.
2152 	 */
2153 	rcu_nocb_lock_irqsave(rdp, flags);
2154 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2155 	pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL);
2156 	div = READ_ONCE(rcu_divisor);
2157 	div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2158 	bl = max(rdp->blimit, pending >> div);
2159 	if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) &&
2160 	    (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) {
2161 		const long npj = NSEC_PER_SEC / HZ;
2162 		long rrn = READ_ONCE(rcu_resched_ns);
2163 
2164 		rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2165 		tlimit = local_clock() + rrn;
2166 		jlimit = jiffies + (rrn + npj + 1) / npj;
2167 		jlimit_check = true;
2168 	}
2169 	trace_rcu_batch_start(rcu_state.name,
2170 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2171 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2172 	if (rcu_rdp_is_offloaded(rdp))
2173 		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2174 
2175 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2176 	rcu_nocb_unlock_irqrestore(rdp, flags);
2177 
2178 	/* Invoke callbacks. */
2179 	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2180 	rhp = rcu_cblist_dequeue(&rcl);
2181 
2182 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2183 		rcu_callback_t f;
2184 
2185 		count++;
2186 		debug_rcu_head_unqueue(rhp);
2187 
2188 		rcu_lock_acquire(&rcu_callback_map);
2189 		trace_rcu_invoke_callback(rcu_state.name, rhp);
2190 
2191 		f = rhp->func;
2192 		debug_rcu_head_callback(rhp);
2193 		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2194 		f(rhp);
2195 
2196 		rcu_lock_release(&rcu_callback_map);
2197 
2198 		/*
2199 		 * Stop only if limit reached and CPU has something to do.
2200 		 */
2201 		if (in_serving_softirq()) {
2202 			if (count >= bl && (need_resched() || !is_idle_task(current)))
2203 				break;
2204 			/*
2205 			 * Make sure we don't spend too much time here and deprive other
2206 			 * softirq vectors of CPU cycles.
2207 			 */
2208 			if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit))
2209 				break;
2210 		} else {
2211 			// In rcuc/rcuoc context, so no worries about
2212 			// depriving other softirq vectors of CPU cycles.
2213 			local_bh_enable();
2214 			lockdep_assert_irqs_enabled();
2215 			cond_resched_tasks_rcu_qs();
2216 			lockdep_assert_irqs_enabled();
2217 			local_bh_disable();
2218 			// But rcuc kthreads can delay quiescent-state
2219 			// reporting, so check time limits for them.
2220 			if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING &&
2221 			    rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) {
2222 				rdp->rcu_cpu_has_work = 1;
2223 				break;
2224 			}
2225 		}
2226 	}
2227 
2228 	rcu_nocb_lock_irqsave(rdp, flags);
2229 	rdp->n_cbs_invoked += count;
2230 	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2231 			    is_idle_task(current), rcu_is_callbacks_kthread(rdp));
2232 
2233 	/* Update counts and requeue any remaining callbacks. */
2234 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2235 	rcu_segcblist_add_len(&rdp->cblist, -count);
2236 
2237 	/* Reinstate batch limit if we have worked down the excess. */
2238 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2239 	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2240 		rdp->blimit = blimit;
2241 
2242 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2243 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2244 		rdp->qlen_last_fqs_check = 0;
2245 		rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2246 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2247 		rdp->qlen_last_fqs_check = count;
2248 
2249 	/*
2250 	 * The following usually indicates a double call_rcu().  To track
2251 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2252 	 */
2253 	empty = rcu_segcblist_empty(&rdp->cblist);
2254 	WARN_ON_ONCE(count == 0 && !empty);
2255 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2256 		     count != 0 && empty);
2257 	WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2258 	WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2259 
2260 	rcu_nocb_unlock_irqrestore(rdp, flags);
2261 
2262 	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2263 }
2264 
2265 /*
2266  * This function is invoked from each scheduling-clock interrupt,
2267  * and checks to see if this CPU is in a non-context-switch quiescent
2268  * state, for example, user mode or idle loop.  It also schedules RCU
2269  * core processing.  If the current grace period has gone on too long,
2270  * it will ask the scheduler to manufacture a context switch for the sole
2271  * purpose of providing the needed quiescent state.
2272  */
rcu_sched_clock_irq(int user)2273 void rcu_sched_clock_irq(int user)
2274 {
2275 	unsigned long j;
2276 
2277 	if (IS_ENABLED(CONFIG_PROVE_RCU)) {
2278 		j = jiffies;
2279 		WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
2280 		__this_cpu_write(rcu_data.last_sched_clock, j);
2281 	}
2282 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2283 	lockdep_assert_irqs_disabled();
2284 	raw_cpu_inc(rcu_data.ticks_this_gp);
2285 	/* The load-acquire pairs with the store-release setting to true. */
2286 	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2287 		/* Idle and userspace execution already are quiescent states. */
2288 		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2289 			set_tsk_need_resched(current);
2290 			set_preempt_need_resched();
2291 		}
2292 		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2293 	}
2294 	rcu_flavor_sched_clock_irq(user);
2295 	if (rcu_pending(user))
2296 		invoke_rcu_core();
2297 	if (user || rcu_is_cpu_rrupt_from_idle())
2298 		rcu_note_voluntary_context_switch(current);
2299 	lockdep_assert_irqs_disabled();
2300 
2301 	trace_rcu_utilization(TPS("End scheduler-tick"));
2302 }
2303 
2304 /*
2305  * Scan the leaf rcu_node structures.  For each structure on which all
2306  * CPUs have reported a quiescent state and on which there are tasks
2307  * blocking the current grace period, initiate RCU priority boosting.
2308  * Otherwise, invoke the specified function to check dyntick state for
2309  * each CPU that has not yet reported a quiescent state.
2310  */
force_qs_rnp(int (* f)(struct rcu_data * rdp))2311 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2312 {
2313 	int cpu;
2314 	unsigned long flags;
2315 	struct rcu_node *rnp;
2316 
2317 	rcu_state.cbovld = rcu_state.cbovldnext;
2318 	rcu_state.cbovldnext = false;
2319 	rcu_for_each_leaf_node(rnp) {
2320 		unsigned long mask = 0;
2321 		unsigned long rsmask = 0;
2322 
2323 		cond_resched_tasks_rcu_qs();
2324 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2325 		rcu_state.cbovldnext |= !!rnp->cbovldmask;
2326 		if (rnp->qsmask == 0) {
2327 			if (rcu_preempt_blocked_readers_cgp(rnp)) {
2328 				/*
2329 				 * No point in scanning bits because they
2330 				 * are all zero.  But we might need to
2331 				 * priority-boost blocked readers.
2332 				 */
2333 				rcu_initiate_boost(rnp, flags);
2334 				/* rcu_initiate_boost() releases rnp->lock */
2335 				continue;
2336 			}
2337 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2338 			continue;
2339 		}
2340 		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2341 			struct rcu_data *rdp;
2342 			int ret;
2343 
2344 			rdp = per_cpu_ptr(&rcu_data, cpu);
2345 			ret = f(rdp);
2346 			if (ret > 0) {
2347 				mask |= rdp->grpmask;
2348 				rcu_disable_urgency_upon_qs(rdp);
2349 			}
2350 			if (ret < 0)
2351 				rsmask |= rdp->grpmask;
2352 		}
2353 		if (mask != 0) {
2354 			/* Idle/offline CPUs, report (releases rnp->lock). */
2355 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2356 		} else {
2357 			/* Nothing to do here, so just drop the lock. */
2358 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2359 		}
2360 
2361 		for_each_leaf_node_cpu_mask(rnp, cpu, rsmask)
2362 			resched_cpu(cpu);
2363 	}
2364 }
2365 
2366 /*
2367  * Force quiescent states on reluctant CPUs, and also detect which
2368  * CPUs are in dyntick-idle mode.
2369  */
rcu_force_quiescent_state(void)2370 void rcu_force_quiescent_state(void)
2371 {
2372 	unsigned long flags;
2373 	bool ret;
2374 	struct rcu_node *rnp;
2375 	struct rcu_node *rnp_old = NULL;
2376 
2377 	/* Funnel through hierarchy to reduce memory contention. */
2378 	rnp = raw_cpu_read(rcu_data.mynode);
2379 	for (; rnp != NULL; rnp = rnp->parent) {
2380 		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2381 		       !raw_spin_trylock(&rnp->fqslock);
2382 		if (rnp_old != NULL)
2383 			raw_spin_unlock(&rnp_old->fqslock);
2384 		if (ret)
2385 			return;
2386 		rnp_old = rnp;
2387 	}
2388 	/* rnp_old == rcu_get_root(), rnp == NULL. */
2389 
2390 	/* Reached the root of the rcu_node tree, acquire lock. */
2391 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2392 	raw_spin_unlock(&rnp_old->fqslock);
2393 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2394 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2395 		return;  /* Someone beat us to it. */
2396 	}
2397 	WRITE_ONCE(rcu_state.gp_flags,
2398 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2399 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2400 	rcu_gp_kthread_wake();
2401 }
2402 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2403 
2404 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2405 // grace periods.
strict_work_handler(struct work_struct * work)2406 static void strict_work_handler(struct work_struct *work)
2407 {
2408 	rcu_read_lock();
2409 	rcu_read_unlock();
2410 }
2411 
2412 /* Perform RCU core processing work for the current CPU.  */
rcu_core(void)2413 static __latent_entropy void rcu_core(void)
2414 {
2415 	unsigned long flags;
2416 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2417 	struct rcu_node *rnp = rdp->mynode;
2418 	/*
2419 	 * On RT rcu_core() can be preempted when IRQs aren't disabled.
2420 	 * Therefore this function can race with concurrent NOCB (de-)offloading
2421 	 * on this CPU and the below condition must be considered volatile.
2422 	 * However if we race with:
2423 	 *
2424 	 * _ Offloading:   In the worst case we accelerate or process callbacks
2425 	 *                 concurrently with NOCB kthreads. We are guaranteed to
2426 	 *                 call rcu_nocb_lock() if that happens.
2427 	 *
2428 	 * _ Deoffloading: In the worst case we miss callbacks acceleration or
2429 	 *                 processing. This is fine because the early stage
2430 	 *                 of deoffloading invokes rcu_core() after setting
2431 	 *                 SEGCBLIST_RCU_CORE. So we guarantee that we'll process
2432 	 *                 what could have been dismissed without the need to wait
2433 	 *                 for the next rcu_pending() check in the next jiffy.
2434 	 */
2435 	const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
2436 
2437 	if (cpu_is_offline(smp_processor_id()))
2438 		return;
2439 	trace_rcu_utilization(TPS("Start RCU core"));
2440 	WARN_ON_ONCE(!rdp->beenonline);
2441 
2442 	/* Report any deferred quiescent states if preemption enabled. */
2443 	if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
2444 		rcu_preempt_deferred_qs(current);
2445 	} else if (rcu_preempt_need_deferred_qs(current)) {
2446 		set_tsk_need_resched(current);
2447 		set_preempt_need_resched();
2448 	}
2449 
2450 	/* Update RCU state based on any recent quiescent states. */
2451 	rcu_check_quiescent_state(rdp);
2452 
2453 	/* No grace period and unregistered callbacks? */
2454 	if (!rcu_gp_in_progress() &&
2455 	    rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2456 		rcu_nocb_lock_irqsave(rdp, flags);
2457 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2458 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2459 		rcu_nocb_unlock_irqrestore(rdp, flags);
2460 	}
2461 
2462 	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2463 
2464 	/* If there are callbacks ready, invoke them. */
2465 	if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2466 	    likely(READ_ONCE(rcu_scheduler_fully_active))) {
2467 		rcu_do_batch(rdp);
2468 		/* Re-invoke RCU core processing if there are callbacks remaining. */
2469 		if (rcu_segcblist_ready_cbs(&rdp->cblist))
2470 			invoke_rcu_core();
2471 	}
2472 
2473 	/* Do any needed deferred wakeups of rcuo kthreads. */
2474 	do_nocb_deferred_wakeup(rdp);
2475 	trace_rcu_utilization(TPS("End RCU core"));
2476 
2477 	// If strict GPs, schedule an RCU reader in a clean environment.
2478 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2479 		queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2480 }
2481 
rcu_core_si(struct softirq_action * h)2482 static void rcu_core_si(struct softirq_action *h)
2483 {
2484 	rcu_core();
2485 }
2486 
rcu_wake_cond(struct task_struct * t,int status)2487 static void rcu_wake_cond(struct task_struct *t, int status)
2488 {
2489 	/*
2490 	 * If the thread is yielding, only wake it when this
2491 	 * is invoked from idle
2492 	 */
2493 	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2494 		wake_up_process(t);
2495 }
2496 
invoke_rcu_core_kthread(void)2497 static void invoke_rcu_core_kthread(void)
2498 {
2499 	struct task_struct *t;
2500 	unsigned long flags;
2501 
2502 	local_irq_save(flags);
2503 	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2504 	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2505 	if (t != NULL && t != current)
2506 		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2507 	local_irq_restore(flags);
2508 }
2509 
2510 /*
2511  * Wake up this CPU's rcuc kthread to do RCU core processing.
2512  */
invoke_rcu_core(void)2513 static void invoke_rcu_core(void)
2514 {
2515 	if (!cpu_online(smp_processor_id()))
2516 		return;
2517 	if (use_softirq)
2518 		raise_softirq(RCU_SOFTIRQ);
2519 	else
2520 		invoke_rcu_core_kthread();
2521 }
2522 
rcu_cpu_kthread_park(unsigned int cpu)2523 static void rcu_cpu_kthread_park(unsigned int cpu)
2524 {
2525 	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2526 }
2527 
rcu_cpu_kthread_should_run(unsigned int cpu)2528 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2529 {
2530 	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2531 }
2532 
2533 /*
2534  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2535  * the RCU softirq used in configurations of RCU that do not support RCU
2536  * priority boosting.
2537  */
rcu_cpu_kthread(unsigned int cpu)2538 static void rcu_cpu_kthread(unsigned int cpu)
2539 {
2540 	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2541 	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2542 	unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
2543 	int spincnt;
2544 
2545 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2546 	for (spincnt = 0; spincnt < 10; spincnt++) {
2547 		WRITE_ONCE(*j, jiffies);
2548 		local_bh_disable();
2549 		*statusp = RCU_KTHREAD_RUNNING;
2550 		local_irq_disable();
2551 		work = *workp;
2552 		WRITE_ONCE(*workp, 0);
2553 		local_irq_enable();
2554 		if (work)
2555 			rcu_core();
2556 		local_bh_enable();
2557 		if (!READ_ONCE(*workp)) {
2558 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2559 			*statusp = RCU_KTHREAD_WAITING;
2560 			return;
2561 		}
2562 	}
2563 	*statusp = RCU_KTHREAD_YIELDING;
2564 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2565 	schedule_timeout_idle(2);
2566 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2567 	*statusp = RCU_KTHREAD_WAITING;
2568 	WRITE_ONCE(*j, jiffies);
2569 }
2570 
2571 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2572 	.store			= &rcu_data.rcu_cpu_kthread_task,
2573 	.thread_should_run	= rcu_cpu_kthread_should_run,
2574 	.thread_fn		= rcu_cpu_kthread,
2575 	.thread_comm		= "rcuc/%u",
2576 	.setup			= rcu_cpu_kthread_setup,
2577 	.park			= rcu_cpu_kthread_park,
2578 };
2579 
2580 /*
2581  * Spawn per-CPU RCU core processing kthreads.
2582  */
rcu_spawn_core_kthreads(void)2583 static int __init rcu_spawn_core_kthreads(void)
2584 {
2585 	int cpu;
2586 
2587 	for_each_possible_cpu(cpu)
2588 		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2589 	if (use_softirq)
2590 		return 0;
2591 	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2592 		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2593 	return 0;
2594 }
2595 
2596 /*
2597  * Handle any core-RCU processing required by a call_rcu() invocation.
2598  */
__call_rcu_core(struct rcu_data * rdp,struct rcu_head * head,unsigned long flags)2599 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2600 			    unsigned long flags)
2601 {
2602 	/*
2603 	 * If called from an extended quiescent state, invoke the RCU
2604 	 * core in order to force a re-evaluation of RCU's idleness.
2605 	 */
2606 	if (!rcu_is_watching())
2607 		invoke_rcu_core();
2608 
2609 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2610 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2611 		return;
2612 
2613 	/*
2614 	 * Force the grace period if too many callbacks or too long waiting.
2615 	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2616 	 * if some other CPU has recently done so.  Also, don't bother
2617 	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2618 	 * is the only one waiting for a grace period to complete.
2619 	 */
2620 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2621 		     rdp->qlen_last_fqs_check + qhimark)) {
2622 
2623 		/* Are we ignoring a completed grace period? */
2624 		note_gp_changes(rdp);
2625 
2626 		/* Start a new grace period if one not already started. */
2627 		if (!rcu_gp_in_progress()) {
2628 			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2629 		} else {
2630 			/* Give the grace period a kick. */
2631 			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2632 			if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
2633 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2634 				rcu_force_quiescent_state();
2635 			rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2636 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2637 		}
2638 	}
2639 }
2640 
2641 /*
2642  * RCU callback function to leak a callback.
2643  */
rcu_leak_callback(struct rcu_head * rhp)2644 static void rcu_leak_callback(struct rcu_head *rhp)
2645 {
2646 }
2647 
2648 /*
2649  * Check and if necessary update the leaf rcu_node structure's
2650  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2651  * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
2652  * structure's ->lock.
2653  */
check_cb_ovld_locked(struct rcu_data * rdp,struct rcu_node * rnp)2654 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2655 {
2656 	raw_lockdep_assert_held_rcu_node(rnp);
2657 	if (qovld_calc <= 0)
2658 		return; // Early boot and wildcard value set.
2659 	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2660 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2661 	else
2662 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2663 }
2664 
2665 /*
2666  * Check and if necessary update the leaf rcu_node structure's
2667  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2668  * number of queued RCU callbacks.  No locks need be held, but the
2669  * caller must have disabled interrupts.
2670  *
2671  * Note that this function ignores the possibility that there are a lot
2672  * of callbacks all of which have already seen the end of their respective
2673  * grace periods.  This omission is due to the need for no-CBs CPUs to
2674  * be holding ->nocb_lock to do this check, which is too heavy for a
2675  * common-case operation.
2676  */
check_cb_ovld(struct rcu_data * rdp)2677 static void check_cb_ovld(struct rcu_data *rdp)
2678 {
2679 	struct rcu_node *const rnp = rdp->mynode;
2680 
2681 	if (qovld_calc <= 0 ||
2682 	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2683 	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2684 		return; // Early boot wildcard value or already set correctly.
2685 	raw_spin_lock_rcu_node(rnp);
2686 	check_cb_ovld_locked(rdp, rnp);
2687 	raw_spin_unlock_rcu_node(rnp);
2688 }
2689 
2690 static void
__call_rcu_common(struct rcu_head * head,rcu_callback_t func,bool lazy_in)2691 __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in)
2692 {
2693 	static atomic_t doublefrees;
2694 	unsigned long flags;
2695 	bool lazy;
2696 	struct rcu_data *rdp;
2697 	bool was_alldone;
2698 
2699 	/* Misaligned rcu_head! */
2700 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2701 
2702 	/* Avoid NULL dereference if callback is NULL. */
2703 	if (WARN_ON_ONCE(!func))
2704 		return;
2705 
2706 	if (debug_rcu_head_queue(head)) {
2707 		/*
2708 		 * Probable double call_rcu(), so leak the callback.
2709 		 * Use rcu:rcu_callback trace event to find the previous
2710 		 * time callback was passed to call_rcu().
2711 		 */
2712 		if (atomic_inc_return(&doublefrees) < 4) {
2713 			pr_err("%s(): Double-freed CB %p->%pS()!!!  ", __func__, head, head->func);
2714 			mem_dump_obj(head);
2715 		}
2716 		WRITE_ONCE(head->func, rcu_leak_callback);
2717 		return;
2718 	}
2719 	head->func = func;
2720 	head->next = NULL;
2721 	kasan_record_aux_stack_noalloc(head);
2722 	local_irq_save(flags);
2723 	rdp = this_cpu_ptr(&rcu_data);
2724 	lazy = lazy_in && !rcu_async_should_hurry();
2725 
2726 	/* Add the callback to our list. */
2727 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2728 		// This can trigger due to call_rcu() from offline CPU:
2729 		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2730 		WARN_ON_ONCE(!rcu_is_watching());
2731 		// Very early boot, before rcu_init().  Initialize if needed
2732 		// and then drop through to queue the callback.
2733 		if (rcu_segcblist_empty(&rdp->cblist))
2734 			rcu_segcblist_init(&rdp->cblist);
2735 	}
2736 
2737 	check_cb_ovld(rdp);
2738 	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) {
2739 		local_irq_restore(flags);
2740 		return; // Enqueued onto ->nocb_bypass, so just leave.
2741 	}
2742 	// If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2743 	rcu_segcblist_enqueue(&rdp->cblist, head);
2744 	if (__is_kvfree_rcu_offset((unsigned long)func))
2745 		trace_rcu_kvfree_callback(rcu_state.name, head,
2746 					 (unsigned long)func,
2747 					 rcu_segcblist_n_cbs(&rdp->cblist));
2748 	else
2749 		trace_rcu_callback(rcu_state.name, head,
2750 				   rcu_segcblist_n_cbs(&rdp->cblist));
2751 
2752 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
2753 
2754 	/* Go handle any RCU core processing required. */
2755 	if (unlikely(rcu_rdp_is_offloaded(rdp))) {
2756 		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2757 	} else {
2758 		__call_rcu_core(rdp, head, flags);
2759 	}
2760 	local_irq_restore(flags);
2761 }
2762 
2763 #ifdef CONFIG_RCU_LAZY
2764 /**
2765  * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and
2766  * flush all lazy callbacks (including the new one) to the main ->cblist while
2767  * doing so.
2768  *
2769  * @head: structure to be used for queueing the RCU updates.
2770  * @func: actual callback function to be invoked after the grace period
2771  *
2772  * The callback function will be invoked some time after a full grace
2773  * period elapses, in other words after all pre-existing RCU read-side
2774  * critical sections have completed.
2775  *
2776  * Use this API instead of call_rcu() if you don't want the callback to be
2777  * invoked after very long periods of time, which can happen on systems without
2778  * memory pressure and on systems which are lightly loaded or mostly idle.
2779  * This function will cause callbacks to be invoked sooner than later at the
2780  * expense of extra power. Other than that, this function is identical to, and
2781  * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory
2782  * ordering and other functionality.
2783  */
call_rcu_hurry(struct rcu_head * head,rcu_callback_t func)2784 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
2785 {
2786 	return __call_rcu_common(head, func, false);
2787 }
2788 EXPORT_SYMBOL_GPL(call_rcu_hurry);
2789 #endif
2790 
2791 /**
2792  * call_rcu() - Queue an RCU callback for invocation after a grace period.
2793  * By default the callbacks are 'lazy' and are kept hidden from the main
2794  * ->cblist to prevent starting of grace periods too soon.
2795  * If you desire grace periods to start very soon, use call_rcu_hurry().
2796  *
2797  * @head: structure to be used for queueing the RCU updates.
2798  * @func: actual callback function to be invoked after the grace period
2799  *
2800  * The callback function will be invoked some time after a full grace
2801  * period elapses, in other words after all pre-existing RCU read-side
2802  * critical sections have completed.  However, the callback function
2803  * might well execute concurrently with RCU read-side critical sections
2804  * that started after call_rcu() was invoked.
2805  *
2806  * RCU read-side critical sections are delimited by rcu_read_lock()
2807  * and rcu_read_unlock(), and may be nested.  In addition, but only in
2808  * v5.0 and later, regions of code across which interrupts, preemption,
2809  * or softirqs have been disabled also serve as RCU read-side critical
2810  * sections.  This includes hardware interrupt handlers, softirq handlers,
2811  * and NMI handlers.
2812  *
2813  * Note that all CPUs must agree that the grace period extended beyond
2814  * all pre-existing RCU read-side critical section.  On systems with more
2815  * than one CPU, this means that when "func()" is invoked, each CPU is
2816  * guaranteed to have executed a full memory barrier since the end of its
2817  * last RCU read-side critical section whose beginning preceded the call
2818  * to call_rcu().  It also means that each CPU executing an RCU read-side
2819  * critical section that continues beyond the start of "func()" must have
2820  * executed a memory barrier after the call_rcu() but before the beginning
2821  * of that RCU read-side critical section.  Note that these guarantees
2822  * include CPUs that are offline, idle, or executing in user mode, as
2823  * well as CPUs that are executing in the kernel.
2824  *
2825  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2826  * resulting RCU callback function "func()", then both CPU A and CPU B are
2827  * guaranteed to execute a full memory barrier during the time interval
2828  * between the call to call_rcu() and the invocation of "func()" -- even
2829  * if CPU A and CPU B are the same CPU (but again only if the system has
2830  * more than one CPU).
2831  *
2832  * Implementation of these memory-ordering guarantees is described here:
2833  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
2834  */
call_rcu(struct rcu_head * head,rcu_callback_t func)2835 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2836 {
2837 	return __call_rcu_common(head, func, IS_ENABLED(CONFIG_RCU_LAZY));
2838 }
2839 EXPORT_SYMBOL_GPL(call_rcu);
2840 
2841 /* Maximum number of jiffies to wait before draining a batch. */
2842 #define KFREE_DRAIN_JIFFIES (5 * HZ)
2843 #define KFREE_N_BATCHES 2
2844 #define FREE_N_CHANNELS 2
2845 
2846 /**
2847  * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
2848  * @list: List node. All blocks are linked between each other
2849  * @gp_snap: Snapshot of RCU state for objects placed to this bulk
2850  * @nr_records: Number of active pointers in the array
2851  * @records: Array of the kvfree_rcu() pointers
2852  */
2853 struct kvfree_rcu_bulk_data {
2854 	struct list_head list;
2855 	struct rcu_gp_oldstate gp_snap;
2856 	unsigned long nr_records;
2857 	void *records[];
2858 };
2859 
2860 /*
2861  * This macro defines how many entries the "records" array
2862  * will contain. It is based on the fact that the size of
2863  * kvfree_rcu_bulk_data structure becomes exactly one page.
2864  */
2865 #define KVFREE_BULK_MAX_ENTR \
2866 	((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
2867 
2868 /**
2869  * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
2870  * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
2871  * @head_free: List of kfree_rcu() objects waiting for a grace period
2872  * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees.
2873  * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
2874  * @krcp: Pointer to @kfree_rcu_cpu structure
2875  */
2876 
2877 struct kfree_rcu_cpu_work {
2878 	struct rcu_work rcu_work;
2879 	struct rcu_head *head_free;
2880 	struct rcu_gp_oldstate head_free_gp_snap;
2881 	struct list_head bulk_head_free[FREE_N_CHANNELS];
2882 	struct kfree_rcu_cpu *krcp;
2883 };
2884 
2885 /**
2886  * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
2887  * @head: List of kfree_rcu() objects not yet waiting for a grace period
2888  * @head_gp_snap: Snapshot of RCU state for objects placed to "@head"
2889  * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
2890  * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
2891  * @lock: Synchronize access to this structure
2892  * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
2893  * @initialized: The @rcu_work fields have been initialized
2894  * @head_count: Number of objects in rcu_head singular list
2895  * @bulk_count: Number of objects in bulk-list
2896  * @bkvcache:
2897  *	A simple cache list that contains objects for reuse purpose.
2898  *	In order to save some per-cpu space the list is singular.
2899  *	Even though it is lockless an access has to be protected by the
2900  *	per-cpu lock.
2901  * @page_cache_work: A work to refill the cache when it is empty
2902  * @backoff_page_cache_fill: Delay cache refills
2903  * @work_in_progress: Indicates that page_cache_work is running
2904  * @hrtimer: A hrtimer for scheduling a page_cache_work
2905  * @nr_bkv_objs: number of allocated objects at @bkvcache.
2906  *
2907  * This is a per-CPU structure.  The reason that it is not included in
2908  * the rcu_data structure is to permit this code to be extracted from
2909  * the RCU files.  Such extraction could allow further optimization of
2910  * the interactions with the slab allocators.
2911  */
2912 struct kfree_rcu_cpu {
2913 	// Objects queued on a linked list
2914 	// through their rcu_head structures.
2915 	struct rcu_head *head;
2916 	unsigned long head_gp_snap;
2917 	atomic_t head_count;
2918 
2919 	// Objects queued on a bulk-list.
2920 	struct list_head bulk_head[FREE_N_CHANNELS];
2921 	atomic_t bulk_count[FREE_N_CHANNELS];
2922 
2923 	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
2924 	raw_spinlock_t lock;
2925 	struct delayed_work monitor_work;
2926 	bool initialized;
2927 
2928 	struct delayed_work page_cache_work;
2929 	atomic_t backoff_page_cache_fill;
2930 	atomic_t work_in_progress;
2931 	struct hrtimer hrtimer;
2932 
2933 	struct llist_head bkvcache;
2934 	int nr_bkv_objs;
2935 };
2936 
2937 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
2938 	.lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
2939 };
2940 
2941 static __always_inline void
debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data * bhead)2942 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
2943 {
2944 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
2945 	int i;
2946 
2947 	for (i = 0; i < bhead->nr_records; i++)
2948 		debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
2949 #endif
2950 }
2951 
2952 static inline struct kfree_rcu_cpu *
krc_this_cpu_lock(unsigned long * flags)2953 krc_this_cpu_lock(unsigned long *flags)
2954 {
2955 	struct kfree_rcu_cpu *krcp;
2956 
2957 	local_irq_save(*flags);	// For safely calling this_cpu_ptr().
2958 	krcp = this_cpu_ptr(&krc);
2959 	raw_spin_lock(&krcp->lock);
2960 
2961 	return krcp;
2962 }
2963 
2964 static inline void
krc_this_cpu_unlock(struct kfree_rcu_cpu * krcp,unsigned long flags)2965 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
2966 {
2967 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
2968 }
2969 
2970 static inline struct kvfree_rcu_bulk_data *
get_cached_bnode(struct kfree_rcu_cpu * krcp)2971 get_cached_bnode(struct kfree_rcu_cpu *krcp)
2972 {
2973 	if (!krcp->nr_bkv_objs)
2974 		return NULL;
2975 
2976 	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
2977 	return (struct kvfree_rcu_bulk_data *)
2978 		llist_del_first(&krcp->bkvcache);
2979 }
2980 
2981 static inline bool
put_cached_bnode(struct kfree_rcu_cpu * krcp,struct kvfree_rcu_bulk_data * bnode)2982 put_cached_bnode(struct kfree_rcu_cpu *krcp,
2983 	struct kvfree_rcu_bulk_data *bnode)
2984 {
2985 	// Check the limit.
2986 	if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
2987 		return false;
2988 
2989 	llist_add((struct llist_node *) bnode, &krcp->bkvcache);
2990 	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
2991 	return true;
2992 }
2993 
2994 static int
drain_page_cache(struct kfree_rcu_cpu * krcp)2995 drain_page_cache(struct kfree_rcu_cpu *krcp)
2996 {
2997 	unsigned long flags;
2998 	struct llist_node *page_list, *pos, *n;
2999 	int freed = 0;
3000 
3001 	if (!rcu_min_cached_objs)
3002 		return 0;
3003 
3004 	raw_spin_lock_irqsave(&krcp->lock, flags);
3005 	page_list = llist_del_all(&krcp->bkvcache);
3006 	WRITE_ONCE(krcp->nr_bkv_objs, 0);
3007 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3008 
3009 	llist_for_each_safe(pos, n, page_list) {
3010 		free_page((unsigned long)pos);
3011 		freed++;
3012 	}
3013 
3014 	return freed;
3015 }
3016 
3017 static void
kvfree_rcu_bulk(struct kfree_rcu_cpu * krcp,struct kvfree_rcu_bulk_data * bnode,int idx)3018 kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp,
3019 	struct kvfree_rcu_bulk_data *bnode, int idx)
3020 {
3021 	unsigned long flags;
3022 	int i;
3023 
3024 	if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) {
3025 		debug_rcu_bhead_unqueue(bnode);
3026 		rcu_lock_acquire(&rcu_callback_map);
3027 		if (idx == 0) { // kmalloc() / kfree().
3028 			trace_rcu_invoke_kfree_bulk_callback(
3029 				rcu_state.name, bnode->nr_records,
3030 				bnode->records);
3031 
3032 			kfree_bulk(bnode->nr_records, bnode->records);
3033 		} else { // vmalloc() / vfree().
3034 			for (i = 0; i < bnode->nr_records; i++) {
3035 				trace_rcu_invoke_kvfree_callback(
3036 					rcu_state.name, bnode->records[i], 0);
3037 
3038 				vfree(bnode->records[i]);
3039 			}
3040 		}
3041 		rcu_lock_release(&rcu_callback_map);
3042 	}
3043 
3044 	raw_spin_lock_irqsave(&krcp->lock, flags);
3045 	if (put_cached_bnode(krcp, bnode))
3046 		bnode = NULL;
3047 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3048 
3049 	if (bnode)
3050 		free_page((unsigned long) bnode);
3051 
3052 	cond_resched_tasks_rcu_qs();
3053 }
3054 
3055 static void
kvfree_rcu_list(struct rcu_head * head)3056 kvfree_rcu_list(struct rcu_head *head)
3057 {
3058 	struct rcu_head *next;
3059 
3060 	for (; head; head = next) {
3061 		void *ptr = (void *) head->func;
3062 		unsigned long offset = (void *) head - ptr;
3063 
3064 		next = head->next;
3065 		debug_rcu_head_unqueue((struct rcu_head *)ptr);
3066 		rcu_lock_acquire(&rcu_callback_map);
3067 		trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3068 
3069 		if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3070 			kvfree(ptr);
3071 
3072 		rcu_lock_release(&rcu_callback_map);
3073 		cond_resched_tasks_rcu_qs();
3074 	}
3075 }
3076 
3077 /*
3078  * This function is invoked in workqueue context after a grace period.
3079  * It frees all the objects queued on ->bulk_head_free or ->head_free.
3080  */
kfree_rcu_work(struct work_struct * work)3081 static void kfree_rcu_work(struct work_struct *work)
3082 {
3083 	unsigned long flags;
3084 	struct kvfree_rcu_bulk_data *bnode, *n;
3085 	struct list_head bulk_head[FREE_N_CHANNELS];
3086 	struct rcu_head *head;
3087 	struct kfree_rcu_cpu *krcp;
3088 	struct kfree_rcu_cpu_work *krwp;
3089 	struct rcu_gp_oldstate head_gp_snap;
3090 	int i;
3091 
3092 	krwp = container_of(to_rcu_work(work),
3093 		struct kfree_rcu_cpu_work, rcu_work);
3094 	krcp = krwp->krcp;
3095 
3096 	raw_spin_lock_irqsave(&krcp->lock, flags);
3097 	// Channels 1 and 2.
3098 	for (i = 0; i < FREE_N_CHANNELS; i++)
3099 		list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]);
3100 
3101 	// Channel 3.
3102 	head = krwp->head_free;
3103 	krwp->head_free = NULL;
3104 	head_gp_snap = krwp->head_free_gp_snap;
3105 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3106 
3107 	// Handle the first two channels.
3108 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3109 		// Start from the tail page, so a GP is likely passed for it.
3110 		list_for_each_entry_safe(bnode, n, &bulk_head[i], list)
3111 			kvfree_rcu_bulk(krcp, bnode, i);
3112 	}
3113 
3114 	/*
3115 	 * This is used when the "bulk" path can not be used for the
3116 	 * double-argument of kvfree_rcu().  This happens when the
3117 	 * page-cache is empty, which means that objects are instead
3118 	 * queued on a linked list through their rcu_head structures.
3119 	 * This list is named "Channel 3".
3120 	 */
3121 	if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap)))
3122 		kvfree_rcu_list(head);
3123 }
3124 
3125 static bool
need_offload_krc(struct kfree_rcu_cpu * krcp)3126 need_offload_krc(struct kfree_rcu_cpu *krcp)
3127 {
3128 	int i;
3129 
3130 	for (i = 0; i < FREE_N_CHANNELS; i++)
3131 		if (!list_empty(&krcp->bulk_head[i]))
3132 			return true;
3133 
3134 	return !!READ_ONCE(krcp->head);
3135 }
3136 
3137 static bool
need_wait_for_krwp_work(struct kfree_rcu_cpu_work * krwp)3138 need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp)
3139 {
3140 	int i;
3141 
3142 	for (i = 0; i < FREE_N_CHANNELS; i++)
3143 		if (!list_empty(&krwp->bulk_head_free[i]))
3144 			return true;
3145 
3146 	return !!krwp->head_free;
3147 }
3148 
krc_count(struct kfree_rcu_cpu * krcp)3149 static int krc_count(struct kfree_rcu_cpu *krcp)
3150 {
3151 	int sum = atomic_read(&krcp->head_count);
3152 	int i;
3153 
3154 	for (i = 0; i < FREE_N_CHANNELS; i++)
3155 		sum += atomic_read(&krcp->bulk_count[i]);
3156 
3157 	return sum;
3158 }
3159 
3160 static void
__schedule_delayed_monitor_work(struct kfree_rcu_cpu * krcp)3161 __schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3162 {
3163 	long delay, delay_left;
3164 
3165 	delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES;
3166 	if (delayed_work_pending(&krcp->monitor_work)) {
3167 		delay_left = krcp->monitor_work.timer.expires - jiffies;
3168 		if (delay < delay_left)
3169 			mod_delayed_work(system_wq, &krcp->monitor_work, delay);
3170 		return;
3171 	}
3172 	queue_delayed_work(system_wq, &krcp->monitor_work, delay);
3173 }
3174 
3175 static void
schedule_delayed_monitor_work(struct kfree_rcu_cpu * krcp)3176 schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3177 {
3178 	unsigned long flags;
3179 
3180 	raw_spin_lock_irqsave(&krcp->lock, flags);
3181 	__schedule_delayed_monitor_work(krcp);
3182 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3183 }
3184 
3185 static void
kvfree_rcu_drain_ready(struct kfree_rcu_cpu * krcp)3186 kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp)
3187 {
3188 	struct list_head bulk_ready[FREE_N_CHANNELS];
3189 	struct kvfree_rcu_bulk_data *bnode, *n;
3190 	struct rcu_head *head_ready = NULL;
3191 	unsigned long flags;
3192 	int i;
3193 
3194 	raw_spin_lock_irqsave(&krcp->lock, flags);
3195 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3196 		INIT_LIST_HEAD(&bulk_ready[i]);
3197 
3198 		list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) {
3199 			if (!poll_state_synchronize_rcu_full(&bnode->gp_snap))
3200 				break;
3201 
3202 			atomic_sub(bnode->nr_records, &krcp->bulk_count[i]);
3203 			list_move(&bnode->list, &bulk_ready[i]);
3204 		}
3205 	}
3206 
3207 	if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) {
3208 		head_ready = krcp->head;
3209 		atomic_set(&krcp->head_count, 0);
3210 		WRITE_ONCE(krcp->head, NULL);
3211 	}
3212 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3213 
3214 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3215 		list_for_each_entry_safe(bnode, n, &bulk_ready[i], list)
3216 			kvfree_rcu_bulk(krcp, bnode, i);
3217 	}
3218 
3219 	if (head_ready)
3220 		kvfree_rcu_list(head_ready);
3221 }
3222 
3223 /*
3224  * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3225  */
kfree_rcu_monitor(struct work_struct * work)3226 static void kfree_rcu_monitor(struct work_struct *work)
3227 {
3228 	struct kfree_rcu_cpu *krcp = container_of(work,
3229 		struct kfree_rcu_cpu, monitor_work.work);
3230 	unsigned long flags;
3231 	int i, j;
3232 
3233 	// Drain ready for reclaim.
3234 	kvfree_rcu_drain_ready(krcp);
3235 
3236 	raw_spin_lock_irqsave(&krcp->lock, flags);
3237 
3238 	// Attempt to start a new batch.
3239 	for (i = 0; i < KFREE_N_BATCHES; i++) {
3240 		struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3241 
3242 		// Try to detach bulk_head or head and attach it, only when
3243 		// all channels are free.  Any channel is not free means at krwp
3244 		// there is on-going rcu work to handle krwp's free business.
3245 		if (need_wait_for_krwp_work(krwp))
3246 			continue;
3247 
3248 		// kvfree_rcu_drain_ready() might handle this krcp, if so give up.
3249 		if (need_offload_krc(krcp)) {
3250 			// Channel 1 corresponds to the SLAB-pointer bulk path.
3251 			// Channel 2 corresponds to vmalloc-pointer bulk path.
3252 			for (j = 0; j < FREE_N_CHANNELS; j++) {
3253 				if (list_empty(&krwp->bulk_head_free[j])) {
3254 					atomic_set(&krcp->bulk_count[j], 0);
3255 					list_replace_init(&krcp->bulk_head[j],
3256 						&krwp->bulk_head_free[j]);
3257 				}
3258 			}
3259 
3260 			// Channel 3 corresponds to both SLAB and vmalloc
3261 			// objects queued on the linked list.
3262 			if (!krwp->head_free) {
3263 				krwp->head_free = krcp->head;
3264 				get_state_synchronize_rcu_full(&krwp->head_free_gp_snap);
3265 				atomic_set(&krcp->head_count, 0);
3266 				WRITE_ONCE(krcp->head, NULL);
3267 			}
3268 
3269 			// One work is per one batch, so there are three
3270 			// "free channels", the batch can handle. It can
3271 			// be that the work is in the pending state when
3272 			// channels have been detached following by each
3273 			// other.
3274 			queue_rcu_work(system_wq, &krwp->rcu_work);
3275 		}
3276 	}
3277 
3278 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3279 
3280 	// If there is nothing to detach, it means that our job is
3281 	// successfully done here. In case of having at least one
3282 	// of the channels that is still busy we should rearm the
3283 	// work to repeat an attempt. Because previous batches are
3284 	// still in progress.
3285 	if (need_offload_krc(krcp))
3286 		schedule_delayed_monitor_work(krcp);
3287 }
3288 
3289 static enum hrtimer_restart
schedule_page_work_fn(struct hrtimer * t)3290 schedule_page_work_fn(struct hrtimer *t)
3291 {
3292 	struct kfree_rcu_cpu *krcp =
3293 		container_of(t, struct kfree_rcu_cpu, hrtimer);
3294 
3295 	queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3296 	return HRTIMER_NORESTART;
3297 }
3298 
fill_page_cache_func(struct work_struct * work)3299 static void fill_page_cache_func(struct work_struct *work)
3300 {
3301 	struct kvfree_rcu_bulk_data *bnode;
3302 	struct kfree_rcu_cpu *krcp =
3303 		container_of(work, struct kfree_rcu_cpu,
3304 			page_cache_work.work);
3305 	unsigned long flags;
3306 	int nr_pages;
3307 	bool pushed;
3308 	int i;
3309 
3310 	nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3311 		1 : rcu_min_cached_objs;
3312 
3313 	for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) {
3314 		bnode = (struct kvfree_rcu_bulk_data *)
3315 			__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3316 
3317 		if (!bnode)
3318 			break;
3319 
3320 		raw_spin_lock_irqsave(&krcp->lock, flags);
3321 		pushed = put_cached_bnode(krcp, bnode);
3322 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3323 
3324 		if (!pushed) {
3325 			free_page((unsigned long) bnode);
3326 			break;
3327 		}
3328 	}
3329 
3330 	atomic_set(&krcp->work_in_progress, 0);
3331 	atomic_set(&krcp->backoff_page_cache_fill, 0);
3332 }
3333 
3334 static void
run_page_cache_worker(struct kfree_rcu_cpu * krcp)3335 run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3336 {
3337 	// If cache disabled, bail out.
3338 	if (!rcu_min_cached_objs)
3339 		return;
3340 
3341 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3342 			!atomic_xchg(&krcp->work_in_progress, 1)) {
3343 		if (atomic_read(&krcp->backoff_page_cache_fill)) {
3344 			queue_delayed_work(system_wq,
3345 				&krcp->page_cache_work,
3346 					msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3347 		} else {
3348 			hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3349 			krcp->hrtimer.function = schedule_page_work_fn;
3350 			hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3351 		}
3352 	}
3353 }
3354 
3355 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3356 // state specified by flags.  If can_alloc is true, the caller must
3357 // be schedulable and not be holding any locks or mutexes that might be
3358 // acquired by the memory allocator or anything that it might invoke.
3359 // Returns true if ptr was successfully recorded, else the caller must
3360 // use a fallback.
3361 static inline bool
add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu ** krcp,unsigned long * flags,void * ptr,bool can_alloc)3362 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3363 	unsigned long *flags, void *ptr, bool can_alloc)
3364 {
3365 	struct kvfree_rcu_bulk_data *bnode;
3366 	int idx;
3367 
3368 	*krcp = krc_this_cpu_lock(flags);
3369 	if (unlikely(!(*krcp)->initialized))
3370 		return false;
3371 
3372 	idx = !!is_vmalloc_addr(ptr);
3373 	bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx],
3374 		struct kvfree_rcu_bulk_data, list);
3375 
3376 	/* Check if a new block is required. */
3377 	if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) {
3378 		bnode = get_cached_bnode(*krcp);
3379 		if (!bnode && can_alloc) {
3380 			krc_this_cpu_unlock(*krcp, *flags);
3381 
3382 			// __GFP_NORETRY - allows a light-weight direct reclaim
3383 			// what is OK from minimizing of fallback hitting point of
3384 			// view. Apart of that it forbids any OOM invoking what is
3385 			// also beneficial since we are about to release memory soon.
3386 			//
3387 			// __GFP_NOMEMALLOC - prevents from consuming of all the
3388 			// memory reserves. Please note we have a fallback path.
3389 			//
3390 			// __GFP_NOWARN - it is supposed that an allocation can
3391 			// be failed under low memory or high memory pressure
3392 			// scenarios.
3393 			bnode = (struct kvfree_rcu_bulk_data *)
3394 				__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3395 			raw_spin_lock_irqsave(&(*krcp)->lock, *flags);
3396 		}
3397 
3398 		if (!bnode)
3399 			return false;
3400 
3401 		// Initialize the new block and attach it.
3402 		bnode->nr_records = 0;
3403 		list_add(&bnode->list, &(*krcp)->bulk_head[idx]);
3404 	}
3405 
3406 	// Finally insert and update the GP for this page.
3407 	bnode->records[bnode->nr_records++] = ptr;
3408 	get_state_synchronize_rcu_full(&bnode->gp_snap);
3409 	atomic_inc(&(*krcp)->bulk_count[idx]);
3410 
3411 	return true;
3412 }
3413 
3414 /*
3415  * Queue a request for lazy invocation of the appropriate free routine
3416  * after a grace period.  Please note that three paths are maintained,
3417  * two for the common case using arrays of pointers and a third one that
3418  * is used only when the main paths cannot be used, for example, due to
3419  * memory pressure.
3420  *
3421  * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3422  * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3423  * be free'd in workqueue context. This allows us to: batch requests together to
3424  * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3425  */
kvfree_call_rcu(struct rcu_head * head,void * ptr)3426 void kvfree_call_rcu(struct rcu_head *head, void *ptr)
3427 {
3428 	unsigned long flags;
3429 	struct kfree_rcu_cpu *krcp;
3430 	bool success;
3431 
3432 	/*
3433 	 * Please note there is a limitation for the head-less
3434 	 * variant, that is why there is a clear rule for such
3435 	 * objects: it can be used from might_sleep() context
3436 	 * only. For other places please embed an rcu_head to
3437 	 * your data.
3438 	 */
3439 	if (!head)
3440 		might_sleep();
3441 
3442 	// Queue the object but don't yet schedule the batch.
3443 	if (debug_rcu_head_queue(ptr)) {
3444 		// Probable double kfree_rcu(), just leak.
3445 		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3446 			  __func__, head);
3447 
3448 		// Mark as success and leave.
3449 		return;
3450 	}
3451 
3452 	kasan_record_aux_stack_noalloc(ptr);
3453 	success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3454 	if (!success) {
3455 		run_page_cache_worker(krcp);
3456 
3457 		if (head == NULL)
3458 			// Inline if kvfree_rcu(one_arg) call.
3459 			goto unlock_return;
3460 
3461 		head->func = ptr;
3462 		head->next = krcp->head;
3463 		WRITE_ONCE(krcp->head, head);
3464 		atomic_inc(&krcp->head_count);
3465 
3466 		// Take a snapshot for this krcp.
3467 		krcp->head_gp_snap = get_state_synchronize_rcu();
3468 		success = true;
3469 	}
3470 
3471 	/*
3472 	 * The kvfree_rcu() caller considers the pointer freed at this point
3473 	 * and likely removes any references to it. Since the actual slab
3474 	 * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore
3475 	 * this object (no scanning or false positives reporting).
3476 	 */
3477 	kmemleak_ignore(ptr);
3478 
3479 	// Set timer to drain after KFREE_DRAIN_JIFFIES.
3480 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
3481 		__schedule_delayed_monitor_work(krcp);
3482 
3483 unlock_return:
3484 	krc_this_cpu_unlock(krcp, flags);
3485 
3486 	/*
3487 	 * Inline kvfree() after synchronize_rcu(). We can do
3488 	 * it from might_sleep() context only, so the current
3489 	 * CPU can pass the QS state.
3490 	 */
3491 	if (!success) {
3492 		debug_rcu_head_unqueue((struct rcu_head *) ptr);
3493 		synchronize_rcu();
3494 		kvfree(ptr);
3495 	}
3496 }
3497 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3498 
3499 static unsigned long
kfree_rcu_shrink_count(struct shrinker * shrink,struct shrink_control * sc)3500 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3501 {
3502 	int cpu;
3503 	unsigned long count = 0;
3504 
3505 	/* Snapshot count of all CPUs */
3506 	for_each_possible_cpu(cpu) {
3507 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3508 
3509 		count += krc_count(krcp);
3510 		count += READ_ONCE(krcp->nr_bkv_objs);
3511 		atomic_set(&krcp->backoff_page_cache_fill, 1);
3512 	}
3513 
3514 	return count == 0 ? SHRINK_EMPTY : count;
3515 }
3516 
3517 static unsigned long
kfree_rcu_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)3518 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3519 {
3520 	int cpu, freed = 0;
3521 
3522 	for_each_possible_cpu(cpu) {
3523 		int count;
3524 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3525 
3526 		count = krc_count(krcp);
3527 		count += drain_page_cache(krcp);
3528 		kfree_rcu_monitor(&krcp->monitor_work.work);
3529 
3530 		sc->nr_to_scan -= count;
3531 		freed += count;
3532 
3533 		if (sc->nr_to_scan <= 0)
3534 			break;
3535 	}
3536 
3537 	return freed == 0 ? SHRINK_STOP : freed;
3538 }
3539 
3540 static struct shrinker kfree_rcu_shrinker = {
3541 	.count_objects = kfree_rcu_shrink_count,
3542 	.scan_objects = kfree_rcu_shrink_scan,
3543 	.batch = 0,
3544 	.seeks = DEFAULT_SEEKS,
3545 };
3546 
kfree_rcu_scheduler_running(void)3547 void __init kfree_rcu_scheduler_running(void)
3548 {
3549 	int cpu;
3550 
3551 	for_each_possible_cpu(cpu) {
3552 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3553 
3554 		if (need_offload_krc(krcp))
3555 			schedule_delayed_monitor_work(krcp);
3556 	}
3557 }
3558 
3559 /*
3560  * During early boot, any blocking grace-period wait automatically
3561  * implies a grace period.
3562  *
3563  * Later on, this could in theory be the case for kernels built with
3564  * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
3565  * is not a common case.  Furthermore, this optimization would cause
3566  * the rcu_gp_oldstate structure to expand by 50%, so this potential
3567  * grace-period optimization is ignored once the scheduler is running.
3568  */
rcu_blocking_is_gp(void)3569 static int rcu_blocking_is_gp(void)
3570 {
3571 	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) {
3572 		might_sleep();
3573 		return false;
3574 	}
3575 	return true;
3576 }
3577 
3578 /**
3579  * synchronize_rcu - wait until a grace period has elapsed.
3580  *
3581  * Control will return to the caller some time after a full grace
3582  * period has elapsed, in other words after all currently executing RCU
3583  * read-side critical sections have completed.  Note, however, that
3584  * upon return from synchronize_rcu(), the caller might well be executing
3585  * concurrently with new RCU read-side critical sections that began while
3586  * synchronize_rcu() was waiting.
3587  *
3588  * RCU read-side critical sections are delimited by rcu_read_lock()
3589  * and rcu_read_unlock(), and may be nested.  In addition, but only in
3590  * v5.0 and later, regions of code across which interrupts, preemption,
3591  * or softirqs have been disabled also serve as RCU read-side critical
3592  * sections.  This includes hardware interrupt handlers, softirq handlers,
3593  * and NMI handlers.
3594  *
3595  * Note that this guarantee implies further memory-ordering guarantees.
3596  * On systems with more than one CPU, when synchronize_rcu() returns,
3597  * each CPU is guaranteed to have executed a full memory barrier since
3598  * the end of its last RCU read-side critical section whose beginning
3599  * preceded the call to synchronize_rcu().  In addition, each CPU having
3600  * an RCU read-side critical section that extends beyond the return from
3601  * synchronize_rcu() is guaranteed to have executed a full memory barrier
3602  * after the beginning of synchronize_rcu() and before the beginning of
3603  * that RCU read-side critical section.  Note that these guarantees include
3604  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3605  * that are executing in the kernel.
3606  *
3607  * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3608  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3609  * to have executed a full memory barrier during the execution of
3610  * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3611  * again only if the system has more than one CPU).
3612  *
3613  * Implementation of these memory-ordering guarantees is described here:
3614  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3615  */
synchronize_rcu(void)3616 void synchronize_rcu(void)
3617 {
3618 	unsigned long flags;
3619 	struct rcu_node *rnp;
3620 
3621 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3622 			 lock_is_held(&rcu_lock_map) ||
3623 			 lock_is_held(&rcu_sched_lock_map),
3624 			 "Illegal synchronize_rcu() in RCU read-side critical section");
3625 	if (!rcu_blocking_is_gp()) {
3626 		if (rcu_gp_is_expedited())
3627 			synchronize_rcu_expedited();
3628 		else
3629 			wait_rcu_gp(call_rcu_hurry);
3630 		return;
3631 	}
3632 
3633 	// Context allows vacuous grace periods.
3634 	// Note well that this code runs with !PREEMPT && !SMP.
3635 	// In addition, all code that advances grace periods runs at
3636 	// process level.  Therefore, this normal GP overlaps with other
3637 	// normal GPs only by being fully nested within them, which allows
3638 	// reuse of ->gp_seq_polled_snap.
3639 	rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap);
3640 	rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap);
3641 
3642 	// Update the normal grace-period counters to record
3643 	// this grace period, but only those used by the boot CPU.
3644 	// The rcu_scheduler_starting() will take care of the rest of
3645 	// these counters.
3646 	local_irq_save(flags);
3647 	WARN_ON_ONCE(num_online_cpus() > 1);
3648 	rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT);
3649 	for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent)
3650 		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
3651 	local_irq_restore(flags);
3652 }
3653 EXPORT_SYMBOL_GPL(synchronize_rcu);
3654 
3655 /**
3656  * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
3657  * @rgosp: Place to put state cookie
3658  *
3659  * Stores into @rgosp a value that will always be treated by functions
3660  * like poll_state_synchronize_rcu_full() as a cookie whose grace period
3661  * has already completed.
3662  */
get_completed_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3663 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3664 {
3665 	rgosp->rgos_norm = RCU_GET_STATE_COMPLETED;
3666 	rgosp->rgos_exp = RCU_GET_STATE_COMPLETED;
3667 }
3668 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full);
3669 
3670 /**
3671  * get_state_synchronize_rcu - Snapshot current RCU state
3672  *
3673  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3674  * or poll_state_synchronize_rcu() to determine whether or not a full
3675  * grace period has elapsed in the meantime.
3676  */
get_state_synchronize_rcu(void)3677 unsigned long get_state_synchronize_rcu(void)
3678 {
3679 	/*
3680 	 * Any prior manipulation of RCU-protected data must happen
3681 	 * before the load from ->gp_seq.
3682 	 */
3683 	smp_mb();  /* ^^^ */
3684 	return rcu_seq_snap(&rcu_state.gp_seq_polled);
3685 }
3686 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3687 
3688 /**
3689  * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited
3690  * @rgosp: location to place combined normal/expedited grace-period state
3691  *
3692  * Places the normal and expedited grace-period states in @rgosp.  This
3693  * state value can be passed to a later call to cond_synchronize_rcu_full()
3694  * or poll_state_synchronize_rcu_full() to determine whether or not a
3695  * grace period (whether normal or expedited) has elapsed in the meantime.
3696  * The rcu_gp_oldstate structure takes up twice the memory of an unsigned
3697  * long, but is guaranteed to see all grace periods.  In contrast, the
3698  * combined state occupies less memory, but can sometimes fail to take
3699  * grace periods into account.
3700  *
3701  * This does not guarantee that the needed grace period will actually
3702  * start.
3703  */
get_state_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3704 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3705 {
3706 	struct rcu_node *rnp = rcu_get_root();
3707 
3708 	/*
3709 	 * Any prior manipulation of RCU-protected data must happen
3710 	 * before the loads from ->gp_seq and ->expedited_sequence.
3711 	 */
3712 	smp_mb();  /* ^^^ */
3713 	rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq);
3714 	rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence);
3715 }
3716 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full);
3717 
3718 /*
3719  * Helper function for start_poll_synchronize_rcu() and
3720  * start_poll_synchronize_rcu_full().
3721  */
start_poll_synchronize_rcu_common(void)3722 static void start_poll_synchronize_rcu_common(void)
3723 {
3724 	unsigned long flags;
3725 	bool needwake;
3726 	struct rcu_data *rdp;
3727 	struct rcu_node *rnp;
3728 
3729 	lockdep_assert_irqs_enabled();
3730 	local_irq_save(flags);
3731 	rdp = this_cpu_ptr(&rcu_data);
3732 	rnp = rdp->mynode;
3733 	raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3734 	// Note it is possible for a grace period to have elapsed between
3735 	// the above call to get_state_synchronize_rcu() and the below call
3736 	// to rcu_seq_snap.  This is OK, the worst that happens is that we
3737 	// get a grace period that no one needed.  These accesses are ordered
3738 	// by smp_mb(), and we are accessing them in the opposite order
3739 	// from which they are updated at grace-period start, as required.
3740 	needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq));
3741 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3742 	if (needwake)
3743 		rcu_gp_kthread_wake();
3744 }
3745 
3746 /**
3747  * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3748  *
3749  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3750  * or poll_state_synchronize_rcu() to determine whether or not a full
3751  * grace period has elapsed in the meantime.  If the needed grace period
3752  * is not already slated to start, notifies RCU core of the need for that
3753  * grace period.
3754  *
3755  * Interrupts must be enabled for the case where it is necessary to awaken
3756  * the grace-period kthread.
3757  */
start_poll_synchronize_rcu(void)3758 unsigned long start_poll_synchronize_rcu(void)
3759 {
3760 	unsigned long gp_seq = get_state_synchronize_rcu();
3761 
3762 	start_poll_synchronize_rcu_common();
3763 	return gp_seq;
3764 }
3765 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3766 
3767 /**
3768  * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period
3769  * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3770  *
3771  * Places the normal and expedited grace-period states in *@rgos.  This
3772  * state value can be passed to a later call to cond_synchronize_rcu_full()
3773  * or poll_state_synchronize_rcu_full() to determine whether or not a
3774  * grace period (whether normal or expedited) has elapsed in the meantime.
3775  * If the needed grace period is not already slated to start, notifies
3776  * RCU core of the need for that grace period.
3777  *
3778  * Interrupts must be enabled for the case where it is necessary to awaken
3779  * the grace-period kthread.
3780  */
start_poll_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3781 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3782 {
3783 	get_state_synchronize_rcu_full(rgosp);
3784 
3785 	start_poll_synchronize_rcu_common();
3786 }
3787 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full);
3788 
3789 /**
3790  * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
3791  * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3792  *
3793  * If a full RCU grace period has elapsed since the earlier call from
3794  * which @oldstate was obtained, return @true, otherwise return @false.
3795  * If @false is returned, it is the caller's responsibility to invoke this
3796  * function later on until it does return @true.  Alternatively, the caller
3797  * can explicitly wait for a grace period, for example, by passing @oldstate
3798  * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited()
3799  * on the one hand or by directly invoking either synchronize_rcu() or
3800  * synchronize_rcu_expedited() on the other.
3801  *
3802  * Yes, this function does not take counter wrap into account.
3803  * But counter wrap is harmless.  If the counter wraps, we have waited for
3804  * more than a billion grace periods (and way more on a 64-bit system!).
3805  * Those needing to keep old state values for very long time periods
3806  * (many hours even on 32-bit systems) should check them occasionally and
3807  * either refresh them or set a flag indicating that the grace period has
3808  * completed.  Alternatively, they can use get_completed_synchronize_rcu()
3809  * to get a guaranteed-completed grace-period state.
3810  *
3811  * In addition, because oldstate compresses the grace-period state for
3812  * both normal and expedited grace periods into a single unsigned long,
3813  * it can miss a grace period when synchronize_rcu() runs concurrently
3814  * with synchronize_rcu_expedited().  If this is unacceptable, please
3815  * instead use the _full() variant of these polling APIs.
3816  *
3817  * This function provides the same memory-ordering guarantees that
3818  * would be provided by a synchronize_rcu() that was invoked at the call
3819  * to the function that provided @oldstate, and that returned at the end
3820  * of this function.
3821  */
poll_state_synchronize_rcu(unsigned long oldstate)3822 bool poll_state_synchronize_rcu(unsigned long oldstate)
3823 {
3824 	if (oldstate == RCU_GET_STATE_COMPLETED ||
3825 	    rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) {
3826 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3827 		return true;
3828 	}
3829 	return false;
3830 }
3831 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3832 
3833 /**
3834  * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
3835  * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3836  *
3837  * If a full RCU grace period has elapsed since the earlier call from
3838  * which *rgosp was obtained, return @true, otherwise return @false.
3839  * If @false is returned, it is the caller's responsibility to invoke this
3840  * function later on until it does return @true.  Alternatively, the caller
3841  * can explicitly wait for a grace period, for example, by passing @rgosp
3842  * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3843  *
3844  * Yes, this function does not take counter wrap into account.
3845  * But counter wrap is harmless.  If the counter wraps, we have waited
3846  * for more than a billion grace periods (and way more on a 64-bit
3847  * system!).  Those needing to keep rcu_gp_oldstate values for very
3848  * long time periods (many hours even on 32-bit systems) should check
3849  * them occasionally and either refresh them or set a flag indicating
3850  * that the grace period has completed.  Alternatively, they can use
3851  * get_completed_synchronize_rcu_full() to get a guaranteed-completed
3852  * grace-period state.
3853  *
3854  * This function provides the same memory-ordering guarantees that would
3855  * be provided by a synchronize_rcu() that was invoked at the call to
3856  * the function that provided @rgosp, and that returned at the end of this
3857  * function.  And this guarantee requires that the root rcu_node structure's
3858  * ->gp_seq field be checked instead of that of the rcu_state structure.
3859  * The problem is that the just-ending grace-period's callbacks can be
3860  * invoked between the time that the root rcu_node structure's ->gp_seq
3861  * field is updated and the time that the rcu_state structure's ->gp_seq
3862  * field is updated.  Therefore, if a single synchronize_rcu() is to
3863  * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
3864  * then the root rcu_node structure is the one that needs to be polled.
3865  */
poll_state_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3866 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3867 {
3868 	struct rcu_node *rnp = rcu_get_root();
3869 
3870 	smp_mb(); // Order against root rcu_node structure grace-period cleanup.
3871 	if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED ||
3872 	    rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) ||
3873 	    rgosp->rgos_exp == RCU_GET_STATE_COMPLETED ||
3874 	    rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) {
3875 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3876 		return true;
3877 	}
3878 	return false;
3879 }
3880 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full);
3881 
3882 /**
3883  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3884  * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
3885  *
3886  * If a full RCU grace period has elapsed since the earlier call to
3887  * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3888  * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3889  *
3890  * Yes, this function does not take counter wrap into account.
3891  * But counter wrap is harmless.  If the counter wraps, we have waited for
3892  * more than 2 billion grace periods (and way more on a 64-bit system!),
3893  * so waiting for a couple of additional grace periods should be just fine.
3894  *
3895  * This function provides the same memory-ordering guarantees that
3896  * would be provided by a synchronize_rcu() that was invoked at the call
3897  * to the function that provided @oldstate and that returned at the end
3898  * of this function.
3899  */
cond_synchronize_rcu(unsigned long oldstate)3900 void cond_synchronize_rcu(unsigned long oldstate)
3901 {
3902 	if (!poll_state_synchronize_rcu(oldstate))
3903 		synchronize_rcu();
3904 }
3905 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3906 
3907 /**
3908  * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period
3909  * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full()
3910  *
3911  * If a full RCU grace period has elapsed since the call to
3912  * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
3913  * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was
3914  * obtained, just return.  Otherwise, invoke synchronize_rcu() to wait
3915  * for a full grace period.
3916  *
3917  * Yes, this function does not take counter wrap into account.
3918  * But counter wrap is harmless.  If the counter wraps, we have waited for
3919  * more than 2 billion grace periods (and way more on a 64-bit system!),
3920  * so waiting for a couple of additional grace periods should be just fine.
3921  *
3922  * This function provides the same memory-ordering guarantees that
3923  * would be provided by a synchronize_rcu() that was invoked at the call
3924  * to the function that provided @rgosp and that returned at the end of
3925  * this function.
3926  */
cond_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3927 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3928 {
3929 	if (!poll_state_synchronize_rcu_full(rgosp))
3930 		synchronize_rcu();
3931 }
3932 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full);
3933 
3934 /*
3935  * Check to see if there is any immediate RCU-related work to be done by
3936  * the current CPU, returning 1 if so and zero otherwise.  The checks are
3937  * in order of increasing expense: checks that can be carried out against
3938  * CPU-local state are performed first.  However, we must check for CPU
3939  * stalls first, else we might not get a chance.
3940  */
rcu_pending(int user)3941 static int rcu_pending(int user)
3942 {
3943 	bool gp_in_progress;
3944 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3945 	struct rcu_node *rnp = rdp->mynode;
3946 
3947 	lockdep_assert_irqs_disabled();
3948 
3949 	/* Check for CPU stalls, if enabled. */
3950 	check_cpu_stall(rdp);
3951 
3952 	/* Does this CPU need a deferred NOCB wakeup? */
3953 	if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3954 		return 1;
3955 
3956 	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
3957 	if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3958 		return 0;
3959 
3960 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3961 	gp_in_progress = rcu_gp_in_progress();
3962 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3963 		return 1;
3964 
3965 	/* Does this CPU have callbacks ready to invoke? */
3966 	if (!rcu_rdp_is_offloaded(rdp) &&
3967 	    rcu_segcblist_ready_cbs(&rdp->cblist))
3968 		return 1;
3969 
3970 	/* Has RCU gone idle with this CPU needing another grace period? */
3971 	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3972 	    !rcu_rdp_is_offloaded(rdp) &&
3973 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3974 		return 1;
3975 
3976 	/* Have RCU grace period completed or started?  */
3977 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3978 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3979 		return 1;
3980 
3981 	/* nothing to do */
3982 	return 0;
3983 }
3984 
3985 /*
3986  * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3987  * the compiler is expected to optimize this away.
3988  */
rcu_barrier_trace(const char * s,int cpu,unsigned long done)3989 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3990 {
3991 	trace_rcu_barrier(rcu_state.name, s, cpu,
3992 			  atomic_read(&rcu_state.barrier_cpu_count), done);
3993 }
3994 
3995 /*
3996  * RCU callback function for rcu_barrier().  If we are last, wake
3997  * up the task executing rcu_barrier().
3998  *
3999  * Note that the value of rcu_state.barrier_sequence must be captured
4000  * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
4001  * other CPUs might count the value down to zero before this CPU gets
4002  * around to invoking rcu_barrier_trace(), which might result in bogus
4003  * data from the next instance of rcu_barrier().
4004  */
rcu_barrier_callback(struct rcu_head * rhp)4005 static void rcu_barrier_callback(struct rcu_head *rhp)
4006 {
4007 	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
4008 
4009 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
4010 		rcu_barrier_trace(TPS("LastCB"), -1, s);
4011 		complete(&rcu_state.barrier_completion);
4012 	} else {
4013 		rcu_barrier_trace(TPS("CB"), -1, s);
4014 	}
4015 }
4016 
4017 /*
4018  * If needed, entrain an rcu_barrier() callback on rdp->cblist.
4019  */
rcu_barrier_entrain(struct rcu_data * rdp)4020 static void rcu_barrier_entrain(struct rcu_data *rdp)
4021 {
4022 	unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
4023 	unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
4024 	bool wake_nocb = false;
4025 	bool was_alldone = false;
4026 
4027 	lockdep_assert_held(&rcu_state.barrier_lock);
4028 	if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
4029 		return;
4030 	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
4031 	rdp->barrier_head.func = rcu_barrier_callback;
4032 	debug_rcu_head_queue(&rdp->barrier_head);
4033 	rcu_nocb_lock(rdp);
4034 	/*
4035 	 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular
4036 	 * queue. This way we don't wait for bypass timer that can reach seconds
4037 	 * if it's fully lazy.
4038 	 */
4039 	was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist);
4040 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
4041 	wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist);
4042 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
4043 		atomic_inc(&rcu_state.barrier_cpu_count);
4044 	} else {
4045 		debug_rcu_head_unqueue(&rdp->barrier_head);
4046 		rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
4047 	}
4048 	rcu_nocb_unlock(rdp);
4049 	if (wake_nocb)
4050 		wake_nocb_gp(rdp, false);
4051 	smp_store_release(&rdp->barrier_seq_snap, gseq);
4052 }
4053 
4054 /*
4055  * Called with preemption disabled, and from cross-cpu IRQ context.
4056  */
rcu_barrier_handler(void * cpu_in)4057 static void rcu_barrier_handler(void *cpu_in)
4058 {
4059 	uintptr_t cpu = (uintptr_t)cpu_in;
4060 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4061 
4062 	lockdep_assert_irqs_disabled();
4063 	WARN_ON_ONCE(cpu != rdp->cpu);
4064 	WARN_ON_ONCE(cpu != smp_processor_id());
4065 	raw_spin_lock(&rcu_state.barrier_lock);
4066 	rcu_barrier_entrain(rdp);
4067 	raw_spin_unlock(&rcu_state.barrier_lock);
4068 }
4069 
4070 /**
4071  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
4072  *
4073  * Note that this primitive does not necessarily wait for an RCU grace period
4074  * to complete.  For example, if there are no RCU callbacks queued anywhere
4075  * in the system, then rcu_barrier() is within its rights to return
4076  * immediately, without waiting for anything, much less an RCU grace period.
4077  */
rcu_barrier(void)4078 void rcu_barrier(void)
4079 {
4080 	uintptr_t cpu;
4081 	unsigned long flags;
4082 	unsigned long gseq;
4083 	struct rcu_data *rdp;
4084 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4085 
4086 	rcu_barrier_trace(TPS("Begin"), -1, s);
4087 
4088 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
4089 	mutex_lock(&rcu_state.barrier_mutex);
4090 
4091 	/* Did someone else do our work for us? */
4092 	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4093 		rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence);
4094 		smp_mb(); /* caller's subsequent code after above check. */
4095 		mutex_unlock(&rcu_state.barrier_mutex);
4096 		return;
4097 	}
4098 
4099 	/* Mark the start of the barrier operation. */
4100 	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4101 	rcu_seq_start(&rcu_state.barrier_sequence);
4102 	gseq = rcu_state.barrier_sequence;
4103 	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
4104 
4105 	/*
4106 	 * Initialize the count to two rather than to zero in order
4107 	 * to avoid a too-soon return to zero in case of an immediate
4108 	 * invocation of the just-enqueued callback (or preemption of
4109 	 * this task).  Exclude CPU-hotplug operations to ensure that no
4110 	 * offline non-offloaded CPU has callbacks queued.
4111 	 */
4112 	init_completion(&rcu_state.barrier_completion);
4113 	atomic_set(&rcu_state.barrier_cpu_count, 2);
4114 	raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4115 
4116 	/*
4117 	 * Force each CPU with callbacks to register a new callback.
4118 	 * When that callback is invoked, we will know that all of the
4119 	 * corresponding CPU's preceding callbacks have been invoked.
4120 	 */
4121 	for_each_possible_cpu(cpu) {
4122 		rdp = per_cpu_ptr(&rcu_data, cpu);
4123 retry:
4124 		if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
4125 			continue;
4126 		raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4127 		if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
4128 			WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4129 			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4130 			rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
4131 			continue;
4132 		}
4133 		if (!rcu_rdp_cpu_online(rdp)) {
4134 			rcu_barrier_entrain(rdp);
4135 			WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4136 			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4137 			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence);
4138 			continue;
4139 		}
4140 		raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4141 		if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) {
4142 			schedule_timeout_uninterruptible(1);
4143 			goto retry;
4144 		}
4145 		WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4146 		rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence);
4147 	}
4148 
4149 	/*
4150 	 * Now that we have an rcu_barrier_callback() callback on each
4151 	 * CPU, and thus each counted, remove the initial count.
4152 	 */
4153 	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4154 		complete(&rcu_state.barrier_completion);
4155 
4156 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4157 	wait_for_completion(&rcu_state.barrier_completion);
4158 
4159 	/* Mark the end of the barrier operation. */
4160 	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4161 	rcu_seq_end(&rcu_state.barrier_sequence);
4162 	gseq = rcu_state.barrier_sequence;
4163 	for_each_possible_cpu(cpu) {
4164 		rdp = per_cpu_ptr(&rcu_data, cpu);
4165 
4166 		WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4167 	}
4168 
4169 	/* Other rcu_barrier() invocations can now safely proceed. */
4170 	mutex_unlock(&rcu_state.barrier_mutex);
4171 }
4172 EXPORT_SYMBOL_GPL(rcu_barrier);
4173 
4174 /*
4175  * Compute the mask of online CPUs for the specified rcu_node structure.
4176  * This will not be stable unless the rcu_node structure's ->lock is
4177  * held, but the bit corresponding to the current CPU will be stable
4178  * in most contexts.
4179  */
rcu_rnp_online_cpus(struct rcu_node * rnp)4180 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
4181 {
4182 	return READ_ONCE(rnp->qsmaskinitnext);
4183 }
4184 
4185 /*
4186  * Is the CPU corresponding to the specified rcu_data structure online
4187  * from RCU's perspective?  This perspective is given by that structure's
4188  * ->qsmaskinitnext field rather than by the global cpu_online_mask.
4189  */
rcu_rdp_cpu_online(struct rcu_data * rdp)4190 static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
4191 {
4192 	return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode));
4193 }
4194 
rcu_cpu_online(int cpu)4195 bool rcu_cpu_online(int cpu)
4196 {
4197 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4198 
4199 	return rcu_rdp_cpu_online(rdp);
4200 }
4201 
4202 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
4203 
4204 /*
4205  * Is the current CPU online as far as RCU is concerned?
4206  *
4207  * Disable preemption to avoid false positives that could otherwise
4208  * happen due to the current CPU number being sampled, this task being
4209  * preempted, its old CPU being taken offline, resuming on some other CPU,
4210  * then determining that its old CPU is now offline.
4211  *
4212  * Disable checking if in an NMI handler because we cannot safely
4213  * report errors from NMI handlers anyway.  In addition, it is OK to use
4214  * RCU on an offline processor during initial boot, hence the check for
4215  * rcu_scheduler_fully_active.
4216  */
rcu_lockdep_current_cpu_online(void)4217 bool rcu_lockdep_current_cpu_online(void)
4218 {
4219 	struct rcu_data *rdp;
4220 	bool ret = false;
4221 
4222 	if (in_nmi() || !rcu_scheduler_fully_active)
4223 		return true;
4224 	preempt_disable_notrace();
4225 	rdp = this_cpu_ptr(&rcu_data);
4226 	/*
4227 	 * Strictly, we care here about the case where the current CPU is
4228 	 * in rcu_cpu_starting() and thus has an excuse for rdp->grpmask
4229 	 * not being up to date. So arch_spin_is_locked() might have a
4230 	 * false positive if it's held by some *other* CPU, but that's
4231 	 * OK because that just means a false *negative* on the warning.
4232 	 */
4233 	if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
4234 		ret = true;
4235 	preempt_enable_notrace();
4236 	return ret;
4237 }
4238 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
4239 
4240 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
4241 
4242 // Has rcu_init() been invoked?  This is used (for example) to determine
4243 // whether spinlocks may be acquired safely.
rcu_init_invoked(void)4244 static bool rcu_init_invoked(void)
4245 {
4246 	return !!rcu_state.n_online_cpus;
4247 }
4248 
4249 /*
4250  * Near the end of the offline process.  Trace the fact that this CPU
4251  * is going offline.
4252  */
rcutree_dying_cpu(unsigned int cpu)4253 int rcutree_dying_cpu(unsigned int cpu)
4254 {
4255 	bool blkd;
4256 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4257 	struct rcu_node *rnp = rdp->mynode;
4258 
4259 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
4260 		return 0;
4261 
4262 	blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask);
4263 	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
4264 			       blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
4265 	return 0;
4266 }
4267 
4268 /*
4269  * All CPUs for the specified rcu_node structure have gone offline,
4270  * and all tasks that were preempted within an RCU read-side critical
4271  * section while running on one of those CPUs have since exited their RCU
4272  * read-side critical section.  Some other CPU is reporting this fact with
4273  * the specified rcu_node structure's ->lock held and interrupts disabled.
4274  * This function therefore goes up the tree of rcu_node structures,
4275  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
4276  * the leaf rcu_node structure's ->qsmaskinit field has already been
4277  * updated.
4278  *
4279  * This function does check that the specified rcu_node structure has
4280  * all CPUs offline and no blocked tasks, so it is OK to invoke it
4281  * prematurely.  That said, invoking it after the fact will cost you
4282  * a needless lock acquisition.  So once it has done its work, don't
4283  * invoke it again.
4284  */
rcu_cleanup_dead_rnp(struct rcu_node * rnp_leaf)4285 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
4286 {
4287 	long mask;
4288 	struct rcu_node *rnp = rnp_leaf;
4289 
4290 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4291 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
4292 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
4293 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
4294 		return;
4295 	for (;;) {
4296 		mask = rnp->grpmask;
4297 		rnp = rnp->parent;
4298 		if (!rnp)
4299 			break;
4300 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4301 		rnp->qsmaskinit &= ~mask;
4302 		/* Between grace periods, so better already be zero! */
4303 		WARN_ON_ONCE(rnp->qsmask);
4304 		if (rnp->qsmaskinit) {
4305 			raw_spin_unlock_rcu_node(rnp);
4306 			/* irqs remain disabled. */
4307 			return;
4308 		}
4309 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4310 	}
4311 }
4312 
4313 /*
4314  * The CPU has been completely removed, and some other CPU is reporting
4315  * this fact from process context.  Do the remainder of the cleanup.
4316  * There can only be one CPU hotplug operation at a time, so no need for
4317  * explicit locking.
4318  */
rcutree_dead_cpu(unsigned int cpu)4319 int rcutree_dead_cpu(unsigned int cpu)
4320 {
4321 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
4322 		return 0;
4323 
4324 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
4325 	// Stop-machine done, so allow nohz_full to disable tick.
4326 	tick_dep_clear(TICK_DEP_BIT_RCU);
4327 	return 0;
4328 }
4329 
4330 /*
4331  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4332  * first CPU in a given leaf rcu_node structure coming online.  The caller
4333  * must hold the corresponding leaf rcu_node ->lock with interrupts
4334  * disabled.
4335  */
rcu_init_new_rnp(struct rcu_node * rnp_leaf)4336 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4337 {
4338 	long mask;
4339 	long oldmask;
4340 	struct rcu_node *rnp = rnp_leaf;
4341 
4342 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4343 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
4344 	for (;;) {
4345 		mask = rnp->grpmask;
4346 		rnp = rnp->parent;
4347 		if (rnp == NULL)
4348 			return;
4349 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4350 		oldmask = rnp->qsmaskinit;
4351 		rnp->qsmaskinit |= mask;
4352 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4353 		if (oldmask)
4354 			return;
4355 	}
4356 }
4357 
4358 /*
4359  * Do boot-time initialization of a CPU's per-CPU RCU data.
4360  */
4361 static void __init
rcu_boot_init_percpu_data(int cpu)4362 rcu_boot_init_percpu_data(int cpu)
4363 {
4364 	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
4365 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4366 
4367 	/* Set up local state, ensuring consistent view of global state. */
4368 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4369 	INIT_WORK(&rdp->strict_work, strict_work_handler);
4370 	WARN_ON_ONCE(ct->dynticks_nesting != 1);
4371 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu)));
4372 	rdp->barrier_seq_snap = rcu_state.barrier_sequence;
4373 	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4374 	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4375 	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4376 	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4377 	rdp->last_sched_clock = jiffies;
4378 	rdp->cpu = cpu;
4379 	rcu_boot_init_nocb_percpu_data(rdp);
4380 }
4381 
4382 /*
4383  * Invoked early in the CPU-online process, when pretty much all services
4384  * are available.  The incoming CPU is not present.
4385  *
4386  * Initializes a CPU's per-CPU RCU data.  Note that only one online or
4387  * offline event can be happening at a given time.  Note also that we can
4388  * accept some slop in the rsp->gp_seq access due to the fact that this
4389  * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4390  * And any offloaded callbacks are being numbered elsewhere.
4391  */
rcutree_prepare_cpu(unsigned int cpu)4392 int rcutree_prepare_cpu(unsigned int cpu)
4393 {
4394 	unsigned long flags;
4395 	struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu);
4396 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4397 	struct rcu_node *rnp = rcu_get_root();
4398 
4399 	/* Set up local state, ensuring consistent view of global state. */
4400 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4401 	rdp->qlen_last_fqs_check = 0;
4402 	rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4403 	rdp->blimit = blimit;
4404 	ct->dynticks_nesting = 1;	/* CPU not up, no tearing. */
4405 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4406 
4407 	/*
4408 	 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4409 	 * (re-)initialized.
4410 	 */
4411 	if (!rcu_segcblist_is_enabled(&rdp->cblist))
4412 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
4413 
4414 	/*
4415 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4416 	 * propagation up the rcu_node tree will happen at the beginning
4417 	 * of the next grace period.
4418 	 */
4419 	rnp = rdp->mynode;
4420 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4421 	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4422 	rdp->gp_seq_needed = rdp->gp_seq;
4423 	rdp->cpu_no_qs.b.norm = true;
4424 	rdp->core_needs_qs = false;
4425 	rdp->rcu_iw_pending = false;
4426 	rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4427 	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4428 	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4429 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4430 	rcu_spawn_one_boost_kthread(rnp);
4431 	rcu_spawn_cpu_nocb_kthread(cpu);
4432 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4433 
4434 	return 0;
4435 }
4436 
4437 /*
4438  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4439  */
rcutree_affinity_setting(unsigned int cpu,int outgoing)4440 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4441 {
4442 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4443 
4444 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4445 }
4446 
4447 /*
4448  * Has the specified (known valid) CPU ever been fully online?
4449  */
rcu_cpu_beenfullyonline(int cpu)4450 bool rcu_cpu_beenfullyonline(int cpu)
4451 {
4452 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4453 
4454 	return smp_load_acquire(&rdp->beenonline);
4455 }
4456 
4457 /*
4458  * Near the end of the CPU-online process.  Pretty much all services
4459  * enabled, and the CPU is now very much alive.
4460  */
rcutree_online_cpu(unsigned int cpu)4461 int rcutree_online_cpu(unsigned int cpu)
4462 {
4463 	unsigned long flags;
4464 	struct rcu_data *rdp;
4465 	struct rcu_node *rnp;
4466 
4467 	rdp = per_cpu_ptr(&rcu_data, cpu);
4468 	rnp = rdp->mynode;
4469 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4470 	rnp->ffmask |= rdp->grpmask;
4471 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4472 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4473 		return 0; /* Too early in boot for scheduler work. */
4474 	sync_sched_exp_online_cleanup(cpu);
4475 	rcutree_affinity_setting(cpu, -1);
4476 
4477 	// Stop-machine done, so allow nohz_full to disable tick.
4478 	tick_dep_clear(TICK_DEP_BIT_RCU);
4479 	return 0;
4480 }
4481 
4482 /*
4483  * Near the beginning of the process.  The CPU is still very much alive
4484  * with pretty much all services enabled.
4485  */
rcutree_offline_cpu(unsigned int cpu)4486 int rcutree_offline_cpu(unsigned int cpu)
4487 {
4488 	unsigned long flags;
4489 	struct rcu_data *rdp;
4490 	struct rcu_node *rnp;
4491 
4492 	rdp = per_cpu_ptr(&rcu_data, cpu);
4493 	rnp = rdp->mynode;
4494 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4495 	rnp->ffmask &= ~rdp->grpmask;
4496 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4497 
4498 	rcutree_affinity_setting(cpu, cpu);
4499 
4500 	// nohz_full CPUs need the tick for stop-machine to work quickly
4501 	tick_dep_set(TICK_DEP_BIT_RCU);
4502 	return 0;
4503 }
4504 
4505 /*
4506  * Mark the specified CPU as being online so that subsequent grace periods
4507  * (both expedited and normal) will wait on it.  Note that this means that
4508  * incoming CPUs are not allowed to use RCU read-side critical sections
4509  * until this function is called.  Failing to observe this restriction
4510  * will result in lockdep splats.
4511  *
4512  * Note that this function is special in that it is invoked directly
4513  * from the incoming CPU rather than from the cpuhp_step mechanism.
4514  * This is because this function must be invoked at a precise location.
4515  * This incoming CPU must not have enabled interrupts yet.
4516  */
rcu_cpu_starting(unsigned int cpu)4517 void rcu_cpu_starting(unsigned int cpu)
4518 {
4519 	unsigned long mask;
4520 	struct rcu_data *rdp;
4521 	struct rcu_node *rnp;
4522 	bool newcpu;
4523 
4524 	lockdep_assert_irqs_disabled();
4525 	rdp = per_cpu_ptr(&rcu_data, cpu);
4526 	if (rdp->cpu_started)
4527 		return;
4528 	rdp->cpu_started = true;
4529 
4530 	rnp = rdp->mynode;
4531 	mask = rdp->grpmask;
4532 	arch_spin_lock(&rcu_state.ofl_lock);
4533 	rcu_dynticks_eqs_online();
4534 	raw_spin_lock(&rcu_state.barrier_lock);
4535 	raw_spin_lock_rcu_node(rnp);
4536 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4537 	raw_spin_unlock(&rcu_state.barrier_lock);
4538 	newcpu = !(rnp->expmaskinitnext & mask);
4539 	rnp->expmaskinitnext |= mask;
4540 	/* Allow lockless access for expedited grace periods. */
4541 	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4542 	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4543 	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4544 	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4545 	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4546 
4547 	/* An incoming CPU should never be blocking a grace period. */
4548 	if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4549 		/* rcu_report_qs_rnp() *really* wants some flags to restore */
4550 		unsigned long flags;
4551 
4552 		local_irq_save(flags);
4553 		rcu_disable_urgency_upon_qs(rdp);
4554 		/* Report QS -after- changing ->qsmaskinitnext! */
4555 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4556 	} else {
4557 		raw_spin_unlock_rcu_node(rnp);
4558 	}
4559 	arch_spin_unlock(&rcu_state.ofl_lock);
4560 	smp_store_release(&rdp->beenonline, true);
4561 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4562 }
4563 
4564 /*
4565  * The outgoing function has no further need of RCU, so remove it from
4566  * the rcu_node tree's ->qsmaskinitnext bit masks.
4567  *
4568  * Note that this function is special in that it is invoked directly
4569  * from the outgoing CPU rather than from the cpuhp_step mechanism.
4570  * This is because this function must be invoked at a precise location.
4571  */
rcu_report_dead(unsigned int cpu)4572 void rcu_report_dead(unsigned int cpu)
4573 {
4574 	unsigned long flags, seq_flags;
4575 	unsigned long mask;
4576 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4577 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4578 
4579 	// Do any dangling deferred wakeups.
4580 	do_nocb_deferred_wakeup(rdp);
4581 
4582 	rcu_preempt_deferred_qs(current);
4583 
4584 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4585 	mask = rdp->grpmask;
4586 	local_irq_save(seq_flags);
4587 	arch_spin_lock(&rcu_state.ofl_lock);
4588 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4589 	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4590 	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4591 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4592 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
4593 		rcu_disable_urgency_upon_qs(rdp);
4594 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4595 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4596 	}
4597 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4598 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4599 	arch_spin_unlock(&rcu_state.ofl_lock);
4600 	local_irq_restore(seq_flags);
4601 
4602 	rdp->cpu_started = false;
4603 }
4604 
4605 #ifdef CONFIG_HOTPLUG_CPU
4606 /*
4607  * The outgoing CPU has just passed through the dying-idle state, and we
4608  * are being invoked from the CPU that was IPIed to continue the offline
4609  * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
4610  */
rcutree_migrate_callbacks(int cpu)4611 void rcutree_migrate_callbacks(int cpu)
4612 {
4613 	unsigned long flags;
4614 	struct rcu_data *my_rdp;
4615 	struct rcu_node *my_rnp;
4616 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4617 	bool needwake;
4618 
4619 	if (rcu_rdp_is_offloaded(rdp))
4620 		return;
4621 
4622 	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4623 	if (rcu_segcblist_empty(&rdp->cblist)) {
4624 		raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4625 		return;  /* No callbacks to migrate. */
4626 	}
4627 
4628 	WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
4629 	rcu_barrier_entrain(rdp);
4630 	my_rdp = this_cpu_ptr(&rcu_data);
4631 	my_rnp = my_rdp->mynode;
4632 	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4633 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false));
4634 	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4635 	/* Leverage recent GPs and set GP for new callbacks. */
4636 	needwake = rcu_advance_cbs(my_rnp, rdp) ||
4637 		   rcu_advance_cbs(my_rnp, my_rdp);
4638 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4639 	raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
4640 	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4641 	rcu_segcblist_disable(&rdp->cblist);
4642 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
4643 	check_cb_ovld_locked(my_rdp, my_rnp);
4644 	if (rcu_rdp_is_offloaded(my_rdp)) {
4645 		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4646 		__call_rcu_nocb_wake(my_rdp, true, flags);
4647 	} else {
4648 		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4649 		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4650 	}
4651 	local_irq_restore(flags);
4652 	if (needwake)
4653 		rcu_gp_kthread_wake();
4654 	lockdep_assert_irqs_enabled();
4655 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4656 		  !rcu_segcblist_empty(&rdp->cblist),
4657 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4658 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4659 		  rcu_segcblist_first_cb(&rdp->cblist));
4660 }
4661 #endif
4662 
4663 /*
4664  * On non-huge systems, use expedited RCU grace periods to make suspend
4665  * and hibernation run faster.
4666  */
rcu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)4667 static int rcu_pm_notify(struct notifier_block *self,
4668 			 unsigned long action, void *hcpu)
4669 {
4670 	switch (action) {
4671 	case PM_HIBERNATION_PREPARE:
4672 	case PM_SUSPEND_PREPARE:
4673 		rcu_async_hurry();
4674 		rcu_expedite_gp();
4675 		break;
4676 	case PM_POST_HIBERNATION:
4677 	case PM_POST_SUSPEND:
4678 		rcu_unexpedite_gp();
4679 		rcu_async_relax();
4680 		break;
4681 	default:
4682 		break;
4683 	}
4684 	return NOTIFY_OK;
4685 }
4686 
4687 #ifdef CONFIG_RCU_EXP_KTHREAD
4688 struct kthread_worker *rcu_exp_gp_kworker;
4689 struct kthread_worker *rcu_exp_par_gp_kworker;
4690 
rcu_start_exp_gp_kworkers(void)4691 static void __init rcu_start_exp_gp_kworkers(void)
4692 {
4693 	const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker";
4694 	const char *gp_kworker_name = "rcu_exp_gp_kthread_worker";
4695 	struct sched_param param = { .sched_priority = kthread_prio };
4696 
4697 	rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name);
4698 	if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
4699 		pr_err("Failed to create %s!\n", gp_kworker_name);
4700 		rcu_exp_gp_kworker = NULL;
4701 		return;
4702 	}
4703 
4704 	rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name);
4705 	if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) {
4706 		pr_err("Failed to create %s!\n", par_gp_kworker_name);
4707 		rcu_exp_par_gp_kworker = NULL;
4708 		kthread_destroy_worker(rcu_exp_gp_kworker);
4709 		rcu_exp_gp_kworker = NULL;
4710 		return;
4711 	}
4712 
4713 	sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, &param);
4714 	sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO,
4715 				   &param);
4716 }
4717 
rcu_alloc_par_gp_wq(void)4718 static inline void rcu_alloc_par_gp_wq(void)
4719 {
4720 }
4721 #else /* !CONFIG_RCU_EXP_KTHREAD */
4722 struct workqueue_struct *rcu_par_gp_wq;
4723 
rcu_start_exp_gp_kworkers(void)4724 static void __init rcu_start_exp_gp_kworkers(void)
4725 {
4726 }
4727 
rcu_alloc_par_gp_wq(void)4728 static inline void rcu_alloc_par_gp_wq(void)
4729 {
4730 	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4731 	WARN_ON(!rcu_par_gp_wq);
4732 }
4733 #endif /* CONFIG_RCU_EXP_KTHREAD */
4734 
4735 /*
4736  * Spawn the kthreads that handle RCU's grace periods.
4737  */
rcu_spawn_gp_kthread(void)4738 static int __init rcu_spawn_gp_kthread(void)
4739 {
4740 	unsigned long flags;
4741 	struct rcu_node *rnp;
4742 	struct sched_param sp;
4743 	struct task_struct *t;
4744 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4745 
4746 	rcu_scheduler_fully_active = 1;
4747 	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4748 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4749 		return 0;
4750 	if (kthread_prio) {
4751 		sp.sched_priority = kthread_prio;
4752 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4753 	}
4754 	rnp = rcu_get_root();
4755 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4756 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
4757 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4758 	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4759 	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
4760 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4761 	wake_up_process(t);
4762 	/* This is a pre-SMP initcall, we expect a single CPU */
4763 	WARN_ON(num_online_cpus() > 1);
4764 	/*
4765 	 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
4766 	 * due to rcu_scheduler_fully_active.
4767 	 */
4768 	rcu_spawn_cpu_nocb_kthread(smp_processor_id());
4769 	rcu_spawn_one_boost_kthread(rdp->mynode);
4770 	rcu_spawn_core_kthreads();
4771 	/* Create kthread worker for expedited GPs */
4772 	rcu_start_exp_gp_kworkers();
4773 	return 0;
4774 }
4775 early_initcall(rcu_spawn_gp_kthread);
4776 
4777 /*
4778  * This function is invoked towards the end of the scheduler's
4779  * initialization process.  Before this is called, the idle task might
4780  * contain synchronous grace-period primitives (during which time, this idle
4781  * task is booting the system, and such primitives are no-ops).  After this
4782  * function is called, any synchronous grace-period primitives are run as
4783  * expedited, with the requesting task driving the grace period forward.
4784  * A later core_initcall() rcu_set_runtime_mode() will switch to full
4785  * runtime RCU functionality.
4786  */
rcu_scheduler_starting(void)4787 void rcu_scheduler_starting(void)
4788 {
4789 	unsigned long flags;
4790 	struct rcu_node *rnp;
4791 
4792 	WARN_ON(num_online_cpus() != 1);
4793 	WARN_ON(nr_context_switches() > 0);
4794 	rcu_test_sync_prims();
4795 
4796 	// Fix up the ->gp_seq counters.
4797 	local_irq_save(flags);
4798 	rcu_for_each_node_breadth_first(rnp)
4799 		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
4800 	local_irq_restore(flags);
4801 
4802 	// Switch out of early boot mode.
4803 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4804 	rcu_test_sync_prims();
4805 }
4806 
4807 /*
4808  * Helper function for rcu_init() that initializes the rcu_state structure.
4809  */
rcu_init_one(void)4810 static void __init rcu_init_one(void)
4811 {
4812 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4813 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4814 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4815 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4816 
4817 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4818 	int cpustride = 1;
4819 	int i;
4820 	int j;
4821 	struct rcu_node *rnp;
4822 
4823 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4824 
4825 	/* Silence gcc 4.8 false positive about array index out of range. */
4826 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4827 		panic("rcu_init_one: rcu_num_lvls out of range");
4828 
4829 	/* Initialize the level-tracking arrays. */
4830 
4831 	for (i = 1; i < rcu_num_lvls; i++)
4832 		rcu_state.level[i] =
4833 			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4834 	rcu_init_levelspread(levelspread, num_rcu_lvl);
4835 
4836 	/* Initialize the elements themselves, starting from the leaves. */
4837 
4838 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4839 		cpustride *= levelspread[i];
4840 		rnp = rcu_state.level[i];
4841 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4842 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4843 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4844 						   &rcu_node_class[i], buf[i]);
4845 			raw_spin_lock_init(&rnp->fqslock);
4846 			lockdep_set_class_and_name(&rnp->fqslock,
4847 						   &rcu_fqs_class[i], fqs[i]);
4848 			rnp->gp_seq = rcu_state.gp_seq;
4849 			rnp->gp_seq_needed = rcu_state.gp_seq;
4850 			rnp->completedqs = rcu_state.gp_seq;
4851 			rnp->qsmask = 0;
4852 			rnp->qsmaskinit = 0;
4853 			rnp->grplo = j * cpustride;
4854 			rnp->grphi = (j + 1) * cpustride - 1;
4855 			if (rnp->grphi >= nr_cpu_ids)
4856 				rnp->grphi = nr_cpu_ids - 1;
4857 			if (i == 0) {
4858 				rnp->grpnum = 0;
4859 				rnp->grpmask = 0;
4860 				rnp->parent = NULL;
4861 			} else {
4862 				rnp->grpnum = j % levelspread[i - 1];
4863 				rnp->grpmask = BIT(rnp->grpnum);
4864 				rnp->parent = rcu_state.level[i - 1] +
4865 					      j / levelspread[i - 1];
4866 			}
4867 			rnp->level = i;
4868 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4869 			rcu_init_one_nocb(rnp);
4870 			init_waitqueue_head(&rnp->exp_wq[0]);
4871 			init_waitqueue_head(&rnp->exp_wq[1]);
4872 			init_waitqueue_head(&rnp->exp_wq[2]);
4873 			init_waitqueue_head(&rnp->exp_wq[3]);
4874 			spin_lock_init(&rnp->exp_lock);
4875 			mutex_init(&rnp->boost_kthread_mutex);
4876 			raw_spin_lock_init(&rnp->exp_poll_lock);
4877 			rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
4878 			INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
4879 		}
4880 	}
4881 
4882 	init_swait_queue_head(&rcu_state.gp_wq);
4883 	init_swait_queue_head(&rcu_state.expedited_wq);
4884 	rnp = rcu_first_leaf_node();
4885 	for_each_possible_cpu(i) {
4886 		while (i > rnp->grphi)
4887 			rnp++;
4888 		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4889 		rcu_boot_init_percpu_data(i);
4890 	}
4891 }
4892 
4893 /*
4894  * Force priority from the kernel command-line into range.
4895  */
sanitize_kthread_prio(void)4896 static void __init sanitize_kthread_prio(void)
4897 {
4898 	int kthread_prio_in = kthread_prio;
4899 
4900 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4901 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4902 		kthread_prio = 2;
4903 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4904 		kthread_prio = 1;
4905 	else if (kthread_prio < 0)
4906 		kthread_prio = 0;
4907 	else if (kthread_prio > 99)
4908 		kthread_prio = 99;
4909 
4910 	if (kthread_prio != kthread_prio_in)
4911 		pr_alert("%s: Limited prio to %d from %d\n",
4912 			 __func__, kthread_prio, kthread_prio_in);
4913 }
4914 
4915 /*
4916  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4917  * replace the definitions in tree.h because those are needed to size
4918  * the ->node array in the rcu_state structure.
4919  */
rcu_init_geometry(void)4920 void rcu_init_geometry(void)
4921 {
4922 	ulong d;
4923 	int i;
4924 	static unsigned long old_nr_cpu_ids;
4925 	int rcu_capacity[RCU_NUM_LVLS];
4926 	static bool initialized;
4927 
4928 	if (initialized) {
4929 		/*
4930 		 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4931 		 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4932 		 */
4933 		WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4934 		return;
4935 	}
4936 
4937 	old_nr_cpu_ids = nr_cpu_ids;
4938 	initialized = true;
4939 
4940 	/*
4941 	 * Initialize any unspecified boot parameters.
4942 	 * The default values of jiffies_till_first_fqs and
4943 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4944 	 * value, which is a function of HZ, then adding one for each
4945 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4946 	 */
4947 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4948 	if (jiffies_till_first_fqs == ULONG_MAX)
4949 		jiffies_till_first_fqs = d;
4950 	if (jiffies_till_next_fqs == ULONG_MAX)
4951 		jiffies_till_next_fqs = d;
4952 	adjust_jiffies_till_sched_qs();
4953 
4954 	/* If the compile-time values are accurate, just leave. */
4955 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4956 	    nr_cpu_ids == NR_CPUS)
4957 		return;
4958 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4959 		rcu_fanout_leaf, nr_cpu_ids);
4960 
4961 	/*
4962 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4963 	 * and cannot exceed the number of bits in the rcu_node masks.
4964 	 * Complain and fall back to the compile-time values if this
4965 	 * limit is exceeded.
4966 	 */
4967 	if (rcu_fanout_leaf < 2 ||
4968 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4969 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4970 		WARN_ON(1);
4971 		return;
4972 	}
4973 
4974 	/*
4975 	 * Compute number of nodes that can be handled an rcu_node tree
4976 	 * with the given number of levels.
4977 	 */
4978 	rcu_capacity[0] = rcu_fanout_leaf;
4979 	for (i = 1; i < RCU_NUM_LVLS; i++)
4980 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4981 
4982 	/*
4983 	 * The tree must be able to accommodate the configured number of CPUs.
4984 	 * If this limit is exceeded, fall back to the compile-time values.
4985 	 */
4986 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4987 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4988 		WARN_ON(1);
4989 		return;
4990 	}
4991 
4992 	/* Calculate the number of levels in the tree. */
4993 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4994 	}
4995 	rcu_num_lvls = i + 1;
4996 
4997 	/* Calculate the number of rcu_nodes at each level of the tree. */
4998 	for (i = 0; i < rcu_num_lvls; i++) {
4999 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
5000 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
5001 	}
5002 
5003 	/* Calculate the total number of rcu_node structures. */
5004 	rcu_num_nodes = 0;
5005 	for (i = 0; i < rcu_num_lvls; i++)
5006 		rcu_num_nodes += num_rcu_lvl[i];
5007 }
5008 
5009 /*
5010  * Dump out the structure of the rcu_node combining tree associated
5011  * with the rcu_state structure.
5012  */
rcu_dump_rcu_node_tree(void)5013 static void __init rcu_dump_rcu_node_tree(void)
5014 {
5015 	int level = 0;
5016 	struct rcu_node *rnp;
5017 
5018 	pr_info("rcu_node tree layout dump\n");
5019 	pr_info(" ");
5020 	rcu_for_each_node_breadth_first(rnp) {
5021 		if (rnp->level != level) {
5022 			pr_cont("\n");
5023 			pr_info(" ");
5024 			level = rnp->level;
5025 		}
5026 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
5027 	}
5028 	pr_cont("\n");
5029 }
5030 
5031 struct workqueue_struct *rcu_gp_wq;
5032 
kfree_rcu_batch_init(void)5033 static void __init kfree_rcu_batch_init(void)
5034 {
5035 	int cpu;
5036 	int i, j;
5037 
5038 	/* Clamp it to [0:100] seconds interval. */
5039 	if (rcu_delay_page_cache_fill_msec < 0 ||
5040 		rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
5041 
5042 		rcu_delay_page_cache_fill_msec =
5043 			clamp(rcu_delay_page_cache_fill_msec, 0,
5044 				(int) (100 * MSEC_PER_SEC));
5045 
5046 		pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
5047 			rcu_delay_page_cache_fill_msec);
5048 	}
5049 
5050 	for_each_possible_cpu(cpu) {
5051 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
5052 
5053 		for (i = 0; i < KFREE_N_BATCHES; i++) {
5054 			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
5055 			krcp->krw_arr[i].krcp = krcp;
5056 
5057 			for (j = 0; j < FREE_N_CHANNELS; j++)
5058 				INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]);
5059 		}
5060 
5061 		for (i = 0; i < FREE_N_CHANNELS; i++)
5062 			INIT_LIST_HEAD(&krcp->bulk_head[i]);
5063 
5064 		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
5065 		INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
5066 		krcp->initialized = true;
5067 	}
5068 	if (register_shrinker(&kfree_rcu_shrinker, "rcu-kfree"))
5069 		pr_err("Failed to register kfree_rcu() shrinker!\n");
5070 }
5071 
rcu_init(void)5072 void __init rcu_init(void)
5073 {
5074 	int cpu = smp_processor_id();
5075 
5076 	rcu_early_boot_tests();
5077 
5078 	kfree_rcu_batch_init();
5079 	rcu_bootup_announce();
5080 	sanitize_kthread_prio();
5081 	rcu_init_geometry();
5082 	rcu_init_one();
5083 	if (dump_tree)
5084 		rcu_dump_rcu_node_tree();
5085 	if (use_softirq)
5086 		open_softirq(RCU_SOFTIRQ, rcu_core_si);
5087 
5088 	/*
5089 	 * We don't need protection against CPU-hotplug here because
5090 	 * this is called early in boot, before either interrupts
5091 	 * or the scheduler are operational.
5092 	 */
5093 	pm_notifier(rcu_pm_notify, 0);
5094 	WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
5095 	rcutree_prepare_cpu(cpu);
5096 	rcu_cpu_starting(cpu);
5097 	rcutree_online_cpu(cpu);
5098 
5099 	/* Create workqueue for Tree SRCU and for expedited GPs. */
5100 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
5101 	WARN_ON(!rcu_gp_wq);
5102 	rcu_alloc_par_gp_wq();
5103 
5104 	/* Fill in default value for rcutree.qovld boot parameter. */
5105 	/* -After- the rcu_node ->lock fields are initialized! */
5106 	if (qovld < 0)
5107 		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
5108 	else
5109 		qovld_calc = qovld;
5110 
5111 	// Kick-start in case any polled grace periods started early.
5112 	(void)start_poll_synchronize_rcu_expedited();
5113 
5114 	rcu_test_sync_prims();
5115 }
5116 
5117 #include "tree_stall.h"
5118 #include "tree_exp.h"
5119 #include "tree_nocb.h"
5120 #include "tree_plugin.h"
5121