1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 *
5 * Copyright IBM Corporation, 2008
6 *
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 * Manfred Spraul <manfred@colorfullife.com>
9 * Paul E. McKenney <paulmck@linux.ibm.com>
10 *
11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13 *
14 * For detailed explanation of Read-Copy Update mechanism see -
15 * Documentation/RCU
16 */
17
18 #define pr_fmt(fmt) "rcu: " fmt
19
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/kmemleak.h>
35 #include <linux/moduleparam.h>
36 #include <linux/panic.h>
37 #include <linux/panic_notifier.h>
38 #include <linux/percpu.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/mutex.h>
42 #include <linux/time.h>
43 #include <linux/kernel_stat.h>
44 #include <linux/wait.h>
45 #include <linux/kthread.h>
46 #include <uapi/linux/sched/types.h>
47 #include <linux/prefetch.h>
48 #include <linux/delay.h>
49 #include <linux/random.h>
50 #include <linux/trace_events.h>
51 #include <linux/suspend.h>
52 #include <linux/ftrace.h>
53 #include <linux/tick.h>
54 #include <linux/sysrq.h>
55 #include <linux/kprobes.h>
56 #include <linux/gfp.h>
57 #include <linux/oom.h>
58 #include <linux/smpboot.h>
59 #include <linux/jiffies.h>
60 #include <linux/slab.h>
61 #include <linux/sched/isolation.h>
62 #include <linux/sched/clock.h>
63 #include <linux/vmalloc.h>
64 #include <linux/mm.h>
65 #include <linux/kasan.h>
66 #include <linux/context_tracking.h>
67 #include "../time/tick-internal.h"
68
69 #include "tree.h"
70 #include "rcu.h"
71
72 #ifdef MODULE_PARAM_PREFIX
73 #undef MODULE_PARAM_PREFIX
74 #endif
75 #define MODULE_PARAM_PREFIX "rcutree."
76
77 /* Data structures. */
78
79 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
80 .gpwrap = true,
81 #ifdef CONFIG_RCU_NOCB_CPU
82 .cblist.flags = SEGCBLIST_RCU_CORE,
83 #endif
84 };
85 static struct rcu_state rcu_state = {
86 .level = { &rcu_state.node[0] },
87 .gp_state = RCU_GP_IDLE,
88 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
89 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
90 .barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
91 .name = RCU_NAME,
92 .abbr = RCU_ABBR,
93 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
94 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
95 .ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
96 };
97
98 /* Dump rcu_node combining tree at boot to verify correct setup. */
99 static bool dump_tree;
100 module_param(dump_tree, bool, 0444);
101 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
102 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
103 #ifndef CONFIG_PREEMPT_RT
104 module_param(use_softirq, bool, 0444);
105 #endif
106 /* Control rcu_node-tree auto-balancing at boot time. */
107 static bool rcu_fanout_exact;
108 module_param(rcu_fanout_exact, bool, 0444);
109 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
110 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
111 module_param(rcu_fanout_leaf, int, 0444);
112 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
113 /* Number of rcu_nodes at specified level. */
114 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
115 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
116
117 /*
118 * The rcu_scheduler_active variable is initialized to the value
119 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
120 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
121 * RCU can assume that there is but one task, allowing RCU to (for example)
122 * optimize synchronize_rcu() to a simple barrier(). When this variable
123 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
124 * to detect real grace periods. This variable is also used to suppress
125 * boot-time false positives from lockdep-RCU error checking. Finally, it
126 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
127 * is fully initialized, including all of its kthreads having been spawned.
128 */
129 int rcu_scheduler_active __read_mostly;
130 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
131
132 /*
133 * The rcu_scheduler_fully_active variable transitions from zero to one
134 * during the early_initcall() processing, which is after the scheduler
135 * is capable of creating new tasks. So RCU processing (for example,
136 * creating tasks for RCU priority boosting) must be delayed until after
137 * rcu_scheduler_fully_active transitions from zero to one. We also
138 * currently delay invocation of any RCU callbacks until after this point.
139 *
140 * It might later prove better for people registering RCU callbacks during
141 * early boot to take responsibility for these callbacks, but one step at
142 * a time.
143 */
144 static int rcu_scheduler_fully_active __read_mostly;
145
146 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
147 unsigned long gps, unsigned long flags);
148 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
149 static void invoke_rcu_core(void);
150 static void rcu_report_exp_rdp(struct rcu_data *rdp);
151 static void sync_sched_exp_online_cleanup(int cpu);
152 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
153 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
154 static bool rcu_rdp_cpu_online(struct rcu_data *rdp);
155 static bool rcu_init_invoked(void);
156 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
157 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
158
159 /*
160 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
161 * real-time priority(enabling/disabling) is controlled by
162 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
163 */
164 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
165 module_param(kthread_prio, int, 0444);
166
167 /* Delay in jiffies for grace-period initialization delays, debug only. */
168
169 static int gp_preinit_delay;
170 module_param(gp_preinit_delay, int, 0444);
171 static int gp_init_delay;
172 module_param(gp_init_delay, int, 0444);
173 static int gp_cleanup_delay;
174 module_param(gp_cleanup_delay, int, 0444);
175
176 // Add delay to rcu_read_unlock() for strict grace periods.
177 static int rcu_unlock_delay;
178 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
179 module_param(rcu_unlock_delay, int, 0444);
180 #endif
181
182 /*
183 * This rcu parameter is runtime-read-only. It reflects
184 * a minimum allowed number of objects which can be cached
185 * per-CPU. Object size is equal to one page. This value
186 * can be changed at boot time.
187 */
188 static int rcu_min_cached_objs = 5;
189 module_param(rcu_min_cached_objs, int, 0444);
190
191 // A page shrinker can ask for pages to be freed to make them
192 // available for other parts of the system. This usually happens
193 // under low memory conditions, and in that case we should also
194 // defer page-cache filling for a short time period.
195 //
196 // The default value is 5 seconds, which is long enough to reduce
197 // interference with the shrinker while it asks other systems to
198 // drain their caches.
199 static int rcu_delay_page_cache_fill_msec = 5000;
200 module_param(rcu_delay_page_cache_fill_msec, int, 0444);
201
202 /* Retrieve RCU kthreads priority for rcutorture */
rcu_get_gp_kthreads_prio(void)203 int rcu_get_gp_kthreads_prio(void)
204 {
205 return kthread_prio;
206 }
207 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
208
209 /*
210 * Number of grace periods between delays, normalized by the duration of
211 * the delay. The longer the delay, the more the grace periods between
212 * each delay. The reason for this normalization is that it means that,
213 * for non-zero delays, the overall slowdown of grace periods is constant
214 * regardless of the duration of the delay. This arrangement balances
215 * the need for long delays to increase some race probabilities with the
216 * need for fast grace periods to increase other race probabilities.
217 */
218 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays for debugging. */
219
220 /*
221 * Return true if an RCU grace period is in progress. The READ_ONCE()s
222 * permit this function to be invoked without holding the root rcu_node
223 * structure's ->lock, but of course results can be subject to change.
224 */
rcu_gp_in_progress(void)225 static int rcu_gp_in_progress(void)
226 {
227 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
228 }
229
230 /*
231 * Return the number of callbacks queued on the specified CPU.
232 * Handles both the nocbs and normal cases.
233 */
rcu_get_n_cbs_cpu(int cpu)234 static long rcu_get_n_cbs_cpu(int cpu)
235 {
236 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
237
238 if (rcu_segcblist_is_enabled(&rdp->cblist))
239 return rcu_segcblist_n_cbs(&rdp->cblist);
240 return 0;
241 }
242
rcu_softirq_qs(void)243 void rcu_softirq_qs(void)
244 {
245 rcu_qs();
246 rcu_preempt_deferred_qs(current);
247 rcu_tasks_qs(current, false);
248 }
249
250 /*
251 * Reset the current CPU's ->dynticks counter to indicate that the
252 * newly onlined CPU is no longer in an extended quiescent state.
253 * This will either leave the counter unchanged, or increment it
254 * to the next non-quiescent value.
255 *
256 * The non-atomic test/increment sequence works because the upper bits
257 * of the ->dynticks counter are manipulated only by the corresponding CPU,
258 * or when the corresponding CPU is offline.
259 */
rcu_dynticks_eqs_online(void)260 static void rcu_dynticks_eqs_online(void)
261 {
262 if (ct_dynticks() & RCU_DYNTICKS_IDX)
263 return;
264 ct_state_inc(RCU_DYNTICKS_IDX);
265 }
266
267 /*
268 * Snapshot the ->dynticks counter with full ordering so as to allow
269 * stable comparison of this counter with past and future snapshots.
270 */
rcu_dynticks_snap(int cpu)271 static int rcu_dynticks_snap(int cpu)
272 {
273 smp_mb(); // Fundamental RCU ordering guarantee.
274 return ct_dynticks_cpu_acquire(cpu);
275 }
276
277 /*
278 * Return true if the snapshot returned from rcu_dynticks_snap()
279 * indicates that RCU is in an extended quiescent state.
280 */
rcu_dynticks_in_eqs(int snap)281 static bool rcu_dynticks_in_eqs(int snap)
282 {
283 return !(snap & RCU_DYNTICKS_IDX);
284 }
285
286 /*
287 * Return true if the CPU corresponding to the specified rcu_data
288 * structure has spent some time in an extended quiescent state since
289 * rcu_dynticks_snap() returned the specified snapshot.
290 */
rcu_dynticks_in_eqs_since(struct rcu_data * rdp,int snap)291 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
292 {
293 return snap != rcu_dynticks_snap(rdp->cpu);
294 }
295
296 /*
297 * Return true if the referenced integer is zero while the specified
298 * CPU remains within a single extended quiescent state.
299 */
rcu_dynticks_zero_in_eqs(int cpu,int * vp)300 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
301 {
302 int snap;
303
304 // If not quiescent, force back to earlier extended quiescent state.
305 snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX;
306 smp_rmb(); // Order ->dynticks and *vp reads.
307 if (READ_ONCE(*vp))
308 return false; // Non-zero, so report failure;
309 smp_rmb(); // Order *vp read and ->dynticks re-read.
310
311 // If still in the same extended quiescent state, we are good!
312 return snap == ct_dynticks_cpu(cpu);
313 }
314
315 /*
316 * Let the RCU core know that this CPU has gone through the scheduler,
317 * which is a quiescent state. This is called when the need for a
318 * quiescent state is urgent, so we burn an atomic operation and full
319 * memory barriers to let the RCU core know about it, regardless of what
320 * this CPU might (or might not) do in the near future.
321 *
322 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
323 *
324 * The caller must have disabled interrupts and must not be idle.
325 */
rcu_momentary_dyntick_idle(void)326 notrace void rcu_momentary_dyntick_idle(void)
327 {
328 int seq;
329
330 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
331 seq = ct_state_inc(2 * RCU_DYNTICKS_IDX);
332 /* It is illegal to call this from idle state. */
333 WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX));
334 rcu_preempt_deferred_qs(current);
335 }
336 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
337
338 /**
339 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
340 *
341 * If the current CPU is idle and running at a first-level (not nested)
342 * interrupt, or directly, from idle, return true.
343 *
344 * The caller must have at least disabled IRQs.
345 */
rcu_is_cpu_rrupt_from_idle(void)346 static int rcu_is_cpu_rrupt_from_idle(void)
347 {
348 long nesting;
349
350 /*
351 * Usually called from the tick; but also used from smp_function_call()
352 * for expedited grace periods. This latter can result in running from
353 * the idle task, instead of an actual IPI.
354 */
355 lockdep_assert_irqs_disabled();
356
357 /* Check for counter underflows */
358 RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0,
359 "RCU dynticks_nesting counter underflow!");
360 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0,
361 "RCU dynticks_nmi_nesting counter underflow/zero!");
362
363 /* Are we at first interrupt nesting level? */
364 nesting = ct_dynticks_nmi_nesting();
365 if (nesting > 1)
366 return false;
367
368 /*
369 * If we're not in an interrupt, we must be in the idle task!
370 */
371 WARN_ON_ONCE(!nesting && !is_idle_task(current));
372
373 /* Does CPU appear to be idle from an RCU standpoint? */
374 return ct_dynticks_nesting() == 0;
375 }
376
377 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
378 // Maximum callbacks per rcu_do_batch ...
379 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
380 static long blimit = DEFAULT_RCU_BLIMIT;
381 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
382 static long qhimark = DEFAULT_RCU_QHIMARK;
383 #define DEFAULT_RCU_QLOMARK 100 // Once only this many pending, use blimit.
384 static long qlowmark = DEFAULT_RCU_QLOMARK;
385 #define DEFAULT_RCU_QOVLD_MULT 2
386 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
387 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
388 static long qovld_calc = -1; // No pre-initialization lock acquisitions!
389
390 module_param(blimit, long, 0444);
391 module_param(qhimark, long, 0444);
392 module_param(qlowmark, long, 0444);
393 module_param(qovld, long, 0444);
394
395 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
396 static ulong jiffies_till_next_fqs = ULONG_MAX;
397 static bool rcu_kick_kthreads;
398 static int rcu_divisor = 7;
399 module_param(rcu_divisor, int, 0644);
400
401 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
402 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
403 module_param(rcu_resched_ns, long, 0644);
404
405 /*
406 * How long the grace period must be before we start recruiting
407 * quiescent-state help from rcu_note_context_switch().
408 */
409 static ulong jiffies_till_sched_qs = ULONG_MAX;
410 module_param(jiffies_till_sched_qs, ulong, 0444);
411 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
412 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
413
414 /*
415 * Make sure that we give the grace-period kthread time to detect any
416 * idle CPUs before taking active measures to force quiescent states.
417 * However, don't go below 100 milliseconds, adjusted upwards for really
418 * large systems.
419 */
adjust_jiffies_till_sched_qs(void)420 static void adjust_jiffies_till_sched_qs(void)
421 {
422 unsigned long j;
423
424 /* If jiffies_till_sched_qs was specified, respect the request. */
425 if (jiffies_till_sched_qs != ULONG_MAX) {
426 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
427 return;
428 }
429 /* Otherwise, set to third fqs scan, but bound below on large system. */
430 j = READ_ONCE(jiffies_till_first_fqs) +
431 2 * READ_ONCE(jiffies_till_next_fqs);
432 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
433 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
434 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
435 WRITE_ONCE(jiffies_to_sched_qs, j);
436 }
437
param_set_first_fqs_jiffies(const char * val,const struct kernel_param * kp)438 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
439 {
440 ulong j;
441 int ret = kstrtoul(val, 0, &j);
442
443 if (!ret) {
444 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
445 adjust_jiffies_till_sched_qs();
446 }
447 return ret;
448 }
449
param_set_next_fqs_jiffies(const char * val,const struct kernel_param * kp)450 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
451 {
452 ulong j;
453 int ret = kstrtoul(val, 0, &j);
454
455 if (!ret) {
456 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
457 adjust_jiffies_till_sched_qs();
458 }
459 return ret;
460 }
461
462 static const struct kernel_param_ops first_fqs_jiffies_ops = {
463 .set = param_set_first_fqs_jiffies,
464 .get = param_get_ulong,
465 };
466
467 static const struct kernel_param_ops next_fqs_jiffies_ops = {
468 .set = param_set_next_fqs_jiffies,
469 .get = param_get_ulong,
470 };
471
472 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
473 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
474 module_param(rcu_kick_kthreads, bool, 0644);
475
476 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
477 static int rcu_pending(int user);
478
479 /*
480 * Return the number of RCU GPs completed thus far for debug & stats.
481 */
rcu_get_gp_seq(void)482 unsigned long rcu_get_gp_seq(void)
483 {
484 return READ_ONCE(rcu_state.gp_seq);
485 }
486 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
487
488 /*
489 * Return the number of RCU expedited batches completed thus far for
490 * debug & stats. Odd numbers mean that a batch is in progress, even
491 * numbers mean idle. The value returned will thus be roughly double
492 * the cumulative batches since boot.
493 */
rcu_exp_batches_completed(void)494 unsigned long rcu_exp_batches_completed(void)
495 {
496 return rcu_state.expedited_sequence;
497 }
498 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
499
500 /*
501 * Return the root node of the rcu_state structure.
502 */
rcu_get_root(void)503 static struct rcu_node *rcu_get_root(void)
504 {
505 return &rcu_state.node[0];
506 }
507
508 /*
509 * Send along grace-period-related data for rcutorture diagnostics.
510 */
rcutorture_get_gp_data(enum rcutorture_type test_type,int * flags,unsigned long * gp_seq)511 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
512 unsigned long *gp_seq)
513 {
514 switch (test_type) {
515 case RCU_FLAVOR:
516 *flags = READ_ONCE(rcu_state.gp_flags);
517 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
518 break;
519 default:
520 break;
521 }
522 }
523 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
524
525 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
526 /*
527 * An empty function that will trigger a reschedule on
528 * IRQ tail once IRQs get re-enabled on userspace/guest resume.
529 */
late_wakeup_func(struct irq_work * work)530 static void late_wakeup_func(struct irq_work *work)
531 {
532 }
533
534 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
535 IRQ_WORK_INIT(late_wakeup_func);
536
537 /*
538 * If either:
539 *
540 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
541 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
542 *
543 * In these cases the late RCU wake ups aren't supported in the resched loops and our
544 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
545 * get re-enabled again.
546 */
rcu_irq_work_resched(void)547 noinstr void rcu_irq_work_resched(void)
548 {
549 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
550
551 if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
552 return;
553
554 if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
555 return;
556
557 instrumentation_begin();
558 if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
559 irq_work_queue(this_cpu_ptr(&late_wakeup_work));
560 }
561 instrumentation_end();
562 }
563 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */
564
565 #ifdef CONFIG_PROVE_RCU
566 /**
567 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
568 */
rcu_irq_exit_check_preempt(void)569 void rcu_irq_exit_check_preempt(void)
570 {
571 lockdep_assert_irqs_disabled();
572
573 RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0,
574 "RCU dynticks_nesting counter underflow/zero!");
575 RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() !=
576 DYNTICK_IRQ_NONIDLE,
577 "Bad RCU dynticks_nmi_nesting counter\n");
578 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
579 "RCU in extended quiescent state!");
580 }
581 #endif /* #ifdef CONFIG_PROVE_RCU */
582
583 #ifdef CONFIG_NO_HZ_FULL
584 /**
585 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
586 *
587 * The scheduler tick is not normally enabled when CPUs enter the kernel
588 * from nohz_full userspace execution. After all, nohz_full userspace
589 * execution is an RCU quiescent state and the time executing in the kernel
590 * is quite short. Except of course when it isn't. And it is not hard to
591 * cause a large system to spend tens of seconds or even minutes looping
592 * in the kernel, which can cause a number of problems, include RCU CPU
593 * stall warnings.
594 *
595 * Therefore, if a nohz_full CPU fails to report a quiescent state
596 * in a timely manner, the RCU grace-period kthread sets that CPU's
597 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
598 * exception will invoke this function, which will turn on the scheduler
599 * tick, which will enable RCU to detect that CPU's quiescent states,
600 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
601 * The tick will be disabled once a quiescent state is reported for
602 * this CPU.
603 *
604 * Of course, in carefully tuned systems, there might never be an
605 * interrupt or exception. In that case, the RCU grace-period kthread
606 * will eventually cause one to happen. However, in less carefully
607 * controlled environments, this function allows RCU to get what it
608 * needs without creating otherwise useless interruptions.
609 */
__rcu_irq_enter_check_tick(void)610 void __rcu_irq_enter_check_tick(void)
611 {
612 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
613
614 // If we're here from NMI there's nothing to do.
615 if (in_nmi())
616 return;
617
618 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
619 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
620
621 if (!tick_nohz_full_cpu(rdp->cpu) ||
622 !READ_ONCE(rdp->rcu_urgent_qs) ||
623 READ_ONCE(rdp->rcu_forced_tick)) {
624 // RCU doesn't need nohz_full help from this CPU, or it is
625 // already getting that help.
626 return;
627 }
628
629 // We get here only when not in an extended quiescent state and
630 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is
631 // already watching and (2) The fact that we are in an interrupt
632 // handler and that the rcu_node lock is an irq-disabled lock
633 // prevents self-deadlock. So we can safely recheck under the lock.
634 // Note that the nohz_full state currently cannot change.
635 raw_spin_lock_rcu_node(rdp->mynode);
636 if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) {
637 // A nohz_full CPU is in the kernel and RCU needs a
638 // quiescent state. Turn on the tick!
639 WRITE_ONCE(rdp->rcu_forced_tick, true);
640 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
641 }
642 raw_spin_unlock_rcu_node(rdp->mynode);
643 }
644 NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick);
645 #endif /* CONFIG_NO_HZ_FULL */
646
647 /*
648 * Check to see if any future non-offloaded RCU-related work will need
649 * to be done by the current CPU, even if none need be done immediately,
650 * returning 1 if so. This function is part of the RCU implementation;
651 * it is -not- an exported member of the RCU API. This is used by
652 * the idle-entry code to figure out whether it is safe to disable the
653 * scheduler-clock interrupt.
654 *
655 * Just check whether or not this CPU has non-offloaded RCU callbacks
656 * queued.
657 */
rcu_needs_cpu(void)658 int rcu_needs_cpu(void)
659 {
660 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
661 !rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
662 }
663
664 /*
665 * If any sort of urgency was applied to the current CPU (for example,
666 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
667 * to get to a quiescent state, disable it.
668 */
rcu_disable_urgency_upon_qs(struct rcu_data * rdp)669 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
670 {
671 raw_lockdep_assert_held_rcu_node(rdp->mynode);
672 WRITE_ONCE(rdp->rcu_urgent_qs, false);
673 WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
674 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
675 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
676 WRITE_ONCE(rdp->rcu_forced_tick, false);
677 }
678 }
679
680 /**
681 * rcu_is_watching - RCU read-side critical sections permitted on current CPU?
682 *
683 * Return @true if RCU is watching the running CPU and @false otherwise.
684 * An @true return means that this CPU can safely enter RCU read-side
685 * critical sections.
686 *
687 * Although calls to rcu_is_watching() from most parts of the kernel
688 * will return @true, there are important exceptions. For example, if the
689 * current CPU is deep within its idle loop, in kernel entry/exit code,
690 * or offline, rcu_is_watching() will return @false.
691 *
692 * Make notrace because it can be called by the internal functions of
693 * ftrace, and making this notrace removes unnecessary recursion calls.
694 */
rcu_is_watching(void)695 notrace bool rcu_is_watching(void)
696 {
697 bool ret;
698
699 preempt_disable_notrace();
700 ret = !rcu_dynticks_curr_cpu_in_eqs();
701 preempt_enable_notrace();
702 return ret;
703 }
704 EXPORT_SYMBOL_GPL(rcu_is_watching);
705
706 /*
707 * If a holdout task is actually running, request an urgent quiescent
708 * state from its CPU. This is unsynchronized, so migrations can cause
709 * the request to go to the wrong CPU. Which is OK, all that will happen
710 * is that the CPU's next context switch will be a bit slower and next
711 * time around this task will generate another request.
712 */
rcu_request_urgent_qs_task(struct task_struct * t)713 void rcu_request_urgent_qs_task(struct task_struct *t)
714 {
715 int cpu;
716
717 barrier();
718 cpu = task_cpu(t);
719 if (!task_curr(t))
720 return; /* This task is not running on that CPU. */
721 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
722 }
723
724 /*
725 * When trying to report a quiescent state on behalf of some other CPU,
726 * it is our responsibility to check for and handle potential overflow
727 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
728 * After all, the CPU might be in deep idle state, and thus executing no
729 * code whatsoever.
730 */
rcu_gpnum_ovf(struct rcu_node * rnp,struct rcu_data * rdp)731 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
732 {
733 raw_lockdep_assert_held_rcu_node(rnp);
734 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
735 rnp->gp_seq))
736 WRITE_ONCE(rdp->gpwrap, true);
737 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
738 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
739 }
740
741 /*
742 * Snapshot the specified CPU's dynticks counter so that we can later
743 * credit them with an implicit quiescent state. Return 1 if this CPU
744 * is in dynticks idle mode, which is an extended quiescent state.
745 */
dyntick_save_progress_counter(struct rcu_data * rdp)746 static int dyntick_save_progress_counter(struct rcu_data *rdp)
747 {
748 rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu);
749 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
750 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
751 rcu_gpnum_ovf(rdp->mynode, rdp);
752 return 1;
753 }
754 return 0;
755 }
756
757 #ifndef arch_irq_stat_cpu
758 #define arch_irq_stat_cpu(cpu) 0
759 #endif
760
761 /*
762 * Returns positive if the specified CPU has passed through a quiescent state
763 * by virtue of being in or having passed through an dynticks idle state since
764 * the last call to dyntick_save_progress_counter() for this same CPU, or by
765 * virtue of having been offline.
766 *
767 * Returns negative if the specified CPU needs a force resched.
768 *
769 * Returns zero otherwise.
770 */
rcu_implicit_dynticks_qs(struct rcu_data * rdp)771 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
772 {
773 unsigned long jtsq;
774 int ret = 0;
775 struct rcu_node *rnp = rdp->mynode;
776
777 /*
778 * If the CPU passed through or entered a dynticks idle phase with
779 * no active irq/NMI handlers, then we can safely pretend that the CPU
780 * already acknowledged the request to pass through a quiescent
781 * state. Either way, that CPU cannot possibly be in an RCU
782 * read-side critical section that started before the beginning
783 * of the current RCU grace period.
784 */
785 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
786 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
787 rcu_gpnum_ovf(rnp, rdp);
788 return 1;
789 }
790
791 /*
792 * Complain if a CPU that is considered to be offline from RCU's
793 * perspective has not yet reported a quiescent state. After all,
794 * the offline CPU should have reported a quiescent state during
795 * the CPU-offline process, or, failing that, by rcu_gp_init()
796 * if it ran concurrently with either the CPU going offline or the
797 * last task on a leaf rcu_node structure exiting its RCU read-side
798 * critical section while all CPUs corresponding to that structure
799 * are offline. This added warning detects bugs in any of these
800 * code paths.
801 *
802 * The rcu_node structure's ->lock is held here, which excludes
803 * the relevant portions the CPU-hotplug code, the grace-period
804 * initialization code, and the rcu_read_unlock() code paths.
805 *
806 * For more detail, please refer to the "Hotplug CPU" section
807 * of RCU's Requirements documentation.
808 */
809 if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
810 struct rcu_node *rnp1;
811
812 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
813 __func__, rnp->grplo, rnp->grphi, rnp->level,
814 (long)rnp->gp_seq, (long)rnp->completedqs);
815 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
816 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
817 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
818 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
819 __func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
820 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
821 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
822 return 1; /* Break things loose after complaining. */
823 }
824
825 /*
826 * A CPU running for an extended time within the kernel can
827 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
828 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
829 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
830 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
831 * variable are safe because the assignments are repeated if this
832 * CPU failed to pass through a quiescent state. This code
833 * also checks .jiffies_resched in case jiffies_to_sched_qs
834 * is set way high.
835 */
836 jtsq = READ_ONCE(jiffies_to_sched_qs);
837 if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
838 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
839 time_after(jiffies, rcu_state.jiffies_resched) ||
840 rcu_state.cbovld)) {
841 WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
842 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
843 smp_store_release(&rdp->rcu_urgent_qs, true);
844 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
845 WRITE_ONCE(rdp->rcu_urgent_qs, true);
846 }
847
848 /*
849 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
850 * The above code handles this, but only for straight cond_resched().
851 * And some in-kernel loops check need_resched() before calling
852 * cond_resched(), which defeats the above code for CPUs that are
853 * running in-kernel with scheduling-clock interrupts disabled.
854 * So hit them over the head with the resched_cpu() hammer!
855 */
856 if (tick_nohz_full_cpu(rdp->cpu) &&
857 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
858 rcu_state.cbovld)) {
859 WRITE_ONCE(rdp->rcu_urgent_qs, true);
860 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
861 ret = -1;
862 }
863
864 /*
865 * If more than halfway to RCU CPU stall-warning time, invoke
866 * resched_cpu() more frequently to try to loosen things up a bit.
867 * Also check to see if the CPU is getting hammered with interrupts,
868 * but only once per grace period, just to keep the IPIs down to
869 * a dull roar.
870 */
871 if (time_after(jiffies, rcu_state.jiffies_resched)) {
872 if (time_after(jiffies,
873 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
874 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
875 ret = -1;
876 }
877 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
878 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
879 (rnp->ffmask & rdp->grpmask)) {
880 rdp->rcu_iw_pending = true;
881 rdp->rcu_iw_gp_seq = rnp->gp_seq;
882 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
883 }
884
885 if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) {
886 int cpu = rdp->cpu;
887 struct rcu_snap_record *rsrp;
888 struct kernel_cpustat *kcsp;
889
890 kcsp = &kcpustat_cpu(cpu);
891
892 rsrp = &rdp->snap_record;
893 rsrp->cputime_irq = kcpustat_field(kcsp, CPUTIME_IRQ, cpu);
894 rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu);
895 rsrp->cputime_system = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu);
896 rsrp->nr_hardirqs = kstat_cpu_irqs_sum(cpu) + arch_irq_stat_cpu(cpu);
897 rsrp->nr_softirqs = kstat_cpu_softirqs_sum(cpu);
898 rsrp->nr_csw = nr_context_switches_cpu(cpu);
899 rsrp->jiffies = jiffies;
900 rsrp->gp_seq = rdp->gp_seq;
901 }
902 }
903
904 return ret;
905 }
906
907 /* Trace-event wrapper function for trace_rcu_future_grace_period. */
trace_rcu_this_gp(struct rcu_node * rnp,struct rcu_data * rdp,unsigned long gp_seq_req,const char * s)908 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
909 unsigned long gp_seq_req, const char *s)
910 {
911 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
912 gp_seq_req, rnp->level,
913 rnp->grplo, rnp->grphi, s);
914 }
915
916 /*
917 * rcu_start_this_gp - Request the start of a particular grace period
918 * @rnp_start: The leaf node of the CPU from which to start.
919 * @rdp: The rcu_data corresponding to the CPU from which to start.
920 * @gp_seq_req: The gp_seq of the grace period to start.
921 *
922 * Start the specified grace period, as needed to handle newly arrived
923 * callbacks. The required future grace periods are recorded in each
924 * rcu_node structure's ->gp_seq_needed field. Returns true if there
925 * is reason to awaken the grace-period kthread.
926 *
927 * The caller must hold the specified rcu_node structure's ->lock, which
928 * is why the caller is responsible for waking the grace-period kthread.
929 *
930 * Returns true if the GP thread needs to be awakened else false.
931 */
rcu_start_this_gp(struct rcu_node * rnp_start,struct rcu_data * rdp,unsigned long gp_seq_req)932 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
933 unsigned long gp_seq_req)
934 {
935 bool ret = false;
936 struct rcu_node *rnp;
937
938 /*
939 * Use funnel locking to either acquire the root rcu_node
940 * structure's lock or bail out if the need for this grace period
941 * has already been recorded -- or if that grace period has in
942 * fact already started. If there is already a grace period in
943 * progress in a non-leaf node, no recording is needed because the
944 * end of the grace period will scan the leaf rcu_node structures.
945 * Note that rnp_start->lock must not be released.
946 */
947 raw_lockdep_assert_held_rcu_node(rnp_start);
948 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
949 for (rnp = rnp_start; 1; rnp = rnp->parent) {
950 if (rnp != rnp_start)
951 raw_spin_lock_rcu_node(rnp);
952 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
953 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
954 (rnp != rnp_start &&
955 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
956 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
957 TPS("Prestarted"));
958 goto unlock_out;
959 }
960 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
961 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
962 /*
963 * We just marked the leaf or internal node, and a
964 * grace period is in progress, which means that
965 * rcu_gp_cleanup() will see the marking. Bail to
966 * reduce contention.
967 */
968 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
969 TPS("Startedleaf"));
970 goto unlock_out;
971 }
972 if (rnp != rnp_start && rnp->parent != NULL)
973 raw_spin_unlock_rcu_node(rnp);
974 if (!rnp->parent)
975 break; /* At root, and perhaps also leaf. */
976 }
977
978 /* If GP already in progress, just leave, otherwise start one. */
979 if (rcu_gp_in_progress()) {
980 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
981 goto unlock_out;
982 }
983 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
984 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
985 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
986 if (!READ_ONCE(rcu_state.gp_kthread)) {
987 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
988 goto unlock_out;
989 }
990 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
991 ret = true; /* Caller must wake GP kthread. */
992 unlock_out:
993 /* Push furthest requested GP to leaf node and rcu_data structure. */
994 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
995 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
996 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
997 }
998 if (rnp != rnp_start)
999 raw_spin_unlock_rcu_node(rnp);
1000 return ret;
1001 }
1002
1003 /*
1004 * Clean up any old requests for the just-ended grace period. Also return
1005 * whether any additional grace periods have been requested.
1006 */
rcu_future_gp_cleanup(struct rcu_node * rnp)1007 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1008 {
1009 bool needmore;
1010 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1011
1012 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1013 if (!needmore)
1014 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1015 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1016 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1017 return needmore;
1018 }
1019
swake_up_one_online_ipi(void * arg)1020 static void swake_up_one_online_ipi(void *arg)
1021 {
1022 struct swait_queue_head *wqh = arg;
1023
1024 swake_up_one(wqh);
1025 }
1026
swake_up_one_online(struct swait_queue_head * wqh)1027 static void swake_up_one_online(struct swait_queue_head *wqh)
1028 {
1029 int cpu = get_cpu();
1030
1031 /*
1032 * If called from rcutree_report_cpu_starting(), wake up
1033 * is dangerous that late in the CPU-down hotplug process. The
1034 * scheduler might queue an ignored hrtimer. Defer the wake up
1035 * to an online CPU instead.
1036 */
1037 if (unlikely(cpu_is_offline(cpu))) {
1038 int target;
1039
1040 target = cpumask_any_and(housekeeping_cpumask(HK_TYPE_RCU),
1041 cpu_online_mask);
1042
1043 smp_call_function_single(target, swake_up_one_online_ipi,
1044 wqh, 0);
1045 put_cpu();
1046 } else {
1047 put_cpu();
1048 swake_up_one(wqh);
1049 }
1050 }
1051
1052 /*
1053 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an
1054 * interrupt or softirq handler, in which case we just might immediately
1055 * sleep upon return, resulting in a grace-period hang), and don't bother
1056 * awakening when there is nothing for the grace-period kthread to do
1057 * (as in several CPUs raced to awaken, we lost), and finally don't try
1058 * to awaken a kthread that has not yet been created. If all those checks
1059 * are passed, track some debug information and awaken.
1060 *
1061 * So why do the self-wakeup when in an interrupt or softirq handler
1062 * in the grace-period kthread's context? Because the kthread might have
1063 * been interrupted just as it was going to sleep, and just after the final
1064 * pre-sleep check of the awaken condition. In this case, a wakeup really
1065 * is required, and is therefore supplied.
1066 */
rcu_gp_kthread_wake(void)1067 static void rcu_gp_kthread_wake(void)
1068 {
1069 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1070
1071 if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
1072 !READ_ONCE(rcu_state.gp_flags) || !t)
1073 return;
1074 WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1075 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1076 swake_up_one_online(&rcu_state.gp_wq);
1077 }
1078
1079 /*
1080 * If there is room, assign a ->gp_seq number to any callbacks on this
1081 * CPU that have not already been assigned. Also accelerate any callbacks
1082 * that were previously assigned a ->gp_seq number that has since proven
1083 * to be too conservative, which can happen if callbacks get assigned a
1084 * ->gp_seq number while RCU is idle, but with reference to a non-root
1085 * rcu_node structure. This function is idempotent, so it does not hurt
1086 * to call it repeatedly. Returns an flag saying that we should awaken
1087 * the RCU grace-period kthread.
1088 *
1089 * The caller must hold rnp->lock with interrupts disabled.
1090 */
rcu_accelerate_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1091 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1092 {
1093 unsigned long gp_seq_req;
1094 bool ret = false;
1095
1096 rcu_lockdep_assert_cblist_protected(rdp);
1097 raw_lockdep_assert_held_rcu_node(rnp);
1098
1099 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1100 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1101 return false;
1102
1103 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1104
1105 /*
1106 * Callbacks are often registered with incomplete grace-period
1107 * information. Something about the fact that getting exact
1108 * information requires acquiring a global lock... RCU therefore
1109 * makes a conservative estimate of the grace period number at which
1110 * a given callback will become ready to invoke. The following
1111 * code checks this estimate and improves it when possible, thus
1112 * accelerating callback invocation to an earlier grace-period
1113 * number.
1114 */
1115 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1116 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1117 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1118
1119 /* Trace depending on how much we were able to accelerate. */
1120 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1121 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1122 else
1123 trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1124
1125 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1126
1127 return ret;
1128 }
1129
1130 /*
1131 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1132 * rcu_node structure's ->lock be held. It consults the cached value
1133 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1134 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1135 * while holding the leaf rcu_node structure's ->lock.
1136 */
rcu_accelerate_cbs_unlocked(struct rcu_node * rnp,struct rcu_data * rdp)1137 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1138 struct rcu_data *rdp)
1139 {
1140 unsigned long c;
1141 bool needwake;
1142
1143 rcu_lockdep_assert_cblist_protected(rdp);
1144 c = rcu_seq_snap(&rcu_state.gp_seq);
1145 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1146 /* Old request still live, so mark recent callbacks. */
1147 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1148 return;
1149 }
1150 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1151 needwake = rcu_accelerate_cbs(rnp, rdp);
1152 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1153 if (needwake)
1154 rcu_gp_kthread_wake();
1155 }
1156
1157 /*
1158 * Move any callbacks whose grace period has completed to the
1159 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1160 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1161 * sublist. This function is idempotent, so it does not hurt to
1162 * invoke it repeatedly. As long as it is not invoked -too- often...
1163 * Returns true if the RCU grace-period kthread needs to be awakened.
1164 *
1165 * The caller must hold rnp->lock with interrupts disabled.
1166 */
rcu_advance_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1167 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1168 {
1169 rcu_lockdep_assert_cblist_protected(rdp);
1170 raw_lockdep_assert_held_rcu_node(rnp);
1171
1172 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1173 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1174 return false;
1175
1176 /*
1177 * Find all callbacks whose ->gp_seq numbers indicate that they
1178 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1179 */
1180 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1181
1182 /* Classify any remaining callbacks. */
1183 return rcu_accelerate_cbs(rnp, rdp);
1184 }
1185
1186 /*
1187 * Move and classify callbacks, but only if doing so won't require
1188 * that the RCU grace-period kthread be awakened.
1189 */
rcu_advance_cbs_nowake(struct rcu_node * rnp,struct rcu_data * rdp)1190 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1191 struct rcu_data *rdp)
1192 {
1193 rcu_lockdep_assert_cblist_protected(rdp);
1194 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1195 return;
1196 // The grace period cannot end while we hold the rcu_node lock.
1197 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1198 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1199 raw_spin_unlock_rcu_node(rnp);
1200 }
1201
1202 /*
1203 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1204 * quiescent state. This is intended to be invoked when the CPU notices
1205 * a new grace period.
1206 */
rcu_strict_gp_check_qs(void)1207 static void rcu_strict_gp_check_qs(void)
1208 {
1209 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1210 rcu_read_lock();
1211 rcu_read_unlock();
1212 }
1213 }
1214
1215 /*
1216 * Update CPU-local rcu_data state to record the beginnings and ends of
1217 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1218 * structure corresponding to the current CPU, and must have irqs disabled.
1219 * Returns true if the grace-period kthread needs to be awakened.
1220 */
__note_gp_changes(struct rcu_node * rnp,struct rcu_data * rdp)1221 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1222 {
1223 bool ret = false;
1224 bool need_qs;
1225 const bool offloaded = rcu_rdp_is_offloaded(rdp);
1226
1227 raw_lockdep_assert_held_rcu_node(rnp);
1228
1229 if (rdp->gp_seq == rnp->gp_seq)
1230 return false; /* Nothing to do. */
1231
1232 /* Handle the ends of any preceding grace periods first. */
1233 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1234 unlikely(READ_ONCE(rdp->gpwrap))) {
1235 if (!offloaded)
1236 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1237 rdp->core_needs_qs = false;
1238 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1239 } else {
1240 if (!offloaded)
1241 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1242 if (rdp->core_needs_qs)
1243 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1244 }
1245
1246 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1247 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1248 unlikely(READ_ONCE(rdp->gpwrap))) {
1249 /*
1250 * If the current grace period is waiting for this CPU,
1251 * set up to detect a quiescent state, otherwise don't
1252 * go looking for one.
1253 */
1254 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1255 need_qs = !!(rnp->qsmask & rdp->grpmask);
1256 rdp->cpu_no_qs.b.norm = need_qs;
1257 rdp->core_needs_qs = need_qs;
1258 zero_cpu_stall_ticks(rdp);
1259 }
1260 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
1261 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1262 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1263 if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap))
1264 WRITE_ONCE(rdp->last_sched_clock, jiffies);
1265 WRITE_ONCE(rdp->gpwrap, false);
1266 rcu_gpnum_ovf(rnp, rdp);
1267 return ret;
1268 }
1269
note_gp_changes(struct rcu_data * rdp)1270 static void note_gp_changes(struct rcu_data *rdp)
1271 {
1272 unsigned long flags;
1273 bool needwake;
1274 struct rcu_node *rnp;
1275
1276 local_irq_save(flags);
1277 rnp = rdp->mynode;
1278 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1279 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1280 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1281 local_irq_restore(flags);
1282 return;
1283 }
1284 needwake = __note_gp_changes(rnp, rdp);
1285 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1286 rcu_strict_gp_check_qs();
1287 if (needwake)
1288 rcu_gp_kthread_wake();
1289 }
1290
1291 static atomic_t *rcu_gp_slow_suppress;
1292
1293 /* Register a counter to suppress debugging grace-period delays. */
rcu_gp_slow_register(atomic_t * rgssp)1294 void rcu_gp_slow_register(atomic_t *rgssp)
1295 {
1296 WARN_ON_ONCE(rcu_gp_slow_suppress);
1297
1298 WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
1299 }
1300 EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
1301
1302 /* Unregister a counter, with NULL for not caring which. */
rcu_gp_slow_unregister(atomic_t * rgssp)1303 void rcu_gp_slow_unregister(atomic_t *rgssp)
1304 {
1305 WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress && rcu_gp_slow_suppress != NULL);
1306
1307 WRITE_ONCE(rcu_gp_slow_suppress, NULL);
1308 }
1309 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
1310
rcu_gp_slow_is_suppressed(void)1311 static bool rcu_gp_slow_is_suppressed(void)
1312 {
1313 atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
1314
1315 return rgssp && atomic_read(rgssp);
1316 }
1317
rcu_gp_slow(int delay)1318 static void rcu_gp_slow(int delay)
1319 {
1320 if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
1321 !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1322 schedule_timeout_idle(delay);
1323 }
1324
1325 static unsigned long sleep_duration;
1326
1327 /* Allow rcutorture to stall the grace-period kthread. */
rcu_gp_set_torture_wait(int duration)1328 void rcu_gp_set_torture_wait(int duration)
1329 {
1330 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1331 WRITE_ONCE(sleep_duration, duration);
1332 }
1333 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1334
1335 /* Actually implement the aforementioned wait. */
rcu_gp_torture_wait(void)1336 static void rcu_gp_torture_wait(void)
1337 {
1338 unsigned long duration;
1339
1340 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1341 return;
1342 duration = xchg(&sleep_duration, 0UL);
1343 if (duration > 0) {
1344 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1345 schedule_timeout_idle(duration);
1346 pr_alert("%s: Wait complete\n", __func__);
1347 }
1348 }
1349
1350 /*
1351 * Handler for on_each_cpu() to invoke the target CPU's RCU core
1352 * processing.
1353 */
rcu_strict_gp_boundary(void * unused)1354 static void rcu_strict_gp_boundary(void *unused)
1355 {
1356 invoke_rcu_core();
1357 }
1358
1359 // Make the polled API aware of the beginning of a grace period.
rcu_poll_gp_seq_start(unsigned long * snap)1360 static void rcu_poll_gp_seq_start(unsigned long *snap)
1361 {
1362 struct rcu_node *rnp = rcu_get_root();
1363
1364 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1365 raw_lockdep_assert_held_rcu_node(rnp);
1366
1367 // If RCU was idle, note beginning of GP.
1368 if (!rcu_seq_state(rcu_state.gp_seq_polled))
1369 rcu_seq_start(&rcu_state.gp_seq_polled);
1370
1371 // Either way, record current state.
1372 *snap = rcu_state.gp_seq_polled;
1373 }
1374
1375 // Make the polled API aware of the end of a grace period.
rcu_poll_gp_seq_end(unsigned long * snap)1376 static void rcu_poll_gp_seq_end(unsigned long *snap)
1377 {
1378 struct rcu_node *rnp = rcu_get_root();
1379
1380 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1381 raw_lockdep_assert_held_rcu_node(rnp);
1382
1383 // If the previously noted GP is still in effect, record the
1384 // end of that GP. Either way, zero counter to avoid counter-wrap
1385 // problems.
1386 if (*snap && *snap == rcu_state.gp_seq_polled) {
1387 rcu_seq_end(&rcu_state.gp_seq_polled);
1388 rcu_state.gp_seq_polled_snap = 0;
1389 rcu_state.gp_seq_polled_exp_snap = 0;
1390 } else {
1391 *snap = 0;
1392 }
1393 }
1394
1395 // Make the polled API aware of the beginning of a grace period, but
1396 // where caller does not hold the root rcu_node structure's lock.
rcu_poll_gp_seq_start_unlocked(unsigned long * snap)1397 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
1398 {
1399 unsigned long flags;
1400 struct rcu_node *rnp = rcu_get_root();
1401
1402 if (rcu_init_invoked()) {
1403 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1404 lockdep_assert_irqs_enabled();
1405 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1406 }
1407 rcu_poll_gp_seq_start(snap);
1408 if (rcu_init_invoked())
1409 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1410 }
1411
1412 // Make the polled API aware of the end of a grace period, but where
1413 // caller does not hold the root rcu_node structure's lock.
rcu_poll_gp_seq_end_unlocked(unsigned long * snap)1414 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
1415 {
1416 unsigned long flags;
1417 struct rcu_node *rnp = rcu_get_root();
1418
1419 if (rcu_init_invoked()) {
1420 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1421 lockdep_assert_irqs_enabled();
1422 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1423 }
1424 rcu_poll_gp_seq_end(snap);
1425 if (rcu_init_invoked())
1426 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1427 }
1428
1429 /*
1430 * Initialize a new grace period. Return false if no grace period required.
1431 */
rcu_gp_init(void)1432 static noinline_for_stack bool rcu_gp_init(void)
1433 {
1434 unsigned long flags;
1435 unsigned long oldmask;
1436 unsigned long mask;
1437 struct rcu_data *rdp;
1438 struct rcu_node *rnp = rcu_get_root();
1439
1440 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1441 raw_spin_lock_irq_rcu_node(rnp);
1442 if (!READ_ONCE(rcu_state.gp_flags)) {
1443 /* Spurious wakeup, tell caller to go back to sleep. */
1444 raw_spin_unlock_irq_rcu_node(rnp);
1445 return false;
1446 }
1447 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1448
1449 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1450 /*
1451 * Grace period already in progress, don't start another.
1452 * Not supposed to be able to happen.
1453 */
1454 raw_spin_unlock_irq_rcu_node(rnp);
1455 return false;
1456 }
1457
1458 /* Advance to a new grace period and initialize state. */
1459 record_gp_stall_check_time();
1460 /* Record GP times before starting GP, hence rcu_seq_start(). */
1461 rcu_seq_start(&rcu_state.gp_seq);
1462 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1463 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1464 rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap);
1465 raw_spin_unlock_irq_rcu_node(rnp);
1466
1467 /*
1468 * Apply per-leaf buffered online and offline operations to
1469 * the rcu_node tree. Note that this new grace period need not
1470 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1471 * offlining path, when combined with checks in this function,
1472 * will handle CPUs that are currently going offline or that will
1473 * go offline later. Please also refer to "Hotplug CPU" section
1474 * of RCU's Requirements documentation.
1475 */
1476 WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1477 /* Exclude CPU hotplug operations. */
1478 rcu_for_each_leaf_node(rnp) {
1479 local_irq_save(flags);
1480 arch_spin_lock(&rcu_state.ofl_lock);
1481 raw_spin_lock_rcu_node(rnp);
1482 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1483 !rnp->wait_blkd_tasks) {
1484 /* Nothing to do on this leaf rcu_node structure. */
1485 raw_spin_unlock_rcu_node(rnp);
1486 arch_spin_unlock(&rcu_state.ofl_lock);
1487 local_irq_restore(flags);
1488 continue;
1489 }
1490
1491 /* Record old state, apply changes to ->qsmaskinit field. */
1492 oldmask = rnp->qsmaskinit;
1493 rnp->qsmaskinit = rnp->qsmaskinitnext;
1494
1495 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1496 if (!oldmask != !rnp->qsmaskinit) {
1497 if (!oldmask) { /* First online CPU for rcu_node. */
1498 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1499 rcu_init_new_rnp(rnp);
1500 } else if (rcu_preempt_has_tasks(rnp)) {
1501 rnp->wait_blkd_tasks = true; /* blocked tasks */
1502 } else { /* Last offline CPU and can propagate. */
1503 rcu_cleanup_dead_rnp(rnp);
1504 }
1505 }
1506
1507 /*
1508 * If all waited-on tasks from prior grace period are
1509 * done, and if all this rcu_node structure's CPUs are
1510 * still offline, propagate up the rcu_node tree and
1511 * clear ->wait_blkd_tasks. Otherwise, if one of this
1512 * rcu_node structure's CPUs has since come back online,
1513 * simply clear ->wait_blkd_tasks.
1514 */
1515 if (rnp->wait_blkd_tasks &&
1516 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1517 rnp->wait_blkd_tasks = false;
1518 if (!rnp->qsmaskinit)
1519 rcu_cleanup_dead_rnp(rnp);
1520 }
1521
1522 raw_spin_unlock_rcu_node(rnp);
1523 arch_spin_unlock(&rcu_state.ofl_lock);
1524 local_irq_restore(flags);
1525 }
1526 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1527
1528 /*
1529 * Set the quiescent-state-needed bits in all the rcu_node
1530 * structures for all currently online CPUs in breadth-first
1531 * order, starting from the root rcu_node structure, relying on the
1532 * layout of the tree within the rcu_state.node[] array. Note that
1533 * other CPUs will access only the leaves of the hierarchy, thus
1534 * seeing that no grace period is in progress, at least until the
1535 * corresponding leaf node has been initialized.
1536 *
1537 * The grace period cannot complete until the initialization
1538 * process finishes, because this kthread handles both.
1539 */
1540 WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1541 rcu_for_each_node_breadth_first(rnp) {
1542 rcu_gp_slow(gp_init_delay);
1543 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1544 rdp = this_cpu_ptr(&rcu_data);
1545 rcu_preempt_check_blocked_tasks(rnp);
1546 rnp->qsmask = rnp->qsmaskinit;
1547 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1548 if (rnp == rdp->mynode)
1549 (void)__note_gp_changes(rnp, rdp);
1550 rcu_preempt_boost_start_gp(rnp);
1551 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1552 rnp->level, rnp->grplo,
1553 rnp->grphi, rnp->qsmask);
1554 /* Quiescent states for tasks on any now-offline CPUs. */
1555 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1556 rnp->rcu_gp_init_mask = mask;
1557 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1558 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1559 else
1560 raw_spin_unlock_irq_rcu_node(rnp);
1561 cond_resched_tasks_rcu_qs();
1562 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1563 }
1564
1565 // If strict, make all CPUs aware of new grace period.
1566 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1567 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1568
1569 return true;
1570 }
1571
1572 /*
1573 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1574 * time.
1575 */
rcu_gp_fqs_check_wake(int * gfp)1576 static bool rcu_gp_fqs_check_wake(int *gfp)
1577 {
1578 struct rcu_node *rnp = rcu_get_root();
1579
1580 // If under overload conditions, force an immediate FQS scan.
1581 if (*gfp & RCU_GP_FLAG_OVLD)
1582 return true;
1583
1584 // Someone like call_rcu() requested a force-quiescent-state scan.
1585 *gfp = READ_ONCE(rcu_state.gp_flags);
1586 if (*gfp & RCU_GP_FLAG_FQS)
1587 return true;
1588
1589 // The current grace period has completed.
1590 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1591 return true;
1592
1593 return false;
1594 }
1595
1596 /*
1597 * Do one round of quiescent-state forcing.
1598 */
rcu_gp_fqs(bool first_time)1599 static void rcu_gp_fqs(bool first_time)
1600 {
1601 int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall);
1602 struct rcu_node *rnp = rcu_get_root();
1603
1604 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1605 WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1606
1607 WARN_ON_ONCE(nr_fqs > 3);
1608 /* Only countdown nr_fqs for stall purposes if jiffies moves. */
1609 if (nr_fqs) {
1610 if (nr_fqs == 1) {
1611 WRITE_ONCE(rcu_state.jiffies_stall,
1612 jiffies + rcu_jiffies_till_stall_check());
1613 }
1614 WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs);
1615 }
1616
1617 if (first_time) {
1618 /* Collect dyntick-idle snapshots. */
1619 force_qs_rnp(dyntick_save_progress_counter);
1620 } else {
1621 /* Handle dyntick-idle and offline CPUs. */
1622 force_qs_rnp(rcu_implicit_dynticks_qs);
1623 }
1624 /* Clear flag to prevent immediate re-entry. */
1625 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1626 raw_spin_lock_irq_rcu_node(rnp);
1627 WRITE_ONCE(rcu_state.gp_flags,
1628 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1629 raw_spin_unlock_irq_rcu_node(rnp);
1630 }
1631 }
1632
1633 /*
1634 * Loop doing repeated quiescent-state forcing until the grace period ends.
1635 */
rcu_gp_fqs_loop(void)1636 static noinline_for_stack void rcu_gp_fqs_loop(void)
1637 {
1638 bool first_gp_fqs = true;
1639 int gf = 0;
1640 unsigned long j;
1641 int ret;
1642 struct rcu_node *rnp = rcu_get_root();
1643
1644 j = READ_ONCE(jiffies_till_first_fqs);
1645 if (rcu_state.cbovld)
1646 gf = RCU_GP_FLAG_OVLD;
1647 ret = 0;
1648 for (;;) {
1649 if (rcu_state.cbovld) {
1650 j = (j + 2) / 3;
1651 if (j <= 0)
1652 j = 1;
1653 }
1654 if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) {
1655 WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1656 /*
1657 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1658 * update; required for stall checks.
1659 */
1660 smp_wmb();
1661 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1662 jiffies + (j ? 3 * j : 2));
1663 }
1664 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1665 TPS("fqswait"));
1666 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
1667 (void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
1668 rcu_gp_fqs_check_wake(&gf), j);
1669 rcu_gp_torture_wait();
1670 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
1671 /* Locking provides needed memory barriers. */
1672 /*
1673 * Exit the loop if the root rcu_node structure indicates that the grace period
1674 * has ended, leave the loop. The rcu_preempt_blocked_readers_cgp(rnp) check
1675 * is required only for single-node rcu_node trees because readers blocking
1676 * the current grace period are queued only on leaf rcu_node structures.
1677 * For multi-node trees, checking the root node's ->qsmask suffices, because a
1678 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from
1679 * the corresponding leaf nodes have passed through their quiescent state.
1680 */
1681 if (!READ_ONCE(rnp->qsmask) &&
1682 !rcu_preempt_blocked_readers_cgp(rnp))
1683 break;
1684 /* If time for quiescent-state forcing, do it. */
1685 if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1686 (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
1687 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1688 TPS("fqsstart"));
1689 rcu_gp_fqs(first_gp_fqs);
1690 gf = 0;
1691 if (first_gp_fqs) {
1692 first_gp_fqs = false;
1693 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1694 }
1695 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1696 TPS("fqsend"));
1697 cond_resched_tasks_rcu_qs();
1698 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1699 ret = 0; /* Force full wait till next FQS. */
1700 j = READ_ONCE(jiffies_till_next_fqs);
1701 } else {
1702 /* Deal with stray signal. */
1703 cond_resched_tasks_rcu_qs();
1704 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1705 WARN_ON(signal_pending(current));
1706 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1707 TPS("fqswaitsig"));
1708 ret = 1; /* Keep old FQS timing. */
1709 j = jiffies;
1710 if (time_after(jiffies, rcu_state.jiffies_force_qs))
1711 j = 1;
1712 else
1713 j = rcu_state.jiffies_force_qs - j;
1714 gf = 0;
1715 }
1716 }
1717 }
1718
1719 /*
1720 * Clean up after the old grace period.
1721 */
rcu_gp_cleanup(void)1722 static noinline void rcu_gp_cleanup(void)
1723 {
1724 int cpu;
1725 bool needgp = false;
1726 unsigned long gp_duration;
1727 unsigned long new_gp_seq;
1728 bool offloaded;
1729 struct rcu_data *rdp;
1730 struct rcu_node *rnp = rcu_get_root();
1731 struct swait_queue_head *sq;
1732
1733 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1734 raw_spin_lock_irq_rcu_node(rnp);
1735 rcu_state.gp_end = jiffies;
1736 gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1737 if (gp_duration > rcu_state.gp_max)
1738 rcu_state.gp_max = gp_duration;
1739
1740 /*
1741 * We know the grace period is complete, but to everyone else
1742 * it appears to still be ongoing. But it is also the case
1743 * that to everyone else it looks like there is nothing that
1744 * they can do to advance the grace period. It is therefore
1745 * safe for us to drop the lock in order to mark the grace
1746 * period as completed in all of the rcu_node structures.
1747 */
1748 rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap);
1749 raw_spin_unlock_irq_rcu_node(rnp);
1750
1751 /*
1752 * Propagate new ->gp_seq value to rcu_node structures so that
1753 * other CPUs don't have to wait until the start of the next grace
1754 * period to process their callbacks. This also avoids some nasty
1755 * RCU grace-period initialization races by forcing the end of
1756 * the current grace period to be completely recorded in all of
1757 * the rcu_node structures before the beginning of the next grace
1758 * period is recorded in any of the rcu_node structures.
1759 */
1760 new_gp_seq = rcu_state.gp_seq;
1761 rcu_seq_end(&new_gp_seq);
1762 rcu_for_each_node_breadth_first(rnp) {
1763 raw_spin_lock_irq_rcu_node(rnp);
1764 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1765 dump_blkd_tasks(rnp, 10);
1766 WARN_ON_ONCE(rnp->qsmask);
1767 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1768 if (!rnp->parent)
1769 smp_mb(); // Order against failing poll_state_synchronize_rcu_full().
1770 rdp = this_cpu_ptr(&rcu_data);
1771 if (rnp == rdp->mynode)
1772 needgp = __note_gp_changes(rnp, rdp) || needgp;
1773 /* smp_mb() provided by prior unlock-lock pair. */
1774 needgp = rcu_future_gp_cleanup(rnp) || needgp;
1775 // Reset overload indication for CPUs no longer overloaded
1776 if (rcu_is_leaf_node(rnp))
1777 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
1778 rdp = per_cpu_ptr(&rcu_data, cpu);
1779 check_cb_ovld_locked(rdp, rnp);
1780 }
1781 sq = rcu_nocb_gp_get(rnp);
1782 raw_spin_unlock_irq_rcu_node(rnp);
1783 rcu_nocb_gp_cleanup(sq);
1784 cond_resched_tasks_rcu_qs();
1785 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1786 rcu_gp_slow(gp_cleanup_delay);
1787 }
1788 rnp = rcu_get_root();
1789 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1790
1791 /* Declare grace period done, trace first to use old GP number. */
1792 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1793 rcu_seq_end(&rcu_state.gp_seq);
1794 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1795 WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
1796 /* Check for GP requests since above loop. */
1797 rdp = this_cpu_ptr(&rcu_data);
1798 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1799 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1800 TPS("CleanupMore"));
1801 needgp = true;
1802 }
1803 /* Advance CBs to reduce false positives below. */
1804 offloaded = rcu_rdp_is_offloaded(rdp);
1805 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1806
1807 // We get here if a grace period was needed (“needgp”)
1808 // and the above call to rcu_accelerate_cbs() did not set
1809 // the RCU_GP_FLAG_INIT bit in ->gp_state (which records
1810 // the need for another grace period). The purpose
1811 // of the “offloaded” check is to avoid invoking
1812 // rcu_accelerate_cbs() on an offloaded CPU because we do not
1813 // hold the ->nocb_lock needed to safely access an offloaded
1814 // ->cblist. We do not want to acquire that lock because
1815 // it can be heavily contended during callback floods.
1816
1817 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1818 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1819 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
1820 } else {
1821
1822 // We get here either if there is no need for an
1823 // additional grace period or if rcu_accelerate_cbs() has
1824 // already set the RCU_GP_FLAG_INIT bit in ->gp_flags.
1825 // So all we need to do is to clear all of the other
1826 // ->gp_flags bits.
1827
1828 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1829 }
1830 raw_spin_unlock_irq_rcu_node(rnp);
1831
1832 // If strict, make all CPUs aware of the end of the old grace period.
1833 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1834 on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1835 }
1836
1837 /*
1838 * Body of kthread that handles grace periods.
1839 */
rcu_gp_kthread(void * unused)1840 static int __noreturn rcu_gp_kthread(void *unused)
1841 {
1842 rcu_bind_gp_kthread();
1843 for (;;) {
1844
1845 /* Handle grace-period start. */
1846 for (;;) {
1847 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1848 TPS("reqwait"));
1849 WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
1850 swait_event_idle_exclusive(rcu_state.gp_wq,
1851 READ_ONCE(rcu_state.gp_flags) &
1852 RCU_GP_FLAG_INIT);
1853 rcu_gp_torture_wait();
1854 WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
1855 /* Locking provides needed memory barrier. */
1856 if (rcu_gp_init())
1857 break;
1858 cond_resched_tasks_rcu_qs();
1859 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1860 WARN_ON(signal_pending(current));
1861 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1862 TPS("reqwaitsig"));
1863 }
1864
1865 /* Handle quiescent-state forcing. */
1866 rcu_gp_fqs_loop();
1867
1868 /* Handle grace-period end. */
1869 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
1870 rcu_gp_cleanup();
1871 WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
1872 }
1873 }
1874
1875 /*
1876 * Report a full set of quiescent states to the rcu_state data structure.
1877 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1878 * another grace period is required. Whether we wake the grace-period
1879 * kthread or it awakens itself for the next round of quiescent-state
1880 * forcing, that kthread will clean up after the just-completed grace
1881 * period. Note that the caller must hold rnp->lock, which is released
1882 * before return.
1883 */
rcu_report_qs_rsp(unsigned long flags)1884 static void rcu_report_qs_rsp(unsigned long flags)
1885 __releases(rcu_get_root()->lock)
1886 {
1887 raw_lockdep_assert_held_rcu_node(rcu_get_root());
1888 WARN_ON_ONCE(!rcu_gp_in_progress());
1889 WRITE_ONCE(rcu_state.gp_flags,
1890 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1891 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1892 rcu_gp_kthread_wake();
1893 }
1894
1895 /*
1896 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1897 * Allows quiescent states for a group of CPUs to be reported at one go
1898 * to the specified rcu_node structure, though all the CPUs in the group
1899 * must be represented by the same rcu_node structure (which need not be a
1900 * leaf rcu_node structure, though it often will be). The gps parameter
1901 * is the grace-period snapshot, which means that the quiescent states
1902 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
1903 * must be held upon entry, and it is released before return.
1904 *
1905 * As a special case, if mask is zero, the bit-already-cleared check is
1906 * disabled. This allows propagating quiescent state due to resumed tasks
1907 * during grace-period initialization.
1908 */
rcu_report_qs_rnp(unsigned long mask,struct rcu_node * rnp,unsigned long gps,unsigned long flags)1909 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1910 unsigned long gps, unsigned long flags)
1911 __releases(rnp->lock)
1912 {
1913 unsigned long oldmask = 0;
1914 struct rcu_node *rnp_c;
1915
1916 raw_lockdep_assert_held_rcu_node(rnp);
1917
1918 /* Walk up the rcu_node hierarchy. */
1919 for (;;) {
1920 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1921
1922 /*
1923 * Our bit has already been cleared, or the
1924 * relevant grace period is already over, so done.
1925 */
1926 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1927 return;
1928 }
1929 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1930 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1931 rcu_preempt_blocked_readers_cgp(rnp));
1932 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
1933 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1934 mask, rnp->qsmask, rnp->level,
1935 rnp->grplo, rnp->grphi,
1936 !!rnp->gp_tasks);
1937 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1938
1939 /* Other bits still set at this level, so done. */
1940 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1941 return;
1942 }
1943 rnp->completedqs = rnp->gp_seq;
1944 mask = rnp->grpmask;
1945 if (rnp->parent == NULL) {
1946
1947 /* No more levels. Exit loop holding root lock. */
1948
1949 break;
1950 }
1951 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1952 rnp_c = rnp;
1953 rnp = rnp->parent;
1954 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1955 oldmask = READ_ONCE(rnp_c->qsmask);
1956 }
1957
1958 /*
1959 * Get here if we are the last CPU to pass through a quiescent
1960 * state for this grace period. Invoke rcu_report_qs_rsp()
1961 * to clean up and start the next grace period if one is needed.
1962 */
1963 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1964 }
1965
1966 /*
1967 * Record a quiescent state for all tasks that were previously queued
1968 * on the specified rcu_node structure and that were blocking the current
1969 * RCU grace period. The caller must hold the corresponding rnp->lock with
1970 * irqs disabled, and this lock is released upon return, but irqs remain
1971 * disabled.
1972 */
1973 static void __maybe_unused
rcu_report_unblock_qs_rnp(struct rcu_node * rnp,unsigned long flags)1974 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1975 __releases(rnp->lock)
1976 {
1977 unsigned long gps;
1978 unsigned long mask;
1979 struct rcu_node *rnp_p;
1980
1981 raw_lockdep_assert_held_rcu_node(rnp);
1982 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
1983 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1984 rnp->qsmask != 0) {
1985 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1986 return; /* Still need more quiescent states! */
1987 }
1988
1989 rnp->completedqs = rnp->gp_seq;
1990 rnp_p = rnp->parent;
1991 if (rnp_p == NULL) {
1992 /*
1993 * Only one rcu_node structure in the tree, so don't
1994 * try to report up to its nonexistent parent!
1995 */
1996 rcu_report_qs_rsp(flags);
1997 return;
1998 }
1999
2000 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2001 gps = rnp->gp_seq;
2002 mask = rnp->grpmask;
2003 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2004 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
2005 rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2006 }
2007
2008 /*
2009 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2010 * structure. This must be called from the specified CPU.
2011 */
2012 static void
rcu_report_qs_rdp(struct rcu_data * rdp)2013 rcu_report_qs_rdp(struct rcu_data *rdp)
2014 {
2015 unsigned long flags;
2016 unsigned long mask;
2017 bool needacc = false;
2018 struct rcu_node *rnp;
2019
2020 WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2021 rnp = rdp->mynode;
2022 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2023 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2024 rdp->gpwrap) {
2025
2026 /*
2027 * The grace period in which this quiescent state was
2028 * recorded has ended, so don't report it upwards.
2029 * We will instead need a new quiescent state that lies
2030 * within the current grace period.
2031 */
2032 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
2033 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2034 return;
2035 }
2036 mask = rdp->grpmask;
2037 rdp->core_needs_qs = false;
2038 if ((rnp->qsmask & mask) == 0) {
2039 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2040 } else {
2041 /*
2042 * This GP can't end until cpu checks in, so all of our
2043 * callbacks can be processed during the next GP.
2044 *
2045 * NOCB kthreads have their own way to deal with that...
2046 */
2047 if (!rcu_rdp_is_offloaded(rdp)) {
2048 /*
2049 * The current GP has not yet ended, so it
2050 * should not be possible for rcu_accelerate_cbs()
2051 * to return true. So complain, but don't awaken.
2052 */
2053 WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp));
2054 } else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
2055 /*
2056 * ...but NOCB kthreads may miss or delay callbacks acceleration
2057 * if in the middle of a (de-)offloading process.
2058 */
2059 needacc = true;
2060 }
2061
2062 rcu_disable_urgency_upon_qs(rdp);
2063 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2064 /* ^^^ Released rnp->lock */
2065
2066 if (needacc) {
2067 rcu_nocb_lock_irqsave(rdp, flags);
2068 rcu_accelerate_cbs_unlocked(rnp, rdp);
2069 rcu_nocb_unlock_irqrestore(rdp, flags);
2070 }
2071 }
2072 }
2073
2074 /*
2075 * Check to see if there is a new grace period of which this CPU
2076 * is not yet aware, and if so, set up local rcu_data state for it.
2077 * Otherwise, see if this CPU has just passed through its first
2078 * quiescent state for this grace period, and record that fact if so.
2079 */
2080 static void
rcu_check_quiescent_state(struct rcu_data * rdp)2081 rcu_check_quiescent_state(struct rcu_data *rdp)
2082 {
2083 /* Check for grace-period ends and beginnings. */
2084 note_gp_changes(rdp);
2085
2086 /*
2087 * Does this CPU still need to do its part for current grace period?
2088 * If no, return and let the other CPUs do their part as well.
2089 */
2090 if (!rdp->core_needs_qs)
2091 return;
2092
2093 /*
2094 * Was there a quiescent state since the beginning of the grace
2095 * period? If no, then exit and wait for the next call.
2096 */
2097 if (rdp->cpu_no_qs.b.norm)
2098 return;
2099
2100 /*
2101 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2102 * judge of that).
2103 */
2104 rcu_report_qs_rdp(rdp);
2105 }
2106
2107 /* Return true if callback-invocation time limit exceeded. */
rcu_do_batch_check_time(long count,long tlimit,bool jlimit_check,unsigned long jlimit)2108 static bool rcu_do_batch_check_time(long count, long tlimit,
2109 bool jlimit_check, unsigned long jlimit)
2110 {
2111 // Invoke local_clock() only once per 32 consecutive callbacks.
2112 return unlikely(tlimit) &&
2113 (!likely(count & 31) ||
2114 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) &&
2115 jlimit_check && time_after(jiffies, jlimit))) &&
2116 local_clock() >= tlimit;
2117 }
2118
2119 /*
2120 * Invoke any RCU callbacks that have made it to the end of their grace
2121 * period. Throttle as specified by rdp->blimit.
2122 */
rcu_do_batch(struct rcu_data * rdp)2123 static void rcu_do_batch(struct rcu_data *rdp)
2124 {
2125 long bl;
2126 long count = 0;
2127 int div;
2128 bool __maybe_unused empty;
2129 unsigned long flags;
2130 unsigned long jlimit;
2131 bool jlimit_check = false;
2132 long pending;
2133 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2134 struct rcu_head *rhp;
2135 long tlimit = 0;
2136
2137 /* If no callbacks are ready, just return. */
2138 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2139 trace_rcu_batch_start(rcu_state.name,
2140 rcu_segcblist_n_cbs(&rdp->cblist), 0);
2141 trace_rcu_batch_end(rcu_state.name, 0,
2142 !rcu_segcblist_empty(&rdp->cblist),
2143 need_resched(), is_idle_task(current),
2144 rcu_is_callbacks_kthread(rdp));
2145 return;
2146 }
2147
2148 /*
2149 * Extract the list of ready callbacks, disabling IRQs to prevent
2150 * races with call_rcu() from interrupt handlers. Leave the
2151 * callback counts, as rcu_barrier() needs to be conservative.
2152 */
2153 rcu_nocb_lock_irqsave(rdp, flags);
2154 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2155 pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL);
2156 div = READ_ONCE(rcu_divisor);
2157 div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2158 bl = max(rdp->blimit, pending >> div);
2159 if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) &&
2160 (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) {
2161 const long npj = NSEC_PER_SEC / HZ;
2162 long rrn = READ_ONCE(rcu_resched_ns);
2163
2164 rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2165 tlimit = local_clock() + rrn;
2166 jlimit = jiffies + (rrn + npj + 1) / npj;
2167 jlimit_check = true;
2168 }
2169 trace_rcu_batch_start(rcu_state.name,
2170 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2171 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2172 if (rcu_rdp_is_offloaded(rdp))
2173 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2174
2175 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2176 rcu_nocb_unlock_irqrestore(rdp, flags);
2177
2178 /* Invoke callbacks. */
2179 tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2180 rhp = rcu_cblist_dequeue(&rcl);
2181
2182 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2183 rcu_callback_t f;
2184
2185 count++;
2186 debug_rcu_head_unqueue(rhp);
2187
2188 rcu_lock_acquire(&rcu_callback_map);
2189 trace_rcu_invoke_callback(rcu_state.name, rhp);
2190
2191 f = rhp->func;
2192 debug_rcu_head_callback(rhp);
2193 WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2194 f(rhp);
2195
2196 rcu_lock_release(&rcu_callback_map);
2197
2198 /*
2199 * Stop only if limit reached and CPU has something to do.
2200 */
2201 if (in_serving_softirq()) {
2202 if (count >= bl && (need_resched() || !is_idle_task(current)))
2203 break;
2204 /*
2205 * Make sure we don't spend too much time here and deprive other
2206 * softirq vectors of CPU cycles.
2207 */
2208 if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit))
2209 break;
2210 } else {
2211 // In rcuc/rcuoc context, so no worries about
2212 // depriving other softirq vectors of CPU cycles.
2213 local_bh_enable();
2214 lockdep_assert_irqs_enabled();
2215 cond_resched_tasks_rcu_qs();
2216 lockdep_assert_irqs_enabled();
2217 local_bh_disable();
2218 // But rcuc kthreads can delay quiescent-state
2219 // reporting, so check time limits for them.
2220 if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING &&
2221 rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) {
2222 rdp->rcu_cpu_has_work = 1;
2223 break;
2224 }
2225 }
2226 }
2227
2228 rcu_nocb_lock_irqsave(rdp, flags);
2229 rdp->n_cbs_invoked += count;
2230 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2231 is_idle_task(current), rcu_is_callbacks_kthread(rdp));
2232
2233 /* Update counts and requeue any remaining callbacks. */
2234 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2235 rcu_segcblist_add_len(&rdp->cblist, -count);
2236
2237 /* Reinstate batch limit if we have worked down the excess. */
2238 count = rcu_segcblist_n_cbs(&rdp->cblist);
2239 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2240 rdp->blimit = blimit;
2241
2242 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2243 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2244 rdp->qlen_last_fqs_check = 0;
2245 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2246 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2247 rdp->qlen_last_fqs_check = count;
2248
2249 /*
2250 * The following usually indicates a double call_rcu(). To track
2251 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2252 */
2253 empty = rcu_segcblist_empty(&rdp->cblist);
2254 WARN_ON_ONCE(count == 0 && !empty);
2255 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2256 count != 0 && empty);
2257 WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2258 WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2259
2260 rcu_nocb_unlock_irqrestore(rdp, flags);
2261
2262 tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2263 }
2264
2265 /*
2266 * This function is invoked from each scheduling-clock interrupt,
2267 * and checks to see if this CPU is in a non-context-switch quiescent
2268 * state, for example, user mode or idle loop. It also schedules RCU
2269 * core processing. If the current grace period has gone on too long,
2270 * it will ask the scheduler to manufacture a context switch for the sole
2271 * purpose of providing the needed quiescent state.
2272 */
rcu_sched_clock_irq(int user)2273 void rcu_sched_clock_irq(int user)
2274 {
2275 unsigned long j;
2276
2277 if (IS_ENABLED(CONFIG_PROVE_RCU)) {
2278 j = jiffies;
2279 WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
2280 __this_cpu_write(rcu_data.last_sched_clock, j);
2281 }
2282 trace_rcu_utilization(TPS("Start scheduler-tick"));
2283 lockdep_assert_irqs_disabled();
2284 raw_cpu_inc(rcu_data.ticks_this_gp);
2285 /* The load-acquire pairs with the store-release setting to true. */
2286 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2287 /* Idle and userspace execution already are quiescent states. */
2288 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2289 set_tsk_need_resched(current);
2290 set_preempt_need_resched();
2291 }
2292 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
2293 }
2294 rcu_flavor_sched_clock_irq(user);
2295 if (rcu_pending(user))
2296 invoke_rcu_core();
2297 if (user || rcu_is_cpu_rrupt_from_idle())
2298 rcu_note_voluntary_context_switch(current);
2299 lockdep_assert_irqs_disabled();
2300
2301 trace_rcu_utilization(TPS("End scheduler-tick"));
2302 }
2303
2304 /*
2305 * Scan the leaf rcu_node structures. For each structure on which all
2306 * CPUs have reported a quiescent state and on which there are tasks
2307 * blocking the current grace period, initiate RCU priority boosting.
2308 * Otherwise, invoke the specified function to check dyntick state for
2309 * each CPU that has not yet reported a quiescent state.
2310 */
force_qs_rnp(int (* f)(struct rcu_data * rdp))2311 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2312 {
2313 int cpu;
2314 unsigned long flags;
2315 struct rcu_node *rnp;
2316
2317 rcu_state.cbovld = rcu_state.cbovldnext;
2318 rcu_state.cbovldnext = false;
2319 rcu_for_each_leaf_node(rnp) {
2320 unsigned long mask = 0;
2321 unsigned long rsmask = 0;
2322
2323 cond_resched_tasks_rcu_qs();
2324 raw_spin_lock_irqsave_rcu_node(rnp, flags);
2325 rcu_state.cbovldnext |= !!rnp->cbovldmask;
2326 if (rnp->qsmask == 0) {
2327 if (rcu_preempt_blocked_readers_cgp(rnp)) {
2328 /*
2329 * No point in scanning bits because they
2330 * are all zero. But we might need to
2331 * priority-boost blocked readers.
2332 */
2333 rcu_initiate_boost(rnp, flags);
2334 /* rcu_initiate_boost() releases rnp->lock */
2335 continue;
2336 }
2337 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2338 continue;
2339 }
2340 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2341 struct rcu_data *rdp;
2342 int ret;
2343
2344 rdp = per_cpu_ptr(&rcu_data, cpu);
2345 ret = f(rdp);
2346 if (ret > 0) {
2347 mask |= rdp->grpmask;
2348 rcu_disable_urgency_upon_qs(rdp);
2349 }
2350 if (ret < 0)
2351 rsmask |= rdp->grpmask;
2352 }
2353 if (mask != 0) {
2354 /* Idle/offline CPUs, report (releases rnp->lock). */
2355 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2356 } else {
2357 /* Nothing to do here, so just drop the lock. */
2358 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2359 }
2360
2361 for_each_leaf_node_cpu_mask(rnp, cpu, rsmask)
2362 resched_cpu(cpu);
2363 }
2364 }
2365
2366 /*
2367 * Force quiescent states on reluctant CPUs, and also detect which
2368 * CPUs are in dyntick-idle mode.
2369 */
rcu_force_quiescent_state(void)2370 void rcu_force_quiescent_state(void)
2371 {
2372 unsigned long flags;
2373 bool ret;
2374 struct rcu_node *rnp;
2375 struct rcu_node *rnp_old = NULL;
2376
2377 /* Funnel through hierarchy to reduce memory contention. */
2378 rnp = raw_cpu_read(rcu_data.mynode);
2379 for (; rnp != NULL; rnp = rnp->parent) {
2380 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2381 !raw_spin_trylock(&rnp->fqslock);
2382 if (rnp_old != NULL)
2383 raw_spin_unlock(&rnp_old->fqslock);
2384 if (ret)
2385 return;
2386 rnp_old = rnp;
2387 }
2388 /* rnp_old == rcu_get_root(), rnp == NULL. */
2389
2390 /* Reached the root of the rcu_node tree, acquire lock. */
2391 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2392 raw_spin_unlock(&rnp_old->fqslock);
2393 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2394 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2395 return; /* Someone beat us to it. */
2396 }
2397 WRITE_ONCE(rcu_state.gp_flags,
2398 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2399 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2400 rcu_gp_kthread_wake();
2401 }
2402 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2403
2404 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2405 // grace periods.
strict_work_handler(struct work_struct * work)2406 static void strict_work_handler(struct work_struct *work)
2407 {
2408 rcu_read_lock();
2409 rcu_read_unlock();
2410 }
2411
2412 /* Perform RCU core processing work for the current CPU. */
rcu_core(void)2413 static __latent_entropy void rcu_core(void)
2414 {
2415 unsigned long flags;
2416 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2417 struct rcu_node *rnp = rdp->mynode;
2418 /*
2419 * On RT rcu_core() can be preempted when IRQs aren't disabled.
2420 * Therefore this function can race with concurrent NOCB (de-)offloading
2421 * on this CPU and the below condition must be considered volatile.
2422 * However if we race with:
2423 *
2424 * _ Offloading: In the worst case we accelerate or process callbacks
2425 * concurrently with NOCB kthreads. We are guaranteed to
2426 * call rcu_nocb_lock() if that happens.
2427 *
2428 * _ Deoffloading: In the worst case we miss callbacks acceleration or
2429 * processing. This is fine because the early stage
2430 * of deoffloading invokes rcu_core() after setting
2431 * SEGCBLIST_RCU_CORE. So we guarantee that we'll process
2432 * what could have been dismissed without the need to wait
2433 * for the next rcu_pending() check in the next jiffy.
2434 */
2435 const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
2436
2437 if (cpu_is_offline(smp_processor_id()))
2438 return;
2439 trace_rcu_utilization(TPS("Start RCU core"));
2440 WARN_ON_ONCE(!rdp->beenonline);
2441
2442 /* Report any deferred quiescent states if preemption enabled. */
2443 if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
2444 rcu_preempt_deferred_qs(current);
2445 } else if (rcu_preempt_need_deferred_qs(current)) {
2446 set_tsk_need_resched(current);
2447 set_preempt_need_resched();
2448 }
2449
2450 /* Update RCU state based on any recent quiescent states. */
2451 rcu_check_quiescent_state(rdp);
2452
2453 /* No grace period and unregistered callbacks? */
2454 if (!rcu_gp_in_progress() &&
2455 rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2456 rcu_nocb_lock_irqsave(rdp, flags);
2457 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2458 rcu_accelerate_cbs_unlocked(rnp, rdp);
2459 rcu_nocb_unlock_irqrestore(rdp, flags);
2460 }
2461
2462 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2463
2464 /* If there are callbacks ready, invoke them. */
2465 if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2466 likely(READ_ONCE(rcu_scheduler_fully_active))) {
2467 rcu_do_batch(rdp);
2468 /* Re-invoke RCU core processing if there are callbacks remaining. */
2469 if (rcu_segcblist_ready_cbs(&rdp->cblist))
2470 invoke_rcu_core();
2471 }
2472
2473 /* Do any needed deferred wakeups of rcuo kthreads. */
2474 do_nocb_deferred_wakeup(rdp);
2475 trace_rcu_utilization(TPS("End RCU core"));
2476
2477 // If strict GPs, schedule an RCU reader in a clean environment.
2478 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2479 queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2480 }
2481
rcu_core_si(struct softirq_action * h)2482 static void rcu_core_si(struct softirq_action *h)
2483 {
2484 rcu_core();
2485 }
2486
rcu_wake_cond(struct task_struct * t,int status)2487 static void rcu_wake_cond(struct task_struct *t, int status)
2488 {
2489 /*
2490 * If the thread is yielding, only wake it when this
2491 * is invoked from idle
2492 */
2493 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2494 wake_up_process(t);
2495 }
2496
invoke_rcu_core_kthread(void)2497 static void invoke_rcu_core_kthread(void)
2498 {
2499 struct task_struct *t;
2500 unsigned long flags;
2501
2502 local_irq_save(flags);
2503 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2504 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2505 if (t != NULL && t != current)
2506 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2507 local_irq_restore(flags);
2508 }
2509
2510 /*
2511 * Wake up this CPU's rcuc kthread to do RCU core processing.
2512 */
invoke_rcu_core(void)2513 static void invoke_rcu_core(void)
2514 {
2515 if (!cpu_online(smp_processor_id()))
2516 return;
2517 if (use_softirq)
2518 raise_softirq(RCU_SOFTIRQ);
2519 else
2520 invoke_rcu_core_kthread();
2521 }
2522
rcu_cpu_kthread_park(unsigned int cpu)2523 static void rcu_cpu_kthread_park(unsigned int cpu)
2524 {
2525 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2526 }
2527
rcu_cpu_kthread_should_run(unsigned int cpu)2528 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2529 {
2530 return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2531 }
2532
2533 /*
2534 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
2535 * the RCU softirq used in configurations of RCU that do not support RCU
2536 * priority boosting.
2537 */
rcu_cpu_kthread(unsigned int cpu)2538 static void rcu_cpu_kthread(unsigned int cpu)
2539 {
2540 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2541 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2542 unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
2543 int spincnt;
2544
2545 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2546 for (spincnt = 0; spincnt < 10; spincnt++) {
2547 WRITE_ONCE(*j, jiffies);
2548 local_bh_disable();
2549 *statusp = RCU_KTHREAD_RUNNING;
2550 local_irq_disable();
2551 work = *workp;
2552 WRITE_ONCE(*workp, 0);
2553 local_irq_enable();
2554 if (work)
2555 rcu_core();
2556 local_bh_enable();
2557 if (!READ_ONCE(*workp)) {
2558 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2559 *statusp = RCU_KTHREAD_WAITING;
2560 return;
2561 }
2562 }
2563 *statusp = RCU_KTHREAD_YIELDING;
2564 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2565 schedule_timeout_idle(2);
2566 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2567 *statusp = RCU_KTHREAD_WAITING;
2568 WRITE_ONCE(*j, jiffies);
2569 }
2570
2571 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2572 .store = &rcu_data.rcu_cpu_kthread_task,
2573 .thread_should_run = rcu_cpu_kthread_should_run,
2574 .thread_fn = rcu_cpu_kthread,
2575 .thread_comm = "rcuc/%u",
2576 .setup = rcu_cpu_kthread_setup,
2577 .park = rcu_cpu_kthread_park,
2578 };
2579
2580 /*
2581 * Spawn per-CPU RCU core processing kthreads.
2582 */
rcu_spawn_core_kthreads(void)2583 static int __init rcu_spawn_core_kthreads(void)
2584 {
2585 int cpu;
2586
2587 for_each_possible_cpu(cpu)
2588 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2589 if (use_softirq)
2590 return 0;
2591 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2592 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2593 return 0;
2594 }
2595
2596 /*
2597 * Handle any core-RCU processing required by a call_rcu() invocation.
2598 */
__call_rcu_core(struct rcu_data * rdp,struct rcu_head * head,unsigned long flags)2599 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2600 unsigned long flags)
2601 {
2602 /*
2603 * If called from an extended quiescent state, invoke the RCU
2604 * core in order to force a re-evaluation of RCU's idleness.
2605 */
2606 if (!rcu_is_watching())
2607 invoke_rcu_core();
2608
2609 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2610 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2611 return;
2612
2613 /*
2614 * Force the grace period if too many callbacks or too long waiting.
2615 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2616 * if some other CPU has recently done so. Also, don't bother
2617 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2618 * is the only one waiting for a grace period to complete.
2619 */
2620 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2621 rdp->qlen_last_fqs_check + qhimark)) {
2622
2623 /* Are we ignoring a completed grace period? */
2624 note_gp_changes(rdp);
2625
2626 /* Start a new grace period if one not already started. */
2627 if (!rcu_gp_in_progress()) {
2628 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2629 } else {
2630 /* Give the grace period a kick. */
2631 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2632 if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
2633 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2634 rcu_force_quiescent_state();
2635 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2636 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2637 }
2638 }
2639 }
2640
2641 /*
2642 * RCU callback function to leak a callback.
2643 */
rcu_leak_callback(struct rcu_head * rhp)2644 static void rcu_leak_callback(struct rcu_head *rhp)
2645 {
2646 }
2647
2648 /*
2649 * Check and if necessary update the leaf rcu_node structure's
2650 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2651 * number of queued RCU callbacks. The caller must hold the leaf rcu_node
2652 * structure's ->lock.
2653 */
check_cb_ovld_locked(struct rcu_data * rdp,struct rcu_node * rnp)2654 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2655 {
2656 raw_lockdep_assert_held_rcu_node(rnp);
2657 if (qovld_calc <= 0)
2658 return; // Early boot and wildcard value set.
2659 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2660 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2661 else
2662 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2663 }
2664
2665 /*
2666 * Check and if necessary update the leaf rcu_node structure's
2667 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2668 * number of queued RCU callbacks. No locks need be held, but the
2669 * caller must have disabled interrupts.
2670 *
2671 * Note that this function ignores the possibility that there are a lot
2672 * of callbacks all of which have already seen the end of their respective
2673 * grace periods. This omission is due to the need for no-CBs CPUs to
2674 * be holding ->nocb_lock to do this check, which is too heavy for a
2675 * common-case operation.
2676 */
check_cb_ovld(struct rcu_data * rdp)2677 static void check_cb_ovld(struct rcu_data *rdp)
2678 {
2679 struct rcu_node *const rnp = rdp->mynode;
2680
2681 if (qovld_calc <= 0 ||
2682 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2683 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2684 return; // Early boot wildcard value or already set correctly.
2685 raw_spin_lock_rcu_node(rnp);
2686 check_cb_ovld_locked(rdp, rnp);
2687 raw_spin_unlock_rcu_node(rnp);
2688 }
2689
2690 static void
__call_rcu_common(struct rcu_head * head,rcu_callback_t func,bool lazy_in)2691 __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in)
2692 {
2693 static atomic_t doublefrees;
2694 unsigned long flags;
2695 bool lazy;
2696 struct rcu_data *rdp;
2697 bool was_alldone;
2698
2699 /* Misaligned rcu_head! */
2700 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2701
2702 /* Avoid NULL dereference if callback is NULL. */
2703 if (WARN_ON_ONCE(!func))
2704 return;
2705
2706 if (debug_rcu_head_queue(head)) {
2707 /*
2708 * Probable double call_rcu(), so leak the callback.
2709 * Use rcu:rcu_callback trace event to find the previous
2710 * time callback was passed to call_rcu().
2711 */
2712 if (atomic_inc_return(&doublefrees) < 4) {
2713 pr_err("%s(): Double-freed CB %p->%pS()!!! ", __func__, head, head->func);
2714 mem_dump_obj(head);
2715 }
2716 WRITE_ONCE(head->func, rcu_leak_callback);
2717 return;
2718 }
2719 head->func = func;
2720 head->next = NULL;
2721 kasan_record_aux_stack_noalloc(head);
2722 local_irq_save(flags);
2723 rdp = this_cpu_ptr(&rcu_data);
2724 lazy = lazy_in && !rcu_async_should_hurry();
2725
2726 /* Add the callback to our list. */
2727 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2728 // This can trigger due to call_rcu() from offline CPU:
2729 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2730 WARN_ON_ONCE(!rcu_is_watching());
2731 // Very early boot, before rcu_init(). Initialize if needed
2732 // and then drop through to queue the callback.
2733 if (rcu_segcblist_empty(&rdp->cblist))
2734 rcu_segcblist_init(&rdp->cblist);
2735 }
2736
2737 check_cb_ovld(rdp);
2738 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy)) {
2739 local_irq_restore(flags);
2740 return; // Enqueued onto ->nocb_bypass, so just leave.
2741 }
2742 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2743 rcu_segcblist_enqueue(&rdp->cblist, head);
2744 if (__is_kvfree_rcu_offset((unsigned long)func))
2745 trace_rcu_kvfree_callback(rcu_state.name, head,
2746 (unsigned long)func,
2747 rcu_segcblist_n_cbs(&rdp->cblist));
2748 else
2749 trace_rcu_callback(rcu_state.name, head,
2750 rcu_segcblist_n_cbs(&rdp->cblist));
2751
2752 trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
2753
2754 /* Go handle any RCU core processing required. */
2755 if (unlikely(rcu_rdp_is_offloaded(rdp))) {
2756 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2757 } else {
2758 __call_rcu_core(rdp, head, flags);
2759 }
2760 local_irq_restore(flags);
2761 }
2762
2763 #ifdef CONFIG_RCU_LAZY
2764 /**
2765 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and
2766 * flush all lazy callbacks (including the new one) to the main ->cblist while
2767 * doing so.
2768 *
2769 * @head: structure to be used for queueing the RCU updates.
2770 * @func: actual callback function to be invoked after the grace period
2771 *
2772 * The callback function will be invoked some time after a full grace
2773 * period elapses, in other words after all pre-existing RCU read-side
2774 * critical sections have completed.
2775 *
2776 * Use this API instead of call_rcu() if you don't want the callback to be
2777 * invoked after very long periods of time, which can happen on systems without
2778 * memory pressure and on systems which are lightly loaded or mostly idle.
2779 * This function will cause callbacks to be invoked sooner than later at the
2780 * expense of extra power. Other than that, this function is identical to, and
2781 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory
2782 * ordering and other functionality.
2783 */
call_rcu_hurry(struct rcu_head * head,rcu_callback_t func)2784 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
2785 {
2786 return __call_rcu_common(head, func, false);
2787 }
2788 EXPORT_SYMBOL_GPL(call_rcu_hurry);
2789 #endif
2790
2791 /**
2792 * call_rcu() - Queue an RCU callback for invocation after a grace period.
2793 * By default the callbacks are 'lazy' and are kept hidden from the main
2794 * ->cblist to prevent starting of grace periods too soon.
2795 * If you desire grace periods to start very soon, use call_rcu_hurry().
2796 *
2797 * @head: structure to be used for queueing the RCU updates.
2798 * @func: actual callback function to be invoked after the grace period
2799 *
2800 * The callback function will be invoked some time after a full grace
2801 * period elapses, in other words after all pre-existing RCU read-side
2802 * critical sections have completed. However, the callback function
2803 * might well execute concurrently with RCU read-side critical sections
2804 * that started after call_rcu() was invoked.
2805 *
2806 * RCU read-side critical sections are delimited by rcu_read_lock()
2807 * and rcu_read_unlock(), and may be nested. In addition, but only in
2808 * v5.0 and later, regions of code across which interrupts, preemption,
2809 * or softirqs have been disabled also serve as RCU read-side critical
2810 * sections. This includes hardware interrupt handlers, softirq handlers,
2811 * and NMI handlers.
2812 *
2813 * Note that all CPUs must agree that the grace period extended beyond
2814 * all pre-existing RCU read-side critical section. On systems with more
2815 * than one CPU, this means that when "func()" is invoked, each CPU is
2816 * guaranteed to have executed a full memory barrier since the end of its
2817 * last RCU read-side critical section whose beginning preceded the call
2818 * to call_rcu(). It also means that each CPU executing an RCU read-side
2819 * critical section that continues beyond the start of "func()" must have
2820 * executed a memory barrier after the call_rcu() but before the beginning
2821 * of that RCU read-side critical section. Note that these guarantees
2822 * include CPUs that are offline, idle, or executing in user mode, as
2823 * well as CPUs that are executing in the kernel.
2824 *
2825 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2826 * resulting RCU callback function "func()", then both CPU A and CPU B are
2827 * guaranteed to execute a full memory barrier during the time interval
2828 * between the call to call_rcu() and the invocation of "func()" -- even
2829 * if CPU A and CPU B are the same CPU (but again only if the system has
2830 * more than one CPU).
2831 *
2832 * Implementation of these memory-ordering guarantees is described here:
2833 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
2834 */
call_rcu(struct rcu_head * head,rcu_callback_t func)2835 void call_rcu(struct rcu_head *head, rcu_callback_t func)
2836 {
2837 return __call_rcu_common(head, func, IS_ENABLED(CONFIG_RCU_LAZY));
2838 }
2839 EXPORT_SYMBOL_GPL(call_rcu);
2840
2841 /* Maximum number of jiffies to wait before draining a batch. */
2842 #define KFREE_DRAIN_JIFFIES (5 * HZ)
2843 #define KFREE_N_BATCHES 2
2844 #define FREE_N_CHANNELS 2
2845
2846 /**
2847 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
2848 * @list: List node. All blocks are linked between each other
2849 * @gp_snap: Snapshot of RCU state for objects placed to this bulk
2850 * @nr_records: Number of active pointers in the array
2851 * @records: Array of the kvfree_rcu() pointers
2852 */
2853 struct kvfree_rcu_bulk_data {
2854 struct list_head list;
2855 struct rcu_gp_oldstate gp_snap;
2856 unsigned long nr_records;
2857 void *records[];
2858 };
2859
2860 /*
2861 * This macro defines how many entries the "records" array
2862 * will contain. It is based on the fact that the size of
2863 * kvfree_rcu_bulk_data structure becomes exactly one page.
2864 */
2865 #define KVFREE_BULK_MAX_ENTR \
2866 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
2867
2868 /**
2869 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
2870 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
2871 * @head_free: List of kfree_rcu() objects waiting for a grace period
2872 * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees.
2873 * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
2874 * @krcp: Pointer to @kfree_rcu_cpu structure
2875 */
2876
2877 struct kfree_rcu_cpu_work {
2878 struct rcu_work rcu_work;
2879 struct rcu_head *head_free;
2880 struct rcu_gp_oldstate head_free_gp_snap;
2881 struct list_head bulk_head_free[FREE_N_CHANNELS];
2882 struct kfree_rcu_cpu *krcp;
2883 };
2884
2885 /**
2886 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
2887 * @head: List of kfree_rcu() objects not yet waiting for a grace period
2888 * @head_gp_snap: Snapshot of RCU state for objects placed to "@head"
2889 * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
2890 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
2891 * @lock: Synchronize access to this structure
2892 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
2893 * @initialized: The @rcu_work fields have been initialized
2894 * @head_count: Number of objects in rcu_head singular list
2895 * @bulk_count: Number of objects in bulk-list
2896 * @bkvcache:
2897 * A simple cache list that contains objects for reuse purpose.
2898 * In order to save some per-cpu space the list is singular.
2899 * Even though it is lockless an access has to be protected by the
2900 * per-cpu lock.
2901 * @page_cache_work: A work to refill the cache when it is empty
2902 * @backoff_page_cache_fill: Delay cache refills
2903 * @work_in_progress: Indicates that page_cache_work is running
2904 * @hrtimer: A hrtimer for scheduling a page_cache_work
2905 * @nr_bkv_objs: number of allocated objects at @bkvcache.
2906 *
2907 * This is a per-CPU structure. The reason that it is not included in
2908 * the rcu_data structure is to permit this code to be extracted from
2909 * the RCU files. Such extraction could allow further optimization of
2910 * the interactions with the slab allocators.
2911 */
2912 struct kfree_rcu_cpu {
2913 // Objects queued on a linked list
2914 // through their rcu_head structures.
2915 struct rcu_head *head;
2916 unsigned long head_gp_snap;
2917 atomic_t head_count;
2918
2919 // Objects queued on a bulk-list.
2920 struct list_head bulk_head[FREE_N_CHANNELS];
2921 atomic_t bulk_count[FREE_N_CHANNELS];
2922
2923 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
2924 raw_spinlock_t lock;
2925 struct delayed_work monitor_work;
2926 bool initialized;
2927
2928 struct delayed_work page_cache_work;
2929 atomic_t backoff_page_cache_fill;
2930 atomic_t work_in_progress;
2931 struct hrtimer hrtimer;
2932
2933 struct llist_head bkvcache;
2934 int nr_bkv_objs;
2935 };
2936
2937 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
2938 .lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
2939 };
2940
2941 static __always_inline void
debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data * bhead)2942 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
2943 {
2944 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
2945 int i;
2946
2947 for (i = 0; i < bhead->nr_records; i++)
2948 debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
2949 #endif
2950 }
2951
2952 static inline struct kfree_rcu_cpu *
krc_this_cpu_lock(unsigned long * flags)2953 krc_this_cpu_lock(unsigned long *flags)
2954 {
2955 struct kfree_rcu_cpu *krcp;
2956
2957 local_irq_save(*flags); // For safely calling this_cpu_ptr().
2958 krcp = this_cpu_ptr(&krc);
2959 raw_spin_lock(&krcp->lock);
2960
2961 return krcp;
2962 }
2963
2964 static inline void
krc_this_cpu_unlock(struct kfree_rcu_cpu * krcp,unsigned long flags)2965 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
2966 {
2967 raw_spin_unlock_irqrestore(&krcp->lock, flags);
2968 }
2969
2970 static inline struct kvfree_rcu_bulk_data *
get_cached_bnode(struct kfree_rcu_cpu * krcp)2971 get_cached_bnode(struct kfree_rcu_cpu *krcp)
2972 {
2973 if (!krcp->nr_bkv_objs)
2974 return NULL;
2975
2976 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
2977 return (struct kvfree_rcu_bulk_data *)
2978 llist_del_first(&krcp->bkvcache);
2979 }
2980
2981 static inline bool
put_cached_bnode(struct kfree_rcu_cpu * krcp,struct kvfree_rcu_bulk_data * bnode)2982 put_cached_bnode(struct kfree_rcu_cpu *krcp,
2983 struct kvfree_rcu_bulk_data *bnode)
2984 {
2985 // Check the limit.
2986 if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
2987 return false;
2988
2989 llist_add((struct llist_node *) bnode, &krcp->bkvcache);
2990 WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
2991 return true;
2992 }
2993
2994 static int
drain_page_cache(struct kfree_rcu_cpu * krcp)2995 drain_page_cache(struct kfree_rcu_cpu *krcp)
2996 {
2997 unsigned long flags;
2998 struct llist_node *page_list, *pos, *n;
2999 int freed = 0;
3000
3001 if (!rcu_min_cached_objs)
3002 return 0;
3003
3004 raw_spin_lock_irqsave(&krcp->lock, flags);
3005 page_list = llist_del_all(&krcp->bkvcache);
3006 WRITE_ONCE(krcp->nr_bkv_objs, 0);
3007 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3008
3009 llist_for_each_safe(pos, n, page_list) {
3010 free_page((unsigned long)pos);
3011 freed++;
3012 }
3013
3014 return freed;
3015 }
3016
3017 static void
kvfree_rcu_bulk(struct kfree_rcu_cpu * krcp,struct kvfree_rcu_bulk_data * bnode,int idx)3018 kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp,
3019 struct kvfree_rcu_bulk_data *bnode, int idx)
3020 {
3021 unsigned long flags;
3022 int i;
3023
3024 if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) {
3025 debug_rcu_bhead_unqueue(bnode);
3026 rcu_lock_acquire(&rcu_callback_map);
3027 if (idx == 0) { // kmalloc() / kfree().
3028 trace_rcu_invoke_kfree_bulk_callback(
3029 rcu_state.name, bnode->nr_records,
3030 bnode->records);
3031
3032 kfree_bulk(bnode->nr_records, bnode->records);
3033 } else { // vmalloc() / vfree().
3034 for (i = 0; i < bnode->nr_records; i++) {
3035 trace_rcu_invoke_kvfree_callback(
3036 rcu_state.name, bnode->records[i], 0);
3037
3038 vfree(bnode->records[i]);
3039 }
3040 }
3041 rcu_lock_release(&rcu_callback_map);
3042 }
3043
3044 raw_spin_lock_irqsave(&krcp->lock, flags);
3045 if (put_cached_bnode(krcp, bnode))
3046 bnode = NULL;
3047 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3048
3049 if (bnode)
3050 free_page((unsigned long) bnode);
3051
3052 cond_resched_tasks_rcu_qs();
3053 }
3054
3055 static void
kvfree_rcu_list(struct rcu_head * head)3056 kvfree_rcu_list(struct rcu_head *head)
3057 {
3058 struct rcu_head *next;
3059
3060 for (; head; head = next) {
3061 void *ptr = (void *) head->func;
3062 unsigned long offset = (void *) head - ptr;
3063
3064 next = head->next;
3065 debug_rcu_head_unqueue((struct rcu_head *)ptr);
3066 rcu_lock_acquire(&rcu_callback_map);
3067 trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3068
3069 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3070 kvfree(ptr);
3071
3072 rcu_lock_release(&rcu_callback_map);
3073 cond_resched_tasks_rcu_qs();
3074 }
3075 }
3076
3077 /*
3078 * This function is invoked in workqueue context after a grace period.
3079 * It frees all the objects queued on ->bulk_head_free or ->head_free.
3080 */
kfree_rcu_work(struct work_struct * work)3081 static void kfree_rcu_work(struct work_struct *work)
3082 {
3083 unsigned long flags;
3084 struct kvfree_rcu_bulk_data *bnode, *n;
3085 struct list_head bulk_head[FREE_N_CHANNELS];
3086 struct rcu_head *head;
3087 struct kfree_rcu_cpu *krcp;
3088 struct kfree_rcu_cpu_work *krwp;
3089 struct rcu_gp_oldstate head_gp_snap;
3090 int i;
3091
3092 krwp = container_of(to_rcu_work(work),
3093 struct kfree_rcu_cpu_work, rcu_work);
3094 krcp = krwp->krcp;
3095
3096 raw_spin_lock_irqsave(&krcp->lock, flags);
3097 // Channels 1 and 2.
3098 for (i = 0; i < FREE_N_CHANNELS; i++)
3099 list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]);
3100
3101 // Channel 3.
3102 head = krwp->head_free;
3103 krwp->head_free = NULL;
3104 head_gp_snap = krwp->head_free_gp_snap;
3105 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3106
3107 // Handle the first two channels.
3108 for (i = 0; i < FREE_N_CHANNELS; i++) {
3109 // Start from the tail page, so a GP is likely passed for it.
3110 list_for_each_entry_safe(bnode, n, &bulk_head[i], list)
3111 kvfree_rcu_bulk(krcp, bnode, i);
3112 }
3113
3114 /*
3115 * This is used when the "bulk" path can not be used for the
3116 * double-argument of kvfree_rcu(). This happens when the
3117 * page-cache is empty, which means that objects are instead
3118 * queued on a linked list through their rcu_head structures.
3119 * This list is named "Channel 3".
3120 */
3121 if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap)))
3122 kvfree_rcu_list(head);
3123 }
3124
3125 static bool
need_offload_krc(struct kfree_rcu_cpu * krcp)3126 need_offload_krc(struct kfree_rcu_cpu *krcp)
3127 {
3128 int i;
3129
3130 for (i = 0; i < FREE_N_CHANNELS; i++)
3131 if (!list_empty(&krcp->bulk_head[i]))
3132 return true;
3133
3134 return !!READ_ONCE(krcp->head);
3135 }
3136
3137 static bool
need_wait_for_krwp_work(struct kfree_rcu_cpu_work * krwp)3138 need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp)
3139 {
3140 int i;
3141
3142 for (i = 0; i < FREE_N_CHANNELS; i++)
3143 if (!list_empty(&krwp->bulk_head_free[i]))
3144 return true;
3145
3146 return !!krwp->head_free;
3147 }
3148
krc_count(struct kfree_rcu_cpu * krcp)3149 static int krc_count(struct kfree_rcu_cpu *krcp)
3150 {
3151 int sum = atomic_read(&krcp->head_count);
3152 int i;
3153
3154 for (i = 0; i < FREE_N_CHANNELS; i++)
3155 sum += atomic_read(&krcp->bulk_count[i]);
3156
3157 return sum;
3158 }
3159
3160 static void
__schedule_delayed_monitor_work(struct kfree_rcu_cpu * krcp)3161 __schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3162 {
3163 long delay, delay_left;
3164
3165 delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES;
3166 if (delayed_work_pending(&krcp->monitor_work)) {
3167 delay_left = krcp->monitor_work.timer.expires - jiffies;
3168 if (delay < delay_left)
3169 mod_delayed_work(system_wq, &krcp->monitor_work, delay);
3170 return;
3171 }
3172 queue_delayed_work(system_wq, &krcp->monitor_work, delay);
3173 }
3174
3175 static void
schedule_delayed_monitor_work(struct kfree_rcu_cpu * krcp)3176 schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3177 {
3178 unsigned long flags;
3179
3180 raw_spin_lock_irqsave(&krcp->lock, flags);
3181 __schedule_delayed_monitor_work(krcp);
3182 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3183 }
3184
3185 static void
kvfree_rcu_drain_ready(struct kfree_rcu_cpu * krcp)3186 kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp)
3187 {
3188 struct list_head bulk_ready[FREE_N_CHANNELS];
3189 struct kvfree_rcu_bulk_data *bnode, *n;
3190 struct rcu_head *head_ready = NULL;
3191 unsigned long flags;
3192 int i;
3193
3194 raw_spin_lock_irqsave(&krcp->lock, flags);
3195 for (i = 0; i < FREE_N_CHANNELS; i++) {
3196 INIT_LIST_HEAD(&bulk_ready[i]);
3197
3198 list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) {
3199 if (!poll_state_synchronize_rcu_full(&bnode->gp_snap))
3200 break;
3201
3202 atomic_sub(bnode->nr_records, &krcp->bulk_count[i]);
3203 list_move(&bnode->list, &bulk_ready[i]);
3204 }
3205 }
3206
3207 if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) {
3208 head_ready = krcp->head;
3209 atomic_set(&krcp->head_count, 0);
3210 WRITE_ONCE(krcp->head, NULL);
3211 }
3212 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3213
3214 for (i = 0; i < FREE_N_CHANNELS; i++) {
3215 list_for_each_entry_safe(bnode, n, &bulk_ready[i], list)
3216 kvfree_rcu_bulk(krcp, bnode, i);
3217 }
3218
3219 if (head_ready)
3220 kvfree_rcu_list(head_ready);
3221 }
3222
3223 /*
3224 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3225 */
kfree_rcu_monitor(struct work_struct * work)3226 static void kfree_rcu_monitor(struct work_struct *work)
3227 {
3228 struct kfree_rcu_cpu *krcp = container_of(work,
3229 struct kfree_rcu_cpu, monitor_work.work);
3230 unsigned long flags;
3231 int i, j;
3232
3233 // Drain ready for reclaim.
3234 kvfree_rcu_drain_ready(krcp);
3235
3236 raw_spin_lock_irqsave(&krcp->lock, flags);
3237
3238 // Attempt to start a new batch.
3239 for (i = 0; i < KFREE_N_BATCHES; i++) {
3240 struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3241
3242 // Try to detach bulk_head or head and attach it, only when
3243 // all channels are free. Any channel is not free means at krwp
3244 // there is on-going rcu work to handle krwp's free business.
3245 if (need_wait_for_krwp_work(krwp))
3246 continue;
3247
3248 // kvfree_rcu_drain_ready() might handle this krcp, if so give up.
3249 if (need_offload_krc(krcp)) {
3250 // Channel 1 corresponds to the SLAB-pointer bulk path.
3251 // Channel 2 corresponds to vmalloc-pointer bulk path.
3252 for (j = 0; j < FREE_N_CHANNELS; j++) {
3253 if (list_empty(&krwp->bulk_head_free[j])) {
3254 atomic_set(&krcp->bulk_count[j], 0);
3255 list_replace_init(&krcp->bulk_head[j],
3256 &krwp->bulk_head_free[j]);
3257 }
3258 }
3259
3260 // Channel 3 corresponds to both SLAB and vmalloc
3261 // objects queued on the linked list.
3262 if (!krwp->head_free) {
3263 krwp->head_free = krcp->head;
3264 get_state_synchronize_rcu_full(&krwp->head_free_gp_snap);
3265 atomic_set(&krcp->head_count, 0);
3266 WRITE_ONCE(krcp->head, NULL);
3267 }
3268
3269 // One work is per one batch, so there are three
3270 // "free channels", the batch can handle. It can
3271 // be that the work is in the pending state when
3272 // channels have been detached following by each
3273 // other.
3274 queue_rcu_work(system_wq, &krwp->rcu_work);
3275 }
3276 }
3277
3278 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3279
3280 // If there is nothing to detach, it means that our job is
3281 // successfully done here. In case of having at least one
3282 // of the channels that is still busy we should rearm the
3283 // work to repeat an attempt. Because previous batches are
3284 // still in progress.
3285 if (need_offload_krc(krcp))
3286 schedule_delayed_monitor_work(krcp);
3287 }
3288
3289 static enum hrtimer_restart
schedule_page_work_fn(struct hrtimer * t)3290 schedule_page_work_fn(struct hrtimer *t)
3291 {
3292 struct kfree_rcu_cpu *krcp =
3293 container_of(t, struct kfree_rcu_cpu, hrtimer);
3294
3295 queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3296 return HRTIMER_NORESTART;
3297 }
3298
fill_page_cache_func(struct work_struct * work)3299 static void fill_page_cache_func(struct work_struct *work)
3300 {
3301 struct kvfree_rcu_bulk_data *bnode;
3302 struct kfree_rcu_cpu *krcp =
3303 container_of(work, struct kfree_rcu_cpu,
3304 page_cache_work.work);
3305 unsigned long flags;
3306 int nr_pages;
3307 bool pushed;
3308 int i;
3309
3310 nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3311 1 : rcu_min_cached_objs;
3312
3313 for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) {
3314 bnode = (struct kvfree_rcu_bulk_data *)
3315 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3316
3317 if (!bnode)
3318 break;
3319
3320 raw_spin_lock_irqsave(&krcp->lock, flags);
3321 pushed = put_cached_bnode(krcp, bnode);
3322 raw_spin_unlock_irqrestore(&krcp->lock, flags);
3323
3324 if (!pushed) {
3325 free_page((unsigned long) bnode);
3326 break;
3327 }
3328 }
3329
3330 atomic_set(&krcp->work_in_progress, 0);
3331 atomic_set(&krcp->backoff_page_cache_fill, 0);
3332 }
3333
3334 static void
run_page_cache_worker(struct kfree_rcu_cpu * krcp)3335 run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3336 {
3337 // If cache disabled, bail out.
3338 if (!rcu_min_cached_objs)
3339 return;
3340
3341 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3342 !atomic_xchg(&krcp->work_in_progress, 1)) {
3343 if (atomic_read(&krcp->backoff_page_cache_fill)) {
3344 queue_delayed_work(system_wq,
3345 &krcp->page_cache_work,
3346 msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3347 } else {
3348 hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3349 krcp->hrtimer.function = schedule_page_work_fn;
3350 hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3351 }
3352 }
3353 }
3354
3355 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3356 // state specified by flags. If can_alloc is true, the caller must
3357 // be schedulable and not be holding any locks or mutexes that might be
3358 // acquired by the memory allocator or anything that it might invoke.
3359 // Returns true if ptr was successfully recorded, else the caller must
3360 // use a fallback.
3361 static inline bool
add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu ** krcp,unsigned long * flags,void * ptr,bool can_alloc)3362 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3363 unsigned long *flags, void *ptr, bool can_alloc)
3364 {
3365 struct kvfree_rcu_bulk_data *bnode;
3366 int idx;
3367
3368 *krcp = krc_this_cpu_lock(flags);
3369 if (unlikely(!(*krcp)->initialized))
3370 return false;
3371
3372 idx = !!is_vmalloc_addr(ptr);
3373 bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx],
3374 struct kvfree_rcu_bulk_data, list);
3375
3376 /* Check if a new block is required. */
3377 if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) {
3378 bnode = get_cached_bnode(*krcp);
3379 if (!bnode && can_alloc) {
3380 krc_this_cpu_unlock(*krcp, *flags);
3381
3382 // __GFP_NORETRY - allows a light-weight direct reclaim
3383 // what is OK from minimizing of fallback hitting point of
3384 // view. Apart of that it forbids any OOM invoking what is
3385 // also beneficial since we are about to release memory soon.
3386 //
3387 // __GFP_NOMEMALLOC - prevents from consuming of all the
3388 // memory reserves. Please note we have a fallback path.
3389 //
3390 // __GFP_NOWARN - it is supposed that an allocation can
3391 // be failed under low memory or high memory pressure
3392 // scenarios.
3393 bnode = (struct kvfree_rcu_bulk_data *)
3394 __get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3395 raw_spin_lock_irqsave(&(*krcp)->lock, *flags);
3396 }
3397
3398 if (!bnode)
3399 return false;
3400
3401 // Initialize the new block and attach it.
3402 bnode->nr_records = 0;
3403 list_add(&bnode->list, &(*krcp)->bulk_head[idx]);
3404 }
3405
3406 // Finally insert and update the GP for this page.
3407 bnode->records[bnode->nr_records++] = ptr;
3408 get_state_synchronize_rcu_full(&bnode->gp_snap);
3409 atomic_inc(&(*krcp)->bulk_count[idx]);
3410
3411 return true;
3412 }
3413
3414 /*
3415 * Queue a request for lazy invocation of the appropriate free routine
3416 * after a grace period. Please note that three paths are maintained,
3417 * two for the common case using arrays of pointers and a third one that
3418 * is used only when the main paths cannot be used, for example, due to
3419 * memory pressure.
3420 *
3421 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3422 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3423 * be free'd in workqueue context. This allows us to: batch requests together to
3424 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3425 */
kvfree_call_rcu(struct rcu_head * head,void * ptr)3426 void kvfree_call_rcu(struct rcu_head *head, void *ptr)
3427 {
3428 unsigned long flags;
3429 struct kfree_rcu_cpu *krcp;
3430 bool success;
3431
3432 /*
3433 * Please note there is a limitation for the head-less
3434 * variant, that is why there is a clear rule for such
3435 * objects: it can be used from might_sleep() context
3436 * only. For other places please embed an rcu_head to
3437 * your data.
3438 */
3439 if (!head)
3440 might_sleep();
3441
3442 // Queue the object but don't yet schedule the batch.
3443 if (debug_rcu_head_queue(ptr)) {
3444 // Probable double kfree_rcu(), just leak.
3445 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3446 __func__, head);
3447
3448 // Mark as success and leave.
3449 return;
3450 }
3451
3452 kasan_record_aux_stack_noalloc(ptr);
3453 success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3454 if (!success) {
3455 run_page_cache_worker(krcp);
3456
3457 if (head == NULL)
3458 // Inline if kvfree_rcu(one_arg) call.
3459 goto unlock_return;
3460
3461 head->func = ptr;
3462 head->next = krcp->head;
3463 WRITE_ONCE(krcp->head, head);
3464 atomic_inc(&krcp->head_count);
3465
3466 // Take a snapshot for this krcp.
3467 krcp->head_gp_snap = get_state_synchronize_rcu();
3468 success = true;
3469 }
3470
3471 /*
3472 * The kvfree_rcu() caller considers the pointer freed at this point
3473 * and likely removes any references to it. Since the actual slab
3474 * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore
3475 * this object (no scanning or false positives reporting).
3476 */
3477 kmemleak_ignore(ptr);
3478
3479 // Set timer to drain after KFREE_DRAIN_JIFFIES.
3480 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
3481 __schedule_delayed_monitor_work(krcp);
3482
3483 unlock_return:
3484 krc_this_cpu_unlock(krcp, flags);
3485
3486 /*
3487 * Inline kvfree() after synchronize_rcu(). We can do
3488 * it from might_sleep() context only, so the current
3489 * CPU can pass the QS state.
3490 */
3491 if (!success) {
3492 debug_rcu_head_unqueue((struct rcu_head *) ptr);
3493 synchronize_rcu();
3494 kvfree(ptr);
3495 }
3496 }
3497 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3498
3499 static unsigned long
kfree_rcu_shrink_count(struct shrinker * shrink,struct shrink_control * sc)3500 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3501 {
3502 int cpu;
3503 unsigned long count = 0;
3504
3505 /* Snapshot count of all CPUs */
3506 for_each_possible_cpu(cpu) {
3507 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3508
3509 count += krc_count(krcp);
3510 count += READ_ONCE(krcp->nr_bkv_objs);
3511 atomic_set(&krcp->backoff_page_cache_fill, 1);
3512 }
3513
3514 return count == 0 ? SHRINK_EMPTY : count;
3515 }
3516
3517 static unsigned long
kfree_rcu_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)3518 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3519 {
3520 int cpu, freed = 0;
3521
3522 for_each_possible_cpu(cpu) {
3523 int count;
3524 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3525
3526 count = krc_count(krcp);
3527 count += drain_page_cache(krcp);
3528 kfree_rcu_monitor(&krcp->monitor_work.work);
3529
3530 sc->nr_to_scan -= count;
3531 freed += count;
3532
3533 if (sc->nr_to_scan <= 0)
3534 break;
3535 }
3536
3537 return freed == 0 ? SHRINK_STOP : freed;
3538 }
3539
3540 static struct shrinker kfree_rcu_shrinker = {
3541 .count_objects = kfree_rcu_shrink_count,
3542 .scan_objects = kfree_rcu_shrink_scan,
3543 .batch = 0,
3544 .seeks = DEFAULT_SEEKS,
3545 };
3546
kfree_rcu_scheduler_running(void)3547 void __init kfree_rcu_scheduler_running(void)
3548 {
3549 int cpu;
3550
3551 for_each_possible_cpu(cpu) {
3552 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3553
3554 if (need_offload_krc(krcp))
3555 schedule_delayed_monitor_work(krcp);
3556 }
3557 }
3558
3559 /*
3560 * During early boot, any blocking grace-period wait automatically
3561 * implies a grace period.
3562 *
3563 * Later on, this could in theory be the case for kernels built with
3564 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
3565 * is not a common case. Furthermore, this optimization would cause
3566 * the rcu_gp_oldstate structure to expand by 50%, so this potential
3567 * grace-period optimization is ignored once the scheduler is running.
3568 */
rcu_blocking_is_gp(void)3569 static int rcu_blocking_is_gp(void)
3570 {
3571 if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) {
3572 might_sleep();
3573 return false;
3574 }
3575 return true;
3576 }
3577
3578 /**
3579 * synchronize_rcu - wait until a grace period has elapsed.
3580 *
3581 * Control will return to the caller some time after a full grace
3582 * period has elapsed, in other words after all currently executing RCU
3583 * read-side critical sections have completed. Note, however, that
3584 * upon return from synchronize_rcu(), the caller might well be executing
3585 * concurrently with new RCU read-side critical sections that began while
3586 * synchronize_rcu() was waiting.
3587 *
3588 * RCU read-side critical sections are delimited by rcu_read_lock()
3589 * and rcu_read_unlock(), and may be nested. In addition, but only in
3590 * v5.0 and later, regions of code across which interrupts, preemption,
3591 * or softirqs have been disabled also serve as RCU read-side critical
3592 * sections. This includes hardware interrupt handlers, softirq handlers,
3593 * and NMI handlers.
3594 *
3595 * Note that this guarantee implies further memory-ordering guarantees.
3596 * On systems with more than one CPU, when synchronize_rcu() returns,
3597 * each CPU is guaranteed to have executed a full memory barrier since
3598 * the end of its last RCU read-side critical section whose beginning
3599 * preceded the call to synchronize_rcu(). In addition, each CPU having
3600 * an RCU read-side critical section that extends beyond the return from
3601 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3602 * after the beginning of synchronize_rcu() and before the beginning of
3603 * that RCU read-side critical section. Note that these guarantees include
3604 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3605 * that are executing in the kernel.
3606 *
3607 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3608 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3609 * to have executed a full memory barrier during the execution of
3610 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3611 * again only if the system has more than one CPU).
3612 *
3613 * Implementation of these memory-ordering guarantees is described here:
3614 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3615 */
synchronize_rcu(void)3616 void synchronize_rcu(void)
3617 {
3618 unsigned long flags;
3619 struct rcu_node *rnp;
3620
3621 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3622 lock_is_held(&rcu_lock_map) ||
3623 lock_is_held(&rcu_sched_lock_map),
3624 "Illegal synchronize_rcu() in RCU read-side critical section");
3625 if (!rcu_blocking_is_gp()) {
3626 if (rcu_gp_is_expedited())
3627 synchronize_rcu_expedited();
3628 else
3629 wait_rcu_gp(call_rcu_hurry);
3630 return;
3631 }
3632
3633 // Context allows vacuous grace periods.
3634 // Note well that this code runs with !PREEMPT && !SMP.
3635 // In addition, all code that advances grace periods runs at
3636 // process level. Therefore, this normal GP overlaps with other
3637 // normal GPs only by being fully nested within them, which allows
3638 // reuse of ->gp_seq_polled_snap.
3639 rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap);
3640 rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap);
3641
3642 // Update the normal grace-period counters to record
3643 // this grace period, but only those used by the boot CPU.
3644 // The rcu_scheduler_starting() will take care of the rest of
3645 // these counters.
3646 local_irq_save(flags);
3647 WARN_ON_ONCE(num_online_cpus() > 1);
3648 rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT);
3649 for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent)
3650 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
3651 local_irq_restore(flags);
3652 }
3653 EXPORT_SYMBOL_GPL(synchronize_rcu);
3654
3655 /**
3656 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
3657 * @rgosp: Place to put state cookie
3658 *
3659 * Stores into @rgosp a value that will always be treated by functions
3660 * like poll_state_synchronize_rcu_full() as a cookie whose grace period
3661 * has already completed.
3662 */
get_completed_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3663 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3664 {
3665 rgosp->rgos_norm = RCU_GET_STATE_COMPLETED;
3666 rgosp->rgos_exp = RCU_GET_STATE_COMPLETED;
3667 }
3668 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full);
3669
3670 /**
3671 * get_state_synchronize_rcu - Snapshot current RCU state
3672 *
3673 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3674 * or poll_state_synchronize_rcu() to determine whether or not a full
3675 * grace period has elapsed in the meantime.
3676 */
get_state_synchronize_rcu(void)3677 unsigned long get_state_synchronize_rcu(void)
3678 {
3679 /*
3680 * Any prior manipulation of RCU-protected data must happen
3681 * before the load from ->gp_seq.
3682 */
3683 smp_mb(); /* ^^^ */
3684 return rcu_seq_snap(&rcu_state.gp_seq_polled);
3685 }
3686 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3687
3688 /**
3689 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited
3690 * @rgosp: location to place combined normal/expedited grace-period state
3691 *
3692 * Places the normal and expedited grace-period states in @rgosp. This
3693 * state value can be passed to a later call to cond_synchronize_rcu_full()
3694 * or poll_state_synchronize_rcu_full() to determine whether or not a
3695 * grace period (whether normal or expedited) has elapsed in the meantime.
3696 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned
3697 * long, but is guaranteed to see all grace periods. In contrast, the
3698 * combined state occupies less memory, but can sometimes fail to take
3699 * grace periods into account.
3700 *
3701 * This does not guarantee that the needed grace period will actually
3702 * start.
3703 */
get_state_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3704 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3705 {
3706 struct rcu_node *rnp = rcu_get_root();
3707
3708 /*
3709 * Any prior manipulation of RCU-protected data must happen
3710 * before the loads from ->gp_seq and ->expedited_sequence.
3711 */
3712 smp_mb(); /* ^^^ */
3713 rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq);
3714 rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence);
3715 }
3716 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full);
3717
3718 /*
3719 * Helper function for start_poll_synchronize_rcu() and
3720 * start_poll_synchronize_rcu_full().
3721 */
start_poll_synchronize_rcu_common(void)3722 static void start_poll_synchronize_rcu_common(void)
3723 {
3724 unsigned long flags;
3725 bool needwake;
3726 struct rcu_data *rdp;
3727 struct rcu_node *rnp;
3728
3729 lockdep_assert_irqs_enabled();
3730 local_irq_save(flags);
3731 rdp = this_cpu_ptr(&rcu_data);
3732 rnp = rdp->mynode;
3733 raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3734 // Note it is possible for a grace period to have elapsed between
3735 // the above call to get_state_synchronize_rcu() and the below call
3736 // to rcu_seq_snap. This is OK, the worst that happens is that we
3737 // get a grace period that no one needed. These accesses are ordered
3738 // by smp_mb(), and we are accessing them in the opposite order
3739 // from which they are updated at grace-period start, as required.
3740 needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq));
3741 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3742 if (needwake)
3743 rcu_gp_kthread_wake();
3744 }
3745
3746 /**
3747 * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3748 *
3749 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3750 * or poll_state_synchronize_rcu() to determine whether or not a full
3751 * grace period has elapsed in the meantime. If the needed grace period
3752 * is not already slated to start, notifies RCU core of the need for that
3753 * grace period.
3754 *
3755 * Interrupts must be enabled for the case where it is necessary to awaken
3756 * the grace-period kthread.
3757 */
start_poll_synchronize_rcu(void)3758 unsigned long start_poll_synchronize_rcu(void)
3759 {
3760 unsigned long gp_seq = get_state_synchronize_rcu();
3761
3762 start_poll_synchronize_rcu_common();
3763 return gp_seq;
3764 }
3765 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3766
3767 /**
3768 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period
3769 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3770 *
3771 * Places the normal and expedited grace-period states in *@rgos. This
3772 * state value can be passed to a later call to cond_synchronize_rcu_full()
3773 * or poll_state_synchronize_rcu_full() to determine whether or not a
3774 * grace period (whether normal or expedited) has elapsed in the meantime.
3775 * If the needed grace period is not already slated to start, notifies
3776 * RCU core of the need for that grace period.
3777 *
3778 * Interrupts must be enabled for the case where it is necessary to awaken
3779 * the grace-period kthread.
3780 */
start_poll_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3781 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3782 {
3783 get_state_synchronize_rcu_full(rgosp);
3784
3785 start_poll_synchronize_rcu_common();
3786 }
3787 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full);
3788
3789 /**
3790 * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
3791 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3792 *
3793 * If a full RCU grace period has elapsed since the earlier call from
3794 * which @oldstate was obtained, return @true, otherwise return @false.
3795 * If @false is returned, it is the caller's responsibility to invoke this
3796 * function later on until it does return @true. Alternatively, the caller
3797 * can explicitly wait for a grace period, for example, by passing @oldstate
3798 * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited()
3799 * on the one hand or by directly invoking either synchronize_rcu() or
3800 * synchronize_rcu_expedited() on the other.
3801 *
3802 * Yes, this function does not take counter wrap into account.
3803 * But counter wrap is harmless. If the counter wraps, we have waited for
3804 * more than a billion grace periods (and way more on a 64-bit system!).
3805 * Those needing to keep old state values for very long time periods
3806 * (many hours even on 32-bit systems) should check them occasionally and
3807 * either refresh them or set a flag indicating that the grace period has
3808 * completed. Alternatively, they can use get_completed_synchronize_rcu()
3809 * to get a guaranteed-completed grace-period state.
3810 *
3811 * In addition, because oldstate compresses the grace-period state for
3812 * both normal and expedited grace periods into a single unsigned long,
3813 * it can miss a grace period when synchronize_rcu() runs concurrently
3814 * with synchronize_rcu_expedited(). If this is unacceptable, please
3815 * instead use the _full() variant of these polling APIs.
3816 *
3817 * This function provides the same memory-ordering guarantees that
3818 * would be provided by a synchronize_rcu() that was invoked at the call
3819 * to the function that provided @oldstate, and that returned at the end
3820 * of this function.
3821 */
poll_state_synchronize_rcu(unsigned long oldstate)3822 bool poll_state_synchronize_rcu(unsigned long oldstate)
3823 {
3824 if (oldstate == RCU_GET_STATE_COMPLETED ||
3825 rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) {
3826 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3827 return true;
3828 }
3829 return false;
3830 }
3831 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3832
3833 /**
3834 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
3835 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3836 *
3837 * If a full RCU grace period has elapsed since the earlier call from
3838 * which *rgosp was obtained, return @true, otherwise return @false.
3839 * If @false is returned, it is the caller's responsibility to invoke this
3840 * function later on until it does return @true. Alternatively, the caller
3841 * can explicitly wait for a grace period, for example, by passing @rgosp
3842 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3843 *
3844 * Yes, this function does not take counter wrap into account.
3845 * But counter wrap is harmless. If the counter wraps, we have waited
3846 * for more than a billion grace periods (and way more on a 64-bit
3847 * system!). Those needing to keep rcu_gp_oldstate values for very
3848 * long time periods (many hours even on 32-bit systems) should check
3849 * them occasionally and either refresh them or set a flag indicating
3850 * that the grace period has completed. Alternatively, they can use
3851 * get_completed_synchronize_rcu_full() to get a guaranteed-completed
3852 * grace-period state.
3853 *
3854 * This function provides the same memory-ordering guarantees that would
3855 * be provided by a synchronize_rcu() that was invoked at the call to
3856 * the function that provided @rgosp, and that returned at the end of this
3857 * function. And this guarantee requires that the root rcu_node structure's
3858 * ->gp_seq field be checked instead of that of the rcu_state structure.
3859 * The problem is that the just-ending grace-period's callbacks can be
3860 * invoked between the time that the root rcu_node structure's ->gp_seq
3861 * field is updated and the time that the rcu_state structure's ->gp_seq
3862 * field is updated. Therefore, if a single synchronize_rcu() is to
3863 * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
3864 * then the root rcu_node structure is the one that needs to be polled.
3865 */
poll_state_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3866 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3867 {
3868 struct rcu_node *rnp = rcu_get_root();
3869
3870 smp_mb(); // Order against root rcu_node structure grace-period cleanup.
3871 if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED ||
3872 rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) ||
3873 rgosp->rgos_exp == RCU_GET_STATE_COMPLETED ||
3874 rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) {
3875 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3876 return true;
3877 }
3878 return false;
3879 }
3880 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full);
3881
3882 /**
3883 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3884 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
3885 *
3886 * If a full RCU grace period has elapsed since the earlier call to
3887 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3888 * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3889 *
3890 * Yes, this function does not take counter wrap into account.
3891 * But counter wrap is harmless. If the counter wraps, we have waited for
3892 * more than 2 billion grace periods (and way more on a 64-bit system!),
3893 * so waiting for a couple of additional grace periods should be just fine.
3894 *
3895 * This function provides the same memory-ordering guarantees that
3896 * would be provided by a synchronize_rcu() that was invoked at the call
3897 * to the function that provided @oldstate and that returned at the end
3898 * of this function.
3899 */
cond_synchronize_rcu(unsigned long oldstate)3900 void cond_synchronize_rcu(unsigned long oldstate)
3901 {
3902 if (!poll_state_synchronize_rcu(oldstate))
3903 synchronize_rcu();
3904 }
3905 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3906
3907 /**
3908 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period
3909 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full()
3910 *
3911 * If a full RCU grace period has elapsed since the call to
3912 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
3913 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was
3914 * obtained, just return. Otherwise, invoke synchronize_rcu() to wait
3915 * for a full grace period.
3916 *
3917 * Yes, this function does not take counter wrap into account.
3918 * But counter wrap is harmless. If the counter wraps, we have waited for
3919 * more than 2 billion grace periods (and way more on a 64-bit system!),
3920 * so waiting for a couple of additional grace periods should be just fine.
3921 *
3922 * This function provides the same memory-ordering guarantees that
3923 * would be provided by a synchronize_rcu() that was invoked at the call
3924 * to the function that provided @rgosp and that returned at the end of
3925 * this function.
3926 */
cond_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3927 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3928 {
3929 if (!poll_state_synchronize_rcu_full(rgosp))
3930 synchronize_rcu();
3931 }
3932 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full);
3933
3934 /*
3935 * Check to see if there is any immediate RCU-related work to be done by
3936 * the current CPU, returning 1 if so and zero otherwise. The checks are
3937 * in order of increasing expense: checks that can be carried out against
3938 * CPU-local state are performed first. However, we must check for CPU
3939 * stalls first, else we might not get a chance.
3940 */
rcu_pending(int user)3941 static int rcu_pending(int user)
3942 {
3943 bool gp_in_progress;
3944 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3945 struct rcu_node *rnp = rdp->mynode;
3946
3947 lockdep_assert_irqs_disabled();
3948
3949 /* Check for CPU stalls, if enabled. */
3950 check_cpu_stall(rdp);
3951
3952 /* Does this CPU need a deferred NOCB wakeup? */
3953 if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3954 return 1;
3955
3956 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */
3957 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3958 return 0;
3959
3960 /* Is the RCU core waiting for a quiescent state from this CPU? */
3961 gp_in_progress = rcu_gp_in_progress();
3962 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3963 return 1;
3964
3965 /* Does this CPU have callbacks ready to invoke? */
3966 if (!rcu_rdp_is_offloaded(rdp) &&
3967 rcu_segcblist_ready_cbs(&rdp->cblist))
3968 return 1;
3969
3970 /* Has RCU gone idle with this CPU needing another grace period? */
3971 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3972 !rcu_rdp_is_offloaded(rdp) &&
3973 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3974 return 1;
3975
3976 /* Have RCU grace period completed or started? */
3977 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3978 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3979 return 1;
3980
3981 /* nothing to do */
3982 return 0;
3983 }
3984
3985 /*
3986 * Helper function for rcu_barrier() tracing. If tracing is disabled,
3987 * the compiler is expected to optimize this away.
3988 */
rcu_barrier_trace(const char * s,int cpu,unsigned long done)3989 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3990 {
3991 trace_rcu_barrier(rcu_state.name, s, cpu,
3992 atomic_read(&rcu_state.barrier_cpu_count), done);
3993 }
3994
3995 /*
3996 * RCU callback function for rcu_barrier(). If we are last, wake
3997 * up the task executing rcu_barrier().
3998 *
3999 * Note that the value of rcu_state.barrier_sequence must be captured
4000 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last,
4001 * other CPUs might count the value down to zero before this CPU gets
4002 * around to invoking rcu_barrier_trace(), which might result in bogus
4003 * data from the next instance of rcu_barrier().
4004 */
rcu_barrier_callback(struct rcu_head * rhp)4005 static void rcu_barrier_callback(struct rcu_head *rhp)
4006 {
4007 unsigned long __maybe_unused s = rcu_state.barrier_sequence;
4008
4009 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
4010 rcu_barrier_trace(TPS("LastCB"), -1, s);
4011 complete(&rcu_state.barrier_completion);
4012 } else {
4013 rcu_barrier_trace(TPS("CB"), -1, s);
4014 }
4015 }
4016
4017 /*
4018 * If needed, entrain an rcu_barrier() callback on rdp->cblist.
4019 */
rcu_barrier_entrain(struct rcu_data * rdp)4020 static void rcu_barrier_entrain(struct rcu_data *rdp)
4021 {
4022 unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
4023 unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
4024 bool wake_nocb = false;
4025 bool was_alldone = false;
4026
4027 lockdep_assert_held(&rcu_state.barrier_lock);
4028 if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
4029 return;
4030 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
4031 rdp->barrier_head.func = rcu_barrier_callback;
4032 debug_rcu_head_queue(&rdp->barrier_head);
4033 rcu_nocb_lock(rdp);
4034 /*
4035 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular
4036 * queue. This way we don't wait for bypass timer that can reach seconds
4037 * if it's fully lazy.
4038 */
4039 was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist);
4040 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
4041 wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist);
4042 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
4043 atomic_inc(&rcu_state.barrier_cpu_count);
4044 } else {
4045 debug_rcu_head_unqueue(&rdp->barrier_head);
4046 rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
4047 }
4048 rcu_nocb_unlock(rdp);
4049 if (wake_nocb)
4050 wake_nocb_gp(rdp, false);
4051 smp_store_release(&rdp->barrier_seq_snap, gseq);
4052 }
4053
4054 /*
4055 * Called with preemption disabled, and from cross-cpu IRQ context.
4056 */
rcu_barrier_handler(void * cpu_in)4057 static void rcu_barrier_handler(void *cpu_in)
4058 {
4059 uintptr_t cpu = (uintptr_t)cpu_in;
4060 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4061
4062 lockdep_assert_irqs_disabled();
4063 WARN_ON_ONCE(cpu != rdp->cpu);
4064 WARN_ON_ONCE(cpu != smp_processor_id());
4065 raw_spin_lock(&rcu_state.barrier_lock);
4066 rcu_barrier_entrain(rdp);
4067 raw_spin_unlock(&rcu_state.barrier_lock);
4068 }
4069
4070 /**
4071 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
4072 *
4073 * Note that this primitive does not necessarily wait for an RCU grace period
4074 * to complete. For example, if there are no RCU callbacks queued anywhere
4075 * in the system, then rcu_barrier() is within its rights to return
4076 * immediately, without waiting for anything, much less an RCU grace period.
4077 */
rcu_barrier(void)4078 void rcu_barrier(void)
4079 {
4080 uintptr_t cpu;
4081 unsigned long flags;
4082 unsigned long gseq;
4083 struct rcu_data *rdp;
4084 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4085
4086 rcu_barrier_trace(TPS("Begin"), -1, s);
4087
4088 /* Take mutex to serialize concurrent rcu_barrier() requests. */
4089 mutex_lock(&rcu_state.barrier_mutex);
4090
4091 /* Did someone else do our work for us? */
4092 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4093 rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence);
4094 smp_mb(); /* caller's subsequent code after above check. */
4095 mutex_unlock(&rcu_state.barrier_mutex);
4096 return;
4097 }
4098
4099 /* Mark the start of the barrier operation. */
4100 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4101 rcu_seq_start(&rcu_state.barrier_sequence);
4102 gseq = rcu_state.barrier_sequence;
4103 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
4104
4105 /*
4106 * Initialize the count to two rather than to zero in order
4107 * to avoid a too-soon return to zero in case of an immediate
4108 * invocation of the just-enqueued callback (or preemption of
4109 * this task). Exclude CPU-hotplug operations to ensure that no
4110 * offline non-offloaded CPU has callbacks queued.
4111 */
4112 init_completion(&rcu_state.barrier_completion);
4113 atomic_set(&rcu_state.barrier_cpu_count, 2);
4114 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4115
4116 /*
4117 * Force each CPU with callbacks to register a new callback.
4118 * When that callback is invoked, we will know that all of the
4119 * corresponding CPU's preceding callbacks have been invoked.
4120 */
4121 for_each_possible_cpu(cpu) {
4122 rdp = per_cpu_ptr(&rcu_data, cpu);
4123 retry:
4124 if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
4125 continue;
4126 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4127 if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
4128 WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4129 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4130 rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
4131 continue;
4132 }
4133 if (!rcu_rdp_cpu_online(rdp)) {
4134 rcu_barrier_entrain(rdp);
4135 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4136 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4137 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence);
4138 continue;
4139 }
4140 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4141 if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) {
4142 schedule_timeout_uninterruptible(1);
4143 goto retry;
4144 }
4145 WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4146 rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence);
4147 }
4148
4149 /*
4150 * Now that we have an rcu_barrier_callback() callback on each
4151 * CPU, and thus each counted, remove the initial count.
4152 */
4153 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4154 complete(&rcu_state.barrier_completion);
4155
4156 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4157 wait_for_completion(&rcu_state.barrier_completion);
4158
4159 /* Mark the end of the barrier operation. */
4160 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4161 rcu_seq_end(&rcu_state.barrier_sequence);
4162 gseq = rcu_state.barrier_sequence;
4163 for_each_possible_cpu(cpu) {
4164 rdp = per_cpu_ptr(&rcu_data, cpu);
4165
4166 WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4167 }
4168
4169 /* Other rcu_barrier() invocations can now safely proceed. */
4170 mutex_unlock(&rcu_state.barrier_mutex);
4171 }
4172 EXPORT_SYMBOL_GPL(rcu_barrier);
4173
4174 /*
4175 * Compute the mask of online CPUs for the specified rcu_node structure.
4176 * This will not be stable unless the rcu_node structure's ->lock is
4177 * held, but the bit corresponding to the current CPU will be stable
4178 * in most contexts.
4179 */
rcu_rnp_online_cpus(struct rcu_node * rnp)4180 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
4181 {
4182 return READ_ONCE(rnp->qsmaskinitnext);
4183 }
4184
4185 /*
4186 * Is the CPU corresponding to the specified rcu_data structure online
4187 * from RCU's perspective? This perspective is given by that structure's
4188 * ->qsmaskinitnext field rather than by the global cpu_online_mask.
4189 */
rcu_rdp_cpu_online(struct rcu_data * rdp)4190 static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
4191 {
4192 return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode));
4193 }
4194
rcu_cpu_online(int cpu)4195 bool rcu_cpu_online(int cpu)
4196 {
4197 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4198
4199 return rcu_rdp_cpu_online(rdp);
4200 }
4201
4202 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
4203
4204 /*
4205 * Is the current CPU online as far as RCU is concerned?
4206 *
4207 * Disable preemption to avoid false positives that could otherwise
4208 * happen due to the current CPU number being sampled, this task being
4209 * preempted, its old CPU being taken offline, resuming on some other CPU,
4210 * then determining that its old CPU is now offline.
4211 *
4212 * Disable checking if in an NMI handler because we cannot safely
4213 * report errors from NMI handlers anyway. In addition, it is OK to use
4214 * RCU on an offline processor during initial boot, hence the check for
4215 * rcu_scheduler_fully_active.
4216 */
rcu_lockdep_current_cpu_online(void)4217 bool rcu_lockdep_current_cpu_online(void)
4218 {
4219 struct rcu_data *rdp;
4220 bool ret = false;
4221
4222 if (in_nmi() || !rcu_scheduler_fully_active)
4223 return true;
4224 preempt_disable_notrace();
4225 rdp = this_cpu_ptr(&rcu_data);
4226 /*
4227 * Strictly, we care here about the case where the current CPU is
4228 * in rcu_cpu_starting() and thus has an excuse for rdp->grpmask
4229 * not being up to date. So arch_spin_is_locked() might have a
4230 * false positive if it's held by some *other* CPU, but that's
4231 * OK because that just means a false *negative* on the warning.
4232 */
4233 if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
4234 ret = true;
4235 preempt_enable_notrace();
4236 return ret;
4237 }
4238 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
4239
4240 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
4241
4242 // Has rcu_init() been invoked? This is used (for example) to determine
4243 // whether spinlocks may be acquired safely.
rcu_init_invoked(void)4244 static bool rcu_init_invoked(void)
4245 {
4246 return !!rcu_state.n_online_cpus;
4247 }
4248
4249 /*
4250 * Near the end of the offline process. Trace the fact that this CPU
4251 * is going offline.
4252 */
rcutree_dying_cpu(unsigned int cpu)4253 int rcutree_dying_cpu(unsigned int cpu)
4254 {
4255 bool blkd;
4256 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4257 struct rcu_node *rnp = rdp->mynode;
4258
4259 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
4260 return 0;
4261
4262 blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask);
4263 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
4264 blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
4265 return 0;
4266 }
4267
4268 /*
4269 * All CPUs for the specified rcu_node structure have gone offline,
4270 * and all tasks that were preempted within an RCU read-side critical
4271 * section while running on one of those CPUs have since exited their RCU
4272 * read-side critical section. Some other CPU is reporting this fact with
4273 * the specified rcu_node structure's ->lock held and interrupts disabled.
4274 * This function therefore goes up the tree of rcu_node structures,
4275 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
4276 * the leaf rcu_node structure's ->qsmaskinit field has already been
4277 * updated.
4278 *
4279 * This function does check that the specified rcu_node structure has
4280 * all CPUs offline and no blocked tasks, so it is OK to invoke it
4281 * prematurely. That said, invoking it after the fact will cost you
4282 * a needless lock acquisition. So once it has done its work, don't
4283 * invoke it again.
4284 */
rcu_cleanup_dead_rnp(struct rcu_node * rnp_leaf)4285 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
4286 {
4287 long mask;
4288 struct rcu_node *rnp = rnp_leaf;
4289
4290 raw_lockdep_assert_held_rcu_node(rnp_leaf);
4291 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
4292 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
4293 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
4294 return;
4295 for (;;) {
4296 mask = rnp->grpmask;
4297 rnp = rnp->parent;
4298 if (!rnp)
4299 break;
4300 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4301 rnp->qsmaskinit &= ~mask;
4302 /* Between grace periods, so better already be zero! */
4303 WARN_ON_ONCE(rnp->qsmask);
4304 if (rnp->qsmaskinit) {
4305 raw_spin_unlock_rcu_node(rnp);
4306 /* irqs remain disabled. */
4307 return;
4308 }
4309 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4310 }
4311 }
4312
4313 /*
4314 * The CPU has been completely removed, and some other CPU is reporting
4315 * this fact from process context. Do the remainder of the cleanup.
4316 * There can only be one CPU hotplug operation at a time, so no need for
4317 * explicit locking.
4318 */
rcutree_dead_cpu(unsigned int cpu)4319 int rcutree_dead_cpu(unsigned int cpu)
4320 {
4321 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
4322 return 0;
4323
4324 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
4325 // Stop-machine done, so allow nohz_full to disable tick.
4326 tick_dep_clear(TICK_DEP_BIT_RCU);
4327 return 0;
4328 }
4329
4330 /*
4331 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4332 * first CPU in a given leaf rcu_node structure coming online. The caller
4333 * must hold the corresponding leaf rcu_node ->lock with interrupts
4334 * disabled.
4335 */
rcu_init_new_rnp(struct rcu_node * rnp_leaf)4336 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4337 {
4338 long mask;
4339 long oldmask;
4340 struct rcu_node *rnp = rnp_leaf;
4341
4342 raw_lockdep_assert_held_rcu_node(rnp_leaf);
4343 WARN_ON_ONCE(rnp->wait_blkd_tasks);
4344 for (;;) {
4345 mask = rnp->grpmask;
4346 rnp = rnp->parent;
4347 if (rnp == NULL)
4348 return;
4349 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4350 oldmask = rnp->qsmaskinit;
4351 rnp->qsmaskinit |= mask;
4352 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4353 if (oldmask)
4354 return;
4355 }
4356 }
4357
4358 /*
4359 * Do boot-time initialization of a CPU's per-CPU RCU data.
4360 */
4361 static void __init
rcu_boot_init_percpu_data(int cpu)4362 rcu_boot_init_percpu_data(int cpu)
4363 {
4364 struct context_tracking *ct = this_cpu_ptr(&context_tracking);
4365 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4366
4367 /* Set up local state, ensuring consistent view of global state. */
4368 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4369 INIT_WORK(&rdp->strict_work, strict_work_handler);
4370 WARN_ON_ONCE(ct->dynticks_nesting != 1);
4371 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu)));
4372 rdp->barrier_seq_snap = rcu_state.barrier_sequence;
4373 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4374 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4375 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4376 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4377 rdp->last_sched_clock = jiffies;
4378 rdp->cpu = cpu;
4379 rcu_boot_init_nocb_percpu_data(rdp);
4380 }
4381
4382 /*
4383 * Invoked early in the CPU-online process, when pretty much all services
4384 * are available. The incoming CPU is not present.
4385 *
4386 * Initializes a CPU's per-CPU RCU data. Note that only one online or
4387 * offline event can be happening at a given time. Note also that we can
4388 * accept some slop in the rsp->gp_seq access due to the fact that this
4389 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4390 * And any offloaded callbacks are being numbered elsewhere.
4391 */
rcutree_prepare_cpu(unsigned int cpu)4392 int rcutree_prepare_cpu(unsigned int cpu)
4393 {
4394 unsigned long flags;
4395 struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu);
4396 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4397 struct rcu_node *rnp = rcu_get_root();
4398
4399 /* Set up local state, ensuring consistent view of global state. */
4400 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4401 rdp->qlen_last_fqs_check = 0;
4402 rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4403 rdp->blimit = blimit;
4404 ct->dynticks_nesting = 1; /* CPU not up, no tearing. */
4405 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4406
4407 /*
4408 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4409 * (re-)initialized.
4410 */
4411 if (!rcu_segcblist_is_enabled(&rdp->cblist))
4412 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
4413
4414 /*
4415 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
4416 * propagation up the rcu_node tree will happen at the beginning
4417 * of the next grace period.
4418 */
4419 rnp = rdp->mynode;
4420 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4421 rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4422 rdp->gp_seq_needed = rdp->gp_seq;
4423 rdp->cpu_no_qs.b.norm = true;
4424 rdp->core_needs_qs = false;
4425 rdp->rcu_iw_pending = false;
4426 rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4427 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4428 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4429 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4430 rcu_spawn_one_boost_kthread(rnp);
4431 rcu_spawn_cpu_nocb_kthread(cpu);
4432 WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4433
4434 return 0;
4435 }
4436
4437 /*
4438 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4439 */
rcutree_affinity_setting(unsigned int cpu,int outgoing)4440 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4441 {
4442 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4443
4444 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4445 }
4446
4447 /*
4448 * Has the specified (known valid) CPU ever been fully online?
4449 */
rcu_cpu_beenfullyonline(int cpu)4450 bool rcu_cpu_beenfullyonline(int cpu)
4451 {
4452 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4453
4454 return smp_load_acquire(&rdp->beenonline);
4455 }
4456
4457 /*
4458 * Near the end of the CPU-online process. Pretty much all services
4459 * enabled, and the CPU is now very much alive.
4460 */
rcutree_online_cpu(unsigned int cpu)4461 int rcutree_online_cpu(unsigned int cpu)
4462 {
4463 unsigned long flags;
4464 struct rcu_data *rdp;
4465 struct rcu_node *rnp;
4466
4467 rdp = per_cpu_ptr(&rcu_data, cpu);
4468 rnp = rdp->mynode;
4469 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4470 rnp->ffmask |= rdp->grpmask;
4471 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4472 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4473 return 0; /* Too early in boot for scheduler work. */
4474 sync_sched_exp_online_cleanup(cpu);
4475 rcutree_affinity_setting(cpu, -1);
4476
4477 // Stop-machine done, so allow nohz_full to disable tick.
4478 tick_dep_clear(TICK_DEP_BIT_RCU);
4479 return 0;
4480 }
4481
4482 /*
4483 * Near the beginning of the process. The CPU is still very much alive
4484 * with pretty much all services enabled.
4485 */
rcutree_offline_cpu(unsigned int cpu)4486 int rcutree_offline_cpu(unsigned int cpu)
4487 {
4488 unsigned long flags;
4489 struct rcu_data *rdp;
4490 struct rcu_node *rnp;
4491
4492 rdp = per_cpu_ptr(&rcu_data, cpu);
4493 rnp = rdp->mynode;
4494 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4495 rnp->ffmask &= ~rdp->grpmask;
4496 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4497
4498 rcutree_affinity_setting(cpu, cpu);
4499
4500 // nohz_full CPUs need the tick for stop-machine to work quickly
4501 tick_dep_set(TICK_DEP_BIT_RCU);
4502 return 0;
4503 }
4504
4505 /*
4506 * Mark the specified CPU as being online so that subsequent grace periods
4507 * (both expedited and normal) will wait on it. Note that this means that
4508 * incoming CPUs are not allowed to use RCU read-side critical sections
4509 * until this function is called. Failing to observe this restriction
4510 * will result in lockdep splats.
4511 *
4512 * Note that this function is special in that it is invoked directly
4513 * from the incoming CPU rather than from the cpuhp_step mechanism.
4514 * This is because this function must be invoked at a precise location.
4515 * This incoming CPU must not have enabled interrupts yet.
4516 */
rcu_cpu_starting(unsigned int cpu)4517 void rcu_cpu_starting(unsigned int cpu)
4518 {
4519 unsigned long mask;
4520 struct rcu_data *rdp;
4521 struct rcu_node *rnp;
4522 bool newcpu;
4523
4524 lockdep_assert_irqs_disabled();
4525 rdp = per_cpu_ptr(&rcu_data, cpu);
4526 if (rdp->cpu_started)
4527 return;
4528 rdp->cpu_started = true;
4529
4530 rnp = rdp->mynode;
4531 mask = rdp->grpmask;
4532 arch_spin_lock(&rcu_state.ofl_lock);
4533 rcu_dynticks_eqs_online();
4534 raw_spin_lock(&rcu_state.barrier_lock);
4535 raw_spin_lock_rcu_node(rnp);
4536 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4537 raw_spin_unlock(&rcu_state.barrier_lock);
4538 newcpu = !(rnp->expmaskinitnext & mask);
4539 rnp->expmaskinitnext |= mask;
4540 /* Allow lockless access for expedited grace periods. */
4541 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4542 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4543 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4544 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4545 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4546
4547 /* An incoming CPU should never be blocking a grace period. */
4548 if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4549 /* rcu_report_qs_rnp() *really* wants some flags to restore */
4550 unsigned long flags;
4551
4552 local_irq_save(flags);
4553 rcu_disable_urgency_upon_qs(rdp);
4554 /* Report QS -after- changing ->qsmaskinitnext! */
4555 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4556 } else {
4557 raw_spin_unlock_rcu_node(rnp);
4558 }
4559 arch_spin_unlock(&rcu_state.ofl_lock);
4560 smp_store_release(&rdp->beenonline, true);
4561 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4562 }
4563
4564 /*
4565 * The outgoing function has no further need of RCU, so remove it from
4566 * the rcu_node tree's ->qsmaskinitnext bit masks.
4567 *
4568 * Note that this function is special in that it is invoked directly
4569 * from the outgoing CPU rather than from the cpuhp_step mechanism.
4570 * This is because this function must be invoked at a precise location.
4571 */
rcu_report_dead(unsigned int cpu)4572 void rcu_report_dead(unsigned int cpu)
4573 {
4574 unsigned long flags, seq_flags;
4575 unsigned long mask;
4576 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4577 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
4578
4579 // Do any dangling deferred wakeups.
4580 do_nocb_deferred_wakeup(rdp);
4581
4582 rcu_preempt_deferred_qs(current);
4583
4584 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4585 mask = rdp->grpmask;
4586 local_irq_save(seq_flags);
4587 arch_spin_lock(&rcu_state.ofl_lock);
4588 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4589 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4590 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4591 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4592 /* Report quiescent state -before- changing ->qsmaskinitnext! */
4593 rcu_disable_urgency_upon_qs(rdp);
4594 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4595 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4596 }
4597 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4598 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4599 arch_spin_unlock(&rcu_state.ofl_lock);
4600 local_irq_restore(seq_flags);
4601
4602 rdp->cpu_started = false;
4603 }
4604
4605 #ifdef CONFIG_HOTPLUG_CPU
4606 /*
4607 * The outgoing CPU has just passed through the dying-idle state, and we
4608 * are being invoked from the CPU that was IPIed to continue the offline
4609 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
4610 */
rcutree_migrate_callbacks(int cpu)4611 void rcutree_migrate_callbacks(int cpu)
4612 {
4613 unsigned long flags;
4614 struct rcu_data *my_rdp;
4615 struct rcu_node *my_rnp;
4616 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4617 bool needwake;
4618
4619 if (rcu_rdp_is_offloaded(rdp))
4620 return;
4621
4622 raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4623 if (rcu_segcblist_empty(&rdp->cblist)) {
4624 raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4625 return; /* No callbacks to migrate. */
4626 }
4627
4628 WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
4629 rcu_barrier_entrain(rdp);
4630 my_rdp = this_cpu_ptr(&rcu_data);
4631 my_rnp = my_rdp->mynode;
4632 rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4633 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false));
4634 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4635 /* Leverage recent GPs and set GP for new callbacks. */
4636 needwake = rcu_advance_cbs(my_rnp, rdp) ||
4637 rcu_advance_cbs(my_rnp, my_rdp);
4638 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4639 raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
4640 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4641 rcu_segcblist_disable(&rdp->cblist);
4642 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
4643 check_cb_ovld_locked(my_rdp, my_rnp);
4644 if (rcu_rdp_is_offloaded(my_rdp)) {
4645 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4646 __call_rcu_nocb_wake(my_rdp, true, flags);
4647 } else {
4648 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4649 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4650 }
4651 local_irq_restore(flags);
4652 if (needwake)
4653 rcu_gp_kthread_wake();
4654 lockdep_assert_irqs_enabled();
4655 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4656 !rcu_segcblist_empty(&rdp->cblist),
4657 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4658 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4659 rcu_segcblist_first_cb(&rdp->cblist));
4660 }
4661 #endif
4662
4663 /*
4664 * On non-huge systems, use expedited RCU grace periods to make suspend
4665 * and hibernation run faster.
4666 */
rcu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)4667 static int rcu_pm_notify(struct notifier_block *self,
4668 unsigned long action, void *hcpu)
4669 {
4670 switch (action) {
4671 case PM_HIBERNATION_PREPARE:
4672 case PM_SUSPEND_PREPARE:
4673 rcu_async_hurry();
4674 rcu_expedite_gp();
4675 break;
4676 case PM_POST_HIBERNATION:
4677 case PM_POST_SUSPEND:
4678 rcu_unexpedite_gp();
4679 rcu_async_relax();
4680 break;
4681 default:
4682 break;
4683 }
4684 return NOTIFY_OK;
4685 }
4686
4687 #ifdef CONFIG_RCU_EXP_KTHREAD
4688 struct kthread_worker *rcu_exp_gp_kworker;
4689 struct kthread_worker *rcu_exp_par_gp_kworker;
4690
rcu_start_exp_gp_kworkers(void)4691 static void __init rcu_start_exp_gp_kworkers(void)
4692 {
4693 const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker";
4694 const char *gp_kworker_name = "rcu_exp_gp_kthread_worker";
4695 struct sched_param param = { .sched_priority = kthread_prio };
4696
4697 rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name);
4698 if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
4699 pr_err("Failed to create %s!\n", gp_kworker_name);
4700 rcu_exp_gp_kworker = NULL;
4701 return;
4702 }
4703
4704 rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name);
4705 if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) {
4706 pr_err("Failed to create %s!\n", par_gp_kworker_name);
4707 rcu_exp_par_gp_kworker = NULL;
4708 kthread_destroy_worker(rcu_exp_gp_kworker);
4709 rcu_exp_gp_kworker = NULL;
4710 return;
4711 }
4712
4713 sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, ¶m);
4714 sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO,
4715 ¶m);
4716 }
4717
rcu_alloc_par_gp_wq(void)4718 static inline void rcu_alloc_par_gp_wq(void)
4719 {
4720 }
4721 #else /* !CONFIG_RCU_EXP_KTHREAD */
4722 struct workqueue_struct *rcu_par_gp_wq;
4723
rcu_start_exp_gp_kworkers(void)4724 static void __init rcu_start_exp_gp_kworkers(void)
4725 {
4726 }
4727
rcu_alloc_par_gp_wq(void)4728 static inline void rcu_alloc_par_gp_wq(void)
4729 {
4730 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4731 WARN_ON(!rcu_par_gp_wq);
4732 }
4733 #endif /* CONFIG_RCU_EXP_KTHREAD */
4734
4735 /*
4736 * Spawn the kthreads that handle RCU's grace periods.
4737 */
rcu_spawn_gp_kthread(void)4738 static int __init rcu_spawn_gp_kthread(void)
4739 {
4740 unsigned long flags;
4741 struct rcu_node *rnp;
4742 struct sched_param sp;
4743 struct task_struct *t;
4744 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4745
4746 rcu_scheduler_fully_active = 1;
4747 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4748 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4749 return 0;
4750 if (kthread_prio) {
4751 sp.sched_priority = kthread_prio;
4752 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4753 }
4754 rnp = rcu_get_root();
4755 raw_spin_lock_irqsave_rcu_node(rnp, flags);
4756 WRITE_ONCE(rcu_state.gp_activity, jiffies);
4757 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4758 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4759 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */
4760 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4761 wake_up_process(t);
4762 /* This is a pre-SMP initcall, we expect a single CPU */
4763 WARN_ON(num_online_cpus() > 1);
4764 /*
4765 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
4766 * due to rcu_scheduler_fully_active.
4767 */
4768 rcu_spawn_cpu_nocb_kthread(smp_processor_id());
4769 rcu_spawn_one_boost_kthread(rdp->mynode);
4770 rcu_spawn_core_kthreads();
4771 /* Create kthread worker for expedited GPs */
4772 rcu_start_exp_gp_kworkers();
4773 return 0;
4774 }
4775 early_initcall(rcu_spawn_gp_kthread);
4776
4777 /*
4778 * This function is invoked towards the end of the scheduler's
4779 * initialization process. Before this is called, the idle task might
4780 * contain synchronous grace-period primitives (during which time, this idle
4781 * task is booting the system, and such primitives are no-ops). After this
4782 * function is called, any synchronous grace-period primitives are run as
4783 * expedited, with the requesting task driving the grace period forward.
4784 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4785 * runtime RCU functionality.
4786 */
rcu_scheduler_starting(void)4787 void rcu_scheduler_starting(void)
4788 {
4789 unsigned long flags;
4790 struct rcu_node *rnp;
4791
4792 WARN_ON(num_online_cpus() != 1);
4793 WARN_ON(nr_context_switches() > 0);
4794 rcu_test_sync_prims();
4795
4796 // Fix up the ->gp_seq counters.
4797 local_irq_save(flags);
4798 rcu_for_each_node_breadth_first(rnp)
4799 rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
4800 local_irq_restore(flags);
4801
4802 // Switch out of early boot mode.
4803 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4804 rcu_test_sync_prims();
4805 }
4806
4807 /*
4808 * Helper function for rcu_init() that initializes the rcu_state structure.
4809 */
rcu_init_one(void)4810 static void __init rcu_init_one(void)
4811 {
4812 static const char * const buf[] = RCU_NODE_NAME_INIT;
4813 static const char * const fqs[] = RCU_FQS_NAME_INIT;
4814 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4815 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4816
4817 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
4818 int cpustride = 1;
4819 int i;
4820 int j;
4821 struct rcu_node *rnp;
4822
4823 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
4824
4825 /* Silence gcc 4.8 false positive about array index out of range. */
4826 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4827 panic("rcu_init_one: rcu_num_lvls out of range");
4828
4829 /* Initialize the level-tracking arrays. */
4830
4831 for (i = 1; i < rcu_num_lvls; i++)
4832 rcu_state.level[i] =
4833 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4834 rcu_init_levelspread(levelspread, num_rcu_lvl);
4835
4836 /* Initialize the elements themselves, starting from the leaves. */
4837
4838 for (i = rcu_num_lvls - 1; i >= 0; i--) {
4839 cpustride *= levelspread[i];
4840 rnp = rcu_state.level[i];
4841 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4842 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4843 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4844 &rcu_node_class[i], buf[i]);
4845 raw_spin_lock_init(&rnp->fqslock);
4846 lockdep_set_class_and_name(&rnp->fqslock,
4847 &rcu_fqs_class[i], fqs[i]);
4848 rnp->gp_seq = rcu_state.gp_seq;
4849 rnp->gp_seq_needed = rcu_state.gp_seq;
4850 rnp->completedqs = rcu_state.gp_seq;
4851 rnp->qsmask = 0;
4852 rnp->qsmaskinit = 0;
4853 rnp->grplo = j * cpustride;
4854 rnp->grphi = (j + 1) * cpustride - 1;
4855 if (rnp->grphi >= nr_cpu_ids)
4856 rnp->grphi = nr_cpu_ids - 1;
4857 if (i == 0) {
4858 rnp->grpnum = 0;
4859 rnp->grpmask = 0;
4860 rnp->parent = NULL;
4861 } else {
4862 rnp->grpnum = j % levelspread[i - 1];
4863 rnp->grpmask = BIT(rnp->grpnum);
4864 rnp->parent = rcu_state.level[i - 1] +
4865 j / levelspread[i - 1];
4866 }
4867 rnp->level = i;
4868 INIT_LIST_HEAD(&rnp->blkd_tasks);
4869 rcu_init_one_nocb(rnp);
4870 init_waitqueue_head(&rnp->exp_wq[0]);
4871 init_waitqueue_head(&rnp->exp_wq[1]);
4872 init_waitqueue_head(&rnp->exp_wq[2]);
4873 init_waitqueue_head(&rnp->exp_wq[3]);
4874 spin_lock_init(&rnp->exp_lock);
4875 mutex_init(&rnp->boost_kthread_mutex);
4876 raw_spin_lock_init(&rnp->exp_poll_lock);
4877 rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
4878 INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
4879 }
4880 }
4881
4882 init_swait_queue_head(&rcu_state.gp_wq);
4883 init_swait_queue_head(&rcu_state.expedited_wq);
4884 rnp = rcu_first_leaf_node();
4885 for_each_possible_cpu(i) {
4886 while (i > rnp->grphi)
4887 rnp++;
4888 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4889 rcu_boot_init_percpu_data(i);
4890 }
4891 }
4892
4893 /*
4894 * Force priority from the kernel command-line into range.
4895 */
sanitize_kthread_prio(void)4896 static void __init sanitize_kthread_prio(void)
4897 {
4898 int kthread_prio_in = kthread_prio;
4899
4900 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4901 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4902 kthread_prio = 2;
4903 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4904 kthread_prio = 1;
4905 else if (kthread_prio < 0)
4906 kthread_prio = 0;
4907 else if (kthread_prio > 99)
4908 kthread_prio = 99;
4909
4910 if (kthread_prio != kthread_prio_in)
4911 pr_alert("%s: Limited prio to %d from %d\n",
4912 __func__, kthread_prio, kthread_prio_in);
4913 }
4914
4915 /*
4916 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4917 * replace the definitions in tree.h because those are needed to size
4918 * the ->node array in the rcu_state structure.
4919 */
rcu_init_geometry(void)4920 void rcu_init_geometry(void)
4921 {
4922 ulong d;
4923 int i;
4924 static unsigned long old_nr_cpu_ids;
4925 int rcu_capacity[RCU_NUM_LVLS];
4926 static bool initialized;
4927
4928 if (initialized) {
4929 /*
4930 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4931 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4932 */
4933 WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4934 return;
4935 }
4936
4937 old_nr_cpu_ids = nr_cpu_ids;
4938 initialized = true;
4939
4940 /*
4941 * Initialize any unspecified boot parameters.
4942 * The default values of jiffies_till_first_fqs and
4943 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4944 * value, which is a function of HZ, then adding one for each
4945 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4946 */
4947 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4948 if (jiffies_till_first_fqs == ULONG_MAX)
4949 jiffies_till_first_fqs = d;
4950 if (jiffies_till_next_fqs == ULONG_MAX)
4951 jiffies_till_next_fqs = d;
4952 adjust_jiffies_till_sched_qs();
4953
4954 /* If the compile-time values are accurate, just leave. */
4955 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4956 nr_cpu_ids == NR_CPUS)
4957 return;
4958 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4959 rcu_fanout_leaf, nr_cpu_ids);
4960
4961 /*
4962 * The boot-time rcu_fanout_leaf parameter must be at least two
4963 * and cannot exceed the number of bits in the rcu_node masks.
4964 * Complain and fall back to the compile-time values if this
4965 * limit is exceeded.
4966 */
4967 if (rcu_fanout_leaf < 2 ||
4968 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4969 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4970 WARN_ON(1);
4971 return;
4972 }
4973
4974 /*
4975 * Compute number of nodes that can be handled an rcu_node tree
4976 * with the given number of levels.
4977 */
4978 rcu_capacity[0] = rcu_fanout_leaf;
4979 for (i = 1; i < RCU_NUM_LVLS; i++)
4980 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4981
4982 /*
4983 * The tree must be able to accommodate the configured number of CPUs.
4984 * If this limit is exceeded, fall back to the compile-time values.
4985 */
4986 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4987 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4988 WARN_ON(1);
4989 return;
4990 }
4991
4992 /* Calculate the number of levels in the tree. */
4993 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4994 }
4995 rcu_num_lvls = i + 1;
4996
4997 /* Calculate the number of rcu_nodes at each level of the tree. */
4998 for (i = 0; i < rcu_num_lvls; i++) {
4999 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
5000 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
5001 }
5002
5003 /* Calculate the total number of rcu_node structures. */
5004 rcu_num_nodes = 0;
5005 for (i = 0; i < rcu_num_lvls; i++)
5006 rcu_num_nodes += num_rcu_lvl[i];
5007 }
5008
5009 /*
5010 * Dump out the structure of the rcu_node combining tree associated
5011 * with the rcu_state structure.
5012 */
rcu_dump_rcu_node_tree(void)5013 static void __init rcu_dump_rcu_node_tree(void)
5014 {
5015 int level = 0;
5016 struct rcu_node *rnp;
5017
5018 pr_info("rcu_node tree layout dump\n");
5019 pr_info(" ");
5020 rcu_for_each_node_breadth_first(rnp) {
5021 if (rnp->level != level) {
5022 pr_cont("\n");
5023 pr_info(" ");
5024 level = rnp->level;
5025 }
5026 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
5027 }
5028 pr_cont("\n");
5029 }
5030
5031 struct workqueue_struct *rcu_gp_wq;
5032
kfree_rcu_batch_init(void)5033 static void __init kfree_rcu_batch_init(void)
5034 {
5035 int cpu;
5036 int i, j;
5037
5038 /* Clamp it to [0:100] seconds interval. */
5039 if (rcu_delay_page_cache_fill_msec < 0 ||
5040 rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
5041
5042 rcu_delay_page_cache_fill_msec =
5043 clamp(rcu_delay_page_cache_fill_msec, 0,
5044 (int) (100 * MSEC_PER_SEC));
5045
5046 pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
5047 rcu_delay_page_cache_fill_msec);
5048 }
5049
5050 for_each_possible_cpu(cpu) {
5051 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
5052
5053 for (i = 0; i < KFREE_N_BATCHES; i++) {
5054 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
5055 krcp->krw_arr[i].krcp = krcp;
5056
5057 for (j = 0; j < FREE_N_CHANNELS; j++)
5058 INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]);
5059 }
5060
5061 for (i = 0; i < FREE_N_CHANNELS; i++)
5062 INIT_LIST_HEAD(&krcp->bulk_head[i]);
5063
5064 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
5065 INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
5066 krcp->initialized = true;
5067 }
5068 if (register_shrinker(&kfree_rcu_shrinker, "rcu-kfree"))
5069 pr_err("Failed to register kfree_rcu() shrinker!\n");
5070 }
5071
rcu_init(void)5072 void __init rcu_init(void)
5073 {
5074 int cpu = smp_processor_id();
5075
5076 rcu_early_boot_tests();
5077
5078 kfree_rcu_batch_init();
5079 rcu_bootup_announce();
5080 sanitize_kthread_prio();
5081 rcu_init_geometry();
5082 rcu_init_one();
5083 if (dump_tree)
5084 rcu_dump_rcu_node_tree();
5085 if (use_softirq)
5086 open_softirq(RCU_SOFTIRQ, rcu_core_si);
5087
5088 /*
5089 * We don't need protection against CPU-hotplug here because
5090 * this is called early in boot, before either interrupts
5091 * or the scheduler are operational.
5092 */
5093 pm_notifier(rcu_pm_notify, 0);
5094 WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
5095 rcutree_prepare_cpu(cpu);
5096 rcu_cpu_starting(cpu);
5097 rcutree_online_cpu(cpu);
5098
5099 /* Create workqueue for Tree SRCU and for expedited GPs. */
5100 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
5101 WARN_ON(!rcu_gp_wq);
5102 rcu_alloc_par_gp_wq();
5103
5104 /* Fill in default value for rcutree.qovld boot parameter. */
5105 /* -After- the rcu_node ->lock fields are initialized! */
5106 if (qovld < 0)
5107 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
5108 else
5109 qovld_calc = qovld;
5110
5111 // Kick-start in case any polled grace periods started early.
5112 (void)start_poll_synchronize_rcu_expedited();
5113
5114 rcu_test_sync_prims();
5115 }
5116
5117 #include "tree_stall.h"
5118 #include "tree_exp.h"
5119 #include "tree_nocb.h"
5120 #include "tree_plugin.h"
5121