1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 * Copyright (C) 2022 Christoph Hellwig.
5 */
6
7 #include <linux/bio.h>
8 #include "bio.h"
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "raid56.h"
12 #include "async-thread.h"
13 #include "check-integrity.h"
14 #include "dev-replace.h"
15 #include "rcu-string.h"
16 #include "zoned.h"
17 #include "file-item.h"
18
19 static struct bio_set btrfs_bioset;
20 static struct bio_set btrfs_clone_bioset;
21 static struct bio_set btrfs_repair_bioset;
22 static mempool_t btrfs_failed_bio_pool;
23
24 struct btrfs_failed_bio {
25 struct btrfs_bio *bbio;
26 int num_copies;
27 atomic_t repair_count;
28 };
29
30 /* Is this a data path I/O that needs storage layer checksum and repair? */
is_data_bbio(struct btrfs_bio * bbio)31 static inline bool is_data_bbio(struct btrfs_bio *bbio)
32 {
33 return bbio->inode && is_data_inode(&bbio->inode->vfs_inode);
34 }
35
bbio_has_ordered_extent(struct btrfs_bio * bbio)36 static bool bbio_has_ordered_extent(struct btrfs_bio *bbio)
37 {
38 return is_data_bbio(bbio) && btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE;
39 }
40
41 /*
42 * Initialize a btrfs_bio structure. This skips the embedded bio itself as it
43 * is already initialized by the block layer.
44 */
btrfs_bio_init(struct btrfs_bio * bbio,struct btrfs_fs_info * fs_info,btrfs_bio_end_io_t end_io,void * private)45 void btrfs_bio_init(struct btrfs_bio *bbio, struct btrfs_fs_info *fs_info,
46 btrfs_bio_end_io_t end_io, void *private)
47 {
48 memset(bbio, 0, offsetof(struct btrfs_bio, bio));
49 bbio->fs_info = fs_info;
50 bbio->end_io = end_io;
51 bbio->private = private;
52 atomic_set(&bbio->pending_ios, 1);
53 }
54
55 /*
56 * Allocate a btrfs_bio structure. The btrfs_bio is the main I/O container for
57 * btrfs, and is used for all I/O submitted through btrfs_submit_bio.
58 *
59 * Just like the underlying bio_alloc_bioset it will not fail as it is backed by
60 * a mempool.
61 */
btrfs_bio_alloc(unsigned int nr_vecs,blk_opf_t opf,struct btrfs_fs_info * fs_info,btrfs_bio_end_io_t end_io,void * private)62 struct btrfs_bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf,
63 struct btrfs_fs_info *fs_info,
64 btrfs_bio_end_io_t end_io, void *private)
65 {
66 struct btrfs_bio *bbio;
67 struct bio *bio;
68
69 bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset);
70 bbio = btrfs_bio(bio);
71 btrfs_bio_init(bbio, fs_info, end_io, private);
72 return bbio;
73 }
74
btrfs_split_bio(struct btrfs_fs_info * fs_info,struct btrfs_bio * orig_bbio,u64 map_length,bool use_append)75 static struct btrfs_bio *btrfs_split_bio(struct btrfs_fs_info *fs_info,
76 struct btrfs_bio *orig_bbio,
77 u64 map_length, bool use_append)
78 {
79 struct btrfs_bio *bbio;
80 struct bio *bio;
81
82 if (use_append) {
83 unsigned int nr_segs;
84
85 bio = bio_split_rw(&orig_bbio->bio, &fs_info->limits, &nr_segs,
86 &btrfs_clone_bioset, map_length);
87 } else {
88 bio = bio_split(&orig_bbio->bio, map_length >> SECTOR_SHIFT,
89 GFP_NOFS, &btrfs_clone_bioset);
90 }
91 bbio = btrfs_bio(bio);
92 btrfs_bio_init(bbio, fs_info, NULL, orig_bbio);
93 bbio->inode = orig_bbio->inode;
94 bbio->file_offset = orig_bbio->file_offset;
95 orig_bbio->file_offset += map_length;
96 if (bbio_has_ordered_extent(bbio)) {
97 refcount_inc(&orig_bbio->ordered->refs);
98 bbio->ordered = orig_bbio->ordered;
99 }
100 atomic_inc(&orig_bbio->pending_ios);
101 return bbio;
102 }
103
104 /* Free a bio that was never submitted to the underlying device. */
btrfs_cleanup_bio(struct btrfs_bio * bbio)105 static void btrfs_cleanup_bio(struct btrfs_bio *bbio)
106 {
107 if (bbio_has_ordered_extent(bbio))
108 btrfs_put_ordered_extent(bbio->ordered);
109 bio_put(&bbio->bio);
110 }
111
__btrfs_bio_end_io(struct btrfs_bio * bbio)112 static void __btrfs_bio_end_io(struct btrfs_bio *bbio)
113 {
114 if (bbio_has_ordered_extent(bbio)) {
115 struct btrfs_ordered_extent *ordered = bbio->ordered;
116
117 bbio->end_io(bbio);
118 btrfs_put_ordered_extent(ordered);
119 } else {
120 bbio->end_io(bbio);
121 }
122 }
123
btrfs_bio_end_io(struct btrfs_bio * bbio,blk_status_t status)124 void btrfs_bio_end_io(struct btrfs_bio *bbio, blk_status_t status)
125 {
126 bbio->bio.bi_status = status;
127 __btrfs_bio_end_io(bbio);
128 }
129
130 static void btrfs_orig_write_end_io(struct bio *bio);
131
btrfs_bbio_propagate_error(struct btrfs_bio * bbio,struct btrfs_bio * orig_bbio)132 static void btrfs_bbio_propagate_error(struct btrfs_bio *bbio,
133 struct btrfs_bio *orig_bbio)
134 {
135 /*
136 * For writes we tolerate nr_mirrors - 1 write failures, so we can't
137 * just blindly propagate a write failure here. Instead increment the
138 * error count in the original I/O context so that it is guaranteed to
139 * be larger than the error tolerance.
140 */
141 if (bbio->bio.bi_end_io == &btrfs_orig_write_end_io) {
142 struct btrfs_io_stripe *orig_stripe = orig_bbio->bio.bi_private;
143 struct btrfs_io_context *orig_bioc = orig_stripe->bioc;
144
145 atomic_add(orig_bioc->max_errors, &orig_bioc->error);
146 } else {
147 orig_bbio->bio.bi_status = bbio->bio.bi_status;
148 }
149 }
150
btrfs_orig_bbio_end_io(struct btrfs_bio * bbio)151 static void btrfs_orig_bbio_end_io(struct btrfs_bio *bbio)
152 {
153 if (bbio->bio.bi_pool == &btrfs_clone_bioset) {
154 struct btrfs_bio *orig_bbio = bbio->private;
155
156 if (bbio->bio.bi_status)
157 btrfs_bbio_propagate_error(bbio, orig_bbio);
158 btrfs_cleanup_bio(bbio);
159 bbio = orig_bbio;
160 }
161
162 if (atomic_dec_and_test(&bbio->pending_ios))
163 __btrfs_bio_end_io(bbio);
164 }
165
next_repair_mirror(struct btrfs_failed_bio * fbio,int cur_mirror)166 static int next_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
167 {
168 if (cur_mirror == fbio->num_copies)
169 return cur_mirror + 1 - fbio->num_copies;
170 return cur_mirror + 1;
171 }
172
prev_repair_mirror(struct btrfs_failed_bio * fbio,int cur_mirror)173 static int prev_repair_mirror(struct btrfs_failed_bio *fbio, int cur_mirror)
174 {
175 if (cur_mirror == 1)
176 return fbio->num_copies;
177 return cur_mirror - 1;
178 }
179
btrfs_repair_done(struct btrfs_failed_bio * fbio)180 static void btrfs_repair_done(struct btrfs_failed_bio *fbio)
181 {
182 if (atomic_dec_and_test(&fbio->repair_count)) {
183 btrfs_orig_bbio_end_io(fbio->bbio);
184 mempool_free(fbio, &btrfs_failed_bio_pool);
185 }
186 }
187
btrfs_end_repair_bio(struct btrfs_bio * repair_bbio,struct btrfs_device * dev)188 static void btrfs_end_repair_bio(struct btrfs_bio *repair_bbio,
189 struct btrfs_device *dev)
190 {
191 struct btrfs_failed_bio *fbio = repair_bbio->private;
192 struct btrfs_inode *inode = repair_bbio->inode;
193 struct btrfs_fs_info *fs_info = inode->root->fs_info;
194 struct bio_vec *bv = bio_first_bvec_all(&repair_bbio->bio);
195 int mirror = repair_bbio->mirror_num;
196
197 if (repair_bbio->bio.bi_status ||
198 !btrfs_data_csum_ok(repair_bbio, dev, 0, bv)) {
199 bio_reset(&repair_bbio->bio, NULL, REQ_OP_READ);
200 repair_bbio->bio.bi_iter = repair_bbio->saved_iter;
201
202 mirror = next_repair_mirror(fbio, mirror);
203 if (mirror == fbio->bbio->mirror_num) {
204 btrfs_debug(fs_info, "no mirror left");
205 fbio->bbio->bio.bi_status = BLK_STS_IOERR;
206 goto done;
207 }
208
209 btrfs_submit_bio(repair_bbio, mirror);
210 return;
211 }
212
213 do {
214 mirror = prev_repair_mirror(fbio, mirror);
215 btrfs_repair_io_failure(fs_info, btrfs_ino(inode),
216 repair_bbio->file_offset, fs_info->sectorsize,
217 repair_bbio->saved_iter.bi_sector << SECTOR_SHIFT,
218 bv->bv_page, bv->bv_offset, mirror);
219 } while (mirror != fbio->bbio->mirror_num);
220
221 done:
222 btrfs_repair_done(fbio);
223 bio_put(&repair_bbio->bio);
224 }
225
226 /*
227 * Try to kick off a repair read to the next available mirror for a bad sector.
228 *
229 * This primarily tries to recover good data to serve the actual read request,
230 * but also tries to write the good data back to the bad mirror(s) when a
231 * read succeeded to restore the redundancy.
232 */
repair_one_sector(struct btrfs_bio * failed_bbio,u32 bio_offset,struct bio_vec * bv,struct btrfs_failed_bio * fbio)233 static struct btrfs_failed_bio *repair_one_sector(struct btrfs_bio *failed_bbio,
234 u32 bio_offset,
235 struct bio_vec *bv,
236 struct btrfs_failed_bio *fbio)
237 {
238 struct btrfs_inode *inode = failed_bbio->inode;
239 struct btrfs_fs_info *fs_info = inode->root->fs_info;
240 const u32 sectorsize = fs_info->sectorsize;
241 const u64 logical = (failed_bbio->saved_iter.bi_sector << SECTOR_SHIFT);
242 struct btrfs_bio *repair_bbio;
243 struct bio *repair_bio;
244 int num_copies;
245 int mirror;
246
247 btrfs_debug(fs_info, "repair read error: read error at %llu",
248 failed_bbio->file_offset + bio_offset);
249
250 num_copies = btrfs_num_copies(fs_info, logical, sectorsize);
251 if (num_copies == 1) {
252 btrfs_debug(fs_info, "no copy to repair from");
253 failed_bbio->bio.bi_status = BLK_STS_IOERR;
254 return fbio;
255 }
256
257 if (!fbio) {
258 fbio = mempool_alloc(&btrfs_failed_bio_pool, GFP_NOFS);
259 fbio->bbio = failed_bbio;
260 fbio->num_copies = num_copies;
261 atomic_set(&fbio->repair_count, 1);
262 }
263
264 atomic_inc(&fbio->repair_count);
265
266 repair_bio = bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_NOFS,
267 &btrfs_repair_bioset);
268 repair_bio->bi_iter.bi_sector = failed_bbio->saved_iter.bi_sector;
269 __bio_add_page(repair_bio, bv->bv_page, bv->bv_len, bv->bv_offset);
270
271 repair_bbio = btrfs_bio(repair_bio);
272 btrfs_bio_init(repair_bbio, fs_info, NULL, fbio);
273 repair_bbio->inode = failed_bbio->inode;
274 repair_bbio->file_offset = failed_bbio->file_offset + bio_offset;
275
276 mirror = next_repair_mirror(fbio, failed_bbio->mirror_num);
277 btrfs_debug(fs_info, "submitting repair read to mirror %d", mirror);
278 btrfs_submit_bio(repair_bbio, mirror);
279 return fbio;
280 }
281
btrfs_check_read_bio(struct btrfs_bio * bbio,struct btrfs_device * dev)282 static void btrfs_check_read_bio(struct btrfs_bio *bbio, struct btrfs_device *dev)
283 {
284 struct btrfs_inode *inode = bbio->inode;
285 struct btrfs_fs_info *fs_info = inode->root->fs_info;
286 u32 sectorsize = fs_info->sectorsize;
287 struct bvec_iter *iter = &bbio->saved_iter;
288 blk_status_t status = bbio->bio.bi_status;
289 struct btrfs_failed_bio *fbio = NULL;
290 u32 offset = 0;
291
292 /* Read-repair requires the inode field to be set by the submitter. */
293 ASSERT(inode);
294
295 /*
296 * Hand off repair bios to the repair code as there is no upper level
297 * submitter for them.
298 */
299 if (bbio->bio.bi_pool == &btrfs_repair_bioset) {
300 btrfs_end_repair_bio(bbio, dev);
301 return;
302 }
303
304 /* Clear the I/O error. A failed repair will reset it. */
305 bbio->bio.bi_status = BLK_STS_OK;
306
307 while (iter->bi_size) {
308 struct bio_vec bv = bio_iter_iovec(&bbio->bio, *iter);
309
310 bv.bv_len = min(bv.bv_len, sectorsize);
311 if (status || !btrfs_data_csum_ok(bbio, dev, offset, &bv))
312 fbio = repair_one_sector(bbio, offset, &bv, fbio);
313
314 bio_advance_iter_single(&bbio->bio, iter, sectorsize);
315 offset += sectorsize;
316 }
317
318 if (bbio->csum != bbio->csum_inline)
319 kfree(bbio->csum);
320
321 if (fbio)
322 btrfs_repair_done(fbio);
323 else
324 btrfs_orig_bbio_end_io(bbio);
325 }
326
btrfs_log_dev_io_error(struct bio * bio,struct btrfs_device * dev)327 static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev)
328 {
329 if (!dev || !dev->bdev)
330 return;
331 if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET)
332 return;
333
334 if (btrfs_op(bio) == BTRFS_MAP_WRITE)
335 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
336 else if (!(bio->bi_opf & REQ_RAHEAD))
337 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
338 if (bio->bi_opf & REQ_PREFLUSH)
339 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS);
340 }
341
btrfs_end_io_wq(struct btrfs_fs_info * fs_info,struct bio * bio)342 static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info,
343 struct bio *bio)
344 {
345 if (bio->bi_opf & REQ_META)
346 return fs_info->endio_meta_workers;
347 return fs_info->endio_workers;
348 }
349
btrfs_end_bio_work(struct work_struct * work)350 static void btrfs_end_bio_work(struct work_struct *work)
351 {
352 struct btrfs_bio *bbio = container_of(work, struct btrfs_bio, end_io_work);
353
354 /* Metadata reads are checked and repaired by the submitter. */
355 if (is_data_bbio(bbio))
356 btrfs_check_read_bio(bbio, bbio->bio.bi_private);
357 else
358 btrfs_orig_bbio_end_io(bbio);
359 }
360
btrfs_simple_end_io(struct bio * bio)361 static void btrfs_simple_end_io(struct bio *bio)
362 {
363 struct btrfs_bio *bbio = btrfs_bio(bio);
364 struct btrfs_device *dev = bio->bi_private;
365 struct btrfs_fs_info *fs_info = bbio->fs_info;
366
367 btrfs_bio_counter_dec(fs_info);
368
369 if (bio->bi_status)
370 btrfs_log_dev_io_error(bio, dev);
371
372 if (bio_op(bio) == REQ_OP_READ) {
373 INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work);
374 queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work);
375 } else {
376 if (bio_op(bio) == REQ_OP_ZONE_APPEND && !bio->bi_status)
377 btrfs_record_physical_zoned(bbio);
378 btrfs_orig_bbio_end_io(bbio);
379 }
380 }
381
btrfs_raid56_end_io(struct bio * bio)382 static void btrfs_raid56_end_io(struct bio *bio)
383 {
384 struct btrfs_io_context *bioc = bio->bi_private;
385 struct btrfs_bio *bbio = btrfs_bio(bio);
386
387 btrfs_bio_counter_dec(bioc->fs_info);
388 bbio->mirror_num = bioc->mirror_num;
389 if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio))
390 btrfs_check_read_bio(bbio, NULL);
391 else
392 btrfs_orig_bbio_end_io(bbio);
393
394 btrfs_put_bioc(bioc);
395 }
396
btrfs_orig_write_end_io(struct bio * bio)397 static void btrfs_orig_write_end_io(struct bio *bio)
398 {
399 struct btrfs_io_stripe *stripe = bio->bi_private;
400 struct btrfs_io_context *bioc = stripe->bioc;
401 struct btrfs_bio *bbio = btrfs_bio(bio);
402
403 btrfs_bio_counter_dec(bioc->fs_info);
404
405 if (bio->bi_status) {
406 atomic_inc(&bioc->error);
407 btrfs_log_dev_io_error(bio, stripe->dev);
408 }
409
410 /*
411 * Only send an error to the higher layers if it is beyond the tolerance
412 * threshold.
413 */
414 if (atomic_read(&bioc->error) > bioc->max_errors)
415 bio->bi_status = BLK_STS_IOERR;
416 else
417 bio->bi_status = BLK_STS_OK;
418
419 btrfs_orig_bbio_end_io(bbio);
420 btrfs_put_bioc(bioc);
421 }
422
btrfs_clone_write_end_io(struct bio * bio)423 static void btrfs_clone_write_end_io(struct bio *bio)
424 {
425 struct btrfs_io_stripe *stripe = bio->bi_private;
426
427 if (bio->bi_status) {
428 atomic_inc(&stripe->bioc->error);
429 btrfs_log_dev_io_error(bio, stripe->dev);
430 }
431
432 /* Pass on control to the original bio this one was cloned from */
433 bio_endio(stripe->bioc->orig_bio);
434 bio_put(bio);
435 }
436
btrfs_submit_dev_bio(struct btrfs_device * dev,struct bio * bio)437 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio)
438 {
439 if (!dev || !dev->bdev ||
440 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
441 (btrfs_op(bio) == BTRFS_MAP_WRITE &&
442 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
443 bio_io_error(bio);
444 return;
445 }
446
447 bio_set_dev(bio, dev->bdev);
448
449 /*
450 * For zone append writing, bi_sector must point the beginning of the
451 * zone
452 */
453 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
454 u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
455 u64 zone_start = round_down(physical, dev->fs_info->zone_size);
456
457 ASSERT(btrfs_dev_is_sequential(dev, physical));
458 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT;
459 }
460 btrfs_debug_in_rcu(dev->fs_info,
461 "%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
462 __func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector,
463 (unsigned long)dev->bdev->bd_dev, btrfs_dev_name(dev),
464 dev->devid, bio->bi_iter.bi_size);
465
466 btrfsic_check_bio(bio);
467
468 if (bio->bi_opf & REQ_BTRFS_CGROUP_PUNT)
469 blkcg_punt_bio_submit(bio);
470 else
471 submit_bio(bio);
472 }
473
btrfs_submit_mirrored_bio(struct btrfs_io_context * bioc,int dev_nr)474 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr)
475 {
476 struct bio *orig_bio = bioc->orig_bio, *bio;
477
478 ASSERT(bio_op(orig_bio) != REQ_OP_READ);
479
480 /* Reuse the bio embedded into the btrfs_bio for the last mirror */
481 if (dev_nr == bioc->num_stripes - 1) {
482 bio = orig_bio;
483 bio->bi_end_io = btrfs_orig_write_end_io;
484 } else {
485 bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set);
486 bio_inc_remaining(orig_bio);
487 bio->bi_end_io = btrfs_clone_write_end_io;
488 }
489
490 bio->bi_private = &bioc->stripes[dev_nr];
491 bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT;
492 bioc->stripes[dev_nr].bioc = bioc;
493 btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio);
494 }
495
__btrfs_submit_bio(struct bio * bio,struct btrfs_io_context * bioc,struct btrfs_io_stripe * smap,int mirror_num)496 static void __btrfs_submit_bio(struct bio *bio, struct btrfs_io_context *bioc,
497 struct btrfs_io_stripe *smap, int mirror_num)
498 {
499 if (!bioc) {
500 /* Single mirror read/write fast path. */
501 btrfs_bio(bio)->mirror_num = mirror_num;
502 bio->bi_iter.bi_sector = smap->physical >> SECTOR_SHIFT;
503 if (bio_op(bio) != REQ_OP_READ)
504 btrfs_bio(bio)->orig_physical = smap->physical;
505 bio->bi_private = smap->dev;
506 bio->bi_end_io = btrfs_simple_end_io;
507 btrfs_submit_dev_bio(smap->dev, bio);
508 } else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
509 /* Parity RAID write or read recovery. */
510 bio->bi_private = bioc;
511 bio->bi_end_io = btrfs_raid56_end_io;
512 if (bio_op(bio) == REQ_OP_READ)
513 raid56_parity_recover(bio, bioc, mirror_num);
514 else
515 raid56_parity_write(bio, bioc);
516 } else {
517 /* Write to multiple mirrors. */
518 int total_devs = bioc->num_stripes;
519
520 bioc->orig_bio = bio;
521 for (int dev_nr = 0; dev_nr < total_devs; dev_nr++)
522 btrfs_submit_mirrored_bio(bioc, dev_nr);
523 }
524 }
525
btrfs_bio_csum(struct btrfs_bio * bbio)526 static blk_status_t btrfs_bio_csum(struct btrfs_bio *bbio)
527 {
528 if (bbio->bio.bi_opf & REQ_META)
529 return btree_csum_one_bio(bbio);
530 return btrfs_csum_one_bio(bbio);
531 }
532
533 /*
534 * Async submit bios are used to offload expensive checksumming onto the worker
535 * threads.
536 */
537 struct async_submit_bio {
538 struct btrfs_bio *bbio;
539 struct btrfs_io_context *bioc;
540 struct btrfs_io_stripe smap;
541 int mirror_num;
542 struct btrfs_work work;
543 };
544
545 /*
546 * In order to insert checksums into the metadata in large chunks, we wait
547 * until bio submission time. All the pages in the bio are checksummed and
548 * sums are attached onto the ordered extent record.
549 *
550 * At IO completion time the csums attached on the ordered extent record are
551 * inserted into the btree.
552 */
run_one_async_start(struct btrfs_work * work)553 static void run_one_async_start(struct btrfs_work *work)
554 {
555 struct async_submit_bio *async =
556 container_of(work, struct async_submit_bio, work);
557 blk_status_t ret;
558
559 ret = btrfs_bio_csum(async->bbio);
560 if (ret)
561 async->bbio->bio.bi_status = ret;
562 }
563
564 /*
565 * In order to insert checksums into the metadata in large chunks, we wait
566 * until bio submission time. All the pages in the bio are checksummed and
567 * sums are attached onto the ordered extent record.
568 *
569 * At IO completion time the csums attached on the ordered extent record are
570 * inserted into the tree.
571 */
run_one_async_done(struct btrfs_work * work)572 static void run_one_async_done(struct btrfs_work *work)
573 {
574 struct async_submit_bio *async =
575 container_of(work, struct async_submit_bio, work);
576 struct bio *bio = &async->bbio->bio;
577
578 /* If an error occurred we just want to clean up the bio and move on. */
579 if (bio->bi_status) {
580 btrfs_orig_bbio_end_io(async->bbio);
581 return;
582 }
583
584 /*
585 * All of the bios that pass through here are from async helpers.
586 * Use REQ_BTRFS_CGROUP_PUNT to issue them from the owning cgroup's
587 * context. This changes nothing when cgroups aren't in use.
588 */
589 bio->bi_opf |= REQ_BTRFS_CGROUP_PUNT;
590 __btrfs_submit_bio(bio, async->bioc, &async->smap, async->mirror_num);
591 }
592
run_one_async_free(struct btrfs_work * work)593 static void run_one_async_free(struct btrfs_work *work)
594 {
595 kfree(container_of(work, struct async_submit_bio, work));
596 }
597
should_async_write(struct btrfs_bio * bbio)598 static bool should_async_write(struct btrfs_bio *bbio)
599 {
600 /* Submit synchronously if the checksum implementation is fast. */
601 if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &bbio->fs_info->flags))
602 return false;
603
604 /*
605 * Try to defer the submission to a workqueue to parallelize the
606 * checksum calculation unless the I/O is issued synchronously.
607 */
608 if (op_is_sync(bbio->bio.bi_opf))
609 return false;
610
611 /* Zoned devices require I/O to be submitted in order. */
612 if ((bbio->bio.bi_opf & REQ_META) && btrfs_is_zoned(bbio->fs_info))
613 return false;
614
615 return true;
616 }
617
618 /*
619 * Submit bio to an async queue.
620 *
621 * Return true if the work has been succesfuly submitted, else false.
622 */
btrfs_wq_submit_bio(struct btrfs_bio * bbio,struct btrfs_io_context * bioc,struct btrfs_io_stripe * smap,int mirror_num)623 static bool btrfs_wq_submit_bio(struct btrfs_bio *bbio,
624 struct btrfs_io_context *bioc,
625 struct btrfs_io_stripe *smap, int mirror_num)
626 {
627 struct btrfs_fs_info *fs_info = bbio->fs_info;
628 struct async_submit_bio *async;
629
630 async = kmalloc(sizeof(*async), GFP_NOFS);
631 if (!async)
632 return false;
633
634 async->bbio = bbio;
635 async->bioc = bioc;
636 async->smap = *smap;
637 async->mirror_num = mirror_num;
638
639 btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
640 run_one_async_free);
641 btrfs_queue_work(fs_info->workers, &async->work);
642 return true;
643 }
644
btrfs_submit_chunk(struct btrfs_bio * bbio,int mirror_num)645 static bool btrfs_submit_chunk(struct btrfs_bio *bbio, int mirror_num)
646 {
647 struct btrfs_inode *inode = bbio->inode;
648 struct btrfs_fs_info *fs_info = bbio->fs_info;
649 struct bio *bio = &bbio->bio;
650 u64 logical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
651 u64 length = bio->bi_iter.bi_size;
652 u64 map_length = length;
653 bool use_append = btrfs_use_zone_append(bbio);
654 struct btrfs_io_context *bioc = NULL;
655 struct btrfs_io_stripe smap;
656 blk_status_t ret;
657 int error;
658
659 btrfs_bio_counter_inc_blocked(fs_info);
660 error = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
661 &bioc, &smap, &mirror_num, 1);
662 if (error) {
663 ret = errno_to_blk_status(error);
664 goto fail;
665 }
666
667 map_length = min(map_length, length);
668 if (use_append)
669 map_length = min(map_length, fs_info->max_zone_append_size);
670
671 if (map_length < length) {
672 bbio = btrfs_split_bio(fs_info, bbio, map_length, use_append);
673 bio = &bbio->bio;
674 }
675
676 /*
677 * Save the iter for the end_io handler and preload the checksums for
678 * data reads.
679 */
680 if (bio_op(bio) == REQ_OP_READ && is_data_bbio(bbio)) {
681 bbio->saved_iter = bio->bi_iter;
682 ret = btrfs_lookup_bio_sums(bbio);
683 if (ret)
684 goto fail;
685 }
686
687 if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
688 if (use_append) {
689 bio->bi_opf &= ~REQ_OP_WRITE;
690 bio->bi_opf |= REQ_OP_ZONE_APPEND;
691 }
692
693 /*
694 * Csum items for reloc roots have already been cloned at this
695 * point, so they are handled as part of the no-checksum case.
696 */
697 if (inode && !(inode->flags & BTRFS_INODE_NODATASUM) &&
698 !test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state) &&
699 !btrfs_is_data_reloc_root(inode->root)) {
700 if (should_async_write(bbio) &&
701 btrfs_wq_submit_bio(bbio, bioc, &smap, mirror_num))
702 goto done;
703
704 ret = btrfs_bio_csum(bbio);
705 if (ret)
706 goto fail;
707 } else if (use_append ||
708 (btrfs_is_zoned(fs_info) && inode &&
709 inode->flags & BTRFS_INODE_NODATASUM)) {
710 ret = btrfs_alloc_dummy_sum(bbio);
711 if (ret)
712 goto fail;
713 }
714 }
715
716 __btrfs_submit_bio(bio, bioc, &smap, mirror_num);
717 done:
718 return map_length == length;
719
720 fail:
721 btrfs_bio_counter_dec(fs_info);
722 /*
723 * We have split the original bbio, now we have to end both the current
724 * @bbio and remaining one, as the remaining one will never be submitted.
725 */
726 if (map_length < length) {
727 struct btrfs_bio *remaining = bbio->private;
728
729 ASSERT(bbio->bio.bi_pool == &btrfs_clone_bioset);
730 ASSERT(remaining);
731
732 remaining->bio.bi_status = ret;
733 btrfs_orig_bbio_end_io(remaining);
734 }
735 bbio->bio.bi_status = ret;
736 btrfs_orig_bbio_end_io(bbio);
737 /* Do not submit another chunk */
738 return true;
739 }
740
btrfs_submit_bio(struct btrfs_bio * bbio,int mirror_num)741 void btrfs_submit_bio(struct btrfs_bio *bbio, int mirror_num)
742 {
743 /* If bbio->inode is not populated, its file_offset must be 0. */
744 ASSERT(bbio->inode || bbio->file_offset == 0);
745
746 while (!btrfs_submit_chunk(bbio, mirror_num))
747 ;
748 }
749
750 /*
751 * Submit a repair write.
752 *
753 * This bypasses btrfs_submit_bio deliberately, as that writes all copies in a
754 * RAID setup. Here we only want to write the one bad copy, so we do the
755 * mapping ourselves and submit the bio directly.
756 *
757 * The I/O is issued synchronously to block the repair read completion from
758 * freeing the bio.
759 */
btrfs_repair_io_failure(struct btrfs_fs_info * fs_info,u64 ino,u64 start,u64 length,u64 logical,struct page * page,unsigned int pg_offset,int mirror_num)760 int btrfs_repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
761 u64 length, u64 logical, struct page *page,
762 unsigned int pg_offset, int mirror_num)
763 {
764 struct btrfs_io_stripe smap = { 0 };
765 struct bio_vec bvec;
766 struct bio bio;
767 int ret = 0;
768
769 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
770 BUG_ON(!mirror_num);
771
772 if (btrfs_repair_one_zone(fs_info, logical))
773 return 0;
774
775 /*
776 * Avoid races with device replace and make sure our bioc has devices
777 * associated to its stripes that don't go away while we are doing the
778 * read repair operation.
779 */
780 btrfs_bio_counter_inc_blocked(fs_info);
781 ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
782 if (ret < 0)
783 goto out_counter_dec;
784
785 if (!smap.dev->bdev ||
786 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &smap.dev->dev_state)) {
787 ret = -EIO;
788 goto out_counter_dec;
789 }
790
791 bio_init(&bio, smap.dev->bdev, &bvec, 1, REQ_OP_WRITE | REQ_SYNC);
792 bio.bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT;
793 __bio_add_page(&bio, page, length, pg_offset);
794
795 btrfsic_check_bio(&bio);
796 ret = submit_bio_wait(&bio);
797 if (ret) {
798 /* try to remap that extent elsewhere? */
799 btrfs_dev_stat_inc_and_print(smap.dev, BTRFS_DEV_STAT_WRITE_ERRS);
800 goto out_bio_uninit;
801 }
802
803 btrfs_info_rl_in_rcu(fs_info,
804 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
805 ino, start, btrfs_dev_name(smap.dev),
806 smap.physical >> SECTOR_SHIFT);
807 ret = 0;
808
809 out_bio_uninit:
810 bio_uninit(&bio);
811 out_counter_dec:
812 btrfs_bio_counter_dec(fs_info);
813 return ret;
814 }
815
816 /*
817 * Submit a btrfs_bio based repair write.
818 *
819 * If @dev_replace is true, the write would be submitted to dev-replace target.
820 */
btrfs_submit_repair_write(struct btrfs_bio * bbio,int mirror_num,bool dev_replace)821 void btrfs_submit_repair_write(struct btrfs_bio *bbio, int mirror_num, bool dev_replace)
822 {
823 struct btrfs_fs_info *fs_info = bbio->fs_info;
824 u64 logical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
825 u64 length = bbio->bio.bi_iter.bi_size;
826 struct btrfs_io_stripe smap = { 0 };
827 int ret;
828
829 ASSERT(fs_info);
830 ASSERT(mirror_num > 0);
831 ASSERT(btrfs_op(&bbio->bio) == BTRFS_MAP_WRITE);
832 ASSERT(!bbio->inode);
833
834 btrfs_bio_counter_inc_blocked(fs_info);
835 ret = btrfs_map_repair_block(fs_info, &smap, logical, length, mirror_num);
836 if (ret < 0)
837 goto fail;
838
839 if (dev_replace) {
840 ASSERT(smap.dev == fs_info->dev_replace.srcdev);
841 smap.dev = fs_info->dev_replace.tgtdev;
842 }
843 __btrfs_submit_bio(&bbio->bio, NULL, &smap, mirror_num);
844 return;
845
846 fail:
847 btrfs_bio_counter_dec(fs_info);
848 btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
849 }
850
btrfs_bioset_init(void)851 int __init btrfs_bioset_init(void)
852 {
853 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
854 offsetof(struct btrfs_bio, bio),
855 BIOSET_NEED_BVECS))
856 return -ENOMEM;
857 if (bioset_init(&btrfs_clone_bioset, BIO_POOL_SIZE,
858 offsetof(struct btrfs_bio, bio), 0))
859 goto out_free_bioset;
860 if (bioset_init(&btrfs_repair_bioset, BIO_POOL_SIZE,
861 offsetof(struct btrfs_bio, bio),
862 BIOSET_NEED_BVECS))
863 goto out_free_clone_bioset;
864 if (mempool_init_kmalloc_pool(&btrfs_failed_bio_pool, BIO_POOL_SIZE,
865 sizeof(struct btrfs_failed_bio)))
866 goto out_free_repair_bioset;
867 return 0;
868
869 out_free_repair_bioset:
870 bioset_exit(&btrfs_repair_bioset);
871 out_free_clone_bioset:
872 bioset_exit(&btrfs_clone_bioset);
873 out_free_bioset:
874 bioset_exit(&btrfs_bioset);
875 return -ENOMEM;
876 }
877
btrfs_bioset_exit(void)878 void __cold btrfs_bioset_exit(void)
879 {
880 mempool_exit(&btrfs_failed_bio_pool);
881 bioset_exit(&btrfs_repair_bioset);
882 bioset_exit(&btrfs_clone_bioset);
883 bioset_exit(&btrfs_bioset);
884 }
885