1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019 Realtek Corporation
3 */
4
5 #include <linux/module.h>
6 #include <linux/pci.h>
7 #include "main.h"
8 #include "pci.h"
9 #include "reg.h"
10 #include "tx.h"
11 #include "rx.h"
12 #include "fw.h"
13 #include "ps.h"
14 #include "debug.h"
15
16 static bool rtw_disable_msi;
17 static bool rtw_pci_disable_aspm;
18 module_param_named(disable_msi, rtw_disable_msi, bool, 0644);
19 module_param_named(disable_aspm, rtw_pci_disable_aspm, bool, 0644);
20 MODULE_PARM_DESC(disable_msi, "Set Y to disable MSI interrupt support");
21 MODULE_PARM_DESC(disable_aspm, "Set Y to disable PCI ASPM support");
22
23 static u32 rtw_pci_tx_queue_idx_addr[] = {
24 [RTW_TX_QUEUE_BK] = RTK_PCI_TXBD_IDX_BKQ,
25 [RTW_TX_QUEUE_BE] = RTK_PCI_TXBD_IDX_BEQ,
26 [RTW_TX_QUEUE_VI] = RTK_PCI_TXBD_IDX_VIQ,
27 [RTW_TX_QUEUE_VO] = RTK_PCI_TXBD_IDX_VOQ,
28 [RTW_TX_QUEUE_MGMT] = RTK_PCI_TXBD_IDX_MGMTQ,
29 [RTW_TX_QUEUE_HI0] = RTK_PCI_TXBD_IDX_HI0Q,
30 [RTW_TX_QUEUE_H2C] = RTK_PCI_TXBD_IDX_H2CQ,
31 };
32
rtw_pci_get_tx_qsel(struct sk_buff * skb,enum rtw_tx_queue_type queue)33 static u8 rtw_pci_get_tx_qsel(struct sk_buff *skb,
34 enum rtw_tx_queue_type queue)
35 {
36 switch (queue) {
37 case RTW_TX_QUEUE_BCN:
38 return TX_DESC_QSEL_BEACON;
39 case RTW_TX_QUEUE_H2C:
40 return TX_DESC_QSEL_H2C;
41 case RTW_TX_QUEUE_MGMT:
42 return TX_DESC_QSEL_MGMT;
43 case RTW_TX_QUEUE_HI0:
44 return TX_DESC_QSEL_HIGH;
45 default:
46 return skb->priority;
47 }
48 };
49
rtw_pci_read8(struct rtw_dev * rtwdev,u32 addr)50 static u8 rtw_pci_read8(struct rtw_dev *rtwdev, u32 addr)
51 {
52 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
53
54 return readb(rtwpci->mmap + addr);
55 }
56
rtw_pci_read16(struct rtw_dev * rtwdev,u32 addr)57 static u16 rtw_pci_read16(struct rtw_dev *rtwdev, u32 addr)
58 {
59 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
60
61 return readw(rtwpci->mmap + addr);
62 }
63
rtw_pci_read32(struct rtw_dev * rtwdev,u32 addr)64 static u32 rtw_pci_read32(struct rtw_dev *rtwdev, u32 addr)
65 {
66 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
67
68 return readl(rtwpci->mmap + addr);
69 }
70
rtw_pci_write8(struct rtw_dev * rtwdev,u32 addr,u8 val)71 static void rtw_pci_write8(struct rtw_dev *rtwdev, u32 addr, u8 val)
72 {
73 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
74
75 writeb(val, rtwpci->mmap + addr);
76 }
77
rtw_pci_write16(struct rtw_dev * rtwdev,u32 addr,u16 val)78 static void rtw_pci_write16(struct rtw_dev *rtwdev, u32 addr, u16 val)
79 {
80 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
81
82 writew(val, rtwpci->mmap + addr);
83 }
84
rtw_pci_write32(struct rtw_dev * rtwdev,u32 addr,u32 val)85 static void rtw_pci_write32(struct rtw_dev *rtwdev, u32 addr, u32 val)
86 {
87 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
88
89 writel(val, rtwpci->mmap + addr);
90 }
91
rtw_pci_free_tx_ring_skbs(struct rtw_dev * rtwdev,struct rtw_pci_tx_ring * tx_ring)92 static void rtw_pci_free_tx_ring_skbs(struct rtw_dev *rtwdev,
93 struct rtw_pci_tx_ring *tx_ring)
94 {
95 struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
96 struct rtw_pci_tx_data *tx_data;
97 struct sk_buff *skb, *tmp;
98 dma_addr_t dma;
99
100 /* free every skb remained in tx list */
101 skb_queue_walk_safe(&tx_ring->queue, skb, tmp) {
102 __skb_unlink(skb, &tx_ring->queue);
103 tx_data = rtw_pci_get_tx_data(skb);
104 dma = tx_data->dma;
105
106 dma_unmap_single(&pdev->dev, dma, skb->len, DMA_TO_DEVICE);
107 dev_kfree_skb_any(skb);
108 }
109 }
110
rtw_pci_free_tx_ring(struct rtw_dev * rtwdev,struct rtw_pci_tx_ring * tx_ring)111 static void rtw_pci_free_tx_ring(struct rtw_dev *rtwdev,
112 struct rtw_pci_tx_ring *tx_ring)
113 {
114 struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
115 u8 *head = tx_ring->r.head;
116 u32 len = tx_ring->r.len;
117 int ring_sz = len * tx_ring->r.desc_size;
118
119 rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
120
121 /* free the ring itself */
122 dma_free_coherent(&pdev->dev, ring_sz, head, tx_ring->r.dma);
123 tx_ring->r.head = NULL;
124 }
125
rtw_pci_free_rx_ring_skbs(struct rtw_dev * rtwdev,struct rtw_pci_rx_ring * rx_ring)126 static void rtw_pci_free_rx_ring_skbs(struct rtw_dev *rtwdev,
127 struct rtw_pci_rx_ring *rx_ring)
128 {
129 struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
130 struct sk_buff *skb;
131 int buf_sz = RTK_PCI_RX_BUF_SIZE;
132 dma_addr_t dma;
133 int i;
134
135 for (i = 0; i < rx_ring->r.len; i++) {
136 skb = rx_ring->buf[i];
137 if (!skb)
138 continue;
139
140 dma = *((dma_addr_t *)skb->cb);
141 dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
142 dev_kfree_skb(skb);
143 rx_ring->buf[i] = NULL;
144 }
145 }
146
rtw_pci_free_rx_ring(struct rtw_dev * rtwdev,struct rtw_pci_rx_ring * rx_ring)147 static void rtw_pci_free_rx_ring(struct rtw_dev *rtwdev,
148 struct rtw_pci_rx_ring *rx_ring)
149 {
150 struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
151 u8 *head = rx_ring->r.head;
152 int ring_sz = rx_ring->r.desc_size * rx_ring->r.len;
153
154 rtw_pci_free_rx_ring_skbs(rtwdev, rx_ring);
155
156 dma_free_coherent(&pdev->dev, ring_sz, head, rx_ring->r.dma);
157 }
158
rtw_pci_free_trx_ring(struct rtw_dev * rtwdev)159 static void rtw_pci_free_trx_ring(struct rtw_dev *rtwdev)
160 {
161 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
162 struct rtw_pci_tx_ring *tx_ring;
163 struct rtw_pci_rx_ring *rx_ring;
164 int i;
165
166 for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
167 tx_ring = &rtwpci->tx_rings[i];
168 rtw_pci_free_tx_ring(rtwdev, tx_ring);
169 }
170
171 for (i = 0; i < RTK_MAX_RX_QUEUE_NUM; i++) {
172 rx_ring = &rtwpci->rx_rings[i];
173 rtw_pci_free_rx_ring(rtwdev, rx_ring);
174 }
175 }
176
rtw_pci_init_tx_ring(struct rtw_dev * rtwdev,struct rtw_pci_tx_ring * tx_ring,u8 desc_size,u32 len)177 static int rtw_pci_init_tx_ring(struct rtw_dev *rtwdev,
178 struct rtw_pci_tx_ring *tx_ring,
179 u8 desc_size, u32 len)
180 {
181 struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
182 int ring_sz = desc_size * len;
183 dma_addr_t dma;
184 u8 *head;
185
186 if (len > TRX_BD_IDX_MASK) {
187 rtw_err(rtwdev, "len %d exceeds maximum TX entries\n", len);
188 return -EINVAL;
189 }
190
191 head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
192 if (!head) {
193 rtw_err(rtwdev, "failed to allocate tx ring\n");
194 return -ENOMEM;
195 }
196
197 skb_queue_head_init(&tx_ring->queue);
198 tx_ring->r.head = head;
199 tx_ring->r.dma = dma;
200 tx_ring->r.len = len;
201 tx_ring->r.desc_size = desc_size;
202 tx_ring->r.wp = 0;
203 tx_ring->r.rp = 0;
204
205 return 0;
206 }
207
rtw_pci_reset_rx_desc(struct rtw_dev * rtwdev,struct sk_buff * skb,struct rtw_pci_rx_ring * rx_ring,u32 idx,u32 desc_sz)208 static int rtw_pci_reset_rx_desc(struct rtw_dev *rtwdev, struct sk_buff *skb,
209 struct rtw_pci_rx_ring *rx_ring,
210 u32 idx, u32 desc_sz)
211 {
212 struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
213 struct rtw_pci_rx_buffer_desc *buf_desc;
214 int buf_sz = RTK_PCI_RX_BUF_SIZE;
215 dma_addr_t dma;
216
217 if (!skb)
218 return -EINVAL;
219
220 dma = dma_map_single(&pdev->dev, skb->data, buf_sz, DMA_FROM_DEVICE);
221 if (dma_mapping_error(&pdev->dev, dma))
222 return -EBUSY;
223
224 *((dma_addr_t *)skb->cb) = dma;
225 buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
226 idx * desc_sz);
227 memset(buf_desc, 0, sizeof(*buf_desc));
228 buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
229 buf_desc->dma = cpu_to_le32(dma);
230
231 return 0;
232 }
233
rtw_pci_sync_rx_desc_device(struct rtw_dev * rtwdev,dma_addr_t dma,struct rtw_pci_rx_ring * rx_ring,u32 idx,u32 desc_sz)234 static void rtw_pci_sync_rx_desc_device(struct rtw_dev *rtwdev, dma_addr_t dma,
235 struct rtw_pci_rx_ring *rx_ring,
236 u32 idx, u32 desc_sz)
237 {
238 struct device *dev = rtwdev->dev;
239 struct rtw_pci_rx_buffer_desc *buf_desc;
240 int buf_sz = RTK_PCI_RX_BUF_SIZE;
241
242 dma_sync_single_for_device(dev, dma, buf_sz, DMA_FROM_DEVICE);
243
244 buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
245 idx * desc_sz);
246 memset(buf_desc, 0, sizeof(*buf_desc));
247 buf_desc->buf_size = cpu_to_le16(RTK_PCI_RX_BUF_SIZE);
248 buf_desc->dma = cpu_to_le32(dma);
249 }
250
rtw_pci_init_rx_ring(struct rtw_dev * rtwdev,struct rtw_pci_rx_ring * rx_ring,u8 desc_size,u32 len)251 static int rtw_pci_init_rx_ring(struct rtw_dev *rtwdev,
252 struct rtw_pci_rx_ring *rx_ring,
253 u8 desc_size, u32 len)
254 {
255 struct pci_dev *pdev = to_pci_dev(rtwdev->dev);
256 struct sk_buff *skb = NULL;
257 dma_addr_t dma;
258 u8 *head;
259 int ring_sz = desc_size * len;
260 int buf_sz = RTK_PCI_RX_BUF_SIZE;
261 int i, allocated;
262 int ret = 0;
263
264 head = dma_alloc_coherent(&pdev->dev, ring_sz, &dma, GFP_KERNEL);
265 if (!head) {
266 rtw_err(rtwdev, "failed to allocate rx ring\n");
267 return -ENOMEM;
268 }
269 rx_ring->r.head = head;
270
271 for (i = 0; i < len; i++) {
272 skb = dev_alloc_skb(buf_sz);
273 if (!skb) {
274 allocated = i;
275 ret = -ENOMEM;
276 goto err_out;
277 }
278
279 memset(skb->data, 0, buf_sz);
280 rx_ring->buf[i] = skb;
281 ret = rtw_pci_reset_rx_desc(rtwdev, skb, rx_ring, i, desc_size);
282 if (ret) {
283 allocated = i;
284 dev_kfree_skb_any(skb);
285 goto err_out;
286 }
287 }
288
289 rx_ring->r.dma = dma;
290 rx_ring->r.len = len;
291 rx_ring->r.desc_size = desc_size;
292 rx_ring->r.wp = 0;
293 rx_ring->r.rp = 0;
294
295 return 0;
296
297 err_out:
298 for (i = 0; i < allocated; i++) {
299 skb = rx_ring->buf[i];
300 if (!skb)
301 continue;
302 dma = *((dma_addr_t *)skb->cb);
303 dma_unmap_single(&pdev->dev, dma, buf_sz, DMA_FROM_DEVICE);
304 dev_kfree_skb_any(skb);
305 rx_ring->buf[i] = NULL;
306 }
307 dma_free_coherent(&pdev->dev, ring_sz, head, dma);
308
309 rtw_err(rtwdev, "failed to init rx buffer\n");
310
311 return ret;
312 }
313
rtw_pci_init_trx_ring(struct rtw_dev * rtwdev)314 static int rtw_pci_init_trx_ring(struct rtw_dev *rtwdev)
315 {
316 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
317 struct rtw_pci_tx_ring *tx_ring;
318 struct rtw_pci_rx_ring *rx_ring;
319 const struct rtw_chip_info *chip = rtwdev->chip;
320 int i = 0, j = 0, tx_alloced = 0, rx_alloced = 0;
321 int tx_desc_size, rx_desc_size;
322 u32 len;
323 int ret;
324
325 tx_desc_size = chip->tx_buf_desc_sz;
326
327 for (i = 0; i < RTK_MAX_TX_QUEUE_NUM; i++) {
328 tx_ring = &rtwpci->tx_rings[i];
329 len = max_num_of_tx_queue(i);
330 ret = rtw_pci_init_tx_ring(rtwdev, tx_ring, tx_desc_size, len);
331 if (ret)
332 goto out;
333 }
334
335 rx_desc_size = chip->rx_buf_desc_sz;
336
337 for (j = 0; j < RTK_MAX_RX_QUEUE_NUM; j++) {
338 rx_ring = &rtwpci->rx_rings[j];
339 ret = rtw_pci_init_rx_ring(rtwdev, rx_ring, rx_desc_size,
340 RTK_MAX_RX_DESC_NUM);
341 if (ret)
342 goto out;
343 }
344
345 return 0;
346
347 out:
348 tx_alloced = i;
349 for (i = 0; i < tx_alloced; i++) {
350 tx_ring = &rtwpci->tx_rings[i];
351 rtw_pci_free_tx_ring(rtwdev, tx_ring);
352 }
353
354 rx_alloced = j;
355 for (j = 0; j < rx_alloced; j++) {
356 rx_ring = &rtwpci->rx_rings[j];
357 rtw_pci_free_rx_ring(rtwdev, rx_ring);
358 }
359
360 return ret;
361 }
362
rtw_pci_deinit(struct rtw_dev * rtwdev)363 static void rtw_pci_deinit(struct rtw_dev *rtwdev)
364 {
365 rtw_pci_free_trx_ring(rtwdev);
366 }
367
rtw_pci_init(struct rtw_dev * rtwdev)368 static int rtw_pci_init(struct rtw_dev *rtwdev)
369 {
370 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
371 int ret = 0;
372
373 rtwpci->irq_mask[0] = IMR_HIGHDOK |
374 IMR_MGNTDOK |
375 IMR_BKDOK |
376 IMR_BEDOK |
377 IMR_VIDOK |
378 IMR_VODOK |
379 IMR_ROK |
380 IMR_BCNDMAINT_E |
381 IMR_C2HCMD |
382 0;
383 rtwpci->irq_mask[1] = IMR_TXFOVW |
384 0;
385 rtwpci->irq_mask[3] = IMR_H2CDOK |
386 0;
387 spin_lock_init(&rtwpci->irq_lock);
388 spin_lock_init(&rtwpci->hwirq_lock);
389 ret = rtw_pci_init_trx_ring(rtwdev);
390
391 return ret;
392 }
393
rtw_pci_reset_buf_desc(struct rtw_dev * rtwdev)394 static void rtw_pci_reset_buf_desc(struct rtw_dev *rtwdev)
395 {
396 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
397 u32 len;
398 u8 tmp;
399 dma_addr_t dma;
400
401 tmp = rtw_read8(rtwdev, RTK_PCI_CTRL + 3);
402 rtw_write8(rtwdev, RTK_PCI_CTRL + 3, tmp | 0xf7);
403
404 dma = rtwpci->tx_rings[RTW_TX_QUEUE_BCN].r.dma;
405 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BCNQ, dma);
406
407 if (!rtw_chip_wcpu_11n(rtwdev)) {
408 len = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.len;
409 dma = rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.dma;
410 rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.rp = 0;
411 rtwpci->tx_rings[RTW_TX_QUEUE_H2C].r.wp = 0;
412 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_H2CQ, len & TRX_BD_IDX_MASK);
413 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_H2CQ, dma);
414 }
415
416 len = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.len;
417 dma = rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.dma;
418 rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.rp = 0;
419 rtwpci->tx_rings[RTW_TX_QUEUE_BK].r.wp = 0;
420 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BKQ, len & TRX_BD_IDX_MASK);
421 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BKQ, dma);
422
423 len = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.len;
424 dma = rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.dma;
425 rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.rp = 0;
426 rtwpci->tx_rings[RTW_TX_QUEUE_BE].r.wp = 0;
427 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_BEQ, len & TRX_BD_IDX_MASK);
428 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_BEQ, dma);
429
430 len = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.len;
431 dma = rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.dma;
432 rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.rp = 0;
433 rtwpci->tx_rings[RTW_TX_QUEUE_VO].r.wp = 0;
434 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VOQ, len & TRX_BD_IDX_MASK);
435 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VOQ, dma);
436
437 len = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.len;
438 dma = rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.dma;
439 rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.rp = 0;
440 rtwpci->tx_rings[RTW_TX_QUEUE_VI].r.wp = 0;
441 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_VIQ, len & TRX_BD_IDX_MASK);
442 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_VIQ, dma);
443
444 len = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.len;
445 dma = rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.dma;
446 rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.rp = 0;
447 rtwpci->tx_rings[RTW_TX_QUEUE_MGMT].r.wp = 0;
448 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_MGMTQ, len & TRX_BD_IDX_MASK);
449 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_MGMTQ, dma);
450
451 len = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.len;
452 dma = rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.dma;
453 rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.rp = 0;
454 rtwpci->tx_rings[RTW_TX_QUEUE_HI0].r.wp = 0;
455 rtw_write16(rtwdev, RTK_PCI_TXBD_NUM_HI0Q, len & TRX_BD_IDX_MASK);
456 rtw_write32(rtwdev, RTK_PCI_TXBD_DESA_HI0Q, dma);
457
458 len = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.len;
459 dma = rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.dma;
460 rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.rp = 0;
461 rtwpci->rx_rings[RTW_RX_QUEUE_MPDU].r.wp = 0;
462 rtw_write16(rtwdev, RTK_PCI_RXBD_NUM_MPDUQ, len & TRX_BD_IDX_MASK);
463 rtw_write32(rtwdev, RTK_PCI_RXBD_DESA_MPDUQ, dma);
464
465 /* reset read/write point */
466 rtw_write32(rtwdev, RTK_PCI_TXBD_RWPTR_CLR, 0xffffffff);
467
468 /* reset H2C Queue index in a single write */
469 if (rtw_chip_wcpu_11ac(rtwdev))
470 rtw_write32_set(rtwdev, RTK_PCI_TXBD_H2CQ_CSR,
471 BIT_CLR_H2CQ_HOST_IDX | BIT_CLR_H2CQ_HW_IDX);
472 }
473
rtw_pci_reset_trx_ring(struct rtw_dev * rtwdev)474 static void rtw_pci_reset_trx_ring(struct rtw_dev *rtwdev)
475 {
476 rtw_pci_reset_buf_desc(rtwdev);
477 }
478
rtw_pci_enable_interrupt(struct rtw_dev * rtwdev,struct rtw_pci * rtwpci,bool exclude_rx)479 static void rtw_pci_enable_interrupt(struct rtw_dev *rtwdev,
480 struct rtw_pci *rtwpci, bool exclude_rx)
481 {
482 unsigned long flags;
483 u32 imr0_unmask = exclude_rx ? IMR_ROK : 0;
484
485 spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
486
487 rtw_write32(rtwdev, RTK_PCI_HIMR0, rtwpci->irq_mask[0] & ~imr0_unmask);
488 rtw_write32(rtwdev, RTK_PCI_HIMR1, rtwpci->irq_mask[1]);
489 if (rtw_chip_wcpu_11ac(rtwdev))
490 rtw_write32(rtwdev, RTK_PCI_HIMR3, rtwpci->irq_mask[3]);
491
492 rtwpci->irq_enabled = true;
493
494 spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
495 }
496
rtw_pci_disable_interrupt(struct rtw_dev * rtwdev,struct rtw_pci * rtwpci)497 static void rtw_pci_disable_interrupt(struct rtw_dev *rtwdev,
498 struct rtw_pci *rtwpci)
499 {
500 unsigned long flags;
501
502 spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
503
504 if (!rtwpci->irq_enabled)
505 goto out;
506
507 rtw_write32(rtwdev, RTK_PCI_HIMR0, 0);
508 rtw_write32(rtwdev, RTK_PCI_HIMR1, 0);
509 if (rtw_chip_wcpu_11ac(rtwdev))
510 rtw_write32(rtwdev, RTK_PCI_HIMR3, 0);
511
512 rtwpci->irq_enabled = false;
513
514 out:
515 spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
516 }
517
rtw_pci_dma_reset(struct rtw_dev * rtwdev,struct rtw_pci * rtwpci)518 static void rtw_pci_dma_reset(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
519 {
520 /* reset dma and rx tag */
521 rtw_write32_set(rtwdev, RTK_PCI_CTRL,
522 BIT_RST_TRXDMA_INTF | BIT_RX_TAG_EN);
523 rtwpci->rx_tag = 0;
524 }
525
rtw_pci_setup(struct rtw_dev * rtwdev)526 static int rtw_pci_setup(struct rtw_dev *rtwdev)
527 {
528 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
529
530 rtw_pci_reset_trx_ring(rtwdev);
531 rtw_pci_dma_reset(rtwdev, rtwpci);
532
533 return 0;
534 }
535
rtw_pci_dma_release(struct rtw_dev * rtwdev,struct rtw_pci * rtwpci)536 static void rtw_pci_dma_release(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci)
537 {
538 struct rtw_pci_tx_ring *tx_ring;
539 enum rtw_tx_queue_type queue;
540
541 rtw_pci_reset_trx_ring(rtwdev);
542 for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
543 tx_ring = &rtwpci->tx_rings[queue];
544 rtw_pci_free_tx_ring_skbs(rtwdev, tx_ring);
545 }
546 }
547
rtw_pci_napi_start(struct rtw_dev * rtwdev)548 static void rtw_pci_napi_start(struct rtw_dev *rtwdev)
549 {
550 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
551
552 if (test_and_set_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
553 return;
554
555 napi_enable(&rtwpci->napi);
556 }
557
rtw_pci_napi_stop(struct rtw_dev * rtwdev)558 static void rtw_pci_napi_stop(struct rtw_dev *rtwdev)
559 {
560 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
561
562 if (!test_and_clear_bit(RTW_PCI_FLAG_NAPI_RUNNING, rtwpci->flags))
563 return;
564
565 napi_synchronize(&rtwpci->napi);
566 napi_disable(&rtwpci->napi);
567 }
568
rtw_pci_start(struct rtw_dev * rtwdev)569 static int rtw_pci_start(struct rtw_dev *rtwdev)
570 {
571 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
572
573 rtw_pci_napi_start(rtwdev);
574
575 spin_lock_bh(&rtwpci->irq_lock);
576 rtwpci->running = true;
577 rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
578 spin_unlock_bh(&rtwpci->irq_lock);
579
580 return 0;
581 }
582
rtw_pci_stop(struct rtw_dev * rtwdev)583 static void rtw_pci_stop(struct rtw_dev *rtwdev)
584 {
585 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
586 struct pci_dev *pdev = rtwpci->pdev;
587
588 spin_lock_bh(&rtwpci->irq_lock);
589 rtwpci->running = false;
590 rtw_pci_disable_interrupt(rtwdev, rtwpci);
591 spin_unlock_bh(&rtwpci->irq_lock);
592
593 synchronize_irq(pdev->irq);
594 rtw_pci_napi_stop(rtwdev);
595
596 spin_lock_bh(&rtwpci->irq_lock);
597 rtw_pci_dma_release(rtwdev, rtwpci);
598 spin_unlock_bh(&rtwpci->irq_lock);
599 }
600
rtw_pci_deep_ps_enter(struct rtw_dev * rtwdev)601 static void rtw_pci_deep_ps_enter(struct rtw_dev *rtwdev)
602 {
603 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
604 struct rtw_pci_tx_ring *tx_ring;
605 enum rtw_tx_queue_type queue;
606 bool tx_empty = true;
607
608 if (rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE))
609 goto enter_deep_ps;
610
611 lockdep_assert_held(&rtwpci->irq_lock);
612
613 /* Deep PS state is not allowed to TX-DMA */
614 for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++) {
615 /* BCN queue is rsvd page, does not have DMA interrupt
616 * H2C queue is managed by firmware
617 */
618 if (queue == RTW_TX_QUEUE_BCN ||
619 queue == RTW_TX_QUEUE_H2C)
620 continue;
621
622 tx_ring = &rtwpci->tx_rings[queue];
623
624 /* check if there is any skb DMAing */
625 if (skb_queue_len(&tx_ring->queue)) {
626 tx_empty = false;
627 break;
628 }
629 }
630
631 if (!tx_empty) {
632 rtw_dbg(rtwdev, RTW_DBG_PS,
633 "TX path not empty, cannot enter deep power save state\n");
634 return;
635 }
636 enter_deep_ps:
637 set_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags);
638 rtw_power_mode_change(rtwdev, true);
639 }
640
rtw_pci_deep_ps_leave(struct rtw_dev * rtwdev)641 static void rtw_pci_deep_ps_leave(struct rtw_dev *rtwdev)
642 {
643 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
644
645 lockdep_assert_held(&rtwpci->irq_lock);
646
647 if (test_and_clear_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
648 rtw_power_mode_change(rtwdev, false);
649 }
650
rtw_pci_deep_ps(struct rtw_dev * rtwdev,bool enter)651 static void rtw_pci_deep_ps(struct rtw_dev *rtwdev, bool enter)
652 {
653 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
654
655 spin_lock_bh(&rtwpci->irq_lock);
656
657 if (enter && !test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
658 rtw_pci_deep_ps_enter(rtwdev);
659
660 if (!enter && test_bit(RTW_FLAG_LEISURE_PS_DEEP, rtwdev->flags))
661 rtw_pci_deep_ps_leave(rtwdev);
662
663 spin_unlock_bh(&rtwpci->irq_lock);
664 }
665
rtw_pci_release_rsvd_page(struct rtw_pci * rtwpci,struct rtw_pci_tx_ring * ring)666 static void rtw_pci_release_rsvd_page(struct rtw_pci *rtwpci,
667 struct rtw_pci_tx_ring *ring)
668 {
669 struct sk_buff *prev = skb_dequeue(&ring->queue);
670 struct rtw_pci_tx_data *tx_data;
671 dma_addr_t dma;
672
673 if (!prev)
674 return;
675
676 tx_data = rtw_pci_get_tx_data(prev);
677 dma = tx_data->dma;
678 dma_unmap_single(&rtwpci->pdev->dev, dma, prev->len, DMA_TO_DEVICE);
679 dev_kfree_skb_any(prev);
680 }
681
rtw_pci_dma_check(struct rtw_dev * rtwdev,struct rtw_pci_rx_ring * rx_ring,u32 idx)682 static void rtw_pci_dma_check(struct rtw_dev *rtwdev,
683 struct rtw_pci_rx_ring *rx_ring,
684 u32 idx)
685 {
686 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
687 const struct rtw_chip_info *chip = rtwdev->chip;
688 struct rtw_pci_rx_buffer_desc *buf_desc;
689 u32 desc_sz = chip->rx_buf_desc_sz;
690 u16 total_pkt_size;
691
692 buf_desc = (struct rtw_pci_rx_buffer_desc *)(rx_ring->r.head +
693 idx * desc_sz);
694 total_pkt_size = le16_to_cpu(buf_desc->total_pkt_size);
695
696 /* rx tag mismatch, throw a warning */
697 if (total_pkt_size != rtwpci->rx_tag)
698 rtw_warn(rtwdev, "pci bus timeout, check dma status\n");
699
700 rtwpci->rx_tag = (rtwpci->rx_tag + 1) % RX_TAG_MAX;
701 }
702
__pci_get_hw_tx_ring_rp(struct rtw_dev * rtwdev,u8 pci_q)703 static u32 __pci_get_hw_tx_ring_rp(struct rtw_dev *rtwdev, u8 pci_q)
704 {
705 u32 bd_idx_addr = rtw_pci_tx_queue_idx_addr[pci_q];
706 u32 bd_idx = rtw_read16(rtwdev, bd_idx_addr + 2);
707
708 return FIELD_GET(TRX_BD_IDX_MASK, bd_idx);
709 }
710
__pci_flush_queue(struct rtw_dev * rtwdev,u8 pci_q,bool drop)711 static void __pci_flush_queue(struct rtw_dev *rtwdev, u8 pci_q, bool drop)
712 {
713 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
714 struct rtw_pci_tx_ring *ring = &rtwpci->tx_rings[pci_q];
715 u32 cur_rp;
716 u8 i;
717
718 /* Because the time taked by the I/O in __pci_get_hw_tx_ring_rp is a
719 * bit dynamic, it's hard to define a reasonable fixed total timeout to
720 * use read_poll_timeout* helper. Instead, we can ensure a reasonable
721 * polling times, so we just use for loop with udelay here.
722 */
723 for (i = 0; i < 30; i++) {
724 cur_rp = __pci_get_hw_tx_ring_rp(rtwdev, pci_q);
725 if (cur_rp == ring->r.wp)
726 return;
727
728 udelay(1);
729 }
730
731 if (!drop)
732 rtw_warn(rtwdev, "timed out to flush pci tx ring[%d]\n", pci_q);
733 }
734
__rtw_pci_flush_queues(struct rtw_dev * rtwdev,u32 pci_queues,bool drop)735 static void __rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 pci_queues,
736 bool drop)
737 {
738 u8 q;
739
740 for (q = 0; q < RTK_MAX_TX_QUEUE_NUM; q++) {
741 /* Unnecessary to flush BCN, H2C and HI tx queues. */
742 if (q == RTW_TX_QUEUE_BCN || q == RTW_TX_QUEUE_H2C ||
743 q == RTW_TX_QUEUE_HI0)
744 continue;
745
746 if (pci_queues & BIT(q))
747 __pci_flush_queue(rtwdev, q, drop);
748 }
749 }
750
rtw_pci_flush_queues(struct rtw_dev * rtwdev,u32 queues,bool drop)751 static void rtw_pci_flush_queues(struct rtw_dev *rtwdev, u32 queues, bool drop)
752 {
753 u32 pci_queues = 0;
754 u8 i;
755
756 /* If all of the hardware queues are requested to flush,
757 * flush all of the pci queues.
758 */
759 if (queues == BIT(rtwdev->hw->queues) - 1) {
760 pci_queues = BIT(RTK_MAX_TX_QUEUE_NUM) - 1;
761 } else {
762 for (i = 0; i < rtwdev->hw->queues; i++)
763 if (queues & BIT(i))
764 pci_queues |= BIT(rtw_tx_ac_to_hwq(i));
765 }
766
767 __rtw_pci_flush_queues(rtwdev, pci_queues, drop);
768 }
769
rtw_pci_tx_kick_off_queue(struct rtw_dev * rtwdev,enum rtw_tx_queue_type queue)770 static void rtw_pci_tx_kick_off_queue(struct rtw_dev *rtwdev,
771 enum rtw_tx_queue_type queue)
772 {
773 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
774 struct rtw_pci_tx_ring *ring;
775 u32 bd_idx;
776
777 ring = &rtwpci->tx_rings[queue];
778 bd_idx = rtw_pci_tx_queue_idx_addr[queue];
779
780 spin_lock_bh(&rtwpci->irq_lock);
781 if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_TX_WAKE))
782 rtw_pci_deep_ps_leave(rtwdev);
783 rtw_write16(rtwdev, bd_idx, ring->r.wp & TRX_BD_IDX_MASK);
784 spin_unlock_bh(&rtwpci->irq_lock);
785 }
786
rtw_pci_tx_kick_off(struct rtw_dev * rtwdev)787 static void rtw_pci_tx_kick_off(struct rtw_dev *rtwdev)
788 {
789 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
790 enum rtw_tx_queue_type queue;
791
792 for (queue = 0; queue < RTK_MAX_TX_QUEUE_NUM; queue++)
793 if (test_and_clear_bit(queue, rtwpci->tx_queued))
794 rtw_pci_tx_kick_off_queue(rtwdev, queue);
795 }
796
rtw_pci_tx_write_data(struct rtw_dev * rtwdev,struct rtw_tx_pkt_info * pkt_info,struct sk_buff * skb,enum rtw_tx_queue_type queue)797 static int rtw_pci_tx_write_data(struct rtw_dev *rtwdev,
798 struct rtw_tx_pkt_info *pkt_info,
799 struct sk_buff *skb,
800 enum rtw_tx_queue_type queue)
801 {
802 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
803 const struct rtw_chip_info *chip = rtwdev->chip;
804 struct rtw_pci_tx_ring *ring;
805 struct rtw_pci_tx_data *tx_data;
806 dma_addr_t dma;
807 u32 tx_pkt_desc_sz = chip->tx_pkt_desc_sz;
808 u32 tx_buf_desc_sz = chip->tx_buf_desc_sz;
809 u32 size;
810 u32 psb_len;
811 u8 *pkt_desc;
812 struct rtw_pci_tx_buffer_desc *buf_desc;
813
814 ring = &rtwpci->tx_rings[queue];
815
816 size = skb->len;
817
818 if (queue == RTW_TX_QUEUE_BCN)
819 rtw_pci_release_rsvd_page(rtwpci, ring);
820 else if (!avail_desc(ring->r.wp, ring->r.rp, ring->r.len))
821 return -ENOSPC;
822
823 pkt_desc = skb_push(skb, chip->tx_pkt_desc_sz);
824 memset(pkt_desc, 0, tx_pkt_desc_sz);
825 pkt_info->qsel = rtw_pci_get_tx_qsel(skb, queue);
826 rtw_tx_fill_tx_desc(pkt_info, skb);
827 dma = dma_map_single(&rtwpci->pdev->dev, skb->data, skb->len,
828 DMA_TO_DEVICE);
829 if (dma_mapping_error(&rtwpci->pdev->dev, dma))
830 return -EBUSY;
831
832 /* after this we got dma mapped, there is no way back */
833 buf_desc = get_tx_buffer_desc(ring, tx_buf_desc_sz);
834 memset(buf_desc, 0, tx_buf_desc_sz);
835 psb_len = (skb->len - 1) / 128 + 1;
836 if (queue == RTW_TX_QUEUE_BCN)
837 psb_len |= 1 << RTK_PCI_TXBD_OWN_OFFSET;
838
839 buf_desc[0].psb_len = cpu_to_le16(psb_len);
840 buf_desc[0].buf_size = cpu_to_le16(tx_pkt_desc_sz);
841 buf_desc[0].dma = cpu_to_le32(dma);
842 buf_desc[1].buf_size = cpu_to_le16(size);
843 buf_desc[1].dma = cpu_to_le32(dma + tx_pkt_desc_sz);
844
845 tx_data = rtw_pci_get_tx_data(skb);
846 tx_data->dma = dma;
847 tx_data->sn = pkt_info->sn;
848
849 spin_lock_bh(&rtwpci->irq_lock);
850
851 skb_queue_tail(&ring->queue, skb);
852
853 if (queue == RTW_TX_QUEUE_BCN)
854 goto out_unlock;
855
856 /* update write-index, and kick it off later */
857 set_bit(queue, rtwpci->tx_queued);
858 if (++ring->r.wp >= ring->r.len)
859 ring->r.wp = 0;
860
861 out_unlock:
862 spin_unlock_bh(&rtwpci->irq_lock);
863
864 return 0;
865 }
866
rtw_pci_write_data_rsvd_page(struct rtw_dev * rtwdev,u8 * buf,u32 size)867 static int rtw_pci_write_data_rsvd_page(struct rtw_dev *rtwdev, u8 *buf,
868 u32 size)
869 {
870 struct sk_buff *skb;
871 struct rtw_tx_pkt_info pkt_info = {0};
872 u8 reg_bcn_work;
873 int ret;
874
875 skb = rtw_tx_write_data_rsvd_page_get(rtwdev, &pkt_info, buf, size);
876 if (!skb)
877 return -ENOMEM;
878
879 ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_BCN);
880 if (ret) {
881 rtw_err(rtwdev, "failed to write rsvd page data\n");
882 return ret;
883 }
884
885 /* reserved pages go through beacon queue */
886 reg_bcn_work = rtw_read8(rtwdev, RTK_PCI_TXBD_BCN_WORK);
887 reg_bcn_work |= BIT_PCI_BCNQ_FLAG;
888 rtw_write8(rtwdev, RTK_PCI_TXBD_BCN_WORK, reg_bcn_work);
889
890 return 0;
891 }
892
rtw_pci_write_data_h2c(struct rtw_dev * rtwdev,u8 * buf,u32 size)893 static int rtw_pci_write_data_h2c(struct rtw_dev *rtwdev, u8 *buf, u32 size)
894 {
895 struct sk_buff *skb;
896 struct rtw_tx_pkt_info pkt_info = {0};
897 int ret;
898
899 skb = rtw_tx_write_data_h2c_get(rtwdev, &pkt_info, buf, size);
900 if (!skb)
901 return -ENOMEM;
902
903 ret = rtw_pci_tx_write_data(rtwdev, &pkt_info, skb, RTW_TX_QUEUE_H2C);
904 if (ret) {
905 rtw_err(rtwdev, "failed to write h2c data\n");
906 return ret;
907 }
908
909 rtw_pci_tx_kick_off_queue(rtwdev, RTW_TX_QUEUE_H2C);
910
911 return 0;
912 }
913
rtw_pci_tx_write(struct rtw_dev * rtwdev,struct rtw_tx_pkt_info * pkt_info,struct sk_buff * skb)914 static int rtw_pci_tx_write(struct rtw_dev *rtwdev,
915 struct rtw_tx_pkt_info *pkt_info,
916 struct sk_buff *skb)
917 {
918 enum rtw_tx_queue_type queue = rtw_tx_queue_mapping(skb);
919 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
920 struct rtw_pci_tx_ring *ring;
921 int ret;
922
923 ret = rtw_pci_tx_write_data(rtwdev, pkt_info, skb, queue);
924 if (ret)
925 return ret;
926
927 ring = &rtwpci->tx_rings[queue];
928 spin_lock_bh(&rtwpci->irq_lock);
929 if (avail_desc(ring->r.wp, ring->r.rp, ring->r.len) < 2) {
930 ieee80211_stop_queue(rtwdev->hw, skb_get_queue_mapping(skb));
931 ring->queue_stopped = true;
932 }
933 spin_unlock_bh(&rtwpci->irq_lock);
934
935 return 0;
936 }
937
rtw_pci_tx_isr(struct rtw_dev * rtwdev,struct rtw_pci * rtwpci,u8 hw_queue)938 static void rtw_pci_tx_isr(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
939 u8 hw_queue)
940 {
941 struct ieee80211_hw *hw = rtwdev->hw;
942 struct ieee80211_tx_info *info;
943 struct rtw_pci_tx_ring *ring;
944 struct rtw_pci_tx_data *tx_data;
945 struct sk_buff *skb;
946 u32 count;
947 u32 bd_idx_addr;
948 u32 bd_idx, cur_rp, rp_idx;
949 u16 q_map;
950
951 ring = &rtwpci->tx_rings[hw_queue];
952
953 bd_idx_addr = rtw_pci_tx_queue_idx_addr[hw_queue];
954 bd_idx = rtw_read32(rtwdev, bd_idx_addr);
955 cur_rp = bd_idx >> 16;
956 cur_rp &= TRX_BD_IDX_MASK;
957 rp_idx = ring->r.rp;
958 if (cur_rp >= ring->r.rp)
959 count = cur_rp - ring->r.rp;
960 else
961 count = ring->r.len - (ring->r.rp - cur_rp);
962
963 while (count--) {
964 skb = skb_dequeue(&ring->queue);
965 if (!skb) {
966 rtw_err(rtwdev, "failed to dequeue %d skb TX queue %d, BD=0x%08x, rp %d -> %d\n",
967 count, hw_queue, bd_idx, ring->r.rp, cur_rp);
968 break;
969 }
970 tx_data = rtw_pci_get_tx_data(skb);
971 dma_unmap_single(&rtwpci->pdev->dev, tx_data->dma, skb->len,
972 DMA_TO_DEVICE);
973
974 /* just free command packets from host to card */
975 if (hw_queue == RTW_TX_QUEUE_H2C) {
976 dev_kfree_skb_irq(skb);
977 continue;
978 }
979
980 if (ring->queue_stopped &&
981 avail_desc(ring->r.wp, rp_idx, ring->r.len) > 4) {
982 q_map = skb_get_queue_mapping(skb);
983 ieee80211_wake_queue(hw, q_map);
984 ring->queue_stopped = false;
985 }
986
987 if (++rp_idx >= ring->r.len)
988 rp_idx = 0;
989
990 skb_pull(skb, rtwdev->chip->tx_pkt_desc_sz);
991
992 info = IEEE80211_SKB_CB(skb);
993
994 /* enqueue to wait for tx report */
995 if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
996 rtw_tx_report_enqueue(rtwdev, skb, tx_data->sn);
997 continue;
998 }
999
1000 /* always ACK for others, then they won't be marked as drop */
1001 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
1002 info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
1003 else
1004 info->flags |= IEEE80211_TX_STAT_ACK;
1005
1006 ieee80211_tx_info_clear_status(info);
1007 ieee80211_tx_status_irqsafe(hw, skb);
1008 }
1009
1010 ring->r.rp = cur_rp;
1011 }
1012
rtw_pci_rx_isr(struct rtw_dev * rtwdev)1013 static void rtw_pci_rx_isr(struct rtw_dev *rtwdev)
1014 {
1015 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1016 struct napi_struct *napi = &rtwpci->napi;
1017
1018 napi_schedule(napi);
1019 }
1020
rtw_pci_get_hw_rx_ring_nr(struct rtw_dev * rtwdev,struct rtw_pci * rtwpci)1021 static int rtw_pci_get_hw_rx_ring_nr(struct rtw_dev *rtwdev,
1022 struct rtw_pci *rtwpci)
1023 {
1024 struct rtw_pci_rx_ring *ring;
1025 int count = 0;
1026 u32 tmp, cur_wp;
1027
1028 ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
1029 tmp = rtw_read32(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ);
1030 cur_wp = u32_get_bits(tmp, TRX_BD_HW_IDX_MASK);
1031 if (cur_wp >= ring->r.wp)
1032 count = cur_wp - ring->r.wp;
1033 else
1034 count = ring->r.len - (ring->r.wp - cur_wp);
1035
1036 return count;
1037 }
1038
rtw_pci_rx_napi(struct rtw_dev * rtwdev,struct rtw_pci * rtwpci,u8 hw_queue,u32 limit)1039 static u32 rtw_pci_rx_napi(struct rtw_dev *rtwdev, struct rtw_pci *rtwpci,
1040 u8 hw_queue, u32 limit)
1041 {
1042 const struct rtw_chip_info *chip = rtwdev->chip;
1043 struct napi_struct *napi = &rtwpci->napi;
1044 struct rtw_pci_rx_ring *ring = &rtwpci->rx_rings[RTW_RX_QUEUE_MPDU];
1045 struct rtw_rx_pkt_stat pkt_stat;
1046 struct ieee80211_rx_status rx_status;
1047 struct sk_buff *skb, *new;
1048 u32 cur_rp = ring->r.rp;
1049 u32 count, rx_done = 0;
1050 u32 pkt_offset;
1051 u32 pkt_desc_sz = chip->rx_pkt_desc_sz;
1052 u32 buf_desc_sz = chip->rx_buf_desc_sz;
1053 u32 new_len;
1054 u8 *rx_desc;
1055 dma_addr_t dma;
1056
1057 count = rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci);
1058 count = min(count, limit);
1059
1060 while (count--) {
1061 rtw_pci_dma_check(rtwdev, ring, cur_rp);
1062 skb = ring->buf[cur_rp];
1063 dma = *((dma_addr_t *)skb->cb);
1064 dma_sync_single_for_cpu(rtwdev->dev, dma, RTK_PCI_RX_BUF_SIZE,
1065 DMA_FROM_DEVICE);
1066 rx_desc = skb->data;
1067 chip->ops->query_rx_desc(rtwdev, rx_desc, &pkt_stat, &rx_status);
1068
1069 /* offset from rx_desc to payload */
1070 pkt_offset = pkt_desc_sz + pkt_stat.drv_info_sz +
1071 pkt_stat.shift;
1072
1073 /* allocate a new skb for this frame,
1074 * discard the frame if none available
1075 */
1076 new_len = pkt_stat.pkt_len + pkt_offset;
1077 new = dev_alloc_skb(new_len);
1078 if (WARN_ONCE(!new, "rx routine starvation\n"))
1079 goto next_rp;
1080
1081 /* put the DMA data including rx_desc from phy to new skb */
1082 skb_put_data(new, skb->data, new_len);
1083
1084 if (pkt_stat.is_c2h) {
1085 rtw_fw_c2h_cmd_rx_irqsafe(rtwdev, pkt_offset, new);
1086 } else {
1087 /* remove rx_desc */
1088 skb_pull(new, pkt_offset);
1089
1090 rtw_rx_stats(rtwdev, pkt_stat.vif, new);
1091 memcpy(new->cb, &rx_status, sizeof(rx_status));
1092 ieee80211_rx_napi(rtwdev->hw, NULL, new, napi);
1093 rx_done++;
1094 }
1095
1096 next_rp:
1097 /* new skb delivered to mac80211, re-enable original skb DMA */
1098 rtw_pci_sync_rx_desc_device(rtwdev, dma, ring, cur_rp,
1099 buf_desc_sz);
1100
1101 /* host read next element in ring */
1102 if (++cur_rp >= ring->r.len)
1103 cur_rp = 0;
1104 }
1105
1106 ring->r.rp = cur_rp;
1107 /* 'rp', the last position we have read, is seen as previous posistion
1108 * of 'wp' that is used to calculate 'count' next time.
1109 */
1110 ring->r.wp = cur_rp;
1111 rtw_write16(rtwdev, RTK_PCI_RXBD_IDX_MPDUQ, ring->r.rp);
1112
1113 return rx_done;
1114 }
1115
rtw_pci_irq_recognized(struct rtw_dev * rtwdev,struct rtw_pci * rtwpci,u32 * irq_status)1116 static void rtw_pci_irq_recognized(struct rtw_dev *rtwdev,
1117 struct rtw_pci *rtwpci, u32 *irq_status)
1118 {
1119 unsigned long flags;
1120
1121 spin_lock_irqsave(&rtwpci->hwirq_lock, flags);
1122
1123 irq_status[0] = rtw_read32(rtwdev, RTK_PCI_HISR0);
1124 irq_status[1] = rtw_read32(rtwdev, RTK_PCI_HISR1);
1125 if (rtw_chip_wcpu_11ac(rtwdev))
1126 irq_status[3] = rtw_read32(rtwdev, RTK_PCI_HISR3);
1127 else
1128 irq_status[3] = 0;
1129 irq_status[0] &= rtwpci->irq_mask[0];
1130 irq_status[1] &= rtwpci->irq_mask[1];
1131 irq_status[3] &= rtwpci->irq_mask[3];
1132 rtw_write32(rtwdev, RTK_PCI_HISR0, irq_status[0]);
1133 rtw_write32(rtwdev, RTK_PCI_HISR1, irq_status[1]);
1134 if (rtw_chip_wcpu_11ac(rtwdev))
1135 rtw_write32(rtwdev, RTK_PCI_HISR3, irq_status[3]);
1136
1137 spin_unlock_irqrestore(&rtwpci->hwirq_lock, flags);
1138 }
1139
rtw_pci_interrupt_handler(int irq,void * dev)1140 static irqreturn_t rtw_pci_interrupt_handler(int irq, void *dev)
1141 {
1142 struct rtw_dev *rtwdev = dev;
1143 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1144
1145 /* disable RTW PCI interrupt to avoid more interrupts before the end of
1146 * thread function
1147 *
1148 * disable HIMR here to also avoid new HISR flag being raised before
1149 * the HISRs have been Write-1-cleared for MSI. If not all of the HISRs
1150 * are cleared, the edge-triggered interrupt will not be generated when
1151 * a new HISR flag is set.
1152 */
1153 rtw_pci_disable_interrupt(rtwdev, rtwpci);
1154
1155 return IRQ_WAKE_THREAD;
1156 }
1157
rtw_pci_interrupt_threadfn(int irq,void * dev)1158 static irqreturn_t rtw_pci_interrupt_threadfn(int irq, void *dev)
1159 {
1160 struct rtw_dev *rtwdev = dev;
1161 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1162 u32 irq_status[4];
1163 bool rx = false;
1164
1165 spin_lock_bh(&rtwpci->irq_lock);
1166 rtw_pci_irq_recognized(rtwdev, rtwpci, irq_status);
1167
1168 if (irq_status[0] & IMR_MGNTDOK)
1169 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_MGMT);
1170 if (irq_status[0] & IMR_HIGHDOK)
1171 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_HI0);
1172 if (irq_status[0] & IMR_BEDOK)
1173 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BE);
1174 if (irq_status[0] & IMR_BKDOK)
1175 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_BK);
1176 if (irq_status[0] & IMR_VODOK)
1177 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VO);
1178 if (irq_status[0] & IMR_VIDOK)
1179 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_VI);
1180 if (irq_status[3] & IMR_H2CDOK)
1181 rtw_pci_tx_isr(rtwdev, rtwpci, RTW_TX_QUEUE_H2C);
1182 if (irq_status[0] & IMR_ROK) {
1183 rtw_pci_rx_isr(rtwdev);
1184 rx = true;
1185 }
1186 if (unlikely(irq_status[0] & IMR_C2HCMD))
1187 rtw_fw_c2h_cmd_isr(rtwdev);
1188
1189 /* all of the jobs for this interrupt have been done */
1190 if (rtwpci->running)
1191 rtw_pci_enable_interrupt(rtwdev, rtwpci, rx);
1192 spin_unlock_bh(&rtwpci->irq_lock);
1193
1194 return IRQ_HANDLED;
1195 }
1196
rtw_pci_io_mapping(struct rtw_dev * rtwdev,struct pci_dev * pdev)1197 static int rtw_pci_io_mapping(struct rtw_dev *rtwdev,
1198 struct pci_dev *pdev)
1199 {
1200 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1201 unsigned long len;
1202 u8 bar_id = 2;
1203 int ret;
1204
1205 ret = pci_request_regions(pdev, KBUILD_MODNAME);
1206 if (ret) {
1207 rtw_err(rtwdev, "failed to request pci regions\n");
1208 return ret;
1209 }
1210
1211 len = pci_resource_len(pdev, bar_id);
1212 rtwpci->mmap = pci_iomap(pdev, bar_id, len);
1213 if (!rtwpci->mmap) {
1214 pci_release_regions(pdev);
1215 rtw_err(rtwdev, "failed to map pci memory\n");
1216 return -ENOMEM;
1217 }
1218
1219 return 0;
1220 }
1221
rtw_pci_io_unmapping(struct rtw_dev * rtwdev,struct pci_dev * pdev)1222 static void rtw_pci_io_unmapping(struct rtw_dev *rtwdev,
1223 struct pci_dev *pdev)
1224 {
1225 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1226
1227 if (rtwpci->mmap) {
1228 pci_iounmap(pdev, rtwpci->mmap);
1229 pci_release_regions(pdev);
1230 }
1231 }
1232
rtw_dbi_write8(struct rtw_dev * rtwdev,u16 addr,u8 data)1233 static void rtw_dbi_write8(struct rtw_dev *rtwdev, u16 addr, u8 data)
1234 {
1235 u16 write_addr;
1236 u16 remainder = addr & ~(BITS_DBI_WREN | BITS_DBI_ADDR_MASK);
1237 u8 flag;
1238 u8 cnt;
1239
1240 write_addr = addr & BITS_DBI_ADDR_MASK;
1241 write_addr |= u16_encode_bits(BIT(remainder), BITS_DBI_WREN);
1242 rtw_write8(rtwdev, REG_DBI_WDATA_V1 + remainder, data);
1243 rtw_write16(rtwdev, REG_DBI_FLAG_V1, write_addr);
1244 rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_WFLAG >> 16);
1245
1246 for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1247 flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
1248 if (flag == 0)
1249 return;
1250
1251 udelay(10);
1252 }
1253
1254 WARN(flag, "failed to write to DBI register, addr=0x%04x\n", addr);
1255 }
1256
rtw_dbi_read8(struct rtw_dev * rtwdev,u16 addr,u8 * value)1257 static int rtw_dbi_read8(struct rtw_dev *rtwdev, u16 addr, u8 *value)
1258 {
1259 u16 read_addr = addr & BITS_DBI_ADDR_MASK;
1260 u8 flag;
1261 u8 cnt;
1262
1263 rtw_write16(rtwdev, REG_DBI_FLAG_V1, read_addr);
1264 rtw_write8(rtwdev, REG_DBI_FLAG_V1 + 2, BIT_DBI_RFLAG >> 16);
1265
1266 for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1267 flag = rtw_read8(rtwdev, REG_DBI_FLAG_V1 + 2);
1268 if (flag == 0) {
1269 read_addr = REG_DBI_RDATA_V1 + (addr & 3);
1270 *value = rtw_read8(rtwdev, read_addr);
1271 return 0;
1272 }
1273
1274 udelay(10);
1275 }
1276
1277 WARN(1, "failed to read DBI register, addr=0x%04x\n", addr);
1278 return -EIO;
1279 }
1280
rtw_mdio_write(struct rtw_dev * rtwdev,u8 addr,u16 data,bool g1)1281 static void rtw_mdio_write(struct rtw_dev *rtwdev, u8 addr, u16 data, bool g1)
1282 {
1283 u8 page;
1284 u8 wflag;
1285 u8 cnt;
1286
1287 rtw_write16(rtwdev, REG_MDIO_V1, data);
1288
1289 page = addr < RTW_PCI_MDIO_PG_SZ ? 0 : 1;
1290 page += g1 ? RTW_PCI_MDIO_PG_OFFS_G1 : RTW_PCI_MDIO_PG_OFFS_G2;
1291 rtw_write8(rtwdev, REG_PCIE_MIX_CFG, addr & BITS_MDIO_ADDR_MASK);
1292 rtw_write8(rtwdev, REG_PCIE_MIX_CFG + 3, page);
1293 rtw_write32_mask(rtwdev, REG_PCIE_MIX_CFG, BIT_MDIO_WFLAG_V1, 1);
1294
1295 for (cnt = 0; cnt < RTW_PCI_WR_RETRY_CNT; cnt++) {
1296 wflag = rtw_read32_mask(rtwdev, REG_PCIE_MIX_CFG,
1297 BIT_MDIO_WFLAG_V1);
1298 if (wflag == 0)
1299 return;
1300
1301 udelay(10);
1302 }
1303
1304 WARN(wflag, "failed to write to MDIO register, addr=0x%02x\n", addr);
1305 }
1306
rtw_pci_clkreq_set(struct rtw_dev * rtwdev,bool enable)1307 static void rtw_pci_clkreq_set(struct rtw_dev *rtwdev, bool enable)
1308 {
1309 u8 value;
1310 int ret;
1311
1312 if (rtw_pci_disable_aspm)
1313 return;
1314
1315 ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1316 if (ret) {
1317 rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
1318 return;
1319 }
1320
1321 if (enable)
1322 value |= BIT_CLKREQ_SW_EN;
1323 else
1324 value &= ~BIT_CLKREQ_SW_EN;
1325
1326 rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1327 }
1328
rtw_pci_clkreq_pad_low(struct rtw_dev * rtwdev,bool enable)1329 static void rtw_pci_clkreq_pad_low(struct rtw_dev *rtwdev, bool enable)
1330 {
1331 u8 value;
1332 int ret;
1333
1334 ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1335 if (ret) {
1336 rtw_err(rtwdev, "failed to read CLKREQ_L1, ret=%d", ret);
1337 return;
1338 }
1339
1340 if (enable)
1341 value &= ~BIT_CLKREQ_N_PAD;
1342 else
1343 value |= BIT_CLKREQ_N_PAD;
1344
1345 rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1346 }
1347
rtw_pci_aspm_set(struct rtw_dev * rtwdev,bool enable)1348 static void rtw_pci_aspm_set(struct rtw_dev *rtwdev, bool enable)
1349 {
1350 u8 value;
1351 int ret;
1352
1353 if (rtw_pci_disable_aspm)
1354 return;
1355
1356 ret = rtw_dbi_read8(rtwdev, RTK_PCIE_LINK_CFG, &value);
1357 if (ret) {
1358 rtw_err(rtwdev, "failed to read ASPM, ret=%d", ret);
1359 return;
1360 }
1361
1362 if (enable)
1363 value |= BIT_L1_SW_EN;
1364 else
1365 value &= ~BIT_L1_SW_EN;
1366
1367 rtw_dbi_write8(rtwdev, RTK_PCIE_LINK_CFG, value);
1368 }
1369
rtw_pci_link_ps(struct rtw_dev * rtwdev,bool enter)1370 static void rtw_pci_link_ps(struct rtw_dev *rtwdev, bool enter)
1371 {
1372 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1373
1374 /* Like CLKREQ, ASPM is also implemented by two HW modules, and can
1375 * only be enabled when host supports it.
1376 *
1377 * And ASPM mechanism should be enabled when driver/firmware enters
1378 * power save mode, without having heavy traffic. Because we've
1379 * experienced some inter-operability issues that the link tends
1380 * to enter L1 state on the fly even when driver is having high
1381 * throughput. This is probably because the ASPM behavior slightly
1382 * varies from different SOC.
1383 */
1384 if (!(rtwpci->link_ctrl & PCI_EXP_LNKCTL_ASPM_L1))
1385 return;
1386
1387 if ((enter && atomic_dec_if_positive(&rtwpci->link_usage) == 0) ||
1388 (!enter && atomic_inc_return(&rtwpci->link_usage) == 1))
1389 rtw_pci_aspm_set(rtwdev, enter);
1390 }
1391
rtw_pci_link_cfg(struct rtw_dev * rtwdev)1392 static void rtw_pci_link_cfg(struct rtw_dev *rtwdev)
1393 {
1394 const struct rtw_chip_info *chip = rtwdev->chip;
1395 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1396 struct pci_dev *pdev = rtwpci->pdev;
1397 u16 link_ctrl;
1398 int ret;
1399
1400 /* RTL8822CE has enabled REFCLK auto calibration, it does not need
1401 * to add clock delay to cover the REFCLK timing gap.
1402 */
1403 if (chip->id == RTW_CHIP_TYPE_8822C)
1404 rtw_dbi_write8(rtwdev, RTK_PCIE_CLKDLY_CTRL, 0);
1405
1406 /* Though there is standard PCIE configuration space to set the
1407 * link control register, but by Realtek's design, driver should
1408 * check if host supports CLKREQ/ASPM to enable the HW module.
1409 *
1410 * These functions are implemented by two HW modules associated,
1411 * one is responsible to access PCIE configuration space to
1412 * follow the host settings, and another is in charge of doing
1413 * CLKREQ/ASPM mechanisms, it is default disabled. Because sometimes
1414 * the host does not support it, and due to some reasons or wrong
1415 * settings (ex. CLKREQ# not Bi-Direction), it could lead to device
1416 * loss if HW misbehaves on the link.
1417 *
1418 * Hence it's designed that driver should first check the PCIE
1419 * configuration space is sync'ed and enabled, then driver can turn
1420 * on the other module that is actually working on the mechanism.
1421 */
1422 ret = pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &link_ctrl);
1423 if (ret) {
1424 rtw_err(rtwdev, "failed to read PCI cap, ret=%d\n", ret);
1425 return;
1426 }
1427
1428 if (link_ctrl & PCI_EXP_LNKCTL_CLKREQ_EN)
1429 rtw_pci_clkreq_set(rtwdev, true);
1430
1431 rtwpci->link_ctrl = link_ctrl;
1432 }
1433
rtw_pci_interface_cfg(struct rtw_dev * rtwdev)1434 static void rtw_pci_interface_cfg(struct rtw_dev *rtwdev)
1435 {
1436 const struct rtw_chip_info *chip = rtwdev->chip;
1437
1438 switch (chip->id) {
1439 case RTW_CHIP_TYPE_8822C:
1440 if (rtwdev->hal.cut_version >= RTW_CHIP_VER_CUT_D)
1441 rtw_write32_mask(rtwdev, REG_HCI_MIX_CFG,
1442 BIT_PCIE_EMAC_PDN_AUX_TO_FAST_CLK, 1);
1443 break;
1444 default:
1445 break;
1446 }
1447 }
1448
rtw_pci_phy_cfg(struct rtw_dev * rtwdev)1449 static void rtw_pci_phy_cfg(struct rtw_dev *rtwdev)
1450 {
1451 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1452 const struct rtw_chip_info *chip = rtwdev->chip;
1453 struct pci_dev *pdev = rtwpci->pdev;
1454 const struct rtw_intf_phy_para *para;
1455 u16 cut;
1456 u16 value;
1457 u16 offset;
1458 int i;
1459 int ret;
1460
1461 cut = BIT(0) << rtwdev->hal.cut_version;
1462
1463 for (i = 0; i < chip->intf_table->n_gen1_para; i++) {
1464 para = &chip->intf_table->gen1_para[i];
1465 if (!(para->cut_mask & cut))
1466 continue;
1467 if (para->offset == 0xffff)
1468 break;
1469 offset = para->offset;
1470 value = para->value;
1471 if (para->ip_sel == RTW_IP_SEL_PHY)
1472 rtw_mdio_write(rtwdev, offset, value, true);
1473 else
1474 rtw_dbi_write8(rtwdev, offset, value);
1475 }
1476
1477 for (i = 0; i < chip->intf_table->n_gen2_para; i++) {
1478 para = &chip->intf_table->gen2_para[i];
1479 if (!(para->cut_mask & cut))
1480 continue;
1481 if (para->offset == 0xffff)
1482 break;
1483 offset = para->offset;
1484 value = para->value;
1485 if (para->ip_sel == RTW_IP_SEL_PHY)
1486 rtw_mdio_write(rtwdev, offset, value, false);
1487 else
1488 rtw_dbi_write8(rtwdev, offset, value);
1489 }
1490
1491 rtw_pci_link_cfg(rtwdev);
1492
1493 /* Disable 8821ce completion timeout by default */
1494 if (chip->id == RTW_CHIP_TYPE_8821C) {
1495 ret = pcie_capability_set_word(pdev, PCI_EXP_DEVCTL2,
1496 PCI_EXP_DEVCTL2_COMP_TMOUT_DIS);
1497 if (ret)
1498 rtw_err(rtwdev, "failed to set PCI cap, ret = %d\n",
1499 ret);
1500 }
1501 }
1502
rtw_pci_suspend(struct device * dev)1503 static int __maybe_unused rtw_pci_suspend(struct device *dev)
1504 {
1505 struct ieee80211_hw *hw = dev_get_drvdata(dev);
1506 struct rtw_dev *rtwdev = hw->priv;
1507 const struct rtw_chip_info *chip = rtwdev->chip;
1508 struct rtw_efuse *efuse = &rtwdev->efuse;
1509
1510 if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6)
1511 rtw_pci_clkreq_pad_low(rtwdev, true);
1512 return 0;
1513 }
1514
rtw_pci_resume(struct device * dev)1515 static int __maybe_unused rtw_pci_resume(struct device *dev)
1516 {
1517 struct ieee80211_hw *hw = dev_get_drvdata(dev);
1518 struct rtw_dev *rtwdev = hw->priv;
1519 const struct rtw_chip_info *chip = rtwdev->chip;
1520 struct rtw_efuse *efuse = &rtwdev->efuse;
1521
1522 if (chip->id == RTW_CHIP_TYPE_8822C && efuse->rfe_option == 6)
1523 rtw_pci_clkreq_pad_low(rtwdev, false);
1524 return 0;
1525 }
1526
1527 SIMPLE_DEV_PM_OPS(rtw_pm_ops, rtw_pci_suspend, rtw_pci_resume);
1528 EXPORT_SYMBOL(rtw_pm_ops);
1529
rtw_pci_claim(struct rtw_dev * rtwdev,struct pci_dev * pdev)1530 static int rtw_pci_claim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1531 {
1532 int ret;
1533
1534 ret = pci_enable_device(pdev);
1535 if (ret) {
1536 rtw_err(rtwdev, "failed to enable pci device\n");
1537 return ret;
1538 }
1539
1540 pci_set_master(pdev);
1541 pci_set_drvdata(pdev, rtwdev->hw);
1542 SET_IEEE80211_DEV(rtwdev->hw, &pdev->dev);
1543
1544 return 0;
1545 }
1546
rtw_pci_declaim(struct rtw_dev * rtwdev,struct pci_dev * pdev)1547 static void rtw_pci_declaim(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1548 {
1549 pci_disable_device(pdev);
1550 }
1551
rtw_pci_setup_resource(struct rtw_dev * rtwdev,struct pci_dev * pdev)1552 static int rtw_pci_setup_resource(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1553 {
1554 struct rtw_pci *rtwpci;
1555 int ret;
1556
1557 rtwpci = (struct rtw_pci *)rtwdev->priv;
1558 rtwpci->pdev = pdev;
1559
1560 /* after this driver can access to hw registers */
1561 ret = rtw_pci_io_mapping(rtwdev, pdev);
1562 if (ret) {
1563 rtw_err(rtwdev, "failed to request pci io region\n");
1564 goto err_out;
1565 }
1566
1567 ret = rtw_pci_init(rtwdev);
1568 if (ret) {
1569 rtw_err(rtwdev, "failed to allocate pci resources\n");
1570 goto err_io_unmap;
1571 }
1572
1573 return 0;
1574
1575 err_io_unmap:
1576 rtw_pci_io_unmapping(rtwdev, pdev);
1577
1578 err_out:
1579 return ret;
1580 }
1581
rtw_pci_destroy(struct rtw_dev * rtwdev,struct pci_dev * pdev)1582 static void rtw_pci_destroy(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1583 {
1584 rtw_pci_deinit(rtwdev);
1585 rtw_pci_io_unmapping(rtwdev, pdev);
1586 }
1587
1588 static struct rtw_hci_ops rtw_pci_ops = {
1589 .tx_write = rtw_pci_tx_write,
1590 .tx_kick_off = rtw_pci_tx_kick_off,
1591 .flush_queues = rtw_pci_flush_queues,
1592 .setup = rtw_pci_setup,
1593 .start = rtw_pci_start,
1594 .stop = rtw_pci_stop,
1595 .deep_ps = rtw_pci_deep_ps,
1596 .link_ps = rtw_pci_link_ps,
1597 .interface_cfg = rtw_pci_interface_cfg,
1598
1599 .read8 = rtw_pci_read8,
1600 .read16 = rtw_pci_read16,
1601 .read32 = rtw_pci_read32,
1602 .write8 = rtw_pci_write8,
1603 .write16 = rtw_pci_write16,
1604 .write32 = rtw_pci_write32,
1605 .write_data_rsvd_page = rtw_pci_write_data_rsvd_page,
1606 .write_data_h2c = rtw_pci_write_data_h2c,
1607 };
1608
rtw_pci_request_irq(struct rtw_dev * rtwdev,struct pci_dev * pdev)1609 static int rtw_pci_request_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1610 {
1611 unsigned int flags = PCI_IRQ_LEGACY;
1612 int ret;
1613
1614 if (!rtw_disable_msi)
1615 flags |= PCI_IRQ_MSI;
1616
1617 ret = pci_alloc_irq_vectors(pdev, 1, 1, flags);
1618 if (ret < 0) {
1619 rtw_err(rtwdev, "failed to alloc PCI irq vectors\n");
1620 return ret;
1621 }
1622
1623 ret = devm_request_threaded_irq(rtwdev->dev, pdev->irq,
1624 rtw_pci_interrupt_handler,
1625 rtw_pci_interrupt_threadfn,
1626 IRQF_SHARED, KBUILD_MODNAME, rtwdev);
1627 if (ret) {
1628 rtw_err(rtwdev, "failed to request irq %d\n", ret);
1629 pci_free_irq_vectors(pdev);
1630 }
1631
1632 return ret;
1633 }
1634
rtw_pci_free_irq(struct rtw_dev * rtwdev,struct pci_dev * pdev)1635 static void rtw_pci_free_irq(struct rtw_dev *rtwdev, struct pci_dev *pdev)
1636 {
1637 devm_free_irq(rtwdev->dev, pdev->irq, rtwdev);
1638 pci_free_irq_vectors(pdev);
1639 }
1640
rtw_pci_napi_poll(struct napi_struct * napi,int budget)1641 static int rtw_pci_napi_poll(struct napi_struct *napi, int budget)
1642 {
1643 struct rtw_pci *rtwpci = container_of(napi, struct rtw_pci, napi);
1644 struct rtw_dev *rtwdev = container_of((void *)rtwpci, struct rtw_dev,
1645 priv);
1646 int work_done = 0;
1647
1648 if (rtwpci->rx_no_aspm)
1649 rtw_pci_link_ps(rtwdev, false);
1650
1651 while (work_done < budget) {
1652 u32 work_done_once;
1653
1654 work_done_once = rtw_pci_rx_napi(rtwdev, rtwpci, RTW_RX_QUEUE_MPDU,
1655 budget - work_done);
1656 if (work_done_once == 0)
1657 break;
1658 work_done += work_done_once;
1659 }
1660 if (work_done < budget) {
1661 napi_complete_done(napi, work_done);
1662 spin_lock_bh(&rtwpci->irq_lock);
1663 if (rtwpci->running)
1664 rtw_pci_enable_interrupt(rtwdev, rtwpci, false);
1665 spin_unlock_bh(&rtwpci->irq_lock);
1666 /* When ISR happens during polling and before napi_complete
1667 * while no further data is received. Data on the dma_ring will
1668 * not be processed immediately. Check whether dma ring is
1669 * empty and perform napi_schedule accordingly.
1670 */
1671 if (rtw_pci_get_hw_rx_ring_nr(rtwdev, rtwpci))
1672 napi_schedule(napi);
1673 }
1674 if (rtwpci->rx_no_aspm)
1675 rtw_pci_link_ps(rtwdev, true);
1676
1677 return work_done;
1678 }
1679
rtw_pci_napi_init(struct rtw_dev * rtwdev)1680 static void rtw_pci_napi_init(struct rtw_dev *rtwdev)
1681 {
1682 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1683
1684 init_dummy_netdev(&rtwpci->netdev);
1685 netif_napi_add(&rtwpci->netdev, &rtwpci->napi, rtw_pci_napi_poll);
1686 }
1687
rtw_pci_napi_deinit(struct rtw_dev * rtwdev)1688 static void rtw_pci_napi_deinit(struct rtw_dev *rtwdev)
1689 {
1690 struct rtw_pci *rtwpci = (struct rtw_pci *)rtwdev->priv;
1691
1692 rtw_pci_napi_stop(rtwdev);
1693 netif_napi_del(&rtwpci->napi);
1694 }
1695
rtw_pci_probe(struct pci_dev * pdev,const struct pci_device_id * id)1696 int rtw_pci_probe(struct pci_dev *pdev,
1697 const struct pci_device_id *id)
1698 {
1699 struct pci_dev *bridge = pci_upstream_bridge(pdev);
1700 struct ieee80211_hw *hw;
1701 struct rtw_dev *rtwdev;
1702 struct rtw_pci *rtwpci;
1703 int drv_data_size;
1704 int ret;
1705
1706 drv_data_size = sizeof(struct rtw_dev) + sizeof(struct rtw_pci);
1707 hw = ieee80211_alloc_hw(drv_data_size, &rtw_ops);
1708 if (!hw) {
1709 dev_err(&pdev->dev, "failed to allocate hw\n");
1710 return -ENOMEM;
1711 }
1712
1713 rtwdev = hw->priv;
1714 rtwdev->hw = hw;
1715 rtwdev->dev = &pdev->dev;
1716 rtwdev->chip = (struct rtw_chip_info *)id->driver_data;
1717 rtwdev->hci.ops = &rtw_pci_ops;
1718 rtwdev->hci.type = RTW_HCI_TYPE_PCIE;
1719
1720 rtwpci = (struct rtw_pci *)rtwdev->priv;
1721 atomic_set(&rtwpci->link_usage, 1);
1722
1723 ret = rtw_core_init(rtwdev);
1724 if (ret)
1725 goto err_release_hw;
1726
1727 rtw_dbg(rtwdev, RTW_DBG_PCI,
1728 "rtw88 pci probe: vendor=0x%4.04X device=0x%4.04X rev=%d\n",
1729 pdev->vendor, pdev->device, pdev->revision);
1730
1731 ret = rtw_pci_claim(rtwdev, pdev);
1732 if (ret) {
1733 rtw_err(rtwdev, "failed to claim pci device\n");
1734 goto err_deinit_core;
1735 }
1736
1737 ret = rtw_pci_setup_resource(rtwdev, pdev);
1738 if (ret) {
1739 rtw_err(rtwdev, "failed to setup pci resources\n");
1740 goto err_pci_declaim;
1741 }
1742
1743 rtw_pci_napi_init(rtwdev);
1744
1745 ret = rtw_chip_info_setup(rtwdev);
1746 if (ret) {
1747 rtw_err(rtwdev, "failed to setup chip information\n");
1748 goto err_destroy_pci;
1749 }
1750
1751 /* Disable PCIe ASPM L1 while doing NAPI poll for 8821CE */
1752 if (rtwdev->chip->id == RTW_CHIP_TYPE_8821C && bridge->vendor == PCI_VENDOR_ID_INTEL)
1753 rtwpci->rx_no_aspm = true;
1754
1755 rtw_pci_phy_cfg(rtwdev);
1756
1757 ret = rtw_register_hw(rtwdev, hw);
1758 if (ret) {
1759 rtw_err(rtwdev, "failed to register hw\n");
1760 goto err_destroy_pci;
1761 }
1762
1763 ret = rtw_pci_request_irq(rtwdev, pdev);
1764 if (ret) {
1765 ieee80211_unregister_hw(hw);
1766 goto err_destroy_pci;
1767 }
1768
1769 return 0;
1770
1771 err_destroy_pci:
1772 rtw_pci_napi_deinit(rtwdev);
1773 rtw_pci_destroy(rtwdev, pdev);
1774
1775 err_pci_declaim:
1776 rtw_pci_declaim(rtwdev, pdev);
1777
1778 err_deinit_core:
1779 rtw_core_deinit(rtwdev);
1780
1781 err_release_hw:
1782 ieee80211_free_hw(hw);
1783
1784 return ret;
1785 }
1786 EXPORT_SYMBOL(rtw_pci_probe);
1787
rtw_pci_remove(struct pci_dev * pdev)1788 void rtw_pci_remove(struct pci_dev *pdev)
1789 {
1790 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
1791 struct rtw_dev *rtwdev;
1792 struct rtw_pci *rtwpci;
1793
1794 if (!hw)
1795 return;
1796
1797 rtwdev = hw->priv;
1798 rtwpci = (struct rtw_pci *)rtwdev->priv;
1799
1800 rtw_unregister_hw(rtwdev, hw);
1801 rtw_pci_disable_interrupt(rtwdev, rtwpci);
1802 rtw_pci_napi_deinit(rtwdev);
1803 rtw_pci_destroy(rtwdev, pdev);
1804 rtw_pci_declaim(rtwdev, pdev);
1805 rtw_pci_free_irq(rtwdev, pdev);
1806 rtw_core_deinit(rtwdev);
1807 ieee80211_free_hw(hw);
1808 }
1809 EXPORT_SYMBOL(rtw_pci_remove);
1810
rtw_pci_shutdown(struct pci_dev * pdev)1811 void rtw_pci_shutdown(struct pci_dev *pdev)
1812 {
1813 struct ieee80211_hw *hw = pci_get_drvdata(pdev);
1814 struct rtw_dev *rtwdev;
1815 const struct rtw_chip_info *chip;
1816
1817 if (!hw)
1818 return;
1819
1820 rtwdev = hw->priv;
1821 chip = rtwdev->chip;
1822
1823 if (chip->ops->shutdown)
1824 chip->ops->shutdown(rtwdev);
1825
1826 pci_set_power_state(pdev, PCI_D3hot);
1827 }
1828 EXPORT_SYMBOL(rtw_pci_shutdown);
1829
1830 MODULE_AUTHOR("Realtek Corporation");
1831 MODULE_DESCRIPTION("Realtek PCI 802.11ac wireless driver");
1832 MODULE_LICENSE("Dual BSD/GPL");
1833