1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(c) 2003 - 2004 Intel Corporation. All rights reserved.
4 *
5 * Contact Information:
6 * James P. Ketrenos <ipw2100-admin@linux.intel.com>
7 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
8 *
9 * Few modifications for Realtek's Wi-Fi drivers by
10 * Andrea Merello <andrea.merello@gmail.com>
11 *
12 * A special thanks goes to Realtek for their support !
13 */
14 #include <linux/compiler.h>
15 #include <linux/errno.h>
16 #include <linux/if_arp.h>
17 #include <linux/in6.h>
18 #include <linux/in.h>
19 #include <linux/ip.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/netdevice.h>
23 #include <linux/pci.h>
24 #include <linux/proc_fs.h>
25 #include <linux/skbuff.h>
26 #include <linux/slab.h>
27 #include <linux/tcp.h>
28 #include <linux/types.h>
29 #include <linux/wireless.h>
30 #include <linux/etherdevice.h>
31 #include <linux/uaccess.h>
32 #include <linux/if_vlan.h>
33
34 #include "rtllib.h"
35
36 /* 802.11 Data Frame
37 *
38 *
39 * 802.11 frame_control for data frames - 2 bytes
40 * ,--------------------------------------------------------------------.
41 * bits | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c | d | e |
42 * |---|---|---|---|---|---|---|---|---|----|----|-----|-----|-----|----|
43 * val | 0 | 0 | 0 | 1 | x | 0 | 0 | 0 | 1 | 0 | x | x | x | x | x |
44 * |---|---|---|---|---|---|---|---|---|----|----|-----|-----|-----|----|
45 * desc | ver | type | ^-subtype-^ |to |from|more|retry| pwr |more |wep |
46 * | | | x=0 data |DS | DS |frag| | mgm |data | |
47 * | | | x=1 data+ack | | | | | | | |
48 * '--------------------------------------------------------------------'
49 * /\
50 * |
51 * 802.11 Data Frame |
52 * ,--------- 'ctrl' expands to >---'
53 * |
54 * ,--'---,-------------------------------------------------------------.
55 * Bytes | 2 | 2 | 6 | 6 | 6 | 2 | 0..2312 | 4 |
56 * |------|------|---------|---------|---------|------|---------|------|
57 * Desc. | ctrl | dura | DA/RA | TA | SA | Sequ | Frame | fcs |
58 * | | tion | (BSSID) | | | ence | data | |
59 * `--------------------------------------------------| |------'
60 * Total: 28 non-data bytes `----.----'
61 * |
62 * .- 'Frame data' expands to <---------------------------'
63 * |
64 * V
65 * ,---------------------------------------------------.
66 * Bytes | 1 | 1 | 1 | 3 | 2 | 0-2304 |
67 * |------|------|---------|----------|------|---------|
68 * Desc. | SNAP | SNAP | Control |Eth Tunnel| Type | IP |
69 * | DSAP | SSAP | | | | Packet |
70 * | 0xAA | 0xAA |0x03 (UI)|0x00-00-F8| | |
71 * `-----------------------------------------| |
72 * Total: 8 non-data bytes `----.----'
73 * |
74 * .- 'IP Packet' expands, if WEP enabled, to <--'
75 * |
76 * V
77 * ,-----------------------.
78 * Bytes | 4 | 0-2296 | 4 |
79 * |-----|-----------|-----|
80 * Desc. | IV | Encrypted | ICV |
81 * | | IP Packet | |
82 * `-----------------------'
83 * Total: 8 non-data bytes
84 *
85 *
86 * 802.3 Ethernet Data Frame
87 *
88 * ,-----------------------------------------.
89 * Bytes | 6 | 6 | 2 | Variable | 4 |
90 * |-------|-------|------|-----------|------|
91 * Desc. | Dest. | Source| Type | IP Packet | fcs |
92 * | MAC | MAC | | | |
93 * `-----------------------------------------'
94 * Total: 18 non-data bytes
95 *
96 * In the event that fragmentation is required, the incoming payload is split
97 * into N parts of size ieee->fts. The first fragment contains the SNAP header
98 * and the remaining packets are just data.
99 *
100 * If encryption is enabled, each fragment payload size is reduced by enough
101 * space to add the prefix and postfix (IV and ICV totalling 8 bytes in
102 * the case of WEP) So if you have 1500 bytes of payload with ieee->fts set to
103 * 500 without encryption it will take 3 frames. With WEP it will take 4 frames
104 * as the payload of each frame is reduced to 492 bytes.
105 *
106 * SKB visualization
107 *
108 * ,- skb->data
109 * |
110 * | ETHERNET HEADER ,-<-- PAYLOAD
111 * | | 14 bytes from skb->data
112 * | 2 bytes for Type --> ,T. | (sizeof ethhdr)
113 * | | | |
114 * |,-Dest.--. ,--Src.---. | | |
115 * | 6 bytes| | 6 bytes | | | |
116 * v | | | | | |
117 * 0 | v 1 | v | v 2
118 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
119 * ^ | ^ | ^ |
120 * | | | | | |
121 * | | | | `T' <---- 2 bytes for Type
122 * | | | |
123 * | | '---SNAP--' <-------- 6 bytes for SNAP
124 * | |
125 * `-IV--' <-------------------- 4 bytes for IV (WEP)
126 *
127 * SNAP HEADER
128 *
129 */
130
131 static u8 P802_1H_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0xf8 };
132 static u8 RFC1042_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0x00 };
133
rtllib_put_snap(u8 * data,u16 h_proto)134 static int rtllib_put_snap(u8 *data, u16 h_proto)
135 {
136 struct rtllib_snap_hdr *snap;
137 u8 *oui;
138
139 snap = (struct rtllib_snap_hdr *)data;
140 snap->dsap = 0xaa;
141 snap->ssap = 0xaa;
142 snap->ctrl = 0x03;
143
144 if (h_proto == 0x8137 || h_proto == 0x80f3)
145 oui = P802_1H_OUI;
146 else
147 oui = RFC1042_OUI;
148 snap->oui[0] = oui[0];
149 snap->oui[1] = oui[1];
150 snap->oui[2] = oui[2];
151
152 *(__be16 *)(data + SNAP_SIZE) = htons(h_proto);
153
154 return SNAP_SIZE + sizeof(u16);
155 }
156
rtllib_encrypt_fragment(struct rtllib_device * ieee,struct sk_buff * frag,int hdr_len)157 int rtllib_encrypt_fragment(struct rtllib_device *ieee, struct sk_buff *frag,
158 int hdr_len)
159 {
160 struct lib80211_crypt_data *crypt = NULL;
161 int res;
162
163 crypt = ieee->crypt_info.crypt[ieee->crypt_info.tx_keyidx];
164
165 if (!(crypt && crypt->ops)) {
166 netdev_info(ieee->dev, "=========>%s(), crypt is null\n",
167 __func__);
168 return -1;
169 }
170 /* To encrypt, frame format is:
171 * IV (4 bytes), clear payload (including SNAP), ICV (4 bytes)
172 */
173
174 /* Host-based IEEE 802.11 fragmentation for TX is not yet supported, so
175 * call both MSDU and MPDU encryption functions from here.
176 */
177 atomic_inc(&crypt->refcnt);
178 res = 0;
179 if (crypt->ops->encrypt_msdu)
180 res = crypt->ops->encrypt_msdu(frag, hdr_len, crypt->priv);
181 if (res == 0 && crypt->ops->encrypt_mpdu)
182 res = crypt->ops->encrypt_mpdu(frag, hdr_len, crypt->priv);
183
184 atomic_dec(&crypt->refcnt);
185 if (res < 0) {
186 netdev_info(ieee->dev, "%s: Encryption failed: len=%d.\n",
187 ieee->dev->name, frag->len);
188 return -1;
189 }
190
191 return 0;
192 }
193
rtllib_txb_free(struct rtllib_txb * txb)194 void rtllib_txb_free(struct rtllib_txb *txb)
195 {
196 if (unlikely(!txb))
197 return;
198 kfree(txb);
199 }
200
rtllib_alloc_txb(int nr_frags,int txb_size,gfp_t gfp_mask)201 static struct rtllib_txb *rtllib_alloc_txb(int nr_frags, int txb_size,
202 gfp_t gfp_mask)
203 {
204 struct rtllib_txb *txb;
205 int i;
206
207 txb = kzalloc(struct_size(txb, fragments, nr_frags), gfp_mask);
208 if (!txb)
209 return NULL;
210
211 txb->nr_frags = nr_frags;
212 txb->frag_size = cpu_to_le16(txb_size);
213
214 for (i = 0; i < nr_frags; i++) {
215 txb->fragments[i] = dev_alloc_skb(txb_size);
216 if (unlikely(!txb->fragments[i]))
217 goto err_free;
218 memset(txb->fragments[i]->cb, 0, sizeof(txb->fragments[i]->cb));
219 }
220
221 return txb;
222
223 err_free:
224 while (--i >= 0)
225 dev_kfree_skb_any(txb->fragments[i]);
226 kfree(txb);
227
228 return NULL;
229 }
230
rtllib_classify(struct sk_buff * skb,u8 bIsAmsdu)231 static int rtllib_classify(struct sk_buff *skb, u8 bIsAmsdu)
232 {
233 struct ethhdr *eth;
234 struct iphdr *ip;
235
236 eth = (struct ethhdr *)skb->data;
237 if (eth->h_proto != htons(ETH_P_IP))
238 return 0;
239
240 #ifdef VERBOSE_DEBUG
241 print_hex_dump_bytes("%s: ", __func__, DUMP_PREFIX_NONE, skb->data,
242 skb->len);
243 #endif
244 ip = ip_hdr(skb);
245 switch (ip->tos & 0xfc) {
246 case 0x20:
247 return 2;
248 case 0x40:
249 return 1;
250 case 0x60:
251 return 3;
252 case 0x80:
253 return 4;
254 case 0xa0:
255 return 5;
256 case 0xc0:
257 return 6;
258 case 0xe0:
259 return 7;
260 default:
261 return 0;
262 }
263 }
264
rtllib_tx_query_agg_cap(struct rtllib_device * ieee,struct sk_buff * skb,struct cb_desc * tcb_desc)265 static void rtllib_tx_query_agg_cap(struct rtllib_device *ieee,
266 struct sk_buff *skb,
267 struct cb_desc *tcb_desc)
268 {
269 struct rt_hi_throughput *ht_info = ieee->ht_info;
270 struct tx_ts_record *pTxTs = NULL;
271 struct rtllib_hdr_1addr *hdr = (struct rtllib_hdr_1addr *)skb->data;
272
273 if (rtllib_act_scanning(ieee, false))
274 return;
275
276 if (!ht_info->bCurrentHTSupport || !ht_info->enable_ht)
277 return;
278 if (!IsQoSDataFrame(skb->data))
279 return;
280 if (is_multicast_ether_addr(hdr->addr1))
281 return;
282
283 if (tcb_desc->bdhcp || ieee->CntAfterLink < 2)
284 return;
285
286 if (ht_info->iot_action & HT_IOT_ACT_TX_NO_AGGREGATION)
287 return;
288
289 if (!ieee->GetNmodeSupportBySecCfg(ieee->dev))
290 return;
291 if (ht_info->bCurrentAMPDUEnable) {
292 if (!GetTs(ieee, (struct ts_common_info **)(&pTxTs), hdr->addr1,
293 skb->priority, TX_DIR, true)) {
294 netdev_info(ieee->dev, "%s: can't get TS\n", __func__);
295 return;
296 }
297 if (!pTxTs->TxAdmittedBARecord.b_valid) {
298 if (ieee->wpa_ie_len && (ieee->pairwise_key_type ==
299 KEY_TYPE_NA)) {
300 ;
301 } else if (tcb_desc->bdhcp == 1) {
302 ;
303 } else if (!pTxTs->bDisable_AddBa) {
304 TsStartAddBaProcess(ieee, pTxTs);
305 }
306 goto FORCED_AGG_SETTING;
307 } else if (!pTxTs->bUsingBa) {
308 if (SN_LESS(pTxTs->TxAdmittedBARecord.ba_start_seq_ctrl.field.seq_num,
309 (pTxTs->TxCurSeq + 1) % 4096))
310 pTxTs->bUsingBa = true;
311 else
312 goto FORCED_AGG_SETTING;
313 }
314 if (ieee->iw_mode == IW_MODE_INFRA) {
315 tcb_desc->bAMPDUEnable = true;
316 tcb_desc->ampdu_factor = ht_info->CurrentAMPDUFactor;
317 tcb_desc->ampdu_density = ht_info->current_mpdu_density;
318 }
319 }
320 FORCED_AGG_SETTING:
321 switch (ht_info->ForcedAMPDUMode) {
322 case HT_AGG_AUTO:
323 break;
324
325 case HT_AGG_FORCE_ENABLE:
326 tcb_desc->bAMPDUEnable = true;
327 tcb_desc->ampdu_density = ht_info->forced_mpdu_density;
328 tcb_desc->ampdu_factor = ht_info->forced_ampdu_factor;
329 break;
330
331 case HT_AGG_FORCE_DISABLE:
332 tcb_desc->bAMPDUEnable = false;
333 tcb_desc->ampdu_density = 0;
334 tcb_desc->ampdu_factor = 0;
335 break;
336 }
337 }
338
rtllib_query_ShortPreambleMode(struct rtllib_device * ieee,struct cb_desc * tcb_desc)339 static void rtllib_query_ShortPreambleMode(struct rtllib_device *ieee,
340 struct cb_desc *tcb_desc)
341 {
342 tcb_desc->bUseShortPreamble = false;
343 if (tcb_desc->data_rate == 2)
344 return;
345 else if (ieee->current_network.capability &
346 WLAN_CAPABILITY_SHORT_PREAMBLE)
347 tcb_desc->bUseShortPreamble = true;
348 }
349
rtllib_query_HTCapShortGI(struct rtllib_device * ieee,struct cb_desc * tcb_desc)350 static void rtllib_query_HTCapShortGI(struct rtllib_device *ieee,
351 struct cb_desc *tcb_desc)
352 {
353 struct rt_hi_throughput *ht_info = ieee->ht_info;
354
355 tcb_desc->bUseShortGI = false;
356
357 if (!ht_info->bCurrentHTSupport || !ht_info->enable_ht)
358 return;
359
360 if (ht_info->forced_short_gi) {
361 tcb_desc->bUseShortGI = true;
362 return;
363 }
364
365 if (ht_info->bCurBW40MHz && ht_info->bCurShortGI40MHz)
366 tcb_desc->bUseShortGI = true;
367 else if (!ht_info->bCurBW40MHz && ht_info->bCurShortGI20MHz)
368 tcb_desc->bUseShortGI = true;
369 }
370
rtllib_query_BandwidthMode(struct rtllib_device * ieee,struct cb_desc * tcb_desc)371 static void rtllib_query_BandwidthMode(struct rtllib_device *ieee,
372 struct cb_desc *tcb_desc)
373 {
374 struct rt_hi_throughput *ht_info = ieee->ht_info;
375
376 tcb_desc->bPacketBW = false;
377
378 if (!ht_info->bCurrentHTSupport || !ht_info->enable_ht)
379 return;
380
381 if (tcb_desc->bMulticast || tcb_desc->bBroadcast)
382 return;
383
384 if ((tcb_desc->data_rate & 0x80) == 0)
385 return;
386 if (ht_info->bCurBW40MHz && ht_info->cur_tx_bw40mhz &&
387 !ieee->bandwidth_auto_switch.bforced_tx20Mhz)
388 tcb_desc->bPacketBW = true;
389 }
390
rtllib_query_protectionmode(struct rtllib_device * ieee,struct cb_desc * tcb_desc,struct sk_buff * skb)391 static void rtllib_query_protectionmode(struct rtllib_device *ieee,
392 struct cb_desc *tcb_desc,
393 struct sk_buff *skb)
394 {
395 struct rt_hi_throughput *ht_info;
396
397 tcb_desc->bRTSSTBC = false;
398 tcb_desc->bRTSUseShortGI = false;
399 tcb_desc->bCTSEnable = false;
400 tcb_desc->RTSSC = 0;
401 tcb_desc->bRTSBW = false;
402
403 if (tcb_desc->bBroadcast || tcb_desc->bMulticast)
404 return;
405
406 if (is_broadcast_ether_addr(skb->data + 16))
407 return;
408
409 if (ieee->mode < WIRELESS_MODE_N_24G) {
410 if (skb->len > ieee->rts) {
411 tcb_desc->bRTSEnable = true;
412 tcb_desc->rts_rate = MGN_24M;
413 } else if (ieee->current_network.buseprotection) {
414 tcb_desc->bRTSEnable = true;
415 tcb_desc->bCTSEnable = true;
416 tcb_desc->rts_rate = MGN_24M;
417 }
418 return;
419 }
420
421 ht_info = ieee->ht_info;
422
423 while (true) {
424 if (ht_info->iot_action & HT_IOT_ACT_FORCED_CTS2SELF) {
425 tcb_desc->bCTSEnable = true;
426 tcb_desc->rts_rate = MGN_24M;
427 tcb_desc->bRTSEnable = true;
428 break;
429 } else if (ht_info->iot_action & (HT_IOT_ACT_FORCED_RTS |
430 HT_IOT_ACT_PURE_N_MODE)) {
431 tcb_desc->bRTSEnable = true;
432 tcb_desc->rts_rate = MGN_24M;
433 break;
434 }
435 if (ieee->current_network.buseprotection) {
436 tcb_desc->bRTSEnable = true;
437 tcb_desc->bCTSEnable = true;
438 tcb_desc->rts_rate = MGN_24M;
439 break;
440 }
441 if (ht_info->bCurrentHTSupport && ht_info->enable_ht) {
442 u8 HTOpMode = ht_info->current_op_mode;
443
444 if ((ht_info->bCurBW40MHz && (HTOpMode == 2 ||
445 HTOpMode == 3)) ||
446 (!ht_info->bCurBW40MHz && HTOpMode == 3)) {
447 tcb_desc->rts_rate = MGN_24M;
448 tcb_desc->bRTSEnable = true;
449 break;
450 }
451 }
452 if (skb->len > ieee->rts) {
453 tcb_desc->rts_rate = MGN_24M;
454 tcb_desc->bRTSEnable = true;
455 break;
456 }
457 if (tcb_desc->bAMPDUEnable) {
458 tcb_desc->rts_rate = MGN_24M;
459 tcb_desc->bRTSEnable = false;
460 break;
461 }
462 goto NO_PROTECTION;
463 }
464 if (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
465 tcb_desc->bUseShortPreamble = true;
466 return;
467 NO_PROTECTION:
468 tcb_desc->bRTSEnable = false;
469 tcb_desc->bCTSEnable = false;
470 tcb_desc->rts_rate = 0;
471 tcb_desc->RTSSC = 0;
472 tcb_desc->bRTSBW = false;
473 }
474
rtllib_txrate_selectmode(struct rtllib_device * ieee,struct cb_desc * tcb_desc)475 static void rtllib_txrate_selectmode(struct rtllib_device *ieee,
476 struct cb_desc *tcb_desc)
477 {
478 if (ieee->tx_dis_rate_fallback)
479 tcb_desc->tx_dis_rate_fallback = true;
480
481 if (ieee->tx_use_drv_assinged_rate)
482 tcb_desc->tx_use_drv_assinged_rate = true;
483 if (!tcb_desc->tx_dis_rate_fallback ||
484 !tcb_desc->tx_use_drv_assinged_rate) {
485 if (ieee->iw_mode == IW_MODE_INFRA ||
486 ieee->iw_mode == IW_MODE_ADHOC)
487 tcb_desc->ratr_index = 0;
488 }
489 }
490
rtllib_query_seqnum(struct rtllib_device * ieee,struct sk_buff * skb,u8 * dst)491 static u16 rtllib_query_seqnum(struct rtllib_device *ieee, struct sk_buff *skb,
492 u8 *dst)
493 {
494 u16 seqnum = 0;
495
496 if (is_multicast_ether_addr(dst))
497 return 0;
498 if (IsQoSDataFrame(skb->data)) {
499 struct tx_ts_record *pTS = NULL;
500
501 if (!GetTs(ieee, (struct ts_common_info **)(&pTS), dst,
502 skb->priority, TX_DIR, true))
503 return 0;
504 seqnum = pTS->TxCurSeq;
505 pTS->TxCurSeq = (pTS->TxCurSeq + 1) % 4096;
506 return seqnum;
507 }
508 return 0;
509 }
510
wme_downgrade_ac(struct sk_buff * skb)511 static int wme_downgrade_ac(struct sk_buff *skb)
512 {
513 switch (skb->priority) {
514 case 6:
515 case 7:
516 skb->priority = 5; /* VO -> VI */
517 return 0;
518 case 4:
519 case 5:
520 skb->priority = 3; /* VI -> BE */
521 return 0;
522 case 0:
523 case 3:
524 skb->priority = 1; /* BE -> BK */
525 return 0;
526 default:
527 return -1;
528 }
529 }
530
rtllib_current_rate(struct rtllib_device * ieee)531 static u8 rtllib_current_rate(struct rtllib_device *ieee)
532 {
533 if (ieee->mode & IEEE_MODE_MASK)
534 return ieee->rate;
535
536 if (ieee->HTCurrentOperaRate)
537 return ieee->HTCurrentOperaRate;
538 else
539 return ieee->rate & 0x7F;
540 }
541
rtllib_xmit_inter(struct sk_buff * skb,struct net_device * dev)542 static int rtllib_xmit_inter(struct sk_buff *skb, struct net_device *dev)
543 {
544 struct rtllib_device *ieee = (struct rtllib_device *)
545 netdev_priv_rsl(dev);
546 struct rtllib_txb *txb = NULL;
547 struct rtllib_hdr_3addrqos *frag_hdr;
548 int i, bytes_per_frag, nr_frags, bytes_last_frag, frag_size;
549 unsigned long flags;
550 struct net_device_stats *stats = &ieee->stats;
551 int ether_type = 0, encrypt;
552 int bytes, fc, qos_ctl = 0, hdr_len;
553 struct sk_buff *skb_frag;
554 struct rtllib_hdr_3addrqos header = { /* Ensure zero initialized */
555 .duration_id = 0,
556 .seq_ctl = 0,
557 .qos_ctl = 0
558 };
559 int qos_activated = ieee->current_network.qos_data.active;
560 u8 dest[ETH_ALEN];
561 u8 src[ETH_ALEN];
562 struct lib80211_crypt_data *crypt = NULL;
563 struct cb_desc *tcb_desc;
564 u8 bIsMulticast = false;
565 u8 IsAmsdu = false;
566 bool bdhcp = false;
567
568 spin_lock_irqsave(&ieee->lock, flags);
569
570 /* If there is no driver handler to take the TXB, don't bother
571 * creating it...
572 */
573 if (!(ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE) ||
574 ((!ieee->softmac_data_hard_start_xmit &&
575 (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE)))) {
576 netdev_warn(ieee->dev, "No xmit handler.\n");
577 goto success;
578 }
579
580 if (likely(ieee->raw_tx == 0)) {
581 if (unlikely(skb->len < SNAP_SIZE + sizeof(u16))) {
582 netdev_warn(ieee->dev, "skb too small (%d).\n",
583 skb->len);
584 goto success;
585 }
586 /* Save source and destination addresses */
587 ether_addr_copy(dest, skb->data);
588 ether_addr_copy(src, skb->data + ETH_ALEN);
589
590 memset(skb->cb, 0, sizeof(skb->cb));
591 ether_type = ntohs(((struct ethhdr *)skb->data)->h_proto);
592
593 if (ieee->iw_mode == IW_MODE_MONITOR) {
594 txb = rtllib_alloc_txb(1, skb->len, GFP_ATOMIC);
595 if (unlikely(!txb)) {
596 netdev_warn(ieee->dev,
597 "Could not allocate TXB\n");
598 goto failed;
599 }
600
601 txb->encrypted = 0;
602 txb->payload_size = cpu_to_le16(skb->len);
603 skb_put_data(txb->fragments[0], skb->data, skb->len);
604
605 goto success;
606 }
607
608 if (skb->len > 282) {
609 if (ether_type == ETH_P_IP) {
610 const struct iphdr *ip = (struct iphdr *)
611 ((u8 *)skb->data + 14);
612 if (ip->protocol == IPPROTO_UDP) {
613 struct udphdr *udp;
614
615 udp = (struct udphdr *)((u8 *)ip +
616 (ip->ihl << 2));
617 if (((((u8 *)udp)[1] == 68) &&
618 (((u8 *)udp)[3] == 67)) ||
619 ((((u8 *)udp)[1] == 67) &&
620 (((u8 *)udp)[3] == 68))) {
621 bdhcp = true;
622 ieee->LPSDelayCnt = 200;
623 }
624 }
625 } else if (ether_type == ETH_P_ARP) {
626 netdev_info(ieee->dev,
627 "=================>DHCP Protocol start tx ARP pkt!!\n");
628 bdhcp = true;
629 ieee->LPSDelayCnt =
630 ieee->current_network.tim.tim_count;
631 }
632 }
633
634 skb->priority = rtllib_classify(skb, IsAmsdu);
635 crypt = ieee->crypt_info.crypt[ieee->crypt_info.tx_keyidx];
636 encrypt = !(ether_type == ETH_P_PAE && ieee->ieee802_1x) && crypt && crypt->ops;
637 if (!encrypt && ieee->ieee802_1x &&
638 ieee->drop_unencrypted && ether_type != ETH_P_PAE) {
639 stats->tx_dropped++;
640 goto success;
641 }
642 if (crypt && !encrypt && ether_type == ETH_P_PAE) {
643 struct eapol *eap = (struct eapol *)(skb->data +
644 sizeof(struct ethhdr) - SNAP_SIZE -
645 sizeof(u16));
646 netdev_dbg(ieee->dev,
647 "TX: IEEE 802.11 EAPOL frame: %s\n",
648 eap_get_type(eap->type));
649 }
650
651 /* Advance the SKB to the start of the payload */
652 skb_pull(skb, sizeof(struct ethhdr));
653
654 /* Determine total amount of storage required for TXB packets */
655 bytes = skb->len + SNAP_SIZE + sizeof(u16);
656
657 if (encrypt)
658 fc = RTLLIB_FTYPE_DATA | RTLLIB_FCTL_WEP;
659 else
660 fc = RTLLIB_FTYPE_DATA;
661
662 if (qos_activated)
663 fc |= RTLLIB_STYPE_QOS_DATA;
664 else
665 fc |= RTLLIB_STYPE_DATA;
666
667 if (ieee->iw_mode == IW_MODE_INFRA) {
668 fc |= RTLLIB_FCTL_TODS;
669 /* To DS: Addr1 = BSSID, Addr2 = SA,
670 * Addr3 = DA
671 */
672 ether_addr_copy(header.addr1,
673 ieee->current_network.bssid);
674 ether_addr_copy(header.addr2, src);
675 if (IsAmsdu)
676 ether_addr_copy(header.addr3,
677 ieee->current_network.bssid);
678 else
679 ether_addr_copy(header.addr3, dest);
680 } else if (ieee->iw_mode == IW_MODE_ADHOC) {
681 /* not From/To DS: Addr1 = DA, Addr2 = SA,
682 * Addr3 = BSSID
683 */
684 ether_addr_copy(header.addr1, dest);
685 ether_addr_copy(header.addr2, src);
686 ether_addr_copy(header.addr3,
687 ieee->current_network.bssid);
688 }
689
690 bIsMulticast = is_multicast_ether_addr(header.addr1);
691
692 header.frame_ctl = cpu_to_le16(fc);
693
694 /* Determine fragmentation size based on destination (multicast
695 * and broadcast are not fragmented)
696 */
697 if (bIsMulticast) {
698 frag_size = MAX_FRAG_THRESHOLD;
699 qos_ctl |= QOS_CTL_NOTCONTAIN_ACK;
700 } else {
701 frag_size = ieee->fts;
702 qos_ctl = 0;
703 }
704
705 if (qos_activated) {
706 hdr_len = RTLLIB_3ADDR_LEN + 2;
707
708 /* in case we are a client verify acm is not set for this ac */
709 while (unlikely(ieee->wmm_acm & (0x01 << skb->priority))) {
710 netdev_info(ieee->dev, "skb->priority = %x\n",
711 skb->priority);
712 if (wme_downgrade_ac(skb))
713 break;
714 netdev_info(ieee->dev, "converted skb->priority = %x\n",
715 skb->priority);
716 }
717
718 qos_ctl |= skb->priority;
719 header.qos_ctl = cpu_to_le16(qos_ctl & RTLLIB_QOS_TID);
720
721 } else {
722 hdr_len = RTLLIB_3ADDR_LEN;
723 }
724 /* Determine amount of payload per fragment. Regardless of if
725 * this stack is providing the full 802.11 header, one will
726 * eventually be affixed to this fragment -- so we must account
727 * for it when determining the amount of payload space.
728 */
729 bytes_per_frag = frag_size - hdr_len;
730 if (ieee->config &
731 (CFG_RTLLIB_COMPUTE_FCS | CFG_RTLLIB_RESERVE_FCS))
732 bytes_per_frag -= RTLLIB_FCS_LEN;
733
734 /* Each fragment may need to have room for encrypting
735 * pre/postfix
736 */
737 if (encrypt) {
738 bytes_per_frag -= crypt->ops->extra_mpdu_prefix_len +
739 crypt->ops->extra_mpdu_postfix_len +
740 crypt->ops->extra_msdu_prefix_len +
741 crypt->ops->extra_msdu_postfix_len;
742 }
743 /* Number of fragments is the total bytes_per_frag /
744 * payload_per_fragment
745 */
746 nr_frags = bytes / bytes_per_frag;
747 bytes_last_frag = bytes % bytes_per_frag;
748 if (bytes_last_frag)
749 nr_frags++;
750 else
751 bytes_last_frag = bytes_per_frag;
752
753 /* When we allocate the TXB we allocate enough space for the
754 * reserve and full fragment bytes (bytes_per_frag doesn't
755 * include prefix, postfix, header, FCS, etc.)
756 */
757 txb = rtllib_alloc_txb(nr_frags, frag_size +
758 ieee->tx_headroom, GFP_ATOMIC);
759 if (unlikely(!txb)) {
760 netdev_warn(ieee->dev, "Could not allocate TXB\n");
761 goto failed;
762 }
763 txb->encrypted = encrypt;
764 txb->payload_size = cpu_to_le16(bytes);
765
766 if (qos_activated)
767 txb->queue_index = UP2AC(skb->priority);
768 else
769 txb->queue_index = WME_AC_BE;
770
771 for (i = 0; i < nr_frags; i++) {
772 skb_frag = txb->fragments[i];
773 tcb_desc = (struct cb_desc *)(skb_frag->cb +
774 MAX_DEV_ADDR_SIZE);
775 if (qos_activated) {
776 skb_frag->priority = skb->priority;
777 tcb_desc->queue_index = UP2AC(skb->priority);
778 } else {
779 skb_frag->priority = WME_AC_BE;
780 tcb_desc->queue_index = WME_AC_BE;
781 }
782 skb_reserve(skb_frag, ieee->tx_headroom);
783
784 if (encrypt) {
785 if (ieee->hwsec_active)
786 tcb_desc->bHwSec = 1;
787 else
788 tcb_desc->bHwSec = 0;
789 skb_reserve(skb_frag,
790 crypt->ops->extra_mpdu_prefix_len +
791 crypt->ops->extra_msdu_prefix_len);
792 } else {
793 tcb_desc->bHwSec = 0;
794 }
795 frag_hdr = skb_put_data(skb_frag, &header, hdr_len);
796
797 /* If this is not the last fragment, then add the
798 * MOREFRAGS bit to the frame control
799 */
800 if (i != nr_frags - 1) {
801 frag_hdr->frame_ctl = cpu_to_le16(fc |
802 RTLLIB_FCTL_MOREFRAGS);
803 bytes = bytes_per_frag;
804
805 } else {
806 /* The last fragment has the remaining length */
807 bytes = bytes_last_frag;
808 }
809 if ((qos_activated) && (!bIsMulticast)) {
810 frag_hdr->seq_ctl =
811 cpu_to_le16(rtllib_query_seqnum(ieee, skb_frag,
812 header.addr1));
813 frag_hdr->seq_ctl =
814 cpu_to_le16(le16_to_cpu(frag_hdr->seq_ctl) << 4 | i);
815 } else {
816 frag_hdr->seq_ctl =
817 cpu_to_le16(ieee->seq_ctrl[0] << 4 | i);
818 }
819 /* Put a SNAP header on the first fragment */
820 if (i == 0) {
821 rtllib_put_snap(skb_put(skb_frag,
822 SNAP_SIZE +
823 sizeof(u16)), ether_type);
824 bytes -= SNAP_SIZE + sizeof(u16);
825 }
826
827 skb_put_data(skb_frag, skb->data, bytes);
828
829 /* Advance the SKB... */
830 skb_pull(skb, bytes);
831
832 /* Encryption routine will move the header forward in
833 * order to insert the IV between the header and the
834 * payload
835 */
836 if (encrypt)
837 rtllib_encrypt_fragment(ieee, skb_frag,
838 hdr_len);
839 if (ieee->config &
840 (CFG_RTLLIB_COMPUTE_FCS | CFG_RTLLIB_RESERVE_FCS))
841 skb_put(skb_frag, 4);
842 }
843
844 if ((qos_activated) && (!bIsMulticast)) {
845 if (ieee->seq_ctrl[UP2AC(skb->priority) + 1] == 0xFFF)
846 ieee->seq_ctrl[UP2AC(skb->priority) + 1] = 0;
847 else
848 ieee->seq_ctrl[UP2AC(skb->priority) + 1]++;
849 } else {
850 if (ieee->seq_ctrl[0] == 0xFFF)
851 ieee->seq_ctrl[0] = 0;
852 else
853 ieee->seq_ctrl[0]++;
854 }
855 } else {
856 if (unlikely(skb->len < sizeof(struct rtllib_hdr_3addr))) {
857 netdev_warn(ieee->dev, "skb too small (%d).\n",
858 skb->len);
859 goto success;
860 }
861
862 txb = rtllib_alloc_txb(1, skb->len, GFP_ATOMIC);
863 if (!txb) {
864 netdev_warn(ieee->dev, "Could not allocate TXB\n");
865 goto failed;
866 }
867
868 txb->encrypted = 0;
869 txb->payload_size = cpu_to_le16(skb->len);
870 skb_put_data(txb->fragments[0], skb->data, skb->len);
871 }
872
873 success:
874 if (txb) {
875 tcb_desc = (struct cb_desc *)
876 (txb->fragments[0]->cb + MAX_DEV_ADDR_SIZE);
877 tcb_desc->bTxEnableFwCalcDur = 1;
878 tcb_desc->priority = skb->priority;
879
880 if (ether_type == ETH_P_PAE) {
881 if (ieee->ht_info->iot_action &
882 HT_IOT_ACT_WA_IOT_Broadcom) {
883 tcb_desc->data_rate =
884 MgntQuery_TxRateExcludeCCKRates(ieee);
885 tcb_desc->tx_dis_rate_fallback = false;
886 } else {
887 tcb_desc->data_rate = ieee->basic_rate;
888 tcb_desc->tx_dis_rate_fallback = 1;
889 }
890
891 tcb_desc->ratr_index = 7;
892 tcb_desc->tx_use_drv_assinged_rate = 1;
893 } else {
894 if (is_multicast_ether_addr(header.addr1))
895 tcb_desc->bMulticast = 1;
896 if (is_broadcast_ether_addr(header.addr1))
897 tcb_desc->bBroadcast = 1;
898 rtllib_txrate_selectmode(ieee, tcb_desc);
899 if (tcb_desc->bMulticast || tcb_desc->bBroadcast)
900 tcb_desc->data_rate = ieee->basic_rate;
901 else
902 tcb_desc->data_rate = rtllib_current_rate(ieee);
903
904 if (bdhcp) {
905 if (ieee->ht_info->iot_action &
906 HT_IOT_ACT_WA_IOT_Broadcom) {
907 tcb_desc->data_rate =
908 MgntQuery_TxRateExcludeCCKRates(ieee);
909 tcb_desc->tx_dis_rate_fallback = false;
910 } else {
911 tcb_desc->data_rate = MGN_1M;
912 tcb_desc->tx_dis_rate_fallback = 1;
913 }
914
915 tcb_desc->ratr_index = 7;
916 tcb_desc->tx_use_drv_assinged_rate = 1;
917 tcb_desc->bdhcp = 1;
918 }
919
920 rtllib_query_ShortPreambleMode(ieee, tcb_desc);
921 rtllib_tx_query_agg_cap(ieee, txb->fragments[0],
922 tcb_desc);
923 rtllib_query_HTCapShortGI(ieee, tcb_desc);
924 rtllib_query_BandwidthMode(ieee, tcb_desc);
925 rtllib_query_protectionmode(ieee, tcb_desc,
926 txb->fragments[0]);
927 }
928 }
929 spin_unlock_irqrestore(&ieee->lock, flags);
930 dev_kfree_skb_any(skb);
931 if (txb) {
932 if (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE) {
933 dev->stats.tx_packets++;
934 dev->stats.tx_bytes += le16_to_cpu(txb->payload_size);
935 rtllib_softmac_xmit(txb, ieee);
936 } else {
937 rtllib_txb_free(txb);
938 }
939 }
940
941 return 0;
942
943 failed:
944 spin_unlock_irqrestore(&ieee->lock, flags);
945 netif_stop_queue(dev);
946 stats->tx_errors++;
947 return 1;
948 }
949
rtllib_xmit(struct sk_buff * skb,struct net_device * dev)950 netdev_tx_t rtllib_xmit(struct sk_buff *skb, struct net_device *dev)
951 {
952 memset(skb->cb, 0, sizeof(skb->cb));
953 return rtllib_xmit_inter(skb, dev) ? NETDEV_TX_BUSY : NETDEV_TX_OK;
954 }
955 EXPORT_SYMBOL(rtllib_xmit);
956