1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
4 <http://rt2x00.serialmonkey.com>
5
6 */
7
8 /*
9 Module: rt2500pci
10 Abstract: rt2500pci device specific routines.
11 Supported chipsets: RT2560.
12 */
13
14 #include <linux/delay.h>
15 #include <linux/etherdevice.h>
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/pci.h>
19 #include <linux/eeprom_93cx6.h>
20 #include <linux/slab.h>
21
22 #include "rt2x00.h"
23 #include "rt2x00mmio.h"
24 #include "rt2x00pci.h"
25 #include "rt2500pci.h"
26
27 /*
28 * Register access.
29 * All access to the CSR registers will go through the methods
30 * rt2x00mmio_register_read and rt2x00mmio_register_write.
31 * BBP and RF register require indirect register access,
32 * and use the CSR registers BBPCSR and RFCSR to achieve this.
33 * These indirect registers work with busy bits,
34 * and we will try maximal REGISTER_BUSY_COUNT times to access
35 * the register while taking a REGISTER_BUSY_DELAY us delay
36 * between each attampt. When the busy bit is still set at that time,
37 * the access attempt is considered to have failed,
38 * and we will print an error.
39 */
40 #define WAIT_FOR_BBP(__dev, __reg) \
41 rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
42 #define WAIT_FOR_RF(__dev, __reg) \
43 rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
44
rt2500pci_bbp_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,const u8 value)45 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
46 const unsigned int word, const u8 value)
47 {
48 u32 reg;
49
50 mutex_lock(&rt2x00dev->csr_mutex);
51
52 /*
53 * Wait until the BBP becomes available, afterwards we
54 * can safely write the new data into the register.
55 */
56 if (WAIT_FOR_BBP(rt2x00dev, ®)) {
57 reg = 0;
58 rt2x00_set_field32(®, BBPCSR_VALUE, value);
59 rt2x00_set_field32(®, BBPCSR_REGNUM, word);
60 rt2x00_set_field32(®, BBPCSR_BUSY, 1);
61 rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 1);
62
63 rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
64 }
65
66 mutex_unlock(&rt2x00dev->csr_mutex);
67 }
68
rt2500pci_bbp_read(struct rt2x00_dev * rt2x00dev,const unsigned int word)69 static u8 rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
70 const unsigned int word)
71 {
72 u32 reg;
73 u8 value;
74
75 mutex_lock(&rt2x00dev->csr_mutex);
76
77 /*
78 * Wait until the BBP becomes available, afterwards we
79 * can safely write the read request into the register.
80 * After the data has been written, we wait until hardware
81 * returns the correct value, if at any time the register
82 * doesn't become available in time, reg will be 0xffffffff
83 * which means we return 0xff to the caller.
84 */
85 if (WAIT_FOR_BBP(rt2x00dev, ®)) {
86 reg = 0;
87 rt2x00_set_field32(®, BBPCSR_REGNUM, word);
88 rt2x00_set_field32(®, BBPCSR_BUSY, 1);
89 rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 0);
90
91 rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
92
93 WAIT_FOR_BBP(rt2x00dev, ®);
94 }
95
96 value = rt2x00_get_field32(reg, BBPCSR_VALUE);
97
98 mutex_unlock(&rt2x00dev->csr_mutex);
99
100 return value;
101 }
102
rt2500pci_rf_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,const u32 value)103 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
104 const unsigned int word, const u32 value)
105 {
106 u32 reg;
107
108 mutex_lock(&rt2x00dev->csr_mutex);
109
110 /*
111 * Wait until the RF becomes available, afterwards we
112 * can safely write the new data into the register.
113 */
114 if (WAIT_FOR_RF(rt2x00dev, ®)) {
115 reg = 0;
116 rt2x00_set_field32(®, RFCSR_VALUE, value);
117 rt2x00_set_field32(®, RFCSR_NUMBER_OF_BITS, 20);
118 rt2x00_set_field32(®, RFCSR_IF_SELECT, 0);
119 rt2x00_set_field32(®, RFCSR_BUSY, 1);
120
121 rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
122 rt2x00_rf_write(rt2x00dev, word, value);
123 }
124
125 mutex_unlock(&rt2x00dev->csr_mutex);
126 }
127
rt2500pci_eepromregister_read(struct eeprom_93cx6 * eeprom)128 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
129 {
130 struct rt2x00_dev *rt2x00dev = eeprom->data;
131 u32 reg;
132
133 reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
134
135 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
136 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
137 eeprom->reg_data_clock =
138 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
139 eeprom->reg_chip_select =
140 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
141 }
142
rt2500pci_eepromregister_write(struct eeprom_93cx6 * eeprom)143 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
144 {
145 struct rt2x00_dev *rt2x00dev = eeprom->data;
146 u32 reg = 0;
147
148 rt2x00_set_field32(®, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
149 rt2x00_set_field32(®, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
150 rt2x00_set_field32(®, CSR21_EEPROM_DATA_CLOCK,
151 !!eeprom->reg_data_clock);
152 rt2x00_set_field32(®, CSR21_EEPROM_CHIP_SELECT,
153 !!eeprom->reg_chip_select);
154
155 rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
156 }
157
158 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
159 static const struct rt2x00debug rt2500pci_rt2x00debug = {
160 .owner = THIS_MODULE,
161 .csr = {
162 .read = rt2x00mmio_register_read,
163 .write = rt2x00mmio_register_write,
164 .flags = RT2X00DEBUGFS_OFFSET,
165 .word_base = CSR_REG_BASE,
166 .word_size = sizeof(u32),
167 .word_count = CSR_REG_SIZE / sizeof(u32),
168 },
169 .eeprom = {
170 .read = rt2x00_eeprom_read,
171 .write = rt2x00_eeprom_write,
172 .word_base = EEPROM_BASE,
173 .word_size = sizeof(u16),
174 .word_count = EEPROM_SIZE / sizeof(u16),
175 },
176 .bbp = {
177 .read = rt2500pci_bbp_read,
178 .write = rt2500pci_bbp_write,
179 .word_base = BBP_BASE,
180 .word_size = sizeof(u8),
181 .word_count = BBP_SIZE / sizeof(u8),
182 },
183 .rf = {
184 .read = rt2x00_rf_read,
185 .write = rt2500pci_rf_write,
186 .word_base = RF_BASE,
187 .word_size = sizeof(u32),
188 .word_count = RF_SIZE / sizeof(u32),
189 },
190 };
191 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
192
rt2500pci_rfkill_poll(struct rt2x00_dev * rt2x00dev)193 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
194 {
195 u32 reg;
196
197 reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
198 return rt2x00_get_field32(reg, GPIOCSR_VAL0);
199 }
200
201 #ifdef CONFIG_RT2X00_LIB_LEDS
rt2500pci_brightness_set(struct led_classdev * led_cdev,enum led_brightness brightness)202 static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
203 enum led_brightness brightness)
204 {
205 struct rt2x00_led *led =
206 container_of(led_cdev, struct rt2x00_led, led_dev);
207 unsigned int enabled = brightness != LED_OFF;
208 u32 reg;
209
210 reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
211
212 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
213 rt2x00_set_field32(®, LEDCSR_LINK, enabled);
214 else if (led->type == LED_TYPE_ACTIVITY)
215 rt2x00_set_field32(®, LEDCSR_ACTIVITY, enabled);
216
217 rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
218 }
219
rt2500pci_blink_set(struct led_classdev * led_cdev,unsigned long * delay_on,unsigned long * delay_off)220 static int rt2500pci_blink_set(struct led_classdev *led_cdev,
221 unsigned long *delay_on,
222 unsigned long *delay_off)
223 {
224 struct rt2x00_led *led =
225 container_of(led_cdev, struct rt2x00_led, led_dev);
226 u32 reg;
227
228 reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR);
229 rt2x00_set_field32(®, LEDCSR_ON_PERIOD, *delay_on);
230 rt2x00_set_field32(®, LEDCSR_OFF_PERIOD, *delay_off);
231 rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
232
233 return 0;
234 }
235
rt2500pci_init_led(struct rt2x00_dev * rt2x00dev,struct rt2x00_led * led,enum led_type type)236 static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
237 struct rt2x00_led *led,
238 enum led_type type)
239 {
240 led->rt2x00dev = rt2x00dev;
241 led->type = type;
242 led->led_dev.brightness_set = rt2500pci_brightness_set;
243 led->led_dev.blink_set = rt2500pci_blink_set;
244 led->flags = LED_INITIALIZED;
245 }
246 #endif /* CONFIG_RT2X00_LIB_LEDS */
247
248 /*
249 * Configuration handlers.
250 */
rt2500pci_config_filter(struct rt2x00_dev * rt2x00dev,const unsigned int filter_flags)251 static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
252 const unsigned int filter_flags)
253 {
254 u32 reg;
255
256 /*
257 * Start configuration steps.
258 * Note that the version error will always be dropped
259 * and broadcast frames will always be accepted since
260 * there is no filter for it at this time.
261 */
262 reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
263 rt2x00_set_field32(®, RXCSR0_DROP_CRC,
264 !(filter_flags & FIF_FCSFAIL));
265 rt2x00_set_field32(®, RXCSR0_DROP_PHYSICAL,
266 !(filter_flags & FIF_PLCPFAIL));
267 rt2x00_set_field32(®, RXCSR0_DROP_CONTROL,
268 !(filter_flags & FIF_CONTROL));
269 rt2x00_set_field32(®, RXCSR0_DROP_NOT_TO_ME,
270 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
271 rt2x00_set_field32(®, RXCSR0_DROP_TODS,
272 !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
273 !rt2x00dev->intf_ap_count);
274 rt2x00_set_field32(®, RXCSR0_DROP_VERSION_ERROR, 1);
275 rt2x00_set_field32(®, RXCSR0_DROP_MCAST,
276 !(filter_flags & FIF_ALLMULTI));
277 rt2x00_set_field32(®, RXCSR0_DROP_BCAST, 0);
278 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
279 }
280
rt2500pci_config_intf(struct rt2x00_dev * rt2x00dev,struct rt2x00_intf * intf,struct rt2x00intf_conf * conf,const unsigned int flags)281 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
282 struct rt2x00_intf *intf,
283 struct rt2x00intf_conf *conf,
284 const unsigned int flags)
285 {
286 struct data_queue *queue = rt2x00dev->bcn;
287 unsigned int bcn_preload;
288 u32 reg;
289
290 if (flags & CONFIG_UPDATE_TYPE) {
291 /*
292 * Enable beacon config
293 */
294 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
295 reg = rt2x00mmio_register_read(rt2x00dev, BCNCSR1);
296 rt2x00_set_field32(®, BCNCSR1_PRELOAD, bcn_preload);
297 rt2x00_set_field32(®, BCNCSR1_BEACON_CWMIN, queue->cw_min);
298 rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
299
300 /*
301 * Enable synchronisation.
302 */
303 reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
304 rt2x00_set_field32(®, CSR14_TSF_SYNC, conf->sync);
305 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
306 }
307
308 if (flags & CONFIG_UPDATE_MAC)
309 rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
310 conf->mac, sizeof(conf->mac));
311
312 if (flags & CONFIG_UPDATE_BSSID)
313 rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
314 conf->bssid, sizeof(conf->bssid));
315 }
316
rt2500pci_config_erp(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_erp * erp,u32 changed)317 static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
318 struct rt2x00lib_erp *erp,
319 u32 changed)
320 {
321 int preamble_mask;
322 u32 reg;
323
324 /*
325 * When short preamble is enabled, we should set bit 0x08
326 */
327 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
328 preamble_mask = erp->short_preamble << 3;
329
330 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR1);
331 rt2x00_set_field32(®, TXCSR1_ACK_TIMEOUT, 0x162);
332 rt2x00_set_field32(®, TXCSR1_ACK_CONSUME_TIME, 0xa2);
333 rt2x00_set_field32(®, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
334 rt2x00_set_field32(®, TXCSR1_AUTORESPONDER, 1);
335 rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
336
337 reg = rt2x00mmio_register_read(rt2x00dev, ARCSR2);
338 rt2x00_set_field32(®, ARCSR2_SIGNAL, 0x00);
339 rt2x00_set_field32(®, ARCSR2_SERVICE, 0x04);
340 rt2x00_set_field32(®, ARCSR2_LENGTH,
341 GET_DURATION(ACK_SIZE, 10));
342 rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
343
344 reg = rt2x00mmio_register_read(rt2x00dev, ARCSR3);
345 rt2x00_set_field32(®, ARCSR3_SIGNAL, 0x01 | preamble_mask);
346 rt2x00_set_field32(®, ARCSR3_SERVICE, 0x04);
347 rt2x00_set_field32(®, ARCSR2_LENGTH,
348 GET_DURATION(ACK_SIZE, 20));
349 rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
350
351 reg = rt2x00mmio_register_read(rt2x00dev, ARCSR4);
352 rt2x00_set_field32(®, ARCSR4_SIGNAL, 0x02 | preamble_mask);
353 rt2x00_set_field32(®, ARCSR4_SERVICE, 0x04);
354 rt2x00_set_field32(®, ARCSR2_LENGTH,
355 GET_DURATION(ACK_SIZE, 55));
356 rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
357
358 reg = rt2x00mmio_register_read(rt2x00dev, ARCSR5);
359 rt2x00_set_field32(®, ARCSR5_SIGNAL, 0x03 | preamble_mask);
360 rt2x00_set_field32(®, ARCSR5_SERVICE, 0x84);
361 rt2x00_set_field32(®, ARCSR2_LENGTH,
362 GET_DURATION(ACK_SIZE, 110));
363 rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
364 }
365
366 if (changed & BSS_CHANGED_BASIC_RATES)
367 rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
368
369 if (changed & BSS_CHANGED_ERP_SLOT) {
370 reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
371 rt2x00_set_field32(®, CSR11_SLOT_TIME, erp->slot_time);
372 rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
373
374 reg = rt2x00mmio_register_read(rt2x00dev, CSR18);
375 rt2x00_set_field32(®, CSR18_SIFS, erp->sifs);
376 rt2x00_set_field32(®, CSR18_PIFS, erp->pifs);
377 rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
378
379 reg = rt2x00mmio_register_read(rt2x00dev, CSR19);
380 rt2x00_set_field32(®, CSR19_DIFS, erp->difs);
381 rt2x00_set_field32(®, CSR19_EIFS, erp->eifs);
382 rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
383 }
384
385 if (changed & BSS_CHANGED_BEACON_INT) {
386 reg = rt2x00mmio_register_read(rt2x00dev, CSR12);
387 rt2x00_set_field32(®, CSR12_BEACON_INTERVAL,
388 erp->beacon_int * 16);
389 rt2x00_set_field32(®, CSR12_CFP_MAX_DURATION,
390 erp->beacon_int * 16);
391 rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
392 }
393
394 }
395
rt2500pci_config_ant(struct rt2x00_dev * rt2x00dev,struct antenna_setup * ant)396 static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
397 struct antenna_setup *ant)
398 {
399 u32 reg;
400 u8 r14;
401 u8 r2;
402
403 /*
404 * We should never come here because rt2x00lib is supposed
405 * to catch this and send us the correct antenna explicitely.
406 */
407 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
408 ant->tx == ANTENNA_SW_DIVERSITY);
409
410 reg = rt2x00mmio_register_read(rt2x00dev, BBPCSR1);
411 r14 = rt2500pci_bbp_read(rt2x00dev, 14);
412 r2 = rt2500pci_bbp_read(rt2x00dev, 2);
413
414 /*
415 * Configure the TX antenna.
416 */
417 switch (ant->tx) {
418 case ANTENNA_A:
419 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
420 rt2x00_set_field32(®, BBPCSR1_CCK, 0);
421 rt2x00_set_field32(®, BBPCSR1_OFDM, 0);
422 break;
423 case ANTENNA_B:
424 default:
425 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
426 rt2x00_set_field32(®, BBPCSR1_CCK, 2);
427 rt2x00_set_field32(®, BBPCSR1_OFDM, 2);
428 break;
429 }
430
431 /*
432 * Configure the RX antenna.
433 */
434 switch (ant->rx) {
435 case ANTENNA_A:
436 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
437 break;
438 case ANTENNA_B:
439 default:
440 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
441 break;
442 }
443
444 /*
445 * RT2525E and RT5222 need to flip TX I/Q
446 */
447 if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
448 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
449 rt2x00_set_field32(®, BBPCSR1_CCK_FLIP, 1);
450 rt2x00_set_field32(®, BBPCSR1_OFDM_FLIP, 1);
451
452 /*
453 * RT2525E does not need RX I/Q Flip.
454 */
455 if (rt2x00_rf(rt2x00dev, RF2525E))
456 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
457 } else {
458 rt2x00_set_field32(®, BBPCSR1_CCK_FLIP, 0);
459 rt2x00_set_field32(®, BBPCSR1_OFDM_FLIP, 0);
460 }
461
462 rt2x00mmio_register_write(rt2x00dev, BBPCSR1, reg);
463 rt2500pci_bbp_write(rt2x00dev, 14, r14);
464 rt2500pci_bbp_write(rt2x00dev, 2, r2);
465 }
466
rt2500pci_config_channel(struct rt2x00_dev * rt2x00dev,struct rf_channel * rf,const int txpower)467 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
468 struct rf_channel *rf, const int txpower)
469 {
470 u8 r70;
471
472 /*
473 * Set TXpower.
474 */
475 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
476
477 /*
478 * Switch on tuning bits.
479 * For RT2523 devices we do not need to update the R1 register.
480 */
481 if (!rt2x00_rf(rt2x00dev, RF2523))
482 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
483 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
484
485 /*
486 * For RT2525 we should first set the channel to half band higher.
487 */
488 if (rt2x00_rf(rt2x00dev, RF2525)) {
489 static const u32 vals[] = {
490 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
491 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
492 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
493 0x00080d2e, 0x00080d3a
494 };
495
496 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
497 rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
498 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
499 if (rf->rf4)
500 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
501 }
502
503 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
504 rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
505 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
506 if (rf->rf4)
507 rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
508
509 /*
510 * Channel 14 requires the Japan filter bit to be set.
511 */
512 r70 = 0x46;
513 rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
514 rt2500pci_bbp_write(rt2x00dev, 70, r70);
515
516 msleep(1);
517
518 /*
519 * Switch off tuning bits.
520 * For RT2523 devices we do not need to update the R1 register.
521 */
522 if (!rt2x00_rf(rt2x00dev, RF2523)) {
523 rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
524 rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
525 }
526
527 rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
528 rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
529
530 /*
531 * Clear false CRC during channel switch.
532 */
533 rf->rf1 = rt2x00mmio_register_read(rt2x00dev, CNT0);
534 }
535
rt2500pci_config_txpower(struct rt2x00_dev * rt2x00dev,const int txpower)536 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
537 const int txpower)
538 {
539 u32 rf3;
540
541 rf3 = rt2x00_rf_read(rt2x00dev, 3);
542 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
543 rt2500pci_rf_write(rt2x00dev, 3, rf3);
544 }
545
rt2500pci_config_retry_limit(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_conf * libconf)546 static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
547 struct rt2x00lib_conf *libconf)
548 {
549 u32 reg;
550
551 reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
552 rt2x00_set_field32(®, CSR11_LONG_RETRY,
553 libconf->conf->long_frame_max_tx_count);
554 rt2x00_set_field32(®, CSR11_SHORT_RETRY,
555 libconf->conf->short_frame_max_tx_count);
556 rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
557 }
558
rt2500pci_config_ps(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_conf * libconf)559 static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
560 struct rt2x00lib_conf *libconf)
561 {
562 enum dev_state state =
563 (libconf->conf->flags & IEEE80211_CONF_PS) ?
564 STATE_SLEEP : STATE_AWAKE;
565 u32 reg;
566
567 if (state == STATE_SLEEP) {
568 reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
569 rt2x00_set_field32(®, CSR20_DELAY_AFTER_TBCN,
570 (rt2x00dev->beacon_int - 20) * 16);
571 rt2x00_set_field32(®, CSR20_TBCN_BEFORE_WAKEUP,
572 libconf->conf->listen_interval - 1);
573
574 /* We must first disable autowake before it can be enabled */
575 rt2x00_set_field32(®, CSR20_AUTOWAKE, 0);
576 rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
577
578 rt2x00_set_field32(®, CSR20_AUTOWAKE, 1);
579 rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
580 } else {
581 reg = rt2x00mmio_register_read(rt2x00dev, CSR20);
582 rt2x00_set_field32(®, CSR20_AUTOWAKE, 0);
583 rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
584 }
585
586 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
587 }
588
rt2500pci_config(struct rt2x00_dev * rt2x00dev,struct rt2x00lib_conf * libconf,const unsigned int flags)589 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
590 struct rt2x00lib_conf *libconf,
591 const unsigned int flags)
592 {
593 if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
594 rt2500pci_config_channel(rt2x00dev, &libconf->rf,
595 libconf->conf->power_level);
596 if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
597 !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
598 rt2500pci_config_txpower(rt2x00dev,
599 libconf->conf->power_level);
600 if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
601 rt2500pci_config_retry_limit(rt2x00dev, libconf);
602 if (flags & IEEE80211_CONF_CHANGE_PS)
603 rt2500pci_config_ps(rt2x00dev, libconf);
604 }
605
606 /*
607 * Link tuning
608 */
rt2500pci_link_stats(struct rt2x00_dev * rt2x00dev,struct link_qual * qual)609 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
610 struct link_qual *qual)
611 {
612 u32 reg;
613
614 /*
615 * Update FCS error count from register.
616 */
617 reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
618 qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
619
620 /*
621 * Update False CCA count from register.
622 */
623 reg = rt2x00mmio_register_read(rt2x00dev, CNT3);
624 qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
625 }
626
rt2500pci_set_vgc(struct rt2x00_dev * rt2x00dev,struct link_qual * qual,u8 vgc_level)627 static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
628 struct link_qual *qual, u8 vgc_level)
629 {
630 if (qual->vgc_level_reg != vgc_level) {
631 rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
632 qual->vgc_level = vgc_level;
633 qual->vgc_level_reg = vgc_level;
634 }
635 }
636
rt2500pci_reset_tuner(struct rt2x00_dev * rt2x00dev,struct link_qual * qual)637 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
638 struct link_qual *qual)
639 {
640 rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
641 }
642
rt2500pci_link_tuner(struct rt2x00_dev * rt2x00dev,struct link_qual * qual,const u32 count)643 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
644 struct link_qual *qual, const u32 count)
645 {
646 /*
647 * To prevent collisions with MAC ASIC on chipsets
648 * up to version C the link tuning should halt after 20
649 * seconds while being associated.
650 */
651 if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
652 rt2x00dev->intf_associated && count > 20)
653 return;
654
655 /*
656 * Chipset versions C and lower should directly continue
657 * to the dynamic CCA tuning. Chipset version D and higher
658 * should go straight to dynamic CCA tuning when they
659 * are not associated.
660 */
661 if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
662 !rt2x00dev->intf_associated)
663 goto dynamic_cca_tune;
664
665 /*
666 * A too low RSSI will cause too much false CCA which will
667 * then corrupt the R17 tuning. To remidy this the tuning should
668 * be stopped (While making sure the R17 value will not exceed limits)
669 */
670 if (qual->rssi < -80 && count > 20) {
671 if (qual->vgc_level_reg >= 0x41)
672 rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
673 return;
674 }
675
676 /*
677 * Special big-R17 for short distance
678 */
679 if (qual->rssi >= -58) {
680 rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
681 return;
682 }
683
684 /*
685 * Special mid-R17 for middle distance
686 */
687 if (qual->rssi >= -74) {
688 rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
689 return;
690 }
691
692 /*
693 * Leave short or middle distance condition, restore r17
694 * to the dynamic tuning range.
695 */
696 if (qual->vgc_level_reg >= 0x41) {
697 rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
698 return;
699 }
700
701 dynamic_cca_tune:
702
703 /*
704 * R17 is inside the dynamic tuning range,
705 * start tuning the link based on the false cca counter.
706 */
707 if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
708 rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
709 else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
710 rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
711 }
712
713 /*
714 * Queue handlers.
715 */
rt2500pci_start_queue(struct data_queue * queue)716 static void rt2500pci_start_queue(struct data_queue *queue)
717 {
718 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
719 u32 reg;
720
721 switch (queue->qid) {
722 case QID_RX:
723 reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
724 rt2x00_set_field32(®, RXCSR0_DISABLE_RX, 0);
725 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
726 break;
727 case QID_BEACON:
728 reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
729 rt2x00_set_field32(®, CSR14_TSF_COUNT, 1);
730 rt2x00_set_field32(®, CSR14_TBCN, 1);
731 rt2x00_set_field32(®, CSR14_BEACON_GEN, 1);
732 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
733 break;
734 default:
735 break;
736 }
737 }
738
rt2500pci_kick_queue(struct data_queue * queue)739 static void rt2500pci_kick_queue(struct data_queue *queue)
740 {
741 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
742 u32 reg;
743
744 switch (queue->qid) {
745 case QID_AC_VO:
746 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
747 rt2x00_set_field32(®, TXCSR0_KICK_PRIO, 1);
748 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
749 break;
750 case QID_AC_VI:
751 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
752 rt2x00_set_field32(®, TXCSR0_KICK_TX, 1);
753 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
754 break;
755 case QID_ATIM:
756 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
757 rt2x00_set_field32(®, TXCSR0_KICK_ATIM, 1);
758 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
759 break;
760 default:
761 break;
762 }
763 }
764
rt2500pci_stop_queue(struct data_queue * queue)765 static void rt2500pci_stop_queue(struct data_queue *queue)
766 {
767 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
768 u32 reg;
769
770 switch (queue->qid) {
771 case QID_AC_VO:
772 case QID_AC_VI:
773 case QID_ATIM:
774 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0);
775 rt2x00_set_field32(®, TXCSR0_ABORT, 1);
776 rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
777 break;
778 case QID_RX:
779 reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0);
780 rt2x00_set_field32(®, RXCSR0_DISABLE_RX, 1);
781 rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
782 break;
783 case QID_BEACON:
784 reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
785 rt2x00_set_field32(®, CSR14_TSF_COUNT, 0);
786 rt2x00_set_field32(®, CSR14_TBCN, 0);
787 rt2x00_set_field32(®, CSR14_BEACON_GEN, 0);
788 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
789
790 /*
791 * Wait for possibly running tbtt tasklets.
792 */
793 tasklet_kill(&rt2x00dev->tbtt_tasklet);
794 break;
795 default:
796 break;
797 }
798 }
799
800 /*
801 * Initialization functions.
802 */
rt2500pci_get_entry_state(struct queue_entry * entry)803 static bool rt2500pci_get_entry_state(struct queue_entry *entry)
804 {
805 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
806 u32 word;
807
808 if (entry->queue->qid == QID_RX) {
809 word = rt2x00_desc_read(entry_priv->desc, 0);
810
811 return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
812 } else {
813 word = rt2x00_desc_read(entry_priv->desc, 0);
814
815 return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
816 rt2x00_get_field32(word, TXD_W0_VALID));
817 }
818 }
819
rt2500pci_clear_entry(struct queue_entry * entry)820 static void rt2500pci_clear_entry(struct queue_entry *entry)
821 {
822 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
823 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
824 u32 word;
825
826 if (entry->queue->qid == QID_RX) {
827 word = rt2x00_desc_read(entry_priv->desc, 1);
828 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
829 rt2x00_desc_write(entry_priv->desc, 1, word);
830
831 word = rt2x00_desc_read(entry_priv->desc, 0);
832 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
833 rt2x00_desc_write(entry_priv->desc, 0, word);
834 } else {
835 word = rt2x00_desc_read(entry_priv->desc, 0);
836 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
837 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
838 rt2x00_desc_write(entry_priv->desc, 0, word);
839 }
840 }
841
rt2500pci_init_queues(struct rt2x00_dev * rt2x00dev)842 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
843 {
844 struct queue_entry_priv_mmio *entry_priv;
845 u32 reg;
846
847 /*
848 * Initialize registers.
849 */
850 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR2);
851 rt2x00_set_field32(®, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
852 rt2x00_set_field32(®, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
853 rt2x00_set_field32(®, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
854 rt2x00_set_field32(®, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
855 rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
856
857 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
858 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR3);
859 rt2x00_set_field32(®, TXCSR3_TX_RING_REGISTER,
860 entry_priv->desc_dma);
861 rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
862
863 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
864 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR5);
865 rt2x00_set_field32(®, TXCSR5_PRIO_RING_REGISTER,
866 entry_priv->desc_dma);
867 rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
868
869 entry_priv = rt2x00dev->atim->entries[0].priv_data;
870 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR4);
871 rt2x00_set_field32(®, TXCSR4_ATIM_RING_REGISTER,
872 entry_priv->desc_dma);
873 rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
874
875 entry_priv = rt2x00dev->bcn->entries[0].priv_data;
876 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR6);
877 rt2x00_set_field32(®, TXCSR6_BEACON_RING_REGISTER,
878 entry_priv->desc_dma);
879 rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
880
881 reg = rt2x00mmio_register_read(rt2x00dev, RXCSR1);
882 rt2x00_set_field32(®, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
883 rt2x00_set_field32(®, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
884 rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
885
886 entry_priv = rt2x00dev->rx->entries[0].priv_data;
887 reg = rt2x00mmio_register_read(rt2x00dev, RXCSR2);
888 rt2x00_set_field32(®, RXCSR2_RX_RING_REGISTER,
889 entry_priv->desc_dma);
890 rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
891
892 return 0;
893 }
894
rt2500pci_init_registers(struct rt2x00_dev * rt2x00dev)895 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
896 {
897 u32 reg;
898
899 rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
900 rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
901 rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00020002);
902 rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
903
904 reg = rt2x00mmio_register_read(rt2x00dev, TIMECSR);
905 rt2x00_set_field32(®, TIMECSR_US_COUNT, 33);
906 rt2x00_set_field32(®, TIMECSR_US_64_COUNT, 63);
907 rt2x00_set_field32(®, TIMECSR_BEACON_EXPECT, 0);
908 rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
909
910 reg = rt2x00mmio_register_read(rt2x00dev, CSR9);
911 rt2x00_set_field32(®, CSR9_MAX_FRAME_UNIT,
912 rt2x00dev->rx->data_size / 128);
913 rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
914
915 /*
916 * Always use CWmin and CWmax set in descriptor.
917 */
918 reg = rt2x00mmio_register_read(rt2x00dev, CSR11);
919 rt2x00_set_field32(®, CSR11_CW_SELECT, 0);
920 rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
921
922 reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
923 rt2x00_set_field32(®, CSR14_TSF_COUNT, 0);
924 rt2x00_set_field32(®, CSR14_TSF_SYNC, 0);
925 rt2x00_set_field32(®, CSR14_TBCN, 0);
926 rt2x00_set_field32(®, CSR14_TCFP, 0);
927 rt2x00_set_field32(®, CSR14_TATIMW, 0);
928 rt2x00_set_field32(®, CSR14_BEACON_GEN, 0);
929 rt2x00_set_field32(®, CSR14_CFP_COUNT_PRELOAD, 0);
930 rt2x00_set_field32(®, CSR14_TBCM_PRELOAD, 0);
931 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
932
933 rt2x00mmio_register_write(rt2x00dev, CNT3, 0);
934
935 reg = rt2x00mmio_register_read(rt2x00dev, TXCSR8);
936 rt2x00_set_field32(®, TXCSR8_BBP_ID0, 10);
937 rt2x00_set_field32(®, TXCSR8_BBP_ID0_VALID, 1);
938 rt2x00_set_field32(®, TXCSR8_BBP_ID1, 11);
939 rt2x00_set_field32(®, TXCSR8_BBP_ID1_VALID, 1);
940 rt2x00_set_field32(®, TXCSR8_BBP_ID2, 13);
941 rt2x00_set_field32(®, TXCSR8_BBP_ID2_VALID, 1);
942 rt2x00_set_field32(®, TXCSR8_BBP_ID3, 12);
943 rt2x00_set_field32(®, TXCSR8_BBP_ID3_VALID, 1);
944 rt2x00mmio_register_write(rt2x00dev, TXCSR8, reg);
945
946 reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR0);
947 rt2x00_set_field32(®, ARTCSR0_ACK_CTS_1MBS, 112);
948 rt2x00_set_field32(®, ARTCSR0_ACK_CTS_2MBS, 56);
949 rt2x00_set_field32(®, ARTCSR0_ACK_CTS_5_5MBS, 20);
950 rt2x00_set_field32(®, ARTCSR0_ACK_CTS_11MBS, 10);
951 rt2x00mmio_register_write(rt2x00dev, ARTCSR0, reg);
952
953 reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR1);
954 rt2x00_set_field32(®, ARTCSR1_ACK_CTS_6MBS, 45);
955 rt2x00_set_field32(®, ARTCSR1_ACK_CTS_9MBS, 37);
956 rt2x00_set_field32(®, ARTCSR1_ACK_CTS_12MBS, 33);
957 rt2x00_set_field32(®, ARTCSR1_ACK_CTS_18MBS, 29);
958 rt2x00mmio_register_write(rt2x00dev, ARTCSR1, reg);
959
960 reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR2);
961 rt2x00_set_field32(®, ARTCSR2_ACK_CTS_24MBS, 29);
962 rt2x00_set_field32(®, ARTCSR2_ACK_CTS_36MBS, 25);
963 rt2x00_set_field32(®, ARTCSR2_ACK_CTS_48MBS, 25);
964 rt2x00_set_field32(®, ARTCSR2_ACK_CTS_54MBS, 25);
965 rt2x00mmio_register_write(rt2x00dev, ARTCSR2, reg);
966
967 reg = rt2x00mmio_register_read(rt2x00dev, RXCSR3);
968 rt2x00_set_field32(®, RXCSR3_BBP_ID0, 47); /* CCK Signal */
969 rt2x00_set_field32(®, RXCSR3_BBP_ID0_VALID, 1);
970 rt2x00_set_field32(®, RXCSR3_BBP_ID1, 51); /* Rssi */
971 rt2x00_set_field32(®, RXCSR3_BBP_ID1_VALID, 1);
972 rt2x00_set_field32(®, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
973 rt2x00_set_field32(®, RXCSR3_BBP_ID2_VALID, 1);
974 rt2x00_set_field32(®, RXCSR3_BBP_ID3, 51); /* RSSI */
975 rt2x00_set_field32(®, RXCSR3_BBP_ID3_VALID, 1);
976 rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
977
978 reg = rt2x00mmio_register_read(rt2x00dev, PCICSR);
979 rt2x00_set_field32(®, PCICSR_BIG_ENDIAN, 0);
980 rt2x00_set_field32(®, PCICSR_RX_TRESHOLD, 0);
981 rt2x00_set_field32(®, PCICSR_TX_TRESHOLD, 3);
982 rt2x00_set_field32(®, PCICSR_BURST_LENTH, 1);
983 rt2x00_set_field32(®, PCICSR_ENABLE_CLK, 1);
984 rt2x00_set_field32(®, PCICSR_READ_MULTIPLE, 1);
985 rt2x00_set_field32(®, PCICSR_WRITE_INVALID, 1);
986 rt2x00mmio_register_write(rt2x00dev, PCICSR, reg);
987
988 rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
989
990 rt2x00mmio_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
991 rt2x00mmio_register_write(rt2x00dev, TESTCSR, 0x000000f0);
992
993 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
994 return -EBUSY;
995
996 rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00213223);
997 rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
998
999 reg = rt2x00mmio_register_read(rt2x00dev, MACCSR2);
1000 rt2x00_set_field32(®, MACCSR2_DELAY, 64);
1001 rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
1002
1003 reg = rt2x00mmio_register_read(rt2x00dev, RALINKCSR);
1004 rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA0, 17);
1005 rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID0, 26);
1006 rt2x00_set_field32(®, RALINKCSR_AR_BBP_VALID0, 1);
1007 rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA1, 0);
1008 rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID1, 26);
1009 rt2x00_set_field32(®, RALINKCSR_AR_BBP_VALID1, 1);
1010 rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
1011
1012 rt2x00mmio_register_write(rt2x00dev, BBPCSR1, 0x82188200);
1013
1014 rt2x00mmio_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
1015
1016 reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
1017 rt2x00_set_field32(®, CSR1_SOFT_RESET, 1);
1018 rt2x00_set_field32(®, CSR1_BBP_RESET, 0);
1019 rt2x00_set_field32(®, CSR1_HOST_READY, 0);
1020 rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
1021
1022 reg = rt2x00mmio_register_read(rt2x00dev, CSR1);
1023 rt2x00_set_field32(®, CSR1_SOFT_RESET, 0);
1024 rt2x00_set_field32(®, CSR1_HOST_READY, 1);
1025 rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
1026
1027 /*
1028 * We must clear the FCS and FIFO error count.
1029 * These registers are cleared on read,
1030 * so we may pass a useless variable to store the value.
1031 */
1032 reg = rt2x00mmio_register_read(rt2x00dev, CNT0);
1033 reg = rt2x00mmio_register_read(rt2x00dev, CNT4);
1034
1035 return 0;
1036 }
1037
rt2500pci_wait_bbp_ready(struct rt2x00_dev * rt2x00dev)1038 static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1039 {
1040 unsigned int i;
1041 u8 value;
1042
1043 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1044 value = rt2500pci_bbp_read(rt2x00dev, 0);
1045 if ((value != 0xff) && (value != 0x00))
1046 return 0;
1047 udelay(REGISTER_BUSY_DELAY);
1048 }
1049
1050 rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1051 return -EACCES;
1052 }
1053
rt2500pci_init_bbp(struct rt2x00_dev * rt2x00dev)1054 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1055 {
1056 unsigned int i;
1057 u16 eeprom;
1058 u8 reg_id;
1059 u8 value;
1060
1061 if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
1062 return -EACCES;
1063
1064 rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
1065 rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
1066 rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
1067 rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
1068 rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
1069 rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
1070 rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
1071 rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
1072 rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
1073 rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
1074 rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
1075 rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
1076 rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
1077 rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
1078 rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
1079 rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
1080 rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
1081 rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
1082 rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
1083 rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
1084 rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
1085 rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
1086 rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
1087 rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1088 rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1089 rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1090 rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1091 rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1092 rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1093 rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1094
1095 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1096 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i);
1097
1098 if (eeprom != 0xffff && eeprom != 0x0000) {
1099 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1100 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1101 rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1102 }
1103 }
1104
1105 return 0;
1106 }
1107
1108 /*
1109 * Device state switch handlers.
1110 */
rt2500pci_toggle_irq(struct rt2x00_dev * rt2x00dev,enum dev_state state)1111 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1112 enum dev_state state)
1113 {
1114 int mask = (state == STATE_RADIO_IRQ_OFF);
1115 u32 reg;
1116 unsigned long flags;
1117
1118 /*
1119 * When interrupts are being enabled, the interrupt registers
1120 * should clear the register to assure a clean state.
1121 */
1122 if (state == STATE_RADIO_IRQ_ON) {
1123 reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
1124 rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1125 }
1126
1127 /*
1128 * Only toggle the interrupts bits we are going to use.
1129 * Non-checked interrupt bits are disabled by default.
1130 */
1131 spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1132
1133 reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1134 rt2x00_set_field32(®, CSR8_TBCN_EXPIRE, mask);
1135 rt2x00_set_field32(®, CSR8_TXDONE_TXRING, mask);
1136 rt2x00_set_field32(®, CSR8_TXDONE_ATIMRING, mask);
1137 rt2x00_set_field32(®, CSR8_TXDONE_PRIORING, mask);
1138 rt2x00_set_field32(®, CSR8_RXDONE, mask);
1139 rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1140
1141 spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1142
1143 if (state == STATE_RADIO_IRQ_OFF) {
1144 /*
1145 * Ensure that all tasklets are finished.
1146 */
1147 tasklet_kill(&rt2x00dev->txstatus_tasklet);
1148 tasklet_kill(&rt2x00dev->rxdone_tasklet);
1149 tasklet_kill(&rt2x00dev->tbtt_tasklet);
1150 }
1151 }
1152
rt2500pci_enable_radio(struct rt2x00_dev * rt2x00dev)1153 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1154 {
1155 /*
1156 * Initialize all registers.
1157 */
1158 if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1159 rt2500pci_init_registers(rt2x00dev) ||
1160 rt2500pci_init_bbp(rt2x00dev)))
1161 return -EIO;
1162
1163 return 0;
1164 }
1165
rt2500pci_disable_radio(struct rt2x00_dev * rt2x00dev)1166 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1167 {
1168 /*
1169 * Disable power
1170 */
1171 rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
1172 }
1173
rt2500pci_set_state(struct rt2x00_dev * rt2x00dev,enum dev_state state)1174 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1175 enum dev_state state)
1176 {
1177 u32 reg, reg2;
1178 unsigned int i;
1179 bool put_to_sleep;
1180 u8 bbp_state;
1181 u8 rf_state;
1182
1183 put_to_sleep = (state != STATE_AWAKE);
1184
1185 reg = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
1186 rt2x00_set_field32(®, PWRCSR1_SET_STATE, 1);
1187 rt2x00_set_field32(®, PWRCSR1_BBP_DESIRE_STATE, state);
1188 rt2x00_set_field32(®, PWRCSR1_RF_DESIRE_STATE, state);
1189 rt2x00_set_field32(®, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1190 rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1191
1192 /*
1193 * Device is not guaranteed to be in the requested state yet.
1194 * We must wait until the register indicates that the
1195 * device has entered the correct state.
1196 */
1197 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1198 reg2 = rt2x00mmio_register_read(rt2x00dev, PWRCSR1);
1199 bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1200 rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1201 if (bbp_state == state && rf_state == state)
1202 return 0;
1203 rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1204 msleep(10);
1205 }
1206
1207 return -EBUSY;
1208 }
1209
rt2500pci_set_device_state(struct rt2x00_dev * rt2x00dev,enum dev_state state)1210 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1211 enum dev_state state)
1212 {
1213 int retval = 0;
1214
1215 switch (state) {
1216 case STATE_RADIO_ON:
1217 retval = rt2500pci_enable_radio(rt2x00dev);
1218 break;
1219 case STATE_RADIO_OFF:
1220 rt2500pci_disable_radio(rt2x00dev);
1221 break;
1222 case STATE_RADIO_IRQ_ON:
1223 case STATE_RADIO_IRQ_OFF:
1224 rt2500pci_toggle_irq(rt2x00dev, state);
1225 break;
1226 case STATE_DEEP_SLEEP:
1227 case STATE_SLEEP:
1228 case STATE_STANDBY:
1229 case STATE_AWAKE:
1230 retval = rt2500pci_set_state(rt2x00dev, state);
1231 break;
1232 default:
1233 retval = -ENOTSUPP;
1234 break;
1235 }
1236
1237 if (unlikely(retval))
1238 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1239 state, retval);
1240
1241 return retval;
1242 }
1243
1244 /*
1245 * TX descriptor initialization
1246 */
rt2500pci_write_tx_desc(struct queue_entry * entry,struct txentry_desc * txdesc)1247 static void rt2500pci_write_tx_desc(struct queue_entry *entry,
1248 struct txentry_desc *txdesc)
1249 {
1250 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1251 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1252 __le32 *txd = entry_priv->desc;
1253 u32 word;
1254
1255 /*
1256 * Start writing the descriptor words.
1257 */
1258 word = rt2x00_desc_read(txd, 1);
1259 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1260 rt2x00_desc_write(txd, 1, word);
1261
1262 word = rt2x00_desc_read(txd, 2);
1263 rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1264 rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
1265 rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
1266 rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
1267 rt2x00_desc_write(txd, 2, word);
1268
1269 word = rt2x00_desc_read(txd, 3);
1270 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1271 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1272 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW,
1273 txdesc->u.plcp.length_low);
1274 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH,
1275 txdesc->u.plcp.length_high);
1276 rt2x00_desc_write(txd, 3, word);
1277
1278 word = rt2x00_desc_read(txd, 10);
1279 rt2x00_set_field32(&word, TXD_W10_RTS,
1280 test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1281 rt2x00_desc_write(txd, 10, word);
1282
1283 /*
1284 * Writing TXD word 0 must the last to prevent a race condition with
1285 * the device, whereby the device may take hold of the TXD before we
1286 * finished updating it.
1287 */
1288 word = rt2x00_desc_read(txd, 0);
1289 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1290 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1291 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1292 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1293 rt2x00_set_field32(&word, TXD_W0_ACK,
1294 test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1295 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1296 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1297 rt2x00_set_field32(&word, TXD_W0_OFDM,
1298 (txdesc->rate_mode == RATE_MODE_OFDM));
1299 rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1300 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1301 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1302 test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1303 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1304 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1305 rt2x00_desc_write(txd, 0, word);
1306
1307 /*
1308 * Register descriptor details in skb frame descriptor.
1309 */
1310 skbdesc->desc = txd;
1311 skbdesc->desc_len = TXD_DESC_SIZE;
1312 }
1313
1314 /*
1315 * TX data initialization
1316 */
rt2500pci_write_beacon(struct queue_entry * entry,struct txentry_desc * txdesc)1317 static void rt2500pci_write_beacon(struct queue_entry *entry,
1318 struct txentry_desc *txdesc)
1319 {
1320 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1321 u32 reg;
1322
1323 /*
1324 * Disable beaconing while we are reloading the beacon data,
1325 * otherwise we might be sending out invalid data.
1326 */
1327 reg = rt2x00mmio_register_read(rt2x00dev, CSR14);
1328 rt2x00_set_field32(®, CSR14_BEACON_GEN, 0);
1329 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1330
1331 if (rt2x00queue_map_txskb(entry)) {
1332 rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
1333 goto out;
1334 }
1335
1336 /*
1337 * Write the TX descriptor for the beacon.
1338 */
1339 rt2500pci_write_tx_desc(entry, txdesc);
1340
1341 /*
1342 * Dump beacon to userspace through debugfs.
1343 */
1344 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1345 out:
1346 /*
1347 * Enable beaconing again.
1348 */
1349 rt2x00_set_field32(®, CSR14_BEACON_GEN, 1);
1350 rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1351 }
1352
1353 /*
1354 * RX control handlers
1355 */
rt2500pci_fill_rxdone(struct queue_entry * entry,struct rxdone_entry_desc * rxdesc)1356 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1357 struct rxdone_entry_desc *rxdesc)
1358 {
1359 struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1360 u32 word0;
1361 u32 word2;
1362
1363 word0 = rt2x00_desc_read(entry_priv->desc, 0);
1364 word2 = rt2x00_desc_read(entry_priv->desc, 2);
1365
1366 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1367 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1368 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1369 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1370
1371 /*
1372 * Obtain the status about this packet.
1373 * When frame was received with an OFDM bitrate,
1374 * the signal is the PLCP value. If it was received with
1375 * a CCK bitrate the signal is the rate in 100kbit/s.
1376 */
1377 rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1378 rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1379 entry->queue->rt2x00dev->rssi_offset;
1380 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1381
1382 if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1383 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1384 else
1385 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1386 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1387 rxdesc->dev_flags |= RXDONE_MY_BSS;
1388 }
1389
1390 /*
1391 * Interrupt functions.
1392 */
rt2500pci_txdone(struct rt2x00_dev * rt2x00dev,const enum data_queue_qid queue_idx)1393 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1394 const enum data_queue_qid queue_idx)
1395 {
1396 struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1397 struct queue_entry_priv_mmio *entry_priv;
1398 struct queue_entry *entry;
1399 struct txdone_entry_desc txdesc;
1400 u32 word;
1401
1402 while (!rt2x00queue_empty(queue)) {
1403 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1404 entry_priv = entry->priv_data;
1405 word = rt2x00_desc_read(entry_priv->desc, 0);
1406
1407 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1408 !rt2x00_get_field32(word, TXD_W0_VALID))
1409 break;
1410
1411 /*
1412 * Obtain the status about this packet.
1413 */
1414 txdesc.flags = 0;
1415 switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1416 case 0: /* Success */
1417 case 1: /* Success with retry */
1418 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1419 break;
1420 case 2: /* Failure, excessive retries */
1421 __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1422 fallthrough; /* this is a failed frame! */
1423 default: /* Failure */
1424 __set_bit(TXDONE_FAILURE, &txdesc.flags);
1425 }
1426 txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1427
1428 rt2x00lib_txdone(entry, &txdesc);
1429 }
1430 }
1431
rt2500pci_enable_interrupt(struct rt2x00_dev * rt2x00dev,struct rt2x00_field32 irq_field)1432 static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1433 struct rt2x00_field32 irq_field)
1434 {
1435 u32 reg;
1436
1437 /*
1438 * Enable a single interrupt. The interrupt mask register
1439 * access needs locking.
1440 */
1441 spin_lock_irq(&rt2x00dev->irqmask_lock);
1442
1443 reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1444 rt2x00_set_field32(®, irq_field, 0);
1445 rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1446
1447 spin_unlock_irq(&rt2x00dev->irqmask_lock);
1448 }
1449
rt2500pci_txstatus_tasklet(struct tasklet_struct * t)1450 static void rt2500pci_txstatus_tasklet(struct tasklet_struct *t)
1451 {
1452 struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
1453 txstatus_tasklet);
1454 u32 reg;
1455
1456 /*
1457 * Handle all tx queues.
1458 */
1459 rt2500pci_txdone(rt2x00dev, QID_ATIM);
1460 rt2500pci_txdone(rt2x00dev, QID_AC_VO);
1461 rt2500pci_txdone(rt2x00dev, QID_AC_VI);
1462
1463 /*
1464 * Enable all TXDONE interrupts again.
1465 */
1466 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
1467 spin_lock_irq(&rt2x00dev->irqmask_lock);
1468
1469 reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1470 rt2x00_set_field32(®, CSR8_TXDONE_TXRING, 0);
1471 rt2x00_set_field32(®, CSR8_TXDONE_ATIMRING, 0);
1472 rt2x00_set_field32(®, CSR8_TXDONE_PRIORING, 0);
1473 rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1474
1475 spin_unlock_irq(&rt2x00dev->irqmask_lock);
1476 }
1477 }
1478
rt2500pci_tbtt_tasklet(struct tasklet_struct * t)1479 static void rt2500pci_tbtt_tasklet(struct tasklet_struct *t)
1480 {
1481 struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, tbtt_tasklet);
1482 rt2x00lib_beacondone(rt2x00dev);
1483 if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1484 rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1485 }
1486
rt2500pci_rxdone_tasklet(struct tasklet_struct * t)1487 static void rt2500pci_rxdone_tasklet(struct tasklet_struct *t)
1488 {
1489 struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t,
1490 rxdone_tasklet);
1491 if (rt2x00mmio_rxdone(rt2x00dev))
1492 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1493 else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1494 rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1495 }
1496
rt2500pci_interrupt(int irq,void * dev_instance)1497 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1498 {
1499 struct rt2x00_dev *rt2x00dev = dev_instance;
1500 u32 reg, mask;
1501
1502 /*
1503 * Get the interrupt sources & saved to local variable.
1504 * Write register value back to clear pending interrupts.
1505 */
1506 reg = rt2x00mmio_register_read(rt2x00dev, CSR7);
1507 rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1508
1509 if (!reg)
1510 return IRQ_NONE;
1511
1512 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1513 return IRQ_HANDLED;
1514
1515 mask = reg;
1516
1517 /*
1518 * Schedule tasklets for interrupt handling.
1519 */
1520 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1521 tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1522
1523 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1524 tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1525
1526 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1527 rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1528 rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1529 tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1530 /*
1531 * Mask out all txdone interrupts.
1532 */
1533 rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1534 rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1535 rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1536 }
1537
1538 /*
1539 * Disable all interrupts for which a tasklet was scheduled right now,
1540 * the tasklet will reenable the appropriate interrupts.
1541 */
1542 spin_lock(&rt2x00dev->irqmask_lock);
1543
1544 reg = rt2x00mmio_register_read(rt2x00dev, CSR8);
1545 reg |= mask;
1546 rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1547
1548 spin_unlock(&rt2x00dev->irqmask_lock);
1549
1550 return IRQ_HANDLED;
1551 }
1552
1553 /*
1554 * Device probe functions.
1555 */
rt2500pci_validate_eeprom(struct rt2x00_dev * rt2x00dev)1556 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1557 {
1558 struct eeprom_93cx6 eeprom;
1559 u32 reg;
1560 u16 word;
1561 u8 *mac;
1562
1563 reg = rt2x00mmio_register_read(rt2x00dev, CSR21);
1564
1565 eeprom.data = rt2x00dev;
1566 eeprom.register_read = rt2500pci_eepromregister_read;
1567 eeprom.register_write = rt2500pci_eepromregister_write;
1568 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1569 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1570 eeprom.reg_data_in = 0;
1571 eeprom.reg_data_out = 0;
1572 eeprom.reg_data_clock = 0;
1573 eeprom.reg_chip_select = 0;
1574
1575 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1576 EEPROM_SIZE / sizeof(u16));
1577
1578 /*
1579 * Start validation of the data that has been read.
1580 */
1581 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1582 rt2x00lib_set_mac_address(rt2x00dev, mac);
1583
1584 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1585 if (word == 0xffff) {
1586 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1587 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1588 ANTENNA_SW_DIVERSITY);
1589 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1590 ANTENNA_SW_DIVERSITY);
1591 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1592 LED_MODE_DEFAULT);
1593 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1594 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1595 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1596 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1597 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1598 }
1599
1600 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
1601 if (word == 0xffff) {
1602 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1603 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1604 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1605 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1606 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1607 }
1608
1609 word = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1610 if (word == 0xffff) {
1611 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1612 DEFAULT_RSSI_OFFSET);
1613 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1614 rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1615 word);
1616 }
1617
1618 return 0;
1619 }
1620
rt2500pci_init_eeprom(struct rt2x00_dev * rt2x00dev)1621 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1622 {
1623 u32 reg;
1624 u16 value;
1625 u16 eeprom;
1626
1627 /*
1628 * Read EEPROM word for configuration.
1629 */
1630 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA);
1631
1632 /*
1633 * Identify RF chipset.
1634 */
1635 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1636 reg = rt2x00mmio_register_read(rt2x00dev, CSR0);
1637 rt2x00_set_chip(rt2x00dev, RT2560, value,
1638 rt2x00_get_field32(reg, CSR0_REVISION));
1639
1640 if (!rt2x00_rf(rt2x00dev, RF2522) &&
1641 !rt2x00_rf(rt2x00dev, RF2523) &&
1642 !rt2x00_rf(rt2x00dev, RF2524) &&
1643 !rt2x00_rf(rt2x00dev, RF2525) &&
1644 !rt2x00_rf(rt2x00dev, RF2525E) &&
1645 !rt2x00_rf(rt2x00dev, RF5222)) {
1646 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1647 return -ENODEV;
1648 }
1649
1650 /*
1651 * Identify default antenna configuration.
1652 */
1653 rt2x00dev->default_ant.tx =
1654 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1655 rt2x00dev->default_ant.rx =
1656 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1657
1658 /*
1659 * Store led mode, for correct led behaviour.
1660 */
1661 #ifdef CONFIG_RT2X00_LIB_LEDS
1662 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1663
1664 rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1665 if (value == LED_MODE_TXRX_ACTIVITY ||
1666 value == LED_MODE_DEFAULT ||
1667 value == LED_MODE_ASUS)
1668 rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1669 LED_TYPE_ACTIVITY);
1670 #endif /* CONFIG_RT2X00_LIB_LEDS */
1671
1672 /*
1673 * Detect if this device has an hardware controlled radio.
1674 */
1675 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) {
1676 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1677 /*
1678 * On this device RFKILL initialized during probe does not work.
1679 */
1680 __set_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags);
1681 }
1682
1683 /*
1684 * Check if the BBP tuning should be enabled.
1685 */
1686 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC);
1687 if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1688 __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1689
1690 /*
1691 * Read the RSSI <-> dBm offset information.
1692 */
1693 eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET);
1694 rt2x00dev->rssi_offset =
1695 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1696
1697 return 0;
1698 }
1699
1700 /*
1701 * RF value list for RF2522
1702 * Supports: 2.4 GHz
1703 */
1704 static const struct rf_channel rf_vals_bg_2522[] = {
1705 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1706 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1707 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1708 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1709 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1710 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1711 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1712 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1713 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1714 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1715 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1716 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1717 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1718 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1719 };
1720
1721 /*
1722 * RF value list for RF2523
1723 * Supports: 2.4 GHz
1724 */
1725 static const struct rf_channel rf_vals_bg_2523[] = {
1726 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1727 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1728 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1729 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1730 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1731 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1732 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1733 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1734 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1735 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1736 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1737 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1738 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1739 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1740 };
1741
1742 /*
1743 * RF value list for RF2524
1744 * Supports: 2.4 GHz
1745 */
1746 static const struct rf_channel rf_vals_bg_2524[] = {
1747 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1748 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1749 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1750 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1751 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1752 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1753 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1754 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1755 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1756 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1757 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1758 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1759 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1760 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1761 };
1762
1763 /*
1764 * RF value list for RF2525
1765 * Supports: 2.4 GHz
1766 */
1767 static const struct rf_channel rf_vals_bg_2525[] = {
1768 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1769 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1770 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1771 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1772 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1773 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1774 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1775 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1776 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1777 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1778 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1779 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1780 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1781 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1782 };
1783
1784 /*
1785 * RF value list for RF2525e
1786 * Supports: 2.4 GHz
1787 */
1788 static const struct rf_channel rf_vals_bg_2525e[] = {
1789 { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1790 { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1791 { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1792 { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1793 { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1794 { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1795 { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1796 { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1797 { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1798 { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1799 { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1800 { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1801 { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1802 { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1803 };
1804
1805 /*
1806 * RF value list for RF5222
1807 * Supports: 2.4 GHz & 5.2 GHz
1808 */
1809 static const struct rf_channel rf_vals_5222[] = {
1810 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1811 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1812 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1813 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1814 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1815 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1816 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1817 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1818 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1819 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1820 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1821 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1822 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1823 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1824
1825 /* 802.11 UNI / HyperLan 2 */
1826 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1827 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1828 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1829 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1830 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1831 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1832 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1833 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1834
1835 /* 802.11 HyperLan 2 */
1836 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1837 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1838 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1839 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1840 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1841 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1842 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1843 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1844 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1845 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1846
1847 /* 802.11 UNII */
1848 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1849 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1850 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1851 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1852 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1853 };
1854
rt2500pci_probe_hw_mode(struct rt2x00_dev * rt2x00dev)1855 static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1856 {
1857 struct hw_mode_spec *spec = &rt2x00dev->spec;
1858 struct channel_info *info;
1859 u8 *tx_power;
1860 unsigned int i;
1861
1862 /*
1863 * Initialize all hw fields.
1864 */
1865 ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1866 ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1867 ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
1868 ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1869
1870 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1871 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1872 rt2x00_eeprom_addr(rt2x00dev,
1873 EEPROM_MAC_ADDR_0));
1874
1875 /*
1876 * Disable powersaving as default.
1877 */
1878 rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1879
1880 /*
1881 * Initialize hw_mode information.
1882 */
1883 spec->supported_bands = SUPPORT_BAND_2GHZ;
1884 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1885
1886 if (rt2x00_rf(rt2x00dev, RF2522)) {
1887 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1888 spec->channels = rf_vals_bg_2522;
1889 } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1890 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1891 spec->channels = rf_vals_bg_2523;
1892 } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1893 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1894 spec->channels = rf_vals_bg_2524;
1895 } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1896 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1897 spec->channels = rf_vals_bg_2525;
1898 } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1899 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1900 spec->channels = rf_vals_bg_2525e;
1901 } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1902 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1903 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1904 spec->channels = rf_vals_5222;
1905 }
1906
1907 /*
1908 * Create channel information array
1909 */
1910 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1911 if (!info)
1912 return -ENOMEM;
1913
1914 spec->channels_info = info;
1915
1916 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1917 for (i = 0; i < 14; i++) {
1918 info[i].max_power = MAX_TXPOWER;
1919 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1920 }
1921
1922 if (spec->num_channels > 14) {
1923 for (i = 14; i < spec->num_channels; i++) {
1924 info[i].max_power = MAX_TXPOWER;
1925 info[i].default_power1 = DEFAULT_TXPOWER;
1926 }
1927 }
1928
1929 return 0;
1930 }
1931
rt2500pci_probe_hw(struct rt2x00_dev * rt2x00dev)1932 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1933 {
1934 int retval;
1935 u32 reg;
1936
1937 /*
1938 * Allocate eeprom data.
1939 */
1940 retval = rt2500pci_validate_eeprom(rt2x00dev);
1941 if (retval)
1942 return retval;
1943
1944 retval = rt2500pci_init_eeprom(rt2x00dev);
1945 if (retval)
1946 return retval;
1947
1948 /*
1949 * Enable rfkill polling by setting GPIO direction of the
1950 * rfkill switch GPIO pin correctly.
1951 */
1952 reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR);
1953 rt2x00_set_field32(®, GPIOCSR_DIR0, 1);
1954 rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
1955
1956 /*
1957 * Initialize hw specifications.
1958 */
1959 retval = rt2500pci_probe_hw_mode(rt2x00dev);
1960 if (retval)
1961 return retval;
1962
1963 /*
1964 * This device requires the atim queue and DMA-mapped skbs.
1965 */
1966 __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1967 __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1968 __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1969
1970 /*
1971 * Set the rssi offset.
1972 */
1973 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1974
1975 return 0;
1976 }
1977
1978 /*
1979 * IEEE80211 stack callback functions.
1980 */
rt2500pci_get_tsf(struct ieee80211_hw * hw,struct ieee80211_vif * vif)1981 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw,
1982 struct ieee80211_vif *vif)
1983 {
1984 struct rt2x00_dev *rt2x00dev = hw->priv;
1985 u64 tsf;
1986 u32 reg;
1987
1988 reg = rt2x00mmio_register_read(rt2x00dev, CSR17);
1989 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1990 reg = rt2x00mmio_register_read(rt2x00dev, CSR16);
1991 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1992
1993 return tsf;
1994 }
1995
rt2500pci_tx_last_beacon(struct ieee80211_hw * hw)1996 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1997 {
1998 struct rt2x00_dev *rt2x00dev = hw->priv;
1999 u32 reg;
2000
2001 reg = rt2x00mmio_register_read(rt2x00dev, CSR15);
2002 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
2003 }
2004
2005 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
2006 .tx = rt2x00mac_tx,
2007 .wake_tx_queue = ieee80211_handle_wake_tx_queue,
2008 .start = rt2x00mac_start,
2009 .stop = rt2x00mac_stop,
2010 .add_interface = rt2x00mac_add_interface,
2011 .remove_interface = rt2x00mac_remove_interface,
2012 .config = rt2x00mac_config,
2013 .configure_filter = rt2x00mac_configure_filter,
2014 .sw_scan_start = rt2x00mac_sw_scan_start,
2015 .sw_scan_complete = rt2x00mac_sw_scan_complete,
2016 .get_stats = rt2x00mac_get_stats,
2017 .bss_info_changed = rt2x00mac_bss_info_changed,
2018 .conf_tx = rt2x00mac_conf_tx,
2019 .get_tsf = rt2500pci_get_tsf,
2020 .tx_last_beacon = rt2500pci_tx_last_beacon,
2021 .rfkill_poll = rt2x00mac_rfkill_poll,
2022 .flush = rt2x00mac_flush,
2023 .set_antenna = rt2x00mac_set_antenna,
2024 .get_antenna = rt2x00mac_get_antenna,
2025 .get_ringparam = rt2x00mac_get_ringparam,
2026 .tx_frames_pending = rt2x00mac_tx_frames_pending,
2027 };
2028
2029 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
2030 .irq_handler = rt2500pci_interrupt,
2031 .txstatus_tasklet = rt2500pci_txstatus_tasklet,
2032 .tbtt_tasklet = rt2500pci_tbtt_tasklet,
2033 .rxdone_tasklet = rt2500pci_rxdone_tasklet,
2034 .probe_hw = rt2500pci_probe_hw,
2035 .initialize = rt2x00mmio_initialize,
2036 .uninitialize = rt2x00mmio_uninitialize,
2037 .get_entry_state = rt2500pci_get_entry_state,
2038 .clear_entry = rt2500pci_clear_entry,
2039 .set_device_state = rt2500pci_set_device_state,
2040 .rfkill_poll = rt2500pci_rfkill_poll,
2041 .link_stats = rt2500pci_link_stats,
2042 .reset_tuner = rt2500pci_reset_tuner,
2043 .link_tuner = rt2500pci_link_tuner,
2044 .start_queue = rt2500pci_start_queue,
2045 .kick_queue = rt2500pci_kick_queue,
2046 .stop_queue = rt2500pci_stop_queue,
2047 .flush_queue = rt2x00mmio_flush_queue,
2048 .write_tx_desc = rt2500pci_write_tx_desc,
2049 .write_beacon = rt2500pci_write_beacon,
2050 .fill_rxdone = rt2500pci_fill_rxdone,
2051 .config_filter = rt2500pci_config_filter,
2052 .config_intf = rt2500pci_config_intf,
2053 .config_erp = rt2500pci_config_erp,
2054 .config_ant = rt2500pci_config_ant,
2055 .config = rt2500pci_config,
2056 };
2057
rt2500pci_queue_init(struct data_queue * queue)2058 static void rt2500pci_queue_init(struct data_queue *queue)
2059 {
2060 switch (queue->qid) {
2061 case QID_RX:
2062 queue->limit = 32;
2063 queue->data_size = DATA_FRAME_SIZE;
2064 queue->desc_size = RXD_DESC_SIZE;
2065 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2066 break;
2067
2068 case QID_AC_VO:
2069 case QID_AC_VI:
2070 case QID_AC_BE:
2071 case QID_AC_BK:
2072 queue->limit = 32;
2073 queue->data_size = DATA_FRAME_SIZE;
2074 queue->desc_size = TXD_DESC_SIZE;
2075 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2076 break;
2077
2078 case QID_BEACON:
2079 queue->limit = 1;
2080 queue->data_size = MGMT_FRAME_SIZE;
2081 queue->desc_size = TXD_DESC_SIZE;
2082 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2083 break;
2084
2085 case QID_ATIM:
2086 queue->limit = 8;
2087 queue->data_size = DATA_FRAME_SIZE;
2088 queue->desc_size = TXD_DESC_SIZE;
2089 queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2090 break;
2091
2092 default:
2093 BUG();
2094 break;
2095 }
2096 }
2097
2098 static const struct rt2x00_ops rt2500pci_ops = {
2099 .name = KBUILD_MODNAME,
2100 .max_ap_intf = 1,
2101 .eeprom_size = EEPROM_SIZE,
2102 .rf_size = RF_SIZE,
2103 .tx_queues = NUM_TX_QUEUES,
2104 .queue_init = rt2500pci_queue_init,
2105 .lib = &rt2500pci_rt2x00_ops,
2106 .hw = &rt2500pci_mac80211_ops,
2107 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2108 .debugfs = &rt2500pci_rt2x00debug,
2109 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2110 };
2111
2112 /*
2113 * RT2500pci module information.
2114 */
2115 static const struct pci_device_id rt2500pci_device_table[] = {
2116 { PCI_DEVICE(0x1814, 0x0201) },
2117 { 0, }
2118 };
2119
2120 MODULE_AUTHOR(DRV_PROJECT);
2121 MODULE_VERSION(DRV_VERSION);
2122 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
2123 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
2124 MODULE_LICENSE("GPL");
2125
rt2500pci_probe(struct pci_dev * pci_dev,const struct pci_device_id * id)2126 static int rt2500pci_probe(struct pci_dev *pci_dev,
2127 const struct pci_device_id *id)
2128 {
2129 return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
2130 }
2131
2132 static struct pci_driver rt2500pci_driver = {
2133 .name = KBUILD_MODNAME,
2134 .id_table = rt2500pci_device_table,
2135 .probe = rt2500pci_probe,
2136 .remove = rt2x00pci_remove,
2137 .driver.pm = &rt2x00pci_pm_ops,
2138 };
2139
2140 module_pci_driver(rt2500pci_driver);
2141