1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Scheduler internal types and methods:
4 */
5 #ifndef _KERNEL_SCHED_SCHED_H
6 #define _KERNEL_SCHED_SCHED_H
7
8 #include <linux/sched/affinity.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/deadline.h>
12 #include <linux/sched.h>
13 #include <linux/sched/loadavg.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/rseq_api.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/smt.h>
18 #include <linux/sched/stat.h>
19 #include <linux/sched/sysctl.h>
20 #include <linux/sched/task_flags.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/topology.h>
23
24 #include <linux/atomic.h>
25 #include <linux/bitmap.h>
26 #include <linux/bug.h>
27 #include <linux/capability.h>
28 #include <linux/cgroup_api.h>
29 #include <linux/cgroup.h>
30 #include <linux/context_tracking.h>
31 #include <linux/cpufreq.h>
32 #include <linux/cpumask_api.h>
33 #include <linux/ctype.h>
34 #include <linux/file.h>
35 #include <linux/fs_api.h>
36 #include <linux/hrtimer_api.h>
37 #include <linux/interrupt.h>
38 #include <linux/irq_work.h>
39 #include <linux/jiffies.h>
40 #include <linux/kref_api.h>
41 #include <linux/kthread.h>
42 #include <linux/ktime_api.h>
43 #include <linux/lockdep_api.h>
44 #include <linux/lockdep.h>
45 #include <linux/minmax.h>
46 #include <linux/mm.h>
47 #include <linux/module.h>
48 #include <linux/mutex_api.h>
49 #include <linux/plist.h>
50 #include <linux/poll.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/psi.h>
54 #include <linux/rcupdate.h>
55 #include <linux/seq_file.h>
56 #include <linux/seqlock.h>
57 #include <linux/softirq.h>
58 #include <linux/spinlock_api.h>
59 #include <linux/static_key.h>
60 #include <linux/stop_machine.h>
61 #include <linux/syscalls_api.h>
62 #include <linux/syscalls.h>
63 #include <linux/tick.h>
64 #include <linux/topology.h>
65 #include <linux/types.h>
66 #include <linux/u64_stats_sync_api.h>
67 #include <linux/uaccess.h>
68 #include <linux/wait_api.h>
69 #include <linux/wait_bit.h>
70 #include <linux/workqueue_api.h>
71
72 #include <trace/events/power.h>
73 #include <trace/events/sched.h>
74
75 #include "../workqueue_internal.h"
76
77 #ifdef CONFIG_CGROUP_SCHED
78 #include <linux/cgroup.h>
79 #include <linux/psi.h>
80 #endif
81
82 #ifdef CONFIG_SCHED_DEBUG
83 # include <linux/static_key.h>
84 #endif
85
86 #ifdef CONFIG_PARAVIRT
87 # include <asm/paravirt.h>
88 # include <asm/paravirt_api_clock.h>
89 #endif
90
91 #include <asm/barrier.h>
92
93 #include "cpupri.h"
94 #include "cpudeadline.h"
95
96 #ifdef CONFIG_SCHED_DEBUG
97 # define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
98 #else
99 # define SCHED_WARN_ON(x) ({ (void)(x), 0; })
100 #endif
101
102 struct rq;
103 struct cpuidle_state;
104
105 /* task_struct::on_rq states: */
106 #define TASK_ON_RQ_QUEUED 1
107 #define TASK_ON_RQ_MIGRATING 2
108
109 extern __read_mostly int scheduler_running;
110
111 extern unsigned long calc_load_update;
112 extern atomic_long_t calc_load_tasks;
113
114 extern unsigned int sysctl_sched_child_runs_first;
115
116 extern void calc_global_load_tick(struct rq *this_rq);
117 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
118
119 extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
120
121 extern unsigned int sysctl_sched_rt_period;
122 extern int sysctl_sched_rt_runtime;
123 extern int sched_rr_timeslice;
124
125 /*
126 * Helpers for converting nanosecond timing to jiffy resolution
127 */
128 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
129
130 /*
131 * Increase resolution of nice-level calculations for 64-bit architectures.
132 * The extra resolution improves shares distribution and load balancing of
133 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
134 * hierarchies, especially on larger systems. This is not a user-visible change
135 * and does not change the user-interface for setting shares/weights.
136 *
137 * We increase resolution only if we have enough bits to allow this increased
138 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
139 * are pretty high and the returns do not justify the increased costs.
140 *
141 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
142 * increase coverage and consistency always enable it on 64-bit platforms.
143 */
144 #ifdef CONFIG_64BIT
145 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
146 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
147 # define scale_load_down(w) \
148 ({ \
149 unsigned long __w = (w); \
150 if (__w) \
151 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
152 __w; \
153 })
154 #else
155 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
156 # define scale_load(w) (w)
157 # define scale_load_down(w) (w)
158 #endif
159
160 /*
161 * Task weight (visible to users) and its load (invisible to users) have
162 * independent resolution, but they should be well calibrated. We use
163 * scale_load() and scale_load_down(w) to convert between them. The
164 * following must be true:
165 *
166 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
167 *
168 */
169 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
170
171 /*
172 * Single value that decides SCHED_DEADLINE internal math precision.
173 * 10 -> just above 1us
174 * 9 -> just above 0.5us
175 */
176 #define DL_SCALE 10
177
178 /*
179 * Single value that denotes runtime == period, ie unlimited time.
180 */
181 #define RUNTIME_INF ((u64)~0ULL)
182
idle_policy(int policy)183 static inline int idle_policy(int policy)
184 {
185 return policy == SCHED_IDLE;
186 }
fair_policy(int policy)187 static inline int fair_policy(int policy)
188 {
189 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
190 }
191
rt_policy(int policy)192 static inline int rt_policy(int policy)
193 {
194 return policy == SCHED_FIFO || policy == SCHED_RR;
195 }
196
dl_policy(int policy)197 static inline int dl_policy(int policy)
198 {
199 return policy == SCHED_DEADLINE;
200 }
valid_policy(int policy)201 static inline bool valid_policy(int policy)
202 {
203 return idle_policy(policy) || fair_policy(policy) ||
204 rt_policy(policy) || dl_policy(policy);
205 }
206
task_has_idle_policy(struct task_struct * p)207 static inline int task_has_idle_policy(struct task_struct *p)
208 {
209 return idle_policy(p->policy);
210 }
211
task_has_rt_policy(struct task_struct * p)212 static inline int task_has_rt_policy(struct task_struct *p)
213 {
214 return rt_policy(p->policy);
215 }
216
task_has_dl_policy(struct task_struct * p)217 static inline int task_has_dl_policy(struct task_struct *p)
218 {
219 return dl_policy(p->policy);
220 }
221
222 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
223
update_avg(u64 * avg,u64 sample)224 static inline void update_avg(u64 *avg, u64 sample)
225 {
226 s64 diff = sample - *avg;
227 *avg += diff / 8;
228 }
229
230 /*
231 * Shifting a value by an exponent greater *or equal* to the size of said value
232 * is UB; cap at size-1.
233 */
234 #define shr_bound(val, shift) \
235 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
236
237 /*
238 * !! For sched_setattr_nocheck() (kernel) only !!
239 *
240 * This is actually gross. :(
241 *
242 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
243 * tasks, but still be able to sleep. We need this on platforms that cannot
244 * atomically change clock frequency. Remove once fast switching will be
245 * available on such platforms.
246 *
247 * SUGOV stands for SchedUtil GOVernor.
248 */
249 #define SCHED_FLAG_SUGOV 0x10000000
250
251 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
252
dl_entity_is_special(const struct sched_dl_entity * dl_se)253 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
254 {
255 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
256 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
257 #else
258 return false;
259 #endif
260 }
261
262 /*
263 * Tells if entity @a should preempt entity @b.
264 */
dl_entity_preempt(const struct sched_dl_entity * a,const struct sched_dl_entity * b)265 static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
266 const struct sched_dl_entity *b)
267 {
268 return dl_entity_is_special(a) ||
269 dl_time_before(a->deadline, b->deadline);
270 }
271
272 /*
273 * This is the priority-queue data structure of the RT scheduling class:
274 */
275 struct rt_prio_array {
276 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
277 struct list_head queue[MAX_RT_PRIO];
278 };
279
280 struct rt_bandwidth {
281 /* nests inside the rq lock: */
282 raw_spinlock_t rt_runtime_lock;
283 ktime_t rt_period;
284 u64 rt_runtime;
285 struct hrtimer rt_period_timer;
286 unsigned int rt_period_active;
287 };
288
dl_bandwidth_enabled(void)289 static inline int dl_bandwidth_enabled(void)
290 {
291 return sysctl_sched_rt_runtime >= 0;
292 }
293
294 /*
295 * To keep the bandwidth of -deadline tasks under control
296 * we need some place where:
297 * - store the maximum -deadline bandwidth of each cpu;
298 * - cache the fraction of bandwidth that is currently allocated in
299 * each root domain;
300 *
301 * This is all done in the data structure below. It is similar to the
302 * one used for RT-throttling (rt_bandwidth), with the main difference
303 * that, since here we are only interested in admission control, we
304 * do not decrease any runtime while the group "executes", neither we
305 * need a timer to replenish it.
306 *
307 * With respect to SMP, bandwidth is given on a per root domain basis,
308 * meaning that:
309 * - bw (< 100%) is the deadline bandwidth of each CPU;
310 * - total_bw is the currently allocated bandwidth in each root domain;
311 */
312 struct dl_bw {
313 raw_spinlock_t lock;
314 u64 bw;
315 u64 total_bw;
316 };
317
318 extern void init_dl_bw(struct dl_bw *dl_b);
319 extern int sched_dl_global_validate(void);
320 extern void sched_dl_do_global(void);
321 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
322 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
323 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
324 extern bool __checkparam_dl(const struct sched_attr *attr);
325 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
326 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
327 extern int dl_bw_check_overflow(int cpu);
328
329 #ifdef CONFIG_CGROUP_SCHED
330
331 struct cfs_rq;
332 struct rt_rq;
333
334 extern struct list_head task_groups;
335
336 struct cfs_bandwidth {
337 #ifdef CONFIG_CFS_BANDWIDTH
338 raw_spinlock_t lock;
339 ktime_t period;
340 u64 quota;
341 u64 runtime;
342 u64 burst;
343 u64 runtime_snap;
344 s64 hierarchical_quota;
345
346 u8 idle;
347 u8 period_active;
348 u8 slack_started;
349 struct hrtimer period_timer;
350 struct hrtimer slack_timer;
351 struct list_head throttled_cfs_rq;
352
353 /* Statistics: */
354 int nr_periods;
355 int nr_throttled;
356 int nr_burst;
357 u64 throttled_time;
358 u64 burst_time;
359 #endif
360 };
361
362 /* Task group related information */
363 struct task_group {
364 struct cgroup_subsys_state css;
365
366 #ifdef CONFIG_FAIR_GROUP_SCHED
367 /* schedulable entities of this group on each CPU */
368 struct sched_entity **se;
369 /* runqueue "owned" by this group on each CPU */
370 struct cfs_rq **cfs_rq;
371 unsigned long shares;
372
373 /* A positive value indicates that this is a SCHED_IDLE group. */
374 int idle;
375
376 #ifdef CONFIG_SMP
377 /*
378 * load_avg can be heavily contended at clock tick time, so put
379 * it in its own cacheline separated from the fields above which
380 * will also be accessed at each tick.
381 */
382 atomic_long_t load_avg ____cacheline_aligned;
383 #endif
384 #endif
385
386 #ifdef CONFIG_RT_GROUP_SCHED
387 struct sched_rt_entity **rt_se;
388 struct rt_rq **rt_rq;
389
390 struct rt_bandwidth rt_bandwidth;
391 #endif
392
393 struct rcu_head rcu;
394 struct list_head list;
395
396 struct task_group *parent;
397 struct list_head siblings;
398 struct list_head children;
399
400 #ifdef CONFIG_SCHED_AUTOGROUP
401 struct autogroup *autogroup;
402 #endif
403
404 struct cfs_bandwidth cfs_bandwidth;
405
406 #ifdef CONFIG_UCLAMP_TASK_GROUP
407 /* The two decimal precision [%] value requested from user-space */
408 unsigned int uclamp_pct[UCLAMP_CNT];
409 /* Clamp values requested for a task group */
410 struct uclamp_se uclamp_req[UCLAMP_CNT];
411 /* Effective clamp values used for a task group */
412 struct uclamp_se uclamp[UCLAMP_CNT];
413 #endif
414
415 };
416
417 #ifdef CONFIG_FAIR_GROUP_SCHED
418 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
419
420 /*
421 * A weight of 0 or 1 can cause arithmetics problems.
422 * A weight of a cfs_rq is the sum of weights of which entities
423 * are queued on this cfs_rq, so a weight of a entity should not be
424 * too large, so as the shares value of a task group.
425 * (The default weight is 1024 - so there's no practical
426 * limitation from this.)
427 */
428 #define MIN_SHARES (1UL << 1)
429 #define MAX_SHARES (1UL << 18)
430 #endif
431
432 typedef int (*tg_visitor)(struct task_group *, void *);
433
434 extern int walk_tg_tree_from(struct task_group *from,
435 tg_visitor down, tg_visitor up, void *data);
436
437 /*
438 * Iterate the full tree, calling @down when first entering a node and @up when
439 * leaving it for the final time.
440 *
441 * Caller must hold rcu_lock or sufficient equivalent.
442 */
walk_tg_tree(tg_visitor down,tg_visitor up,void * data)443 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
444 {
445 return walk_tg_tree_from(&root_task_group, down, up, data);
446 }
447
448 extern int tg_nop(struct task_group *tg, void *data);
449
450 extern void free_fair_sched_group(struct task_group *tg);
451 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
452 extern void online_fair_sched_group(struct task_group *tg);
453 extern void unregister_fair_sched_group(struct task_group *tg);
454 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
455 struct sched_entity *se, int cpu,
456 struct sched_entity *parent);
457 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent);
458
459 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
460 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
461 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
462 extern bool cfs_task_bw_constrained(struct task_struct *p);
463
464 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
465 struct sched_rt_entity *rt_se, int cpu,
466 struct sched_rt_entity *parent);
467 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
468 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
469 extern long sched_group_rt_runtime(struct task_group *tg);
470 extern long sched_group_rt_period(struct task_group *tg);
471 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
472
473 extern struct task_group *sched_create_group(struct task_group *parent);
474 extern void sched_online_group(struct task_group *tg,
475 struct task_group *parent);
476 extern void sched_destroy_group(struct task_group *tg);
477 extern void sched_release_group(struct task_group *tg);
478
479 extern void sched_move_task(struct task_struct *tsk);
480
481 #ifdef CONFIG_FAIR_GROUP_SCHED
482 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
483
484 extern int sched_group_set_idle(struct task_group *tg, long idle);
485
486 #ifdef CONFIG_SMP
487 extern void set_task_rq_fair(struct sched_entity *se,
488 struct cfs_rq *prev, struct cfs_rq *next);
489 #else /* !CONFIG_SMP */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)490 static inline void set_task_rq_fair(struct sched_entity *se,
491 struct cfs_rq *prev, struct cfs_rq *next) { }
492 #endif /* CONFIG_SMP */
493 #endif /* CONFIG_FAIR_GROUP_SCHED */
494
495 #else /* CONFIG_CGROUP_SCHED */
496
497 struct cfs_bandwidth { };
cfs_task_bw_constrained(struct task_struct * p)498 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; }
499
500 #endif /* CONFIG_CGROUP_SCHED */
501
502 extern void unregister_rt_sched_group(struct task_group *tg);
503 extern void free_rt_sched_group(struct task_group *tg);
504 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
505
506 /*
507 * u64_u32_load/u64_u32_store
508 *
509 * Use a copy of a u64 value to protect against data race. This is only
510 * applicable for 32-bits architectures.
511 */
512 #ifdef CONFIG_64BIT
513 # define u64_u32_load_copy(var, copy) var
514 # define u64_u32_store_copy(var, copy, val) (var = val)
515 #else
516 # define u64_u32_load_copy(var, copy) \
517 ({ \
518 u64 __val, __val_copy; \
519 do { \
520 __val_copy = copy; \
521 /* \
522 * paired with u64_u32_store_copy(), ordering access \
523 * to var and copy. \
524 */ \
525 smp_rmb(); \
526 __val = var; \
527 } while (__val != __val_copy); \
528 __val; \
529 })
530 # define u64_u32_store_copy(var, copy, val) \
531 do { \
532 typeof(val) __val = (val); \
533 var = __val; \
534 /* \
535 * paired with u64_u32_load_copy(), ordering access to var and \
536 * copy. \
537 */ \
538 smp_wmb(); \
539 copy = __val; \
540 } while (0)
541 #endif
542 # define u64_u32_load(var) u64_u32_load_copy(var, var##_copy)
543 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val)
544
545 /* CFS-related fields in a runqueue */
546 struct cfs_rq {
547 struct load_weight load;
548 unsigned int nr_running;
549 unsigned int h_nr_running; /* SCHED_{NORMAL,BATCH,IDLE} */
550 unsigned int idle_nr_running; /* SCHED_IDLE */
551 unsigned int idle_h_nr_running; /* SCHED_IDLE */
552
553 s64 avg_vruntime;
554 u64 avg_load;
555
556 u64 exec_clock;
557 u64 min_vruntime;
558 #ifdef CONFIG_SCHED_CORE
559 unsigned int forceidle_seq;
560 u64 min_vruntime_fi;
561 #endif
562
563 #ifndef CONFIG_64BIT
564 u64 min_vruntime_copy;
565 #endif
566
567 struct rb_root_cached tasks_timeline;
568
569 /*
570 * 'curr' points to currently running entity on this cfs_rq.
571 * It is set to NULL otherwise (i.e when none are currently running).
572 */
573 struct sched_entity *curr;
574 struct sched_entity *next;
575
576 #ifdef CONFIG_SCHED_DEBUG
577 unsigned int nr_spread_over;
578 #endif
579
580 #ifdef CONFIG_SMP
581 /*
582 * CFS load tracking
583 */
584 struct sched_avg avg;
585 #ifndef CONFIG_64BIT
586 u64 last_update_time_copy;
587 #endif
588 struct {
589 raw_spinlock_t lock ____cacheline_aligned;
590 int nr;
591 unsigned long load_avg;
592 unsigned long util_avg;
593 unsigned long runnable_avg;
594 } removed;
595
596 #ifdef CONFIG_FAIR_GROUP_SCHED
597 unsigned long tg_load_avg_contrib;
598 long propagate;
599 long prop_runnable_sum;
600
601 /*
602 * h_load = weight * f(tg)
603 *
604 * Where f(tg) is the recursive weight fraction assigned to
605 * this group.
606 */
607 unsigned long h_load;
608 u64 last_h_load_update;
609 struct sched_entity *h_load_next;
610 #endif /* CONFIG_FAIR_GROUP_SCHED */
611 #endif /* CONFIG_SMP */
612
613 #ifdef CONFIG_FAIR_GROUP_SCHED
614 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
615
616 /*
617 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
618 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
619 * (like users, containers etc.)
620 *
621 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
622 * This list is used during load balance.
623 */
624 int on_list;
625 struct list_head leaf_cfs_rq_list;
626 struct task_group *tg; /* group that "owns" this runqueue */
627
628 /* Locally cached copy of our task_group's idle value */
629 int idle;
630
631 #ifdef CONFIG_CFS_BANDWIDTH
632 int runtime_enabled;
633 s64 runtime_remaining;
634
635 u64 throttled_pelt_idle;
636 #ifndef CONFIG_64BIT
637 u64 throttled_pelt_idle_copy;
638 #endif
639 u64 throttled_clock;
640 u64 throttled_clock_pelt;
641 u64 throttled_clock_pelt_time;
642 u64 throttled_clock_self;
643 u64 throttled_clock_self_time;
644 int throttled;
645 int throttle_count;
646 struct list_head throttled_list;
647 #ifdef CONFIG_SMP
648 struct list_head throttled_csd_list;
649 #endif
650 #endif /* CONFIG_CFS_BANDWIDTH */
651 #endif /* CONFIG_FAIR_GROUP_SCHED */
652 };
653
rt_bandwidth_enabled(void)654 static inline int rt_bandwidth_enabled(void)
655 {
656 return sysctl_sched_rt_runtime >= 0;
657 }
658
659 /* RT IPI pull logic requires IRQ_WORK */
660 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
661 # define HAVE_RT_PUSH_IPI
662 #endif
663
664 /* Real-Time classes' related field in a runqueue: */
665 struct rt_rq {
666 struct rt_prio_array active;
667 unsigned int rt_nr_running;
668 unsigned int rr_nr_running;
669 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
670 struct {
671 int curr; /* highest queued rt task prio */
672 #ifdef CONFIG_SMP
673 int next; /* next highest */
674 #endif
675 } highest_prio;
676 #endif
677 #ifdef CONFIG_SMP
678 unsigned int rt_nr_migratory;
679 unsigned int rt_nr_total;
680 int overloaded;
681 struct plist_head pushable_tasks;
682
683 #endif /* CONFIG_SMP */
684 int rt_queued;
685
686 int rt_throttled;
687 u64 rt_time;
688 u64 rt_runtime;
689 /* Nests inside the rq lock: */
690 raw_spinlock_t rt_runtime_lock;
691
692 #ifdef CONFIG_RT_GROUP_SCHED
693 unsigned int rt_nr_boosted;
694
695 struct rq *rq;
696 struct task_group *tg;
697 #endif
698 };
699
rt_rq_is_runnable(struct rt_rq * rt_rq)700 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
701 {
702 return rt_rq->rt_queued && rt_rq->rt_nr_running;
703 }
704
705 /* Deadline class' related fields in a runqueue */
706 struct dl_rq {
707 /* runqueue is an rbtree, ordered by deadline */
708 struct rb_root_cached root;
709
710 unsigned int dl_nr_running;
711
712 #ifdef CONFIG_SMP
713 /*
714 * Deadline values of the currently executing and the
715 * earliest ready task on this rq. Caching these facilitates
716 * the decision whether or not a ready but not running task
717 * should migrate somewhere else.
718 */
719 struct {
720 u64 curr;
721 u64 next;
722 } earliest_dl;
723
724 unsigned int dl_nr_migratory;
725 int overloaded;
726
727 /*
728 * Tasks on this rq that can be pushed away. They are kept in
729 * an rb-tree, ordered by tasks' deadlines, with caching
730 * of the leftmost (earliest deadline) element.
731 */
732 struct rb_root_cached pushable_dl_tasks_root;
733 #else
734 struct dl_bw dl_bw;
735 #endif
736 /*
737 * "Active utilization" for this runqueue: increased when a
738 * task wakes up (becomes TASK_RUNNING) and decreased when a
739 * task blocks
740 */
741 u64 running_bw;
742
743 /*
744 * Utilization of the tasks "assigned" to this runqueue (including
745 * the tasks that are in runqueue and the tasks that executed on this
746 * CPU and blocked). Increased when a task moves to this runqueue, and
747 * decreased when the task moves away (migrates, changes scheduling
748 * policy, or terminates).
749 * This is needed to compute the "inactive utilization" for the
750 * runqueue (inactive utilization = this_bw - running_bw).
751 */
752 u64 this_bw;
753 u64 extra_bw;
754
755 /*
756 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM
757 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB).
758 */
759 u64 max_bw;
760
761 /*
762 * Inverse of the fraction of CPU utilization that can be reclaimed
763 * by the GRUB algorithm.
764 */
765 u64 bw_ratio;
766 };
767
768 #ifdef CONFIG_FAIR_GROUP_SCHED
769 /* An entity is a task if it doesn't "own" a runqueue */
770 #define entity_is_task(se) (!se->my_q)
771
se_update_runnable(struct sched_entity * se)772 static inline void se_update_runnable(struct sched_entity *se)
773 {
774 if (!entity_is_task(se))
775 se->runnable_weight = se->my_q->h_nr_running;
776 }
777
se_runnable(struct sched_entity * se)778 static inline long se_runnable(struct sched_entity *se)
779 {
780 if (entity_is_task(se))
781 return !!se->on_rq;
782 else
783 return se->runnable_weight;
784 }
785
786 #else
787 #define entity_is_task(se) 1
788
se_update_runnable(struct sched_entity * se)789 static inline void se_update_runnable(struct sched_entity *se) {}
790
se_runnable(struct sched_entity * se)791 static inline long se_runnable(struct sched_entity *se)
792 {
793 return !!se->on_rq;
794 }
795 #endif
796
797 #ifdef CONFIG_SMP
798 /*
799 * XXX we want to get rid of these helpers and use the full load resolution.
800 */
se_weight(struct sched_entity * se)801 static inline long se_weight(struct sched_entity *se)
802 {
803 return scale_load_down(se->load.weight);
804 }
805
806
sched_asym_prefer(int a,int b)807 static inline bool sched_asym_prefer(int a, int b)
808 {
809 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
810 }
811
812 struct perf_domain {
813 struct em_perf_domain *em_pd;
814 struct perf_domain *next;
815 struct rcu_head rcu;
816 };
817
818 /* Scheduling group status flags */
819 #define SG_OVERLOAD 0x1 /* More than one runnable task on a CPU. */
820 #define SG_OVERUTILIZED 0x2 /* One or more CPUs are over-utilized. */
821
822 /*
823 * We add the notion of a root-domain which will be used to define per-domain
824 * variables. Each exclusive cpuset essentially defines an island domain by
825 * fully partitioning the member CPUs from any other cpuset. Whenever a new
826 * exclusive cpuset is created, we also create and attach a new root-domain
827 * object.
828 *
829 */
830 struct root_domain {
831 atomic_t refcount;
832 atomic_t rto_count;
833 struct rcu_head rcu;
834 cpumask_var_t span;
835 cpumask_var_t online;
836
837 /*
838 * Indicate pullable load on at least one CPU, e.g:
839 * - More than one runnable task
840 * - Running task is misfit
841 */
842 int overload;
843
844 /* Indicate one or more cpus over-utilized (tipping point) */
845 int overutilized;
846
847 /*
848 * The bit corresponding to a CPU gets set here if such CPU has more
849 * than one runnable -deadline task (as it is below for RT tasks).
850 */
851 cpumask_var_t dlo_mask;
852 atomic_t dlo_count;
853 struct dl_bw dl_bw;
854 struct cpudl cpudl;
855
856 /*
857 * Indicate whether a root_domain's dl_bw has been checked or
858 * updated. It's monotonously increasing value.
859 *
860 * Also, some corner cases, like 'wrap around' is dangerous, but given
861 * that u64 is 'big enough'. So that shouldn't be a concern.
862 */
863 u64 visit_gen;
864
865 #ifdef HAVE_RT_PUSH_IPI
866 /*
867 * For IPI pull requests, loop across the rto_mask.
868 */
869 struct irq_work rto_push_work;
870 raw_spinlock_t rto_lock;
871 /* These are only updated and read within rto_lock */
872 int rto_loop;
873 int rto_cpu;
874 /* These atomics are updated outside of a lock */
875 atomic_t rto_loop_next;
876 atomic_t rto_loop_start;
877 #endif
878 /*
879 * The "RT overload" flag: it gets set if a CPU has more than
880 * one runnable RT task.
881 */
882 cpumask_var_t rto_mask;
883 struct cpupri cpupri;
884
885 unsigned long max_cpu_capacity;
886
887 /*
888 * NULL-terminated list of performance domains intersecting with the
889 * CPUs of the rd. Protected by RCU.
890 */
891 struct perf_domain __rcu *pd;
892 };
893
894 extern void init_defrootdomain(void);
895 extern int sched_init_domains(const struct cpumask *cpu_map);
896 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
897 extern void sched_get_rd(struct root_domain *rd);
898 extern void sched_put_rd(struct root_domain *rd);
899
900 #ifdef HAVE_RT_PUSH_IPI
901 extern void rto_push_irq_work_func(struct irq_work *work);
902 #endif
903 #endif /* CONFIG_SMP */
904
905 #ifdef CONFIG_UCLAMP_TASK
906 /*
907 * struct uclamp_bucket - Utilization clamp bucket
908 * @value: utilization clamp value for tasks on this clamp bucket
909 * @tasks: number of RUNNABLE tasks on this clamp bucket
910 *
911 * Keep track of how many tasks are RUNNABLE for a given utilization
912 * clamp value.
913 */
914 struct uclamp_bucket {
915 unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
916 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
917 };
918
919 /*
920 * struct uclamp_rq - rq's utilization clamp
921 * @value: currently active clamp values for a rq
922 * @bucket: utilization clamp buckets affecting a rq
923 *
924 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
925 * A clamp value is affecting a rq when there is at least one task RUNNABLE
926 * (or actually running) with that value.
927 *
928 * There are up to UCLAMP_CNT possible different clamp values, currently there
929 * are only two: minimum utilization and maximum utilization.
930 *
931 * All utilization clamping values are MAX aggregated, since:
932 * - for util_min: we want to run the CPU at least at the max of the minimum
933 * utilization required by its currently RUNNABLE tasks.
934 * - for util_max: we want to allow the CPU to run up to the max of the
935 * maximum utilization allowed by its currently RUNNABLE tasks.
936 *
937 * Since on each system we expect only a limited number of different
938 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
939 * the metrics required to compute all the per-rq utilization clamp values.
940 */
941 struct uclamp_rq {
942 unsigned int value;
943 struct uclamp_bucket bucket[UCLAMP_BUCKETS];
944 };
945
946 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
947 #endif /* CONFIG_UCLAMP_TASK */
948
949 struct rq;
950 struct balance_callback {
951 struct balance_callback *next;
952 void (*func)(struct rq *rq);
953 };
954
955 /*
956 * This is the main, per-CPU runqueue data structure.
957 *
958 * Locking rule: those places that want to lock multiple runqueues
959 * (such as the load balancing or the thread migration code), lock
960 * acquire operations must be ordered by ascending &runqueue.
961 */
962 struct rq {
963 /* runqueue lock: */
964 raw_spinlock_t __lock;
965
966 /*
967 * nr_running and cpu_load should be in the same cacheline because
968 * remote CPUs use both these fields when doing load calculation.
969 */
970 unsigned int nr_running;
971 #ifdef CONFIG_NUMA_BALANCING
972 unsigned int nr_numa_running;
973 unsigned int nr_preferred_running;
974 unsigned int numa_migrate_on;
975 #endif
976 #ifdef CONFIG_NO_HZ_COMMON
977 #ifdef CONFIG_SMP
978 unsigned long last_blocked_load_update_tick;
979 unsigned int has_blocked_load;
980 call_single_data_t nohz_csd;
981 #endif /* CONFIG_SMP */
982 unsigned int nohz_tick_stopped;
983 atomic_t nohz_flags;
984 #endif /* CONFIG_NO_HZ_COMMON */
985
986 #ifdef CONFIG_SMP
987 unsigned int ttwu_pending;
988 #endif
989 u64 nr_switches;
990
991 #ifdef CONFIG_UCLAMP_TASK
992 /* Utilization clamp values based on CPU's RUNNABLE tasks */
993 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned;
994 unsigned int uclamp_flags;
995 #define UCLAMP_FLAG_IDLE 0x01
996 #endif
997
998 struct cfs_rq cfs;
999 struct rt_rq rt;
1000 struct dl_rq dl;
1001
1002 #ifdef CONFIG_FAIR_GROUP_SCHED
1003 /* list of leaf cfs_rq on this CPU: */
1004 struct list_head leaf_cfs_rq_list;
1005 struct list_head *tmp_alone_branch;
1006 #endif /* CONFIG_FAIR_GROUP_SCHED */
1007
1008 /*
1009 * This is part of a global counter where only the total sum
1010 * over all CPUs matters. A task can increase this counter on
1011 * one CPU and if it got migrated afterwards it may decrease
1012 * it on another CPU. Always updated under the runqueue lock:
1013 */
1014 unsigned int nr_uninterruptible;
1015
1016 struct task_struct __rcu *curr;
1017 struct task_struct *idle;
1018 struct task_struct *stop;
1019 unsigned long next_balance;
1020 struct mm_struct *prev_mm;
1021
1022 unsigned int clock_update_flags;
1023 u64 clock;
1024 /* Ensure that all clocks are in the same cache line */
1025 u64 clock_task ____cacheline_aligned;
1026 u64 clock_pelt;
1027 unsigned long lost_idle_time;
1028 u64 clock_pelt_idle;
1029 u64 clock_idle;
1030 #ifndef CONFIG_64BIT
1031 u64 clock_pelt_idle_copy;
1032 u64 clock_idle_copy;
1033 #endif
1034
1035 atomic_t nr_iowait;
1036
1037 #ifdef CONFIG_SCHED_DEBUG
1038 u64 last_seen_need_resched_ns;
1039 int ticks_without_resched;
1040 #endif
1041
1042 #ifdef CONFIG_MEMBARRIER
1043 int membarrier_state;
1044 #endif
1045
1046 #ifdef CONFIG_SMP
1047 struct root_domain *rd;
1048 struct sched_domain __rcu *sd;
1049
1050 unsigned long cpu_capacity;
1051 unsigned long cpu_capacity_orig;
1052
1053 struct balance_callback *balance_callback;
1054
1055 unsigned char nohz_idle_balance;
1056 unsigned char idle_balance;
1057
1058 unsigned long misfit_task_load;
1059
1060 /* For active balancing */
1061 int active_balance;
1062 int push_cpu;
1063 struct cpu_stop_work active_balance_work;
1064
1065 /* CPU of this runqueue: */
1066 int cpu;
1067 int online;
1068
1069 struct list_head cfs_tasks;
1070
1071 struct sched_avg avg_rt;
1072 struct sched_avg avg_dl;
1073 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1074 struct sched_avg avg_irq;
1075 #endif
1076 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
1077 struct sched_avg avg_thermal;
1078 #endif
1079 u64 idle_stamp;
1080 u64 avg_idle;
1081
1082 unsigned long wake_stamp;
1083 u64 wake_avg_idle;
1084
1085 /* This is used to determine avg_idle's max value */
1086 u64 max_idle_balance_cost;
1087
1088 #ifdef CONFIG_HOTPLUG_CPU
1089 struct rcuwait hotplug_wait;
1090 #endif
1091 #endif /* CONFIG_SMP */
1092
1093 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1094 u64 prev_irq_time;
1095 u64 psi_irq_time;
1096 #endif
1097 #ifdef CONFIG_PARAVIRT
1098 u64 prev_steal_time;
1099 #endif
1100 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1101 u64 prev_steal_time_rq;
1102 #endif
1103
1104 /* calc_load related fields */
1105 unsigned long calc_load_update;
1106 long calc_load_active;
1107
1108 #ifdef CONFIG_SCHED_HRTICK
1109 #ifdef CONFIG_SMP
1110 call_single_data_t hrtick_csd;
1111 #endif
1112 struct hrtimer hrtick_timer;
1113 ktime_t hrtick_time;
1114 #endif
1115
1116 #ifdef CONFIG_SCHEDSTATS
1117 /* latency stats */
1118 struct sched_info rq_sched_info;
1119 unsigned long long rq_cpu_time;
1120 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1121
1122 /* sys_sched_yield() stats */
1123 unsigned int yld_count;
1124
1125 /* schedule() stats */
1126 unsigned int sched_count;
1127 unsigned int sched_goidle;
1128
1129 /* try_to_wake_up() stats */
1130 unsigned int ttwu_count;
1131 unsigned int ttwu_local;
1132 #endif
1133
1134 #ifdef CONFIG_CPU_IDLE
1135 /* Must be inspected within a rcu lock section */
1136 struct cpuidle_state *idle_state;
1137 #endif
1138
1139 #ifdef CONFIG_SMP
1140 unsigned int nr_pinned;
1141 #endif
1142 unsigned int push_busy;
1143 struct cpu_stop_work push_work;
1144
1145 #ifdef CONFIG_SCHED_CORE
1146 /* per rq */
1147 struct rq *core;
1148 struct task_struct *core_pick;
1149 unsigned int core_enabled;
1150 unsigned int core_sched_seq;
1151 struct rb_root core_tree;
1152
1153 /* shared state -- careful with sched_core_cpu_deactivate() */
1154 unsigned int core_task_seq;
1155 unsigned int core_pick_seq;
1156 unsigned long core_cookie;
1157 unsigned int core_forceidle_count;
1158 unsigned int core_forceidle_seq;
1159 unsigned int core_forceidle_occupation;
1160 u64 core_forceidle_start;
1161 #endif
1162
1163 /* Scratch cpumask to be temporarily used under rq_lock */
1164 cpumask_var_t scratch_mask;
1165
1166 #if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP)
1167 call_single_data_t cfsb_csd;
1168 struct list_head cfsb_csd_list;
1169 #endif
1170 };
1171
1172 #ifdef CONFIG_FAIR_GROUP_SCHED
1173
1174 /* CPU runqueue to which this cfs_rq is attached */
rq_of(struct cfs_rq * cfs_rq)1175 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1176 {
1177 return cfs_rq->rq;
1178 }
1179
1180 #else
1181
rq_of(struct cfs_rq * cfs_rq)1182 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1183 {
1184 return container_of(cfs_rq, struct rq, cfs);
1185 }
1186 #endif
1187
cpu_of(struct rq * rq)1188 static inline int cpu_of(struct rq *rq)
1189 {
1190 #ifdef CONFIG_SMP
1191 return rq->cpu;
1192 #else
1193 return 0;
1194 #endif
1195 }
1196
1197 #define MDF_PUSH 0x01
1198
is_migration_disabled(struct task_struct * p)1199 static inline bool is_migration_disabled(struct task_struct *p)
1200 {
1201 #ifdef CONFIG_SMP
1202 return p->migration_disabled;
1203 #else
1204 return false;
1205 #endif
1206 }
1207
1208 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1209
1210 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
1211 #define this_rq() this_cpu_ptr(&runqueues)
1212 #define task_rq(p) cpu_rq(task_cpu(p))
1213 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
1214 #define raw_rq() raw_cpu_ptr(&runqueues)
1215
1216 struct sched_group;
1217 #ifdef CONFIG_SCHED_CORE
1218 static inline struct cpumask *sched_group_span(struct sched_group *sg);
1219
1220 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1221
sched_core_enabled(struct rq * rq)1222 static inline bool sched_core_enabled(struct rq *rq)
1223 {
1224 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1225 }
1226
sched_core_disabled(void)1227 static inline bool sched_core_disabled(void)
1228 {
1229 return !static_branch_unlikely(&__sched_core_enabled);
1230 }
1231
1232 /*
1233 * Be careful with this function; not for general use. The return value isn't
1234 * stable unless you actually hold a relevant rq->__lock.
1235 */
rq_lockp(struct rq * rq)1236 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1237 {
1238 if (sched_core_enabled(rq))
1239 return &rq->core->__lock;
1240
1241 return &rq->__lock;
1242 }
1243
__rq_lockp(struct rq * rq)1244 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1245 {
1246 if (rq->core_enabled)
1247 return &rq->core->__lock;
1248
1249 return &rq->__lock;
1250 }
1251
1252 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
1253 bool fi);
1254 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
1255
1256 /*
1257 * Helpers to check if the CPU's core cookie matches with the task's cookie
1258 * when core scheduling is enabled.
1259 * A special case is that the task's cookie always matches with CPU's core
1260 * cookie if the CPU is in an idle core.
1261 */
sched_cpu_cookie_match(struct rq * rq,struct task_struct * p)1262 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1263 {
1264 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1265 if (!sched_core_enabled(rq))
1266 return true;
1267
1268 return rq->core->core_cookie == p->core_cookie;
1269 }
1270
sched_core_cookie_match(struct rq * rq,struct task_struct * p)1271 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1272 {
1273 bool idle_core = true;
1274 int cpu;
1275
1276 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1277 if (!sched_core_enabled(rq))
1278 return true;
1279
1280 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1281 if (!available_idle_cpu(cpu)) {
1282 idle_core = false;
1283 break;
1284 }
1285 }
1286
1287 /*
1288 * A CPU in an idle core is always the best choice for tasks with
1289 * cookies.
1290 */
1291 return idle_core || rq->core->core_cookie == p->core_cookie;
1292 }
1293
sched_group_cookie_match(struct rq * rq,struct task_struct * p,struct sched_group * group)1294 static inline bool sched_group_cookie_match(struct rq *rq,
1295 struct task_struct *p,
1296 struct sched_group *group)
1297 {
1298 int cpu;
1299
1300 /* Ignore cookie match if core scheduler is not enabled on the CPU. */
1301 if (!sched_core_enabled(rq))
1302 return true;
1303
1304 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1305 if (sched_core_cookie_match(cpu_rq(cpu), p))
1306 return true;
1307 }
1308 return false;
1309 }
1310
sched_core_enqueued(struct task_struct * p)1311 static inline bool sched_core_enqueued(struct task_struct *p)
1312 {
1313 return !RB_EMPTY_NODE(&p->core_node);
1314 }
1315
1316 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1317 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1318
1319 extern void sched_core_get(void);
1320 extern void sched_core_put(void);
1321
1322 #else /* !CONFIG_SCHED_CORE */
1323
sched_core_enabled(struct rq * rq)1324 static inline bool sched_core_enabled(struct rq *rq)
1325 {
1326 return false;
1327 }
1328
sched_core_disabled(void)1329 static inline bool sched_core_disabled(void)
1330 {
1331 return true;
1332 }
1333
rq_lockp(struct rq * rq)1334 static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1335 {
1336 return &rq->__lock;
1337 }
1338
__rq_lockp(struct rq * rq)1339 static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1340 {
1341 return &rq->__lock;
1342 }
1343
sched_cpu_cookie_match(struct rq * rq,struct task_struct * p)1344 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1345 {
1346 return true;
1347 }
1348
sched_core_cookie_match(struct rq * rq,struct task_struct * p)1349 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1350 {
1351 return true;
1352 }
1353
sched_group_cookie_match(struct rq * rq,struct task_struct * p,struct sched_group * group)1354 static inline bool sched_group_cookie_match(struct rq *rq,
1355 struct task_struct *p,
1356 struct sched_group *group)
1357 {
1358 return true;
1359 }
1360 #endif /* CONFIG_SCHED_CORE */
1361
lockdep_assert_rq_held(struct rq * rq)1362 static inline void lockdep_assert_rq_held(struct rq *rq)
1363 {
1364 lockdep_assert_held(__rq_lockp(rq));
1365 }
1366
1367 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1368 extern bool raw_spin_rq_trylock(struct rq *rq);
1369 extern void raw_spin_rq_unlock(struct rq *rq);
1370
raw_spin_rq_lock(struct rq * rq)1371 static inline void raw_spin_rq_lock(struct rq *rq)
1372 {
1373 raw_spin_rq_lock_nested(rq, 0);
1374 }
1375
raw_spin_rq_lock_irq(struct rq * rq)1376 static inline void raw_spin_rq_lock_irq(struct rq *rq)
1377 {
1378 local_irq_disable();
1379 raw_spin_rq_lock(rq);
1380 }
1381
raw_spin_rq_unlock_irq(struct rq * rq)1382 static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1383 {
1384 raw_spin_rq_unlock(rq);
1385 local_irq_enable();
1386 }
1387
_raw_spin_rq_lock_irqsave(struct rq * rq)1388 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1389 {
1390 unsigned long flags;
1391 local_irq_save(flags);
1392 raw_spin_rq_lock(rq);
1393 return flags;
1394 }
1395
raw_spin_rq_unlock_irqrestore(struct rq * rq,unsigned long flags)1396 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1397 {
1398 raw_spin_rq_unlock(rq);
1399 local_irq_restore(flags);
1400 }
1401
1402 #define raw_spin_rq_lock_irqsave(rq, flags) \
1403 do { \
1404 flags = _raw_spin_rq_lock_irqsave(rq); \
1405 } while (0)
1406
1407 #ifdef CONFIG_SCHED_SMT
1408 extern void __update_idle_core(struct rq *rq);
1409
update_idle_core(struct rq * rq)1410 static inline void update_idle_core(struct rq *rq)
1411 {
1412 if (static_branch_unlikely(&sched_smt_present))
1413 __update_idle_core(rq);
1414 }
1415
1416 #else
update_idle_core(struct rq * rq)1417 static inline void update_idle_core(struct rq *rq) { }
1418 #endif
1419
1420 #ifdef CONFIG_FAIR_GROUP_SCHED
task_of(struct sched_entity * se)1421 static inline struct task_struct *task_of(struct sched_entity *se)
1422 {
1423 SCHED_WARN_ON(!entity_is_task(se));
1424 return container_of(se, struct task_struct, se);
1425 }
1426
task_cfs_rq(struct task_struct * p)1427 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1428 {
1429 return p->se.cfs_rq;
1430 }
1431
1432 /* runqueue on which this entity is (to be) queued */
cfs_rq_of(const struct sched_entity * se)1433 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1434 {
1435 return se->cfs_rq;
1436 }
1437
1438 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)1439 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1440 {
1441 return grp->my_q;
1442 }
1443
1444 #else
1445
1446 #define task_of(_se) container_of(_se, struct task_struct, se)
1447
task_cfs_rq(const struct task_struct * p)1448 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
1449 {
1450 return &task_rq(p)->cfs;
1451 }
1452
cfs_rq_of(const struct sched_entity * se)1453 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1454 {
1455 const struct task_struct *p = task_of(se);
1456 struct rq *rq = task_rq(p);
1457
1458 return &rq->cfs;
1459 }
1460
1461 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)1462 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1463 {
1464 return NULL;
1465 }
1466 #endif
1467
1468 extern void update_rq_clock(struct rq *rq);
1469
1470 /*
1471 * rq::clock_update_flags bits
1472 *
1473 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1474 * call to __schedule(). This is an optimisation to avoid
1475 * neighbouring rq clock updates.
1476 *
1477 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1478 * in effect and calls to update_rq_clock() are being ignored.
1479 *
1480 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1481 * made to update_rq_clock() since the last time rq::lock was pinned.
1482 *
1483 * If inside of __schedule(), clock_update_flags will have been
1484 * shifted left (a left shift is a cheap operation for the fast path
1485 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1486 *
1487 * if (rq-clock_update_flags >= RQCF_UPDATED)
1488 *
1489 * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1490 * one position though, because the next rq_unpin_lock() will shift it
1491 * back.
1492 */
1493 #define RQCF_REQ_SKIP 0x01
1494 #define RQCF_ACT_SKIP 0x02
1495 #define RQCF_UPDATED 0x04
1496
assert_clock_updated(struct rq * rq)1497 static inline void assert_clock_updated(struct rq *rq)
1498 {
1499 /*
1500 * The only reason for not seeing a clock update since the
1501 * last rq_pin_lock() is if we're currently skipping updates.
1502 */
1503 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1504 }
1505
rq_clock(struct rq * rq)1506 static inline u64 rq_clock(struct rq *rq)
1507 {
1508 lockdep_assert_rq_held(rq);
1509 assert_clock_updated(rq);
1510
1511 return rq->clock;
1512 }
1513
rq_clock_task(struct rq * rq)1514 static inline u64 rq_clock_task(struct rq *rq)
1515 {
1516 lockdep_assert_rq_held(rq);
1517 assert_clock_updated(rq);
1518
1519 return rq->clock_task;
1520 }
1521
1522 /**
1523 * By default the decay is the default pelt decay period.
1524 * The decay shift can change the decay period in
1525 * multiples of 32.
1526 * Decay shift Decay period(ms)
1527 * 0 32
1528 * 1 64
1529 * 2 128
1530 * 3 256
1531 * 4 512
1532 */
1533 extern int sched_thermal_decay_shift;
1534
rq_clock_thermal(struct rq * rq)1535 static inline u64 rq_clock_thermal(struct rq *rq)
1536 {
1537 return rq_clock_task(rq) >> sched_thermal_decay_shift;
1538 }
1539
rq_clock_skip_update(struct rq * rq)1540 static inline void rq_clock_skip_update(struct rq *rq)
1541 {
1542 lockdep_assert_rq_held(rq);
1543 rq->clock_update_flags |= RQCF_REQ_SKIP;
1544 }
1545
1546 /*
1547 * See rt task throttling, which is the only time a skip
1548 * request is canceled.
1549 */
rq_clock_cancel_skipupdate(struct rq * rq)1550 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1551 {
1552 lockdep_assert_rq_held(rq);
1553 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1554 }
1555
1556 /*
1557 * During cpu offlining and rq wide unthrottling, we can trigger
1558 * an update_rq_clock() for several cfs and rt runqueues (Typically
1559 * when using list_for_each_entry_*)
1560 * rq_clock_start_loop_update() can be called after updating the clock
1561 * once and before iterating over the list to prevent multiple update.
1562 * After the iterative traversal, we need to call rq_clock_stop_loop_update()
1563 * to clear RQCF_ACT_SKIP of rq->clock_update_flags.
1564 */
rq_clock_start_loop_update(struct rq * rq)1565 static inline void rq_clock_start_loop_update(struct rq *rq)
1566 {
1567 lockdep_assert_rq_held(rq);
1568 SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP);
1569 rq->clock_update_flags |= RQCF_ACT_SKIP;
1570 }
1571
rq_clock_stop_loop_update(struct rq * rq)1572 static inline void rq_clock_stop_loop_update(struct rq *rq)
1573 {
1574 lockdep_assert_rq_held(rq);
1575 rq->clock_update_flags &= ~RQCF_ACT_SKIP;
1576 }
1577
1578 struct rq_flags {
1579 unsigned long flags;
1580 struct pin_cookie cookie;
1581 #ifdef CONFIG_SCHED_DEBUG
1582 /*
1583 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1584 * current pin context is stashed here in case it needs to be
1585 * restored in rq_repin_lock().
1586 */
1587 unsigned int clock_update_flags;
1588 #endif
1589 };
1590
1591 extern struct balance_callback balance_push_callback;
1592
1593 /*
1594 * Lockdep annotation that avoids accidental unlocks; it's like a
1595 * sticky/continuous lockdep_assert_held().
1596 *
1597 * This avoids code that has access to 'struct rq *rq' (basically everything in
1598 * the scheduler) from accidentally unlocking the rq if they do not also have a
1599 * copy of the (on-stack) 'struct rq_flags rf'.
1600 *
1601 * Also see Documentation/locking/lockdep-design.rst.
1602 */
rq_pin_lock(struct rq * rq,struct rq_flags * rf)1603 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1604 {
1605 rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1606
1607 #ifdef CONFIG_SCHED_DEBUG
1608 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1609 rf->clock_update_flags = 0;
1610 #ifdef CONFIG_SMP
1611 SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1612 #endif
1613 #endif
1614 }
1615
rq_unpin_lock(struct rq * rq,struct rq_flags * rf)1616 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1617 {
1618 #ifdef CONFIG_SCHED_DEBUG
1619 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1620 rf->clock_update_flags = RQCF_UPDATED;
1621 #endif
1622
1623 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1624 }
1625
rq_repin_lock(struct rq * rq,struct rq_flags * rf)1626 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1627 {
1628 lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1629
1630 #ifdef CONFIG_SCHED_DEBUG
1631 /*
1632 * Restore the value we stashed in @rf for this pin context.
1633 */
1634 rq->clock_update_flags |= rf->clock_update_flags;
1635 #endif
1636 }
1637
1638 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1639 __acquires(rq->lock);
1640
1641 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1642 __acquires(p->pi_lock)
1643 __acquires(rq->lock);
1644
__task_rq_unlock(struct rq * rq,struct rq_flags * rf)1645 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1646 __releases(rq->lock)
1647 {
1648 rq_unpin_lock(rq, rf);
1649 raw_spin_rq_unlock(rq);
1650 }
1651
1652 static inline void
task_rq_unlock(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1653 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1654 __releases(rq->lock)
1655 __releases(p->pi_lock)
1656 {
1657 rq_unpin_lock(rq, rf);
1658 raw_spin_rq_unlock(rq);
1659 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1660 }
1661
1662 static inline void
rq_lock_irqsave(struct rq * rq,struct rq_flags * rf)1663 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1664 __acquires(rq->lock)
1665 {
1666 raw_spin_rq_lock_irqsave(rq, rf->flags);
1667 rq_pin_lock(rq, rf);
1668 }
1669
1670 static inline void
rq_lock_irq(struct rq * rq,struct rq_flags * rf)1671 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1672 __acquires(rq->lock)
1673 {
1674 raw_spin_rq_lock_irq(rq);
1675 rq_pin_lock(rq, rf);
1676 }
1677
1678 static inline void
rq_lock(struct rq * rq,struct rq_flags * rf)1679 rq_lock(struct rq *rq, struct rq_flags *rf)
1680 __acquires(rq->lock)
1681 {
1682 raw_spin_rq_lock(rq);
1683 rq_pin_lock(rq, rf);
1684 }
1685
1686 static inline void
rq_unlock_irqrestore(struct rq * rq,struct rq_flags * rf)1687 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1688 __releases(rq->lock)
1689 {
1690 rq_unpin_lock(rq, rf);
1691 raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1692 }
1693
1694 static inline void
rq_unlock_irq(struct rq * rq,struct rq_flags * rf)1695 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1696 __releases(rq->lock)
1697 {
1698 rq_unpin_lock(rq, rf);
1699 raw_spin_rq_unlock_irq(rq);
1700 }
1701
1702 static inline void
rq_unlock(struct rq * rq,struct rq_flags * rf)1703 rq_unlock(struct rq *rq, struct rq_flags *rf)
1704 __releases(rq->lock)
1705 {
1706 rq_unpin_lock(rq, rf);
1707 raw_spin_rq_unlock(rq);
1708 }
1709
1710 DEFINE_LOCK_GUARD_1(rq_lock, struct rq,
1711 rq_lock(_T->lock, &_T->rf),
1712 rq_unlock(_T->lock, &_T->rf),
1713 struct rq_flags rf)
1714
1715 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq,
1716 rq_lock_irq(_T->lock, &_T->rf),
1717 rq_unlock_irq(_T->lock, &_T->rf),
1718 struct rq_flags rf)
1719
1720 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
1721 rq_lock_irqsave(_T->lock, &_T->rf),
1722 rq_unlock_irqrestore(_T->lock, &_T->rf),
1723 struct rq_flags rf)
1724
1725 static inline struct rq *
this_rq_lock_irq(struct rq_flags * rf)1726 this_rq_lock_irq(struct rq_flags *rf)
1727 __acquires(rq->lock)
1728 {
1729 struct rq *rq;
1730
1731 local_irq_disable();
1732 rq = this_rq();
1733 rq_lock(rq, rf);
1734 return rq;
1735 }
1736
1737 #ifdef CONFIG_NUMA
1738 enum numa_topology_type {
1739 NUMA_DIRECT,
1740 NUMA_GLUELESS_MESH,
1741 NUMA_BACKPLANE,
1742 };
1743 extern enum numa_topology_type sched_numa_topology_type;
1744 extern int sched_max_numa_distance;
1745 extern bool find_numa_distance(int distance);
1746 extern void sched_init_numa(int offline_node);
1747 extern void sched_update_numa(int cpu, bool online);
1748 extern void sched_domains_numa_masks_set(unsigned int cpu);
1749 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1750 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1751 #else
sched_init_numa(int offline_node)1752 static inline void sched_init_numa(int offline_node) { }
sched_update_numa(int cpu,bool online)1753 static inline void sched_update_numa(int cpu, bool online) { }
sched_domains_numa_masks_set(unsigned int cpu)1754 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
sched_domains_numa_masks_clear(unsigned int cpu)1755 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
sched_numa_find_closest(const struct cpumask * cpus,int cpu)1756 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1757 {
1758 return nr_cpu_ids;
1759 }
1760 #endif
1761
1762 #ifdef CONFIG_NUMA_BALANCING
1763 /* The regions in numa_faults array from task_struct */
1764 enum numa_faults_stats {
1765 NUMA_MEM = 0,
1766 NUMA_CPU,
1767 NUMA_MEMBUF,
1768 NUMA_CPUBUF
1769 };
1770 extern void sched_setnuma(struct task_struct *p, int node);
1771 extern int migrate_task_to(struct task_struct *p, int cpu);
1772 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1773 int cpu, int scpu);
1774 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1775 #else
1776 static inline void
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)1777 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1778 {
1779 }
1780 #endif /* CONFIG_NUMA_BALANCING */
1781
1782 #ifdef CONFIG_SMP
1783
1784 static inline void
queue_balance_callback(struct rq * rq,struct balance_callback * head,void (* func)(struct rq * rq))1785 queue_balance_callback(struct rq *rq,
1786 struct balance_callback *head,
1787 void (*func)(struct rq *rq))
1788 {
1789 lockdep_assert_rq_held(rq);
1790
1791 /*
1792 * Don't (re)queue an already queued item; nor queue anything when
1793 * balance_push() is active, see the comment with
1794 * balance_push_callback.
1795 */
1796 if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1797 return;
1798
1799 head->func = func;
1800 head->next = rq->balance_callback;
1801 rq->balance_callback = head;
1802 }
1803
1804 #define rcu_dereference_check_sched_domain(p) \
1805 rcu_dereference_check((p), \
1806 lockdep_is_held(&sched_domains_mutex))
1807
1808 /*
1809 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1810 * See destroy_sched_domains: call_rcu for details.
1811 *
1812 * The domain tree of any CPU may only be accessed from within
1813 * preempt-disabled sections.
1814 */
1815 #define for_each_domain(cpu, __sd) \
1816 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1817 __sd; __sd = __sd->parent)
1818
1819 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */
1820 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) |
1821 static const unsigned int SD_SHARED_CHILD_MASK =
1822 #include <linux/sched/sd_flags.h>
1823 0;
1824 #undef SD_FLAG
1825
1826 /**
1827 * highest_flag_domain - Return highest sched_domain containing flag.
1828 * @cpu: The CPU whose highest level of sched domain is to
1829 * be returned.
1830 * @flag: The flag to check for the highest sched_domain
1831 * for the given CPU.
1832 *
1833 * Returns the highest sched_domain of a CPU which contains @flag. If @flag has
1834 * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag.
1835 */
highest_flag_domain(int cpu,int flag)1836 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1837 {
1838 struct sched_domain *sd, *hsd = NULL;
1839
1840 for_each_domain(cpu, sd) {
1841 if (sd->flags & flag) {
1842 hsd = sd;
1843 continue;
1844 }
1845
1846 /*
1847 * Stop the search if @flag is known to be shared at lower
1848 * levels. It will not be found further up.
1849 */
1850 if (flag & SD_SHARED_CHILD_MASK)
1851 break;
1852 }
1853
1854 return hsd;
1855 }
1856
lowest_flag_domain(int cpu,int flag)1857 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1858 {
1859 struct sched_domain *sd;
1860
1861 for_each_domain(cpu, sd) {
1862 if (sd->flags & flag)
1863 break;
1864 }
1865
1866 return sd;
1867 }
1868
1869 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1870 DECLARE_PER_CPU(int, sd_llc_size);
1871 DECLARE_PER_CPU(int, sd_llc_id);
1872 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1873 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1874 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1875 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1876 extern struct static_key_false sched_asym_cpucapacity;
1877
sched_asym_cpucap_active(void)1878 static __always_inline bool sched_asym_cpucap_active(void)
1879 {
1880 return static_branch_unlikely(&sched_asym_cpucapacity);
1881 }
1882
1883 struct sched_group_capacity {
1884 atomic_t ref;
1885 /*
1886 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1887 * for a single CPU.
1888 */
1889 unsigned long capacity;
1890 unsigned long min_capacity; /* Min per-CPU capacity in group */
1891 unsigned long max_capacity; /* Max per-CPU capacity in group */
1892 unsigned long next_update;
1893 int imbalance; /* XXX unrelated to capacity but shared group state */
1894
1895 #ifdef CONFIG_SCHED_DEBUG
1896 int id;
1897 #endif
1898
1899 unsigned long cpumask[]; /* Balance mask */
1900 };
1901
1902 struct sched_group {
1903 struct sched_group *next; /* Must be a circular list */
1904 atomic_t ref;
1905
1906 unsigned int group_weight;
1907 unsigned int cores;
1908 struct sched_group_capacity *sgc;
1909 int asym_prefer_cpu; /* CPU of highest priority in group */
1910 int flags;
1911
1912 /*
1913 * The CPUs this group covers.
1914 *
1915 * NOTE: this field is variable length. (Allocated dynamically
1916 * by attaching extra space to the end of the structure,
1917 * depending on how many CPUs the kernel has booted up with)
1918 */
1919 unsigned long cpumask[];
1920 };
1921
sched_group_span(struct sched_group * sg)1922 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1923 {
1924 return to_cpumask(sg->cpumask);
1925 }
1926
1927 /*
1928 * See build_balance_mask().
1929 */
group_balance_mask(struct sched_group * sg)1930 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1931 {
1932 return to_cpumask(sg->sgc->cpumask);
1933 }
1934
1935 extern int group_balance_cpu(struct sched_group *sg);
1936
1937 #ifdef CONFIG_SCHED_DEBUG
1938 void update_sched_domain_debugfs(void);
1939 void dirty_sched_domain_sysctl(int cpu);
1940 #else
update_sched_domain_debugfs(void)1941 static inline void update_sched_domain_debugfs(void)
1942 {
1943 }
dirty_sched_domain_sysctl(int cpu)1944 static inline void dirty_sched_domain_sysctl(int cpu)
1945 {
1946 }
1947 #endif
1948
1949 extern int sched_update_scaling(void);
1950
task_user_cpus(struct task_struct * p)1951 static inline const struct cpumask *task_user_cpus(struct task_struct *p)
1952 {
1953 if (!p->user_cpus_ptr)
1954 return cpu_possible_mask; /* &init_task.cpus_mask */
1955 return p->user_cpus_ptr;
1956 }
1957 #endif /* CONFIG_SMP */
1958
1959 #include "stats.h"
1960
1961 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
1962
1963 extern void __sched_core_account_forceidle(struct rq *rq);
1964
sched_core_account_forceidle(struct rq * rq)1965 static inline void sched_core_account_forceidle(struct rq *rq)
1966 {
1967 if (schedstat_enabled())
1968 __sched_core_account_forceidle(rq);
1969 }
1970
1971 extern void __sched_core_tick(struct rq *rq);
1972
sched_core_tick(struct rq * rq)1973 static inline void sched_core_tick(struct rq *rq)
1974 {
1975 if (sched_core_enabled(rq) && schedstat_enabled())
1976 __sched_core_tick(rq);
1977 }
1978
1979 #else
1980
sched_core_account_forceidle(struct rq * rq)1981 static inline void sched_core_account_forceidle(struct rq *rq) {}
1982
sched_core_tick(struct rq * rq)1983 static inline void sched_core_tick(struct rq *rq) {}
1984
1985 #endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */
1986
1987 #ifdef CONFIG_CGROUP_SCHED
1988
1989 /*
1990 * Return the group to which this tasks belongs.
1991 *
1992 * We cannot use task_css() and friends because the cgroup subsystem
1993 * changes that value before the cgroup_subsys::attach() method is called,
1994 * therefore we cannot pin it and might observe the wrong value.
1995 *
1996 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1997 * core changes this before calling sched_move_task().
1998 *
1999 * Instead we use a 'copy' which is updated from sched_move_task() while
2000 * holding both task_struct::pi_lock and rq::lock.
2001 */
task_group(struct task_struct * p)2002 static inline struct task_group *task_group(struct task_struct *p)
2003 {
2004 return p->sched_task_group;
2005 }
2006
2007 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
set_task_rq(struct task_struct * p,unsigned int cpu)2008 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
2009 {
2010 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
2011 struct task_group *tg = task_group(p);
2012 #endif
2013
2014 #ifdef CONFIG_FAIR_GROUP_SCHED
2015 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
2016 p->se.cfs_rq = tg->cfs_rq[cpu];
2017 p->se.parent = tg->se[cpu];
2018 p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
2019 #endif
2020
2021 #ifdef CONFIG_RT_GROUP_SCHED
2022 p->rt.rt_rq = tg->rt_rq[cpu];
2023 p->rt.parent = tg->rt_se[cpu];
2024 #endif
2025 }
2026
2027 #else /* CONFIG_CGROUP_SCHED */
2028
set_task_rq(struct task_struct * p,unsigned int cpu)2029 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
task_group(struct task_struct * p)2030 static inline struct task_group *task_group(struct task_struct *p)
2031 {
2032 return NULL;
2033 }
2034
2035 #endif /* CONFIG_CGROUP_SCHED */
2036
__set_task_cpu(struct task_struct * p,unsigned int cpu)2037 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2038 {
2039 set_task_rq(p, cpu);
2040 #ifdef CONFIG_SMP
2041 /*
2042 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2043 * successfully executed on another CPU. We must ensure that updates of
2044 * per-task data have been completed by this moment.
2045 */
2046 smp_wmb();
2047 WRITE_ONCE(task_thread_info(p)->cpu, cpu);
2048 p->wake_cpu = cpu;
2049 #endif
2050 }
2051
2052 /*
2053 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
2054 */
2055 #ifdef CONFIG_SCHED_DEBUG
2056 # define const_debug __read_mostly
2057 #else
2058 # define const_debug const
2059 #endif
2060
2061 #define SCHED_FEAT(name, enabled) \
2062 __SCHED_FEAT_##name ,
2063
2064 enum {
2065 #include "features.h"
2066 __SCHED_FEAT_NR,
2067 };
2068
2069 #undef SCHED_FEAT
2070
2071 #ifdef CONFIG_SCHED_DEBUG
2072
2073 /*
2074 * To support run-time toggling of sched features, all the translation units
2075 * (but core.c) reference the sysctl_sched_features defined in core.c.
2076 */
2077 extern const_debug unsigned int sysctl_sched_features;
2078
2079 #ifdef CONFIG_JUMP_LABEL
2080 #define SCHED_FEAT(name, enabled) \
2081 static __always_inline bool static_branch_##name(struct static_key *key) \
2082 { \
2083 return static_key_##enabled(key); \
2084 }
2085
2086 #include "features.h"
2087 #undef SCHED_FEAT
2088
2089 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2090 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2091
2092 #else /* !CONFIG_JUMP_LABEL */
2093
2094 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2095
2096 #endif /* CONFIG_JUMP_LABEL */
2097
2098 #else /* !SCHED_DEBUG */
2099
2100 /*
2101 * Each translation unit has its own copy of sysctl_sched_features to allow
2102 * constants propagation at compile time and compiler optimization based on
2103 * features default.
2104 */
2105 #define SCHED_FEAT(name, enabled) \
2106 (1UL << __SCHED_FEAT_##name) * enabled |
2107 static const_debug __maybe_unused unsigned int sysctl_sched_features =
2108 #include "features.h"
2109 0;
2110 #undef SCHED_FEAT
2111
2112 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2113
2114 #endif /* SCHED_DEBUG */
2115
2116 extern struct static_key_false sched_numa_balancing;
2117 extern struct static_key_false sched_schedstats;
2118
global_rt_period(void)2119 static inline u64 global_rt_period(void)
2120 {
2121 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2122 }
2123
global_rt_runtime(void)2124 static inline u64 global_rt_runtime(void)
2125 {
2126 if (sysctl_sched_rt_runtime < 0)
2127 return RUNTIME_INF;
2128
2129 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2130 }
2131
task_current(struct rq * rq,struct task_struct * p)2132 static inline int task_current(struct rq *rq, struct task_struct *p)
2133 {
2134 return rq->curr == p;
2135 }
2136
task_on_cpu(struct rq * rq,struct task_struct * p)2137 static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2138 {
2139 #ifdef CONFIG_SMP
2140 return p->on_cpu;
2141 #else
2142 return task_current(rq, p);
2143 #endif
2144 }
2145
task_on_rq_queued(struct task_struct * p)2146 static inline int task_on_rq_queued(struct task_struct *p)
2147 {
2148 return p->on_rq == TASK_ON_RQ_QUEUED;
2149 }
2150
task_on_rq_migrating(struct task_struct * p)2151 static inline int task_on_rq_migrating(struct task_struct *p)
2152 {
2153 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2154 }
2155
2156 /* Wake flags. The first three directly map to some SD flag value */
2157 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2158 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2159 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */
2160
2161 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */
2162 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */
2163 #define WF_CURRENT_CPU 0x40 /* Prefer to move the wakee to the current CPU. */
2164
2165 #ifdef CONFIG_SMP
2166 static_assert(WF_EXEC == SD_BALANCE_EXEC);
2167 static_assert(WF_FORK == SD_BALANCE_FORK);
2168 static_assert(WF_TTWU == SD_BALANCE_WAKE);
2169 #endif
2170
2171 /*
2172 * To aid in avoiding the subversion of "niceness" due to uneven distribution
2173 * of tasks with abnormal "nice" values across CPUs the contribution that
2174 * each task makes to its run queue's load is weighted according to its
2175 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2176 * scaled version of the new time slice allocation that they receive on time
2177 * slice expiry etc.
2178 */
2179
2180 #define WEIGHT_IDLEPRIO 3
2181 #define WMULT_IDLEPRIO 1431655765
2182
2183 extern const int sched_prio_to_weight[40];
2184 extern const u32 sched_prio_to_wmult[40];
2185
2186 /*
2187 * {de,en}queue flags:
2188 *
2189 * DEQUEUE_SLEEP - task is no longer runnable
2190 * ENQUEUE_WAKEUP - task just became runnable
2191 *
2192 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2193 * are in a known state which allows modification. Such pairs
2194 * should preserve as much state as possible.
2195 *
2196 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2197 * in the runqueue.
2198 *
2199 * NOCLOCK - skip the update_rq_clock() (avoids double updates)
2200 *
2201 * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE)
2202 *
2203 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
2204 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2205 * ENQUEUE_MIGRATED - the task was migrated during wakeup
2206 *
2207 */
2208
2209 #define DEQUEUE_SLEEP 0x01
2210 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
2211 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
2212 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
2213 #define DEQUEUE_MIGRATING 0x100 /* Matches ENQUEUE_MIGRATING */
2214
2215 #define ENQUEUE_WAKEUP 0x01
2216 #define ENQUEUE_RESTORE 0x02
2217 #define ENQUEUE_MOVE 0x04
2218 #define ENQUEUE_NOCLOCK 0x08
2219
2220 #define ENQUEUE_HEAD 0x10
2221 #define ENQUEUE_REPLENISH 0x20
2222 #ifdef CONFIG_SMP
2223 #define ENQUEUE_MIGRATED 0x40
2224 #else
2225 #define ENQUEUE_MIGRATED 0x00
2226 #endif
2227 #define ENQUEUE_INITIAL 0x80
2228 #define ENQUEUE_MIGRATING 0x100
2229
2230 #define RETRY_TASK ((void *)-1UL)
2231
2232 struct affinity_context {
2233 const struct cpumask *new_mask;
2234 struct cpumask *user_mask;
2235 unsigned int flags;
2236 };
2237
2238 extern s64 update_curr_common(struct rq *rq);
2239
2240 struct sched_class {
2241
2242 #ifdef CONFIG_UCLAMP_TASK
2243 int uclamp_enabled;
2244 #endif
2245
2246 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2247 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2248 void (*yield_task) (struct rq *rq);
2249 bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2250
2251 void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags);
2252
2253 struct task_struct *(*pick_next_task)(struct rq *rq);
2254
2255 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2256 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2257
2258 #ifdef CONFIG_SMP
2259 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2260 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2261
2262 struct task_struct * (*pick_task)(struct rq *rq);
2263
2264 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
2265
2266 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2267
2268 void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
2269
2270 void (*rq_online)(struct rq *rq);
2271 void (*rq_offline)(struct rq *rq);
2272
2273 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2274 #endif
2275
2276 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2277 void (*task_fork)(struct task_struct *p);
2278 void (*task_dead)(struct task_struct *p);
2279
2280 /*
2281 * The switched_from() call is allowed to drop rq->lock, therefore we
2282 * cannot assume the switched_from/switched_to pair is serialized by
2283 * rq->lock. They are however serialized by p->pi_lock.
2284 */
2285 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2286 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
2287 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2288 int oldprio);
2289
2290 unsigned int (*get_rr_interval)(struct rq *rq,
2291 struct task_struct *task);
2292
2293 void (*update_curr)(struct rq *rq);
2294
2295 #ifdef CONFIG_FAIR_GROUP_SCHED
2296 void (*task_change_group)(struct task_struct *p);
2297 #endif
2298
2299 #ifdef CONFIG_SCHED_CORE
2300 int (*task_is_throttled)(struct task_struct *p, int cpu);
2301 #endif
2302 };
2303
put_prev_task(struct rq * rq,struct task_struct * prev)2304 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2305 {
2306 WARN_ON_ONCE(rq->curr != prev);
2307 prev->sched_class->put_prev_task(rq, prev);
2308 }
2309
set_next_task(struct rq * rq,struct task_struct * next)2310 static inline void set_next_task(struct rq *rq, struct task_struct *next)
2311 {
2312 next->sched_class->set_next_task(rq, next, false);
2313 }
2314
2315
2316 /*
2317 * Helper to define a sched_class instance; each one is placed in a separate
2318 * section which is ordered by the linker script:
2319 *
2320 * include/asm-generic/vmlinux.lds.h
2321 *
2322 * *CAREFUL* they are laid out in *REVERSE* order!!!
2323 *
2324 * Also enforce alignment on the instance, not the type, to guarantee layout.
2325 */
2326 #define DEFINE_SCHED_CLASS(name) \
2327 const struct sched_class name##_sched_class \
2328 __aligned(__alignof__(struct sched_class)) \
2329 __section("__" #name "_sched_class")
2330
2331 /* Defined in include/asm-generic/vmlinux.lds.h */
2332 extern struct sched_class __sched_class_highest[];
2333 extern struct sched_class __sched_class_lowest[];
2334
2335 #define for_class_range(class, _from, _to) \
2336 for (class = (_from); class < (_to); class++)
2337
2338 #define for_each_class(class) \
2339 for_class_range(class, __sched_class_highest, __sched_class_lowest)
2340
2341 #define sched_class_above(_a, _b) ((_a) < (_b))
2342
2343 extern const struct sched_class stop_sched_class;
2344 extern const struct sched_class dl_sched_class;
2345 extern const struct sched_class rt_sched_class;
2346 extern const struct sched_class fair_sched_class;
2347 extern const struct sched_class idle_sched_class;
2348
sched_stop_runnable(struct rq * rq)2349 static inline bool sched_stop_runnable(struct rq *rq)
2350 {
2351 return rq->stop && task_on_rq_queued(rq->stop);
2352 }
2353
sched_dl_runnable(struct rq * rq)2354 static inline bool sched_dl_runnable(struct rq *rq)
2355 {
2356 return rq->dl.dl_nr_running > 0;
2357 }
2358
sched_rt_runnable(struct rq * rq)2359 static inline bool sched_rt_runnable(struct rq *rq)
2360 {
2361 return rq->rt.rt_queued > 0;
2362 }
2363
sched_fair_runnable(struct rq * rq)2364 static inline bool sched_fair_runnable(struct rq *rq)
2365 {
2366 return rq->cfs.nr_running > 0;
2367 }
2368
2369 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2370 extern struct task_struct *pick_next_task_idle(struct rq *rq);
2371
2372 #define SCA_CHECK 0x01
2373 #define SCA_MIGRATE_DISABLE 0x02
2374 #define SCA_MIGRATE_ENABLE 0x04
2375 #define SCA_USER 0x08
2376
2377 #ifdef CONFIG_SMP
2378
2379 extern void update_group_capacity(struct sched_domain *sd, int cpu);
2380
2381 extern void trigger_load_balance(struct rq *rq);
2382
2383 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
2384
get_push_task(struct rq * rq)2385 static inline struct task_struct *get_push_task(struct rq *rq)
2386 {
2387 struct task_struct *p = rq->curr;
2388
2389 lockdep_assert_rq_held(rq);
2390
2391 if (rq->push_busy)
2392 return NULL;
2393
2394 if (p->nr_cpus_allowed == 1)
2395 return NULL;
2396
2397 if (p->migration_disabled)
2398 return NULL;
2399
2400 rq->push_busy = true;
2401 return get_task_struct(p);
2402 }
2403
2404 extern int push_cpu_stop(void *arg);
2405
2406 #endif
2407
2408 #ifdef CONFIG_CPU_IDLE
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2409 static inline void idle_set_state(struct rq *rq,
2410 struct cpuidle_state *idle_state)
2411 {
2412 rq->idle_state = idle_state;
2413 }
2414
idle_get_state(struct rq * rq)2415 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2416 {
2417 SCHED_WARN_ON(!rcu_read_lock_held());
2418
2419 return rq->idle_state;
2420 }
2421 #else
idle_set_state(struct rq * rq,struct cpuidle_state * idle_state)2422 static inline void idle_set_state(struct rq *rq,
2423 struct cpuidle_state *idle_state)
2424 {
2425 }
2426
idle_get_state(struct rq * rq)2427 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2428 {
2429 return NULL;
2430 }
2431 #endif
2432
2433 extern void schedule_idle(void);
2434 asmlinkage void schedule_user(void);
2435
2436 extern void sysrq_sched_debug_show(void);
2437 extern void sched_init_granularity(void);
2438 extern void update_max_interval(void);
2439
2440 extern void init_sched_dl_class(void);
2441 extern void init_sched_rt_class(void);
2442 extern void init_sched_fair_class(void);
2443
2444 extern void reweight_task(struct task_struct *p, const struct load_weight *lw);
2445
2446 extern void resched_curr(struct rq *rq);
2447 extern void resched_cpu(int cpu);
2448
2449 extern struct rt_bandwidth def_rt_bandwidth;
2450 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2451 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2452
2453 extern void init_dl_entity(struct sched_dl_entity *dl_se);
2454
2455 #define BW_SHIFT 20
2456 #define BW_UNIT (1 << BW_SHIFT)
2457 #define RATIO_SHIFT 8
2458 #define MAX_BW_BITS (64 - BW_SHIFT)
2459 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1)
2460 unsigned long to_ratio(u64 period, u64 runtime);
2461
2462 extern void init_entity_runnable_average(struct sched_entity *se);
2463 extern void post_init_entity_util_avg(struct task_struct *p);
2464
2465 #ifdef CONFIG_NO_HZ_FULL
2466 extern bool sched_can_stop_tick(struct rq *rq);
2467 extern int __init sched_tick_offload_init(void);
2468
2469 /*
2470 * Tick may be needed by tasks in the runqueue depending on their policy and
2471 * requirements. If tick is needed, lets send the target an IPI to kick it out of
2472 * nohz mode if necessary.
2473 */
sched_update_tick_dependency(struct rq * rq)2474 static inline void sched_update_tick_dependency(struct rq *rq)
2475 {
2476 int cpu = cpu_of(rq);
2477
2478 if (!tick_nohz_full_cpu(cpu))
2479 return;
2480
2481 if (sched_can_stop_tick(rq))
2482 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2483 else
2484 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2485 }
2486 #else
sched_tick_offload_init(void)2487 static inline int sched_tick_offload_init(void) { return 0; }
sched_update_tick_dependency(struct rq * rq)2488 static inline void sched_update_tick_dependency(struct rq *rq) { }
2489 #endif
2490
add_nr_running(struct rq * rq,unsigned count)2491 static inline void add_nr_running(struct rq *rq, unsigned count)
2492 {
2493 unsigned prev_nr = rq->nr_running;
2494
2495 rq->nr_running = prev_nr + count;
2496 if (trace_sched_update_nr_running_tp_enabled()) {
2497 call_trace_sched_update_nr_running(rq, count);
2498 }
2499
2500 #ifdef CONFIG_SMP
2501 if (prev_nr < 2 && rq->nr_running >= 2) {
2502 if (!READ_ONCE(rq->rd->overload))
2503 WRITE_ONCE(rq->rd->overload, 1);
2504 }
2505 #endif
2506
2507 sched_update_tick_dependency(rq);
2508 }
2509
sub_nr_running(struct rq * rq,unsigned count)2510 static inline void sub_nr_running(struct rq *rq, unsigned count)
2511 {
2512 rq->nr_running -= count;
2513 if (trace_sched_update_nr_running_tp_enabled()) {
2514 call_trace_sched_update_nr_running(rq, -count);
2515 }
2516
2517 /* Check if we still need preemption */
2518 sched_update_tick_dependency(rq);
2519 }
2520
2521 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2522 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2523
2524 extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags);
2525
2526 #ifdef CONFIG_PREEMPT_RT
2527 #define SCHED_NR_MIGRATE_BREAK 8
2528 #else
2529 #define SCHED_NR_MIGRATE_BREAK 32
2530 #endif
2531
2532 extern const_debug unsigned int sysctl_sched_nr_migrate;
2533 extern const_debug unsigned int sysctl_sched_migration_cost;
2534
2535 extern unsigned int sysctl_sched_base_slice;
2536
2537 #ifdef CONFIG_SCHED_DEBUG
2538 extern int sysctl_resched_latency_warn_ms;
2539 extern int sysctl_resched_latency_warn_once;
2540
2541 extern unsigned int sysctl_sched_tunable_scaling;
2542
2543 extern unsigned int sysctl_numa_balancing_scan_delay;
2544 extern unsigned int sysctl_numa_balancing_scan_period_min;
2545 extern unsigned int sysctl_numa_balancing_scan_period_max;
2546 extern unsigned int sysctl_numa_balancing_scan_size;
2547 extern unsigned int sysctl_numa_balancing_hot_threshold;
2548 #endif
2549
2550 #ifdef CONFIG_SCHED_HRTICK
2551
2552 /*
2553 * Use hrtick when:
2554 * - enabled by features
2555 * - hrtimer is actually high res
2556 */
hrtick_enabled(struct rq * rq)2557 static inline int hrtick_enabled(struct rq *rq)
2558 {
2559 if (!cpu_active(cpu_of(rq)))
2560 return 0;
2561 return hrtimer_is_hres_active(&rq->hrtick_timer);
2562 }
2563
hrtick_enabled_fair(struct rq * rq)2564 static inline int hrtick_enabled_fair(struct rq *rq)
2565 {
2566 if (!sched_feat(HRTICK))
2567 return 0;
2568 return hrtick_enabled(rq);
2569 }
2570
hrtick_enabled_dl(struct rq * rq)2571 static inline int hrtick_enabled_dl(struct rq *rq)
2572 {
2573 if (!sched_feat(HRTICK_DL))
2574 return 0;
2575 return hrtick_enabled(rq);
2576 }
2577
2578 void hrtick_start(struct rq *rq, u64 delay);
2579
2580 #else
2581
hrtick_enabled_fair(struct rq * rq)2582 static inline int hrtick_enabled_fair(struct rq *rq)
2583 {
2584 return 0;
2585 }
2586
hrtick_enabled_dl(struct rq * rq)2587 static inline int hrtick_enabled_dl(struct rq *rq)
2588 {
2589 return 0;
2590 }
2591
hrtick_enabled(struct rq * rq)2592 static inline int hrtick_enabled(struct rq *rq)
2593 {
2594 return 0;
2595 }
2596
2597 #endif /* CONFIG_SCHED_HRTICK */
2598
2599 #ifndef arch_scale_freq_tick
2600 static __always_inline
arch_scale_freq_tick(void)2601 void arch_scale_freq_tick(void)
2602 {
2603 }
2604 #endif
2605
2606 #ifndef arch_scale_freq_capacity
2607 /**
2608 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2609 * @cpu: the CPU in question.
2610 *
2611 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2612 *
2613 * f_curr
2614 * ------ * SCHED_CAPACITY_SCALE
2615 * f_max
2616 */
2617 static __always_inline
arch_scale_freq_capacity(int cpu)2618 unsigned long arch_scale_freq_capacity(int cpu)
2619 {
2620 return SCHED_CAPACITY_SCALE;
2621 }
2622 #endif
2623
2624 #ifdef CONFIG_SCHED_DEBUG
2625 /*
2626 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2627 * acquire rq lock instead of rq_lock(). So at the end of these two functions
2628 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2629 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2630 */
double_rq_clock_clear_update(struct rq * rq1,struct rq * rq2)2631 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
2632 {
2633 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2634 /* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2635 #ifdef CONFIG_SMP
2636 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2637 #endif
2638 }
2639 #else
double_rq_clock_clear_update(struct rq * rq1,struct rq * rq2)2640 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {}
2641 #endif
2642
2643 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...) \
2644 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \
2645 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \
2646 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t; \
2647 _lock; return _t; }
2648
2649 #ifdef CONFIG_SMP
2650
rq_order_less(struct rq * rq1,struct rq * rq2)2651 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
2652 {
2653 #ifdef CONFIG_SCHED_CORE
2654 /*
2655 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2656 * order by core-id first and cpu-id second.
2657 *
2658 * Notably:
2659 *
2660 * double_rq_lock(0,3); will take core-0, core-1 lock
2661 * double_rq_lock(1,2); will take core-1, core-0 lock
2662 *
2663 * when only cpu-id is considered.
2664 */
2665 if (rq1->core->cpu < rq2->core->cpu)
2666 return true;
2667 if (rq1->core->cpu > rq2->core->cpu)
2668 return false;
2669
2670 /*
2671 * __sched_core_flip() relies on SMT having cpu-id lock order.
2672 */
2673 #endif
2674 return rq1->cpu < rq2->cpu;
2675 }
2676
2677 extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
2678
2679 #ifdef CONFIG_PREEMPTION
2680
2681 /*
2682 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2683 * way at the expense of forcing extra atomic operations in all
2684 * invocations. This assures that the double_lock is acquired using the
2685 * same underlying policy as the spinlock_t on this architecture, which
2686 * reduces latency compared to the unfair variant below. However, it
2687 * also adds more overhead and therefore may reduce throughput.
2688 */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2689 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2690 __releases(this_rq->lock)
2691 __acquires(busiest->lock)
2692 __acquires(this_rq->lock)
2693 {
2694 raw_spin_rq_unlock(this_rq);
2695 double_rq_lock(this_rq, busiest);
2696
2697 return 1;
2698 }
2699
2700 #else
2701 /*
2702 * Unfair double_lock_balance: Optimizes throughput at the expense of
2703 * latency by eliminating extra atomic operations when the locks are
2704 * already in proper order on entry. This favors lower CPU-ids and will
2705 * grant the double lock to lower CPUs over higher ids under contention,
2706 * regardless of entry order into the function.
2707 */
_double_lock_balance(struct rq * this_rq,struct rq * busiest)2708 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2709 __releases(this_rq->lock)
2710 __acquires(busiest->lock)
2711 __acquires(this_rq->lock)
2712 {
2713 if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
2714 likely(raw_spin_rq_trylock(busiest))) {
2715 double_rq_clock_clear_update(this_rq, busiest);
2716 return 0;
2717 }
2718
2719 if (rq_order_less(this_rq, busiest)) {
2720 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2721 double_rq_clock_clear_update(this_rq, busiest);
2722 return 0;
2723 }
2724
2725 raw_spin_rq_unlock(this_rq);
2726 double_rq_lock(this_rq, busiest);
2727
2728 return 1;
2729 }
2730
2731 #endif /* CONFIG_PREEMPTION */
2732
2733 /*
2734 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2735 */
double_lock_balance(struct rq * this_rq,struct rq * busiest)2736 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2737 {
2738 lockdep_assert_irqs_disabled();
2739
2740 return _double_lock_balance(this_rq, busiest);
2741 }
2742
double_unlock_balance(struct rq * this_rq,struct rq * busiest)2743 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2744 __releases(busiest->lock)
2745 {
2746 if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2747 raw_spin_rq_unlock(busiest);
2748 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2749 }
2750
double_lock(spinlock_t * l1,spinlock_t * l2)2751 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2752 {
2753 if (l1 > l2)
2754 swap(l1, l2);
2755
2756 spin_lock(l1);
2757 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2758 }
2759
double_lock_irq(spinlock_t * l1,spinlock_t * l2)2760 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2761 {
2762 if (l1 > l2)
2763 swap(l1, l2);
2764
2765 spin_lock_irq(l1);
2766 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2767 }
2768
double_raw_lock(raw_spinlock_t * l1,raw_spinlock_t * l2)2769 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2770 {
2771 if (l1 > l2)
2772 swap(l1, l2);
2773
2774 raw_spin_lock(l1);
2775 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2776 }
2777
double_raw_unlock(raw_spinlock_t * l1,raw_spinlock_t * l2)2778 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2779 {
2780 raw_spin_unlock(l1);
2781 raw_spin_unlock(l2);
2782 }
2783
2784 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t,
2785 double_raw_lock(_T->lock, _T->lock2),
2786 double_raw_unlock(_T->lock, _T->lock2))
2787
2788 /*
2789 * double_rq_unlock - safely unlock two runqueues
2790 *
2791 * Note this does not restore interrupts like task_rq_unlock,
2792 * you need to do so manually after calling.
2793 */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2794 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2795 __releases(rq1->lock)
2796 __releases(rq2->lock)
2797 {
2798 if (__rq_lockp(rq1) != __rq_lockp(rq2))
2799 raw_spin_rq_unlock(rq2);
2800 else
2801 __release(rq2->lock);
2802 raw_spin_rq_unlock(rq1);
2803 }
2804
2805 extern void set_rq_online (struct rq *rq);
2806 extern void set_rq_offline(struct rq *rq);
2807 extern bool sched_smp_initialized;
2808
2809 #else /* CONFIG_SMP */
2810
2811 /*
2812 * double_rq_lock - safely lock two runqueues
2813 *
2814 * Note this does not disable interrupts like task_rq_lock,
2815 * you need to do so manually before calling.
2816 */
double_rq_lock(struct rq * rq1,struct rq * rq2)2817 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2818 __acquires(rq1->lock)
2819 __acquires(rq2->lock)
2820 {
2821 WARN_ON_ONCE(!irqs_disabled());
2822 WARN_ON_ONCE(rq1 != rq2);
2823 raw_spin_rq_lock(rq1);
2824 __acquire(rq2->lock); /* Fake it out ;) */
2825 double_rq_clock_clear_update(rq1, rq2);
2826 }
2827
2828 /*
2829 * double_rq_unlock - safely unlock two runqueues
2830 *
2831 * Note this does not restore interrupts like task_rq_unlock,
2832 * you need to do so manually after calling.
2833 */
double_rq_unlock(struct rq * rq1,struct rq * rq2)2834 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2835 __releases(rq1->lock)
2836 __releases(rq2->lock)
2837 {
2838 WARN_ON_ONCE(rq1 != rq2);
2839 raw_spin_rq_unlock(rq1);
2840 __release(rq2->lock);
2841 }
2842
2843 #endif
2844
2845 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq,
2846 double_rq_lock(_T->lock, _T->lock2),
2847 double_rq_unlock(_T->lock, _T->lock2))
2848
2849 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2850 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2851
2852 #ifdef CONFIG_SCHED_DEBUG
2853 extern bool sched_debug_verbose;
2854
2855 extern void print_cfs_stats(struct seq_file *m, int cpu);
2856 extern void print_rt_stats(struct seq_file *m, int cpu);
2857 extern void print_dl_stats(struct seq_file *m, int cpu);
2858 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2859 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2860 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2861
2862 extern void resched_latency_warn(int cpu, u64 latency);
2863 #ifdef CONFIG_NUMA_BALANCING
2864 extern void
2865 show_numa_stats(struct task_struct *p, struct seq_file *m);
2866 extern void
2867 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2868 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2869 #endif /* CONFIG_NUMA_BALANCING */
2870 #else
resched_latency_warn(int cpu,u64 latency)2871 static inline void resched_latency_warn(int cpu, u64 latency) {}
2872 #endif /* CONFIG_SCHED_DEBUG */
2873
2874 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2875 extern void init_rt_rq(struct rt_rq *rt_rq);
2876 extern void init_dl_rq(struct dl_rq *dl_rq);
2877
2878 extern void cfs_bandwidth_usage_inc(void);
2879 extern void cfs_bandwidth_usage_dec(void);
2880
2881 #ifdef CONFIG_NO_HZ_COMMON
2882 #define NOHZ_BALANCE_KICK_BIT 0
2883 #define NOHZ_STATS_KICK_BIT 1
2884 #define NOHZ_NEWILB_KICK_BIT 2
2885 #define NOHZ_NEXT_KICK_BIT 3
2886
2887 /* Run rebalance_domains() */
2888 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
2889 /* Update blocked load */
2890 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2891 /* Update blocked load when entering idle */
2892 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT)
2893 /* Update nohz.next_balance */
2894 #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT)
2895
2896 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
2897
2898 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
2899
2900 extern void nohz_balance_exit_idle(struct rq *rq);
2901 #else
nohz_balance_exit_idle(struct rq * rq)2902 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2903 #endif
2904
2905 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2906 extern void nohz_run_idle_balance(int cpu);
2907 #else
nohz_run_idle_balance(int cpu)2908 static inline void nohz_run_idle_balance(int cpu) { }
2909 #endif
2910
2911 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2912 struct irqtime {
2913 u64 total;
2914 u64 tick_delta;
2915 u64 irq_start_time;
2916 struct u64_stats_sync sync;
2917 };
2918
2919 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2920
2921 /*
2922 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2923 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2924 * and never move forward.
2925 */
irq_time_read(int cpu)2926 static inline u64 irq_time_read(int cpu)
2927 {
2928 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2929 unsigned int seq;
2930 u64 total;
2931
2932 do {
2933 seq = __u64_stats_fetch_begin(&irqtime->sync);
2934 total = irqtime->total;
2935 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2936
2937 return total;
2938 }
2939 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2940
2941 #ifdef CONFIG_CPU_FREQ
2942 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2943
2944 /**
2945 * cpufreq_update_util - Take a note about CPU utilization changes.
2946 * @rq: Runqueue to carry out the update for.
2947 * @flags: Update reason flags.
2948 *
2949 * This function is called by the scheduler on the CPU whose utilization is
2950 * being updated.
2951 *
2952 * It can only be called from RCU-sched read-side critical sections.
2953 *
2954 * The way cpufreq is currently arranged requires it to evaluate the CPU
2955 * performance state (frequency/voltage) on a regular basis to prevent it from
2956 * being stuck in a completely inadequate performance level for too long.
2957 * That is not guaranteed to happen if the updates are only triggered from CFS
2958 * and DL, though, because they may not be coming in if only RT tasks are
2959 * active all the time (or there are RT tasks only).
2960 *
2961 * As a workaround for that issue, this function is called periodically by the
2962 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2963 * but that really is a band-aid. Going forward it should be replaced with
2964 * solutions targeted more specifically at RT tasks.
2965 */
cpufreq_update_util(struct rq * rq,unsigned int flags)2966 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2967 {
2968 struct update_util_data *data;
2969
2970 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2971 cpu_of(rq)));
2972 if (data)
2973 data->func(data, rq_clock(rq), flags);
2974 }
2975 #else
cpufreq_update_util(struct rq * rq,unsigned int flags)2976 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2977 #endif /* CONFIG_CPU_FREQ */
2978
2979 #ifdef arch_scale_freq_capacity
2980 # ifndef arch_scale_freq_invariant
2981 # define arch_scale_freq_invariant() true
2982 # endif
2983 #else
2984 # define arch_scale_freq_invariant() false
2985 #endif
2986
2987 #ifdef CONFIG_SMP
capacity_orig_of(int cpu)2988 static inline unsigned long capacity_orig_of(int cpu)
2989 {
2990 return cpu_rq(cpu)->cpu_capacity_orig;
2991 }
2992
2993 /**
2994 * enum cpu_util_type - CPU utilization type
2995 * @FREQUENCY_UTIL: Utilization used to select frequency
2996 * @ENERGY_UTIL: Utilization used during energy calculation
2997 *
2998 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2999 * need to be aggregated differently depending on the usage made of them. This
3000 * enum is used within effective_cpu_util() to differentiate the types of
3001 * utilization expected by the callers, and adjust the aggregation accordingly.
3002 */
3003 enum cpu_util_type {
3004 FREQUENCY_UTIL,
3005 ENERGY_UTIL,
3006 };
3007
3008 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
3009 enum cpu_util_type type,
3010 struct task_struct *p);
3011
3012 /*
3013 * Verify the fitness of task @p to run on @cpu taking into account the
3014 * CPU original capacity and the runtime/deadline ratio of the task.
3015 *
3016 * The function will return true if the original capacity of @cpu is
3017 * greater than or equal to task's deadline density right shifted by
3018 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
3019 */
dl_task_fits_capacity(struct task_struct * p,int cpu)3020 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
3021 {
3022 unsigned long cap = arch_scale_cpu_capacity(cpu);
3023
3024 return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
3025 }
3026
cpu_bw_dl(struct rq * rq)3027 static inline unsigned long cpu_bw_dl(struct rq *rq)
3028 {
3029 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
3030 }
3031
cpu_util_dl(struct rq * rq)3032 static inline unsigned long cpu_util_dl(struct rq *rq)
3033 {
3034 return READ_ONCE(rq->avg_dl.util_avg);
3035 }
3036
3037
3038 extern unsigned long cpu_util_cfs(int cpu);
3039 extern unsigned long cpu_util_cfs_boost(int cpu);
3040
cpu_util_rt(struct rq * rq)3041 static inline unsigned long cpu_util_rt(struct rq *rq)
3042 {
3043 return READ_ONCE(rq->avg_rt.util_avg);
3044 }
3045 #endif
3046
3047 #ifdef CONFIG_UCLAMP_TASK
3048 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3049
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)3050 static inline unsigned long uclamp_rq_get(struct rq *rq,
3051 enum uclamp_id clamp_id)
3052 {
3053 return READ_ONCE(rq->uclamp[clamp_id].value);
3054 }
3055
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)3056 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3057 unsigned int value)
3058 {
3059 WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3060 }
3061
uclamp_rq_is_idle(struct rq * rq)3062 static inline bool uclamp_rq_is_idle(struct rq *rq)
3063 {
3064 return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3065 }
3066
3067 /**
3068 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
3069 * @rq: The rq to clamp against. Must not be NULL.
3070 * @util: The util value to clamp.
3071 * @p: The task to clamp against. Can be NULL if you want to clamp
3072 * against @rq only.
3073 *
3074 * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
3075 *
3076 * If sched_uclamp_used static key is disabled, then just return the util
3077 * without any clamping since uclamp aggregation at the rq level in the fast
3078 * path is disabled, rendering this operation a NOP.
3079 *
3080 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
3081 * will return the correct effective uclamp value of the task even if the
3082 * static key is disabled.
3083 */
3084 static __always_inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)3085 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3086 struct task_struct *p)
3087 {
3088 unsigned long min_util = 0;
3089 unsigned long max_util = 0;
3090
3091 if (!static_branch_likely(&sched_uclamp_used))
3092 return util;
3093
3094 if (p) {
3095 min_util = uclamp_eff_value(p, UCLAMP_MIN);
3096 max_util = uclamp_eff_value(p, UCLAMP_MAX);
3097
3098 /*
3099 * Ignore last runnable task's max clamp, as this task will
3100 * reset it. Similarly, no need to read the rq's min clamp.
3101 */
3102 if (uclamp_rq_is_idle(rq))
3103 goto out;
3104 }
3105
3106 min_util = max_t(unsigned long, min_util, uclamp_rq_get(rq, UCLAMP_MIN));
3107 max_util = max_t(unsigned long, max_util, uclamp_rq_get(rq, UCLAMP_MAX));
3108 out:
3109 /*
3110 * Since CPU's {min,max}_util clamps are MAX aggregated considering
3111 * RUNNABLE tasks with _different_ clamps, we can end up with an
3112 * inversion. Fix it now when the clamps are applied.
3113 */
3114 if (unlikely(min_util >= max_util))
3115 return min_util;
3116
3117 return clamp(util, min_util, max_util);
3118 }
3119
3120 /* Is the rq being capped/throttled by uclamp_max? */
uclamp_rq_is_capped(struct rq * rq)3121 static inline bool uclamp_rq_is_capped(struct rq *rq)
3122 {
3123 unsigned long rq_util;
3124 unsigned long max_util;
3125
3126 if (!static_branch_likely(&sched_uclamp_used))
3127 return false;
3128
3129 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3130 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3131
3132 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3133 }
3134
3135 /*
3136 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3137 * by default in the fast path and only gets turned on once userspace performs
3138 * an operation that requires it.
3139 *
3140 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3141 * hence is active.
3142 */
uclamp_is_used(void)3143 static inline bool uclamp_is_used(void)
3144 {
3145 return static_branch_likely(&sched_uclamp_used);
3146 }
3147 #else /* CONFIG_UCLAMP_TASK */
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)3148 static inline unsigned long uclamp_eff_value(struct task_struct *p,
3149 enum uclamp_id clamp_id)
3150 {
3151 if (clamp_id == UCLAMP_MIN)
3152 return 0;
3153
3154 return SCHED_CAPACITY_SCALE;
3155 }
3156
3157 static inline
uclamp_rq_util_with(struct rq * rq,unsigned long util,struct task_struct * p)3158 unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3159 struct task_struct *p)
3160 {
3161 return util;
3162 }
3163
uclamp_rq_is_capped(struct rq * rq)3164 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3165
uclamp_is_used(void)3166 static inline bool uclamp_is_used(void)
3167 {
3168 return false;
3169 }
3170
uclamp_rq_get(struct rq * rq,enum uclamp_id clamp_id)3171 static inline unsigned long uclamp_rq_get(struct rq *rq,
3172 enum uclamp_id clamp_id)
3173 {
3174 if (clamp_id == UCLAMP_MIN)
3175 return 0;
3176
3177 return SCHED_CAPACITY_SCALE;
3178 }
3179
uclamp_rq_set(struct rq * rq,enum uclamp_id clamp_id,unsigned int value)3180 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3181 unsigned int value)
3182 {
3183 }
3184
uclamp_rq_is_idle(struct rq * rq)3185 static inline bool uclamp_rq_is_idle(struct rq *rq)
3186 {
3187 return false;
3188 }
3189 #endif /* CONFIG_UCLAMP_TASK */
3190
3191 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
cpu_util_irq(struct rq * rq)3192 static inline unsigned long cpu_util_irq(struct rq *rq)
3193 {
3194 return rq->avg_irq.util_avg;
3195 }
3196
3197 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)3198 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3199 {
3200 util *= (max - irq);
3201 util /= max;
3202
3203 return util;
3204
3205 }
3206 #else
cpu_util_irq(struct rq * rq)3207 static inline unsigned long cpu_util_irq(struct rq *rq)
3208 {
3209 return 0;
3210 }
3211
3212 static inline
scale_irq_capacity(unsigned long util,unsigned long irq,unsigned long max)3213 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3214 {
3215 return util;
3216 }
3217 #endif
3218
3219 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3220
3221 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3222
3223 DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3224
sched_energy_enabled(void)3225 static inline bool sched_energy_enabled(void)
3226 {
3227 return static_branch_unlikely(&sched_energy_present);
3228 }
3229
3230 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3231
3232 #define perf_domain_span(pd) NULL
sched_energy_enabled(void)3233 static inline bool sched_energy_enabled(void) { return false; }
3234
3235 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3236
3237 #ifdef CONFIG_MEMBARRIER
3238 /*
3239 * The scheduler provides memory barriers required by membarrier between:
3240 * - prior user-space memory accesses and store to rq->membarrier_state,
3241 * - store to rq->membarrier_state and following user-space memory accesses.
3242 * In the same way it provides those guarantees around store to rq->curr.
3243 */
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)3244 static inline void membarrier_switch_mm(struct rq *rq,
3245 struct mm_struct *prev_mm,
3246 struct mm_struct *next_mm)
3247 {
3248 int membarrier_state;
3249
3250 if (prev_mm == next_mm)
3251 return;
3252
3253 membarrier_state = atomic_read(&next_mm->membarrier_state);
3254 if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3255 return;
3256
3257 WRITE_ONCE(rq->membarrier_state, membarrier_state);
3258 }
3259 #else
membarrier_switch_mm(struct rq * rq,struct mm_struct * prev_mm,struct mm_struct * next_mm)3260 static inline void membarrier_switch_mm(struct rq *rq,
3261 struct mm_struct *prev_mm,
3262 struct mm_struct *next_mm)
3263 {
3264 }
3265 #endif
3266
3267 #ifdef CONFIG_SMP
is_per_cpu_kthread(struct task_struct * p)3268 static inline bool is_per_cpu_kthread(struct task_struct *p)
3269 {
3270 if (!(p->flags & PF_KTHREAD))
3271 return false;
3272
3273 if (p->nr_cpus_allowed != 1)
3274 return false;
3275
3276 return true;
3277 }
3278 #endif
3279
3280 extern void swake_up_all_locked(struct swait_queue_head *q);
3281 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3282
3283 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);
3284
3285 #ifdef CONFIG_PREEMPT_DYNAMIC
3286 extern int preempt_dynamic_mode;
3287 extern int sched_dynamic_mode(const char *str);
3288 extern void sched_dynamic_update(int mode);
3289 #endif
3290
3291 #ifdef CONFIG_SCHED_MM_CID
3292
3293 #define SCHED_MM_CID_PERIOD_NS (100ULL * 1000000) /* 100ms */
3294 #define MM_CID_SCAN_DELAY 100 /* 100ms */
3295
3296 extern raw_spinlock_t cid_lock;
3297 extern int use_cid_lock;
3298
3299 extern void sched_mm_cid_migrate_from(struct task_struct *t);
3300 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
3301 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
3302 extern void init_sched_mm_cid(struct task_struct *t);
3303
__mm_cid_put(struct mm_struct * mm,int cid)3304 static inline void __mm_cid_put(struct mm_struct *mm, int cid)
3305 {
3306 if (cid < 0)
3307 return;
3308 cpumask_clear_cpu(cid, mm_cidmask(mm));
3309 }
3310
3311 /*
3312 * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
3313 * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
3314 * be held to transition to other states.
3315 *
3316 * State transitions synchronized with cmpxchg or try_cmpxchg need to be
3317 * consistent across cpus, which prevents use of this_cpu_cmpxchg.
3318 */
mm_cid_put_lazy(struct task_struct * t)3319 static inline void mm_cid_put_lazy(struct task_struct *t)
3320 {
3321 struct mm_struct *mm = t->mm;
3322 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3323 int cid;
3324
3325 lockdep_assert_irqs_disabled();
3326 cid = __this_cpu_read(pcpu_cid->cid);
3327 if (!mm_cid_is_lazy_put(cid) ||
3328 !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3329 return;
3330 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3331 }
3332
mm_cid_pcpu_unset(struct mm_struct * mm)3333 static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
3334 {
3335 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3336 int cid, res;
3337
3338 lockdep_assert_irqs_disabled();
3339 cid = __this_cpu_read(pcpu_cid->cid);
3340 for (;;) {
3341 if (mm_cid_is_unset(cid))
3342 return MM_CID_UNSET;
3343 /*
3344 * Attempt transition from valid or lazy-put to unset.
3345 */
3346 res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
3347 if (res == cid)
3348 break;
3349 cid = res;
3350 }
3351 return cid;
3352 }
3353
mm_cid_put(struct mm_struct * mm)3354 static inline void mm_cid_put(struct mm_struct *mm)
3355 {
3356 int cid;
3357
3358 lockdep_assert_irqs_disabled();
3359 cid = mm_cid_pcpu_unset(mm);
3360 if (cid == MM_CID_UNSET)
3361 return;
3362 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3363 }
3364
__mm_cid_try_get(struct mm_struct * mm)3365 static inline int __mm_cid_try_get(struct mm_struct *mm)
3366 {
3367 struct cpumask *cpumask;
3368 int cid;
3369
3370 cpumask = mm_cidmask(mm);
3371 /*
3372 * Retry finding first zero bit if the mask is temporarily
3373 * filled. This only happens during concurrent remote-clear
3374 * which owns a cid without holding a rq lock.
3375 */
3376 for (;;) {
3377 cid = cpumask_first_zero(cpumask);
3378 if (cid < nr_cpu_ids)
3379 break;
3380 cpu_relax();
3381 }
3382 if (cpumask_test_and_set_cpu(cid, cpumask))
3383 return -1;
3384 return cid;
3385 }
3386
3387 /*
3388 * Save a snapshot of the current runqueue time of this cpu
3389 * with the per-cpu cid value, allowing to estimate how recently it was used.
3390 */
mm_cid_snapshot_time(struct rq * rq,struct mm_struct * mm)3391 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
3392 {
3393 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
3394
3395 lockdep_assert_rq_held(rq);
3396 WRITE_ONCE(pcpu_cid->time, rq->clock);
3397 }
3398
__mm_cid_get(struct rq * rq,struct mm_struct * mm)3399 static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm)
3400 {
3401 int cid;
3402
3403 /*
3404 * All allocations (even those using the cid_lock) are lock-free. If
3405 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
3406 * guarantee forward progress.
3407 */
3408 if (!READ_ONCE(use_cid_lock)) {
3409 cid = __mm_cid_try_get(mm);
3410 if (cid >= 0)
3411 goto end;
3412 raw_spin_lock(&cid_lock);
3413 } else {
3414 raw_spin_lock(&cid_lock);
3415 cid = __mm_cid_try_get(mm);
3416 if (cid >= 0)
3417 goto unlock;
3418 }
3419
3420 /*
3421 * cid concurrently allocated. Retry while forcing following
3422 * allocations to use the cid_lock to ensure forward progress.
3423 */
3424 WRITE_ONCE(use_cid_lock, 1);
3425 /*
3426 * Set use_cid_lock before allocation. Only care about program order
3427 * because this is only required for forward progress.
3428 */
3429 barrier();
3430 /*
3431 * Retry until it succeeds. It is guaranteed to eventually succeed once
3432 * all newcoming allocations observe the use_cid_lock flag set.
3433 */
3434 do {
3435 cid = __mm_cid_try_get(mm);
3436 cpu_relax();
3437 } while (cid < 0);
3438 /*
3439 * Allocate before clearing use_cid_lock. Only care about
3440 * program order because this is for forward progress.
3441 */
3442 barrier();
3443 WRITE_ONCE(use_cid_lock, 0);
3444 unlock:
3445 raw_spin_unlock(&cid_lock);
3446 end:
3447 mm_cid_snapshot_time(rq, mm);
3448 return cid;
3449 }
3450
mm_cid_get(struct rq * rq,struct mm_struct * mm)3451 static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm)
3452 {
3453 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3454 struct cpumask *cpumask;
3455 int cid;
3456
3457 lockdep_assert_rq_held(rq);
3458 cpumask = mm_cidmask(mm);
3459 cid = __this_cpu_read(pcpu_cid->cid);
3460 if (mm_cid_is_valid(cid)) {
3461 mm_cid_snapshot_time(rq, mm);
3462 return cid;
3463 }
3464 if (mm_cid_is_lazy_put(cid)) {
3465 if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3466 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3467 }
3468 cid = __mm_cid_get(rq, mm);
3469 __this_cpu_write(pcpu_cid->cid, cid);
3470 return cid;
3471 }
3472
switch_mm_cid(struct rq * rq,struct task_struct * prev,struct task_struct * next)3473 static inline void switch_mm_cid(struct rq *rq,
3474 struct task_struct *prev,
3475 struct task_struct *next)
3476 {
3477 /*
3478 * Provide a memory barrier between rq->curr store and load of
3479 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
3480 *
3481 * Should be adapted if context_switch() is modified.
3482 */
3483 if (!next->mm) { // to kernel
3484 /*
3485 * user -> kernel transition does not guarantee a barrier, but
3486 * we can use the fact that it performs an atomic operation in
3487 * mmgrab().
3488 */
3489 if (prev->mm) // from user
3490 smp_mb__after_mmgrab();
3491 /*
3492 * kernel -> kernel transition does not change rq->curr->mm
3493 * state. It stays NULL.
3494 */
3495 } else { // to user
3496 /*
3497 * kernel -> user transition does not provide a barrier
3498 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
3499 * Provide it here.
3500 */
3501 if (!prev->mm) { // from kernel
3502 smp_mb();
3503 } else { // from user
3504 /*
3505 * user->user transition relies on an implicit
3506 * memory barrier in switch_mm() when
3507 * current->mm changes. If the architecture
3508 * switch_mm() does not have an implicit memory
3509 * barrier, it is emitted here. If current->mm
3510 * is unchanged, no barrier is needed.
3511 */
3512 smp_mb__after_switch_mm();
3513 }
3514 }
3515 if (prev->mm_cid_active) {
3516 mm_cid_snapshot_time(rq, prev->mm);
3517 mm_cid_put_lazy(prev);
3518 prev->mm_cid = -1;
3519 }
3520 if (next->mm_cid_active)
3521 next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm);
3522 }
3523
3524 #else
switch_mm_cid(struct rq * rq,struct task_struct * prev,struct task_struct * next)3525 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
sched_mm_cid_migrate_from(struct task_struct * t)3526 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
sched_mm_cid_migrate_to(struct rq * dst_rq,struct task_struct * t)3527 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
task_tick_mm_cid(struct rq * rq,struct task_struct * curr)3528 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
init_sched_mm_cid(struct task_struct * t)3529 static inline void init_sched_mm_cid(struct task_struct *t) { }
3530 #endif
3531
3532 extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
3533 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
3534
3535 #endif /* _KERNEL_SCHED_SCHED_H */
3536