1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3 * Copyright (c) 2014-2017 Oracle. All rights reserved.
4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the BSD-type
10 * license below:
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 *
16 * Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 *
19 * Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials provided
22 * with the distribution.
23 *
24 * Neither the name of the Network Appliance, Inc. nor the names of
25 * its contributors may be used to endorse or promote products
26 * derived from this software without specific prior written
27 * permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42 /*
43 * verbs.c
44 *
45 * Encapsulates the major functions managing:
46 * o adapters
47 * o endpoints
48 * o connections
49 * o buffer memory
50 */
51
52 #include <linux/interrupt.h>
53 #include <linux/slab.h>
54 #include <linux/sunrpc/addr.h>
55 #include <linux/sunrpc/svc_rdma.h>
56 #include <linux/log2.h>
57
58 #include <asm-generic/barrier.h>
59 #include <asm/bitops.h>
60
61 #include <rdma/ib_cm.h>
62
63 #include "xprt_rdma.h"
64 #include <trace/events/rpcrdma.h>
65
66 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt);
67 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt);
68 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt,
69 struct rpcrdma_sendctx *sc);
70 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt);
71 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt);
72 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep);
73 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt);
74 static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt);
75 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt);
76 static void rpcrdma_ep_get(struct rpcrdma_ep *ep);
77 static int rpcrdma_ep_put(struct rpcrdma_ep *ep);
78 static struct rpcrdma_regbuf *
79 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction);
80 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb);
81 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb);
82
83 /* Wait for outstanding transport work to finish. ib_drain_qp
84 * handles the drains in the wrong order for us, so open code
85 * them here.
86 */
rpcrdma_xprt_drain(struct rpcrdma_xprt * r_xprt)87 static void rpcrdma_xprt_drain(struct rpcrdma_xprt *r_xprt)
88 {
89 struct rpcrdma_ep *ep = r_xprt->rx_ep;
90 struct rdma_cm_id *id = ep->re_id;
91
92 /* Wait for rpcrdma_post_recvs() to leave its critical
93 * section.
94 */
95 if (atomic_inc_return(&ep->re_receiving) > 1)
96 wait_for_completion(&ep->re_done);
97
98 /* Flush Receives, then wait for deferred Reply work
99 * to complete.
100 */
101 ib_drain_rq(id->qp);
102
103 /* Deferred Reply processing might have scheduled
104 * local invalidations.
105 */
106 ib_drain_sq(id->qp);
107
108 rpcrdma_ep_put(ep);
109 }
110
111 /* Ensure xprt_force_disconnect() is invoked exactly once when a
112 * connection is closed or lost. (The important thing is it needs
113 * to be invoked "at least" once).
114 */
rpcrdma_force_disconnect(struct rpcrdma_ep * ep)115 void rpcrdma_force_disconnect(struct rpcrdma_ep *ep)
116 {
117 if (atomic_add_unless(&ep->re_force_disconnect, 1, 1))
118 xprt_force_disconnect(ep->re_xprt);
119 }
120
121 /**
122 * rpcrdma_flush_disconnect - Disconnect on flushed completion
123 * @r_xprt: transport to disconnect
124 * @wc: work completion entry
125 *
126 * Must be called in process context.
127 */
rpcrdma_flush_disconnect(struct rpcrdma_xprt * r_xprt,struct ib_wc * wc)128 void rpcrdma_flush_disconnect(struct rpcrdma_xprt *r_xprt, struct ib_wc *wc)
129 {
130 if (wc->status != IB_WC_SUCCESS)
131 rpcrdma_force_disconnect(r_xprt->rx_ep);
132 }
133
134 /**
135 * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC
136 * @cq: completion queue
137 * @wc: WCE for a completed Send WR
138 *
139 */
rpcrdma_wc_send(struct ib_cq * cq,struct ib_wc * wc)140 static void rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc)
141 {
142 struct ib_cqe *cqe = wc->wr_cqe;
143 struct rpcrdma_sendctx *sc =
144 container_of(cqe, struct rpcrdma_sendctx, sc_cqe);
145 struct rpcrdma_xprt *r_xprt = cq->cq_context;
146
147 /* WARNING: Only wr_cqe and status are reliable at this point */
148 trace_xprtrdma_wc_send(wc, &sc->sc_cid);
149 rpcrdma_sendctx_put_locked(r_xprt, sc);
150 rpcrdma_flush_disconnect(r_xprt, wc);
151 }
152
153 /**
154 * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC
155 * @cq: completion queue
156 * @wc: WCE for a completed Receive WR
157 *
158 */
rpcrdma_wc_receive(struct ib_cq * cq,struct ib_wc * wc)159 static void rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc)
160 {
161 struct ib_cqe *cqe = wc->wr_cqe;
162 struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep,
163 rr_cqe);
164 struct rpcrdma_xprt *r_xprt = cq->cq_context;
165
166 /* WARNING: Only wr_cqe and status are reliable at this point */
167 trace_xprtrdma_wc_receive(wc, &rep->rr_cid);
168 --r_xprt->rx_ep->re_receive_count;
169 if (wc->status != IB_WC_SUCCESS)
170 goto out_flushed;
171
172 /* status == SUCCESS means all fields in wc are trustworthy */
173 rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len);
174 rep->rr_wc_flags = wc->wc_flags;
175 rep->rr_inv_rkey = wc->ex.invalidate_rkey;
176
177 ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf),
178 rdmab_addr(rep->rr_rdmabuf),
179 wc->byte_len, DMA_FROM_DEVICE);
180
181 rpcrdma_reply_handler(rep);
182 return;
183
184 out_flushed:
185 rpcrdma_flush_disconnect(r_xprt, wc);
186 rpcrdma_rep_put(&r_xprt->rx_buf, rep);
187 }
188
rpcrdma_update_cm_private(struct rpcrdma_ep * ep,struct rdma_conn_param * param)189 static void rpcrdma_update_cm_private(struct rpcrdma_ep *ep,
190 struct rdma_conn_param *param)
191 {
192 const struct rpcrdma_connect_private *pmsg = param->private_data;
193 unsigned int rsize, wsize;
194
195 /* Default settings for RPC-over-RDMA Version One */
196 rsize = RPCRDMA_V1_DEF_INLINE_SIZE;
197 wsize = RPCRDMA_V1_DEF_INLINE_SIZE;
198
199 if (pmsg &&
200 pmsg->cp_magic == rpcrdma_cmp_magic &&
201 pmsg->cp_version == RPCRDMA_CMP_VERSION) {
202 rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size);
203 wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size);
204 }
205
206 if (rsize < ep->re_inline_recv)
207 ep->re_inline_recv = rsize;
208 if (wsize < ep->re_inline_send)
209 ep->re_inline_send = wsize;
210
211 rpcrdma_set_max_header_sizes(ep);
212 }
213
214 /**
215 * rpcrdma_cm_event_handler - Handle RDMA CM events
216 * @id: rdma_cm_id on which an event has occurred
217 * @event: details of the event
218 *
219 * Called with @id's mutex held. Returns 1 if caller should
220 * destroy @id, otherwise 0.
221 */
222 static int
rpcrdma_cm_event_handler(struct rdma_cm_id * id,struct rdma_cm_event * event)223 rpcrdma_cm_event_handler(struct rdma_cm_id *id, struct rdma_cm_event *event)
224 {
225 struct sockaddr *sap = (struct sockaddr *)&id->route.addr.dst_addr;
226 struct rpcrdma_ep *ep = id->context;
227
228 might_sleep();
229
230 switch (event->event) {
231 case RDMA_CM_EVENT_ADDR_RESOLVED:
232 case RDMA_CM_EVENT_ROUTE_RESOLVED:
233 ep->re_async_rc = 0;
234 complete(&ep->re_done);
235 return 0;
236 case RDMA_CM_EVENT_ADDR_ERROR:
237 ep->re_async_rc = -EPROTO;
238 complete(&ep->re_done);
239 return 0;
240 case RDMA_CM_EVENT_ROUTE_ERROR:
241 ep->re_async_rc = -ENETUNREACH;
242 complete(&ep->re_done);
243 return 0;
244 case RDMA_CM_EVENT_DEVICE_REMOVAL:
245 pr_info("rpcrdma: removing device %s for %pISpc\n",
246 ep->re_id->device->name, sap);
247 switch (xchg(&ep->re_connect_status, -ENODEV)) {
248 case 0: goto wake_connect_worker;
249 case 1: goto disconnected;
250 }
251 return 0;
252 case RDMA_CM_EVENT_ADDR_CHANGE:
253 ep->re_connect_status = -ENODEV;
254 goto disconnected;
255 case RDMA_CM_EVENT_ESTABLISHED:
256 rpcrdma_ep_get(ep);
257 ep->re_connect_status = 1;
258 rpcrdma_update_cm_private(ep, &event->param.conn);
259 trace_xprtrdma_inline_thresh(ep);
260 wake_up_all(&ep->re_connect_wait);
261 break;
262 case RDMA_CM_EVENT_CONNECT_ERROR:
263 ep->re_connect_status = -ENOTCONN;
264 goto wake_connect_worker;
265 case RDMA_CM_EVENT_UNREACHABLE:
266 ep->re_connect_status = -ENETUNREACH;
267 goto wake_connect_worker;
268 case RDMA_CM_EVENT_REJECTED:
269 ep->re_connect_status = -ECONNREFUSED;
270 if (event->status == IB_CM_REJ_STALE_CONN)
271 ep->re_connect_status = -ENOTCONN;
272 wake_connect_worker:
273 wake_up_all(&ep->re_connect_wait);
274 return 0;
275 case RDMA_CM_EVENT_DISCONNECTED:
276 ep->re_connect_status = -ECONNABORTED;
277 disconnected:
278 rpcrdma_force_disconnect(ep);
279 return rpcrdma_ep_put(ep);
280 default:
281 break;
282 }
283
284 return 0;
285 }
286
rpcrdma_create_id(struct rpcrdma_xprt * r_xprt,struct rpcrdma_ep * ep)287 static struct rdma_cm_id *rpcrdma_create_id(struct rpcrdma_xprt *r_xprt,
288 struct rpcrdma_ep *ep)
289 {
290 unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1;
291 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
292 struct rdma_cm_id *id;
293 int rc;
294
295 init_completion(&ep->re_done);
296
297 id = rdma_create_id(xprt->xprt_net, rpcrdma_cm_event_handler, ep,
298 RDMA_PS_TCP, IB_QPT_RC);
299 if (IS_ERR(id))
300 return id;
301
302 ep->re_async_rc = -ETIMEDOUT;
303 rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)&xprt->addr,
304 RDMA_RESOLVE_TIMEOUT);
305 if (rc)
306 goto out;
307 rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout);
308 if (rc < 0)
309 goto out;
310
311 rc = ep->re_async_rc;
312 if (rc)
313 goto out;
314
315 ep->re_async_rc = -ETIMEDOUT;
316 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
317 if (rc)
318 goto out;
319 rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout);
320 if (rc < 0)
321 goto out;
322 rc = ep->re_async_rc;
323 if (rc)
324 goto out;
325
326 return id;
327
328 out:
329 rdma_destroy_id(id);
330 return ERR_PTR(rc);
331 }
332
rpcrdma_ep_destroy(struct kref * kref)333 static void rpcrdma_ep_destroy(struct kref *kref)
334 {
335 struct rpcrdma_ep *ep = container_of(kref, struct rpcrdma_ep, re_kref);
336
337 if (ep->re_id->qp) {
338 rdma_destroy_qp(ep->re_id);
339 ep->re_id->qp = NULL;
340 }
341
342 if (ep->re_attr.recv_cq)
343 ib_free_cq(ep->re_attr.recv_cq);
344 ep->re_attr.recv_cq = NULL;
345 if (ep->re_attr.send_cq)
346 ib_free_cq(ep->re_attr.send_cq);
347 ep->re_attr.send_cq = NULL;
348
349 if (ep->re_pd)
350 ib_dealloc_pd(ep->re_pd);
351 ep->re_pd = NULL;
352
353 kfree(ep);
354 module_put(THIS_MODULE);
355 }
356
rpcrdma_ep_get(struct rpcrdma_ep * ep)357 static noinline void rpcrdma_ep_get(struct rpcrdma_ep *ep)
358 {
359 kref_get(&ep->re_kref);
360 }
361
362 /* Returns:
363 * %0 if @ep still has a positive kref count, or
364 * %1 if @ep was destroyed successfully.
365 */
rpcrdma_ep_put(struct rpcrdma_ep * ep)366 static noinline int rpcrdma_ep_put(struct rpcrdma_ep *ep)
367 {
368 return kref_put(&ep->re_kref, rpcrdma_ep_destroy);
369 }
370
rpcrdma_ep_create(struct rpcrdma_xprt * r_xprt)371 static int rpcrdma_ep_create(struct rpcrdma_xprt *r_xprt)
372 {
373 struct rpcrdma_connect_private *pmsg;
374 struct ib_device *device;
375 struct rdma_cm_id *id;
376 struct rpcrdma_ep *ep;
377 int rc;
378
379 ep = kzalloc(sizeof(*ep), XPRTRDMA_GFP_FLAGS);
380 if (!ep)
381 return -ENOTCONN;
382 ep->re_xprt = &r_xprt->rx_xprt;
383 kref_init(&ep->re_kref);
384
385 id = rpcrdma_create_id(r_xprt, ep);
386 if (IS_ERR(id)) {
387 kfree(ep);
388 return PTR_ERR(id);
389 }
390 __module_get(THIS_MODULE);
391 device = id->device;
392 ep->re_id = id;
393 reinit_completion(&ep->re_done);
394
395 ep->re_max_requests = r_xprt->rx_xprt.max_reqs;
396 ep->re_inline_send = xprt_rdma_max_inline_write;
397 ep->re_inline_recv = xprt_rdma_max_inline_read;
398 rc = frwr_query_device(ep, device);
399 if (rc)
400 goto out_destroy;
401
402 r_xprt->rx_buf.rb_max_requests = cpu_to_be32(ep->re_max_requests);
403
404 ep->re_attr.srq = NULL;
405 ep->re_attr.cap.max_inline_data = 0;
406 ep->re_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
407 ep->re_attr.qp_type = IB_QPT_RC;
408 ep->re_attr.port_num = ~0;
409
410 ep->re_send_batch = ep->re_max_requests >> 3;
411 ep->re_send_count = ep->re_send_batch;
412 init_waitqueue_head(&ep->re_connect_wait);
413
414 ep->re_attr.send_cq = ib_alloc_cq_any(device, r_xprt,
415 ep->re_attr.cap.max_send_wr,
416 IB_POLL_WORKQUEUE);
417 if (IS_ERR(ep->re_attr.send_cq)) {
418 rc = PTR_ERR(ep->re_attr.send_cq);
419 ep->re_attr.send_cq = NULL;
420 goto out_destroy;
421 }
422
423 ep->re_attr.recv_cq = ib_alloc_cq_any(device, r_xprt,
424 ep->re_attr.cap.max_recv_wr,
425 IB_POLL_WORKQUEUE);
426 if (IS_ERR(ep->re_attr.recv_cq)) {
427 rc = PTR_ERR(ep->re_attr.recv_cq);
428 ep->re_attr.recv_cq = NULL;
429 goto out_destroy;
430 }
431 ep->re_receive_count = 0;
432
433 /* Initialize cma parameters */
434 memset(&ep->re_remote_cma, 0, sizeof(ep->re_remote_cma));
435
436 /* Prepare RDMA-CM private message */
437 pmsg = &ep->re_cm_private;
438 pmsg->cp_magic = rpcrdma_cmp_magic;
439 pmsg->cp_version = RPCRDMA_CMP_VERSION;
440 pmsg->cp_flags |= RPCRDMA_CMP_F_SND_W_INV_OK;
441 pmsg->cp_send_size = rpcrdma_encode_buffer_size(ep->re_inline_send);
442 pmsg->cp_recv_size = rpcrdma_encode_buffer_size(ep->re_inline_recv);
443 ep->re_remote_cma.private_data = pmsg;
444 ep->re_remote_cma.private_data_len = sizeof(*pmsg);
445
446 /* Client offers RDMA Read but does not initiate */
447 ep->re_remote_cma.initiator_depth = 0;
448 ep->re_remote_cma.responder_resources =
449 min_t(int, U8_MAX, device->attrs.max_qp_rd_atom);
450
451 /* Limit transport retries so client can detect server
452 * GID changes quickly. RPC layer handles re-establishing
453 * transport connection and retransmission.
454 */
455 ep->re_remote_cma.retry_count = 6;
456
457 /* RPC-over-RDMA handles its own flow control. In addition,
458 * make all RNR NAKs visible so we know that RPC-over-RDMA
459 * flow control is working correctly (no NAKs should be seen).
460 */
461 ep->re_remote_cma.flow_control = 0;
462 ep->re_remote_cma.rnr_retry_count = 0;
463
464 ep->re_pd = ib_alloc_pd(device, 0);
465 if (IS_ERR(ep->re_pd)) {
466 rc = PTR_ERR(ep->re_pd);
467 ep->re_pd = NULL;
468 goto out_destroy;
469 }
470
471 rc = rdma_create_qp(id, ep->re_pd, &ep->re_attr);
472 if (rc)
473 goto out_destroy;
474
475 r_xprt->rx_ep = ep;
476 return 0;
477
478 out_destroy:
479 rpcrdma_ep_put(ep);
480 rdma_destroy_id(id);
481 return rc;
482 }
483
484 /**
485 * rpcrdma_xprt_connect - Connect an unconnected transport
486 * @r_xprt: controlling transport instance
487 *
488 * Returns 0 on success or a negative errno.
489 */
rpcrdma_xprt_connect(struct rpcrdma_xprt * r_xprt)490 int rpcrdma_xprt_connect(struct rpcrdma_xprt *r_xprt)
491 {
492 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
493 struct rpcrdma_ep *ep;
494 int rc;
495
496 rc = rpcrdma_ep_create(r_xprt);
497 if (rc)
498 return rc;
499 ep = r_xprt->rx_ep;
500
501 xprt_clear_connected(xprt);
502 rpcrdma_reset_cwnd(r_xprt);
503
504 /* Bump the ep's reference count while there are
505 * outstanding Receives.
506 */
507 rpcrdma_ep_get(ep);
508 rpcrdma_post_recvs(r_xprt, 1, true);
509
510 rc = rdma_connect(ep->re_id, &ep->re_remote_cma);
511 if (rc)
512 goto out;
513
514 if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO)
515 xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
516 wait_event_interruptible(ep->re_connect_wait,
517 ep->re_connect_status != 0);
518 if (ep->re_connect_status <= 0) {
519 rc = ep->re_connect_status;
520 goto out;
521 }
522
523 rc = rpcrdma_sendctxs_create(r_xprt);
524 if (rc) {
525 rc = -ENOTCONN;
526 goto out;
527 }
528
529 rc = rpcrdma_reqs_setup(r_xprt);
530 if (rc) {
531 rc = -ENOTCONN;
532 goto out;
533 }
534 rpcrdma_mrs_create(r_xprt);
535 frwr_wp_create(r_xprt);
536
537 out:
538 trace_xprtrdma_connect(r_xprt, rc);
539 return rc;
540 }
541
542 /**
543 * rpcrdma_xprt_disconnect - Disconnect underlying transport
544 * @r_xprt: controlling transport instance
545 *
546 * Caller serializes. Either the transport send lock is held,
547 * or we're being called to destroy the transport.
548 *
549 * On return, @r_xprt is completely divested of all hardware
550 * resources and prepared for the next ->connect operation.
551 */
rpcrdma_xprt_disconnect(struct rpcrdma_xprt * r_xprt)552 void rpcrdma_xprt_disconnect(struct rpcrdma_xprt *r_xprt)
553 {
554 struct rpcrdma_ep *ep = r_xprt->rx_ep;
555 struct rdma_cm_id *id;
556 int rc;
557
558 if (!ep)
559 return;
560
561 id = ep->re_id;
562 rc = rdma_disconnect(id);
563 trace_xprtrdma_disconnect(r_xprt, rc);
564
565 rpcrdma_xprt_drain(r_xprt);
566 rpcrdma_reps_unmap(r_xprt);
567 rpcrdma_reqs_reset(r_xprt);
568 rpcrdma_mrs_destroy(r_xprt);
569 rpcrdma_sendctxs_destroy(r_xprt);
570
571 if (rpcrdma_ep_put(ep))
572 rdma_destroy_id(id);
573
574 r_xprt->rx_ep = NULL;
575 }
576
577 /* Fixed-size circular FIFO queue. This implementation is wait-free and
578 * lock-free.
579 *
580 * Consumer is the code path that posts Sends. This path dequeues a
581 * sendctx for use by a Send operation. Multiple consumer threads
582 * are serialized by the RPC transport lock, which allows only one
583 * ->send_request call at a time.
584 *
585 * Producer is the code path that handles Send completions. This path
586 * enqueues a sendctx that has been completed. Multiple producer
587 * threads are serialized by the ib_poll_cq() function.
588 */
589
590 /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced
591 * queue activity, and rpcrdma_xprt_drain has flushed all remaining
592 * Send requests.
593 */
rpcrdma_sendctxs_destroy(struct rpcrdma_xprt * r_xprt)594 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt)
595 {
596 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
597 unsigned long i;
598
599 if (!buf->rb_sc_ctxs)
600 return;
601 for (i = 0; i <= buf->rb_sc_last; i++)
602 kfree(buf->rb_sc_ctxs[i]);
603 kfree(buf->rb_sc_ctxs);
604 buf->rb_sc_ctxs = NULL;
605 }
606
rpcrdma_sendctx_create(struct rpcrdma_ep * ep)607 static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ep *ep)
608 {
609 struct rpcrdma_sendctx *sc;
610
611 sc = kzalloc(struct_size(sc, sc_sges, ep->re_attr.cap.max_send_sge),
612 XPRTRDMA_GFP_FLAGS);
613 if (!sc)
614 return NULL;
615
616 sc->sc_cqe.done = rpcrdma_wc_send;
617 sc->sc_cid.ci_queue_id = ep->re_attr.send_cq->res.id;
618 sc->sc_cid.ci_completion_id =
619 atomic_inc_return(&ep->re_completion_ids);
620 return sc;
621 }
622
rpcrdma_sendctxs_create(struct rpcrdma_xprt * r_xprt)623 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt)
624 {
625 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
626 struct rpcrdma_sendctx *sc;
627 unsigned long i;
628
629 /* Maximum number of concurrent outstanding Send WRs. Capping
630 * the circular queue size stops Send Queue overflow by causing
631 * the ->send_request call to fail temporarily before too many
632 * Sends are posted.
633 */
634 i = r_xprt->rx_ep->re_max_requests + RPCRDMA_MAX_BC_REQUESTS;
635 buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), XPRTRDMA_GFP_FLAGS);
636 if (!buf->rb_sc_ctxs)
637 return -ENOMEM;
638
639 buf->rb_sc_last = i - 1;
640 for (i = 0; i <= buf->rb_sc_last; i++) {
641 sc = rpcrdma_sendctx_create(r_xprt->rx_ep);
642 if (!sc)
643 return -ENOMEM;
644
645 buf->rb_sc_ctxs[i] = sc;
646 }
647
648 buf->rb_sc_head = 0;
649 buf->rb_sc_tail = 0;
650 return 0;
651 }
652
653 /* The sendctx queue is not guaranteed to have a size that is a
654 * power of two, thus the helpers in circ_buf.h cannot be used.
655 * The other option is to use modulus (%), which can be expensive.
656 */
rpcrdma_sendctx_next(struct rpcrdma_buffer * buf,unsigned long item)657 static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf,
658 unsigned long item)
659 {
660 return likely(item < buf->rb_sc_last) ? item + 1 : 0;
661 }
662
663 /**
664 * rpcrdma_sendctx_get_locked - Acquire a send context
665 * @r_xprt: controlling transport instance
666 *
667 * Returns pointer to a free send completion context; or NULL if
668 * the queue is empty.
669 *
670 * Usage: Called to acquire an SGE array before preparing a Send WR.
671 *
672 * The caller serializes calls to this function (per transport), and
673 * provides an effective memory barrier that flushes the new value
674 * of rb_sc_head.
675 */
rpcrdma_sendctx_get_locked(struct rpcrdma_xprt * r_xprt)676 struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_xprt *r_xprt)
677 {
678 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
679 struct rpcrdma_sendctx *sc;
680 unsigned long next_head;
681
682 next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head);
683
684 if (next_head == READ_ONCE(buf->rb_sc_tail))
685 goto out_emptyq;
686
687 /* ORDER: item must be accessed _before_ head is updated */
688 sc = buf->rb_sc_ctxs[next_head];
689
690 /* Releasing the lock in the caller acts as a memory
691 * barrier that flushes rb_sc_head.
692 */
693 buf->rb_sc_head = next_head;
694
695 return sc;
696
697 out_emptyq:
698 /* The queue is "empty" if there have not been enough Send
699 * completions recently. This is a sign the Send Queue is
700 * backing up. Cause the caller to pause and try again.
701 */
702 xprt_wait_for_buffer_space(&r_xprt->rx_xprt);
703 r_xprt->rx_stats.empty_sendctx_q++;
704 return NULL;
705 }
706
707 /**
708 * rpcrdma_sendctx_put_locked - Release a send context
709 * @r_xprt: controlling transport instance
710 * @sc: send context to release
711 *
712 * Usage: Called from Send completion to return a sendctxt
713 * to the queue.
714 *
715 * The caller serializes calls to this function (per transport).
716 */
rpcrdma_sendctx_put_locked(struct rpcrdma_xprt * r_xprt,struct rpcrdma_sendctx * sc)717 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt,
718 struct rpcrdma_sendctx *sc)
719 {
720 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
721 unsigned long next_tail;
722
723 /* Unmap SGEs of previously completed but unsignaled
724 * Sends by walking up the queue until @sc is found.
725 */
726 next_tail = buf->rb_sc_tail;
727 do {
728 next_tail = rpcrdma_sendctx_next(buf, next_tail);
729
730 /* ORDER: item must be accessed _before_ tail is updated */
731 rpcrdma_sendctx_unmap(buf->rb_sc_ctxs[next_tail]);
732
733 } while (buf->rb_sc_ctxs[next_tail] != sc);
734
735 /* Paired with READ_ONCE */
736 smp_store_release(&buf->rb_sc_tail, next_tail);
737
738 xprt_write_space(&r_xprt->rx_xprt);
739 }
740
741 static void
rpcrdma_mrs_create(struct rpcrdma_xprt * r_xprt)742 rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt)
743 {
744 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
745 struct rpcrdma_ep *ep = r_xprt->rx_ep;
746 struct ib_device *device = ep->re_id->device;
747 unsigned int count;
748
749 /* Try to allocate enough to perform one full-sized I/O */
750 for (count = 0; count < ep->re_max_rdma_segs; count++) {
751 struct rpcrdma_mr *mr;
752 int rc;
753
754 mr = kzalloc_node(sizeof(*mr), XPRTRDMA_GFP_FLAGS,
755 ibdev_to_node(device));
756 if (!mr)
757 break;
758
759 rc = frwr_mr_init(r_xprt, mr);
760 if (rc) {
761 kfree(mr);
762 break;
763 }
764
765 spin_lock(&buf->rb_lock);
766 rpcrdma_mr_push(mr, &buf->rb_mrs);
767 list_add(&mr->mr_all, &buf->rb_all_mrs);
768 spin_unlock(&buf->rb_lock);
769 }
770
771 r_xprt->rx_stats.mrs_allocated += count;
772 trace_xprtrdma_createmrs(r_xprt, count);
773 }
774
775 static void
rpcrdma_mr_refresh_worker(struct work_struct * work)776 rpcrdma_mr_refresh_worker(struct work_struct *work)
777 {
778 struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer,
779 rb_refresh_worker);
780 struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
781 rx_buf);
782
783 rpcrdma_mrs_create(r_xprt);
784 xprt_write_space(&r_xprt->rx_xprt);
785 }
786
787 /**
788 * rpcrdma_mrs_refresh - Wake the MR refresh worker
789 * @r_xprt: controlling transport instance
790 *
791 */
rpcrdma_mrs_refresh(struct rpcrdma_xprt * r_xprt)792 void rpcrdma_mrs_refresh(struct rpcrdma_xprt *r_xprt)
793 {
794 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
795 struct rpcrdma_ep *ep = r_xprt->rx_ep;
796
797 /* If there is no underlying connection, it's no use
798 * to wake the refresh worker.
799 */
800 if (ep->re_connect_status != 1)
801 return;
802 queue_work(system_highpri_wq, &buf->rb_refresh_worker);
803 }
804
805 /**
806 * rpcrdma_req_create - Allocate an rpcrdma_req object
807 * @r_xprt: controlling r_xprt
808 * @size: initial size, in bytes, of send and receive buffers
809 *
810 * Returns an allocated and fully initialized rpcrdma_req or NULL.
811 */
rpcrdma_req_create(struct rpcrdma_xprt * r_xprt,size_t size)812 struct rpcrdma_req *rpcrdma_req_create(struct rpcrdma_xprt *r_xprt,
813 size_t size)
814 {
815 struct rpcrdma_buffer *buffer = &r_xprt->rx_buf;
816 struct rpcrdma_req *req;
817
818 req = kzalloc(sizeof(*req), XPRTRDMA_GFP_FLAGS);
819 if (req == NULL)
820 goto out1;
821
822 req->rl_sendbuf = rpcrdma_regbuf_alloc(size, DMA_TO_DEVICE);
823 if (!req->rl_sendbuf)
824 goto out2;
825
826 req->rl_recvbuf = rpcrdma_regbuf_alloc(size, DMA_NONE);
827 if (!req->rl_recvbuf)
828 goto out3;
829
830 INIT_LIST_HEAD(&req->rl_free_mrs);
831 INIT_LIST_HEAD(&req->rl_registered);
832 spin_lock(&buffer->rb_lock);
833 list_add(&req->rl_all, &buffer->rb_allreqs);
834 spin_unlock(&buffer->rb_lock);
835 return req;
836
837 out3:
838 rpcrdma_regbuf_free(req->rl_sendbuf);
839 out2:
840 kfree(req);
841 out1:
842 return NULL;
843 }
844
845 /**
846 * rpcrdma_req_setup - Per-connection instance setup of an rpcrdma_req object
847 * @r_xprt: controlling transport instance
848 * @req: rpcrdma_req object to set up
849 *
850 * Returns zero on success, and a negative errno on failure.
851 */
rpcrdma_req_setup(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req)852 int rpcrdma_req_setup(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
853 {
854 struct rpcrdma_regbuf *rb;
855 size_t maxhdrsize;
856
857 /* Compute maximum header buffer size in bytes */
858 maxhdrsize = rpcrdma_fixed_maxsz + 3 +
859 r_xprt->rx_ep->re_max_rdma_segs * rpcrdma_readchunk_maxsz;
860 maxhdrsize *= sizeof(__be32);
861 rb = rpcrdma_regbuf_alloc(__roundup_pow_of_two(maxhdrsize),
862 DMA_TO_DEVICE);
863 if (!rb)
864 goto out;
865
866 if (!__rpcrdma_regbuf_dma_map(r_xprt, rb))
867 goto out_free;
868
869 req->rl_rdmabuf = rb;
870 xdr_buf_init(&req->rl_hdrbuf, rdmab_data(rb), rdmab_length(rb));
871 return 0;
872
873 out_free:
874 rpcrdma_regbuf_free(rb);
875 out:
876 return -ENOMEM;
877 }
878
879 /* ASSUMPTION: the rb_allreqs list is stable for the duration,
880 * and thus can be walked without holding rb_lock. Eg. the
881 * caller is holding the transport send lock to exclude
882 * device removal or disconnection.
883 */
rpcrdma_reqs_setup(struct rpcrdma_xprt * r_xprt)884 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt)
885 {
886 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
887 struct rpcrdma_req *req;
888 int rc;
889
890 list_for_each_entry(req, &buf->rb_allreqs, rl_all) {
891 rc = rpcrdma_req_setup(r_xprt, req);
892 if (rc)
893 return rc;
894 }
895 return 0;
896 }
897
rpcrdma_req_reset(struct rpcrdma_req * req)898 static void rpcrdma_req_reset(struct rpcrdma_req *req)
899 {
900 struct rpcrdma_mr *mr;
901
902 /* Credits are valid for only one connection */
903 req->rl_slot.rq_cong = 0;
904
905 rpcrdma_regbuf_free(req->rl_rdmabuf);
906 req->rl_rdmabuf = NULL;
907
908 rpcrdma_regbuf_dma_unmap(req->rl_sendbuf);
909 rpcrdma_regbuf_dma_unmap(req->rl_recvbuf);
910
911 /* The verbs consumer can't know the state of an MR on the
912 * req->rl_registered list unless a successful completion
913 * has occurred, so they cannot be re-used.
914 */
915 while ((mr = rpcrdma_mr_pop(&req->rl_registered))) {
916 struct rpcrdma_buffer *buf = &mr->mr_xprt->rx_buf;
917
918 spin_lock(&buf->rb_lock);
919 list_del(&mr->mr_all);
920 spin_unlock(&buf->rb_lock);
921
922 frwr_mr_release(mr);
923 }
924 }
925
926 /* ASSUMPTION: the rb_allreqs list is stable for the duration,
927 * and thus can be walked without holding rb_lock. Eg. the
928 * caller is holding the transport send lock to exclude
929 * device removal or disconnection.
930 */
rpcrdma_reqs_reset(struct rpcrdma_xprt * r_xprt)931 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt)
932 {
933 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
934 struct rpcrdma_req *req;
935
936 list_for_each_entry(req, &buf->rb_allreqs, rl_all)
937 rpcrdma_req_reset(req);
938 }
939
940 static noinline
rpcrdma_rep_create(struct rpcrdma_xprt * r_xprt,bool temp)941 struct rpcrdma_rep *rpcrdma_rep_create(struct rpcrdma_xprt *r_xprt,
942 bool temp)
943 {
944 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
945 struct rpcrdma_rep *rep;
946
947 rep = kzalloc(sizeof(*rep), XPRTRDMA_GFP_FLAGS);
948 if (rep == NULL)
949 goto out;
950
951 rep->rr_rdmabuf = rpcrdma_regbuf_alloc(r_xprt->rx_ep->re_inline_recv,
952 DMA_FROM_DEVICE);
953 if (!rep->rr_rdmabuf)
954 goto out_free;
955
956 rep->rr_cid.ci_completion_id =
957 atomic_inc_return(&r_xprt->rx_ep->re_completion_ids);
958
959 xdr_buf_init(&rep->rr_hdrbuf, rdmab_data(rep->rr_rdmabuf),
960 rdmab_length(rep->rr_rdmabuf));
961 rep->rr_cqe.done = rpcrdma_wc_receive;
962 rep->rr_rxprt = r_xprt;
963 rep->rr_recv_wr.next = NULL;
964 rep->rr_recv_wr.wr_cqe = &rep->rr_cqe;
965 rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov;
966 rep->rr_recv_wr.num_sge = 1;
967 rep->rr_temp = temp;
968
969 spin_lock(&buf->rb_lock);
970 list_add(&rep->rr_all, &buf->rb_all_reps);
971 spin_unlock(&buf->rb_lock);
972 return rep;
973
974 out_free:
975 kfree(rep);
976 out:
977 return NULL;
978 }
979
rpcrdma_rep_free(struct rpcrdma_rep * rep)980 static void rpcrdma_rep_free(struct rpcrdma_rep *rep)
981 {
982 rpcrdma_regbuf_free(rep->rr_rdmabuf);
983 kfree(rep);
984 }
985
rpcrdma_rep_destroy(struct rpcrdma_rep * rep)986 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep)
987 {
988 struct rpcrdma_buffer *buf = &rep->rr_rxprt->rx_buf;
989
990 spin_lock(&buf->rb_lock);
991 list_del(&rep->rr_all);
992 spin_unlock(&buf->rb_lock);
993
994 rpcrdma_rep_free(rep);
995 }
996
rpcrdma_rep_get_locked(struct rpcrdma_buffer * buf)997 static struct rpcrdma_rep *rpcrdma_rep_get_locked(struct rpcrdma_buffer *buf)
998 {
999 struct llist_node *node;
1000
1001 /* Calls to llist_del_first are required to be serialized */
1002 node = llist_del_first(&buf->rb_free_reps);
1003 if (!node)
1004 return NULL;
1005 return llist_entry(node, struct rpcrdma_rep, rr_node);
1006 }
1007
1008 /**
1009 * rpcrdma_rep_put - Release rpcrdma_rep back to free list
1010 * @buf: buffer pool
1011 * @rep: rep to release
1012 *
1013 */
rpcrdma_rep_put(struct rpcrdma_buffer * buf,struct rpcrdma_rep * rep)1014 void rpcrdma_rep_put(struct rpcrdma_buffer *buf, struct rpcrdma_rep *rep)
1015 {
1016 llist_add(&rep->rr_node, &buf->rb_free_reps);
1017 }
1018
1019 /* Caller must ensure the QP is quiescent (RQ is drained) before
1020 * invoking this function, to guarantee rb_all_reps is not
1021 * changing.
1022 */
rpcrdma_reps_unmap(struct rpcrdma_xprt * r_xprt)1023 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt)
1024 {
1025 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1026 struct rpcrdma_rep *rep;
1027
1028 list_for_each_entry(rep, &buf->rb_all_reps, rr_all) {
1029 rpcrdma_regbuf_dma_unmap(rep->rr_rdmabuf);
1030 rep->rr_temp = true; /* Mark this rep for destruction */
1031 }
1032 }
1033
rpcrdma_reps_destroy(struct rpcrdma_buffer * buf)1034 static void rpcrdma_reps_destroy(struct rpcrdma_buffer *buf)
1035 {
1036 struct rpcrdma_rep *rep;
1037
1038 spin_lock(&buf->rb_lock);
1039 while ((rep = list_first_entry_or_null(&buf->rb_all_reps,
1040 struct rpcrdma_rep,
1041 rr_all)) != NULL) {
1042 list_del(&rep->rr_all);
1043 spin_unlock(&buf->rb_lock);
1044
1045 rpcrdma_rep_free(rep);
1046
1047 spin_lock(&buf->rb_lock);
1048 }
1049 spin_unlock(&buf->rb_lock);
1050 }
1051
1052 /**
1053 * rpcrdma_buffer_create - Create initial set of req/rep objects
1054 * @r_xprt: transport instance to (re)initialize
1055 *
1056 * Returns zero on success, otherwise a negative errno.
1057 */
rpcrdma_buffer_create(struct rpcrdma_xprt * r_xprt)1058 int rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt)
1059 {
1060 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1061 int i, rc;
1062
1063 buf->rb_bc_srv_max_requests = 0;
1064 spin_lock_init(&buf->rb_lock);
1065 INIT_LIST_HEAD(&buf->rb_mrs);
1066 INIT_LIST_HEAD(&buf->rb_all_mrs);
1067 INIT_WORK(&buf->rb_refresh_worker, rpcrdma_mr_refresh_worker);
1068
1069 INIT_LIST_HEAD(&buf->rb_send_bufs);
1070 INIT_LIST_HEAD(&buf->rb_allreqs);
1071 INIT_LIST_HEAD(&buf->rb_all_reps);
1072
1073 rc = -ENOMEM;
1074 for (i = 0; i < r_xprt->rx_xprt.max_reqs; i++) {
1075 struct rpcrdma_req *req;
1076
1077 req = rpcrdma_req_create(r_xprt,
1078 RPCRDMA_V1_DEF_INLINE_SIZE * 2);
1079 if (!req)
1080 goto out;
1081 list_add(&req->rl_list, &buf->rb_send_bufs);
1082 }
1083
1084 init_llist_head(&buf->rb_free_reps);
1085
1086 return 0;
1087 out:
1088 rpcrdma_buffer_destroy(buf);
1089 return rc;
1090 }
1091
1092 /**
1093 * rpcrdma_req_destroy - Destroy an rpcrdma_req object
1094 * @req: unused object to be destroyed
1095 *
1096 * Relies on caller holding the transport send lock to protect
1097 * removing req->rl_all from buf->rb_all_reqs safely.
1098 */
rpcrdma_req_destroy(struct rpcrdma_req * req)1099 void rpcrdma_req_destroy(struct rpcrdma_req *req)
1100 {
1101 struct rpcrdma_mr *mr;
1102
1103 list_del(&req->rl_all);
1104
1105 while ((mr = rpcrdma_mr_pop(&req->rl_free_mrs))) {
1106 struct rpcrdma_buffer *buf = &mr->mr_xprt->rx_buf;
1107
1108 spin_lock(&buf->rb_lock);
1109 list_del(&mr->mr_all);
1110 spin_unlock(&buf->rb_lock);
1111
1112 frwr_mr_release(mr);
1113 }
1114
1115 rpcrdma_regbuf_free(req->rl_recvbuf);
1116 rpcrdma_regbuf_free(req->rl_sendbuf);
1117 rpcrdma_regbuf_free(req->rl_rdmabuf);
1118 kfree(req);
1119 }
1120
1121 /**
1122 * rpcrdma_mrs_destroy - Release all of a transport's MRs
1123 * @r_xprt: controlling transport instance
1124 *
1125 * Relies on caller holding the transport send lock to protect
1126 * removing mr->mr_list from req->rl_free_mrs safely.
1127 */
rpcrdma_mrs_destroy(struct rpcrdma_xprt * r_xprt)1128 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt)
1129 {
1130 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1131 struct rpcrdma_mr *mr;
1132
1133 cancel_work_sync(&buf->rb_refresh_worker);
1134
1135 spin_lock(&buf->rb_lock);
1136 while ((mr = list_first_entry_or_null(&buf->rb_all_mrs,
1137 struct rpcrdma_mr,
1138 mr_all)) != NULL) {
1139 list_del(&mr->mr_list);
1140 list_del(&mr->mr_all);
1141 spin_unlock(&buf->rb_lock);
1142
1143 frwr_mr_release(mr);
1144
1145 spin_lock(&buf->rb_lock);
1146 }
1147 spin_unlock(&buf->rb_lock);
1148 }
1149
1150 /**
1151 * rpcrdma_buffer_destroy - Release all hw resources
1152 * @buf: root control block for resources
1153 *
1154 * ORDERING: relies on a prior rpcrdma_xprt_drain :
1155 * - No more Send or Receive completions can occur
1156 * - All MRs, reps, and reqs are returned to their free lists
1157 */
1158 void
rpcrdma_buffer_destroy(struct rpcrdma_buffer * buf)1159 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf)
1160 {
1161 rpcrdma_reps_destroy(buf);
1162
1163 while (!list_empty(&buf->rb_send_bufs)) {
1164 struct rpcrdma_req *req;
1165
1166 req = list_first_entry(&buf->rb_send_bufs,
1167 struct rpcrdma_req, rl_list);
1168 list_del(&req->rl_list);
1169 rpcrdma_req_destroy(req);
1170 }
1171 }
1172
1173 /**
1174 * rpcrdma_mr_get - Allocate an rpcrdma_mr object
1175 * @r_xprt: controlling transport
1176 *
1177 * Returns an initialized rpcrdma_mr or NULL if no free
1178 * rpcrdma_mr objects are available.
1179 */
1180 struct rpcrdma_mr *
rpcrdma_mr_get(struct rpcrdma_xprt * r_xprt)1181 rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt)
1182 {
1183 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1184 struct rpcrdma_mr *mr;
1185
1186 spin_lock(&buf->rb_lock);
1187 mr = rpcrdma_mr_pop(&buf->rb_mrs);
1188 spin_unlock(&buf->rb_lock);
1189 return mr;
1190 }
1191
1192 /**
1193 * rpcrdma_reply_put - Put reply buffers back into pool
1194 * @buffers: buffer pool
1195 * @req: object to return
1196 *
1197 */
rpcrdma_reply_put(struct rpcrdma_buffer * buffers,struct rpcrdma_req * req)1198 void rpcrdma_reply_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req)
1199 {
1200 if (req->rl_reply) {
1201 rpcrdma_rep_put(buffers, req->rl_reply);
1202 req->rl_reply = NULL;
1203 }
1204 }
1205
1206 /**
1207 * rpcrdma_buffer_get - Get a request buffer
1208 * @buffers: Buffer pool from which to obtain a buffer
1209 *
1210 * Returns a fresh rpcrdma_req, or NULL if none are available.
1211 */
1212 struct rpcrdma_req *
rpcrdma_buffer_get(struct rpcrdma_buffer * buffers)1213 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers)
1214 {
1215 struct rpcrdma_req *req;
1216
1217 spin_lock(&buffers->rb_lock);
1218 req = list_first_entry_or_null(&buffers->rb_send_bufs,
1219 struct rpcrdma_req, rl_list);
1220 if (req)
1221 list_del_init(&req->rl_list);
1222 spin_unlock(&buffers->rb_lock);
1223 return req;
1224 }
1225
1226 /**
1227 * rpcrdma_buffer_put - Put request/reply buffers back into pool
1228 * @buffers: buffer pool
1229 * @req: object to return
1230 *
1231 */
rpcrdma_buffer_put(struct rpcrdma_buffer * buffers,struct rpcrdma_req * req)1232 void rpcrdma_buffer_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req)
1233 {
1234 rpcrdma_reply_put(buffers, req);
1235
1236 spin_lock(&buffers->rb_lock);
1237 list_add(&req->rl_list, &buffers->rb_send_bufs);
1238 spin_unlock(&buffers->rb_lock);
1239 }
1240
1241 /* Returns a pointer to a rpcrdma_regbuf object, or NULL.
1242 *
1243 * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for
1244 * receiving the payload of RDMA RECV operations. During Long Calls
1245 * or Replies they may be registered externally via frwr_map.
1246 */
1247 static struct rpcrdma_regbuf *
rpcrdma_regbuf_alloc(size_t size,enum dma_data_direction direction)1248 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction)
1249 {
1250 struct rpcrdma_regbuf *rb;
1251
1252 rb = kmalloc(sizeof(*rb), XPRTRDMA_GFP_FLAGS);
1253 if (!rb)
1254 return NULL;
1255 rb->rg_data = kmalloc(size, XPRTRDMA_GFP_FLAGS);
1256 if (!rb->rg_data) {
1257 kfree(rb);
1258 return NULL;
1259 }
1260
1261 rb->rg_device = NULL;
1262 rb->rg_direction = direction;
1263 rb->rg_iov.length = size;
1264 return rb;
1265 }
1266
1267 /**
1268 * rpcrdma_regbuf_realloc - re-allocate a SEND/RECV buffer
1269 * @rb: regbuf to reallocate
1270 * @size: size of buffer to be allocated, in bytes
1271 * @flags: GFP flags
1272 *
1273 * Returns true if reallocation was successful. If false is
1274 * returned, @rb is left untouched.
1275 */
rpcrdma_regbuf_realloc(struct rpcrdma_regbuf * rb,size_t size,gfp_t flags)1276 bool rpcrdma_regbuf_realloc(struct rpcrdma_regbuf *rb, size_t size, gfp_t flags)
1277 {
1278 void *buf;
1279
1280 buf = kmalloc(size, flags);
1281 if (!buf)
1282 return false;
1283
1284 rpcrdma_regbuf_dma_unmap(rb);
1285 kfree(rb->rg_data);
1286
1287 rb->rg_data = buf;
1288 rb->rg_iov.length = size;
1289 return true;
1290 }
1291
1292 /**
1293 * __rpcrdma_regbuf_dma_map - DMA-map a regbuf
1294 * @r_xprt: controlling transport instance
1295 * @rb: regbuf to be mapped
1296 *
1297 * Returns true if the buffer is now DMA mapped to @r_xprt's device
1298 */
__rpcrdma_regbuf_dma_map(struct rpcrdma_xprt * r_xprt,struct rpcrdma_regbuf * rb)1299 bool __rpcrdma_regbuf_dma_map(struct rpcrdma_xprt *r_xprt,
1300 struct rpcrdma_regbuf *rb)
1301 {
1302 struct ib_device *device = r_xprt->rx_ep->re_id->device;
1303
1304 if (rb->rg_direction == DMA_NONE)
1305 return false;
1306
1307 rb->rg_iov.addr = ib_dma_map_single(device, rdmab_data(rb),
1308 rdmab_length(rb), rb->rg_direction);
1309 if (ib_dma_mapping_error(device, rdmab_addr(rb))) {
1310 trace_xprtrdma_dma_maperr(rdmab_addr(rb));
1311 return false;
1312 }
1313
1314 rb->rg_device = device;
1315 rb->rg_iov.lkey = r_xprt->rx_ep->re_pd->local_dma_lkey;
1316 return true;
1317 }
1318
rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf * rb)1319 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb)
1320 {
1321 if (!rb)
1322 return;
1323
1324 if (!rpcrdma_regbuf_is_mapped(rb))
1325 return;
1326
1327 ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb), rdmab_length(rb),
1328 rb->rg_direction);
1329 rb->rg_device = NULL;
1330 }
1331
rpcrdma_regbuf_free(struct rpcrdma_regbuf * rb)1332 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb)
1333 {
1334 rpcrdma_regbuf_dma_unmap(rb);
1335 if (rb)
1336 kfree(rb->rg_data);
1337 kfree(rb);
1338 }
1339
1340 /**
1341 * rpcrdma_post_recvs - Refill the Receive Queue
1342 * @r_xprt: controlling transport instance
1343 * @needed: current credit grant
1344 * @temp: mark Receive buffers to be deleted after one use
1345 *
1346 */
rpcrdma_post_recvs(struct rpcrdma_xprt * r_xprt,int needed,bool temp)1347 void rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, int needed, bool temp)
1348 {
1349 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1350 struct rpcrdma_ep *ep = r_xprt->rx_ep;
1351 struct ib_recv_wr *wr, *bad_wr;
1352 struct rpcrdma_rep *rep;
1353 int count, rc;
1354
1355 rc = 0;
1356 count = 0;
1357
1358 if (likely(ep->re_receive_count > needed))
1359 goto out;
1360 needed -= ep->re_receive_count;
1361 if (!temp)
1362 needed += RPCRDMA_MAX_RECV_BATCH;
1363
1364 if (atomic_inc_return(&ep->re_receiving) > 1)
1365 goto out;
1366
1367 /* fast path: all needed reps can be found on the free list */
1368 wr = NULL;
1369 while (needed) {
1370 rep = rpcrdma_rep_get_locked(buf);
1371 if (rep && rep->rr_temp) {
1372 rpcrdma_rep_destroy(rep);
1373 continue;
1374 }
1375 if (!rep)
1376 rep = rpcrdma_rep_create(r_xprt, temp);
1377 if (!rep)
1378 break;
1379 if (!rpcrdma_regbuf_dma_map(r_xprt, rep->rr_rdmabuf)) {
1380 rpcrdma_rep_put(buf, rep);
1381 break;
1382 }
1383
1384 rep->rr_cid.ci_queue_id = ep->re_attr.recv_cq->res.id;
1385 trace_xprtrdma_post_recv(rep);
1386 rep->rr_recv_wr.next = wr;
1387 wr = &rep->rr_recv_wr;
1388 --needed;
1389 ++count;
1390 }
1391 if (!wr)
1392 goto out;
1393
1394 rc = ib_post_recv(ep->re_id->qp, wr,
1395 (const struct ib_recv_wr **)&bad_wr);
1396 if (rc) {
1397 trace_xprtrdma_post_recvs_err(r_xprt, rc);
1398 for (wr = bad_wr; wr;) {
1399 struct rpcrdma_rep *rep;
1400
1401 rep = container_of(wr, struct rpcrdma_rep, rr_recv_wr);
1402 wr = wr->next;
1403 rpcrdma_rep_put(buf, rep);
1404 --count;
1405 }
1406 }
1407 if (atomic_dec_return(&ep->re_receiving) > 0)
1408 complete(&ep->re_done);
1409
1410 out:
1411 trace_xprtrdma_post_recvs(r_xprt, count);
1412 ep->re_receive_count += count;
1413 return;
1414 }
1415