1 /*
2 * ARM page table walking.
3 *
4 * This code is licensed under the GNU GPL v2 or later.
5 *
6 * SPDX-License-Identifier: GPL-2.0-or-later
7 */
8
9 #include "qemu/osdep.h"
10 #include "qemu/log.h"
11 #include "qemu/range.h"
12 #include "qemu/main-loop.h"
13 #include "exec/exec-all.h"
14 #include "exec/page-protection.h"
15 #include "cpu.h"
16 #include "internals.h"
17 #include "cpu-features.h"
18 #include "idau.h"
19 #ifdef CONFIG_TCG
20 # include "tcg/oversized-guest.h"
21 #endif
22
23 typedef struct S1Translate {
24 /*
25 * in_mmu_idx : specifies which TTBR, TCR, etc to use for the walk.
26 * Together with in_space, specifies the architectural translation regime.
27 */
28 ARMMMUIdx in_mmu_idx;
29 /*
30 * in_ptw_idx: specifies which mmuidx to use for the actual
31 * page table descriptor load operations. This will be one of the
32 * ARMMMUIdx_Stage2* or one of the ARMMMUIdx_Phys_* indexes.
33 * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
34 * this field is updated accordingly.
35 */
36 ARMMMUIdx in_ptw_idx;
37 /*
38 * in_space: the security space for this walk. This plus
39 * the in_mmu_idx specify the architectural translation regime.
40 * If a Secure ptw is "downgraded" to NonSecure by an NSTable bit,
41 * this field is updated accordingly.
42 *
43 * Note that the security space for the in_ptw_idx may be different
44 * from that for the in_mmu_idx. We do not need to explicitly track
45 * the in_ptw_idx security space because:
46 * - if the in_ptw_idx is an ARMMMUIdx_Phys_* then the mmuidx
47 * itself specifies the security space
48 * - if the in_ptw_idx is an ARMMMUIdx_Stage2* then the security
49 * space used for ptw reads is the same as that of the security
50 * space of the stage 1 translation for all cases except where
51 * stage 1 is Secure; in that case the only possibilities for
52 * the ptw read are Secure and NonSecure, and the in_ptw_idx
53 * value being Stage2 vs Stage2_S distinguishes those.
54 */
55 ARMSecuritySpace in_space;
56 /*
57 * in_debug: is this a QEMU debug access (gdbstub, etc)? Debug
58 * accesses will not update the guest page table access flags
59 * and will not change the state of the softmmu TLBs.
60 */
61 bool in_debug;
62 /*
63 * If this is stage 2 of a stage 1+2 page table walk, then this must
64 * be true if stage 1 is an EL0 access; otherwise this is ignored.
65 * Stage 2 is indicated by in_mmu_idx set to ARMMMUIdx_Stage2{,_S}.
66 */
67 bool in_s1_is_el0;
68 bool out_rw;
69 bool out_be;
70 ARMSecuritySpace out_space;
71 hwaddr out_virt;
72 hwaddr out_phys;
73 void *out_host;
74 } S1Translate;
75
76 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
77 vaddr address,
78 MMUAccessType access_type, MemOp memop,
79 GetPhysAddrResult *result,
80 ARMMMUFaultInfo *fi);
81
82 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
83 vaddr address,
84 MMUAccessType access_type, MemOp memop,
85 GetPhysAddrResult *result,
86 ARMMMUFaultInfo *fi);
87
88 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
89 int user_rw, int prot_rw, int xn, int pxn,
90 ARMSecuritySpace in_pa, ARMSecuritySpace out_pa);
91
92 /* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
93 static const uint8_t pamax_map[] = {
94 [0] = 32,
95 [1] = 36,
96 [2] = 40,
97 [3] = 42,
98 [4] = 44,
99 [5] = 48,
100 [6] = 52,
101 };
102
round_down_to_parange_index(uint8_t bit_size)103 uint8_t round_down_to_parange_index(uint8_t bit_size)
104 {
105 for (int i = ARRAY_SIZE(pamax_map) - 1; i >= 0; i--) {
106 if (pamax_map[i] <= bit_size) {
107 return i;
108 }
109 }
110 g_assert_not_reached();
111 }
112
round_down_to_parange_bit_size(uint8_t bit_size)113 uint8_t round_down_to_parange_bit_size(uint8_t bit_size)
114 {
115 return pamax_map[round_down_to_parange_index(bit_size)];
116 }
117
118 /*
119 * The cpu-specific constant value of PAMax; also used by hw/arm/virt.
120 * Note that machvirt_init calls this on a CPU that is inited but not realized!
121 */
arm_pamax(ARMCPU * cpu)122 unsigned int arm_pamax(ARMCPU *cpu)
123 {
124 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
125 unsigned int parange =
126 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
127
128 /*
129 * id_aa64mmfr0 is a read-only register so values outside of the
130 * supported mappings can be considered an implementation error.
131 */
132 assert(parange < ARRAY_SIZE(pamax_map));
133 return pamax_map[parange];
134 }
135
136 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
137 /* v7 or v8 with LPAE */
138 return 40;
139 }
140 /* Anything else */
141 return 32;
142 }
143
144 /*
145 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
146 */
stage_1_mmu_idx(ARMMMUIdx mmu_idx)147 ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
148 {
149 switch (mmu_idx) {
150 case ARMMMUIdx_E10_0:
151 return ARMMMUIdx_Stage1_E0;
152 case ARMMMUIdx_E10_1:
153 return ARMMMUIdx_Stage1_E1;
154 case ARMMMUIdx_E10_1_PAN:
155 return ARMMMUIdx_Stage1_E1_PAN;
156 default:
157 return mmu_idx;
158 }
159 }
160
arm_stage1_mmu_idx(CPUARMState * env)161 ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
162 {
163 return stage_1_mmu_idx(arm_mmu_idx(env));
164 }
165
166 /*
167 * Return where we should do ptw loads from for a stage 2 walk.
168 * This depends on whether the address we are looking up is a
169 * Secure IPA or a NonSecure IPA, which we know from whether this is
170 * Stage2 or Stage2_S.
171 * If this is the Secure EL1&0 regime we need to check the NSW and SW bits.
172 */
ptw_idx_for_stage_2(CPUARMState * env,ARMMMUIdx stage2idx)173 static ARMMMUIdx ptw_idx_for_stage_2(CPUARMState *env, ARMMMUIdx stage2idx)
174 {
175 bool s2walk_secure;
176
177 /*
178 * We're OK to check the current state of the CPU here because
179 * (1) we always invalidate all TLBs when the SCR_EL3.NS or SCR_EL3.NSE bit
180 * changes.
181 * (2) there's no way to do a lookup that cares about Stage 2 for a
182 * different security state to the current one for AArch64, and AArch32
183 * never has a secure EL2. (AArch32 ATS12NSO[UP][RW] allow EL3 to do
184 * an NS stage 1+2 lookup while the NS bit is 0.)
185 */
186 if (!arm_el_is_aa64(env, 3)) {
187 return ARMMMUIdx_Phys_NS;
188 }
189
190 switch (arm_security_space_below_el3(env)) {
191 case ARMSS_NonSecure:
192 return ARMMMUIdx_Phys_NS;
193 case ARMSS_Realm:
194 return ARMMMUIdx_Phys_Realm;
195 case ARMSS_Secure:
196 if (stage2idx == ARMMMUIdx_Stage2_S) {
197 s2walk_secure = !(env->cp15.vstcr_el2 & VSTCR_SW);
198 } else {
199 s2walk_secure = !(env->cp15.vtcr_el2 & VTCR_NSW);
200 }
201 return s2walk_secure ? ARMMMUIdx_Phys_S : ARMMMUIdx_Phys_NS;
202 default:
203 g_assert_not_reached();
204 }
205 }
206
regime_translation_big_endian(CPUARMState * env,ARMMMUIdx mmu_idx)207 static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
208 {
209 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
210 }
211
212 /* Return the TTBR associated with this translation regime */
regime_ttbr(CPUARMState * env,ARMMMUIdx mmu_idx,int ttbrn)213 static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
214 {
215 if (mmu_idx == ARMMMUIdx_Stage2) {
216 return env->cp15.vttbr_el2;
217 }
218 if (mmu_idx == ARMMMUIdx_Stage2_S) {
219 return env->cp15.vsttbr_el2;
220 }
221 if (ttbrn == 0) {
222 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
223 } else {
224 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
225 }
226 }
227
228 /* Return true if the specified stage of address translation is disabled */
regime_translation_disabled(CPUARMState * env,ARMMMUIdx mmu_idx,ARMSecuritySpace space)229 static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx,
230 ARMSecuritySpace space)
231 {
232 uint64_t hcr_el2;
233
234 if (arm_feature(env, ARM_FEATURE_M)) {
235 bool is_secure = arm_space_is_secure(space);
236 switch (env->v7m.mpu_ctrl[is_secure] &
237 (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
238 case R_V7M_MPU_CTRL_ENABLE_MASK:
239 /* Enabled, but not for HardFault and NMI */
240 return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
241 case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
242 /* Enabled for all cases */
243 return false;
244 case 0:
245 default:
246 /*
247 * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
248 * we warned about that in armv7m_nvic.c when the guest set it.
249 */
250 return true;
251 }
252 }
253
254
255 switch (mmu_idx) {
256 case ARMMMUIdx_Stage2:
257 case ARMMMUIdx_Stage2_S:
258 /* HCR.DC means HCR.VM behaves as 1 */
259 hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
260 return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
261
262 case ARMMMUIdx_E10_0:
263 case ARMMMUIdx_E10_1:
264 case ARMMMUIdx_E10_1_PAN:
265 /* TGE means that EL0/1 act as if SCTLR_EL1.M is zero */
266 hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
267 if (hcr_el2 & HCR_TGE) {
268 return true;
269 }
270 break;
271
272 case ARMMMUIdx_Stage1_E0:
273 case ARMMMUIdx_Stage1_E1:
274 case ARMMMUIdx_Stage1_E1_PAN:
275 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
276 hcr_el2 = arm_hcr_el2_eff_secstate(env, space);
277 if (hcr_el2 & HCR_DC) {
278 return true;
279 }
280 break;
281
282 case ARMMMUIdx_E20_0:
283 case ARMMMUIdx_E20_2:
284 case ARMMMUIdx_E20_2_PAN:
285 case ARMMMUIdx_E2:
286 case ARMMMUIdx_E3:
287 case ARMMMUIdx_E30_0:
288 case ARMMMUIdx_E30_3_PAN:
289 break;
290
291 case ARMMMUIdx_Phys_S:
292 case ARMMMUIdx_Phys_NS:
293 case ARMMMUIdx_Phys_Root:
294 case ARMMMUIdx_Phys_Realm:
295 /* No translation for physical address spaces. */
296 return true;
297
298 default:
299 g_assert_not_reached();
300 }
301
302 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
303 }
304
granule_protection_check(CPUARMState * env,uint64_t paddress,ARMSecuritySpace pspace,ARMMMUFaultInfo * fi)305 static bool granule_protection_check(CPUARMState *env, uint64_t paddress,
306 ARMSecuritySpace pspace,
307 ARMMMUFaultInfo *fi)
308 {
309 MemTxAttrs attrs = {
310 .secure = true,
311 .space = ARMSS_Root,
312 };
313 ARMCPU *cpu = env_archcpu(env);
314 uint64_t gpccr = env->cp15.gpccr_el3;
315 unsigned pps, pgs, l0gptsz, level = 0;
316 uint64_t tableaddr, pps_mask, align, entry, index;
317 AddressSpace *as;
318 MemTxResult result;
319 int gpi;
320
321 if (!FIELD_EX64(gpccr, GPCCR, GPC)) {
322 return true;
323 }
324
325 /*
326 * GPC Priority 1 (R_GMGRR):
327 * R_JWCSM: If the configuration of GPCCR_EL3 is invalid,
328 * the access fails as GPT walk fault at level 0.
329 */
330
331 /*
332 * Configuration of PPS to a value exceeding the implemented
333 * physical address size is invalid.
334 */
335 pps = FIELD_EX64(gpccr, GPCCR, PPS);
336 if (pps > FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE)) {
337 goto fault_walk;
338 }
339 pps = pamax_map[pps];
340 pps_mask = MAKE_64BIT_MASK(0, pps);
341
342 switch (FIELD_EX64(gpccr, GPCCR, SH)) {
343 case 0b10: /* outer shareable */
344 break;
345 case 0b00: /* non-shareable */
346 case 0b11: /* inner shareable */
347 /* Inner and Outer non-cacheable requires Outer shareable. */
348 if (FIELD_EX64(gpccr, GPCCR, ORGN) == 0 &&
349 FIELD_EX64(gpccr, GPCCR, IRGN) == 0) {
350 goto fault_walk;
351 }
352 break;
353 default: /* reserved */
354 goto fault_walk;
355 }
356
357 switch (FIELD_EX64(gpccr, GPCCR, PGS)) {
358 case 0b00: /* 4KB */
359 pgs = 12;
360 break;
361 case 0b01: /* 64KB */
362 pgs = 16;
363 break;
364 case 0b10: /* 16KB */
365 pgs = 14;
366 break;
367 default: /* reserved */
368 goto fault_walk;
369 }
370
371 /* Note this field is read-only and fixed at reset. */
372 l0gptsz = 30 + FIELD_EX64(gpccr, GPCCR, L0GPTSZ);
373
374 /*
375 * GPC Priority 2: Secure, Realm or Root address exceeds PPS.
376 * R_CPDSB: A NonSecure physical address input exceeding PPS
377 * does not experience any fault.
378 */
379 if (paddress & ~pps_mask) {
380 if (pspace == ARMSS_NonSecure) {
381 return true;
382 }
383 goto fault_size;
384 }
385
386 /* GPC Priority 3: the base address of GPTBR_EL3 exceeds PPS. */
387 tableaddr = env->cp15.gptbr_el3 << 12;
388 if (tableaddr & ~pps_mask) {
389 goto fault_size;
390 }
391
392 /*
393 * BADDR is aligned per a function of PPS and L0GPTSZ.
394 * These bits of GPTBR_EL3 are RES0, but are not a configuration error,
395 * unlike the RES0 bits of the GPT entries (R_XNKFZ).
396 */
397 align = MAX(pps - l0gptsz + 3, 12);
398 align = MAKE_64BIT_MASK(0, align);
399 tableaddr &= ~align;
400
401 as = arm_addressspace(env_cpu(env), attrs);
402
403 /* Level 0 lookup. */
404 index = extract64(paddress, l0gptsz, pps - l0gptsz);
405 tableaddr += index * 8;
406 entry = address_space_ldq_le(as, tableaddr, attrs, &result);
407 if (result != MEMTX_OK) {
408 goto fault_eabt;
409 }
410
411 switch (extract32(entry, 0, 4)) {
412 case 1: /* block descriptor */
413 if (entry >> 8) {
414 goto fault_walk; /* RES0 bits not 0 */
415 }
416 gpi = extract32(entry, 4, 4);
417 goto found;
418 case 3: /* table descriptor */
419 tableaddr = entry & ~0xf;
420 align = MAX(l0gptsz - pgs - 1, 12);
421 align = MAKE_64BIT_MASK(0, align);
422 if (tableaddr & (~pps_mask | align)) {
423 goto fault_walk; /* RES0 bits not 0 */
424 }
425 break;
426 default: /* invalid */
427 goto fault_walk;
428 }
429
430 /* Level 1 lookup */
431 level = 1;
432 index = extract64(paddress, pgs + 4, l0gptsz - pgs - 4);
433 tableaddr += index * 8;
434 entry = address_space_ldq_le(as, tableaddr, attrs, &result);
435 if (result != MEMTX_OK) {
436 goto fault_eabt;
437 }
438
439 switch (extract32(entry, 0, 4)) {
440 case 1: /* contiguous descriptor */
441 if (entry >> 10) {
442 goto fault_walk; /* RES0 bits not 0 */
443 }
444 /*
445 * Because the softmmu tlb only works on units of TARGET_PAGE_SIZE,
446 * and because we cannot invalidate by pa, and thus will always
447 * flush entire tlbs, we don't actually care about the range here
448 * and can simply extract the GPI as the result.
449 */
450 if (extract32(entry, 8, 2) == 0) {
451 goto fault_walk; /* reserved contig */
452 }
453 gpi = extract32(entry, 4, 4);
454 break;
455 default:
456 index = extract64(paddress, pgs, 4);
457 gpi = extract64(entry, index * 4, 4);
458 break;
459 }
460
461 found:
462 switch (gpi) {
463 case 0b0000: /* no access */
464 break;
465 case 0b1111: /* all access */
466 return true;
467 case 0b1000:
468 case 0b1001:
469 case 0b1010:
470 case 0b1011:
471 if (pspace == (gpi & 3)) {
472 return true;
473 }
474 break;
475 default:
476 goto fault_walk; /* reserved */
477 }
478
479 fi->gpcf = GPCF_Fail;
480 goto fault_common;
481 fault_eabt:
482 fi->gpcf = GPCF_EABT;
483 goto fault_common;
484 fault_size:
485 fi->gpcf = GPCF_AddressSize;
486 goto fault_common;
487 fault_walk:
488 fi->gpcf = GPCF_Walk;
489 fault_common:
490 fi->level = level;
491 fi->paddr = paddress;
492 fi->paddr_space = pspace;
493 return false;
494 }
495
S1_attrs_are_device(uint8_t attrs)496 static bool S1_attrs_are_device(uint8_t attrs)
497 {
498 /*
499 * This slightly under-decodes the MAIR_ELx field:
500 * 0b0000dd01 is Device with FEAT_XS, otherwise UNPREDICTABLE;
501 * 0b0000dd1x is UNPREDICTABLE.
502 */
503 return (attrs & 0xf0) == 0;
504 }
505
S2_attrs_are_device(uint64_t hcr,uint8_t attrs)506 static bool S2_attrs_are_device(uint64_t hcr, uint8_t attrs)
507 {
508 /*
509 * For an S1 page table walk, the stage 1 attributes are always
510 * some form of "this is Normal memory". The combined S1+S2
511 * attributes are therefore only Device if stage 2 specifies Device.
512 * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
513 * ie when cacheattrs.attrs bits [3:2] are 0b00.
514 * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
515 * when cacheattrs.attrs bit [2] is 0.
516 */
517 if (hcr & HCR_FWB) {
518 return (attrs & 0x4) == 0;
519 } else {
520 return (attrs & 0xc) == 0;
521 }
522 }
523
S2_security_space(ARMSecuritySpace s1_space,ARMMMUIdx s2_mmu_idx)524 static ARMSecuritySpace S2_security_space(ARMSecuritySpace s1_space,
525 ARMMMUIdx s2_mmu_idx)
526 {
527 /*
528 * Return the security space to use for stage 2 when doing
529 * the S1 page table descriptor load.
530 */
531 if (regime_is_stage2(s2_mmu_idx)) {
532 /*
533 * The security space for ptw reads is almost always the same
534 * as that of the security space of the stage 1 translation.
535 * The only exception is when stage 1 is Secure; in that case
536 * the ptw read might be to the Secure or the NonSecure space
537 * (but never Realm or Root), and the s2_mmu_idx tells us which.
538 * Root translations are always single-stage.
539 */
540 if (s1_space == ARMSS_Secure) {
541 return arm_secure_to_space(s2_mmu_idx == ARMMMUIdx_Stage2_S);
542 } else {
543 assert(s2_mmu_idx != ARMMMUIdx_Stage2_S);
544 assert(s1_space != ARMSS_Root);
545 return s1_space;
546 }
547 } else {
548 /* ptw loads are from phys: the mmu idx itself says which space */
549 return arm_phys_to_space(s2_mmu_idx);
550 }
551 }
552
fault_s1ns(ARMSecuritySpace space,ARMMMUIdx s2_mmu_idx)553 static bool fault_s1ns(ARMSecuritySpace space, ARMMMUIdx s2_mmu_idx)
554 {
555 /*
556 * For stage 2 faults in Secure EL22, S1NS indicates
557 * whether the faulting IPA is in the Secure or NonSecure
558 * IPA space. For all other kinds of fault, it is false.
559 */
560 return space == ARMSS_Secure && regime_is_stage2(s2_mmu_idx)
561 && s2_mmu_idx == ARMMMUIdx_Stage2_S;
562 }
563
564 /* Translate a S1 pagetable walk through S2 if needed. */
S1_ptw_translate(CPUARMState * env,S1Translate * ptw,hwaddr addr,ARMMMUFaultInfo * fi)565 static bool S1_ptw_translate(CPUARMState *env, S1Translate *ptw,
566 hwaddr addr, ARMMMUFaultInfo *fi)
567 {
568 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
569 ARMMMUIdx s2_mmu_idx = ptw->in_ptw_idx;
570 uint8_t pte_attrs;
571
572 ptw->out_virt = addr;
573
574 if (unlikely(ptw->in_debug)) {
575 /*
576 * From gdbstub, do not use softmmu so that we don't modify the
577 * state of the cpu at all, including softmmu tlb contents.
578 */
579 ARMSecuritySpace s2_space = S2_security_space(ptw->in_space, s2_mmu_idx);
580 S1Translate s2ptw = {
581 .in_mmu_idx = s2_mmu_idx,
582 .in_ptw_idx = ptw_idx_for_stage_2(env, s2_mmu_idx),
583 .in_space = s2_space,
584 .in_debug = true,
585 };
586 GetPhysAddrResult s2 = { };
587
588 if (get_phys_addr_gpc(env, &s2ptw, addr, MMU_DATA_LOAD, 0, &s2, fi)) {
589 goto fail;
590 }
591
592 ptw->out_phys = s2.f.phys_addr;
593 pte_attrs = s2.cacheattrs.attrs;
594 ptw->out_host = NULL;
595 ptw->out_rw = false;
596 ptw->out_space = s2.f.attrs.space;
597 } else {
598 #ifdef CONFIG_TCG
599 CPUTLBEntryFull *full;
600 int flags;
601
602 env->tlb_fi = fi;
603 flags = probe_access_full_mmu(env, addr, 0, MMU_DATA_LOAD,
604 arm_to_core_mmu_idx(s2_mmu_idx),
605 &ptw->out_host, &full);
606 env->tlb_fi = NULL;
607
608 if (unlikely(flags & TLB_INVALID_MASK)) {
609 goto fail;
610 }
611 ptw->out_phys = full->phys_addr | (addr & ~TARGET_PAGE_MASK);
612 ptw->out_rw = full->prot & PAGE_WRITE;
613 pte_attrs = full->extra.arm.pte_attrs;
614 ptw->out_space = full->attrs.space;
615 #else
616 g_assert_not_reached();
617 #endif
618 }
619
620 if (regime_is_stage2(s2_mmu_idx)) {
621 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
622
623 if ((hcr & HCR_PTW) && S2_attrs_are_device(hcr, pte_attrs)) {
624 /*
625 * PTW set and S1 walk touched S2 Device memory:
626 * generate Permission fault.
627 */
628 fi->type = ARMFault_Permission;
629 fi->s2addr = addr;
630 fi->stage2 = true;
631 fi->s1ptw = true;
632 fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
633 return false;
634 }
635 }
636
637 ptw->out_be = regime_translation_big_endian(env, mmu_idx);
638 return true;
639
640 fail:
641 assert(fi->type != ARMFault_None);
642 if (fi->type == ARMFault_GPCFOnOutput) {
643 fi->type = ARMFault_GPCFOnWalk;
644 }
645 fi->s2addr = addr;
646 fi->stage2 = regime_is_stage2(s2_mmu_idx);
647 fi->s1ptw = fi->stage2;
648 fi->s1ns = fault_s1ns(ptw->in_space, s2_mmu_idx);
649 return false;
650 }
651
652 /* All loads done in the course of a page table walk go through here. */
arm_ldl_ptw(CPUARMState * env,S1Translate * ptw,ARMMMUFaultInfo * fi)653 static uint32_t arm_ldl_ptw(CPUARMState *env, S1Translate *ptw,
654 ARMMMUFaultInfo *fi)
655 {
656 CPUState *cs = env_cpu(env);
657 void *host = ptw->out_host;
658 uint32_t data;
659
660 if (likely(host)) {
661 /* Page tables are in RAM, and we have the host address. */
662 data = qatomic_read((uint32_t *)host);
663 if (ptw->out_be) {
664 data = be32_to_cpu(data);
665 } else {
666 data = le32_to_cpu(data);
667 }
668 } else {
669 /* Page tables are in MMIO. */
670 MemTxAttrs attrs = {
671 .space = ptw->out_space,
672 .secure = arm_space_is_secure(ptw->out_space),
673 };
674 AddressSpace *as = arm_addressspace(cs, attrs);
675 MemTxResult result = MEMTX_OK;
676
677 if (ptw->out_be) {
678 data = address_space_ldl_be(as, ptw->out_phys, attrs, &result);
679 } else {
680 data = address_space_ldl_le(as, ptw->out_phys, attrs, &result);
681 }
682 if (unlikely(result != MEMTX_OK)) {
683 fi->type = ARMFault_SyncExternalOnWalk;
684 fi->ea = arm_extabort_type(result);
685 return 0;
686 }
687 }
688 return data;
689 }
690
arm_ldq_ptw(CPUARMState * env,S1Translate * ptw,ARMMMUFaultInfo * fi)691 static uint64_t arm_ldq_ptw(CPUARMState *env, S1Translate *ptw,
692 ARMMMUFaultInfo *fi)
693 {
694 CPUState *cs = env_cpu(env);
695 void *host = ptw->out_host;
696 uint64_t data;
697
698 if (likely(host)) {
699 /* Page tables are in RAM, and we have the host address. */
700 #ifdef CONFIG_ATOMIC64
701 data = qatomic_read__nocheck((uint64_t *)host);
702 if (ptw->out_be) {
703 data = be64_to_cpu(data);
704 } else {
705 data = le64_to_cpu(data);
706 }
707 #else
708 if (ptw->out_be) {
709 data = ldq_be_p(host);
710 } else {
711 data = ldq_le_p(host);
712 }
713 #endif
714 } else {
715 /* Page tables are in MMIO. */
716 MemTxAttrs attrs = {
717 .space = ptw->out_space,
718 .secure = arm_space_is_secure(ptw->out_space),
719 };
720 AddressSpace *as = arm_addressspace(cs, attrs);
721 MemTxResult result = MEMTX_OK;
722
723 if (ptw->out_be) {
724 data = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
725 } else {
726 data = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
727 }
728 if (unlikely(result != MEMTX_OK)) {
729 fi->type = ARMFault_SyncExternalOnWalk;
730 fi->ea = arm_extabort_type(result);
731 return 0;
732 }
733 }
734 return data;
735 }
736
arm_casq_ptw(CPUARMState * env,uint64_t old_val,uint64_t new_val,S1Translate * ptw,ARMMMUFaultInfo * fi)737 static uint64_t arm_casq_ptw(CPUARMState *env, uint64_t old_val,
738 uint64_t new_val, S1Translate *ptw,
739 ARMMMUFaultInfo *fi)
740 {
741 #if defined(TARGET_AARCH64) && defined(CONFIG_TCG)
742 uint64_t cur_val;
743 void *host = ptw->out_host;
744
745 if (unlikely(!host)) {
746 /* Page table in MMIO Memory Region */
747 CPUState *cs = env_cpu(env);
748 MemTxAttrs attrs = {
749 .space = ptw->out_space,
750 .secure = arm_space_is_secure(ptw->out_space),
751 };
752 AddressSpace *as = arm_addressspace(cs, attrs);
753 MemTxResult result = MEMTX_OK;
754 bool need_lock = !bql_locked();
755
756 if (need_lock) {
757 bql_lock();
758 }
759 if (ptw->out_be) {
760 cur_val = address_space_ldq_be(as, ptw->out_phys, attrs, &result);
761 if (unlikely(result != MEMTX_OK)) {
762 fi->type = ARMFault_SyncExternalOnWalk;
763 fi->ea = arm_extabort_type(result);
764 if (need_lock) {
765 bql_unlock();
766 }
767 return old_val;
768 }
769 if (cur_val == old_val) {
770 address_space_stq_be(as, ptw->out_phys, new_val, attrs, &result);
771 if (unlikely(result != MEMTX_OK)) {
772 fi->type = ARMFault_SyncExternalOnWalk;
773 fi->ea = arm_extabort_type(result);
774 if (need_lock) {
775 bql_unlock();
776 }
777 return old_val;
778 }
779 cur_val = new_val;
780 }
781 } else {
782 cur_val = address_space_ldq_le(as, ptw->out_phys, attrs, &result);
783 if (unlikely(result != MEMTX_OK)) {
784 fi->type = ARMFault_SyncExternalOnWalk;
785 fi->ea = arm_extabort_type(result);
786 if (need_lock) {
787 bql_unlock();
788 }
789 return old_val;
790 }
791 if (cur_val == old_val) {
792 address_space_stq_le(as, ptw->out_phys, new_val, attrs, &result);
793 if (unlikely(result != MEMTX_OK)) {
794 fi->type = ARMFault_SyncExternalOnWalk;
795 fi->ea = arm_extabort_type(result);
796 if (need_lock) {
797 bql_unlock();
798 }
799 return old_val;
800 }
801 cur_val = new_val;
802 }
803 }
804 if (need_lock) {
805 bql_unlock();
806 }
807 return cur_val;
808 }
809
810 /*
811 * Raising a stage2 Protection fault for an atomic update to a read-only
812 * page is delayed until it is certain that there is a change to make.
813 */
814 if (unlikely(!ptw->out_rw)) {
815 int flags;
816
817 env->tlb_fi = fi;
818 flags = probe_access_full_mmu(env, ptw->out_virt, 0,
819 MMU_DATA_STORE,
820 arm_to_core_mmu_idx(ptw->in_ptw_idx),
821 NULL, NULL);
822 env->tlb_fi = NULL;
823
824 if (unlikely(flags & TLB_INVALID_MASK)) {
825 /*
826 * We know this must be a stage 2 fault because the granule
827 * protection table does not separately track read and write
828 * permission, so all GPC faults are caught in S1_ptw_translate():
829 * we only get here for "readable but not writeable".
830 */
831 assert(fi->type != ARMFault_None);
832 fi->s2addr = ptw->out_virt;
833 fi->stage2 = true;
834 fi->s1ptw = true;
835 fi->s1ns = fault_s1ns(ptw->in_space, ptw->in_ptw_idx);
836 return 0;
837 }
838
839 /* In case CAS mismatches and we loop, remember writability. */
840 ptw->out_rw = true;
841 }
842
843 #ifdef CONFIG_ATOMIC64
844 if (ptw->out_be) {
845 old_val = cpu_to_be64(old_val);
846 new_val = cpu_to_be64(new_val);
847 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
848 cur_val = be64_to_cpu(cur_val);
849 } else {
850 old_val = cpu_to_le64(old_val);
851 new_val = cpu_to_le64(new_val);
852 cur_val = qatomic_cmpxchg__nocheck((uint64_t *)host, old_val, new_val);
853 cur_val = le64_to_cpu(cur_val);
854 }
855 #else
856 /*
857 * We can't support the full 64-bit atomic cmpxchg on the host.
858 * Because this is only used for FEAT_HAFDBS, which is only for AA64,
859 * we know that TCG_OVERSIZED_GUEST is set, which means that we are
860 * running in round-robin mode and could only race with dma i/o.
861 */
862 #if !TCG_OVERSIZED_GUEST
863 # error "Unexpected configuration"
864 #endif
865 bool locked = bql_locked();
866 if (!locked) {
867 bql_lock();
868 }
869 if (ptw->out_be) {
870 cur_val = ldq_be_p(host);
871 if (cur_val == old_val) {
872 stq_be_p(host, new_val);
873 }
874 } else {
875 cur_val = ldq_le_p(host);
876 if (cur_val == old_val) {
877 stq_le_p(host, new_val);
878 }
879 }
880 if (!locked) {
881 bql_unlock();
882 }
883 #endif
884
885 return cur_val;
886 #else
887 /* AArch32 does not have FEAT_HADFS; non-TCG guests only use debug-mode. */
888 g_assert_not_reached();
889 #endif
890 }
891
get_level1_table_address(CPUARMState * env,ARMMMUIdx mmu_idx,uint32_t * table,uint32_t address)892 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
893 uint32_t *table, uint32_t address)
894 {
895 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
896 uint64_t tcr = regime_tcr(env, mmu_idx);
897 int maskshift = extract32(tcr, 0, 3);
898 uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
899 uint32_t base_mask;
900
901 if (address & mask) {
902 if (tcr & TTBCR_PD1) {
903 /* Translation table walk disabled for TTBR1 */
904 return false;
905 }
906 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
907 } else {
908 if (tcr & TTBCR_PD0) {
909 /* Translation table walk disabled for TTBR0 */
910 return false;
911 }
912 base_mask = ~((uint32_t)0x3fffu >> maskshift);
913 *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
914 }
915 *table |= (address >> 18) & 0x3ffc;
916 return true;
917 }
918
919 /*
920 * Translate section/page access permissions to page R/W protection flags
921 * @env: CPUARMState
922 * @mmu_idx: MMU index indicating required translation regime
923 * @ap: The 3-bit access permissions (AP[2:0])
924 * @domain_prot: The 2-bit domain access permissions
925 * @is_user: TRUE if accessing from PL0
926 */
ap_to_rw_prot_is_user(CPUARMState * env,ARMMMUIdx mmu_idx,int ap,int domain_prot,bool is_user)927 static int ap_to_rw_prot_is_user(CPUARMState *env, ARMMMUIdx mmu_idx,
928 int ap, int domain_prot, bool is_user)
929 {
930 if (domain_prot == 3) {
931 return PAGE_READ | PAGE_WRITE;
932 }
933
934 switch (ap) {
935 case 0:
936 if (arm_feature(env, ARM_FEATURE_V7)) {
937 return 0;
938 }
939 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
940 case SCTLR_S:
941 return is_user ? 0 : PAGE_READ;
942 case SCTLR_R:
943 return PAGE_READ;
944 default:
945 return 0;
946 }
947 case 1:
948 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
949 case 2:
950 if (is_user) {
951 return PAGE_READ;
952 } else {
953 return PAGE_READ | PAGE_WRITE;
954 }
955 case 3:
956 return PAGE_READ | PAGE_WRITE;
957 case 4: /* Reserved. */
958 return 0;
959 case 5:
960 return is_user ? 0 : PAGE_READ;
961 case 6:
962 return PAGE_READ;
963 case 7:
964 if (!arm_feature(env, ARM_FEATURE_V6K)) {
965 return 0;
966 }
967 return PAGE_READ;
968 default:
969 g_assert_not_reached();
970 }
971 }
972
973 /*
974 * Translate section/page access permissions to page R/W protection flags
975 * @env: CPUARMState
976 * @mmu_idx: MMU index indicating required translation regime
977 * @ap: The 3-bit access permissions (AP[2:0])
978 * @domain_prot: The 2-bit domain access permissions
979 */
ap_to_rw_prot(CPUARMState * env,ARMMMUIdx mmu_idx,int ap,int domain_prot)980 static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
981 int ap, int domain_prot)
982 {
983 return ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot,
984 regime_is_user(env, mmu_idx));
985 }
986
987 /*
988 * Translate section/page access permissions to page R/W protection flags.
989 * @ap: The 2-bit simple AP (AP[2:1])
990 * @is_user: TRUE if accessing from PL0
991 */
simple_ap_to_rw_prot_is_user(int ap,bool is_user)992 static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
993 {
994 switch (ap) {
995 case 0:
996 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
997 case 1:
998 return PAGE_READ | PAGE_WRITE;
999 case 2:
1000 return is_user ? 0 : PAGE_READ;
1001 case 3:
1002 return PAGE_READ;
1003 default:
1004 g_assert_not_reached();
1005 }
1006 }
1007
simple_ap_to_rw_prot(CPUARMState * env,ARMMMUIdx mmu_idx,int ap)1008 static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
1009 {
1010 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
1011 }
1012
get_phys_addr_v5(CPUARMState * env,S1Translate * ptw,uint32_t address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)1013 static bool get_phys_addr_v5(CPUARMState *env, S1Translate *ptw,
1014 uint32_t address, MMUAccessType access_type,
1015 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1016 {
1017 int level = 1;
1018 uint32_t table;
1019 uint32_t desc;
1020 int type;
1021 int ap;
1022 int domain = 0;
1023 int domain_prot;
1024 hwaddr phys_addr;
1025 uint32_t dacr;
1026
1027 /* Pagetable walk. */
1028 /* Lookup l1 descriptor. */
1029 if (!get_level1_table_address(env, ptw->in_mmu_idx, &table, address)) {
1030 /* Section translation fault if page walk is disabled by PD0 or PD1 */
1031 fi->type = ARMFault_Translation;
1032 goto do_fault;
1033 }
1034 if (!S1_ptw_translate(env, ptw, table, fi)) {
1035 goto do_fault;
1036 }
1037 desc = arm_ldl_ptw(env, ptw, fi);
1038 if (fi->type != ARMFault_None) {
1039 goto do_fault;
1040 }
1041 type = (desc & 3);
1042 domain = (desc >> 5) & 0x0f;
1043 if (regime_el(env, ptw->in_mmu_idx) == 1) {
1044 dacr = env->cp15.dacr_ns;
1045 } else {
1046 dacr = env->cp15.dacr_s;
1047 }
1048 domain_prot = (dacr >> (domain * 2)) & 3;
1049 if (type == 0) {
1050 /* Section translation fault. */
1051 fi->type = ARMFault_Translation;
1052 goto do_fault;
1053 }
1054 if (type != 2) {
1055 level = 2;
1056 }
1057 if (domain_prot == 0 || domain_prot == 2) {
1058 fi->type = ARMFault_Domain;
1059 goto do_fault;
1060 }
1061 if (type == 2) {
1062 /* 1Mb section. */
1063 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1064 ap = (desc >> 10) & 3;
1065 result->f.lg_page_size = 20; /* 1MB */
1066 } else {
1067 /* Lookup l2 entry. */
1068 if (type == 1) {
1069 /* Coarse pagetable. */
1070 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1071 } else {
1072 /* Fine pagetable. */
1073 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
1074 }
1075 if (!S1_ptw_translate(env, ptw, table, fi)) {
1076 goto do_fault;
1077 }
1078 desc = arm_ldl_ptw(env, ptw, fi);
1079 if (fi->type != ARMFault_None) {
1080 goto do_fault;
1081 }
1082 switch (desc & 3) {
1083 case 0: /* Page translation fault. */
1084 fi->type = ARMFault_Translation;
1085 goto do_fault;
1086 case 1: /* 64k page. */
1087 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1088 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
1089 result->f.lg_page_size = 16;
1090 break;
1091 case 2: /* 4k page. */
1092 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1093 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
1094 result->f.lg_page_size = 12;
1095 break;
1096 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
1097 if (type == 1) {
1098 /* ARMv6/XScale extended small page format */
1099 if (arm_feature(env, ARM_FEATURE_XSCALE)
1100 || arm_feature(env, ARM_FEATURE_V6)) {
1101 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1102 result->f.lg_page_size = 12;
1103 } else {
1104 /*
1105 * UNPREDICTABLE in ARMv5; we choose to take a
1106 * page translation fault.
1107 */
1108 fi->type = ARMFault_Translation;
1109 goto do_fault;
1110 }
1111 } else {
1112 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
1113 result->f.lg_page_size = 10;
1114 }
1115 ap = (desc >> 4) & 3;
1116 break;
1117 default:
1118 /* Never happens, but compiler isn't smart enough to tell. */
1119 g_assert_not_reached();
1120 }
1121 }
1122 result->f.prot = ap_to_rw_prot(env, ptw->in_mmu_idx, ap, domain_prot);
1123 result->f.prot |= result->f.prot ? PAGE_EXEC : 0;
1124 if (!(result->f.prot & (1 << access_type))) {
1125 /* Access permission fault. */
1126 fi->type = ARMFault_Permission;
1127 goto do_fault;
1128 }
1129 result->f.phys_addr = phys_addr;
1130 return false;
1131 do_fault:
1132 fi->domain = domain;
1133 fi->level = level;
1134 return true;
1135 }
1136
get_phys_addr_v6(CPUARMState * env,S1Translate * ptw,uint32_t address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)1137 static bool get_phys_addr_v6(CPUARMState *env, S1Translate *ptw,
1138 uint32_t address, MMUAccessType access_type,
1139 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1140 {
1141 ARMCPU *cpu = env_archcpu(env);
1142 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1143 int level = 1;
1144 uint32_t table;
1145 uint32_t desc;
1146 uint32_t xn;
1147 uint32_t pxn = 0;
1148 int type;
1149 int ap;
1150 int domain = 0;
1151 int domain_prot;
1152 hwaddr phys_addr;
1153 uint32_t dacr;
1154 bool ns;
1155 ARMSecuritySpace out_space;
1156
1157 /* Pagetable walk. */
1158 /* Lookup l1 descriptor. */
1159 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
1160 /* Section translation fault if page walk is disabled by PD0 or PD1 */
1161 fi->type = ARMFault_Translation;
1162 goto do_fault;
1163 }
1164 if (!S1_ptw_translate(env, ptw, table, fi)) {
1165 goto do_fault;
1166 }
1167 desc = arm_ldl_ptw(env, ptw, fi);
1168 if (fi->type != ARMFault_None) {
1169 goto do_fault;
1170 }
1171 type = (desc & 3);
1172 if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
1173 /* Section translation fault, or attempt to use the encoding
1174 * which is Reserved on implementations without PXN.
1175 */
1176 fi->type = ARMFault_Translation;
1177 goto do_fault;
1178 }
1179 if ((type == 1) || !(desc & (1 << 18))) {
1180 /* Page or Section. */
1181 domain = (desc >> 5) & 0x0f;
1182 }
1183 if (regime_el(env, mmu_idx) == 1) {
1184 dacr = env->cp15.dacr_ns;
1185 } else {
1186 dacr = env->cp15.dacr_s;
1187 }
1188 if (type == 1) {
1189 level = 2;
1190 }
1191 domain_prot = (dacr >> (domain * 2)) & 3;
1192 if (domain_prot == 0 || domain_prot == 2) {
1193 /* Section or Page domain fault */
1194 fi->type = ARMFault_Domain;
1195 goto do_fault;
1196 }
1197 if (type != 1) {
1198 if (desc & (1 << 18)) {
1199 /* Supersection. */
1200 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1201 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
1202 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
1203 result->f.lg_page_size = 24; /* 16MB */
1204 } else {
1205 /* Section. */
1206 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1207 result->f.lg_page_size = 20; /* 1MB */
1208 }
1209 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1210 xn = desc & (1 << 4);
1211 pxn = desc & 1;
1212 ns = extract32(desc, 19, 1);
1213 } else {
1214 if (cpu_isar_feature(aa32_pxn, cpu)) {
1215 pxn = (desc >> 2) & 1;
1216 }
1217 ns = extract32(desc, 3, 1);
1218 /* Lookup l2 entry. */
1219 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1220 if (!S1_ptw_translate(env, ptw, table, fi)) {
1221 goto do_fault;
1222 }
1223 desc = arm_ldl_ptw(env, ptw, fi);
1224 if (fi->type != ARMFault_None) {
1225 goto do_fault;
1226 }
1227 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1228 switch (desc & 3) {
1229 case 0: /* Page translation fault. */
1230 fi->type = ARMFault_Translation;
1231 goto do_fault;
1232 case 1: /* 64k page. */
1233 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1234 xn = desc & (1 << 15);
1235 result->f.lg_page_size = 16;
1236 break;
1237 case 2: case 3: /* 4k page. */
1238 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1239 xn = desc & 1;
1240 result->f.lg_page_size = 12;
1241 break;
1242 default:
1243 /* Never happens, but compiler isn't smart enough to tell. */
1244 g_assert_not_reached();
1245 }
1246 }
1247 out_space = ptw->in_space;
1248 if (ns) {
1249 /*
1250 * The NS bit will (as required by the architecture) have no effect if
1251 * the CPU doesn't support TZ or this is a non-secure translation
1252 * regime, because the output space will already be non-secure.
1253 */
1254 out_space = ARMSS_NonSecure;
1255 }
1256 if (domain_prot == 3) {
1257 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
1258 } else {
1259 int user_rw, prot_rw;
1260
1261 if (arm_feature(env, ARM_FEATURE_V6K) &&
1262 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
1263 /* The simplified model uses AP[0] as an access control bit. */
1264 if ((ap & 1) == 0) {
1265 /* Access flag fault. */
1266 fi->type = ARMFault_AccessFlag;
1267 goto do_fault;
1268 }
1269 prot_rw = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
1270 user_rw = simple_ap_to_rw_prot_is_user(ap >> 1, 1);
1271 } else {
1272 prot_rw = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
1273 user_rw = ap_to_rw_prot_is_user(env, mmu_idx, ap, domain_prot, 1);
1274 }
1275
1276 result->f.prot = get_S1prot(env, mmu_idx, false, user_rw, prot_rw,
1277 xn, pxn, result->f.attrs.space, out_space);
1278 if (!(result->f.prot & (1 << access_type))) {
1279 /* Access permission fault. */
1280 fi->type = ARMFault_Permission;
1281 goto do_fault;
1282 }
1283 }
1284 result->f.attrs.space = out_space;
1285 result->f.attrs.secure = arm_space_is_secure(out_space);
1286 result->f.phys_addr = phys_addr;
1287 return false;
1288 do_fault:
1289 fi->domain = domain;
1290 fi->level = level;
1291 return true;
1292 }
1293
1294 /*
1295 * Translate S2 section/page access permissions to protection flags
1296 * @env: CPUARMState
1297 * @s2ap: The 2-bit stage2 access permissions (S2AP)
1298 * @xn: XN (execute-never) bits
1299 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
1300 */
get_S2prot_noexecute(int s2ap)1301 static int get_S2prot_noexecute(int s2ap)
1302 {
1303 int prot = 0;
1304
1305 if (s2ap & 1) {
1306 prot |= PAGE_READ;
1307 }
1308 if (s2ap & 2) {
1309 prot |= PAGE_WRITE;
1310 }
1311 return prot;
1312 }
1313
get_S2prot(CPUARMState * env,int s2ap,int xn,bool s1_is_el0)1314 static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
1315 {
1316 int prot = get_S2prot_noexecute(s2ap);
1317
1318 if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
1319 switch (xn) {
1320 case 0:
1321 prot |= PAGE_EXEC;
1322 break;
1323 case 1:
1324 if (s1_is_el0) {
1325 prot |= PAGE_EXEC;
1326 }
1327 break;
1328 case 2:
1329 break;
1330 case 3:
1331 if (!s1_is_el0) {
1332 prot |= PAGE_EXEC;
1333 }
1334 break;
1335 default:
1336 g_assert_not_reached();
1337 }
1338 } else {
1339 if (!extract32(xn, 1, 1)) {
1340 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
1341 prot |= PAGE_EXEC;
1342 }
1343 }
1344 }
1345 return prot;
1346 }
1347
1348 /*
1349 * Translate section/page access permissions to protection flags
1350 * @env: CPUARMState
1351 * @mmu_idx: MMU index indicating required translation regime
1352 * @is_aa64: TRUE if AArch64
1353 * @user_rw: Translated AP for user access
1354 * @prot_rw: Translated AP for privileged access
1355 * @xn: XN (execute-never) bit
1356 * @pxn: PXN (privileged execute-never) bit
1357 * @in_pa: The original input pa space
1358 * @out_pa: The output pa space, modified by NSTable, NS, and NSE
1359 */
get_S1prot(CPUARMState * env,ARMMMUIdx mmu_idx,bool is_aa64,int user_rw,int prot_rw,int xn,int pxn,ARMSecuritySpace in_pa,ARMSecuritySpace out_pa)1360 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
1361 int user_rw, int prot_rw, int xn, int pxn,
1362 ARMSecuritySpace in_pa, ARMSecuritySpace out_pa)
1363 {
1364 ARMCPU *cpu = env_archcpu(env);
1365 bool is_user = regime_is_user(env, mmu_idx);
1366 bool have_wxn;
1367 int wxn = 0;
1368
1369 assert(!regime_is_stage2(mmu_idx));
1370
1371 if (is_user) {
1372 prot_rw = user_rw;
1373 } else {
1374 /*
1375 * PAN controls can forbid data accesses but don't affect insn fetch.
1376 * Plain PAN forbids data accesses if EL0 has data permissions;
1377 * PAN3 forbids data accesses if EL0 has either data or exec perms.
1378 * Note that for AArch64 the 'user can exec' case is exactly !xn.
1379 * We make the IMPDEF choices that SCR_EL3.SIF and Realm EL2&0
1380 * do not affect EPAN.
1381 */
1382 if (user_rw && regime_is_pan(env, mmu_idx)) {
1383 prot_rw = 0;
1384 } else if (cpu_isar_feature(aa64_pan3, cpu) && is_aa64 &&
1385 regime_is_pan(env, mmu_idx) &&
1386 (regime_sctlr(env, mmu_idx) & SCTLR_EPAN) && !xn) {
1387 prot_rw = 0;
1388 }
1389 }
1390
1391 if (in_pa != out_pa) {
1392 switch (in_pa) {
1393 case ARMSS_Root:
1394 /*
1395 * R_ZWRVD: permission fault for insn fetched from non-Root,
1396 * I_WWBFB: SIF has no effect in EL3.
1397 */
1398 return prot_rw;
1399 case ARMSS_Realm:
1400 /*
1401 * R_PKTDS: permission fault for insn fetched from non-Realm,
1402 * for Realm EL2 or EL2&0. The corresponding fault for EL1&0
1403 * happens during any stage2 translation.
1404 */
1405 switch (mmu_idx) {
1406 case ARMMMUIdx_E2:
1407 case ARMMMUIdx_E20_0:
1408 case ARMMMUIdx_E20_2:
1409 case ARMMMUIdx_E20_2_PAN:
1410 return prot_rw;
1411 default:
1412 break;
1413 }
1414 break;
1415 case ARMSS_Secure:
1416 if (env->cp15.scr_el3 & SCR_SIF) {
1417 return prot_rw;
1418 }
1419 break;
1420 default:
1421 /* Input NonSecure must have output NonSecure. */
1422 g_assert_not_reached();
1423 }
1424 }
1425
1426 /* TODO have_wxn should be replaced with
1427 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
1428 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
1429 * compatible processors have EL2, which is required for [U]WXN.
1430 */
1431 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
1432
1433 if (have_wxn) {
1434 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
1435 }
1436
1437 if (is_aa64) {
1438 if (regime_has_2_ranges(mmu_idx) && !is_user) {
1439 xn = pxn || (user_rw & PAGE_WRITE);
1440 }
1441 } else if (arm_feature(env, ARM_FEATURE_V7)) {
1442 switch (regime_el(env, mmu_idx)) {
1443 case 1:
1444 case 3:
1445 if (is_user) {
1446 xn = xn || !(user_rw & PAGE_READ);
1447 } else {
1448 int uwxn = 0;
1449 if (have_wxn) {
1450 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
1451 }
1452 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
1453 (uwxn && (user_rw & PAGE_WRITE));
1454 }
1455 break;
1456 case 2:
1457 break;
1458 }
1459 } else {
1460 xn = wxn = 0;
1461 }
1462
1463 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
1464 return prot_rw;
1465 }
1466 return prot_rw | PAGE_EXEC;
1467 }
1468
aa32_va_parameters(CPUARMState * env,uint32_t va,ARMMMUIdx mmu_idx)1469 static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
1470 ARMMMUIdx mmu_idx)
1471 {
1472 uint64_t tcr = regime_tcr(env, mmu_idx);
1473 uint32_t el = regime_el(env, mmu_idx);
1474 int select, tsz;
1475 bool epd, hpd;
1476
1477 assert(mmu_idx != ARMMMUIdx_Stage2_S);
1478
1479 if (mmu_idx == ARMMMUIdx_Stage2) {
1480 /* VTCR */
1481 bool sext = extract32(tcr, 4, 1);
1482 bool sign = extract32(tcr, 3, 1);
1483
1484 /*
1485 * If the sign-extend bit is not the same as t0sz[3], the result
1486 * is unpredictable. Flag this as a guest error.
1487 */
1488 if (sign != sext) {
1489 qemu_log_mask(LOG_GUEST_ERROR,
1490 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
1491 }
1492 tsz = sextract32(tcr, 0, 4) + 8;
1493 select = 0;
1494 hpd = false;
1495 epd = false;
1496 } else if (el == 2) {
1497 /* HTCR */
1498 tsz = extract32(tcr, 0, 3);
1499 select = 0;
1500 hpd = extract64(tcr, 24, 1);
1501 epd = false;
1502 } else {
1503 int t0sz = extract32(tcr, 0, 3);
1504 int t1sz = extract32(tcr, 16, 3);
1505
1506 if (t1sz == 0) {
1507 select = va > (0xffffffffu >> t0sz);
1508 } else {
1509 /* Note that we will detect errors later. */
1510 select = va >= ~(0xffffffffu >> t1sz);
1511 }
1512 if (!select) {
1513 tsz = t0sz;
1514 epd = extract32(tcr, 7, 1);
1515 hpd = extract64(tcr, 41, 1);
1516 } else {
1517 tsz = t1sz;
1518 epd = extract32(tcr, 23, 1);
1519 hpd = extract64(tcr, 42, 1);
1520 }
1521 /* For aarch32, hpd0 is not enabled without t2e as well. */
1522 hpd &= extract32(tcr, 6, 1);
1523 }
1524
1525 return (ARMVAParameters) {
1526 .tsz = tsz,
1527 .select = select,
1528 .epd = epd,
1529 .hpd = hpd,
1530 };
1531 }
1532
1533 /*
1534 * check_s2_mmu_setup
1535 * @cpu: ARMCPU
1536 * @is_aa64: True if the translation regime is in AArch64 state
1537 * @tcr: VTCR_EL2 or VSTCR_EL2
1538 * @ds: Effective value of TCR.DS.
1539 * @iasize: Bitsize of IPAs
1540 * @stride: Page-table stride (See the ARM ARM)
1541 *
1542 * Decode the starting level of the S2 lookup, returning INT_MIN if
1543 * the configuration is invalid.
1544 */
check_s2_mmu_setup(ARMCPU * cpu,bool is_aa64,uint64_t tcr,bool ds,int iasize,int stride)1545 static int check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, uint64_t tcr,
1546 bool ds, int iasize, int stride)
1547 {
1548 int sl0, sl2, startlevel, granulebits, levels;
1549 int s1_min_iasize, s1_max_iasize;
1550
1551 sl0 = extract32(tcr, 6, 2);
1552 if (is_aa64) {
1553 /*
1554 * AArch64.S2InvalidSL: Interpretation of SL depends on the page size,
1555 * so interleave AArch64.S2StartLevel.
1556 */
1557 switch (stride) {
1558 case 9: /* 4KB */
1559 /* SL2 is RES0 unless DS=1 & 4KB granule. */
1560 sl2 = extract64(tcr, 33, 1);
1561 if (ds && sl2) {
1562 if (sl0 != 0) {
1563 goto fail;
1564 }
1565 startlevel = -1;
1566 } else {
1567 startlevel = 2 - sl0;
1568 switch (sl0) {
1569 case 2:
1570 if (arm_pamax(cpu) < 44) {
1571 goto fail;
1572 }
1573 break;
1574 case 3:
1575 if (!cpu_isar_feature(aa64_st, cpu)) {
1576 goto fail;
1577 }
1578 startlevel = 3;
1579 break;
1580 }
1581 }
1582 break;
1583 case 11: /* 16KB */
1584 switch (sl0) {
1585 case 2:
1586 if (arm_pamax(cpu) < 42) {
1587 goto fail;
1588 }
1589 break;
1590 case 3:
1591 if (!ds) {
1592 goto fail;
1593 }
1594 break;
1595 }
1596 startlevel = 3 - sl0;
1597 break;
1598 case 13: /* 64KB */
1599 switch (sl0) {
1600 case 2:
1601 if (arm_pamax(cpu) < 44) {
1602 goto fail;
1603 }
1604 break;
1605 case 3:
1606 goto fail;
1607 }
1608 startlevel = 3 - sl0;
1609 break;
1610 default:
1611 g_assert_not_reached();
1612 }
1613 } else {
1614 /*
1615 * Things are simpler for AArch32 EL2, with only 4k pages.
1616 * There is no separate S2InvalidSL function, but AArch32.S2Walk
1617 * begins with walkparms.sl0 in {'1x'}.
1618 */
1619 assert(stride == 9);
1620 if (sl0 >= 2) {
1621 goto fail;
1622 }
1623 startlevel = 2 - sl0;
1624 }
1625
1626 /* AArch{64,32}.S2InconsistentSL are functionally equivalent. */
1627 levels = 3 - startlevel;
1628 granulebits = stride + 3;
1629
1630 s1_min_iasize = levels * stride + granulebits + 1;
1631 s1_max_iasize = s1_min_iasize + (stride - 1) + 4;
1632
1633 if (iasize >= s1_min_iasize && iasize <= s1_max_iasize) {
1634 return startlevel;
1635 }
1636
1637 fail:
1638 return INT_MIN;
1639 }
1640
lpae_block_desc_valid(ARMCPU * cpu,bool ds,ARMGranuleSize gran,int level)1641 static bool lpae_block_desc_valid(ARMCPU *cpu, bool ds,
1642 ARMGranuleSize gran, int level)
1643 {
1644 /*
1645 * See pseudocode AArch46.BlockDescSupported(): block descriptors
1646 * are not valid at all levels, depending on the page size.
1647 */
1648 switch (gran) {
1649 case Gran4K:
1650 return (level == 0 && ds) || level == 1 || level == 2;
1651 case Gran16K:
1652 return (level == 1 && ds) || level == 2;
1653 case Gran64K:
1654 return (level == 1 && arm_pamax(cpu) == 52) || level == 2;
1655 default:
1656 g_assert_not_reached();
1657 }
1658 }
1659
nv_nv1_enabled(CPUARMState * env,S1Translate * ptw)1660 static bool nv_nv1_enabled(CPUARMState *env, S1Translate *ptw)
1661 {
1662 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
1663 return (hcr & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1);
1664 }
1665
1666 /**
1667 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
1668 *
1669 * Returns false if the translation was successful. Otherwise, phys_ptr,
1670 * attrs, prot and page_size may not be filled in, and the populated fsr
1671 * value provides information on why the translation aborted, in the format
1672 * of a long-format DFSR/IFSR fault register, with the following caveat:
1673 * the WnR bit is never set (the caller must do this).
1674 *
1675 * @env: CPUARMState
1676 * @ptw: Current and next stage parameters for the walk.
1677 * @address: virtual address to get physical address for
1678 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
1679 * @memop: memory operation feeding this access, or 0 for none
1680 * @result: set on translation success,
1681 * @fi: set to fault info if the translation fails
1682 */
get_phys_addr_lpae(CPUARMState * env,S1Translate * ptw,uint64_t address,MMUAccessType access_type,MemOp memop,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)1683 static bool get_phys_addr_lpae(CPUARMState *env, S1Translate *ptw,
1684 uint64_t address,
1685 MMUAccessType access_type, MemOp memop,
1686 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
1687 {
1688 ARMCPU *cpu = env_archcpu(env);
1689 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
1690 int32_t level;
1691 ARMVAParameters param;
1692 uint64_t ttbr;
1693 hwaddr descaddr, indexmask, indexmask_grainsize;
1694 uint32_t tableattrs;
1695 target_ulong page_size;
1696 uint64_t attrs;
1697 int32_t stride;
1698 int addrsize, inputsize, outputsize;
1699 uint64_t tcr = regime_tcr(env, mmu_idx);
1700 int ap, xn, pxn;
1701 uint32_t el = regime_el(env, mmu_idx);
1702 uint64_t descaddrmask;
1703 bool aarch64 = arm_el_is_aa64(env, el);
1704 uint64_t descriptor, new_descriptor;
1705 ARMSecuritySpace out_space;
1706 bool device;
1707
1708 /* TODO: This code does not support shareability levels. */
1709 if (aarch64) {
1710 int ps;
1711
1712 param = aa64_va_parameters(env, address, mmu_idx,
1713 access_type != MMU_INST_FETCH,
1714 !arm_el_is_aa64(env, 1));
1715 level = 0;
1716
1717 /*
1718 * If TxSZ is programmed to a value larger than the maximum,
1719 * or smaller than the effective minimum, it is IMPLEMENTATION
1720 * DEFINED whether we behave as if the field were programmed
1721 * within bounds, or if a level 0 Translation fault is generated.
1722 *
1723 * With FEAT_LVA, fault on less than minimum becomes required,
1724 * so our choice is to always raise the fault.
1725 */
1726 if (param.tsz_oob) {
1727 goto do_translation_fault;
1728 }
1729
1730 addrsize = 64 - 8 * param.tbi;
1731 inputsize = 64 - param.tsz;
1732
1733 /*
1734 * Bound PS by PARANGE to find the effective output address size.
1735 * ID_AA64MMFR0 is a read-only register so values outside of the
1736 * supported mappings can be considered an implementation error.
1737 */
1738 ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
1739 ps = MIN(ps, param.ps);
1740 assert(ps < ARRAY_SIZE(pamax_map));
1741 outputsize = pamax_map[ps];
1742
1743 /*
1744 * With LPA2, the effective output address (OA) size is at most 48 bits
1745 * unless TCR.DS == 1
1746 */
1747 if (!param.ds && param.gran != Gran64K) {
1748 outputsize = MIN(outputsize, 48);
1749 }
1750 } else {
1751 param = aa32_va_parameters(env, address, mmu_idx);
1752 level = 1;
1753 addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
1754 inputsize = addrsize - param.tsz;
1755 outputsize = 40;
1756 }
1757
1758 /*
1759 * We determined the region when collecting the parameters, but we
1760 * have not yet validated that the address is valid for the region.
1761 * Extract the top bits and verify that they all match select.
1762 *
1763 * For aa32, if inputsize == addrsize, then we have selected the
1764 * region by exclusion in aa32_va_parameters and there is no more
1765 * validation to do here.
1766 */
1767 if (inputsize < addrsize) {
1768 target_ulong top_bits = sextract64(address, inputsize,
1769 addrsize - inputsize);
1770 if (-top_bits != param.select) {
1771 /* The gap between the two regions is a Translation fault */
1772 goto do_translation_fault;
1773 }
1774 }
1775
1776 stride = arm_granule_bits(param.gran) - 3;
1777
1778 /*
1779 * Note that QEMU ignores shareability and cacheability attributes,
1780 * so we don't need to do anything with the SH, ORGN, IRGN fields
1781 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
1782 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
1783 * implement any ASID-like capability so we can ignore it (instead
1784 * we will always flush the TLB any time the ASID is changed).
1785 */
1786 ttbr = regime_ttbr(env, mmu_idx, param.select);
1787
1788 /*
1789 * Here we should have set up all the parameters for the translation:
1790 * inputsize, ttbr, epd, stride, tbi
1791 */
1792
1793 if (param.epd) {
1794 /*
1795 * Translation table walk disabled => Translation fault on TLB miss
1796 * Note: This is always 0 on 64-bit EL2 and EL3.
1797 */
1798 goto do_translation_fault;
1799 }
1800
1801 if (!regime_is_stage2(mmu_idx)) {
1802 /*
1803 * The starting level depends on the virtual address size (which can
1804 * be up to 48 bits) and the translation granule size. It indicates
1805 * the number of strides (stride bits at a time) needed to
1806 * consume the bits of the input address. In the pseudocode this is:
1807 * level = 4 - RoundUp((inputsize - grainsize) / stride)
1808 * where their 'inputsize' is our 'inputsize', 'grainsize' is
1809 * our 'stride + 3' and 'stride' is our 'stride'.
1810 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
1811 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
1812 * = 4 - (inputsize - 4) / stride;
1813 */
1814 level = 4 - (inputsize - 4) / stride;
1815 } else {
1816 int startlevel = check_s2_mmu_setup(cpu, aarch64, tcr, param.ds,
1817 inputsize, stride);
1818 if (startlevel == INT_MIN) {
1819 level = 0;
1820 goto do_translation_fault;
1821 }
1822 level = startlevel;
1823 }
1824
1825 indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
1826 indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));
1827
1828 /* Now we can extract the actual base address from the TTBR */
1829 descaddr = extract64(ttbr, 0, 48);
1830
1831 /*
1832 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
1833 *
1834 * Otherwise, if the base address is out of range, raise AddressSizeFault.
1835 * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
1836 * but we've just cleared the bits above 47, so simplify the test.
1837 */
1838 if (outputsize > 48) {
1839 descaddr |= extract64(ttbr, 2, 4) << 48;
1840 } else if (descaddr >> outputsize) {
1841 level = 0;
1842 fi->type = ARMFault_AddressSize;
1843 goto do_fault;
1844 }
1845
1846 /*
1847 * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
1848 * and also to mask out CnP (bit 0) which could validly be non-zero.
1849 */
1850 descaddr &= ~indexmask;
1851
1852 /*
1853 * For AArch32, the address field in the descriptor goes up to bit 39
1854 * for both v7 and v8. However, for v8 the SBZ bits [47:40] must be 0
1855 * or an AddressSize fault is raised. So for v8 we extract those SBZ
1856 * bits as part of the address, which will be checked via outputsize.
1857 * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
1858 * the highest bits of a 52-bit output are placed elsewhere.
1859 */
1860 if (param.ds) {
1861 descaddrmask = MAKE_64BIT_MASK(0, 50);
1862 } else if (arm_feature(env, ARM_FEATURE_V8)) {
1863 descaddrmask = MAKE_64BIT_MASK(0, 48);
1864 } else {
1865 descaddrmask = MAKE_64BIT_MASK(0, 40);
1866 }
1867 descaddrmask &= ~indexmask_grainsize;
1868 tableattrs = 0;
1869
1870 next_level:
1871 descaddr |= (address >> (stride * (4 - level))) & indexmask;
1872 descaddr &= ~7ULL;
1873
1874 /*
1875 * Process the NSTable bit from the previous level. This changes
1876 * the table address space and the output space from Secure to
1877 * NonSecure. With RME, the EL3 translation regime does not change
1878 * from Root to NonSecure.
1879 */
1880 if (ptw->in_space == ARMSS_Secure
1881 && !regime_is_stage2(mmu_idx)
1882 && extract32(tableattrs, 4, 1)) {
1883 /*
1884 * Stage2_S -> Stage2 or Phys_S -> Phys_NS
1885 * Assert the relative order of the secure/non-secure indexes.
1886 */
1887 QEMU_BUILD_BUG_ON(ARMMMUIdx_Phys_S + 1 != ARMMMUIdx_Phys_NS);
1888 QEMU_BUILD_BUG_ON(ARMMMUIdx_Stage2_S + 1 != ARMMMUIdx_Stage2);
1889 ptw->in_ptw_idx += 1;
1890 ptw->in_space = ARMSS_NonSecure;
1891 }
1892
1893 if (!S1_ptw_translate(env, ptw, descaddr, fi)) {
1894 goto do_fault;
1895 }
1896 descriptor = arm_ldq_ptw(env, ptw, fi);
1897 if (fi->type != ARMFault_None) {
1898 goto do_fault;
1899 }
1900 new_descriptor = descriptor;
1901
1902 restart_atomic_update:
1903 if (!(descriptor & 1) ||
1904 (!(descriptor & 2) &&
1905 !lpae_block_desc_valid(cpu, param.ds, param.gran, level))) {
1906 /* Invalid, or a block descriptor at an invalid level */
1907 goto do_translation_fault;
1908 }
1909
1910 descaddr = descriptor & descaddrmask;
1911
1912 /*
1913 * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
1914 * of descriptor. For FEAT_LPA2 and effective DS, bits [51:50] of
1915 * descaddr are in [9:8]. Otherwise, if descaddr is out of range,
1916 * raise AddressSizeFault.
1917 */
1918 if (outputsize > 48) {
1919 if (param.ds) {
1920 descaddr |= extract64(descriptor, 8, 2) << 50;
1921 } else {
1922 descaddr |= extract64(descriptor, 12, 4) << 48;
1923 }
1924 } else if (descaddr >> outputsize) {
1925 fi->type = ARMFault_AddressSize;
1926 goto do_fault;
1927 }
1928
1929 if ((descriptor & 2) && (level < 3)) {
1930 /*
1931 * Table entry. The top five bits are attributes which may
1932 * propagate down through lower levels of the table (and
1933 * which are all arranged so that 0 means "no effect", so
1934 * we can gather them up by ORing in the bits at each level).
1935 */
1936 tableattrs |= extract64(descriptor, 59, 5);
1937 level++;
1938 indexmask = indexmask_grainsize;
1939 goto next_level;
1940 }
1941
1942 /*
1943 * Block entry at level 1 or 2, or page entry at level 3.
1944 * These are basically the same thing, although the number
1945 * of bits we pull in from the vaddr varies. Note that although
1946 * descaddrmask masks enough of the low bits of the descriptor
1947 * to give a correct page or table address, the address field
1948 * in a block descriptor is smaller; so we need to explicitly
1949 * clear the lower bits here before ORing in the low vaddr bits.
1950 *
1951 * Afterward, descaddr is the final physical address.
1952 */
1953 page_size = (1ULL << ((stride * (4 - level)) + 3));
1954 descaddr &= ~(hwaddr)(page_size - 1);
1955 descaddr |= (address & (page_size - 1));
1956
1957 if (likely(!ptw->in_debug)) {
1958 /*
1959 * Access flag.
1960 * If HA is enabled, prepare to update the descriptor below.
1961 * Otherwise, pass the access fault on to software.
1962 */
1963 if (!(descriptor & (1 << 10))) {
1964 if (param.ha) {
1965 new_descriptor |= 1 << 10; /* AF */
1966 } else {
1967 fi->type = ARMFault_AccessFlag;
1968 goto do_fault;
1969 }
1970 }
1971
1972 /*
1973 * Dirty Bit.
1974 * If HD is enabled, pre-emptively set/clear the appropriate AP/S2AP
1975 * bit for writeback. The actual write protection test may still be
1976 * overridden by tableattrs, to be merged below.
1977 */
1978 if (param.hd
1979 && extract64(descriptor, 51, 1) /* DBM */
1980 && access_type == MMU_DATA_STORE) {
1981 if (regime_is_stage2(mmu_idx)) {
1982 new_descriptor |= 1ull << 7; /* set S2AP[1] */
1983 } else {
1984 new_descriptor &= ~(1ull << 7); /* clear AP[2] */
1985 }
1986 }
1987 }
1988
1989 /*
1990 * Extract attributes from the (modified) descriptor, and apply
1991 * table descriptors. Stage 2 table descriptors do not include
1992 * any attribute fields. HPD disables all the table attributes
1993 * except NSTable (which we have already handled).
1994 */
1995 attrs = new_descriptor & (MAKE_64BIT_MASK(2, 10) | MAKE_64BIT_MASK(50, 14));
1996 if (!regime_is_stage2(mmu_idx)) {
1997 if (!param.hpd) {
1998 attrs |= extract64(tableattrs, 0, 2) << 53; /* XN, PXN */
1999 /*
2000 * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
2001 * means "force PL1 access only", which means forcing AP[1] to 0.
2002 */
2003 attrs &= ~(extract64(tableattrs, 2, 1) << 6); /* !APT[0] => AP[1] */
2004 attrs |= extract32(tableattrs, 3, 1) << 7; /* APT[1] => AP[2] */
2005 }
2006 }
2007
2008 ap = extract32(attrs, 6, 2);
2009 out_space = ptw->in_space;
2010 if (regime_is_stage2(mmu_idx)) {
2011 /*
2012 * R_GYNXY: For stage2 in Realm security state, bit 55 is NS.
2013 * The bit remains ignored for other security states.
2014 * R_YMCSL: Executing an insn fetched from non-Realm causes
2015 * a stage2 permission fault.
2016 */
2017 if (out_space == ARMSS_Realm && extract64(attrs, 55, 1)) {
2018 out_space = ARMSS_NonSecure;
2019 result->f.prot = get_S2prot_noexecute(ap);
2020 } else {
2021 xn = extract64(attrs, 53, 2);
2022 result->f.prot = get_S2prot(env, ap, xn, ptw->in_s1_is_el0);
2023 }
2024
2025 result->cacheattrs.is_s2_format = true;
2026 result->cacheattrs.attrs = extract32(attrs, 2, 4);
2027 /*
2028 * Security state does not really affect HCR_EL2.FWB;
2029 * we only need to filter FWB for aa32 or other FEAT.
2030 */
2031 device = S2_attrs_are_device(arm_hcr_el2_eff(env),
2032 result->cacheattrs.attrs);
2033 } else {
2034 int nse, ns = extract32(attrs, 5, 1);
2035 uint8_t attrindx;
2036 uint64_t mair;
2037 int user_rw, prot_rw;
2038
2039 switch (out_space) {
2040 case ARMSS_Root:
2041 /*
2042 * R_GVZML: Bit 11 becomes the NSE field in the EL3 regime.
2043 * R_XTYPW: NSE and NS together select the output pa space.
2044 */
2045 nse = extract32(attrs, 11, 1);
2046 out_space = (nse << 1) | ns;
2047 if (out_space == ARMSS_Secure &&
2048 !cpu_isar_feature(aa64_sel2, cpu)) {
2049 out_space = ARMSS_NonSecure;
2050 }
2051 break;
2052 case ARMSS_Secure:
2053 if (ns) {
2054 out_space = ARMSS_NonSecure;
2055 }
2056 break;
2057 case ARMSS_Realm:
2058 switch (mmu_idx) {
2059 case ARMMMUIdx_Stage1_E0:
2060 case ARMMMUIdx_Stage1_E1:
2061 case ARMMMUIdx_Stage1_E1_PAN:
2062 /* I_CZPRF: For Realm EL1&0 stage1, NS bit is RES0. */
2063 break;
2064 case ARMMMUIdx_E2:
2065 case ARMMMUIdx_E20_0:
2066 case ARMMMUIdx_E20_2:
2067 case ARMMMUIdx_E20_2_PAN:
2068 /*
2069 * R_LYKFZ, R_WGRZN: For Realm EL2 and EL2&1,
2070 * NS changes the output to non-secure space.
2071 */
2072 if (ns) {
2073 out_space = ARMSS_NonSecure;
2074 }
2075 break;
2076 default:
2077 g_assert_not_reached();
2078 }
2079 break;
2080 case ARMSS_NonSecure:
2081 /* R_QRMFF: For NonSecure state, the NS bit is RES0. */
2082 break;
2083 default:
2084 g_assert_not_reached();
2085 }
2086 xn = extract64(attrs, 54, 1);
2087 pxn = extract64(attrs, 53, 1);
2088
2089 if (el == 1 && nv_nv1_enabled(env, ptw)) {
2090 /*
2091 * With FEAT_NV, when HCR_EL2.{NV,NV1} == {1,1}, the block/page
2092 * descriptor bit 54 holds PXN, 53 is RES0, and the effective value
2093 * of UXN is 0. Similarly for bits 59 and 60 in table descriptors
2094 * (which we have already folded into bits 53 and 54 of attrs).
2095 * AP[1] (descriptor bit 6, our ap bit 0) is treated as 0.
2096 * Similarly, APTable[0] from the table descriptor is treated as 0;
2097 * we already folded this into AP[1] and squashing that to 0 does
2098 * the right thing.
2099 */
2100 pxn = xn;
2101 xn = 0;
2102 ap &= ~1;
2103 }
2104
2105 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
2106 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
2107 /*
2108 * Note that we modified ptw->in_space earlier for NSTable, but
2109 * result->f.attrs retains a copy of the original security space.
2110 */
2111 result->f.prot = get_S1prot(env, mmu_idx, aarch64, user_rw, prot_rw,
2112 xn, pxn, result->f.attrs.space, out_space);
2113
2114 /* Index into MAIR registers for cache attributes */
2115 attrindx = extract32(attrs, 2, 3);
2116 mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2117 assert(attrindx <= 7);
2118 result->cacheattrs.is_s2_format = false;
2119 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2120
2121 /* When in aarch64 mode, and BTI is enabled, remember GP in the TLB. */
2122 if (aarch64 && cpu_isar_feature(aa64_bti, cpu)) {
2123 result->f.extra.arm.guarded = extract64(attrs, 50, 1); /* GP */
2124 }
2125 device = S1_attrs_are_device(result->cacheattrs.attrs);
2126 }
2127
2128 /*
2129 * Enable alignment checks on Device memory.
2130 *
2131 * Per R_XCHFJ, the correct ordering for alignment, permission,
2132 * and stage 2 faults is:
2133 * - Alignment fault caused by the memory type
2134 * - Permission fault
2135 * - A stage 2 fault on the memory access
2136 * Perform the alignment check now, so that we recognize it in
2137 * the correct order. Set TLB_CHECK_ALIGNED so that any subsequent
2138 * softmmu tlb hit will also check the alignment; clear along the
2139 * non-device path so that tlb_fill_flags is consistent in the
2140 * event of restart_atomic_update.
2141 *
2142 * In v7, for a CPU without the Virtualization Extensions this
2143 * access is UNPREDICTABLE; we choose to make it take the alignment
2144 * fault as is required for a v7VE CPU. (QEMU doesn't emulate any
2145 * CPUs with ARM_FEATURE_LPAE but not ARM_FEATURE_V7VE anyway.)
2146 */
2147 if (device) {
2148 unsigned a_bits = memop_atomicity_bits(memop);
2149 if (address & ((1 << a_bits) - 1)) {
2150 fi->type = ARMFault_Alignment;
2151 goto do_fault;
2152 }
2153 result->f.tlb_fill_flags = TLB_CHECK_ALIGNED;
2154 } else {
2155 result->f.tlb_fill_flags = 0;
2156 }
2157
2158 if (!(result->f.prot & (1 << access_type))) {
2159 fi->type = ARMFault_Permission;
2160 goto do_fault;
2161 }
2162
2163 /* If FEAT_HAFDBS has made changes, update the PTE. */
2164 if (new_descriptor != descriptor) {
2165 new_descriptor = arm_casq_ptw(env, descriptor, new_descriptor, ptw, fi);
2166 if (fi->type != ARMFault_None) {
2167 goto do_fault;
2168 }
2169 /*
2170 * I_YZSVV says that if the in-memory descriptor has changed,
2171 * then we must use the information in that new value
2172 * (which might include a different output address, different
2173 * attributes, or generate a fault).
2174 * Restart the handling of the descriptor value from scratch.
2175 */
2176 if (new_descriptor != descriptor) {
2177 descriptor = new_descriptor;
2178 goto restart_atomic_update;
2179 }
2180 }
2181
2182 result->f.attrs.space = out_space;
2183 result->f.attrs.secure = arm_space_is_secure(out_space);
2184
2185 /*
2186 * For FEAT_LPA2 and effective DS, the SH field in the attributes
2187 * was re-purposed for output address bits. The SH attribute in
2188 * that case comes from TCR_ELx, which we extracted earlier.
2189 */
2190 if (param.ds) {
2191 result->cacheattrs.shareability = param.sh;
2192 } else {
2193 result->cacheattrs.shareability = extract32(attrs, 8, 2);
2194 }
2195
2196 result->f.phys_addr = descaddr;
2197 result->f.lg_page_size = ctz64(page_size);
2198 return false;
2199
2200 do_translation_fault:
2201 fi->type = ARMFault_Translation;
2202 do_fault:
2203 if (fi->s1ptw) {
2204 /* Retain the existing stage 2 fi->level */
2205 assert(fi->stage2);
2206 } else {
2207 fi->level = level;
2208 fi->stage2 = regime_is_stage2(mmu_idx);
2209 }
2210 fi->s1ns = fault_s1ns(ptw->in_space, mmu_idx);
2211 return true;
2212 }
2213
get_phys_addr_pmsav5(CPUARMState * env,S1Translate * ptw,uint32_t address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)2214 static bool get_phys_addr_pmsav5(CPUARMState *env,
2215 S1Translate *ptw,
2216 uint32_t address,
2217 MMUAccessType access_type,
2218 GetPhysAddrResult *result,
2219 ARMMMUFaultInfo *fi)
2220 {
2221 int n;
2222 uint32_t mask;
2223 uint32_t base;
2224 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2225 bool is_user = regime_is_user(env, mmu_idx);
2226
2227 if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
2228 /* MPU disabled. */
2229 result->f.phys_addr = address;
2230 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2231 return false;
2232 }
2233
2234 result->f.phys_addr = address;
2235 for (n = 7; n >= 0; n--) {
2236 base = env->cp15.c6_region[n];
2237 if ((base & 1) == 0) {
2238 continue;
2239 }
2240 mask = 1 << ((base >> 1) & 0x1f);
2241 /* Keep this shift separate from the above to avoid an
2242 (undefined) << 32. */
2243 mask = (mask << 1) - 1;
2244 if (((base ^ address) & ~mask) == 0) {
2245 break;
2246 }
2247 }
2248 if (n < 0) {
2249 fi->type = ARMFault_Background;
2250 return true;
2251 }
2252
2253 if (access_type == MMU_INST_FETCH) {
2254 mask = env->cp15.pmsav5_insn_ap;
2255 } else {
2256 mask = env->cp15.pmsav5_data_ap;
2257 }
2258 mask = (mask >> (n * 4)) & 0xf;
2259 switch (mask) {
2260 case 0:
2261 fi->type = ARMFault_Permission;
2262 fi->level = 1;
2263 return true;
2264 case 1:
2265 if (is_user) {
2266 fi->type = ARMFault_Permission;
2267 fi->level = 1;
2268 return true;
2269 }
2270 result->f.prot = PAGE_READ | PAGE_WRITE;
2271 break;
2272 case 2:
2273 result->f.prot = PAGE_READ;
2274 if (!is_user) {
2275 result->f.prot |= PAGE_WRITE;
2276 }
2277 break;
2278 case 3:
2279 result->f.prot = PAGE_READ | PAGE_WRITE;
2280 break;
2281 case 5:
2282 if (is_user) {
2283 fi->type = ARMFault_Permission;
2284 fi->level = 1;
2285 return true;
2286 }
2287 result->f.prot = PAGE_READ;
2288 break;
2289 case 6:
2290 result->f.prot = PAGE_READ;
2291 break;
2292 default:
2293 /* Bad permission. */
2294 fi->type = ARMFault_Permission;
2295 fi->level = 1;
2296 return true;
2297 }
2298 result->f.prot |= PAGE_EXEC;
2299 return false;
2300 }
2301
get_phys_addr_pmsav7_default(CPUARMState * env,ARMMMUIdx mmu_idx,int32_t address,uint8_t * prot)2302 static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
2303 int32_t address, uint8_t *prot)
2304 {
2305 if (!arm_feature(env, ARM_FEATURE_M)) {
2306 *prot = PAGE_READ | PAGE_WRITE;
2307 switch (address) {
2308 case 0xF0000000 ... 0xFFFFFFFF:
2309 if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
2310 /* hivecs execing is ok */
2311 *prot |= PAGE_EXEC;
2312 }
2313 break;
2314 case 0x00000000 ... 0x7FFFFFFF:
2315 *prot |= PAGE_EXEC;
2316 break;
2317 }
2318 } else {
2319 /* Default system address map for M profile cores.
2320 * The architecture specifies which regions are execute-never;
2321 * at the MPU level no other checks are defined.
2322 */
2323 switch (address) {
2324 case 0x00000000 ... 0x1fffffff: /* ROM */
2325 case 0x20000000 ... 0x3fffffff: /* SRAM */
2326 case 0x60000000 ... 0x7fffffff: /* RAM */
2327 case 0x80000000 ... 0x9fffffff: /* RAM */
2328 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2329 break;
2330 case 0x40000000 ... 0x5fffffff: /* Peripheral */
2331 case 0xa0000000 ... 0xbfffffff: /* Device */
2332 case 0xc0000000 ... 0xdfffffff: /* Device */
2333 case 0xe0000000 ... 0xffffffff: /* System */
2334 *prot = PAGE_READ | PAGE_WRITE;
2335 break;
2336 default:
2337 g_assert_not_reached();
2338 }
2339 }
2340 }
2341
m_is_ppb_region(CPUARMState * env,uint32_t address)2342 static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
2343 {
2344 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
2345 return arm_feature(env, ARM_FEATURE_M) &&
2346 extract32(address, 20, 12) == 0xe00;
2347 }
2348
m_is_system_region(CPUARMState * env,uint32_t address)2349 static bool m_is_system_region(CPUARMState *env, uint32_t address)
2350 {
2351 /*
2352 * True if address is in the M profile system region
2353 * 0xe0000000 - 0xffffffff
2354 */
2355 return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
2356 }
2357
pmsav7_use_background_region(ARMCPU * cpu,ARMMMUIdx mmu_idx,bool is_secure,bool is_user)2358 static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
2359 bool is_secure, bool is_user)
2360 {
2361 /*
2362 * Return true if we should use the default memory map as a
2363 * "background" region if there are no hits against any MPU regions.
2364 */
2365 CPUARMState *env = &cpu->env;
2366
2367 if (is_user) {
2368 return false;
2369 }
2370
2371 if (arm_feature(env, ARM_FEATURE_M)) {
2372 return env->v7m.mpu_ctrl[is_secure] & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
2373 }
2374
2375 if (mmu_idx == ARMMMUIdx_Stage2) {
2376 return false;
2377 }
2378
2379 return regime_sctlr(env, mmu_idx) & SCTLR_BR;
2380 }
2381
get_phys_addr_pmsav7(CPUARMState * env,S1Translate * ptw,uint32_t address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)2382 static bool get_phys_addr_pmsav7(CPUARMState *env,
2383 S1Translate *ptw,
2384 uint32_t address,
2385 MMUAccessType access_type,
2386 GetPhysAddrResult *result,
2387 ARMMMUFaultInfo *fi)
2388 {
2389 ARMCPU *cpu = env_archcpu(env);
2390 int n;
2391 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2392 bool is_user = regime_is_user(env, mmu_idx);
2393 bool secure = arm_space_is_secure(ptw->in_space);
2394
2395 result->f.phys_addr = address;
2396 result->f.lg_page_size = TARGET_PAGE_BITS;
2397 result->f.prot = 0;
2398
2399 if (regime_translation_disabled(env, mmu_idx, ptw->in_space) ||
2400 m_is_ppb_region(env, address)) {
2401 /*
2402 * MPU disabled or M profile PPB access: use default memory map.
2403 * The other case which uses the default memory map in the
2404 * v7M ARM ARM pseudocode is exception vector reads from the vector
2405 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
2406 * which always does a direct read using address_space_ldl(), rather
2407 * than going via this function, so we don't need to check that here.
2408 */
2409 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2410 } else { /* MPU enabled */
2411 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
2412 /* region search */
2413 uint32_t base = env->pmsav7.drbar[n];
2414 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
2415 uint32_t rmask;
2416 bool srdis = false;
2417
2418 if (!(env->pmsav7.drsr[n] & 0x1)) {
2419 continue;
2420 }
2421
2422 if (!rsize) {
2423 qemu_log_mask(LOG_GUEST_ERROR,
2424 "DRSR[%d]: Rsize field cannot be 0\n", n);
2425 continue;
2426 }
2427 rsize++;
2428 rmask = (1ull << rsize) - 1;
2429
2430 if (base & rmask) {
2431 qemu_log_mask(LOG_GUEST_ERROR,
2432 "DRBAR[%d]: 0x%" PRIx32 " misaligned "
2433 "to DRSR region size, mask = 0x%" PRIx32 "\n",
2434 n, base, rmask);
2435 continue;
2436 }
2437
2438 if (address < base || address > base + rmask) {
2439 /*
2440 * Address not in this region. We must check whether the
2441 * region covers addresses in the same page as our address.
2442 * In that case we must not report a size that covers the
2443 * whole page for a subsequent hit against a different MPU
2444 * region or the background region, because it would result in
2445 * incorrect TLB hits for subsequent accesses to addresses that
2446 * are in this MPU region.
2447 */
2448 if (ranges_overlap(base, rmask,
2449 address & TARGET_PAGE_MASK,
2450 TARGET_PAGE_SIZE)) {
2451 result->f.lg_page_size = 0;
2452 }
2453 continue;
2454 }
2455
2456 /* Region matched */
2457
2458 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
2459 int i, snd;
2460 uint32_t srdis_mask;
2461
2462 rsize -= 3; /* sub region size (power of 2) */
2463 snd = ((address - base) >> rsize) & 0x7;
2464 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
2465
2466 srdis_mask = srdis ? 0x3 : 0x0;
2467 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
2468 /*
2469 * This will check in groups of 2, 4 and then 8, whether
2470 * the subregion bits are consistent. rsize is incremented
2471 * back up to give the region size, considering consistent
2472 * adjacent subregions as one region. Stop testing if rsize
2473 * is already big enough for an entire QEMU page.
2474 */
2475 int snd_rounded = snd & ~(i - 1);
2476 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
2477 snd_rounded + 8, i);
2478 if (srdis_mask ^ srdis_multi) {
2479 break;
2480 }
2481 srdis_mask = (srdis_mask << i) | srdis_mask;
2482 rsize++;
2483 }
2484 }
2485 if (srdis) {
2486 continue;
2487 }
2488 if (rsize < TARGET_PAGE_BITS) {
2489 result->f.lg_page_size = rsize;
2490 }
2491 break;
2492 }
2493
2494 if (n == -1) { /* no hits */
2495 if (!pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2496 /* background fault */
2497 fi->type = ARMFault_Background;
2498 return true;
2499 }
2500 get_phys_addr_pmsav7_default(env, mmu_idx, address,
2501 &result->f.prot);
2502 } else { /* a MPU hit! */
2503 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
2504 uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
2505
2506 if (m_is_system_region(env, address)) {
2507 /* System space is always execute never */
2508 xn = 1;
2509 }
2510
2511 if (is_user) { /* User mode AP bit decoding */
2512 switch (ap) {
2513 case 0:
2514 case 1:
2515 case 5:
2516 break; /* no access */
2517 case 3:
2518 result->f.prot |= PAGE_WRITE;
2519 /* fall through */
2520 case 2:
2521 case 6:
2522 result->f.prot |= PAGE_READ | PAGE_EXEC;
2523 break;
2524 case 7:
2525 /* for v7M, same as 6; for R profile a reserved value */
2526 if (arm_feature(env, ARM_FEATURE_M)) {
2527 result->f.prot |= PAGE_READ | PAGE_EXEC;
2528 break;
2529 }
2530 /* fall through */
2531 default:
2532 qemu_log_mask(LOG_GUEST_ERROR,
2533 "DRACR[%d]: Bad value for AP bits: 0x%"
2534 PRIx32 "\n", n, ap);
2535 }
2536 } else { /* Priv. mode AP bits decoding */
2537 switch (ap) {
2538 case 0:
2539 break; /* no access */
2540 case 1:
2541 case 2:
2542 case 3:
2543 result->f.prot |= PAGE_WRITE;
2544 /* fall through */
2545 case 5:
2546 case 6:
2547 result->f.prot |= PAGE_READ | PAGE_EXEC;
2548 break;
2549 case 7:
2550 /* for v7M, same as 6; for R profile a reserved value */
2551 if (arm_feature(env, ARM_FEATURE_M)) {
2552 result->f.prot |= PAGE_READ | PAGE_EXEC;
2553 break;
2554 }
2555 /* fall through */
2556 default:
2557 qemu_log_mask(LOG_GUEST_ERROR,
2558 "DRACR[%d]: Bad value for AP bits: 0x%"
2559 PRIx32 "\n", n, ap);
2560 }
2561 }
2562
2563 /* execute never */
2564 if (xn) {
2565 result->f.prot &= ~PAGE_EXEC;
2566 }
2567 }
2568 }
2569
2570 fi->type = ARMFault_Permission;
2571 fi->level = 1;
2572 return !(result->f.prot & (1 << access_type));
2573 }
2574
regime_rbar(CPUARMState * env,ARMMMUIdx mmu_idx,uint32_t secure)2575 static uint32_t *regime_rbar(CPUARMState *env, ARMMMUIdx mmu_idx,
2576 uint32_t secure)
2577 {
2578 if (regime_el(env, mmu_idx) == 2) {
2579 return env->pmsav8.hprbar;
2580 } else {
2581 return env->pmsav8.rbar[secure];
2582 }
2583 }
2584
regime_rlar(CPUARMState * env,ARMMMUIdx mmu_idx,uint32_t secure)2585 static uint32_t *regime_rlar(CPUARMState *env, ARMMMUIdx mmu_idx,
2586 uint32_t secure)
2587 {
2588 if (regime_el(env, mmu_idx) == 2) {
2589 return env->pmsav8.hprlar;
2590 } else {
2591 return env->pmsav8.rlar[secure];
2592 }
2593 }
2594
pmsav8_mpu_lookup(CPUARMState * env,uint32_t address,MMUAccessType access_type,ARMMMUIdx mmu_idx,bool secure,GetPhysAddrResult * result,ARMMMUFaultInfo * fi,uint32_t * mregion)2595 bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
2596 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2597 bool secure, GetPhysAddrResult *result,
2598 ARMMMUFaultInfo *fi, uint32_t *mregion)
2599 {
2600 /*
2601 * Perform a PMSAv8 MPU lookup (without also doing the SAU check
2602 * that a full phys-to-virt translation does).
2603 * mregion is (if not NULL) set to the region number which matched,
2604 * or -1 if no region number is returned (MPU off, address did not
2605 * hit a region, address hit in multiple regions).
2606 * If the region hit doesn't cover the entire TARGET_PAGE the address
2607 * is within, then we set the result page_size to 1 to force the
2608 * memory system to use a subpage.
2609 */
2610 ARMCPU *cpu = env_archcpu(env);
2611 bool is_user = regime_is_user(env, mmu_idx);
2612 int n;
2613 int matchregion = -1;
2614 bool hit = false;
2615 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2616 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2617 int region_counter;
2618
2619 if (regime_el(env, mmu_idx) == 2) {
2620 region_counter = cpu->pmsav8r_hdregion;
2621 } else {
2622 region_counter = cpu->pmsav7_dregion;
2623 }
2624
2625 result->f.lg_page_size = TARGET_PAGE_BITS;
2626 result->f.phys_addr = address;
2627 result->f.prot = 0;
2628 if (mregion) {
2629 *mregion = -1;
2630 }
2631
2632 if (mmu_idx == ARMMMUIdx_Stage2) {
2633 fi->stage2 = true;
2634 }
2635
2636 /*
2637 * Unlike the ARM ARM pseudocode, we don't need to check whether this
2638 * was an exception vector read from the vector table (which is always
2639 * done using the default system address map), because those accesses
2640 * are done in arm_v7m_load_vector(), which always does a direct
2641 * read using address_space_ldl(), rather than going via this function.
2642 */
2643 if (regime_translation_disabled(env, mmu_idx, arm_secure_to_space(secure))) {
2644 /* MPU disabled */
2645 hit = true;
2646 } else if (m_is_ppb_region(env, address)) {
2647 hit = true;
2648 } else {
2649 if (pmsav7_use_background_region(cpu, mmu_idx, secure, is_user)) {
2650 hit = true;
2651 }
2652
2653 uint32_t bitmask;
2654 if (arm_feature(env, ARM_FEATURE_M)) {
2655 bitmask = 0x1f;
2656 } else {
2657 bitmask = 0x3f;
2658 fi->level = 0;
2659 }
2660
2661 for (n = region_counter - 1; n >= 0; n--) {
2662 /* region search */
2663 /*
2664 * Note that the base address is bits [31:x] from the register
2665 * with bits [x-1:0] all zeroes, but the limit address is bits
2666 * [31:x] from the register with bits [x:0] all ones. Where x is
2667 * 5 for Cortex-M and 6 for Cortex-R
2668 */
2669 uint32_t base = regime_rbar(env, mmu_idx, secure)[n] & ~bitmask;
2670 uint32_t limit = regime_rlar(env, mmu_idx, secure)[n] | bitmask;
2671
2672 if (!(regime_rlar(env, mmu_idx, secure)[n] & 0x1)) {
2673 /* Region disabled */
2674 continue;
2675 }
2676
2677 if (address < base || address > limit) {
2678 /*
2679 * Address not in this region. We must check whether the
2680 * region covers addresses in the same page as our address.
2681 * In that case we must not report a size that covers the
2682 * whole page for a subsequent hit against a different MPU
2683 * region or the background region, because it would result in
2684 * incorrect TLB hits for subsequent accesses to addresses that
2685 * are in this MPU region.
2686 */
2687 if (limit >= base &&
2688 ranges_overlap(base, limit - base + 1,
2689 addr_page_base,
2690 TARGET_PAGE_SIZE)) {
2691 result->f.lg_page_size = 0;
2692 }
2693 continue;
2694 }
2695
2696 if (base > addr_page_base || limit < addr_page_limit) {
2697 result->f.lg_page_size = 0;
2698 }
2699
2700 if (matchregion != -1) {
2701 /*
2702 * Multiple regions match -- always a failure (unlike
2703 * PMSAv7 where highest-numbered-region wins)
2704 */
2705 fi->type = ARMFault_Permission;
2706 if (arm_feature(env, ARM_FEATURE_M)) {
2707 fi->level = 1;
2708 }
2709 return true;
2710 }
2711
2712 matchregion = n;
2713 hit = true;
2714 }
2715 }
2716
2717 if (!hit) {
2718 if (arm_feature(env, ARM_FEATURE_M)) {
2719 fi->type = ARMFault_Background;
2720 } else {
2721 fi->type = ARMFault_Permission;
2722 }
2723 return true;
2724 }
2725
2726 if (matchregion == -1) {
2727 /* hit using the background region */
2728 get_phys_addr_pmsav7_default(env, mmu_idx, address, &result->f.prot);
2729 } else {
2730 uint32_t matched_rbar = regime_rbar(env, mmu_idx, secure)[matchregion];
2731 uint32_t matched_rlar = regime_rlar(env, mmu_idx, secure)[matchregion];
2732 uint32_t ap = extract32(matched_rbar, 1, 2);
2733 uint32_t xn = extract32(matched_rbar, 0, 1);
2734 bool pxn = false;
2735
2736 if (arm_feature(env, ARM_FEATURE_V8_1M)) {
2737 pxn = extract32(matched_rlar, 4, 1);
2738 }
2739
2740 if (m_is_system_region(env, address)) {
2741 /* System space is always execute never */
2742 xn = 1;
2743 }
2744
2745 if (regime_el(env, mmu_idx) == 2) {
2746 result->f.prot = simple_ap_to_rw_prot_is_user(ap,
2747 mmu_idx != ARMMMUIdx_E2);
2748 } else {
2749 result->f.prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
2750 }
2751
2752 if (!arm_feature(env, ARM_FEATURE_M)) {
2753 uint8_t attrindx = extract32(matched_rlar, 1, 3);
2754 uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
2755 uint8_t sh = extract32(matched_rlar, 3, 2);
2756
2757 if (regime_sctlr(env, mmu_idx) & SCTLR_WXN &&
2758 result->f.prot & PAGE_WRITE && mmu_idx != ARMMMUIdx_Stage2) {
2759 xn = 0x1;
2760 }
2761
2762 if ((regime_el(env, mmu_idx) == 1) &&
2763 regime_sctlr(env, mmu_idx) & SCTLR_UWXN && ap == 0x1) {
2764 pxn = 0x1;
2765 }
2766
2767 result->cacheattrs.is_s2_format = false;
2768 result->cacheattrs.attrs = extract64(mair, attrindx * 8, 8);
2769 result->cacheattrs.shareability = sh;
2770 }
2771
2772 if (result->f.prot && !xn && !(pxn && !is_user)) {
2773 result->f.prot |= PAGE_EXEC;
2774 }
2775
2776 if (mregion) {
2777 *mregion = matchregion;
2778 }
2779 }
2780
2781 fi->type = ARMFault_Permission;
2782 if (arm_feature(env, ARM_FEATURE_M)) {
2783 fi->level = 1;
2784 }
2785 return !(result->f.prot & (1 << access_type));
2786 }
2787
v8m_is_sau_exempt(CPUARMState * env,uint32_t address,MMUAccessType access_type)2788 static bool v8m_is_sau_exempt(CPUARMState *env,
2789 uint32_t address, MMUAccessType access_type)
2790 {
2791 /*
2792 * The architecture specifies that certain address ranges are
2793 * exempt from v8M SAU/IDAU checks.
2794 */
2795 return
2796 (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
2797 (address >= 0xe0000000 && address <= 0xe0002fff) ||
2798 (address >= 0xe000e000 && address <= 0xe000efff) ||
2799 (address >= 0xe002e000 && address <= 0xe002efff) ||
2800 (address >= 0xe0040000 && address <= 0xe0041fff) ||
2801 (address >= 0xe00ff000 && address <= 0xe00fffff);
2802 }
2803
v8m_security_lookup(CPUARMState * env,uint32_t address,MMUAccessType access_type,ARMMMUIdx mmu_idx,bool is_secure,V8M_SAttributes * sattrs)2804 void v8m_security_lookup(CPUARMState *env, uint32_t address,
2805 MMUAccessType access_type, ARMMMUIdx mmu_idx,
2806 bool is_secure, V8M_SAttributes *sattrs)
2807 {
2808 /*
2809 * Look up the security attributes for this address. Compare the
2810 * pseudocode SecurityCheck() function.
2811 * We assume the caller has zero-initialized *sattrs.
2812 */
2813 ARMCPU *cpu = env_archcpu(env);
2814 int r;
2815 bool idau_exempt = false, idau_ns = true, idau_nsc = true;
2816 int idau_region = IREGION_NOTVALID;
2817 uint32_t addr_page_base = address & TARGET_PAGE_MASK;
2818 uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);
2819
2820 if (cpu->idau) {
2821 IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
2822 IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);
2823
2824 iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
2825 &idau_nsc);
2826 }
2827
2828 if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
2829 /* 0xf0000000..0xffffffff is always S for insn fetches */
2830 return;
2831 }
2832
2833 if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
2834 sattrs->ns = !is_secure;
2835 return;
2836 }
2837
2838 if (idau_region != IREGION_NOTVALID) {
2839 sattrs->irvalid = true;
2840 sattrs->iregion = idau_region;
2841 }
2842
2843 switch (env->sau.ctrl & 3) {
2844 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
2845 break;
2846 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
2847 sattrs->ns = true;
2848 break;
2849 default: /* SAU.ENABLE == 1 */
2850 for (r = 0; r < cpu->sau_sregion; r++) {
2851 if (env->sau.rlar[r] & 1) {
2852 uint32_t base = env->sau.rbar[r] & ~0x1f;
2853 uint32_t limit = env->sau.rlar[r] | 0x1f;
2854
2855 if (base <= address && limit >= address) {
2856 if (base > addr_page_base || limit < addr_page_limit) {
2857 sattrs->subpage = true;
2858 }
2859 if (sattrs->srvalid) {
2860 /*
2861 * If we hit in more than one region then we must report
2862 * as Secure, not NS-Callable, with no valid region
2863 * number info.
2864 */
2865 sattrs->ns = false;
2866 sattrs->nsc = false;
2867 sattrs->sregion = 0;
2868 sattrs->srvalid = false;
2869 break;
2870 } else {
2871 if (env->sau.rlar[r] & 2) {
2872 sattrs->nsc = true;
2873 } else {
2874 sattrs->ns = true;
2875 }
2876 sattrs->srvalid = true;
2877 sattrs->sregion = r;
2878 }
2879 } else {
2880 /*
2881 * Address not in this region. We must check whether the
2882 * region covers addresses in the same page as our address.
2883 * In that case we must not report a size that covers the
2884 * whole page for a subsequent hit against a different MPU
2885 * region or the background region, because it would result
2886 * in incorrect TLB hits for subsequent accesses to
2887 * addresses that are in this MPU region.
2888 */
2889 if (limit >= base &&
2890 ranges_overlap(base, limit - base + 1,
2891 addr_page_base,
2892 TARGET_PAGE_SIZE)) {
2893 sattrs->subpage = true;
2894 }
2895 }
2896 }
2897 }
2898 break;
2899 }
2900
2901 /*
2902 * The IDAU will override the SAU lookup results if it specifies
2903 * higher security than the SAU does.
2904 */
2905 if (!idau_ns) {
2906 if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
2907 sattrs->ns = false;
2908 sattrs->nsc = idau_nsc;
2909 }
2910 }
2911 }
2912
get_phys_addr_pmsav8(CPUARMState * env,S1Translate * ptw,uint32_t address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)2913 static bool get_phys_addr_pmsav8(CPUARMState *env,
2914 S1Translate *ptw,
2915 uint32_t address,
2916 MMUAccessType access_type,
2917 GetPhysAddrResult *result,
2918 ARMMMUFaultInfo *fi)
2919 {
2920 V8M_SAttributes sattrs = {};
2921 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
2922 bool secure = arm_space_is_secure(ptw->in_space);
2923 bool ret;
2924
2925 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
2926 v8m_security_lookup(env, address, access_type, mmu_idx,
2927 secure, &sattrs);
2928 if (access_type == MMU_INST_FETCH) {
2929 /*
2930 * Instruction fetches always use the MMU bank and the
2931 * transaction attribute determined by the fetch address,
2932 * regardless of CPU state. This is painful for QEMU
2933 * to handle, because it would mean we need to encode
2934 * into the mmu_idx not just the (user, negpri) information
2935 * for the current security state but also that for the
2936 * other security state, which would balloon the number
2937 * of mmu_idx values needed alarmingly.
2938 * Fortunately we can avoid this because it's not actually
2939 * possible to arbitrarily execute code from memory with
2940 * the wrong security attribute: it will always generate
2941 * an exception of some kind or another, apart from the
2942 * special case of an NS CPU executing an SG instruction
2943 * in S&NSC memory. So we always just fail the translation
2944 * here and sort things out in the exception handler
2945 * (including possibly emulating an SG instruction).
2946 */
2947 if (sattrs.ns != !secure) {
2948 if (sattrs.nsc) {
2949 fi->type = ARMFault_QEMU_NSCExec;
2950 } else {
2951 fi->type = ARMFault_QEMU_SFault;
2952 }
2953 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2954 result->f.phys_addr = address;
2955 result->f.prot = 0;
2956 return true;
2957 }
2958 } else {
2959 /*
2960 * For data accesses we always use the MMU bank indicated
2961 * by the current CPU state, but the security attributes
2962 * might downgrade a secure access to nonsecure.
2963 */
2964 if (sattrs.ns) {
2965 result->f.attrs.secure = false;
2966 result->f.attrs.space = ARMSS_NonSecure;
2967 } else if (!secure) {
2968 /*
2969 * NS access to S memory must fault.
2970 * Architecturally we should first check whether the
2971 * MPU information for this address indicates that we
2972 * are doing an unaligned access to Device memory, which
2973 * should generate a UsageFault instead. QEMU does not
2974 * currently check for that kind of unaligned access though.
2975 * If we added it we would need to do so as a special case
2976 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
2977 */
2978 fi->type = ARMFault_QEMU_SFault;
2979 result->f.lg_page_size = sattrs.subpage ? 0 : TARGET_PAGE_BITS;
2980 result->f.phys_addr = address;
2981 result->f.prot = 0;
2982 return true;
2983 }
2984 }
2985 }
2986
2987 ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, secure,
2988 result, fi, NULL);
2989 if (sattrs.subpage) {
2990 result->f.lg_page_size = 0;
2991 }
2992 return ret;
2993 }
2994
2995 /*
2996 * Translate from the 4-bit stage 2 representation of
2997 * memory attributes (without cache-allocation hints) to
2998 * the 8-bit representation of the stage 1 MAIR registers
2999 * (which includes allocation hints).
3000 *
3001 * ref: shared/translation/attrs/S2AttrDecode()
3002 * .../S2ConvertAttrsHints()
3003 */
convert_stage2_attrs(uint64_t hcr,uint8_t s2attrs)3004 static uint8_t convert_stage2_attrs(uint64_t hcr, uint8_t s2attrs)
3005 {
3006 uint8_t hiattr = extract32(s2attrs, 2, 2);
3007 uint8_t loattr = extract32(s2attrs, 0, 2);
3008 uint8_t hihint = 0, lohint = 0;
3009
3010 if (hiattr != 0) { /* normal memory */
3011 if (hcr & HCR_CD) { /* cache disabled */
3012 hiattr = loattr = 1; /* non-cacheable */
3013 } else {
3014 if (hiattr != 1) { /* Write-through or write-back */
3015 hihint = 3; /* RW allocate */
3016 }
3017 if (loattr != 1) { /* Write-through or write-back */
3018 lohint = 3; /* RW allocate */
3019 }
3020 }
3021 }
3022
3023 return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
3024 }
3025
3026 /*
3027 * Combine either inner or outer cacheability attributes for normal
3028 * memory, according to table D4-42 and pseudocode procedure
3029 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
3030 *
3031 * NB: only stage 1 includes allocation hints (RW bits), leading to
3032 * some asymmetry.
3033 */
combine_cacheattr_nibble(uint8_t s1,uint8_t s2)3034 static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
3035 {
3036 if (s1 == 4 || s2 == 4) {
3037 /* non-cacheable has precedence */
3038 return 4;
3039 } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
3040 /* stage 1 write-through takes precedence */
3041 return s1;
3042 } else if (extract32(s2, 2, 2) == 2) {
3043 /* stage 2 write-through takes precedence, but the allocation hint
3044 * is still taken from stage 1
3045 */
3046 return (2 << 2) | extract32(s1, 0, 2);
3047 } else { /* write-back */
3048 return s1;
3049 }
3050 }
3051
3052 /*
3053 * Combine the memory type and cacheability attributes of
3054 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
3055 * combined attributes in MAIR_EL1 format.
3056 */
combined_attrs_nofwb(uint64_t hcr,ARMCacheAttrs s1,ARMCacheAttrs s2)3057 static uint8_t combined_attrs_nofwb(uint64_t hcr,
3058 ARMCacheAttrs s1, ARMCacheAttrs s2)
3059 {
3060 uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;
3061
3062 if (s2.is_s2_format) {
3063 s2_mair_attrs = convert_stage2_attrs(hcr, s2.attrs);
3064 } else {
3065 s2_mair_attrs = s2.attrs;
3066 }
3067
3068 s1lo = extract32(s1.attrs, 0, 4);
3069 s2lo = extract32(s2_mair_attrs, 0, 4);
3070 s1hi = extract32(s1.attrs, 4, 4);
3071 s2hi = extract32(s2_mair_attrs, 4, 4);
3072
3073 /* Combine memory type and cacheability attributes */
3074 if (s1hi == 0 || s2hi == 0) {
3075 /* Device has precedence over normal */
3076 if (s1lo == 0 || s2lo == 0) {
3077 /* nGnRnE has precedence over anything */
3078 ret_attrs = 0;
3079 } else if (s1lo == 4 || s2lo == 4) {
3080 /* non-Reordering has precedence over Reordering */
3081 ret_attrs = 4; /* nGnRE */
3082 } else if (s1lo == 8 || s2lo == 8) {
3083 /* non-Gathering has precedence over Gathering */
3084 ret_attrs = 8; /* nGRE */
3085 } else {
3086 ret_attrs = 0xc; /* GRE */
3087 }
3088 } else { /* Normal memory */
3089 /* Outer/inner cacheability combine independently */
3090 ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
3091 | combine_cacheattr_nibble(s1lo, s2lo);
3092 }
3093 return ret_attrs;
3094 }
3095
force_cacheattr_nibble_wb(uint8_t attr)3096 static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
3097 {
3098 /*
3099 * Given the 4 bits specifying the outer or inner cacheability
3100 * in MAIR format, return a value specifying Normal Write-Back,
3101 * with the allocation and transient hints taken from the input
3102 * if the input specified some kind of cacheable attribute.
3103 */
3104 if (attr == 0 || attr == 4) {
3105 /*
3106 * 0 == an UNPREDICTABLE encoding
3107 * 4 == Non-cacheable
3108 * Either way, force Write-Back RW allocate non-transient
3109 */
3110 return 0xf;
3111 }
3112 /* Change WriteThrough to WriteBack, keep allocation and transient hints */
3113 return attr | 4;
3114 }
3115
3116 /*
3117 * Combine the memory type and cacheability attributes of
3118 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
3119 * combined attributes in MAIR_EL1 format.
3120 */
combined_attrs_fwb(ARMCacheAttrs s1,ARMCacheAttrs s2)3121 static uint8_t combined_attrs_fwb(ARMCacheAttrs s1, ARMCacheAttrs s2)
3122 {
3123 assert(s2.is_s2_format && !s1.is_s2_format);
3124
3125 switch (s2.attrs) {
3126 case 7:
3127 /* Use stage 1 attributes */
3128 return s1.attrs;
3129 case 6:
3130 /*
3131 * Force Normal Write-Back. Note that if S1 is Normal cacheable
3132 * then we take the allocation hints from it; otherwise it is
3133 * RW allocate, non-transient.
3134 */
3135 if ((s1.attrs & 0xf0) == 0) {
3136 /* S1 is Device */
3137 return 0xff;
3138 }
3139 /* Need to check the Inner and Outer nibbles separately */
3140 return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
3141 force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
3142 case 5:
3143 /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
3144 if ((s1.attrs & 0xf0) == 0) {
3145 return s1.attrs;
3146 }
3147 return 0x44;
3148 case 0 ... 3:
3149 /* Force Device, of subtype specified by S2 */
3150 return s2.attrs << 2;
3151 default:
3152 /*
3153 * RESERVED values (including RES0 descriptor bit [5] being nonzero);
3154 * arbitrarily force Device.
3155 */
3156 return 0;
3157 }
3158 }
3159
3160 /*
3161 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
3162 * and CombineS1S2Desc()
3163 *
3164 * @env: CPUARMState
3165 * @s1: Attributes from stage 1 walk
3166 * @s2: Attributes from stage 2 walk
3167 */
combine_cacheattrs(uint64_t hcr,ARMCacheAttrs s1,ARMCacheAttrs s2)3168 static ARMCacheAttrs combine_cacheattrs(uint64_t hcr,
3169 ARMCacheAttrs s1, ARMCacheAttrs s2)
3170 {
3171 ARMCacheAttrs ret;
3172 bool tagged = false;
3173
3174 assert(!s1.is_s2_format);
3175 ret.is_s2_format = false;
3176
3177 if (s1.attrs == 0xf0) {
3178 tagged = true;
3179 s1.attrs = 0xff;
3180 }
3181
3182 /* Combine shareability attributes (table D4-43) */
3183 if (s1.shareability == 2 || s2.shareability == 2) {
3184 /* if either are outer-shareable, the result is outer-shareable */
3185 ret.shareability = 2;
3186 } else if (s1.shareability == 3 || s2.shareability == 3) {
3187 /* if either are inner-shareable, the result is inner-shareable */
3188 ret.shareability = 3;
3189 } else {
3190 /* both non-shareable */
3191 ret.shareability = 0;
3192 }
3193
3194 /* Combine memory type and cacheability attributes */
3195 if (hcr & HCR_FWB) {
3196 ret.attrs = combined_attrs_fwb(s1, s2);
3197 } else {
3198 ret.attrs = combined_attrs_nofwb(hcr, s1, s2);
3199 }
3200
3201 /*
3202 * Any location for which the resultant memory type is any
3203 * type of Device memory is always treated as Outer Shareable.
3204 * Any location for which the resultant memory type is Normal
3205 * Inner Non-cacheable, Outer Non-cacheable is always treated
3206 * as Outer Shareable.
3207 * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
3208 */
3209 if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
3210 ret.shareability = 2;
3211 }
3212
3213 /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
3214 if (tagged && ret.attrs == 0xff) {
3215 ret.attrs = 0xf0;
3216 }
3217
3218 return ret;
3219 }
3220
3221 /*
3222 * MMU disabled. S1 addresses within aa64 translation regimes are
3223 * still checked for bounds -- see AArch64.S1DisabledOutput().
3224 */
get_phys_addr_disabled(CPUARMState * env,S1Translate * ptw,vaddr address,MMUAccessType access_type,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)3225 static bool get_phys_addr_disabled(CPUARMState *env,
3226 S1Translate *ptw,
3227 vaddr address,
3228 MMUAccessType access_type,
3229 GetPhysAddrResult *result,
3230 ARMMMUFaultInfo *fi)
3231 {
3232 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3233 uint8_t memattr = 0x00; /* Device nGnRnE */
3234 uint8_t shareability = 0; /* non-shareable */
3235 int r_el;
3236
3237 switch (mmu_idx) {
3238 case ARMMMUIdx_Stage2:
3239 case ARMMMUIdx_Stage2_S:
3240 case ARMMMUIdx_Phys_S:
3241 case ARMMMUIdx_Phys_NS:
3242 case ARMMMUIdx_Phys_Root:
3243 case ARMMMUIdx_Phys_Realm:
3244 break;
3245
3246 default:
3247 r_el = regime_el(env, mmu_idx);
3248 if (arm_el_is_aa64(env, r_el)) {
3249 int pamax = arm_pamax(env_archcpu(env));
3250 uint64_t tcr = env->cp15.tcr_el[r_el];
3251 int addrtop, tbi;
3252
3253 tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
3254 if (access_type == MMU_INST_FETCH) {
3255 tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
3256 }
3257 tbi = (tbi >> extract64(address, 55, 1)) & 1;
3258 addrtop = (tbi ? 55 : 63);
3259
3260 if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
3261 fi->type = ARMFault_AddressSize;
3262 fi->level = 0;
3263 fi->stage2 = false;
3264 return 1;
3265 }
3266
3267 /*
3268 * When TBI is disabled, we've just validated that all of the
3269 * bits above PAMax are zero, so logically we only need to
3270 * clear the top byte for TBI. But it's clearer to follow
3271 * the pseudocode set of addrdesc.paddress.
3272 */
3273 address = extract64(address, 0, 52);
3274 }
3275
3276 /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
3277 if (r_el == 1) {
3278 uint64_t hcr = arm_hcr_el2_eff_secstate(env, ptw->in_space);
3279 if (hcr & HCR_DC) {
3280 if (hcr & HCR_DCT) {
3281 memattr = 0xf0; /* Tagged, Normal, WB, RWA */
3282 } else {
3283 memattr = 0xff; /* Normal, WB, RWA */
3284 }
3285 }
3286 }
3287 if (memattr == 0) {
3288 if (access_type == MMU_INST_FETCH) {
3289 if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
3290 memattr = 0xee; /* Normal, WT, RA, NT */
3291 } else {
3292 memattr = 0x44; /* Normal, NC, No */
3293 }
3294 }
3295 shareability = 2; /* outer shareable */
3296 }
3297 result->cacheattrs.is_s2_format = false;
3298 break;
3299 }
3300
3301 result->f.phys_addr = address;
3302 result->f.prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
3303 result->f.lg_page_size = TARGET_PAGE_BITS;
3304 result->cacheattrs.shareability = shareability;
3305 result->cacheattrs.attrs = memattr;
3306 return false;
3307 }
3308
get_phys_addr_twostage(CPUARMState * env,S1Translate * ptw,vaddr address,MMUAccessType access_type,MemOp memop,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)3309 static bool get_phys_addr_twostage(CPUARMState *env, S1Translate *ptw,
3310 vaddr address,
3311 MMUAccessType access_type, MemOp memop,
3312 GetPhysAddrResult *result,
3313 ARMMMUFaultInfo *fi)
3314 {
3315 hwaddr ipa;
3316 int s1_prot, s1_lgpgsz;
3317 ARMSecuritySpace in_space = ptw->in_space;
3318 bool ret, ipa_secure, s1_guarded;
3319 ARMCacheAttrs cacheattrs1;
3320 ARMSecuritySpace ipa_space;
3321 uint64_t hcr;
3322
3323 ret = get_phys_addr_nogpc(env, ptw, address, access_type,
3324 memop, result, fi);
3325
3326 /* If S1 fails, return early. */
3327 if (ret) {
3328 return ret;
3329 }
3330
3331 ipa = result->f.phys_addr;
3332 ipa_secure = result->f.attrs.secure;
3333 ipa_space = result->f.attrs.space;
3334
3335 ptw->in_s1_is_el0 = ptw->in_mmu_idx == ARMMMUIdx_Stage1_E0;
3336 ptw->in_mmu_idx = ipa_secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3337 ptw->in_space = ipa_space;
3338 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, ptw->in_mmu_idx);
3339
3340 /*
3341 * S1 is done, now do S2 translation.
3342 * Save the stage1 results so that we may merge prot and cacheattrs later.
3343 */
3344 s1_prot = result->f.prot;
3345 s1_lgpgsz = result->f.lg_page_size;
3346 s1_guarded = result->f.extra.arm.guarded;
3347 cacheattrs1 = result->cacheattrs;
3348 memset(result, 0, sizeof(*result));
3349
3350 ret = get_phys_addr_nogpc(env, ptw, ipa, access_type,
3351 memop, result, fi);
3352 fi->s2addr = ipa;
3353
3354 /* Combine the S1 and S2 perms. */
3355 result->f.prot &= s1_prot;
3356
3357 /* If S2 fails, return early. */
3358 if (ret) {
3359 return ret;
3360 }
3361
3362 /*
3363 * If either S1 or S2 returned a result smaller than TARGET_PAGE_SIZE,
3364 * this means "don't put this in the TLB"; in this case, return a
3365 * result with lg_page_size == 0 to achieve that. Otherwise,
3366 * use the maximum of the S1 & S2 page size, so that invalidation
3367 * of pages > TARGET_PAGE_SIZE works correctly. (This works even though
3368 * we know the combined result permissions etc only cover the minimum
3369 * of the S1 and S2 page size, because we know that the common TLB code
3370 * never actually creates TLB entries bigger than TARGET_PAGE_SIZE,
3371 * and passing a larger page size value only affects invalidations.)
3372 */
3373 if (result->f.lg_page_size < TARGET_PAGE_BITS ||
3374 s1_lgpgsz < TARGET_PAGE_BITS) {
3375 result->f.lg_page_size = 0;
3376 } else if (result->f.lg_page_size < s1_lgpgsz) {
3377 result->f.lg_page_size = s1_lgpgsz;
3378 }
3379
3380 /* Combine the S1 and S2 cache attributes. */
3381 hcr = arm_hcr_el2_eff_secstate(env, in_space);
3382 if (hcr & HCR_DC) {
3383 /*
3384 * HCR.DC forces the first stage attributes to
3385 * Normal Non-Shareable,
3386 * Inner Write-Back Read-Allocate Write-Allocate,
3387 * Outer Write-Back Read-Allocate Write-Allocate.
3388 * Do not overwrite Tagged within attrs.
3389 */
3390 if (cacheattrs1.attrs != 0xf0) {
3391 cacheattrs1.attrs = 0xff;
3392 }
3393 cacheattrs1.shareability = 0;
3394 }
3395 result->cacheattrs = combine_cacheattrs(hcr, cacheattrs1,
3396 result->cacheattrs);
3397
3398 /* No BTI GP information in stage 2, we just use the S1 value */
3399 result->f.extra.arm.guarded = s1_guarded;
3400
3401 /*
3402 * Check if IPA translates to secure or non-secure PA space.
3403 * Note that VSTCR overrides VTCR and {N}SW overrides {N}SA.
3404 */
3405 if (in_space == ARMSS_Secure) {
3406 result->f.attrs.secure =
3407 !(env->cp15.vstcr_el2 & (VSTCR_SA | VSTCR_SW))
3408 && (ipa_secure
3409 || !(env->cp15.vtcr_el2 & (VTCR_NSA | VTCR_NSW)));
3410 result->f.attrs.space = arm_secure_to_space(result->f.attrs.secure);
3411 }
3412
3413 return false;
3414 }
3415
get_phys_addr_nogpc(CPUARMState * env,S1Translate * ptw,vaddr address,MMUAccessType access_type,MemOp memop,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)3416 static bool get_phys_addr_nogpc(CPUARMState *env, S1Translate *ptw,
3417 vaddr address,
3418 MMUAccessType access_type, MemOp memop,
3419 GetPhysAddrResult *result,
3420 ARMMMUFaultInfo *fi)
3421 {
3422 ARMMMUIdx mmu_idx = ptw->in_mmu_idx;
3423 ARMMMUIdx s1_mmu_idx;
3424
3425 /*
3426 * The page table entries may downgrade Secure to NonSecure, but
3427 * cannot upgrade a NonSecure translation regime's attributes
3428 * to Secure or Realm.
3429 */
3430 result->f.attrs.space = ptw->in_space;
3431 result->f.attrs.secure = arm_space_is_secure(ptw->in_space);
3432
3433 switch (mmu_idx) {
3434 case ARMMMUIdx_Phys_S:
3435 case ARMMMUIdx_Phys_NS:
3436 case ARMMMUIdx_Phys_Root:
3437 case ARMMMUIdx_Phys_Realm:
3438 /* Checking Phys early avoids special casing later vs regime_el. */
3439 return get_phys_addr_disabled(env, ptw, address, access_type,
3440 result, fi);
3441
3442 case ARMMMUIdx_Stage1_E0:
3443 case ARMMMUIdx_Stage1_E1:
3444 case ARMMMUIdx_Stage1_E1_PAN:
3445 /*
3446 * First stage lookup uses second stage for ptw; only
3447 * Secure has both S and NS IPA and starts with Stage2_S.
3448 */
3449 ptw->in_ptw_idx = (ptw->in_space == ARMSS_Secure) ?
3450 ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
3451 break;
3452
3453 case ARMMMUIdx_Stage2:
3454 case ARMMMUIdx_Stage2_S:
3455 /*
3456 * Second stage lookup uses physical for ptw; whether this is S or
3457 * NS may depend on the SW/NSW bits if this is a stage 2 lookup for
3458 * the Secure EL2&0 regime.
3459 */
3460 ptw->in_ptw_idx = ptw_idx_for_stage_2(env, mmu_idx);
3461 break;
3462
3463 case ARMMMUIdx_E10_0:
3464 s1_mmu_idx = ARMMMUIdx_Stage1_E0;
3465 goto do_twostage;
3466 case ARMMMUIdx_E10_1:
3467 s1_mmu_idx = ARMMMUIdx_Stage1_E1;
3468 goto do_twostage;
3469 case ARMMMUIdx_E10_1_PAN:
3470 s1_mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
3471 do_twostage:
3472 /*
3473 * Call ourselves recursively to do the stage 1 and then stage 2
3474 * translations if mmu_idx is a two-stage regime, and EL2 present.
3475 * Otherwise, a stage1+stage2 translation is just stage 1.
3476 */
3477 ptw->in_mmu_idx = mmu_idx = s1_mmu_idx;
3478 if (arm_feature(env, ARM_FEATURE_EL2) &&
3479 !regime_translation_disabled(env, ARMMMUIdx_Stage2, ptw->in_space)) {
3480 return get_phys_addr_twostage(env, ptw, address, access_type,
3481 memop, result, fi);
3482 }
3483 /* fall through */
3484
3485 default:
3486 /* Single stage uses physical for ptw. */
3487 ptw->in_ptw_idx = arm_space_to_phys(ptw->in_space);
3488 break;
3489 }
3490
3491 result->f.attrs.user = regime_is_user(env, mmu_idx);
3492
3493 /*
3494 * Fast Context Switch Extension. This doesn't exist at all in v8.
3495 * In v7 and earlier it affects all stage 1 translations.
3496 */
3497 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
3498 && !arm_feature(env, ARM_FEATURE_V8)) {
3499 if (regime_el(env, mmu_idx) == 3) {
3500 address += env->cp15.fcseidr_s;
3501 } else {
3502 address += env->cp15.fcseidr_ns;
3503 }
3504 }
3505
3506 if (arm_feature(env, ARM_FEATURE_PMSA)) {
3507 bool ret;
3508 result->f.lg_page_size = TARGET_PAGE_BITS;
3509
3510 if (arm_feature(env, ARM_FEATURE_V8)) {
3511 /* PMSAv8 */
3512 ret = get_phys_addr_pmsav8(env, ptw, address, access_type,
3513 result, fi);
3514 } else if (arm_feature(env, ARM_FEATURE_V7)) {
3515 /* PMSAv7 */
3516 ret = get_phys_addr_pmsav7(env, ptw, address, access_type,
3517 result, fi);
3518 } else {
3519 /* Pre-v7 MPU */
3520 ret = get_phys_addr_pmsav5(env, ptw, address, access_type,
3521 result, fi);
3522 }
3523 qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
3524 " mmu_idx %u -> %s (prot %c%c%c)\n",
3525 access_type == MMU_DATA_LOAD ? "reading" :
3526 (access_type == MMU_DATA_STORE ? "writing" : "execute"),
3527 (uint32_t)address, mmu_idx,
3528 ret ? "Miss" : "Hit",
3529 result->f.prot & PAGE_READ ? 'r' : '-',
3530 result->f.prot & PAGE_WRITE ? 'w' : '-',
3531 result->f.prot & PAGE_EXEC ? 'x' : '-');
3532
3533 return ret;
3534 }
3535
3536 /* Definitely a real MMU, not an MPU */
3537
3538 if (regime_translation_disabled(env, mmu_idx, ptw->in_space)) {
3539 return get_phys_addr_disabled(env, ptw, address, access_type,
3540 result, fi);
3541 }
3542
3543 if (regime_using_lpae_format(env, mmu_idx)) {
3544 return get_phys_addr_lpae(env, ptw, address, access_type,
3545 memop, result, fi);
3546 } else if (arm_feature(env, ARM_FEATURE_V7) ||
3547 regime_sctlr(env, mmu_idx) & SCTLR_XP) {
3548 return get_phys_addr_v6(env, ptw, address, access_type, result, fi);
3549 } else {
3550 return get_phys_addr_v5(env, ptw, address, access_type, result, fi);
3551 }
3552 }
3553
get_phys_addr_gpc(CPUARMState * env,S1Translate * ptw,vaddr address,MMUAccessType access_type,MemOp memop,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)3554 static bool get_phys_addr_gpc(CPUARMState *env, S1Translate *ptw,
3555 vaddr address,
3556 MMUAccessType access_type, MemOp memop,
3557 GetPhysAddrResult *result,
3558 ARMMMUFaultInfo *fi)
3559 {
3560 if (get_phys_addr_nogpc(env, ptw, address, access_type,
3561 memop, result, fi)) {
3562 return true;
3563 }
3564 if (!granule_protection_check(env, result->f.phys_addr,
3565 result->f.attrs.space, fi)) {
3566 fi->type = ARMFault_GPCFOnOutput;
3567 return true;
3568 }
3569 return false;
3570 }
3571
get_phys_addr_with_space_nogpc(CPUARMState * env,vaddr address,MMUAccessType access_type,MemOp memop,ARMMMUIdx mmu_idx,ARMSecuritySpace space,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)3572 bool get_phys_addr_with_space_nogpc(CPUARMState *env, vaddr address,
3573 MMUAccessType access_type, MemOp memop,
3574 ARMMMUIdx mmu_idx, ARMSecuritySpace space,
3575 GetPhysAddrResult *result,
3576 ARMMMUFaultInfo *fi)
3577 {
3578 S1Translate ptw = {
3579 .in_mmu_idx = mmu_idx,
3580 .in_space = space,
3581 };
3582 return get_phys_addr_nogpc(env, &ptw, address, access_type,
3583 memop, result, fi);
3584 }
3585
get_phys_addr(CPUARMState * env,vaddr address,MMUAccessType access_type,MemOp memop,ARMMMUIdx mmu_idx,GetPhysAddrResult * result,ARMMMUFaultInfo * fi)3586 bool get_phys_addr(CPUARMState *env, vaddr address,
3587 MMUAccessType access_type, MemOp memop, ARMMMUIdx mmu_idx,
3588 GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
3589 {
3590 S1Translate ptw = {
3591 .in_mmu_idx = mmu_idx,
3592 };
3593 ARMSecuritySpace ss;
3594
3595 switch (mmu_idx) {
3596 case ARMMMUIdx_E10_0:
3597 case ARMMMUIdx_E10_1:
3598 case ARMMMUIdx_E10_1_PAN:
3599 case ARMMMUIdx_E20_0:
3600 case ARMMMUIdx_E20_2:
3601 case ARMMMUIdx_E20_2_PAN:
3602 case ARMMMUIdx_Stage1_E0:
3603 case ARMMMUIdx_Stage1_E1:
3604 case ARMMMUIdx_Stage1_E1_PAN:
3605 case ARMMMUIdx_E2:
3606 ss = arm_security_space_below_el3(env);
3607 break;
3608 case ARMMMUIdx_Stage2:
3609 /*
3610 * For Secure EL2, we need this index to be NonSecure;
3611 * otherwise this will already be NonSecure or Realm.
3612 */
3613 ss = arm_security_space_below_el3(env);
3614 if (ss == ARMSS_Secure) {
3615 ss = ARMSS_NonSecure;
3616 }
3617 break;
3618 case ARMMMUIdx_Phys_NS:
3619 case ARMMMUIdx_MPrivNegPri:
3620 case ARMMMUIdx_MUserNegPri:
3621 case ARMMMUIdx_MPriv:
3622 case ARMMMUIdx_MUser:
3623 ss = ARMSS_NonSecure;
3624 break;
3625 case ARMMMUIdx_Stage2_S:
3626 case ARMMMUIdx_Phys_S:
3627 case ARMMMUIdx_MSPrivNegPri:
3628 case ARMMMUIdx_MSUserNegPri:
3629 case ARMMMUIdx_MSPriv:
3630 case ARMMMUIdx_MSUser:
3631 ss = ARMSS_Secure;
3632 break;
3633 case ARMMMUIdx_E3:
3634 case ARMMMUIdx_E30_0:
3635 case ARMMMUIdx_E30_3_PAN:
3636 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
3637 cpu_isar_feature(aa64_rme, env_archcpu(env))) {
3638 ss = ARMSS_Root;
3639 } else {
3640 ss = ARMSS_Secure;
3641 }
3642 break;
3643 case ARMMMUIdx_Phys_Root:
3644 ss = ARMSS_Root;
3645 break;
3646 case ARMMMUIdx_Phys_Realm:
3647 ss = ARMSS_Realm;
3648 break;
3649 default:
3650 g_assert_not_reached();
3651 }
3652
3653 ptw.in_space = ss;
3654 return get_phys_addr_gpc(env, &ptw, address, access_type,
3655 memop, result, fi);
3656 }
3657
arm_cpu_get_phys_page_attrs_debug(CPUState * cs,vaddr addr,MemTxAttrs * attrs)3658 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
3659 MemTxAttrs *attrs)
3660 {
3661 ARMCPU *cpu = ARM_CPU(cs);
3662 CPUARMState *env = &cpu->env;
3663 ARMMMUIdx mmu_idx = arm_mmu_idx(env);
3664 ARMSecuritySpace ss = arm_security_space(env);
3665 S1Translate ptw = {
3666 .in_mmu_idx = mmu_idx,
3667 .in_space = ss,
3668 .in_debug = true,
3669 };
3670 GetPhysAddrResult res = {};
3671 ARMMMUFaultInfo fi = {};
3672 bool ret;
3673
3674 ret = get_phys_addr_gpc(env, &ptw, addr, MMU_DATA_LOAD, 0, &res, &fi);
3675 *attrs = res.f.attrs;
3676
3677 if (ret) {
3678 return -1;
3679 }
3680 return res.f.phys_addr;
3681 }
3682