xref: /openbmc/u-boot/drivers/mtd/nand/raw/nand_base.c (revision e964df1e2ae7b2c041a9d767f03ad2b72a3f2ac7)
1  /*
2   *  Overview:
3   *   This is the generic MTD driver for NAND flash devices. It should be
4   *   capable of working with almost all NAND chips currently available.
5   *
6   *	Additional technical information is available on
7   *	http://www.linux-mtd.infradead.org/doc/nand.html
8   *
9   *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
10   *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
11   *
12   *  Credits:
13   *	David Woodhouse for adding multichip support
14   *
15   *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
16   *	rework for 2K page size chips
17   *
18   *  TODO:
19   *	Enable cached programming for 2k page size chips
20   *	Check, if mtd->ecctype should be set to MTD_ECC_HW
21   *	if we have HW ECC support.
22   *	BBT table is not serialized, has to be fixed
23   *
24   * This program is free software; you can redistribute it and/or modify
25   * it under the terms of the GNU General Public License version 2 as
26   * published by the Free Software Foundation.
27   *
28   */
29  
30  #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31  #include <common.h>
32  #if CONFIG_IS_ENABLED(OF_CONTROL)
33  #include <fdtdec.h>
34  #endif
35  #include <malloc.h>
36  #include <watchdog.h>
37  #include <linux/err.h>
38  #include <linux/compat.h>
39  #include <linux/mtd/mtd.h>
40  #include <linux/mtd/rawnand.h>
41  #include <linux/mtd/nand_ecc.h>
42  #include <linux/mtd/nand_bch.h>
43  #ifdef CONFIG_MTD_PARTITIONS
44  #include <linux/mtd/partitions.h>
45  #endif
46  #include <asm/io.h>
47  #include <linux/errno.h>
48  
49  /* Define default oob placement schemes for large and small page devices */
50  #ifdef CONFIG_SYS_NAND_DRIVER_ECC_LAYOUT
51  static struct nand_ecclayout nand_oob_8 = {
52  	.eccbytes = 3,
53  	.eccpos = {0, 1, 2},
54  	.oobfree = {
55  		{.offset = 3,
56  		 .length = 2},
57  		{.offset = 6,
58  		 .length = 2} }
59  };
60  
61  static struct nand_ecclayout nand_oob_16 = {
62  	.eccbytes = 6,
63  	.eccpos = {0, 1, 2, 3, 6, 7},
64  	.oobfree = {
65  		{.offset = 8,
66  		 . length = 8} }
67  };
68  
69  static struct nand_ecclayout nand_oob_64 = {
70  	.eccbytes = 24,
71  	.eccpos = {
72  		   40, 41, 42, 43, 44, 45, 46, 47,
73  		   48, 49, 50, 51, 52, 53, 54, 55,
74  		   56, 57, 58, 59, 60, 61, 62, 63},
75  	.oobfree = {
76  		{.offset = 2,
77  		 .length = 38} }
78  };
79  
80  static struct nand_ecclayout nand_oob_128 = {
81  	.eccbytes = 48,
82  	.eccpos = {
83  		   80, 81, 82, 83, 84, 85, 86, 87,
84  		   88, 89, 90, 91, 92, 93, 94, 95,
85  		   96, 97, 98, 99, 100, 101, 102, 103,
86  		   104, 105, 106, 107, 108, 109, 110, 111,
87  		   112, 113, 114, 115, 116, 117, 118, 119,
88  		   120, 121, 122, 123, 124, 125, 126, 127},
89  	.oobfree = {
90  		{.offset = 2,
91  		 .length = 78} }
92  };
93  #endif
94  
95  static int nand_get_device(struct mtd_info *mtd, int new_state);
96  
97  static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
98  			     struct mtd_oob_ops *ops);
99  
100  /*
101   * For devices which display every fart in the system on a separate LED. Is
102   * compiled away when LED support is disabled.
103   */
104  DEFINE_LED_TRIGGER(nand_led_trigger);
105  
check_offs_len(struct mtd_info * mtd,loff_t ofs,uint64_t len)106  static int check_offs_len(struct mtd_info *mtd,
107  					loff_t ofs, uint64_t len)
108  {
109  	struct nand_chip *chip = mtd_to_nand(mtd);
110  	int ret = 0;
111  
112  	/* Start address must align on block boundary */
113  	if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
114  		pr_debug("%s: unaligned address\n", __func__);
115  		ret = -EINVAL;
116  	}
117  
118  	/* Length must align on block boundary */
119  	if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
120  		pr_debug("%s: length not block aligned\n", __func__);
121  		ret = -EINVAL;
122  	}
123  
124  	return ret;
125  }
126  
127  /**
128   * nand_release_device - [GENERIC] release chip
129   * @mtd: MTD device structure
130   *
131   * Release chip lock and wake up anyone waiting on the device.
132   */
nand_release_device(struct mtd_info * mtd)133  static void nand_release_device(struct mtd_info *mtd)
134  {
135  	struct nand_chip *chip = mtd_to_nand(mtd);
136  
137  	/* De-select the NAND device */
138  	chip->select_chip(mtd, -1);
139  }
140  
141  /**
142   * nand_read_byte - [DEFAULT] read one byte from the chip
143   * @mtd: MTD device structure
144   *
145   * Default read function for 8bit buswidth
146   */
nand_read_byte(struct mtd_info * mtd)147  uint8_t nand_read_byte(struct mtd_info *mtd)
148  {
149  	struct nand_chip *chip = mtd_to_nand(mtd);
150  	return readb(chip->IO_ADDR_R);
151  }
152  
153  /**
154   * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
155   * @mtd: MTD device structure
156   *
157   * Default read function for 16bit buswidth with endianness conversion.
158   *
159   */
nand_read_byte16(struct mtd_info * mtd)160  static uint8_t nand_read_byte16(struct mtd_info *mtd)
161  {
162  	struct nand_chip *chip = mtd_to_nand(mtd);
163  	return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
164  }
165  
166  /**
167   * nand_read_word - [DEFAULT] read one word from the chip
168   * @mtd: MTD device structure
169   *
170   * Default read function for 16bit buswidth without endianness conversion.
171   */
nand_read_word(struct mtd_info * mtd)172  static u16 nand_read_word(struct mtd_info *mtd)
173  {
174  	struct nand_chip *chip = mtd_to_nand(mtd);
175  	return readw(chip->IO_ADDR_R);
176  }
177  
178  /**
179   * nand_select_chip - [DEFAULT] control CE line
180   * @mtd: MTD device structure
181   * @chipnr: chipnumber to select, -1 for deselect
182   *
183   * Default select function for 1 chip devices.
184   */
nand_select_chip(struct mtd_info * mtd,int chipnr)185  static void nand_select_chip(struct mtd_info *mtd, int chipnr)
186  {
187  	struct nand_chip *chip = mtd_to_nand(mtd);
188  
189  	switch (chipnr) {
190  	case -1:
191  		chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
192  		break;
193  	case 0:
194  		break;
195  
196  	default:
197  		BUG();
198  	}
199  }
200  
201  /**
202   * nand_write_byte - [DEFAULT] write single byte to chip
203   * @mtd: MTD device structure
204   * @byte: value to write
205   *
206   * Default function to write a byte to I/O[7:0]
207   */
nand_write_byte(struct mtd_info * mtd,uint8_t byte)208  static void nand_write_byte(struct mtd_info *mtd, uint8_t byte)
209  {
210  	struct nand_chip *chip = mtd_to_nand(mtd);
211  
212  	chip->write_buf(mtd, &byte, 1);
213  }
214  
215  /**
216   * nand_write_byte16 - [DEFAULT] write single byte to a chip with width 16
217   * @mtd: MTD device structure
218   * @byte: value to write
219   *
220   * Default function to write a byte to I/O[7:0] on a 16-bit wide chip.
221   */
nand_write_byte16(struct mtd_info * mtd,uint8_t byte)222  static void nand_write_byte16(struct mtd_info *mtd, uint8_t byte)
223  {
224  	struct nand_chip *chip = mtd_to_nand(mtd);
225  	uint16_t word = byte;
226  
227  	/*
228  	 * It's not entirely clear what should happen to I/O[15:8] when writing
229  	 * a byte. The ONFi spec (Revision 3.1; 2012-09-19, Section 2.16) reads:
230  	 *
231  	 *    When the host supports a 16-bit bus width, only data is
232  	 *    transferred at the 16-bit width. All address and command line
233  	 *    transfers shall use only the lower 8-bits of the data bus. During
234  	 *    command transfers, the host may place any value on the upper
235  	 *    8-bits of the data bus. During address transfers, the host shall
236  	 *    set the upper 8-bits of the data bus to 00h.
237  	 *
238  	 * One user of the write_byte callback is nand_onfi_set_features. The
239  	 * four parameters are specified to be written to I/O[7:0], but this is
240  	 * neither an address nor a command transfer. Let's assume a 0 on the
241  	 * upper I/O lines is OK.
242  	 */
243  	chip->write_buf(mtd, (uint8_t *)&word, 2);
244  }
245  
iowrite8_rep(void * addr,const uint8_t * buf,int len)246  static void iowrite8_rep(void *addr, const uint8_t *buf, int len)
247  {
248  	int i;
249  
250  	for (i = 0; i < len; i++)
251  		writeb(buf[i], addr);
252  }
ioread8_rep(void * addr,uint8_t * buf,int len)253  static void ioread8_rep(void *addr, uint8_t *buf, int len)
254  {
255  	int i;
256  
257  	for (i = 0; i < len; i++)
258  		buf[i] = readb(addr);
259  }
260  
ioread16_rep(void * addr,void * buf,int len)261  static void ioread16_rep(void *addr, void *buf, int len)
262  {
263  	int i;
264   	u16 *p = (u16 *) buf;
265  
266  	for (i = 0; i < len; i++)
267  		p[i] = readw(addr);
268  }
269  
iowrite16_rep(void * addr,void * buf,int len)270  static void iowrite16_rep(void *addr, void *buf, int len)
271  {
272  	int i;
273          u16 *p = (u16 *) buf;
274  
275          for (i = 0; i < len; i++)
276                  writew(p[i], addr);
277  }
278  
279  /**
280   * nand_write_buf - [DEFAULT] write buffer to chip
281   * @mtd: MTD device structure
282   * @buf: data buffer
283   * @len: number of bytes to write
284   *
285   * Default write function for 8bit buswidth.
286   */
nand_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)287  void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
288  {
289  	struct nand_chip *chip = mtd_to_nand(mtd);
290  
291  	iowrite8_rep(chip->IO_ADDR_W, buf, len);
292  }
293  
294  /**
295   * nand_read_buf - [DEFAULT] read chip data into buffer
296   * @mtd: MTD device structure
297   * @buf: buffer to store date
298   * @len: number of bytes to read
299   *
300   * Default read function for 8bit buswidth.
301   */
nand_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)302  void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
303  {
304  	struct nand_chip *chip = mtd_to_nand(mtd);
305  
306  	ioread8_rep(chip->IO_ADDR_R, buf, len);
307  }
308  
309  /**
310   * nand_write_buf16 - [DEFAULT] write buffer to chip
311   * @mtd: MTD device structure
312   * @buf: data buffer
313   * @len: number of bytes to write
314   *
315   * Default write function for 16bit buswidth.
316   */
nand_write_buf16(struct mtd_info * mtd,const uint8_t * buf,int len)317  void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
318  {
319  	struct nand_chip *chip = mtd_to_nand(mtd);
320  	u16 *p = (u16 *) buf;
321  
322  	iowrite16_rep(chip->IO_ADDR_W, p, len >> 1);
323  }
324  
325  /**
326   * nand_read_buf16 - [DEFAULT] read chip data into buffer
327   * @mtd: MTD device structure
328   * @buf: buffer to store date
329   * @len: number of bytes to read
330   *
331   * Default read function for 16bit buswidth.
332   */
nand_read_buf16(struct mtd_info * mtd,uint8_t * buf,int len)333  void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
334  {
335  	struct nand_chip *chip = mtd_to_nand(mtd);
336  	u16 *p = (u16 *) buf;
337  
338  	ioread16_rep(chip->IO_ADDR_R, p, len >> 1);
339  }
340  
341  /**
342   * nand_block_bad - [DEFAULT] Read bad block marker from the chip
343   * @mtd: MTD device structure
344   * @ofs: offset from device start
345   *
346   * Check, if the block is bad.
347   */
nand_block_bad(struct mtd_info * mtd,loff_t ofs)348  static int nand_block_bad(struct mtd_info *mtd, loff_t ofs)
349  {
350  	int page, res = 0, i = 0;
351  	struct nand_chip *chip = mtd_to_nand(mtd);
352  	u16 bad;
353  
354  	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
355  		ofs += mtd->erasesize - mtd->writesize;
356  
357  	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
358  
359  	do {
360  		if (chip->options & NAND_BUSWIDTH_16) {
361  			chip->cmdfunc(mtd, NAND_CMD_READOOB,
362  					chip->badblockpos & 0xFE, page);
363  			bad = cpu_to_le16(chip->read_word(mtd));
364  			if (chip->badblockpos & 0x1)
365  				bad >>= 8;
366  			else
367  				bad &= 0xFF;
368  		} else {
369  			chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
370  					page);
371  			bad = chip->read_byte(mtd);
372  		}
373  
374  		if (likely(chip->badblockbits == 8))
375  			res = bad != 0xFF;
376  		else
377  			res = hweight8(bad) < chip->badblockbits;
378  		ofs += mtd->writesize;
379  		page = (int)(ofs >> chip->page_shift) & chip->pagemask;
380  		i++;
381  	} while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
382  
383  	return res;
384  }
385  
386  /**
387   * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
388   * @mtd: MTD device structure
389   * @ofs: offset from device start
390   *
391   * This is the default implementation, which can be overridden by a hardware
392   * specific driver. It provides the details for writing a bad block marker to a
393   * block.
394   */
nand_default_block_markbad(struct mtd_info * mtd,loff_t ofs)395  static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
396  {
397  	struct nand_chip *chip = mtd_to_nand(mtd);
398  	struct mtd_oob_ops ops;
399  	uint8_t buf[2] = { 0, 0 };
400  	int ret = 0, res, i = 0;
401  
402  	memset(&ops, 0, sizeof(ops));
403  	ops.oobbuf = buf;
404  	ops.ooboffs = chip->badblockpos;
405  	if (chip->options & NAND_BUSWIDTH_16) {
406  		ops.ooboffs &= ~0x01;
407  		ops.len = ops.ooblen = 2;
408  	} else {
409  		ops.len = ops.ooblen = 1;
410  	}
411  	ops.mode = MTD_OPS_PLACE_OOB;
412  
413  	/* Write to first/last page(s) if necessary */
414  	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
415  		ofs += mtd->erasesize - mtd->writesize;
416  	do {
417  		res = nand_do_write_oob(mtd, ofs, &ops);
418  		if (!ret)
419  			ret = res;
420  
421  		i++;
422  		ofs += mtd->writesize;
423  	} while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
424  
425  	return ret;
426  }
427  
428  /**
429   * nand_block_markbad_lowlevel - mark a block bad
430   * @mtd: MTD device structure
431   * @ofs: offset from device start
432   *
433   * This function performs the generic NAND bad block marking steps (i.e., bad
434   * block table(s) and/or marker(s)). We only allow the hardware driver to
435   * specify how to write bad block markers to OOB (chip->block_markbad).
436   *
437   * We try operations in the following order:
438   *  (1) erase the affected block, to allow OOB marker to be written cleanly
439   *  (2) write bad block marker to OOB area of affected block (unless flag
440   *      NAND_BBT_NO_OOB_BBM is present)
441   *  (3) update the BBT
442   * Note that we retain the first error encountered in (2) or (3), finish the
443   * procedures, and dump the error in the end.
444  */
nand_block_markbad_lowlevel(struct mtd_info * mtd,loff_t ofs)445  static int nand_block_markbad_lowlevel(struct mtd_info *mtd, loff_t ofs)
446  {
447  	struct nand_chip *chip = mtd_to_nand(mtd);
448  	int res, ret = 0;
449  
450  	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
451  		struct erase_info einfo;
452  
453  		/* Attempt erase before marking OOB */
454  		memset(&einfo, 0, sizeof(einfo));
455  		einfo.mtd = mtd;
456  		einfo.addr = ofs;
457  		einfo.len = 1ULL << chip->phys_erase_shift;
458  		nand_erase_nand(mtd, &einfo, 0);
459  
460  		/* Write bad block marker to OOB */
461  		nand_get_device(mtd, FL_WRITING);
462  		ret = chip->block_markbad(mtd, ofs);
463  		nand_release_device(mtd);
464  	}
465  
466  	/* Mark block bad in BBT */
467  	if (chip->bbt) {
468  		res = nand_markbad_bbt(mtd, ofs);
469  		if (!ret)
470  			ret = res;
471  	}
472  
473  	if (!ret)
474  		mtd->ecc_stats.badblocks++;
475  
476  	return ret;
477  }
478  
479  /**
480   * nand_check_wp - [GENERIC] check if the chip is write protected
481   * @mtd: MTD device structure
482   *
483   * Check, if the device is write protected. The function expects, that the
484   * device is already selected.
485   */
nand_check_wp(struct mtd_info * mtd)486  static int nand_check_wp(struct mtd_info *mtd)
487  {
488  	struct nand_chip *chip = mtd_to_nand(mtd);
489  
490  	/* Broken xD cards report WP despite being writable */
491  	if (chip->options & NAND_BROKEN_XD)
492  		return 0;
493  
494  	/* Check the WP bit */
495  	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
496  	return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
497  }
498  
499  /**
500   * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
501   * @mtd: MTD device structure
502   * @ofs: offset from device start
503   *
504   * Check if the block is marked as reserved.
505   */
nand_block_isreserved(struct mtd_info * mtd,loff_t ofs)506  static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
507  {
508  	struct nand_chip *chip = mtd_to_nand(mtd);
509  
510  	if (!chip->bbt)
511  		return 0;
512  	/* Return info from the table */
513  	return nand_isreserved_bbt(mtd, ofs);
514  }
515  
516  /**
517   * nand_block_checkbad - [GENERIC] Check if a block is marked bad
518   * @mtd: MTD device structure
519   * @ofs: offset from device start
520   * @allowbbt: 1, if its allowed to access the bbt area
521   *
522   * Check, if the block is bad. Either by reading the bad block table or
523   * calling of the scan function.
524   */
nand_block_checkbad(struct mtd_info * mtd,loff_t ofs,int allowbbt)525  static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int allowbbt)
526  {
527  	struct nand_chip *chip = mtd_to_nand(mtd);
528  
529  	if (!(chip->options & NAND_SKIP_BBTSCAN) &&
530  	    !(chip->options & NAND_BBT_SCANNED)) {
531  		chip->options |= NAND_BBT_SCANNED;
532  		chip->scan_bbt(mtd);
533  	}
534  
535  	if (!chip->bbt)
536  		return chip->block_bad(mtd, ofs);
537  
538  	/* Return info from the table */
539  	return nand_isbad_bbt(mtd, ofs, allowbbt);
540  }
541  
542  /**
543   * nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
544   * @mtd: MTD device structure
545   *
546   * Wait for the ready pin after a command, and warn if a timeout occurs.
547   */
nand_wait_ready(struct mtd_info * mtd)548  void nand_wait_ready(struct mtd_info *mtd)
549  {
550  	struct nand_chip *chip = mtd_to_nand(mtd);
551  	u32 timeo = (CONFIG_SYS_HZ * 400) / 1000;
552  	u32 time_start;
553  
554  	time_start = get_timer(0);
555  	/* Wait until command is processed or timeout occurs */
556  	while (get_timer(time_start) < timeo) {
557  		if (chip->dev_ready)
558  			if (chip->dev_ready(mtd))
559  				break;
560  	}
561  
562  	if (!chip->dev_ready(mtd))
563  		pr_warn("timeout while waiting for chip to become ready\n");
564  }
565  EXPORT_SYMBOL_GPL(nand_wait_ready);
566  
567  /**
568   * nand_wait_status_ready - [GENERIC] Wait for the ready status after commands.
569   * @mtd: MTD device structure
570   * @timeo: Timeout in ms
571   *
572   * Wait for status ready (i.e. command done) or timeout.
573   */
nand_wait_status_ready(struct mtd_info * mtd,unsigned long timeo)574  static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo)
575  {
576  	register struct nand_chip *chip = mtd_to_nand(mtd);
577  	u32 time_start;
578  
579  	timeo = (CONFIG_SYS_HZ * timeo) / 1000;
580  	time_start = get_timer(0);
581  	while (get_timer(time_start) < timeo) {
582  		if ((chip->read_byte(mtd) & NAND_STATUS_READY))
583  			break;
584  		WATCHDOG_RESET();
585  	}
586  };
587  
588  /**
589   * nand_command - [DEFAULT] Send command to NAND device
590   * @mtd: MTD device structure
591   * @command: the command to be sent
592   * @column: the column address for this command, -1 if none
593   * @page_addr: the page address for this command, -1 if none
594   *
595   * Send command to NAND device. This function is used for small page devices
596   * (512 Bytes per page).
597   */
nand_command(struct mtd_info * mtd,unsigned int command,int column,int page_addr)598  static void nand_command(struct mtd_info *mtd, unsigned int command,
599  			 int column, int page_addr)
600  {
601  	register struct nand_chip *chip = mtd_to_nand(mtd);
602  	int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
603  
604  	/* Write out the command to the device */
605  	if (command == NAND_CMD_SEQIN) {
606  		int readcmd;
607  
608  		if (column >= mtd->writesize) {
609  			/* OOB area */
610  			column -= mtd->writesize;
611  			readcmd = NAND_CMD_READOOB;
612  		} else if (column < 256) {
613  			/* First 256 bytes --> READ0 */
614  			readcmd = NAND_CMD_READ0;
615  		} else {
616  			column -= 256;
617  			readcmd = NAND_CMD_READ1;
618  		}
619  		chip->cmd_ctrl(mtd, readcmd, ctrl);
620  		ctrl &= ~NAND_CTRL_CHANGE;
621  	}
622  	chip->cmd_ctrl(mtd, command, ctrl);
623  
624  	/* Address cycle, when necessary */
625  	ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
626  	/* Serially input address */
627  	if (column != -1) {
628  		/* Adjust columns for 16 bit buswidth */
629  		if (chip->options & NAND_BUSWIDTH_16 &&
630  				!nand_opcode_8bits(command))
631  			column >>= 1;
632  		chip->cmd_ctrl(mtd, column, ctrl);
633  		ctrl &= ~NAND_CTRL_CHANGE;
634  	}
635  	if (page_addr != -1) {
636  		chip->cmd_ctrl(mtd, page_addr, ctrl);
637  		ctrl &= ~NAND_CTRL_CHANGE;
638  		chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
639  		if (chip->options & NAND_ROW_ADDR_3)
640  			chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
641  	}
642  	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
643  
644  	/*
645  	 * Program and erase have their own busy handlers status and sequential
646  	 * in needs no delay
647  	 */
648  	switch (command) {
649  
650  	case NAND_CMD_PAGEPROG:
651  	case NAND_CMD_ERASE1:
652  	case NAND_CMD_ERASE2:
653  	case NAND_CMD_SEQIN:
654  	case NAND_CMD_STATUS:
655  	case NAND_CMD_READID:
656  	case NAND_CMD_SET_FEATURES:
657  		return;
658  
659  	case NAND_CMD_RESET:
660  		if (chip->dev_ready)
661  			break;
662  		udelay(chip->chip_delay);
663  		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
664  			       NAND_CTRL_CLE | NAND_CTRL_CHANGE);
665  		chip->cmd_ctrl(mtd,
666  			       NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
667  		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
668  		nand_wait_status_ready(mtd, 250);
669  		return;
670  
671  		/* This applies to read commands */
672  	default:
673  		/*
674  		 * If we don't have access to the busy pin, we apply the given
675  		 * command delay
676  		 */
677  		if (!chip->dev_ready) {
678  			udelay(chip->chip_delay);
679  			return;
680  		}
681  	}
682  	/*
683  	 * Apply this short delay always to ensure that we do wait tWB in
684  	 * any case on any machine.
685  	 */
686  	ndelay(100);
687  
688  	nand_wait_ready(mtd);
689  }
690  
691  /**
692   * nand_command_lp - [DEFAULT] Send command to NAND large page device
693   * @mtd: MTD device structure
694   * @command: the command to be sent
695   * @column: the column address for this command, -1 if none
696   * @page_addr: the page address for this command, -1 if none
697   *
698   * Send command to NAND device. This is the version for the new large page
699   * devices. We don't have the separate regions as we have in the small page
700   * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
701   */
nand_command_lp(struct mtd_info * mtd,unsigned int command,int column,int page_addr)702  static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
703  			    int column, int page_addr)
704  {
705  	register struct nand_chip *chip = mtd_to_nand(mtd);
706  
707  	/* Emulate NAND_CMD_READOOB */
708  	if (command == NAND_CMD_READOOB) {
709  		column += mtd->writesize;
710  		command = NAND_CMD_READ0;
711  	}
712  
713  	/* Command latch cycle */
714  	chip->cmd_ctrl(mtd, command, NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
715  
716  	if (column != -1 || page_addr != -1) {
717  		int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
718  
719  		/* Serially input address */
720  		if (column != -1) {
721  			/* Adjust columns for 16 bit buswidth */
722  			if (chip->options & NAND_BUSWIDTH_16 &&
723  					!nand_opcode_8bits(command))
724  				column >>= 1;
725  			chip->cmd_ctrl(mtd, column, ctrl);
726  			ctrl &= ~NAND_CTRL_CHANGE;
727  			chip->cmd_ctrl(mtd, column >> 8, ctrl);
728  		}
729  		if (page_addr != -1) {
730  			chip->cmd_ctrl(mtd, page_addr, ctrl);
731  			chip->cmd_ctrl(mtd, page_addr >> 8,
732  				       NAND_NCE | NAND_ALE);
733  			if (chip->options & NAND_ROW_ADDR_3)
734  				chip->cmd_ctrl(mtd, page_addr >> 16,
735  					       NAND_NCE | NAND_ALE);
736  		}
737  	}
738  	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
739  
740  	/*
741  	 * Program and erase have their own busy handlers status, sequential
742  	 * in and status need no delay.
743  	 */
744  	switch (command) {
745  
746  	case NAND_CMD_CACHEDPROG:
747  	case NAND_CMD_PAGEPROG:
748  	case NAND_CMD_ERASE1:
749  	case NAND_CMD_ERASE2:
750  	case NAND_CMD_SEQIN:
751  	case NAND_CMD_RNDIN:
752  	case NAND_CMD_STATUS:
753  	case NAND_CMD_READID:
754  	case NAND_CMD_SET_FEATURES:
755  		return;
756  
757  	case NAND_CMD_RESET:
758  		if (chip->dev_ready)
759  			break;
760  		udelay(chip->chip_delay);
761  		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
762  			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
763  		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
764  			       NAND_NCE | NAND_CTRL_CHANGE);
765  		/* EZ-NAND can take upto 250ms as per ONFi v4.0 */
766  		nand_wait_status_ready(mtd, 250);
767  		return;
768  
769  	case NAND_CMD_RNDOUT:
770  		/* No ready / busy check necessary */
771  		chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
772  			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
773  		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
774  			       NAND_NCE | NAND_CTRL_CHANGE);
775  		return;
776  
777  	case NAND_CMD_READ0:
778  		chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
779  			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
780  		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
781  			       NAND_NCE | NAND_CTRL_CHANGE);
782  
783  		/* This applies to read commands */
784  	default:
785  		/*
786  		 * If we don't have access to the busy pin, we apply the given
787  		 * command delay.
788  		 */
789  		if (!chip->dev_ready) {
790  			udelay(chip->chip_delay);
791  			return;
792  		}
793  	}
794  
795  	/*
796  	 * Apply this short delay always to ensure that we do wait tWB in
797  	 * any case on any machine.
798  	 */
799  	ndelay(100);
800  
801  	nand_wait_ready(mtd);
802  }
803  
804  /**
805   * panic_nand_get_device - [GENERIC] Get chip for selected access
806   * @chip: the nand chip descriptor
807   * @mtd: MTD device structure
808   * @new_state: the state which is requested
809   *
810   * Used when in panic, no locks are taken.
811   */
panic_nand_get_device(struct nand_chip * chip,struct mtd_info * mtd,int new_state)812  static void panic_nand_get_device(struct nand_chip *chip,
813  		      struct mtd_info *mtd, int new_state)
814  {
815  	/* Hardware controller shared among independent devices */
816  	chip->controller->active = chip;
817  	chip->state = new_state;
818  }
819  
820  /**
821   * nand_get_device - [GENERIC] Get chip for selected access
822   * @mtd: MTD device structure
823   * @new_state: the state which is requested
824   *
825   * Get the device and lock it for exclusive access
826   */
827  static int
nand_get_device(struct mtd_info * mtd,int new_state)828  nand_get_device(struct mtd_info *mtd, int new_state)
829  {
830  	struct nand_chip *chip = mtd_to_nand(mtd);
831  	chip->state = new_state;
832  	return 0;
833  }
834  
835  /**
836   * panic_nand_wait - [GENERIC] wait until the command is done
837   * @mtd: MTD device structure
838   * @chip: NAND chip structure
839   * @timeo: timeout
840   *
841   * Wait for command done. This is a helper function for nand_wait used when
842   * we are in interrupt context. May happen when in panic and trying to write
843   * an oops through mtdoops.
844   */
panic_nand_wait(struct mtd_info * mtd,struct nand_chip * chip,unsigned long timeo)845  static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
846  			    unsigned long timeo)
847  {
848  	int i;
849  	for (i = 0; i < timeo; i++) {
850  		if (chip->dev_ready) {
851  			if (chip->dev_ready(mtd))
852  				break;
853  		} else {
854  			if (chip->read_byte(mtd) & NAND_STATUS_READY)
855  				break;
856  		}
857  		mdelay(1);
858  	}
859  }
860  
861  /**
862   * nand_wait - [DEFAULT] wait until the command is done
863   * @mtd: MTD device structure
864   * @chip: NAND chip structure
865   *
866   * Wait for command done. This applies to erase and program only.
867   */
nand_wait(struct mtd_info * mtd,struct nand_chip * chip)868  static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
869  {
870  	int status;
871  	unsigned long timeo = 400;
872  
873  	led_trigger_event(nand_led_trigger, LED_FULL);
874  
875  	/*
876  	 * Apply this short delay always to ensure that we do wait tWB in any
877  	 * case on any machine.
878  	 */
879  	ndelay(100);
880  
881  	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
882  
883   	u32 timer = (CONFIG_SYS_HZ * timeo) / 1000;
884   	u32 time_start;
885  
886   	time_start = get_timer(0);
887   	while (get_timer(time_start) < timer) {
888  		if (chip->dev_ready) {
889  			if (chip->dev_ready(mtd))
890  				break;
891  		} else {
892  			if (chip->read_byte(mtd) & NAND_STATUS_READY)
893  				break;
894  		}
895  	}
896  	led_trigger_event(nand_led_trigger, LED_OFF);
897  
898  	status = (int)chip->read_byte(mtd);
899  	/* This can happen if in case of timeout or buggy dev_ready */
900  	WARN_ON(!(status & NAND_STATUS_READY));
901  	return status;
902  }
903  
904  /**
905   * nand_reset_data_interface - Reset data interface and timings
906   * @chip: The NAND chip
907   * @chipnr: Internal die id
908   *
909   * Reset the Data interface and timings to ONFI mode 0.
910   *
911   * Returns 0 for success or negative error code otherwise.
912   */
nand_reset_data_interface(struct nand_chip * chip,int chipnr)913  static int nand_reset_data_interface(struct nand_chip *chip, int chipnr)
914  {
915  	struct mtd_info *mtd = nand_to_mtd(chip);
916  	const struct nand_data_interface *conf;
917  	int ret;
918  
919  	if (!chip->setup_data_interface)
920  		return 0;
921  
922  	/*
923  	 * The ONFI specification says:
924  	 * "
925  	 * To transition from NV-DDR or NV-DDR2 to the SDR data
926  	 * interface, the host shall use the Reset (FFh) command
927  	 * using SDR timing mode 0. A device in any timing mode is
928  	 * required to recognize Reset (FFh) command issued in SDR
929  	 * timing mode 0.
930  	 * "
931  	 *
932  	 * Configure the data interface in SDR mode and set the
933  	 * timings to timing mode 0.
934  	 */
935  
936  	conf = nand_get_default_data_interface();
937  	ret = chip->setup_data_interface(mtd, chipnr, conf);
938  	if (ret)
939  		pr_err("Failed to configure data interface to SDR timing mode 0\n");
940  
941  	return ret;
942  }
943  
944  /**
945   * nand_setup_data_interface - Setup the best data interface and timings
946   * @chip: The NAND chip
947   * @chipnr: Internal die id
948   *
949   * Find and configure the best data interface and NAND timings supported by
950   * the chip and the driver.
951   * First tries to retrieve supported timing modes from ONFI information,
952   * and if the NAND chip does not support ONFI, relies on the
953   * ->onfi_timing_mode_default specified in the nand_ids table.
954   *
955   * Returns 0 for success or negative error code otherwise.
956   */
nand_setup_data_interface(struct nand_chip * chip,int chipnr)957  static int nand_setup_data_interface(struct nand_chip *chip, int chipnr)
958  {
959  	struct mtd_info *mtd = nand_to_mtd(chip);
960  	int ret;
961  
962  	if (!chip->setup_data_interface || !chip->data_interface)
963  		return 0;
964  
965  	/*
966  	 * Ensure the timing mode has been changed on the chip side
967  	 * before changing timings on the controller side.
968  	 */
969  	if (chip->onfi_version) {
970  		u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = {
971  			chip->onfi_timing_mode_default,
972  		};
973  
974  		ret = chip->onfi_set_features(mtd, chip,
975  				ONFI_FEATURE_ADDR_TIMING_MODE,
976  				tmode_param);
977  		if (ret)
978  			goto err;
979  	}
980  
981  	ret = chip->setup_data_interface(mtd, chipnr, chip->data_interface);
982  err:
983  	return ret;
984  }
985  
986  /**
987   * nand_init_data_interface - find the best data interface and timings
988   * @chip: The NAND chip
989   *
990   * Find the best data interface and NAND timings supported by the chip
991   * and the driver.
992   * First tries to retrieve supported timing modes from ONFI information,
993   * and if the NAND chip does not support ONFI, relies on the
994   * ->onfi_timing_mode_default specified in the nand_ids table. After this
995   * function nand_chip->data_interface is initialized with the best timing mode
996   * available.
997   *
998   * Returns 0 for success or negative error code otherwise.
999   */
nand_init_data_interface(struct nand_chip * chip)1000  static int nand_init_data_interface(struct nand_chip *chip)
1001  {
1002  	struct mtd_info *mtd = nand_to_mtd(chip);
1003  	int modes, mode, ret;
1004  
1005  	if (!chip->setup_data_interface)
1006  		return 0;
1007  
1008  	/*
1009  	 * First try to identify the best timings from ONFI parameters and
1010  	 * if the NAND does not support ONFI, fallback to the default ONFI
1011  	 * timing mode.
1012  	 */
1013  	modes = onfi_get_async_timing_mode(chip);
1014  	if (modes == ONFI_TIMING_MODE_UNKNOWN) {
1015  		if (!chip->onfi_timing_mode_default)
1016  			return 0;
1017  
1018  		modes = GENMASK(chip->onfi_timing_mode_default, 0);
1019  	}
1020  
1021  	chip->data_interface = kzalloc(sizeof(*chip->data_interface),
1022  				       GFP_KERNEL);
1023  	if (!chip->data_interface)
1024  		return -ENOMEM;
1025  
1026  	for (mode = fls(modes) - 1; mode >= 0; mode--) {
1027  		ret = onfi_init_data_interface(chip, chip->data_interface,
1028  					       NAND_SDR_IFACE, mode);
1029  		if (ret)
1030  			continue;
1031  
1032  		/* Pass -1 to only */
1033  		ret = chip->setup_data_interface(mtd,
1034  						 NAND_DATA_IFACE_CHECK_ONLY,
1035  						 chip->data_interface);
1036  		if (!ret) {
1037  			chip->onfi_timing_mode_default = mode;
1038  			break;
1039  		}
1040  	}
1041  
1042  	return 0;
1043  }
1044  
nand_release_data_interface(struct nand_chip * chip)1045  static void __maybe_unused nand_release_data_interface(struct nand_chip *chip)
1046  {
1047  	kfree(chip->data_interface);
1048  }
1049  
1050  /**
1051   * nand_reset - Reset and initialize a NAND device
1052   * @chip: The NAND chip
1053   * @chipnr: Internal die id
1054   *
1055   * Returns 0 for success or negative error code otherwise
1056   */
nand_reset(struct nand_chip * chip,int chipnr)1057  int nand_reset(struct nand_chip *chip, int chipnr)
1058  {
1059  	struct mtd_info *mtd = nand_to_mtd(chip);
1060  	int ret;
1061  
1062  	ret = nand_reset_data_interface(chip, chipnr);
1063  	if (ret)
1064  		return ret;
1065  
1066  	/*
1067  	 * The CS line has to be released before we can apply the new NAND
1068  	 * interface settings, hence this weird ->select_chip() dance.
1069  	 */
1070  	chip->select_chip(mtd, chipnr);
1071  	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1072  	chip->select_chip(mtd, -1);
1073  
1074  	chip->select_chip(mtd, chipnr);
1075  	ret = nand_setup_data_interface(chip, chipnr);
1076  	chip->select_chip(mtd, -1);
1077  	if (ret)
1078  		return ret;
1079  
1080  	return 0;
1081  }
1082  
1083  /**
1084   * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
1085   * @buf: buffer to test
1086   * @len: buffer length
1087   * @bitflips_threshold: maximum number of bitflips
1088   *
1089   * Check if a buffer contains only 0xff, which means the underlying region
1090   * has been erased and is ready to be programmed.
1091   * The bitflips_threshold specify the maximum number of bitflips before
1092   * considering the region is not erased.
1093   * Note: The logic of this function has been extracted from the memweight
1094   * implementation, except that nand_check_erased_buf function exit before
1095   * testing the whole buffer if the number of bitflips exceed the
1096   * bitflips_threshold value.
1097   *
1098   * Returns a positive number of bitflips less than or equal to
1099   * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1100   * threshold.
1101   */
nand_check_erased_buf(void * buf,int len,int bitflips_threshold)1102  static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
1103  {
1104  	const unsigned char *bitmap = buf;
1105  	int bitflips = 0;
1106  	int weight;
1107  
1108  	for (; len && ((uintptr_t)bitmap) % sizeof(long);
1109  	     len--, bitmap++) {
1110  		weight = hweight8(*bitmap);
1111  		bitflips += BITS_PER_BYTE - weight;
1112  		if (unlikely(bitflips > bitflips_threshold))
1113  			return -EBADMSG;
1114  	}
1115  
1116  	for (; len >= 4; len -= 4, bitmap += 4) {
1117  		weight = hweight32(*((u32 *)bitmap));
1118  		bitflips += 32 - weight;
1119  		if (unlikely(bitflips > bitflips_threshold))
1120  			return -EBADMSG;
1121  	}
1122  
1123  	for (; len > 0; len--, bitmap++) {
1124  		weight = hweight8(*bitmap);
1125  		bitflips += BITS_PER_BYTE - weight;
1126  		if (unlikely(bitflips > bitflips_threshold))
1127  			return -EBADMSG;
1128  	}
1129  
1130  	return bitflips;
1131  }
1132  
1133  /**
1134   * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
1135   *				 0xff data
1136   * @data: data buffer to test
1137   * @datalen: data length
1138   * @ecc: ECC buffer
1139   * @ecclen: ECC length
1140   * @extraoob: extra OOB buffer
1141   * @extraooblen: extra OOB length
1142   * @bitflips_threshold: maximum number of bitflips
1143   *
1144   * Check if a data buffer and its associated ECC and OOB data contains only
1145   * 0xff pattern, which means the underlying region has been erased and is
1146   * ready to be programmed.
1147   * The bitflips_threshold specify the maximum number of bitflips before
1148   * considering the region as not erased.
1149   *
1150   * Note:
1151   * 1/ ECC algorithms are working on pre-defined block sizes which are usually
1152   *    different from the NAND page size. When fixing bitflips, ECC engines will
1153   *    report the number of errors per chunk, and the NAND core infrastructure
1154   *    expect you to return the maximum number of bitflips for the whole page.
1155   *    This is why you should always use this function on a single chunk and
1156   *    not on the whole page. After checking each chunk you should update your
1157   *    max_bitflips value accordingly.
1158   * 2/ When checking for bitflips in erased pages you should not only check
1159   *    the payload data but also their associated ECC data, because a user might
1160   *    have programmed almost all bits to 1 but a few. In this case, we
1161   *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
1162   *    this case.
1163   * 3/ The extraoob argument is optional, and should be used if some of your OOB
1164   *    data are protected by the ECC engine.
1165   *    It could also be used if you support subpages and want to attach some
1166   *    extra OOB data to an ECC chunk.
1167   *
1168   * Returns a positive number of bitflips less than or equal to
1169   * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
1170   * threshold. In case of success, the passed buffers are filled with 0xff.
1171   */
nand_check_erased_ecc_chunk(void * data,int datalen,void * ecc,int ecclen,void * extraoob,int extraooblen,int bitflips_threshold)1172  int nand_check_erased_ecc_chunk(void *data, int datalen,
1173  				void *ecc, int ecclen,
1174  				void *extraoob, int extraooblen,
1175  				int bitflips_threshold)
1176  {
1177  	int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
1178  
1179  	data_bitflips = nand_check_erased_buf(data, datalen,
1180  					      bitflips_threshold);
1181  	if (data_bitflips < 0)
1182  		return data_bitflips;
1183  
1184  	bitflips_threshold -= data_bitflips;
1185  
1186  	ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
1187  	if (ecc_bitflips < 0)
1188  		return ecc_bitflips;
1189  
1190  	bitflips_threshold -= ecc_bitflips;
1191  
1192  	extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
1193  						  bitflips_threshold);
1194  	if (extraoob_bitflips < 0)
1195  		return extraoob_bitflips;
1196  
1197  	if (data_bitflips)
1198  		memset(data, 0xff, datalen);
1199  
1200  	if (ecc_bitflips)
1201  		memset(ecc, 0xff, ecclen);
1202  
1203  	if (extraoob_bitflips)
1204  		memset(extraoob, 0xff, extraooblen);
1205  
1206  	return data_bitflips + ecc_bitflips + extraoob_bitflips;
1207  }
1208  EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
1209  
1210  /**
1211   * nand_read_page_raw - [INTERN] read raw page data without ecc
1212   * @mtd: mtd info structure
1213   * @chip: nand chip info structure
1214   * @buf: buffer to store read data
1215   * @oob_required: caller requires OOB data read to chip->oob_poi
1216   * @page: page number to read
1217   *
1218   * Not for syndrome calculating ECC controllers, which use a special oob layout.
1219   */
nand_read_page_raw(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1220  static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1221  			      uint8_t *buf, int oob_required, int page)
1222  {
1223  	chip->read_buf(mtd, buf, mtd->writesize);
1224  	if (oob_required)
1225  		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1226  	return 0;
1227  }
1228  
1229  /**
1230   * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1231   * @mtd: mtd info structure
1232   * @chip: nand chip info structure
1233   * @buf: buffer to store read data
1234   * @oob_required: caller requires OOB data read to chip->oob_poi
1235   * @page: page number to read
1236   *
1237   * We need a special oob layout and handling even when OOB isn't used.
1238   */
nand_read_page_raw_syndrome(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1239  static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1240  				       struct nand_chip *chip, uint8_t *buf,
1241  				       int oob_required, int page)
1242  {
1243  	int eccsize = chip->ecc.size;
1244  	int eccbytes = chip->ecc.bytes;
1245  	uint8_t *oob = chip->oob_poi;
1246  	int steps, size;
1247  
1248  	for (steps = chip->ecc.steps; steps > 0; steps--) {
1249  		chip->read_buf(mtd, buf, eccsize);
1250  		buf += eccsize;
1251  
1252  		if (chip->ecc.prepad) {
1253  			chip->read_buf(mtd, oob, chip->ecc.prepad);
1254  			oob += chip->ecc.prepad;
1255  		}
1256  
1257  		chip->read_buf(mtd, oob, eccbytes);
1258  		oob += eccbytes;
1259  
1260  		if (chip->ecc.postpad) {
1261  			chip->read_buf(mtd, oob, chip->ecc.postpad);
1262  			oob += chip->ecc.postpad;
1263  		}
1264  	}
1265  
1266  	size = mtd->oobsize - (oob - chip->oob_poi);
1267  	if (size)
1268  		chip->read_buf(mtd, oob, size);
1269  
1270  	return 0;
1271  }
1272  
1273  /**
1274   * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1275   * @mtd: mtd info structure
1276   * @chip: nand chip info structure
1277   * @buf: buffer to store read data
1278   * @oob_required: caller requires OOB data read to chip->oob_poi
1279   * @page: page number to read
1280   */
nand_read_page_swecc(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1281  static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1282  				uint8_t *buf, int oob_required, int page)
1283  {
1284  	int i, eccsize = chip->ecc.size;
1285  	int eccbytes = chip->ecc.bytes;
1286  	int eccsteps = chip->ecc.steps;
1287  	uint8_t *p = buf;
1288  	uint8_t *ecc_calc = chip->buffers->ecccalc;
1289  	uint8_t *ecc_code = chip->buffers->ecccode;
1290  	uint32_t *eccpos = chip->ecc.layout->eccpos;
1291  	unsigned int max_bitflips = 0;
1292  
1293  	chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1294  
1295  	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1296  		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1297  
1298  	for (i = 0; i < chip->ecc.total; i++)
1299  		ecc_code[i] = chip->oob_poi[eccpos[i]];
1300  
1301  	eccsteps = chip->ecc.steps;
1302  	p = buf;
1303  
1304  	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1305  		int stat;
1306  
1307  		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1308  		if (stat < 0) {
1309  			mtd->ecc_stats.failed++;
1310  		} else {
1311  			mtd->ecc_stats.corrected += stat;
1312  			max_bitflips = max_t(unsigned int, max_bitflips, stat);
1313  		}
1314  	}
1315  	return max_bitflips;
1316  }
1317  
1318  /**
1319   * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
1320   * @mtd: mtd info structure
1321   * @chip: nand chip info structure
1322   * @data_offs: offset of requested data within the page
1323   * @readlen: data length
1324   * @bufpoi: buffer to store read data
1325   * @page: page number to read
1326   */
nand_read_subpage(struct mtd_info * mtd,struct nand_chip * chip,uint32_t data_offs,uint32_t readlen,uint8_t * bufpoi,int page)1327  static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1328  			uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi,
1329  			int page)
1330  {
1331  	int start_step, end_step, num_steps;
1332  	uint32_t *eccpos = chip->ecc.layout->eccpos;
1333  	uint8_t *p;
1334  	int data_col_addr, i, gaps = 0;
1335  	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1336  	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1337  	int index;
1338  	unsigned int max_bitflips = 0;
1339  
1340  	/* Column address within the page aligned to ECC size (256bytes) */
1341  	start_step = data_offs / chip->ecc.size;
1342  	end_step = (data_offs + readlen - 1) / chip->ecc.size;
1343  	num_steps = end_step - start_step + 1;
1344  	index = start_step * chip->ecc.bytes;
1345  
1346  	/* Data size aligned to ECC ecc.size */
1347  	datafrag_len = num_steps * chip->ecc.size;
1348  	eccfrag_len = num_steps * chip->ecc.bytes;
1349  
1350  	data_col_addr = start_step * chip->ecc.size;
1351  	/* If we read not a page aligned data */
1352  	if (data_col_addr != 0)
1353  		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1354  
1355  	p = bufpoi + data_col_addr;
1356  	chip->read_buf(mtd, p, datafrag_len);
1357  
1358  	/* Calculate ECC */
1359  	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1360  		chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1361  
1362  	/*
1363  	 * The performance is faster if we position offsets according to
1364  	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1365  	 */
1366  	for (i = 0; i < eccfrag_len - 1; i++) {
1367  		if (eccpos[i + index] + 1 != eccpos[i + index + 1]) {
1368  			gaps = 1;
1369  			break;
1370  		}
1371  	}
1372  	if (gaps) {
1373  		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1374  		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1375  	} else {
1376  		/*
1377  		 * Send the command to read the particular ECC bytes take care
1378  		 * about buswidth alignment in read_buf.
1379  		 */
1380  		aligned_pos = eccpos[index] & ~(busw - 1);
1381  		aligned_len = eccfrag_len;
1382  		if (eccpos[index] & (busw - 1))
1383  			aligned_len++;
1384  		if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1385  			aligned_len++;
1386  
1387  		chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1388  					mtd->writesize + aligned_pos, -1);
1389  		chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1390  	}
1391  
1392  	for (i = 0; i < eccfrag_len; i++)
1393  		chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1394  
1395  	p = bufpoi + data_col_addr;
1396  	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1397  		int stat;
1398  
1399  		stat = chip->ecc.correct(mtd, p,
1400  			&chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1401  		if (stat == -EBADMSG &&
1402  		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1403  			/* check for empty pages with bitflips */
1404  			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1405  						&chip->buffers->ecccode[i],
1406  						chip->ecc.bytes,
1407  						NULL, 0,
1408  						chip->ecc.strength);
1409  		}
1410  
1411  		if (stat < 0) {
1412  			mtd->ecc_stats.failed++;
1413  		} else {
1414  			mtd->ecc_stats.corrected += stat;
1415  			max_bitflips = max_t(unsigned int, max_bitflips, stat);
1416  		}
1417  	}
1418  	return max_bitflips;
1419  }
1420  
1421  /**
1422   * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1423   * @mtd: mtd info structure
1424   * @chip: nand chip info structure
1425   * @buf: buffer to store read data
1426   * @oob_required: caller requires OOB data read to chip->oob_poi
1427   * @page: page number to read
1428   *
1429   * Not for syndrome calculating ECC controllers which need a special oob layout.
1430   */
nand_read_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1431  static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1432  				uint8_t *buf, int oob_required, int page)
1433  {
1434  	int i, eccsize = chip->ecc.size;
1435  	int eccbytes = chip->ecc.bytes;
1436  	int eccsteps = chip->ecc.steps;
1437  	uint8_t *p = buf;
1438  	uint8_t *ecc_calc = chip->buffers->ecccalc;
1439  	uint8_t *ecc_code = chip->buffers->ecccode;
1440  	uint32_t *eccpos = chip->ecc.layout->eccpos;
1441  	unsigned int max_bitflips = 0;
1442  
1443  	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1444  		chip->ecc.hwctl(mtd, NAND_ECC_READ);
1445  		chip->read_buf(mtd, p, eccsize);
1446  		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1447  	}
1448  	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1449  
1450  	for (i = 0; i < chip->ecc.total; i++)
1451  		ecc_code[i] = chip->oob_poi[eccpos[i]];
1452  
1453  	eccsteps = chip->ecc.steps;
1454  	p = buf;
1455  
1456  	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1457  		int stat;
1458  
1459  		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1460  		if (stat == -EBADMSG &&
1461  		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1462  			/* check for empty pages with bitflips */
1463  			stat = nand_check_erased_ecc_chunk(p, eccsize,
1464  						&ecc_code[i], eccbytes,
1465  						NULL, 0,
1466  						chip->ecc.strength);
1467  		}
1468  
1469  		if (stat < 0) {
1470  			mtd->ecc_stats.failed++;
1471  		} else {
1472  			mtd->ecc_stats.corrected += stat;
1473  			max_bitflips = max_t(unsigned int, max_bitflips, stat);
1474  		}
1475  	}
1476  	return max_bitflips;
1477  }
1478  
1479  /**
1480   * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1481   * @mtd: mtd info structure
1482   * @chip: nand chip info structure
1483   * @buf: buffer to store read data
1484   * @oob_required: caller requires OOB data read to chip->oob_poi
1485   * @page: page number to read
1486   *
1487   * Hardware ECC for large page chips, require OOB to be read first. For this
1488   * ECC mode, the write_page method is re-used from ECC_HW. These methods
1489   * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1490   * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1491   * the data area, by overwriting the NAND manufacturer bad block markings.
1492   */
nand_read_page_hwecc_oob_first(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1493  static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1494  	struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1495  {
1496  	int i, eccsize = chip->ecc.size;
1497  	int eccbytes = chip->ecc.bytes;
1498  	int eccsteps = chip->ecc.steps;
1499  	uint8_t *p = buf;
1500  	uint8_t *ecc_code = chip->buffers->ecccode;
1501  	uint32_t *eccpos = chip->ecc.layout->eccpos;
1502  	uint8_t *ecc_calc = chip->buffers->ecccalc;
1503  	unsigned int max_bitflips = 0;
1504  
1505  	/* Read the OOB area first */
1506  	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1507  	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1508  	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1509  
1510  	for (i = 0; i < chip->ecc.total; i++)
1511  		ecc_code[i] = chip->oob_poi[eccpos[i]];
1512  
1513  	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1514  		int stat;
1515  
1516  		chip->ecc.hwctl(mtd, NAND_ECC_READ);
1517  		chip->read_buf(mtd, p, eccsize);
1518  		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1519  
1520  		stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1521  		if (stat == -EBADMSG &&
1522  		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1523  			/* check for empty pages with bitflips */
1524  			stat = nand_check_erased_ecc_chunk(p, eccsize,
1525  						&ecc_code[i], eccbytes,
1526  						NULL, 0,
1527  						chip->ecc.strength);
1528  		}
1529  
1530  		if (stat < 0) {
1531  			mtd->ecc_stats.failed++;
1532  		} else {
1533  			mtd->ecc_stats.corrected += stat;
1534  			max_bitflips = max_t(unsigned int, max_bitflips, stat);
1535  		}
1536  	}
1537  	return max_bitflips;
1538  }
1539  
1540  /**
1541   * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1542   * @mtd: mtd info structure
1543   * @chip: nand chip info structure
1544   * @buf: buffer to store read data
1545   * @oob_required: caller requires OOB data read to chip->oob_poi
1546   * @page: page number to read
1547   *
1548   * The hw generator calculates the error syndrome automatically. Therefore we
1549   * need a special oob layout and handling.
1550   */
nand_read_page_syndrome(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1551  static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1552  				   uint8_t *buf, int oob_required, int page)
1553  {
1554  	int i, eccsize = chip->ecc.size;
1555  	int eccbytes = chip->ecc.bytes;
1556  	int eccsteps = chip->ecc.steps;
1557  	int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
1558  	uint8_t *p = buf;
1559  	uint8_t *oob = chip->oob_poi;
1560  	unsigned int max_bitflips = 0;
1561  
1562  	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1563  		int stat;
1564  
1565  		chip->ecc.hwctl(mtd, NAND_ECC_READ);
1566  		chip->read_buf(mtd, p, eccsize);
1567  
1568  		if (chip->ecc.prepad) {
1569  			chip->read_buf(mtd, oob, chip->ecc.prepad);
1570  			oob += chip->ecc.prepad;
1571  		}
1572  
1573  		chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1574  		chip->read_buf(mtd, oob, eccbytes);
1575  		stat = chip->ecc.correct(mtd, p, oob, NULL);
1576  
1577  		oob += eccbytes;
1578  
1579  		if (chip->ecc.postpad) {
1580  			chip->read_buf(mtd, oob, chip->ecc.postpad);
1581  			oob += chip->ecc.postpad;
1582  		}
1583  
1584  		if (stat == -EBADMSG &&
1585  		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
1586  			/* check for empty pages with bitflips */
1587  			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
1588  							   oob - eccpadbytes,
1589  							   eccpadbytes,
1590  							   NULL, 0,
1591  							   chip->ecc.strength);
1592  		}
1593  
1594  		if (stat < 0) {
1595  			mtd->ecc_stats.failed++;
1596  		} else {
1597  			mtd->ecc_stats.corrected += stat;
1598  			max_bitflips = max_t(unsigned int, max_bitflips, stat);
1599  		}
1600  	}
1601  
1602  	/* Calculate remaining oob bytes */
1603  	i = mtd->oobsize - (oob - chip->oob_poi);
1604  	if (i)
1605  		chip->read_buf(mtd, oob, i);
1606  
1607  	return max_bitflips;
1608  }
1609  
1610  /**
1611   * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1612   * @chip: nand chip structure
1613   * @oob: oob destination address
1614   * @ops: oob ops structure
1615   * @len: size of oob to transfer
1616   */
nand_transfer_oob(struct nand_chip * chip,uint8_t * oob,struct mtd_oob_ops * ops,size_t len)1617  static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1618  				  struct mtd_oob_ops *ops, size_t len)
1619  {
1620  	switch (ops->mode) {
1621  
1622  	case MTD_OPS_PLACE_OOB:
1623  	case MTD_OPS_RAW:
1624  		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1625  		return oob + len;
1626  
1627  	case MTD_OPS_AUTO_OOB: {
1628  		struct nand_oobfree *free = chip->ecc.layout->oobfree;
1629  		uint32_t boffs = 0, roffs = ops->ooboffs;
1630  		size_t bytes = 0;
1631  
1632  		for (; free->length && len; free++, len -= bytes) {
1633  			/* Read request not from offset 0? */
1634  			if (unlikely(roffs)) {
1635  				if (roffs >= free->length) {
1636  					roffs -= free->length;
1637  					continue;
1638  				}
1639  				boffs = free->offset + roffs;
1640  				bytes = min_t(size_t, len,
1641  					      (free->length - roffs));
1642  				roffs = 0;
1643  			} else {
1644  				bytes = min_t(size_t, len, free->length);
1645  				boffs = free->offset;
1646  			}
1647  			memcpy(oob, chip->oob_poi + boffs, bytes);
1648  			oob += bytes;
1649  		}
1650  		return oob;
1651  	}
1652  	default:
1653  		BUG();
1654  	}
1655  	return NULL;
1656  }
1657  
1658  /**
1659   * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
1660   * @mtd: MTD device structure
1661   * @retry_mode: the retry mode to use
1662   *
1663   * Some vendors supply a special command to shift the Vt threshold, to be used
1664   * when there are too many bitflips in a page (i.e., ECC error). After setting
1665   * a new threshold, the host should retry reading the page.
1666   */
nand_setup_read_retry(struct mtd_info * mtd,int retry_mode)1667  static int nand_setup_read_retry(struct mtd_info *mtd, int retry_mode)
1668  {
1669  	struct nand_chip *chip = mtd_to_nand(mtd);
1670  
1671  	pr_debug("setting READ RETRY mode %d\n", retry_mode);
1672  
1673  	if (retry_mode >= chip->read_retries)
1674  		return -EINVAL;
1675  
1676  	if (!chip->setup_read_retry)
1677  		return -EOPNOTSUPP;
1678  
1679  	return chip->setup_read_retry(mtd, retry_mode);
1680  }
1681  
1682  /**
1683   * nand_do_read_ops - [INTERN] Read data with ECC
1684   * @mtd: MTD device structure
1685   * @from: offset to read from
1686   * @ops: oob ops structure
1687   *
1688   * Internal function. Called with chip held.
1689   */
nand_do_read_ops(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1690  static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1691  			    struct mtd_oob_ops *ops)
1692  {
1693  	int chipnr, page, realpage, col, bytes, aligned, oob_required;
1694  	struct nand_chip *chip = mtd_to_nand(mtd);
1695  	int ret = 0;
1696  	uint32_t readlen = ops->len;
1697  	uint32_t oobreadlen = ops->ooblen;
1698  	uint32_t max_oobsize = mtd_oobavail(mtd, ops);
1699  
1700  	uint8_t *bufpoi, *oob, *buf;
1701  	int use_bufpoi;
1702  	unsigned int max_bitflips = 0;
1703  	int retry_mode = 0;
1704  	bool ecc_fail = false;
1705  
1706  	chipnr = (int)(from >> chip->chip_shift);
1707  	chip->select_chip(mtd, chipnr);
1708  
1709  	realpage = (int)(from >> chip->page_shift);
1710  	page = realpage & chip->pagemask;
1711  
1712  	col = (int)(from & (mtd->writesize - 1));
1713  
1714  	buf = ops->datbuf;
1715  	oob = ops->oobbuf;
1716  	oob_required = oob ? 1 : 0;
1717  
1718  	while (1) {
1719  		unsigned int ecc_failures = mtd->ecc_stats.failed;
1720  
1721  		WATCHDOG_RESET();
1722  		bytes = min(mtd->writesize - col, readlen);
1723  		aligned = (bytes == mtd->writesize);
1724  
1725  		if (!aligned)
1726  			use_bufpoi = 1;
1727  		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
1728  			use_bufpoi = !IS_ALIGNED((unsigned long)buf,
1729  						 chip->buf_align);
1730  		else
1731  			use_bufpoi = 0;
1732  
1733  		/* Is the current page in the buffer? */
1734  		if (realpage != chip->pagebuf || oob) {
1735  			bufpoi = use_bufpoi ? chip->buffers->databuf : buf;
1736  
1737  			if (use_bufpoi && aligned)
1738  				pr_debug("%s: using read bounce buffer for buf@%p\n",
1739  						 __func__, buf);
1740  
1741  read_retry:
1742  			if (nand_standard_page_accessors(&chip->ecc))
1743  				chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1744  
1745  			/*
1746  			 * Now read the page into the buffer.  Absent an error,
1747  			 * the read methods return max bitflips per ecc step.
1748  			 */
1749  			if (unlikely(ops->mode == MTD_OPS_RAW))
1750  				ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1751  							      oob_required,
1752  							      page);
1753  			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1754  				 !oob)
1755  				ret = chip->ecc.read_subpage(mtd, chip,
1756  							col, bytes, bufpoi,
1757  							page);
1758  			else
1759  				ret = chip->ecc.read_page(mtd, chip, bufpoi,
1760  							  oob_required, page);
1761  			if (ret < 0) {
1762  				if (use_bufpoi)
1763  					/* Invalidate page cache */
1764  					chip->pagebuf = -1;
1765  				break;
1766  			}
1767  
1768  			max_bitflips = max_t(unsigned int, max_bitflips, ret);
1769  
1770  			/* Transfer not aligned data */
1771  			if (use_bufpoi) {
1772  				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1773  				    !(mtd->ecc_stats.failed - ecc_failures) &&
1774  				    (ops->mode != MTD_OPS_RAW)) {
1775  					chip->pagebuf = realpage;
1776  					chip->pagebuf_bitflips = ret;
1777  				} else {
1778  					/* Invalidate page cache */
1779  					chip->pagebuf = -1;
1780  				}
1781  				memcpy(buf, chip->buffers->databuf + col, bytes);
1782  			}
1783  
1784  			if (unlikely(oob)) {
1785  				int toread = min(oobreadlen, max_oobsize);
1786  
1787  				if (toread) {
1788  					oob = nand_transfer_oob(chip,
1789  						oob, ops, toread);
1790  					oobreadlen -= toread;
1791  				}
1792  			}
1793  
1794  			if (chip->options & NAND_NEED_READRDY) {
1795  				/* Apply delay or wait for ready/busy pin */
1796  				if (!chip->dev_ready)
1797  					udelay(chip->chip_delay);
1798  				else
1799  					nand_wait_ready(mtd);
1800  			}
1801  
1802  			if (mtd->ecc_stats.failed - ecc_failures) {
1803  				if (retry_mode + 1 < chip->read_retries) {
1804  					retry_mode++;
1805  					ret = nand_setup_read_retry(mtd,
1806  							retry_mode);
1807  					if (ret < 0)
1808  						break;
1809  
1810  					/* Reset failures; retry */
1811  					mtd->ecc_stats.failed = ecc_failures;
1812  					goto read_retry;
1813  				} else {
1814  					/* No more retry modes; real failure */
1815  					ecc_fail = true;
1816  				}
1817  			}
1818  
1819  			buf += bytes;
1820  		} else {
1821  			memcpy(buf, chip->buffers->databuf + col, bytes);
1822  			buf += bytes;
1823  			max_bitflips = max_t(unsigned int, max_bitflips,
1824  					     chip->pagebuf_bitflips);
1825  		}
1826  
1827  		readlen -= bytes;
1828  
1829  		/* Reset to retry mode 0 */
1830  		if (retry_mode) {
1831  			ret = nand_setup_read_retry(mtd, 0);
1832  			if (ret < 0)
1833  				break;
1834  			retry_mode = 0;
1835  		}
1836  
1837  		if (!readlen)
1838  			break;
1839  
1840  		/* For subsequent reads align to page boundary */
1841  		col = 0;
1842  		/* Increment page address */
1843  		realpage++;
1844  
1845  		page = realpage & chip->pagemask;
1846  		/* Check, if we cross a chip boundary */
1847  		if (!page) {
1848  			chipnr++;
1849  			chip->select_chip(mtd, -1);
1850  			chip->select_chip(mtd, chipnr);
1851  		}
1852  	}
1853  	chip->select_chip(mtd, -1);
1854  
1855  	ops->retlen = ops->len - (size_t) readlen;
1856  	if (oob)
1857  		ops->oobretlen = ops->ooblen - oobreadlen;
1858  
1859  	if (ret < 0)
1860  		return ret;
1861  
1862  	if (ecc_fail)
1863  		return -EBADMSG;
1864  
1865  	return max_bitflips;
1866  }
1867  
1868  /**
1869   * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1870   * @mtd: mtd info structure
1871   * @chip: nand chip info structure
1872   * @page: page number to read
1873   */
nand_read_oob_std(struct mtd_info * mtd,struct nand_chip * chip,int page)1874  static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1875  			     int page)
1876  {
1877  	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1878  	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1879  	return 0;
1880  }
1881  
1882  /**
1883   * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1884   *			    with syndromes
1885   * @mtd: mtd info structure
1886   * @chip: nand chip info structure
1887   * @page: page number to read
1888   */
nand_read_oob_syndrome(struct mtd_info * mtd,struct nand_chip * chip,int page)1889  static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1890  				  int page)
1891  {
1892  	int length = mtd->oobsize;
1893  	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1894  	int eccsize = chip->ecc.size;
1895  	uint8_t *bufpoi = chip->oob_poi;
1896  	int i, toread, sndrnd = 0, pos;
1897  
1898  	chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1899  	for (i = 0; i < chip->ecc.steps; i++) {
1900  		if (sndrnd) {
1901  			pos = eccsize + i * (eccsize + chunk);
1902  			if (mtd->writesize > 512)
1903  				chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1904  			else
1905  				chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1906  		} else
1907  			sndrnd = 1;
1908  		toread = min_t(int, length, chunk);
1909  		chip->read_buf(mtd, bufpoi, toread);
1910  		bufpoi += toread;
1911  		length -= toread;
1912  	}
1913  	if (length > 0)
1914  		chip->read_buf(mtd, bufpoi, length);
1915  
1916  	return 0;
1917  }
1918  
1919  /**
1920   * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1921   * @mtd: mtd info structure
1922   * @chip: nand chip info structure
1923   * @page: page number to write
1924   */
nand_write_oob_std(struct mtd_info * mtd,struct nand_chip * chip,int page)1925  static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1926  			      int page)
1927  {
1928  	int status = 0;
1929  	const uint8_t *buf = chip->oob_poi;
1930  	int length = mtd->oobsize;
1931  
1932  	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1933  	chip->write_buf(mtd, buf, length);
1934  	/* Send command to program the OOB data */
1935  	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1936  
1937  	status = chip->waitfunc(mtd, chip);
1938  
1939  	return status & NAND_STATUS_FAIL ? -EIO : 0;
1940  }
1941  
1942  /**
1943   * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1944   *			     with syndrome - only for large page flash
1945   * @mtd: mtd info structure
1946   * @chip: nand chip info structure
1947   * @page: page number to write
1948   */
nand_write_oob_syndrome(struct mtd_info * mtd,struct nand_chip * chip,int page)1949  static int nand_write_oob_syndrome(struct mtd_info *mtd,
1950  				   struct nand_chip *chip, int page)
1951  {
1952  	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1953  	int eccsize = chip->ecc.size, length = mtd->oobsize;
1954  	int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1955  	const uint8_t *bufpoi = chip->oob_poi;
1956  
1957  	/*
1958  	 * data-ecc-data-ecc ... ecc-oob
1959  	 * or
1960  	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1961  	 */
1962  	if (!chip->ecc.prepad && !chip->ecc.postpad) {
1963  		pos = steps * (eccsize + chunk);
1964  		steps = 0;
1965  	} else
1966  		pos = eccsize;
1967  
1968  	chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1969  	for (i = 0; i < steps; i++) {
1970  		if (sndcmd) {
1971  			if (mtd->writesize <= 512) {
1972  				uint32_t fill = 0xFFFFFFFF;
1973  
1974  				len = eccsize;
1975  				while (len > 0) {
1976  					int num = min_t(int, len, 4);
1977  					chip->write_buf(mtd, (uint8_t *)&fill,
1978  							num);
1979  					len -= num;
1980  				}
1981  			} else {
1982  				pos = eccsize + i * (eccsize + chunk);
1983  				chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1984  			}
1985  		} else
1986  			sndcmd = 1;
1987  		len = min_t(int, length, chunk);
1988  		chip->write_buf(mtd, bufpoi, len);
1989  		bufpoi += len;
1990  		length -= len;
1991  	}
1992  	if (length > 0)
1993  		chip->write_buf(mtd, bufpoi, length);
1994  
1995  	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1996  	status = chip->waitfunc(mtd, chip);
1997  
1998  	return status & NAND_STATUS_FAIL ? -EIO : 0;
1999  }
2000  
2001  /**
2002   * nand_do_read_oob - [INTERN] NAND read out-of-band
2003   * @mtd: MTD device structure
2004   * @from: offset to read from
2005   * @ops: oob operations description structure
2006   *
2007   * NAND read out-of-band data from the spare area.
2008   */
nand_do_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)2009  static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
2010  			    struct mtd_oob_ops *ops)
2011  {
2012  	int page, realpage, chipnr;
2013  	struct nand_chip *chip = mtd_to_nand(mtd);
2014  	struct mtd_ecc_stats stats;
2015  	int readlen = ops->ooblen;
2016  	int len;
2017  	uint8_t *buf = ops->oobbuf;
2018  	int ret = 0;
2019  
2020  	pr_debug("%s: from = 0x%08Lx, len = %i\n",
2021  			__func__, (unsigned long long)from, readlen);
2022  
2023  	stats = mtd->ecc_stats;
2024  
2025  	len = mtd_oobavail(mtd, ops);
2026  
2027  	if (unlikely(ops->ooboffs >= len)) {
2028  		pr_debug("%s: attempt to start read outside oob\n",
2029  				__func__);
2030  		return -EINVAL;
2031  	}
2032  
2033  	/* Do not allow reads past end of device */
2034  	if (unlikely(from >= mtd->size ||
2035  		     ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
2036  					(from >> chip->page_shift)) * len)) {
2037  		pr_debug("%s: attempt to read beyond end of device\n",
2038  				__func__);
2039  		return -EINVAL;
2040  	}
2041  
2042  	chipnr = (int)(from >> chip->chip_shift);
2043  	chip->select_chip(mtd, chipnr);
2044  
2045  	/* Shift to get page */
2046  	realpage = (int)(from >> chip->page_shift);
2047  	page = realpage & chip->pagemask;
2048  
2049  	while (1) {
2050  		WATCHDOG_RESET();
2051  
2052  		if (ops->mode == MTD_OPS_RAW)
2053  			ret = chip->ecc.read_oob_raw(mtd, chip, page);
2054  		else
2055  			ret = chip->ecc.read_oob(mtd, chip, page);
2056  
2057  		if (ret < 0)
2058  			break;
2059  
2060  		len = min(len, readlen);
2061  		buf = nand_transfer_oob(chip, buf, ops, len);
2062  
2063  		if (chip->options & NAND_NEED_READRDY) {
2064  			/* Apply delay or wait for ready/busy pin */
2065  			if (!chip->dev_ready)
2066  				udelay(chip->chip_delay);
2067  			else
2068  				nand_wait_ready(mtd);
2069  		}
2070  
2071  		readlen -= len;
2072  		if (!readlen)
2073  			break;
2074  
2075  		/* Increment page address */
2076  		realpage++;
2077  
2078  		page = realpage & chip->pagemask;
2079  		/* Check, if we cross a chip boundary */
2080  		if (!page) {
2081  			chipnr++;
2082  			chip->select_chip(mtd, -1);
2083  			chip->select_chip(mtd, chipnr);
2084  		}
2085  	}
2086  	chip->select_chip(mtd, -1);
2087  
2088  	ops->oobretlen = ops->ooblen - readlen;
2089  
2090  	if (ret < 0)
2091  		return ret;
2092  
2093  	if (mtd->ecc_stats.failed - stats.failed)
2094  		return -EBADMSG;
2095  
2096  	return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
2097  }
2098  
2099  /**
2100   * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
2101   * @mtd: MTD device structure
2102   * @from: offset to read from
2103   * @ops: oob operation description structure
2104   *
2105   * NAND read data and/or out-of-band data.
2106   */
nand_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)2107  static int nand_read_oob(struct mtd_info *mtd, loff_t from,
2108  			 struct mtd_oob_ops *ops)
2109  {
2110  	int ret = -ENOTSUPP;
2111  
2112  	ops->retlen = 0;
2113  
2114  	/* Do not allow reads past end of device */
2115  	if (ops->datbuf && (from + ops->len) > mtd->size) {
2116  		pr_debug("%s: attempt to read beyond end of device\n",
2117  				__func__);
2118  		return -EINVAL;
2119  	}
2120  
2121  	nand_get_device(mtd, FL_READING);
2122  
2123  	switch (ops->mode) {
2124  	case MTD_OPS_PLACE_OOB:
2125  	case MTD_OPS_AUTO_OOB:
2126  	case MTD_OPS_RAW:
2127  		break;
2128  
2129  	default:
2130  		goto out;
2131  	}
2132  
2133  	if (!ops->datbuf)
2134  		ret = nand_do_read_oob(mtd, from, ops);
2135  	else
2136  		ret = nand_do_read_ops(mtd, from, ops);
2137  
2138  out:
2139  	nand_release_device(mtd);
2140  	return ret;
2141  }
2142  
2143  
2144  /**
2145   * nand_write_page_raw - [INTERN] raw page write function
2146   * @mtd: mtd info structure
2147   * @chip: nand chip info structure
2148   * @buf: data buffer
2149   * @oob_required: must write chip->oob_poi to OOB
2150   * @page: page number to write
2151   *
2152   * Not for syndrome calculating ECC controllers, which use a special oob layout.
2153   */
nand_write_page_raw(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2154  static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
2155  			       const uint8_t *buf, int oob_required, int page)
2156  {
2157  	chip->write_buf(mtd, buf, mtd->writesize);
2158  	if (oob_required)
2159  		chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2160  
2161  	return 0;
2162  }
2163  
2164  /**
2165   * nand_write_page_raw_syndrome - [INTERN] raw page write function
2166   * @mtd: mtd info structure
2167   * @chip: nand chip info structure
2168   * @buf: data buffer
2169   * @oob_required: must write chip->oob_poi to OOB
2170   * @page: page number to write
2171   *
2172   * We need a special oob layout and handling even when ECC isn't checked.
2173   */
nand_write_page_raw_syndrome(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2174  static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
2175  					struct nand_chip *chip,
2176  					const uint8_t *buf, int oob_required,
2177  					int page)
2178  {
2179  	int eccsize = chip->ecc.size;
2180  	int eccbytes = chip->ecc.bytes;
2181  	uint8_t *oob = chip->oob_poi;
2182  	int steps, size;
2183  
2184  	for (steps = chip->ecc.steps; steps > 0; steps--) {
2185  		chip->write_buf(mtd, buf, eccsize);
2186  		buf += eccsize;
2187  
2188  		if (chip->ecc.prepad) {
2189  			chip->write_buf(mtd, oob, chip->ecc.prepad);
2190  			oob += chip->ecc.prepad;
2191  		}
2192  
2193  		chip->write_buf(mtd, oob, eccbytes);
2194  		oob += eccbytes;
2195  
2196  		if (chip->ecc.postpad) {
2197  			chip->write_buf(mtd, oob, chip->ecc.postpad);
2198  			oob += chip->ecc.postpad;
2199  		}
2200  	}
2201  
2202  	size = mtd->oobsize - (oob - chip->oob_poi);
2203  	if (size)
2204  		chip->write_buf(mtd, oob, size);
2205  
2206  	return 0;
2207  }
2208  /**
2209   * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
2210   * @mtd: mtd info structure
2211   * @chip: nand chip info structure
2212   * @buf: data buffer
2213   * @oob_required: must write chip->oob_poi to OOB
2214   * @page: page number to write
2215   */
nand_write_page_swecc(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2216  static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
2217  				 const uint8_t *buf, int oob_required,
2218  				 int page)
2219  {
2220  	int i, eccsize = chip->ecc.size;
2221  	int eccbytes = chip->ecc.bytes;
2222  	int eccsteps = chip->ecc.steps;
2223  	uint8_t *ecc_calc = chip->buffers->ecccalc;
2224  	const uint8_t *p = buf;
2225  	uint32_t *eccpos = chip->ecc.layout->eccpos;
2226  
2227  	/* Software ECC calculation */
2228  	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
2229  		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2230  
2231  	for (i = 0; i < chip->ecc.total; i++)
2232  		chip->oob_poi[eccpos[i]] = ecc_calc[i];
2233  
2234  	return chip->ecc.write_page_raw(mtd, chip, buf, 1, page);
2235  }
2236  
2237  /**
2238   * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
2239   * @mtd: mtd info structure
2240   * @chip: nand chip info structure
2241   * @buf: data buffer
2242   * @oob_required: must write chip->oob_poi to OOB
2243   * @page: page number to write
2244   */
nand_write_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2245  static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2246  				  const uint8_t *buf, int oob_required,
2247  				  int page)
2248  {
2249  	int i, eccsize = chip->ecc.size;
2250  	int eccbytes = chip->ecc.bytes;
2251  	int eccsteps = chip->ecc.steps;
2252  	uint8_t *ecc_calc = chip->buffers->ecccalc;
2253  	const uint8_t *p = buf;
2254  	uint32_t *eccpos = chip->ecc.layout->eccpos;
2255  
2256  	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2257  		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2258  		chip->write_buf(mtd, p, eccsize);
2259  		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2260  	}
2261  
2262  	for (i = 0; i < chip->ecc.total; i++)
2263  		chip->oob_poi[eccpos[i]] = ecc_calc[i];
2264  
2265  	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2266  
2267  	return 0;
2268  }
2269  
2270  
2271  /**
2272   * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
2273   * @mtd:	mtd info structure
2274   * @chip:	nand chip info structure
2275   * @offset:	column address of subpage within the page
2276   * @data_len:	data length
2277   * @buf:	data buffer
2278   * @oob_required: must write chip->oob_poi to OOB
2279   * @page: page number to write
2280   */
nand_write_subpage_hwecc(struct mtd_info * mtd,struct nand_chip * chip,uint32_t offset,uint32_t data_len,const uint8_t * buf,int oob_required,int page)2281  static int nand_write_subpage_hwecc(struct mtd_info *mtd,
2282  				struct nand_chip *chip, uint32_t offset,
2283  				uint32_t data_len, const uint8_t *buf,
2284  				int oob_required, int page)
2285  {
2286  	uint8_t *oob_buf  = chip->oob_poi;
2287  	uint8_t *ecc_calc = chip->buffers->ecccalc;
2288  	int ecc_size      = chip->ecc.size;
2289  	int ecc_bytes     = chip->ecc.bytes;
2290  	int ecc_steps     = chip->ecc.steps;
2291  	uint32_t *eccpos  = chip->ecc.layout->eccpos;
2292  	uint32_t start_step = offset / ecc_size;
2293  	uint32_t end_step   = (offset + data_len - 1) / ecc_size;
2294  	int oob_bytes       = mtd->oobsize / ecc_steps;
2295  	int step, i;
2296  
2297  	for (step = 0; step < ecc_steps; step++) {
2298  		/* configure controller for WRITE access */
2299  		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2300  
2301  		/* write data (untouched subpages already masked by 0xFF) */
2302  		chip->write_buf(mtd, buf, ecc_size);
2303  
2304  		/* mask ECC of un-touched subpages by padding 0xFF */
2305  		if ((step < start_step) || (step > end_step))
2306  			memset(ecc_calc, 0xff, ecc_bytes);
2307  		else
2308  			chip->ecc.calculate(mtd, buf, ecc_calc);
2309  
2310  		/* mask OOB of un-touched subpages by padding 0xFF */
2311  		/* if oob_required, preserve OOB metadata of written subpage */
2312  		if (!oob_required || (step < start_step) || (step > end_step))
2313  			memset(oob_buf, 0xff, oob_bytes);
2314  
2315  		buf += ecc_size;
2316  		ecc_calc += ecc_bytes;
2317  		oob_buf  += oob_bytes;
2318  	}
2319  
2320  	/* copy calculated ECC for whole page to chip->buffer->oob */
2321  	/* this include masked-value(0xFF) for unwritten subpages */
2322  	ecc_calc = chip->buffers->ecccalc;
2323  	for (i = 0; i < chip->ecc.total; i++)
2324  		chip->oob_poi[eccpos[i]] = ecc_calc[i];
2325  
2326  	/* write OOB buffer to NAND device */
2327  	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2328  
2329  	return 0;
2330  }
2331  
2332  
2333  /**
2334   * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2335   * @mtd: mtd info structure
2336   * @chip: nand chip info structure
2337   * @buf: data buffer
2338   * @oob_required: must write chip->oob_poi to OOB
2339   * @page: page number to write
2340   *
2341   * The hw generator calculates the error syndrome automatically. Therefore we
2342   * need a special oob layout and handling.
2343   */
nand_write_page_syndrome(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2344  static int nand_write_page_syndrome(struct mtd_info *mtd,
2345  				    struct nand_chip *chip,
2346  				    const uint8_t *buf, int oob_required,
2347  				    int page)
2348  {
2349  	int i, eccsize = chip->ecc.size;
2350  	int eccbytes = chip->ecc.bytes;
2351  	int eccsteps = chip->ecc.steps;
2352  	const uint8_t *p = buf;
2353  	uint8_t *oob = chip->oob_poi;
2354  
2355  	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2356  
2357  		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2358  		chip->write_buf(mtd, p, eccsize);
2359  
2360  		if (chip->ecc.prepad) {
2361  			chip->write_buf(mtd, oob, chip->ecc.prepad);
2362  			oob += chip->ecc.prepad;
2363  		}
2364  
2365  		chip->ecc.calculate(mtd, p, oob);
2366  		chip->write_buf(mtd, oob, eccbytes);
2367  		oob += eccbytes;
2368  
2369  		if (chip->ecc.postpad) {
2370  			chip->write_buf(mtd, oob, chip->ecc.postpad);
2371  			oob += chip->ecc.postpad;
2372  		}
2373  	}
2374  
2375  	/* Calculate remaining oob bytes */
2376  	i = mtd->oobsize - (oob - chip->oob_poi);
2377  	if (i)
2378  		chip->write_buf(mtd, oob, i);
2379  
2380  	return 0;
2381  }
2382  
2383  /**
2384   * nand_write_page - [REPLACEABLE] write one page
2385   * @mtd: MTD device structure
2386   * @chip: NAND chip descriptor
2387   * @offset: address offset within the page
2388   * @data_len: length of actual data to be written
2389   * @buf: the data to write
2390   * @oob_required: must write chip->oob_poi to OOB
2391   * @page: page number to write
2392   * @raw: use _raw version of write_page
2393   */
nand_write_page(struct mtd_info * mtd,struct nand_chip * chip,uint32_t offset,int data_len,const uint8_t * buf,int oob_required,int page,int raw)2394  static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2395  		uint32_t offset, int data_len, const uint8_t *buf,
2396  		int oob_required, int page, int raw)
2397  {
2398  	int status, subpage;
2399  
2400  	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2401  		chip->ecc.write_subpage)
2402  		subpage = offset || (data_len < mtd->writesize);
2403  	else
2404  		subpage = 0;
2405  
2406  	if (nand_standard_page_accessors(&chip->ecc))
2407  		chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2408  
2409  	if (unlikely(raw))
2410  		status = chip->ecc.write_page_raw(mtd, chip, buf,
2411  						  oob_required, page);
2412  	else if (subpage)
2413  		status = chip->ecc.write_subpage(mtd, chip, offset, data_len,
2414  						 buf, oob_required, page);
2415  	else
2416  		status = chip->ecc.write_page(mtd, chip, buf, oob_required,
2417  					      page);
2418  
2419  	if (status < 0)
2420  		return status;
2421  
2422  	if (nand_standard_page_accessors(&chip->ecc)) {
2423  		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2424  
2425  		status = chip->waitfunc(mtd, chip);
2426  		if (status & NAND_STATUS_FAIL)
2427  			return -EIO;
2428  	}
2429  
2430  	return 0;
2431  }
2432  
2433  /**
2434   * nand_fill_oob - [INTERN] Transfer client buffer to oob
2435   * @mtd: MTD device structure
2436   * @oob: oob data buffer
2437   * @len: oob data write length
2438   * @ops: oob ops structure
2439   */
nand_fill_oob(struct mtd_info * mtd,uint8_t * oob,size_t len,struct mtd_oob_ops * ops)2440  static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2441  			      struct mtd_oob_ops *ops)
2442  {
2443  	struct nand_chip *chip = mtd_to_nand(mtd);
2444  
2445  	/*
2446  	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2447  	 * data from a previous OOB read.
2448  	 */
2449  	memset(chip->oob_poi, 0xff, mtd->oobsize);
2450  
2451  	switch (ops->mode) {
2452  
2453  	case MTD_OPS_PLACE_OOB:
2454  	case MTD_OPS_RAW:
2455  		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2456  		return oob + len;
2457  
2458  	case MTD_OPS_AUTO_OOB: {
2459  		struct nand_oobfree *free = chip->ecc.layout->oobfree;
2460  		uint32_t boffs = 0, woffs = ops->ooboffs;
2461  		size_t bytes = 0;
2462  
2463  		for (; free->length && len; free++, len -= bytes) {
2464  			/* Write request not from offset 0? */
2465  			if (unlikely(woffs)) {
2466  				if (woffs >= free->length) {
2467  					woffs -= free->length;
2468  					continue;
2469  				}
2470  				boffs = free->offset + woffs;
2471  				bytes = min_t(size_t, len,
2472  					      (free->length - woffs));
2473  				woffs = 0;
2474  			} else {
2475  				bytes = min_t(size_t, len, free->length);
2476  				boffs = free->offset;
2477  			}
2478  			memcpy(chip->oob_poi + boffs, oob, bytes);
2479  			oob += bytes;
2480  		}
2481  		return oob;
2482  	}
2483  	default:
2484  		BUG();
2485  	}
2486  	return NULL;
2487  }
2488  
2489  #define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
2490  
2491  /**
2492   * nand_do_write_ops - [INTERN] NAND write with ECC
2493   * @mtd: MTD device structure
2494   * @to: offset to write to
2495   * @ops: oob operations description structure
2496   *
2497   * NAND write with ECC.
2498   */
nand_do_write_ops(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)2499  static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2500  			     struct mtd_oob_ops *ops)
2501  {
2502  	int chipnr, realpage, page, column;
2503  	struct nand_chip *chip = mtd_to_nand(mtd);
2504  	uint32_t writelen = ops->len;
2505  
2506  	uint32_t oobwritelen = ops->ooblen;
2507  	uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
2508  
2509  	uint8_t *oob = ops->oobbuf;
2510  	uint8_t *buf = ops->datbuf;
2511  	int ret;
2512  	int oob_required = oob ? 1 : 0;
2513  
2514  	ops->retlen = 0;
2515  	if (!writelen)
2516  		return 0;
2517  
2518  	/* Reject writes, which are not page aligned */
2519  	if (NOTALIGNED(to)) {
2520  		pr_notice("%s: attempt to write non page aligned data\n",
2521  			   __func__);
2522  		return -EINVAL;
2523  	}
2524  
2525  	column = to & (mtd->writesize - 1);
2526  
2527  	chipnr = (int)(to >> chip->chip_shift);
2528  	chip->select_chip(mtd, chipnr);
2529  
2530  	/* Check, if it is write protected */
2531  	if (nand_check_wp(mtd)) {
2532  		ret = -EIO;
2533  		goto err_out;
2534  	}
2535  
2536  	realpage = (int)(to >> chip->page_shift);
2537  	page = realpage & chip->pagemask;
2538  
2539  	/* Invalidate the page cache, when we write to the cached page */
2540  	if (to <= ((loff_t)chip->pagebuf << chip->page_shift) &&
2541  	    ((loff_t)chip->pagebuf << chip->page_shift) < (to + ops->len))
2542  		chip->pagebuf = -1;
2543  
2544  	/* Don't allow multipage oob writes with offset */
2545  	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
2546  		ret = -EINVAL;
2547  		goto err_out;
2548  	}
2549  
2550  	while (1) {
2551  		int bytes = mtd->writesize;
2552  		uint8_t *wbuf = buf;
2553  		int use_bufpoi;
2554  		int part_pagewr = (column || writelen < mtd->writesize);
2555  
2556  		if (part_pagewr)
2557  			use_bufpoi = 1;
2558  		else if (chip->options & NAND_USE_BOUNCE_BUFFER)
2559  			use_bufpoi = !IS_ALIGNED((unsigned long)buf,
2560  						 chip->buf_align);
2561  		else
2562  			use_bufpoi = 0;
2563  
2564  		WATCHDOG_RESET();
2565  		/* Partial page write?, or need to use bounce buffer */
2566  		if (use_bufpoi) {
2567  			pr_debug("%s: using write bounce buffer for buf@%p\n",
2568  					 __func__, buf);
2569  			if (part_pagewr)
2570  				bytes = min_t(int, bytes - column, writelen);
2571  			chip->pagebuf = -1;
2572  			memset(chip->buffers->databuf, 0xff, mtd->writesize);
2573  			memcpy(&chip->buffers->databuf[column], buf, bytes);
2574  			wbuf = chip->buffers->databuf;
2575  		}
2576  
2577  		if (unlikely(oob)) {
2578  			size_t len = min(oobwritelen, oobmaxlen);
2579  			oob = nand_fill_oob(mtd, oob, len, ops);
2580  			oobwritelen -= len;
2581  		} else {
2582  			/* We still need to erase leftover OOB data */
2583  			memset(chip->oob_poi, 0xff, mtd->oobsize);
2584  		}
2585  		ret = chip->write_page(mtd, chip, column, bytes, wbuf,
2586  					oob_required, page,
2587  					(ops->mode == MTD_OPS_RAW));
2588  		if (ret)
2589  			break;
2590  
2591  		writelen -= bytes;
2592  		if (!writelen)
2593  			break;
2594  
2595  		column = 0;
2596  		buf += bytes;
2597  		realpage++;
2598  
2599  		page = realpage & chip->pagemask;
2600  		/* Check, if we cross a chip boundary */
2601  		if (!page) {
2602  			chipnr++;
2603  			chip->select_chip(mtd, -1);
2604  			chip->select_chip(mtd, chipnr);
2605  		}
2606  	}
2607  
2608  	ops->retlen = ops->len - writelen;
2609  	if (unlikely(oob))
2610  		ops->oobretlen = ops->ooblen;
2611  
2612  err_out:
2613  	chip->select_chip(mtd, -1);
2614  	return ret;
2615  }
2616  
2617  /**
2618   * panic_nand_write - [MTD Interface] NAND write with ECC
2619   * @mtd: MTD device structure
2620   * @to: offset to write to
2621   * @len: number of bytes to write
2622   * @retlen: pointer to variable to store the number of written bytes
2623   * @buf: the data to write
2624   *
2625   * NAND write with ECC. Used when performing writes in interrupt context, this
2626   * may for example be called by mtdoops when writing an oops while in panic.
2627   */
panic_nand_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const uint8_t * buf)2628  static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2629  			    size_t *retlen, const uint8_t *buf)
2630  {
2631  	struct nand_chip *chip = mtd_to_nand(mtd);
2632  	struct mtd_oob_ops ops;
2633  	int ret;
2634  
2635  	/* Wait for the device to get ready */
2636  	panic_nand_wait(mtd, chip, 400);
2637  
2638  	/* Grab the device */
2639  	panic_nand_get_device(chip, mtd, FL_WRITING);
2640  
2641  	memset(&ops, 0, sizeof(ops));
2642  	ops.len = len;
2643  	ops.datbuf = (uint8_t *)buf;
2644  	ops.mode = MTD_OPS_PLACE_OOB;
2645  
2646  	ret = nand_do_write_ops(mtd, to, &ops);
2647  
2648  	*retlen = ops.retlen;
2649  	return ret;
2650  }
2651  
2652  /**
2653   * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2654   * @mtd: MTD device structure
2655   * @to: offset to write to
2656   * @ops: oob operation description structure
2657   *
2658   * NAND write out-of-band.
2659   */
nand_do_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)2660  static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2661  			     struct mtd_oob_ops *ops)
2662  {
2663  	int chipnr, page, status, len;
2664  	struct nand_chip *chip = mtd_to_nand(mtd);
2665  
2666  	pr_debug("%s: to = 0x%08x, len = %i\n",
2667  			 __func__, (unsigned int)to, (int)ops->ooblen);
2668  
2669  	len = mtd_oobavail(mtd, ops);
2670  
2671  	/* Do not allow write past end of page */
2672  	if ((ops->ooboffs + ops->ooblen) > len) {
2673  		pr_debug("%s: attempt to write past end of page\n",
2674  				__func__);
2675  		return -EINVAL;
2676  	}
2677  
2678  	if (unlikely(ops->ooboffs >= len)) {
2679  		pr_debug("%s: attempt to start write outside oob\n",
2680  				__func__);
2681  		return -EINVAL;
2682  	}
2683  
2684  	/* Do not allow write past end of device */
2685  	if (unlikely(to >= mtd->size ||
2686  		     ops->ooboffs + ops->ooblen >
2687  			((mtd->size >> chip->page_shift) -
2688  			 (to >> chip->page_shift)) * len)) {
2689  		pr_debug("%s: attempt to write beyond end of device\n",
2690  				__func__);
2691  		return -EINVAL;
2692  	}
2693  
2694  	chipnr = (int)(to >> chip->chip_shift);
2695  
2696  	/*
2697  	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2698  	 * of my DiskOnChip 2000 test units) will clear the whole data page too
2699  	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2700  	 * it in the doc2000 driver in August 1999.  dwmw2.
2701  	 */
2702  	nand_reset(chip, chipnr);
2703  
2704  	chip->select_chip(mtd, chipnr);
2705  
2706  	/* Shift to get page */
2707  	page = (int)(to >> chip->page_shift);
2708  
2709  	/* Check, if it is write protected */
2710  	if (nand_check_wp(mtd)) {
2711  		chip->select_chip(mtd, -1);
2712  		return -EROFS;
2713  	}
2714  
2715  	/* Invalidate the page cache, if we write to the cached page */
2716  	if (page == chip->pagebuf)
2717  		chip->pagebuf = -1;
2718  
2719  	nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2720  
2721  	if (ops->mode == MTD_OPS_RAW)
2722  		status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2723  	else
2724  		status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2725  
2726  	chip->select_chip(mtd, -1);
2727  
2728  	if (status)
2729  		return status;
2730  
2731  	ops->oobretlen = ops->ooblen;
2732  
2733  	return 0;
2734  }
2735  
2736  /**
2737   * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2738   * @mtd: MTD device structure
2739   * @to: offset to write to
2740   * @ops: oob operation description structure
2741   */
nand_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)2742  static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2743  			  struct mtd_oob_ops *ops)
2744  {
2745  	int ret = -ENOTSUPP;
2746  
2747  	ops->retlen = 0;
2748  
2749  	/* Do not allow writes past end of device */
2750  	if (ops->datbuf && (to + ops->len) > mtd->size) {
2751  		pr_debug("%s: attempt to write beyond end of device\n",
2752  				__func__);
2753  		return -EINVAL;
2754  	}
2755  
2756  	nand_get_device(mtd, FL_WRITING);
2757  
2758  	switch (ops->mode) {
2759  	case MTD_OPS_PLACE_OOB:
2760  	case MTD_OPS_AUTO_OOB:
2761  	case MTD_OPS_RAW:
2762  		break;
2763  
2764  	default:
2765  		goto out;
2766  	}
2767  
2768  	if (!ops->datbuf)
2769  		ret = nand_do_write_oob(mtd, to, ops);
2770  	else
2771  		ret = nand_do_write_ops(mtd, to, ops);
2772  
2773  out:
2774  	nand_release_device(mtd);
2775  	return ret;
2776  }
2777  
2778  /**
2779   * single_erase - [GENERIC] NAND standard block erase command function
2780   * @mtd: MTD device structure
2781   * @page: the page address of the block which will be erased
2782   *
2783   * Standard erase command for NAND chips. Returns NAND status.
2784   */
single_erase(struct mtd_info * mtd,int page)2785  static int single_erase(struct mtd_info *mtd, int page)
2786  {
2787  	struct nand_chip *chip = mtd_to_nand(mtd);
2788  	/* Send commands to erase a block */
2789  	chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2790  	chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2791  
2792  	return chip->waitfunc(mtd, chip);
2793  }
2794  
2795  /**
2796   * nand_erase - [MTD Interface] erase block(s)
2797   * @mtd: MTD device structure
2798   * @instr: erase instruction
2799   *
2800   * Erase one ore more blocks.
2801   */
nand_erase(struct mtd_info * mtd,struct erase_info * instr)2802  static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2803  {
2804  	return nand_erase_nand(mtd, instr, 0);
2805  }
2806  
2807  /**
2808   * nand_erase_nand - [INTERN] erase block(s)
2809   * @mtd: MTD device structure
2810   * @instr: erase instruction
2811   * @allowbbt: allow erasing the bbt area
2812   *
2813   * Erase one ore more blocks.
2814   */
nand_erase_nand(struct mtd_info * mtd,struct erase_info * instr,int allowbbt)2815  int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2816  		    int allowbbt)
2817  {
2818  	int page, status, pages_per_block, ret, chipnr;
2819  	struct nand_chip *chip = mtd_to_nand(mtd);
2820  	loff_t len;
2821  
2822  	pr_debug("%s: start = 0x%012llx, len = %llu\n",
2823  			__func__, (unsigned long long)instr->addr,
2824  			(unsigned long long)instr->len);
2825  
2826  	if (check_offs_len(mtd, instr->addr, instr->len))
2827  		return -EINVAL;
2828  
2829  	/* Grab the lock and see if the device is available */
2830  	nand_get_device(mtd, FL_ERASING);
2831  
2832  	/* Shift to get first page */
2833  	page = (int)(instr->addr >> chip->page_shift);
2834  	chipnr = (int)(instr->addr >> chip->chip_shift);
2835  
2836  	/* Calculate pages in each block */
2837  	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2838  
2839  	/* Select the NAND device */
2840  	chip->select_chip(mtd, chipnr);
2841  
2842  	/* Check, if it is write protected */
2843  	if (nand_check_wp(mtd)) {
2844  		pr_debug("%s: device is write protected!\n",
2845  				__func__);
2846  		instr->state = MTD_ERASE_FAILED;
2847  		goto erase_exit;
2848  	}
2849  
2850  	/* Loop through the pages */
2851  	len = instr->len;
2852  
2853  	instr->state = MTD_ERASING;
2854  
2855  	while (len) {
2856  		WATCHDOG_RESET();
2857  
2858  		/* Check if we have a bad block, we do not erase bad blocks! */
2859  		if (!instr->scrub && nand_block_checkbad(mtd, ((loff_t) page) <<
2860  					chip->page_shift, allowbbt)) {
2861  			pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2862  				    __func__, page);
2863  			instr->state = MTD_ERASE_FAILED;
2864  			goto erase_exit;
2865  		}
2866  
2867  		/*
2868  		 * Invalidate the page cache, if we erase the block which
2869  		 * contains the current cached page.
2870  		 */
2871  		if (page <= chip->pagebuf && chip->pagebuf <
2872  		    (page + pages_per_block))
2873  			chip->pagebuf = -1;
2874  
2875  		status = chip->erase(mtd, page & chip->pagemask);
2876  
2877  		/* See if block erase succeeded */
2878  		if (status & NAND_STATUS_FAIL) {
2879  			pr_debug("%s: failed erase, page 0x%08x\n",
2880  					__func__, page);
2881  			instr->state = MTD_ERASE_FAILED;
2882  			instr->fail_addr =
2883  				((loff_t)page << chip->page_shift);
2884  			goto erase_exit;
2885  		}
2886  
2887  		/* Increment page address and decrement length */
2888  		len -= (1ULL << chip->phys_erase_shift);
2889  		page += pages_per_block;
2890  
2891  		/* Check, if we cross a chip boundary */
2892  		if (len && !(page & chip->pagemask)) {
2893  			chipnr++;
2894  			chip->select_chip(mtd, -1);
2895  			chip->select_chip(mtd, chipnr);
2896  		}
2897  	}
2898  	instr->state = MTD_ERASE_DONE;
2899  
2900  erase_exit:
2901  
2902  	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2903  
2904  	/* Deselect and wake up anyone waiting on the device */
2905  	chip->select_chip(mtd, -1);
2906  	nand_release_device(mtd);
2907  
2908  	/* Do call back function */
2909  	if (!ret)
2910  		mtd_erase_callback(instr);
2911  
2912  	/* Return more or less happy */
2913  	return ret;
2914  }
2915  
2916  /**
2917   * nand_sync - [MTD Interface] sync
2918   * @mtd: MTD device structure
2919   *
2920   * Sync is actually a wait for chip ready function.
2921   */
nand_sync(struct mtd_info * mtd)2922  static void nand_sync(struct mtd_info *mtd)
2923  {
2924  	pr_debug("%s: called\n", __func__);
2925  
2926  	/* Grab the lock and see if the device is available */
2927  	nand_get_device(mtd, FL_SYNCING);
2928  	/* Release it and go back */
2929  	nand_release_device(mtd);
2930  }
2931  
2932  /**
2933   * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2934   * @mtd: MTD device structure
2935   * @offs: offset relative to mtd start
2936   */
nand_block_isbad(struct mtd_info * mtd,loff_t offs)2937  static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2938  {
2939  	struct nand_chip *chip = mtd_to_nand(mtd);
2940  	int chipnr = (int)(offs >> chip->chip_shift);
2941  	int ret;
2942  
2943  	/* Select the NAND device */
2944  	nand_get_device(mtd, FL_READING);
2945  	chip->select_chip(mtd, chipnr);
2946  
2947  	ret = nand_block_checkbad(mtd, offs, 0);
2948  
2949  	chip->select_chip(mtd, -1);
2950  	nand_release_device(mtd);
2951  
2952  	return ret;
2953  }
2954  
2955  /**
2956   * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2957   * @mtd: MTD device structure
2958   * @ofs: offset relative to mtd start
2959   */
nand_block_markbad(struct mtd_info * mtd,loff_t ofs)2960  static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2961  {
2962  	int ret;
2963  
2964  	ret = nand_block_isbad(mtd, ofs);
2965  	if (ret) {
2966  		/* If it was bad already, return success and do nothing */
2967  		if (ret > 0)
2968  			return 0;
2969  		return ret;
2970  	}
2971  
2972  	return nand_block_markbad_lowlevel(mtd, ofs);
2973  }
2974  
2975  /**
2976   * nand_onfi_set_features- [REPLACEABLE] set features for ONFI nand
2977   * @mtd: MTD device structure
2978   * @chip: nand chip info structure
2979   * @addr: feature address.
2980   * @subfeature_param: the subfeature parameters, a four bytes array.
2981   */
nand_onfi_set_features(struct mtd_info * mtd,struct nand_chip * chip,int addr,uint8_t * subfeature_param)2982  static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
2983  			int addr, uint8_t *subfeature_param)
2984  {
2985  	int status;
2986  	int i;
2987  
2988  #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
2989  	if (!chip->onfi_version ||
2990  	    !(le16_to_cpu(chip->onfi_params.opt_cmd)
2991  	      & ONFI_OPT_CMD_SET_GET_FEATURES))
2992  		return -ENOTSUPP;
2993  #endif
2994  
2995  	chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
2996  	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
2997  		chip->write_byte(mtd, subfeature_param[i]);
2998  
2999  	status = chip->waitfunc(mtd, chip);
3000  	if (status & NAND_STATUS_FAIL)
3001  		return -EIO;
3002  	return 0;
3003  }
3004  
3005  /**
3006   * nand_onfi_get_features- [REPLACEABLE] get features for ONFI nand
3007   * @mtd: MTD device structure
3008   * @chip: nand chip info structure
3009   * @addr: feature address.
3010   * @subfeature_param: the subfeature parameters, a four bytes array.
3011   */
nand_onfi_get_features(struct mtd_info * mtd,struct nand_chip * chip,int addr,uint8_t * subfeature_param)3012  static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
3013  			int addr, uint8_t *subfeature_param)
3014  {
3015  	int i;
3016  
3017  #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
3018  	if (!chip->onfi_version ||
3019  	    !(le16_to_cpu(chip->onfi_params.opt_cmd)
3020  	      & ONFI_OPT_CMD_SET_GET_FEATURES))
3021  		return -ENOTSUPP;
3022  #endif
3023  
3024  	chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
3025  	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
3026  		*subfeature_param++ = chip->read_byte(mtd);
3027  	return 0;
3028  }
3029  
3030  /* Set default functions */
nand_set_defaults(struct nand_chip * chip,int busw)3031  static void nand_set_defaults(struct nand_chip *chip, int busw)
3032  {
3033  	/* check for proper chip_delay setup, set 20us if not */
3034  	if (!chip->chip_delay)
3035  		chip->chip_delay = 20;
3036  
3037  	/* check, if a user supplied command function given */
3038  	if (chip->cmdfunc == NULL)
3039  		chip->cmdfunc = nand_command;
3040  
3041  	/* check, if a user supplied wait function given */
3042  	if (chip->waitfunc == NULL)
3043  		chip->waitfunc = nand_wait;
3044  
3045  	if (!chip->select_chip)
3046  		chip->select_chip = nand_select_chip;
3047  
3048  	/* set for ONFI nand */
3049  	if (!chip->onfi_set_features)
3050  		chip->onfi_set_features = nand_onfi_set_features;
3051  	if (!chip->onfi_get_features)
3052  		chip->onfi_get_features = nand_onfi_get_features;
3053  
3054  	/* If called twice, pointers that depend on busw may need to be reset */
3055  	if (!chip->read_byte || chip->read_byte == nand_read_byte)
3056  		chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
3057  	if (!chip->read_word)
3058  		chip->read_word = nand_read_word;
3059  	if (!chip->block_bad)
3060  		chip->block_bad = nand_block_bad;
3061  	if (!chip->block_markbad)
3062  		chip->block_markbad = nand_default_block_markbad;
3063  	if (!chip->write_buf || chip->write_buf == nand_write_buf)
3064  		chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
3065  	if (!chip->write_byte || chip->write_byte == nand_write_byte)
3066  		chip->write_byte = busw ? nand_write_byte16 : nand_write_byte;
3067  	if (!chip->read_buf || chip->read_buf == nand_read_buf)
3068  		chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
3069  	if (!chip->scan_bbt)
3070  		chip->scan_bbt = nand_default_bbt;
3071  
3072  	if (!chip->controller) {
3073  		chip->controller = &chip->hwcontrol;
3074  		spin_lock_init(&chip->controller->lock);
3075  		init_waitqueue_head(&chip->controller->wq);
3076  	}
3077  
3078  	if (!chip->buf_align)
3079  		chip->buf_align = 1;
3080  }
3081  
3082  /* Sanitize ONFI strings so we can safely print them */
sanitize_string(char * s,size_t len)3083  static void sanitize_string(char *s, size_t len)
3084  {
3085  	ssize_t i;
3086  
3087  	/* Null terminate */
3088  	s[len - 1] = 0;
3089  
3090  	/* Remove non printable chars */
3091  	for (i = 0; i < len - 1; i++) {
3092  		if (s[i] < ' ' || s[i] > 127)
3093  			s[i] = '?';
3094  	}
3095  
3096  	/* Remove trailing spaces */
3097  	strim(s);
3098  }
3099  
onfi_crc16(u16 crc,u8 const * p,size_t len)3100  static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
3101  {
3102  	int i;
3103  	while (len--) {
3104  		crc ^= *p++ << 8;
3105  		for (i = 0; i < 8; i++)
3106  			crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
3107  	}
3108  
3109  	return crc;
3110  }
3111  
3112  #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
3113  /* Parse the Extended Parameter Page. */
nand_flash_detect_ext_param_page(struct mtd_info * mtd,struct nand_chip * chip,struct nand_onfi_params * p)3114  static int nand_flash_detect_ext_param_page(struct mtd_info *mtd,
3115  		struct nand_chip *chip, struct nand_onfi_params *p)
3116  {
3117  	struct onfi_ext_param_page *ep;
3118  	struct onfi_ext_section *s;
3119  	struct onfi_ext_ecc_info *ecc;
3120  	uint8_t *cursor;
3121  	int ret = -EINVAL;
3122  	int len;
3123  	int i;
3124  
3125  	len = le16_to_cpu(p->ext_param_page_length) * 16;
3126  	ep = kmalloc(len, GFP_KERNEL);
3127  	if (!ep)
3128  		return -ENOMEM;
3129  
3130  	/* Send our own NAND_CMD_PARAM. */
3131  	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3132  
3133  	/* Use the Change Read Column command to skip the ONFI param pages. */
3134  	chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
3135  			sizeof(*p) * p->num_of_param_pages , -1);
3136  
3137  	/* Read out the Extended Parameter Page. */
3138  	chip->read_buf(mtd, (uint8_t *)ep, len);
3139  	if ((onfi_crc16(ONFI_CRC_BASE, ((uint8_t *)ep) + 2, len - 2)
3140  		!= le16_to_cpu(ep->crc))) {
3141  		pr_debug("fail in the CRC.\n");
3142  		goto ext_out;
3143  	}
3144  
3145  	/*
3146  	 * Check the signature.
3147  	 * Do not strictly follow the ONFI spec, maybe changed in future.
3148  	 */
3149  	if (strncmp((char *)ep->sig, "EPPS", 4)) {
3150  		pr_debug("The signature is invalid.\n");
3151  		goto ext_out;
3152  	}
3153  
3154  	/* find the ECC section. */
3155  	cursor = (uint8_t *)(ep + 1);
3156  	for (i = 0; i < ONFI_EXT_SECTION_MAX; i++) {
3157  		s = ep->sections + i;
3158  		if (s->type == ONFI_SECTION_TYPE_2)
3159  			break;
3160  		cursor += s->length * 16;
3161  	}
3162  	if (i == ONFI_EXT_SECTION_MAX) {
3163  		pr_debug("We can not find the ECC section.\n");
3164  		goto ext_out;
3165  	}
3166  
3167  	/* get the info we want. */
3168  	ecc = (struct onfi_ext_ecc_info *)cursor;
3169  
3170  	if (!ecc->codeword_size) {
3171  		pr_debug("Invalid codeword size\n");
3172  		goto ext_out;
3173  	}
3174  
3175  	chip->ecc_strength_ds = ecc->ecc_bits;
3176  	chip->ecc_step_ds = 1 << ecc->codeword_size;
3177  	ret = 0;
3178  
3179  ext_out:
3180  	kfree(ep);
3181  	return ret;
3182  }
3183  
nand_setup_read_retry_micron(struct mtd_info * mtd,int retry_mode)3184  static int nand_setup_read_retry_micron(struct mtd_info *mtd, int retry_mode)
3185  {
3186  	struct nand_chip *chip = mtd_to_nand(mtd);
3187  	uint8_t feature[ONFI_SUBFEATURE_PARAM_LEN] = {retry_mode};
3188  
3189  	return chip->onfi_set_features(mtd, chip, ONFI_FEATURE_ADDR_READ_RETRY,
3190  			feature);
3191  }
3192  
3193  /*
3194   * Configure chip properties from Micron vendor-specific ONFI table
3195   */
nand_onfi_detect_micron(struct nand_chip * chip,struct nand_onfi_params * p)3196  static void nand_onfi_detect_micron(struct nand_chip *chip,
3197  		struct nand_onfi_params *p)
3198  {
3199  	struct nand_onfi_vendor_micron *micron = (void *)p->vendor;
3200  
3201  	if (le16_to_cpu(p->vendor_revision) < 1)
3202  		return;
3203  
3204  	chip->read_retries = micron->read_retry_options;
3205  	chip->setup_read_retry = nand_setup_read_retry_micron;
3206  }
3207  
3208  /*
3209   * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
3210   */
nand_flash_detect_onfi(struct mtd_info * mtd,struct nand_chip * chip,int * busw)3211  static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3212  					int *busw)
3213  {
3214  	struct nand_onfi_params *p = &chip->onfi_params;
3215  	int i, j;
3216  	int val;
3217  
3218  	/* Try ONFI for unknown chip or LP */
3219  	chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
3220  	if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
3221  		chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
3222  		return 0;
3223  
3224  	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
3225  	for (i = 0; i < 3; i++) {
3226  		for (j = 0; j < sizeof(*p); j++)
3227  			((uint8_t *)p)[j] = chip->read_byte(mtd);
3228  		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
3229  				le16_to_cpu(p->crc)) {
3230  			break;
3231  		}
3232  	}
3233  
3234  	if (i == 3) {
3235  		pr_err("Could not find valid ONFI parameter page; aborting\n");
3236  		return 0;
3237  	}
3238  
3239  	/* Check version */
3240  	val = le16_to_cpu(p->revision);
3241  	if (val & (1 << 5))
3242  		chip->onfi_version = 23;
3243  	else if (val & (1 << 4))
3244  		chip->onfi_version = 22;
3245  	else if (val & (1 << 3))
3246  		chip->onfi_version = 21;
3247  	else if (val & (1 << 2))
3248  		chip->onfi_version = 20;
3249  	else if (val & (1 << 1))
3250  		chip->onfi_version = 10;
3251  
3252  	if (!chip->onfi_version) {
3253  		pr_info("unsupported ONFI version: %d\n", val);
3254  		return 0;
3255  	}
3256  
3257  	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3258  	sanitize_string(p->model, sizeof(p->model));
3259  	if (!mtd->name)
3260  		mtd->name = p->model;
3261  
3262  	mtd->writesize = le32_to_cpu(p->byte_per_page);
3263  
3264  	/*
3265  	 * pages_per_block and blocks_per_lun may not be a power-of-2 size
3266  	 * (don't ask me who thought of this...). MTD assumes that these
3267  	 * dimensions will be power-of-2, so just truncate the remaining area.
3268  	 */
3269  	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3270  	mtd->erasesize *= mtd->writesize;
3271  
3272  	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3273  
3274  	/* See erasesize comment */
3275  	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3276  	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3277  	chip->bits_per_cell = p->bits_per_cell;
3278  
3279  	if (onfi_feature(chip) & ONFI_FEATURE_16_BIT_BUS)
3280  		*busw = NAND_BUSWIDTH_16;
3281  	else
3282  		*busw = 0;
3283  
3284  	if (p->ecc_bits != 0xff) {
3285  		chip->ecc_strength_ds = p->ecc_bits;
3286  		chip->ecc_step_ds = 512;
3287  	} else if (chip->onfi_version >= 21 &&
3288  		(onfi_feature(chip) & ONFI_FEATURE_EXT_PARAM_PAGE)) {
3289  
3290  		/*
3291  		 * The nand_flash_detect_ext_param_page() uses the
3292  		 * Change Read Column command which maybe not supported
3293  		 * by the chip->cmdfunc. So try to update the chip->cmdfunc
3294  		 * now. We do not replace user supplied command function.
3295  		 */
3296  		if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3297  			chip->cmdfunc = nand_command_lp;
3298  
3299  		/* The Extended Parameter Page is supported since ONFI 2.1. */
3300  		if (nand_flash_detect_ext_param_page(mtd, chip, p))
3301  			pr_warn("Failed to detect ONFI extended param page\n");
3302  	} else {
3303  		pr_warn("Could not retrieve ONFI ECC requirements\n");
3304  	}
3305  
3306  	if (p->jedec_id == NAND_MFR_MICRON)
3307  		nand_onfi_detect_micron(chip, p);
3308  
3309  	return 1;
3310  }
3311  #else
nand_flash_detect_onfi(struct mtd_info * mtd,struct nand_chip * chip,int * busw)3312  static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
3313  					int *busw)
3314  {
3315  	return 0;
3316  }
3317  #endif
3318  
3319  /*
3320   * Check if the NAND chip is JEDEC compliant, returns 1 if it is, 0 otherwise.
3321   */
nand_flash_detect_jedec(struct mtd_info * mtd,struct nand_chip * chip,int * busw)3322  static int nand_flash_detect_jedec(struct mtd_info *mtd, struct nand_chip *chip,
3323  					int *busw)
3324  {
3325  	struct nand_jedec_params *p = &chip->jedec_params;
3326  	struct jedec_ecc_info *ecc;
3327  	int val;
3328  	int i, j;
3329  
3330  	/* Try JEDEC for unknown chip or LP */
3331  	chip->cmdfunc(mtd, NAND_CMD_READID, 0x40, -1);
3332  	if (chip->read_byte(mtd) != 'J' || chip->read_byte(mtd) != 'E' ||
3333  		chip->read_byte(mtd) != 'D' || chip->read_byte(mtd) != 'E' ||
3334  		chip->read_byte(mtd) != 'C')
3335  		return 0;
3336  
3337  	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0x40, -1);
3338  	for (i = 0; i < 3; i++) {
3339  		for (j = 0; j < sizeof(*p); j++)
3340  			((uint8_t *)p)[j] = chip->read_byte(mtd);
3341  
3342  		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 510) ==
3343  				le16_to_cpu(p->crc))
3344  			break;
3345  	}
3346  
3347  	if (i == 3) {
3348  		pr_err("Could not find valid JEDEC parameter page; aborting\n");
3349  		return 0;
3350  	}
3351  
3352  	/* Check version */
3353  	val = le16_to_cpu(p->revision);
3354  	if (val & (1 << 2))
3355  		chip->jedec_version = 10;
3356  	else if (val & (1 << 1))
3357  		chip->jedec_version = 1; /* vendor specific version */
3358  
3359  	if (!chip->jedec_version) {
3360  		pr_info("unsupported JEDEC version: %d\n", val);
3361  		return 0;
3362  	}
3363  
3364  	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
3365  	sanitize_string(p->model, sizeof(p->model));
3366  	if (!mtd->name)
3367  		mtd->name = p->model;
3368  
3369  	mtd->writesize = le32_to_cpu(p->byte_per_page);
3370  
3371  	/* Please reference to the comment for nand_flash_detect_onfi. */
3372  	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
3373  	mtd->erasesize *= mtd->writesize;
3374  
3375  	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
3376  
3377  	/* Please reference to the comment for nand_flash_detect_onfi. */
3378  	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
3379  	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
3380  	chip->bits_per_cell = p->bits_per_cell;
3381  
3382  	if (jedec_feature(chip) & JEDEC_FEATURE_16_BIT_BUS)
3383  		*busw = NAND_BUSWIDTH_16;
3384  	else
3385  		*busw = 0;
3386  
3387  	/* ECC info */
3388  	ecc = &p->ecc_info[0];
3389  
3390  	if (ecc->codeword_size >= 9) {
3391  		chip->ecc_strength_ds = ecc->ecc_bits;
3392  		chip->ecc_step_ds = 1 << ecc->codeword_size;
3393  	} else {
3394  		pr_warn("Invalid codeword size\n");
3395  	}
3396  
3397  	return 1;
3398  }
3399  
3400  /*
3401   * nand_id_has_period - Check if an ID string has a given wraparound period
3402   * @id_data: the ID string
3403   * @arrlen: the length of the @id_data array
3404   * @period: the period of repitition
3405   *
3406   * Check if an ID string is repeated within a given sequence of bytes at
3407   * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
3408   * period of 3). This is a helper function for nand_id_len(). Returns non-zero
3409   * if the repetition has a period of @period; otherwise, returns zero.
3410   */
nand_id_has_period(u8 * id_data,int arrlen,int period)3411  static int nand_id_has_period(u8 *id_data, int arrlen, int period)
3412  {
3413  	int i, j;
3414  	for (i = 0; i < period; i++)
3415  		for (j = i + period; j < arrlen; j += period)
3416  			if (id_data[i] != id_data[j])
3417  				return 0;
3418  	return 1;
3419  }
3420  
3421  /*
3422   * nand_id_len - Get the length of an ID string returned by CMD_READID
3423   * @id_data: the ID string
3424   * @arrlen: the length of the @id_data array
3425  
3426   * Returns the length of the ID string, according to known wraparound/trailing
3427   * zero patterns. If no pattern exists, returns the length of the array.
3428   */
nand_id_len(u8 * id_data,int arrlen)3429  static int nand_id_len(u8 *id_data, int arrlen)
3430  {
3431  	int last_nonzero, period;
3432  
3433  	/* Find last non-zero byte */
3434  	for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
3435  		if (id_data[last_nonzero])
3436  			break;
3437  
3438  	/* All zeros */
3439  	if (last_nonzero < 0)
3440  		return 0;
3441  
3442  	/* Calculate wraparound period */
3443  	for (period = 1; period < arrlen; period++)
3444  		if (nand_id_has_period(id_data, arrlen, period))
3445  			break;
3446  
3447  	/* There's a repeated pattern */
3448  	if (period < arrlen)
3449  		return period;
3450  
3451  	/* There are trailing zeros */
3452  	if (last_nonzero < arrlen - 1)
3453  		return last_nonzero + 1;
3454  
3455  	/* No pattern detected */
3456  	return arrlen;
3457  }
3458  
3459  /* Extract the bits of per cell from the 3rd byte of the extended ID */
nand_get_bits_per_cell(u8 cellinfo)3460  static int nand_get_bits_per_cell(u8 cellinfo)
3461  {
3462  	int bits;
3463  
3464  	bits = cellinfo & NAND_CI_CELLTYPE_MSK;
3465  	bits >>= NAND_CI_CELLTYPE_SHIFT;
3466  	return bits + 1;
3467  }
3468  
3469  /*
3470   * Many new NAND share similar device ID codes, which represent the size of the
3471   * chip. The rest of the parameters must be decoded according to generic or
3472   * manufacturer-specific "extended ID" decoding patterns.
3473   */
nand_decode_ext_id(struct mtd_info * mtd,struct nand_chip * chip,u8 id_data[8],int * busw)3474  static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
3475  				u8 id_data[8], int *busw)
3476  {
3477  	int extid, id_len;
3478  	/* The 3rd id byte holds MLC / multichip data */
3479  	chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3480  	/* The 4th id byte is the important one */
3481  	extid = id_data[3];
3482  
3483  	id_len = nand_id_len(id_data, 8);
3484  
3485  	/*
3486  	 * Field definitions are in the following datasheets:
3487  	 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3488  	 * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
3489  	 * Hynix MLC   (6 byte ID): Hynix H27UBG8T2B (p.22)
3490  	 *
3491  	 * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
3492  	 * ID to decide what to do.
3493  	 */
3494  	if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
3495  			!nand_is_slc(chip) && id_data[5] != 0x00) {
3496  		/* Calc pagesize */
3497  		mtd->writesize = 2048 << (extid & 0x03);
3498  		extid >>= 2;
3499  		/* Calc oobsize */
3500  		switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3501  		case 1:
3502  			mtd->oobsize = 128;
3503  			break;
3504  		case 2:
3505  			mtd->oobsize = 218;
3506  			break;
3507  		case 3:
3508  			mtd->oobsize = 400;
3509  			break;
3510  		case 4:
3511  			mtd->oobsize = 436;
3512  			break;
3513  		case 5:
3514  			mtd->oobsize = 512;
3515  			break;
3516  		case 6:
3517  			mtd->oobsize = 640;
3518  			break;
3519  		case 7:
3520  		default: /* Other cases are "reserved" (unknown) */
3521  			mtd->oobsize = 1024;
3522  			break;
3523  		}
3524  		extid >>= 2;
3525  		/* Calc blocksize */
3526  		mtd->erasesize = (128 * 1024) <<
3527  			(((extid >> 1) & 0x04) | (extid & 0x03));
3528  		*busw = 0;
3529  	} else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3530  			!nand_is_slc(chip)) {
3531  		unsigned int tmp;
3532  
3533  		/* Calc pagesize */
3534  		mtd->writesize = 2048 << (extid & 0x03);
3535  		extid >>= 2;
3536  		/* Calc oobsize */
3537  		switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3538  		case 0:
3539  			mtd->oobsize = 128;
3540  			break;
3541  		case 1:
3542  			mtd->oobsize = 224;
3543  			break;
3544  		case 2:
3545  			mtd->oobsize = 448;
3546  			break;
3547  		case 3:
3548  			mtd->oobsize = 64;
3549  			break;
3550  		case 4:
3551  			mtd->oobsize = 32;
3552  			break;
3553  		case 5:
3554  			mtd->oobsize = 16;
3555  			break;
3556  		default:
3557  			mtd->oobsize = 640;
3558  			break;
3559  		}
3560  		extid >>= 2;
3561  		/* Calc blocksize */
3562  		tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3563  		if (tmp < 0x03)
3564  			mtd->erasesize = (128 * 1024) << tmp;
3565  		else if (tmp == 0x03)
3566  			mtd->erasesize = 768 * 1024;
3567  		else
3568  			mtd->erasesize = (64 * 1024) << tmp;
3569  		*busw = 0;
3570  	} else {
3571  		/* Calc pagesize */
3572  		mtd->writesize = 1024 << (extid & 0x03);
3573  		extid >>= 2;
3574  		/* Calc oobsize */
3575  		mtd->oobsize = (8 << (extid & 0x01)) *
3576  			(mtd->writesize >> 9);
3577  		extid >>= 2;
3578  		/* Calc blocksize. Blocksize is multiples of 64KiB */
3579  		mtd->erasesize = (64 * 1024) << (extid & 0x03);
3580  		extid >>= 2;
3581  		/* Get buswidth information */
3582  		*busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3583  
3584  		/*
3585  		 * Toshiba 24nm raw SLC (i.e., not BENAND) have 32B OOB per
3586  		 * 512B page. For Toshiba SLC, we decode the 5th/6th byte as
3587  		 * follows:
3588  		 * - ID byte 6, bits[2:0]: 100b -> 43nm, 101b -> 32nm,
3589  		 *                         110b -> 24nm
3590  		 * - ID byte 5, bit[7]:    1 -> BENAND, 0 -> raw SLC
3591  		 */
3592  		if (id_len >= 6 && id_data[0] == NAND_MFR_TOSHIBA &&
3593  				nand_is_slc(chip) &&
3594  				(id_data[5] & 0x7) == 0x6 /* 24nm */ &&
3595  				!(id_data[4] & 0x80) /* !BENAND */) {
3596  			mtd->oobsize = 32 * mtd->writesize >> 9;
3597  		}
3598  
3599  	}
3600  }
3601  
3602  /*
3603   * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3604   * decodes a matching ID table entry and assigns the MTD size parameters for
3605   * the chip.
3606   */
nand_decode_id(struct mtd_info * mtd,struct nand_chip * chip,struct nand_flash_dev * type,u8 id_data[8],int * busw)3607  static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3608  				struct nand_flash_dev *type, u8 id_data[8],
3609  				int *busw)
3610  {
3611  	int maf_id = id_data[0];
3612  
3613  	mtd->erasesize = type->erasesize;
3614  	mtd->writesize = type->pagesize;
3615  	mtd->oobsize = mtd->writesize / 32;
3616  	*busw = type->options & NAND_BUSWIDTH_16;
3617  
3618  	/* All legacy ID NAND are small-page, SLC */
3619  	chip->bits_per_cell = 1;
3620  
3621  	/*
3622  	 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3623  	 * some Spansion chips have erasesize that conflicts with size
3624  	 * listed in nand_ids table.
3625  	 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3626  	 */
3627  	if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3628  			&& id_data[6] == 0x00 && id_data[7] == 0x00
3629  			&& mtd->writesize == 512) {
3630  		mtd->erasesize = 128 * 1024;
3631  		mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3632  	}
3633  }
3634  
3635  /*
3636   * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3637   * heuristic patterns using various detected parameters (e.g., manufacturer,
3638   * page size, cell-type information).
3639   */
nand_decode_bbm_options(struct mtd_info * mtd,struct nand_chip * chip,u8 id_data[8])3640  static void nand_decode_bbm_options(struct mtd_info *mtd,
3641  				    struct nand_chip *chip, u8 id_data[8])
3642  {
3643  	int maf_id = id_data[0];
3644  
3645  	/* Set the bad block position */
3646  	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3647  		chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3648  	else
3649  		chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3650  
3651  	/*
3652  	 * Bad block marker is stored in the last page of each block on Samsung
3653  	 * and Hynix MLC devices; stored in first two pages of each block on
3654  	 * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3655  	 * AMD/Spansion, and Macronix.  All others scan only the first page.
3656  	 */
3657  	if (!nand_is_slc(chip) &&
3658  			(maf_id == NAND_MFR_SAMSUNG ||
3659  			 maf_id == NAND_MFR_HYNIX))
3660  		chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3661  	else if ((nand_is_slc(chip) &&
3662  				(maf_id == NAND_MFR_SAMSUNG ||
3663  				 maf_id == NAND_MFR_HYNIX ||
3664  				 maf_id == NAND_MFR_TOSHIBA ||
3665  				 maf_id == NAND_MFR_AMD ||
3666  				 maf_id == NAND_MFR_MACRONIX)) ||
3667  			(mtd->writesize == 2048 &&
3668  			 maf_id == NAND_MFR_MICRON))
3669  		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3670  }
3671  
is_full_id_nand(struct nand_flash_dev * type)3672  static inline bool is_full_id_nand(struct nand_flash_dev *type)
3673  {
3674  	return type->id_len;
3675  }
3676  
find_full_id_nand(struct mtd_info * mtd,struct nand_chip * chip,struct nand_flash_dev * type,u8 * id_data,int * busw)3677  static bool find_full_id_nand(struct mtd_info *mtd, struct nand_chip *chip,
3678  		   struct nand_flash_dev *type, u8 *id_data, int *busw)
3679  {
3680  	if (!strncmp((char *)type->id, (char *)id_data, type->id_len)) {
3681  		mtd->writesize = type->pagesize;
3682  		mtd->erasesize = type->erasesize;
3683  		mtd->oobsize = type->oobsize;
3684  
3685  		chip->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
3686  		chip->chipsize = (uint64_t)type->chipsize << 20;
3687  		chip->options |= type->options;
3688  		chip->ecc_strength_ds = NAND_ECC_STRENGTH(type);
3689  		chip->ecc_step_ds = NAND_ECC_STEP(type);
3690  		chip->onfi_timing_mode_default =
3691  					type->onfi_timing_mode_default;
3692  
3693  		*busw = type->options & NAND_BUSWIDTH_16;
3694  
3695  		if (!mtd->name)
3696  			mtd->name = type->name;
3697  
3698  		return true;
3699  	}
3700  	return false;
3701  }
3702  
3703  /*
3704   * Get the flash and manufacturer id and lookup if the type is supported.
3705   */
nand_get_flash_type(struct mtd_info * mtd,struct nand_chip * chip,int * maf_id,int * dev_id,struct nand_flash_dev * type)3706  struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3707  						  struct nand_chip *chip,
3708  						  int *maf_id, int *dev_id,
3709  						  struct nand_flash_dev *type)
3710  {
3711  	int busw;
3712  	int i, maf_idx;
3713  	u8 id_data[8];
3714  
3715  	/*
3716  	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3717  	 * after power-up.
3718  	 */
3719  	nand_reset(chip, 0);
3720  
3721  	/* Select the device */
3722  	chip->select_chip(mtd, 0);
3723  
3724  	/* Send the command for reading device ID */
3725  	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3726  
3727  	/* Read manufacturer and device IDs */
3728  	*maf_id = chip->read_byte(mtd);
3729  	*dev_id = chip->read_byte(mtd);
3730  
3731  	/*
3732  	 * Try again to make sure, as some systems the bus-hold or other
3733  	 * interface concerns can cause random data which looks like a
3734  	 * possibly credible NAND flash to appear. If the two results do
3735  	 * not match, ignore the device completely.
3736  	 */
3737  
3738  	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3739  
3740  	/* Read entire ID string */
3741  	for (i = 0; i < 8; i++)
3742  		id_data[i] = chip->read_byte(mtd);
3743  
3744  	if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3745  		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
3746  			*maf_id, *dev_id, id_data[0], id_data[1]);
3747  		return ERR_PTR(-ENODEV);
3748  	}
3749  
3750  	if (!type)
3751  		type = nand_flash_ids;
3752  
3753  	for (; type->name != NULL; type++) {
3754  		if (is_full_id_nand(type)) {
3755  			if (find_full_id_nand(mtd, chip, type, id_data, &busw))
3756  				goto ident_done;
3757  		} else if (*dev_id == type->dev_id) {
3758  			break;
3759  		}
3760  	}
3761  
3762  	chip->onfi_version = 0;
3763  	if (!type->name || !type->pagesize) {
3764  		/* Check if the chip is ONFI compliant */
3765  		if (nand_flash_detect_onfi(mtd, chip, &busw))
3766  			goto ident_done;
3767  
3768  		/* Check if the chip is JEDEC compliant */
3769  		if (nand_flash_detect_jedec(mtd, chip, &busw))
3770  			goto ident_done;
3771  	}
3772  
3773  	if (!type->name)
3774  		return ERR_PTR(-ENODEV);
3775  
3776  	if (!mtd->name)
3777  		mtd->name = type->name;
3778  
3779  	chip->chipsize = (uint64_t)type->chipsize << 20;
3780  
3781  	if (!type->pagesize) {
3782  		/* Decode parameters from extended ID */
3783  		nand_decode_ext_id(mtd, chip, id_data, &busw);
3784  	} else {
3785  		nand_decode_id(mtd, chip, type, id_data, &busw);
3786  	}
3787  	/* Get chip options */
3788  	chip->options |= type->options;
3789  
3790  	/*
3791  	 * Check if chip is not a Samsung device. Do not clear the
3792  	 * options for chips which do not have an extended id.
3793  	 */
3794  	if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3795  		chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3796  ident_done:
3797  
3798  	/* Try to identify manufacturer */
3799  	for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3800  		if (nand_manuf_ids[maf_idx].id == *maf_id)
3801  			break;
3802  	}
3803  
3804  	if (chip->options & NAND_BUSWIDTH_AUTO) {
3805  		WARN_ON(chip->options & NAND_BUSWIDTH_16);
3806  		chip->options |= busw;
3807  		nand_set_defaults(chip, busw);
3808  	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3809  		/*
3810  		 * Check, if buswidth is correct. Hardware drivers should set
3811  		 * chip correct!
3812  		 */
3813  		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3814  			*maf_id, *dev_id);
3815  		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name, mtd->name);
3816  		pr_warn("bus width %d instead %d bit\n",
3817  			   (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3818  			   busw ? 16 : 8);
3819  		return ERR_PTR(-EINVAL);
3820  	}
3821  
3822  	nand_decode_bbm_options(mtd, chip, id_data);
3823  
3824  	/* Calculate the address shift from the page size */
3825  	chip->page_shift = ffs(mtd->writesize) - 1;
3826  	/* Convert chipsize to number of pages per chip -1 */
3827  	chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3828  
3829  	chip->bbt_erase_shift = chip->phys_erase_shift =
3830  		ffs(mtd->erasesize) - 1;
3831  	if (chip->chipsize & 0xffffffff)
3832  		chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3833  	else {
3834  		chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3835  		chip->chip_shift += 32 - 1;
3836  	}
3837  
3838  	if (chip->chip_shift - chip->page_shift > 16)
3839  		chip->options |= NAND_ROW_ADDR_3;
3840  
3841  	chip->badblockbits = 8;
3842  	chip->erase = single_erase;
3843  
3844  	/* Do not replace user supplied command function! */
3845  	if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3846  		chip->cmdfunc = nand_command_lp;
3847  
3848  	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
3849  		*maf_id, *dev_id);
3850  
3851  #ifdef CONFIG_SYS_NAND_ONFI_DETECTION
3852  	if (chip->onfi_version)
3853  		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3854  				chip->onfi_params.model);
3855  	else if (chip->jedec_version)
3856  		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3857  				chip->jedec_params.model);
3858  	else
3859  		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3860  				type->name);
3861  #else
3862  	if (chip->jedec_version)
3863  		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3864  				chip->jedec_params.model);
3865  	else
3866  		pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3867  				type->name);
3868  
3869  	pr_info("%s %s\n", nand_manuf_ids[maf_idx].name,
3870  		type->name);
3871  #endif
3872  
3873  	pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
3874  		(int)(chip->chipsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
3875  		mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
3876  	return type;
3877  }
3878  EXPORT_SYMBOL(nand_get_flash_type);
3879  
3880  #if CONFIG_IS_ENABLED(OF_CONTROL)
3881  DECLARE_GLOBAL_DATA_PTR;
3882  
nand_dt_init(struct mtd_info * mtd,struct nand_chip * chip,int node)3883  static int nand_dt_init(struct mtd_info *mtd, struct nand_chip *chip, int node)
3884  {
3885  	int ret, ecc_mode = -1, ecc_strength, ecc_step;
3886  	const void *blob = gd->fdt_blob;
3887  	const char *str;
3888  
3889  	ret = fdtdec_get_int(blob, node, "nand-bus-width", -1);
3890  	if (ret == 16)
3891  		chip->options |= NAND_BUSWIDTH_16;
3892  
3893  	if (fdtdec_get_bool(blob, node, "nand-on-flash-bbt"))
3894  		chip->bbt_options |= NAND_BBT_USE_FLASH;
3895  
3896  	str = fdt_getprop(blob, node, "nand-ecc-mode", NULL);
3897  	if (str) {
3898  		if (!strcmp(str, "none"))
3899  			ecc_mode = NAND_ECC_NONE;
3900  		else if (!strcmp(str, "soft"))
3901  			ecc_mode = NAND_ECC_SOFT;
3902  		else if (!strcmp(str, "hw"))
3903  			ecc_mode = NAND_ECC_HW;
3904  		else if (!strcmp(str, "hw_syndrome"))
3905  			ecc_mode = NAND_ECC_HW_SYNDROME;
3906  		else if (!strcmp(str, "hw_oob_first"))
3907  			ecc_mode = NAND_ECC_HW_OOB_FIRST;
3908  		else if (!strcmp(str, "soft_bch"))
3909  			ecc_mode = NAND_ECC_SOFT_BCH;
3910  	}
3911  
3912  
3913  	ecc_strength = fdtdec_get_int(blob, node, "nand-ecc-strength", -1);
3914  	ecc_step = fdtdec_get_int(blob, node, "nand-ecc-step-size", -1);
3915  
3916  	if ((ecc_step >= 0 && !(ecc_strength >= 0)) ||
3917  	    (!(ecc_step >= 0) && ecc_strength >= 0)) {
3918  		pr_err("must set both strength and step size in DT\n");
3919  		return -EINVAL;
3920  	}
3921  
3922  	if (ecc_mode >= 0)
3923  		chip->ecc.mode = ecc_mode;
3924  
3925  	if (ecc_strength >= 0)
3926  		chip->ecc.strength = ecc_strength;
3927  
3928  	if (ecc_step > 0)
3929  		chip->ecc.size = ecc_step;
3930  
3931  	if (fdt_getprop(blob, node, "nand-ecc-maximize", NULL))
3932  		chip->ecc.options |= NAND_ECC_MAXIMIZE;
3933  
3934  	return 0;
3935  }
3936  #else
nand_dt_init(struct mtd_info * mtd,struct nand_chip * chip,int node)3937  static int nand_dt_init(struct mtd_info *mtd, struct nand_chip *chip, int node)
3938  {
3939  	return 0;
3940  }
3941  #endif /* CONFIG_IS_ENABLED(OF_CONTROL) */
3942  
3943  /**
3944   * nand_scan_ident - [NAND Interface] Scan for the NAND device
3945   * @mtd: MTD device structure
3946   * @maxchips: number of chips to scan for
3947   * @table: alternative NAND ID table
3948   *
3949   * This is the first phase of the normal nand_scan() function. It reads the
3950   * flash ID and sets up MTD fields accordingly.
3951   *
3952   */
nand_scan_ident(struct mtd_info * mtd,int maxchips,struct nand_flash_dev * table)3953  int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3954  		    struct nand_flash_dev *table)
3955  {
3956  	int i, nand_maf_id, nand_dev_id;
3957  	struct nand_chip *chip = mtd_to_nand(mtd);
3958  	struct nand_flash_dev *type;
3959  	int ret;
3960  
3961  	if (chip->flash_node) {
3962  		ret = nand_dt_init(mtd, chip, chip->flash_node);
3963  		if (ret)
3964  			return ret;
3965  	}
3966  
3967  	/* Set the default functions */
3968  	nand_set_defaults(chip, chip->options & NAND_BUSWIDTH_16);
3969  
3970  	/* Read the flash type */
3971  	type = nand_get_flash_type(mtd, chip, &nand_maf_id,
3972  				   &nand_dev_id, table);
3973  
3974  	if (IS_ERR(type)) {
3975  		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3976  			pr_warn("No NAND device found\n");
3977  		chip->select_chip(mtd, -1);
3978  		return PTR_ERR(type);
3979  	}
3980  
3981  	/* Initialize the ->data_interface field. */
3982  	ret = nand_init_data_interface(chip);
3983  	if (ret)
3984  		return ret;
3985  
3986  	/*
3987  	 * Setup the data interface correctly on the chip and controller side.
3988  	 * This explicit call to nand_setup_data_interface() is only required
3989  	 * for the first die, because nand_reset() has been called before
3990  	 * ->data_interface and ->default_onfi_timing_mode were set.
3991  	 * For the other dies, nand_reset() will automatically switch to the
3992  	 * best mode for us.
3993  	 */
3994  	ret = nand_setup_data_interface(chip, 0);
3995  	if (ret)
3996  		return ret;
3997  
3998  	chip->select_chip(mtd, -1);
3999  
4000  	/* Check for a chip array */
4001  	for (i = 1; i < maxchips; i++) {
4002  		/* See comment in nand_get_flash_type for reset */
4003  		nand_reset(chip, i);
4004  
4005  		chip->select_chip(mtd, i);
4006  		/* Send the command for reading device ID */
4007  		chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
4008  		/* Read manufacturer and device IDs */
4009  		if (nand_maf_id != chip->read_byte(mtd) ||
4010  		    nand_dev_id != chip->read_byte(mtd)) {
4011  			chip->select_chip(mtd, -1);
4012  			break;
4013  		}
4014  		chip->select_chip(mtd, -1);
4015  	}
4016  
4017  #ifdef DEBUG
4018  	if (i > 1)
4019  		pr_info("%d chips detected\n", i);
4020  #endif
4021  
4022  	/* Store the number of chips and calc total size for mtd */
4023  	chip->numchips = i;
4024  	mtd->size = i * chip->chipsize;
4025  
4026  	return 0;
4027  }
4028  EXPORT_SYMBOL(nand_scan_ident);
4029  
4030  /**
4031   * nand_check_ecc_caps - check the sanity of preset ECC settings
4032   * @chip: nand chip info structure
4033   * @caps: ECC caps info structure
4034   * @oobavail: OOB size that the ECC engine can use
4035   *
4036   * When ECC step size and strength are already set, check if they are supported
4037   * by the controller and the calculated ECC bytes fit within the chip's OOB.
4038   * On success, the calculated ECC bytes is set.
4039   */
nand_check_ecc_caps(struct nand_chip * chip,const struct nand_ecc_caps * caps,int oobavail)4040  int nand_check_ecc_caps(struct nand_chip *chip,
4041  			const struct nand_ecc_caps *caps, int oobavail)
4042  {
4043  	struct mtd_info *mtd = nand_to_mtd(chip);
4044  	const struct nand_ecc_step_info *stepinfo;
4045  	int preset_step = chip->ecc.size;
4046  	int preset_strength = chip->ecc.strength;
4047  	int nsteps, ecc_bytes;
4048  	int i, j;
4049  
4050  	if (WARN_ON(oobavail < 0))
4051  		return -EINVAL;
4052  
4053  	if (!preset_step || !preset_strength)
4054  		return -ENODATA;
4055  
4056  	nsteps = mtd->writesize / preset_step;
4057  
4058  	for (i = 0; i < caps->nstepinfos; i++) {
4059  		stepinfo = &caps->stepinfos[i];
4060  
4061  		if (stepinfo->stepsize != preset_step)
4062  			continue;
4063  
4064  		for (j = 0; j < stepinfo->nstrengths; j++) {
4065  			if (stepinfo->strengths[j] != preset_strength)
4066  				continue;
4067  
4068  			ecc_bytes = caps->calc_ecc_bytes(preset_step,
4069  							 preset_strength);
4070  			if (WARN_ON_ONCE(ecc_bytes < 0))
4071  				return ecc_bytes;
4072  
4073  			if (ecc_bytes * nsteps > oobavail) {
4074  				pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
4075  				       preset_step, preset_strength);
4076  				return -ENOSPC;
4077  			}
4078  
4079  			chip->ecc.bytes = ecc_bytes;
4080  
4081  			return 0;
4082  		}
4083  	}
4084  
4085  	pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
4086  	       preset_step, preset_strength);
4087  
4088  	return -ENOTSUPP;
4089  }
4090  EXPORT_SYMBOL_GPL(nand_check_ecc_caps);
4091  
4092  /**
4093   * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
4094   * @chip: nand chip info structure
4095   * @caps: ECC engine caps info structure
4096   * @oobavail: OOB size that the ECC engine can use
4097   *
4098   * If a chip's ECC requirement is provided, try to meet it with the least
4099   * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
4100   * On success, the chosen ECC settings are set.
4101   */
nand_match_ecc_req(struct nand_chip * chip,const struct nand_ecc_caps * caps,int oobavail)4102  int nand_match_ecc_req(struct nand_chip *chip,
4103  		       const struct nand_ecc_caps *caps, int oobavail)
4104  {
4105  	struct mtd_info *mtd = nand_to_mtd(chip);
4106  	const struct nand_ecc_step_info *stepinfo;
4107  	int req_step = chip->ecc_step_ds;
4108  	int req_strength = chip->ecc_strength_ds;
4109  	int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
4110  	int best_step, best_strength, best_ecc_bytes;
4111  	int best_ecc_bytes_total = INT_MAX;
4112  	int i, j;
4113  
4114  	if (WARN_ON(oobavail < 0))
4115  		return -EINVAL;
4116  
4117  	/* No information provided by the NAND chip */
4118  	if (!req_step || !req_strength)
4119  		return -ENOTSUPP;
4120  
4121  	/* number of correctable bits the chip requires in a page */
4122  	req_corr = mtd->writesize / req_step * req_strength;
4123  
4124  	for (i = 0; i < caps->nstepinfos; i++) {
4125  		stepinfo = &caps->stepinfos[i];
4126  		step_size = stepinfo->stepsize;
4127  
4128  		for (j = 0; j < stepinfo->nstrengths; j++) {
4129  			strength = stepinfo->strengths[j];
4130  
4131  			/*
4132  			 * If both step size and strength are smaller than the
4133  			 * chip's requirement, it is not easy to compare the
4134  			 * resulted reliability.
4135  			 */
4136  			if (step_size < req_step && strength < req_strength)
4137  				continue;
4138  
4139  			if (mtd->writesize % step_size)
4140  				continue;
4141  
4142  			nsteps = mtd->writesize / step_size;
4143  
4144  			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
4145  			if (WARN_ON_ONCE(ecc_bytes < 0))
4146  				continue;
4147  			ecc_bytes_total = ecc_bytes * nsteps;
4148  
4149  			if (ecc_bytes_total > oobavail ||
4150  			    strength * nsteps < req_corr)
4151  				continue;
4152  
4153  			/*
4154  			 * We assume the best is to meet the chip's requrement
4155  			 * with the least number of ECC bytes.
4156  			 */
4157  			if (ecc_bytes_total < best_ecc_bytes_total) {
4158  				best_ecc_bytes_total = ecc_bytes_total;
4159  				best_step = step_size;
4160  				best_strength = strength;
4161  				best_ecc_bytes = ecc_bytes;
4162  			}
4163  		}
4164  	}
4165  
4166  	if (best_ecc_bytes_total == INT_MAX)
4167  		return -ENOTSUPP;
4168  
4169  	chip->ecc.size = best_step;
4170  	chip->ecc.strength = best_strength;
4171  	chip->ecc.bytes = best_ecc_bytes;
4172  
4173  	return 0;
4174  }
4175  EXPORT_SYMBOL_GPL(nand_match_ecc_req);
4176  
4177  /**
4178   * nand_maximize_ecc - choose the max ECC strength available
4179   * @chip: nand chip info structure
4180   * @caps: ECC engine caps info structure
4181   * @oobavail: OOB size that the ECC engine can use
4182   *
4183   * Choose the max ECC strength that is supported on the controller, and can fit
4184   * within the chip's OOB.  On success, the chosen ECC settings are set.
4185   */
nand_maximize_ecc(struct nand_chip * chip,const struct nand_ecc_caps * caps,int oobavail)4186  int nand_maximize_ecc(struct nand_chip *chip,
4187  		      const struct nand_ecc_caps *caps, int oobavail)
4188  {
4189  	struct mtd_info *mtd = nand_to_mtd(chip);
4190  	const struct nand_ecc_step_info *stepinfo;
4191  	int step_size, strength, nsteps, ecc_bytes, corr;
4192  	int best_corr = 0;
4193  	int best_step = 0;
4194  	int best_strength, best_ecc_bytes;
4195  	int i, j;
4196  
4197  	if (WARN_ON(oobavail < 0))
4198  		return -EINVAL;
4199  
4200  	for (i = 0; i < caps->nstepinfos; i++) {
4201  		stepinfo = &caps->stepinfos[i];
4202  		step_size = stepinfo->stepsize;
4203  
4204  		/* If chip->ecc.size is already set, respect it */
4205  		if (chip->ecc.size && step_size != chip->ecc.size)
4206  			continue;
4207  
4208  		for (j = 0; j < stepinfo->nstrengths; j++) {
4209  			strength = stepinfo->strengths[j];
4210  
4211  			if (mtd->writesize % step_size)
4212  				continue;
4213  
4214  			nsteps = mtd->writesize / step_size;
4215  
4216  			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
4217  			if (WARN_ON_ONCE(ecc_bytes < 0))
4218  				continue;
4219  
4220  			if (ecc_bytes * nsteps > oobavail)
4221  				continue;
4222  
4223  			corr = strength * nsteps;
4224  
4225  			/*
4226  			 * If the number of correctable bits is the same,
4227  			 * bigger step_size has more reliability.
4228  			 */
4229  			if (corr > best_corr ||
4230  			    (corr == best_corr && step_size > best_step)) {
4231  				best_corr = corr;
4232  				best_step = step_size;
4233  				best_strength = strength;
4234  				best_ecc_bytes = ecc_bytes;
4235  			}
4236  		}
4237  	}
4238  
4239  	if (!best_corr)
4240  		return -ENOTSUPP;
4241  
4242  	chip->ecc.size = best_step;
4243  	chip->ecc.strength = best_strength;
4244  	chip->ecc.bytes = best_ecc_bytes;
4245  
4246  	return 0;
4247  }
4248  EXPORT_SYMBOL_GPL(nand_maximize_ecc);
4249  
4250  /*
4251   * Check if the chip configuration meet the datasheet requirements.
4252  
4253   * If our configuration corrects A bits per B bytes and the minimum
4254   * required correction level is X bits per Y bytes, then we must ensure
4255   * both of the following are true:
4256   *
4257   * (1) A / B >= X / Y
4258   * (2) A >= X
4259   *
4260   * Requirement (1) ensures we can correct for the required bitflip density.
4261   * Requirement (2) ensures we can correct even when all bitflips are clumped
4262   * in the same sector.
4263   */
nand_ecc_strength_good(struct mtd_info * mtd)4264  static bool nand_ecc_strength_good(struct mtd_info *mtd)
4265  {
4266  	struct nand_chip *chip = mtd_to_nand(mtd);
4267  	struct nand_ecc_ctrl *ecc = &chip->ecc;
4268  	int corr, ds_corr;
4269  
4270  	if (ecc->size == 0 || chip->ecc_step_ds == 0)
4271  		/* Not enough information */
4272  		return true;
4273  
4274  	/*
4275  	 * We get the number of corrected bits per page to compare
4276  	 * the correction density.
4277  	 */
4278  	corr = (mtd->writesize * ecc->strength) / ecc->size;
4279  	ds_corr = (mtd->writesize * chip->ecc_strength_ds) / chip->ecc_step_ds;
4280  
4281  	return corr >= ds_corr && ecc->strength >= chip->ecc_strength_ds;
4282  }
4283  
invalid_ecc_page_accessors(struct nand_chip * chip)4284  static bool invalid_ecc_page_accessors(struct nand_chip *chip)
4285  {
4286  	struct nand_ecc_ctrl *ecc = &chip->ecc;
4287  
4288  	if (nand_standard_page_accessors(ecc))
4289  		return false;
4290  
4291  	/*
4292  	 * NAND_ECC_CUSTOM_PAGE_ACCESS flag is set, make sure the NAND
4293  	 * controller driver implements all the page accessors because
4294  	 * default helpers are not suitable when the core does not
4295  	 * send the READ0/PAGEPROG commands.
4296  	 */
4297  	return (!ecc->read_page || !ecc->write_page ||
4298  		!ecc->read_page_raw || !ecc->write_page_raw ||
4299  		(NAND_HAS_SUBPAGE_READ(chip) && !ecc->read_subpage) ||
4300  		(NAND_HAS_SUBPAGE_WRITE(chip) && !ecc->write_subpage &&
4301  		 ecc->hwctl && ecc->calculate));
4302  }
4303  
4304  /**
4305   * nand_scan_tail - [NAND Interface] Scan for the NAND device
4306   * @mtd: MTD device structure
4307   *
4308   * This is the second phase of the normal nand_scan() function. It fills out
4309   * all the uninitialized function pointers with the defaults and scans for a
4310   * bad block table if appropriate.
4311   */
nand_scan_tail(struct mtd_info * mtd)4312  int nand_scan_tail(struct mtd_info *mtd)
4313  {
4314  	int i;
4315  	struct nand_chip *chip = mtd_to_nand(mtd);
4316  	struct nand_ecc_ctrl *ecc = &chip->ecc;
4317  	struct nand_buffers *nbuf;
4318  
4319  	/* New bad blocks should be marked in OOB, flash-based BBT, or both */
4320  	BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
4321  			!(chip->bbt_options & NAND_BBT_USE_FLASH));
4322  
4323  	if (invalid_ecc_page_accessors(chip)) {
4324  		pr_err("Invalid ECC page accessors setup\n");
4325  		return -EINVAL;
4326  	}
4327  
4328  	if (!(chip->options & NAND_OWN_BUFFERS)) {
4329  		nbuf = kzalloc(sizeof(struct nand_buffers), GFP_KERNEL);
4330  		chip->buffers = nbuf;
4331  	} else {
4332  		if (!chip->buffers)
4333  			return -ENOMEM;
4334  	}
4335  
4336  	/* Set the internal oob buffer location, just after the page data */
4337  	chip->oob_poi = chip->buffers->databuf + mtd->writesize;
4338  
4339  	/*
4340  	 * If no default placement scheme is given, select an appropriate one.
4341  	 */
4342  	if (!ecc->layout && (ecc->mode != NAND_ECC_SOFT_BCH)) {
4343  		switch (mtd->oobsize) {
4344  #ifdef CONFIG_SYS_NAND_DRIVER_ECC_LAYOUT
4345  		case 8:
4346  			ecc->layout = &nand_oob_8;
4347  			break;
4348  		case 16:
4349  			ecc->layout = &nand_oob_16;
4350  			break;
4351  		case 64:
4352  			ecc->layout = &nand_oob_64;
4353  			break;
4354  		case 128:
4355  			ecc->layout = &nand_oob_128;
4356  			break;
4357  #endif
4358  		default:
4359  			pr_warn("No oob scheme defined for oobsize %d\n",
4360  				   mtd->oobsize);
4361  			BUG();
4362  		}
4363  	}
4364  
4365  	if (!chip->write_page)
4366  		chip->write_page = nand_write_page;
4367  
4368  	/*
4369  	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
4370  	 * selected and we have 256 byte pagesize fallback to software ECC
4371  	 */
4372  
4373  	switch (ecc->mode) {
4374  	case NAND_ECC_HW_OOB_FIRST:
4375  		/* Similar to NAND_ECC_HW, but a separate read_page handle */
4376  		if (!ecc->calculate || !ecc->correct || !ecc->hwctl) {
4377  			pr_warn("No ECC functions supplied; hardware ECC not possible\n");
4378  			BUG();
4379  		}
4380  		if (!ecc->read_page)
4381  			ecc->read_page = nand_read_page_hwecc_oob_first;
4382  
4383  	case NAND_ECC_HW:
4384  		/* Use standard hwecc read page function? */
4385  		if (!ecc->read_page)
4386  			ecc->read_page = nand_read_page_hwecc;
4387  		if (!ecc->write_page)
4388  			ecc->write_page = nand_write_page_hwecc;
4389  		if (!ecc->read_page_raw)
4390  			ecc->read_page_raw = nand_read_page_raw;
4391  		if (!ecc->write_page_raw)
4392  			ecc->write_page_raw = nand_write_page_raw;
4393  		if (!ecc->read_oob)
4394  			ecc->read_oob = nand_read_oob_std;
4395  		if (!ecc->write_oob)
4396  			ecc->write_oob = nand_write_oob_std;
4397  		if (!ecc->read_subpage)
4398  			ecc->read_subpage = nand_read_subpage;
4399  		if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
4400  			ecc->write_subpage = nand_write_subpage_hwecc;
4401  
4402  	case NAND_ECC_HW_SYNDROME:
4403  		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
4404  		    (!ecc->read_page ||
4405  		     ecc->read_page == nand_read_page_hwecc ||
4406  		     !ecc->write_page ||
4407  		     ecc->write_page == nand_write_page_hwecc)) {
4408  			pr_warn("No ECC functions supplied; hardware ECC not possible\n");
4409  			BUG();
4410  		}
4411  		/* Use standard syndrome read/write page function? */
4412  		if (!ecc->read_page)
4413  			ecc->read_page = nand_read_page_syndrome;
4414  		if (!ecc->write_page)
4415  			ecc->write_page = nand_write_page_syndrome;
4416  		if (!ecc->read_page_raw)
4417  			ecc->read_page_raw = nand_read_page_raw_syndrome;
4418  		if (!ecc->write_page_raw)
4419  			ecc->write_page_raw = nand_write_page_raw_syndrome;
4420  		if (!ecc->read_oob)
4421  			ecc->read_oob = nand_read_oob_syndrome;
4422  		if (!ecc->write_oob)
4423  			ecc->write_oob = nand_write_oob_syndrome;
4424  
4425  		if (mtd->writesize >= ecc->size) {
4426  			if (!ecc->strength) {
4427  				pr_warn("Driver must set ecc.strength when using hardware ECC\n");
4428  				BUG();
4429  			}
4430  			break;
4431  		}
4432  		pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
4433  			ecc->size, mtd->writesize);
4434  		ecc->mode = NAND_ECC_SOFT;
4435  
4436  	case NAND_ECC_SOFT:
4437  		ecc->calculate = nand_calculate_ecc;
4438  		ecc->correct = nand_correct_data;
4439  		ecc->read_page = nand_read_page_swecc;
4440  		ecc->read_subpage = nand_read_subpage;
4441  		ecc->write_page = nand_write_page_swecc;
4442  		ecc->read_page_raw = nand_read_page_raw;
4443  		ecc->write_page_raw = nand_write_page_raw;
4444  		ecc->read_oob = nand_read_oob_std;
4445  		ecc->write_oob = nand_write_oob_std;
4446  		if (!ecc->size)
4447  			ecc->size = 256;
4448  		ecc->bytes = 3;
4449  		ecc->strength = 1;
4450  		break;
4451  
4452  	case NAND_ECC_SOFT_BCH:
4453  		if (!mtd_nand_has_bch()) {
4454  			pr_warn("CONFIG_MTD_NAND_ECC_BCH not enabled\n");
4455  			BUG();
4456  		}
4457  		ecc->calculate = nand_bch_calculate_ecc;
4458  		ecc->correct = nand_bch_correct_data;
4459  		ecc->read_page = nand_read_page_swecc;
4460  		ecc->read_subpage = nand_read_subpage;
4461  		ecc->write_page = nand_write_page_swecc;
4462  		ecc->read_page_raw = nand_read_page_raw;
4463  		ecc->write_page_raw = nand_write_page_raw;
4464  		ecc->read_oob = nand_read_oob_std;
4465  		ecc->write_oob = nand_write_oob_std;
4466  		/*
4467  		 * Board driver should supply ecc.size and ecc.strength values
4468  		 * to select how many bits are correctable. Otherwise, default
4469  		 * to 4 bits for large page devices.
4470  		 */
4471  		if (!ecc->size && (mtd->oobsize >= 64)) {
4472  			ecc->size = 512;
4473  			ecc->strength = 4;
4474  		}
4475  
4476  		/* See nand_bch_init() for details. */
4477  		ecc->bytes = 0;
4478  		ecc->priv = nand_bch_init(mtd);
4479  		if (!ecc->priv) {
4480  			pr_warn("BCH ECC initialization failed!\n");
4481  			BUG();
4482  		}
4483  		break;
4484  
4485  	case NAND_ECC_NONE:
4486  		pr_warn("NAND_ECC_NONE selected by board driver. This is not recommended!\n");
4487  		ecc->read_page = nand_read_page_raw;
4488  		ecc->write_page = nand_write_page_raw;
4489  		ecc->read_oob = nand_read_oob_std;
4490  		ecc->read_page_raw = nand_read_page_raw;
4491  		ecc->write_page_raw = nand_write_page_raw;
4492  		ecc->write_oob = nand_write_oob_std;
4493  		ecc->size = mtd->writesize;
4494  		ecc->bytes = 0;
4495  		ecc->strength = 0;
4496  		break;
4497  
4498  	default:
4499  		pr_warn("Invalid NAND_ECC_MODE %d\n", ecc->mode);
4500  		BUG();
4501  	}
4502  
4503  	/* For many systems, the standard OOB write also works for raw */
4504  	if (!ecc->read_oob_raw)
4505  		ecc->read_oob_raw = ecc->read_oob;
4506  	if (!ecc->write_oob_raw)
4507  		ecc->write_oob_raw = ecc->write_oob;
4508  
4509  	/*
4510  	 * The number of bytes available for a client to place data into
4511  	 * the out of band area.
4512  	 */
4513  	mtd->oobavail = 0;
4514  	if (ecc->layout) {
4515  		for (i = 0; ecc->layout->oobfree[i].length; i++)
4516  			mtd->oobavail += ecc->layout->oobfree[i].length;
4517  	}
4518  
4519  	/* ECC sanity check: warn if it's too weak */
4520  	if (!nand_ecc_strength_good(mtd))
4521  		pr_warn("WARNING: %s: the ECC used on your system is too weak compared to the one required by the NAND chip\n",
4522  			mtd->name);
4523  
4524  	/*
4525  	 * Set the number of read / write steps for one page depending on ECC
4526  	 * mode.
4527  	 */
4528  	ecc->steps = mtd->writesize / ecc->size;
4529  	if (ecc->steps * ecc->size != mtd->writesize) {
4530  		pr_warn("Invalid ECC parameters\n");
4531  		BUG();
4532  	}
4533  	ecc->total = ecc->steps * ecc->bytes;
4534  
4535  	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
4536  	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
4537  		switch (ecc->steps) {
4538  		case 2:
4539  			mtd->subpage_sft = 1;
4540  			break;
4541  		case 4:
4542  		case 8:
4543  		case 16:
4544  			mtd->subpage_sft = 2;
4545  			break;
4546  		}
4547  	}
4548  	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
4549  
4550  	/* Initialize state */
4551  	chip->state = FL_READY;
4552  
4553  	/* Invalidate the pagebuffer reference */
4554  	chip->pagebuf = -1;
4555  
4556  	/* Large page NAND with SOFT_ECC should support subpage reads */
4557  	switch (ecc->mode) {
4558  	case NAND_ECC_SOFT:
4559  	case NAND_ECC_SOFT_BCH:
4560  		if (chip->page_shift > 9)
4561  			chip->options |= NAND_SUBPAGE_READ;
4562  		break;
4563  
4564  	default:
4565  		break;
4566  	}
4567  
4568  	/* Fill in remaining MTD driver data */
4569  	mtd->type = nand_is_slc(chip) ? MTD_NANDFLASH : MTD_MLCNANDFLASH;
4570  	mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
4571  						MTD_CAP_NANDFLASH;
4572  	mtd->_erase = nand_erase;
4573  	mtd->_panic_write = panic_nand_write;
4574  	mtd->_read_oob = nand_read_oob;
4575  	mtd->_write_oob = nand_write_oob;
4576  	mtd->_sync = nand_sync;
4577  	mtd->_lock = NULL;
4578  	mtd->_unlock = NULL;
4579  	mtd->_block_isreserved = nand_block_isreserved;
4580  	mtd->_block_isbad = nand_block_isbad;
4581  	mtd->_block_markbad = nand_block_markbad;
4582  	mtd->writebufsize = mtd->writesize;
4583  
4584  	/* propagate ecc info to mtd_info */
4585  	mtd->ecclayout = ecc->layout;
4586  	mtd->ecc_strength = ecc->strength;
4587  	mtd->ecc_step_size = ecc->size;
4588  	/*
4589  	 * Initialize bitflip_threshold to its default prior scan_bbt() call.
4590  	 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
4591  	 * properly set.
4592  	 */
4593  	if (!mtd->bitflip_threshold)
4594  		mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
4595  
4596  	return 0;
4597  }
4598  EXPORT_SYMBOL(nand_scan_tail);
4599  
4600  /**
4601   * nand_scan - [NAND Interface] Scan for the NAND device
4602   * @mtd: MTD device structure
4603   * @maxchips: number of chips to scan for
4604   *
4605   * This fills out all the uninitialized function pointers with the defaults.
4606   * The flash ID is read and the mtd/chip structures are filled with the
4607   * appropriate values.
4608   */
nand_scan(struct mtd_info * mtd,int maxchips)4609  int nand_scan(struct mtd_info *mtd, int maxchips)
4610  {
4611  	int ret;
4612  
4613  	ret = nand_scan_ident(mtd, maxchips, NULL);
4614  	if (!ret)
4615  		ret = nand_scan_tail(mtd);
4616  	return ret;
4617  }
4618  EXPORT_SYMBOL(nand_scan);
4619  
4620  MODULE_LICENSE("GPL");
4621  MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
4622  MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
4623  MODULE_DESCRIPTION("Generic NAND flash driver code");
4624